Sample records for cutting edge website

  1. Impact of the On the Cutting Edge Professional Development Program on U.S. Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Iverson, E. A.; Czujko, R.; Macdonald, H.; Mogk, D. W.; Tewksbury, B. J.; McLaughlin, J.; Sanford, C.; Greenseid, L.; Luxenberg, M.

    2011-12-01

    Transforming STEM education from a dominantly lecture-based format focused on facts to classrooms where students engage with the process of understanding the world through science is a primary goal of faculty development. On the Cutting Edge seeks to support this transformation by using workshops and a website to build a community of geoscience faculty who learn from one another. In order to assess the impact of the On the Cutting Edge program, we surveyed 5917 U.S. geoscience faculty in 2009 and received 2874 completed responses (49% response rate). We looked at the differences in responses between workshop participants who also use the website, website users who have not attended a Cutting Edge workshop, and survey respondents who had neither attended a Cutting Edge workshop nor used the Cutting Edge website. The number of respondents who had attended a Cutting Edge workshop and had not used the website was too small to analyze. Courses described by Cutting Edge workshop participants make significantly less use of lecture and more use of small group discussion and in-class activities. While all faculty respondents routinely update their courses, workshop participants are more likely to have changed their teaching methods in the two years leading up to the survey. When making changes to their teaching methods, workshop participants are more likely than other populations to seek information about teaching on the web, consult journal articles about teaching, and seek advice from colleagues outside their department and from nationally known leaders in geoscience education. Workshop participants are also more likely to tell a colleague when they do something that is particularly successful in class. End-of-workshop survey and follow-up interview data indicate that participants leave workshops reinvigorated, with a new or renewed commitment to student-centered teaching, and that they make use of the website as they implement ideas for changing their teaching following the workshop. Participants can identify specific ideas, techniques, and materials from workshops and the website that they have used in their teaching, and they attribute substantial improvements in their teaching to the Cutting Edge professional development experience. While the differences in behavior reported in the survey results may in part reflect the choice to attend workshops by faculty inclined to improve their teaching, the combination of motivation, attitude, and information developed through the workshop experience is amplifying this effect.

  2. On the Cutting Edge: Workshops, Online Resources, and Community Development

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Fox, S.; Iverson, E. A. R.; Beane, R. J.; Mcconnell, D. A.; Wiese, K.; Wysession, M. E.

    2014-12-01

    On the Cutting Edge, funded by NSF since 2002, offers a comprehensive professional development program for geoscience faculty. The program includes an annual integrated in-person and virtual workshop series, has developed an extensive collection of peer-reviewed instructional activities and related online resources, and supports continuing community development through sponsorship of webinars, listservs, opportunities for community contributions, and dissemination of resources to keep faculty current in their science and pedagogic practices. On the Cutting Edge (CE) has offered more than 100 face-to-face and virtual workshops, webinars, journal clubs, and other events to more than 3000 participants. The award-winning website has more than 5000 pages including 47 modules on career management, pedagogy, and geoscience topics. It has more than 1800 instructional activities contributed by the community, the majority of which have been peer-reviewed. The website had more than one million visitors last year. We have worked to support a community in which faculty improve their teaching by designing courses using research-based methods to foster higher-order thinking, incorporate geoscience data, and address cognitive and affective aspects of learning as well as a community in which faculty are comfortable and successful in managing their careers. The program addresses the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics that attract different groups of participants. CE workshops are interactive, model best pedagogical practices, emphasize participant learning, provide opportunities for participants to share their knowledge and experience, provide high-quality resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. On the Cutting Edge has had an impact on teaching based on data from national surveys, interview and classroom observation studies, and website usage. The Cutting Edge program is now part of the NAGT professional development program that includes face-to-face, traveling, and virtual workshops for faculty and geoscience programs of all types. http://serc.carleton.edu/NAGTWorkshops/index.html

  3. Teaching about Climate Change and Energy with Online Materials and Workshops from On the Cutting Edge

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.

    2009-12-01

    Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role-playing, inquiry-based learning via online data sets, and the use of computer models. The website houses course descriptions and syllabi for both introductory-level and upper-level climate courses contributed by faculty. Collections of climate visualizations and recommended references help faculty navigate to online materials that are best suited for their classroom. The On the Cutting Edge program features a biennial workshop series about teaching climate change, held in conjunction with the American Quaternary Association. Presentations, teaching ideas and references from the 2006 and 2008 workshops are available, along with applications for the upcoming workshop to be held in August 2010. All of these materials can be found at http://serc.carleton.edu/NAGTWorkshops/energy and http://serc.carleton.edu/NAGTWorkshops/climatechange. Faculty are encouraged to submit their own teaching materials to the web collections via on-line forms for submitting information and uploading files.

  4. Improving undergraduate STEM education: The efficacy of discipline-based professional development.

    PubMed

    Manduca, Cathryn A; Iverson, Ellen R; Luxenberg, Michael; Macdonald, R Heather; McConnell, David A; Mogk, David W; Tewksbury, Barbara J

    2017-02-01

    We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes.

  5. Improving undergraduate STEM education: The efficacy of discipline-based professional development

    PubMed Central

    Manduca, Cathryn A.; Iverson, Ellen R.; Luxenberg, Michael; Macdonald, R. Heather; McConnell, David A.; Mogk, David W.; Tewksbury, Barbara J.

    2017-01-01

    We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes. PMID:28246629

  6. Communication Buildup

    ERIC Educational Resources Information Center

    Criswell, Chad

    2012-01-01

    There was a time, not so long ago, when having a website for a teacher's music program was considered cutting-edge. But today, over 40 years after the birth of the Internet, everyone lives in an age of instant information. New online services and Internet technologies have changed more than just the interaction between teacher, student, and…

  7. On the Cutting Edge Professional Development Program - An effective model built from years of experience

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Macdonald, H.; Beane, R. J.; Manduca, C. A.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.; Wiese, K.; Wysession, M. E.; Iverson, E. A. R.; Fox, S.

    2015-12-01

    The On the Cutting Edge (CE) program offers a successful model for designing and convening professional development events. Information about the model is now available on the CE website. The program model has evolved from more than 12 years of experience, building with input from strong leaders and participants. CE offers face-to-face, virtual, and hybrid events, and features a rich website that supports these professional development events as well as a growing community with a shared interest in effective geoscience teaching. Data from national surveys, participant feedback, and self-report data indicate the program's success in improving undergraduate geoscience education. Successes are also demonstrated in classroom observations using RTOP, indicating a significant difference in teaching style among participants and non-participants. A suite of web pages, with a planning timeline, provides guidance to those interested in designing and convening face-to-face or virtual events based on the CE model. The pages suggest ways to develop robust event goals and evaluation tools, how to choose strong leaders and recruit diverse participants, advice for designing effective event programs that utilize participant expertise, websites, and web tools, and suggestions for effectively disseminating event results and producing useful products. The CE model has been successfully transferred to projects that vary in scale and discipline. Best practices from the CE model include (1) thinking of the workshop as shared enterprise among conveners and participants; (2) incorporating conveners and participants who bring diverse viewpoints and approaches; (3) promoting structured discussions that utilize participants' expertise; (4) emphasizing practical strategies to effect change; and (5) using the website as a platform to prepare for the workshop, share ideas, and problem-solve challenges. Learn more about how to utilize this model for your project at:serc.carleton.edu/NAGTWorkshops/workshops/convene

  8. National Intrepid Center of Excellence: Cutting Edge Interdisciplinary Care for TBI & PH

    DTIC Science & Technology

    2011-01-26

    training • Autogenic Training : Heart Math • Pain Control: Acupuncture, Relaxation • Family Therapy: FOCUS • Wellness: Yoga, Nutrition, Rec, Art... training venue for the dissemination of next generation standards of care and resilience to providers as well as Service Members and families  An...on the NICoE Website (Currently under development) 8 • NICoE’s Training and Education (T&E) mission is to serve as: – An education catalyst for

  9. Virtual Workshop Experiences for Faculty: Lessons Learned from On the Cutting Edge

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Kirk, K. B.; Mogk, D. W.; Bruckner, M. Z.

    2010-12-01

    The On the Cutting Edge professional development program for geoscience faculty has begun offering online workshops as a supplement to its face-to-face workshop series. Following a few initial forays since 2005, Cutting Edge launched a suite of four virtual workshops in 2010: Teaching Geoscience with Service Learning, Understanding the Deep Earth, Designing Effective and Innovative Courses in the Geosciences, and Teaching Geoscience Online. Each workshop was presented over 1-2 weeks and included pre-workshop web postings, synchronous whole-group presentations, live small-group discussions, asynchronous input via threaded discussions or editable web pages, and personal time for reflection and writing. Synchronous sessions were facilitated through the Elluminate software platform which includes tools for viewing presentations, screen sharing, real-time participant response, and an ongoing chat-room discussion. Audio was provided through a separate telephone conference service. In addition, many asynchronous conversations on workshop topics were held via a threaded discussion board on the Cutting Edge website and in Wiki-like, editable web pages designed to support collaborative work. A number of challenges to running online workshops exist, primarily involving participants’ time management. It is difficult for participants to set aside enough time to complete workshop activities when they are still enmeshed in their everyday lives. It also requires new skills for speakers, participants and support staff to prepare web-based materials and navigate the technology required for the online presentations. But there are also a number of opportunities presented by these experiences. With no travel needed, an online workshop is less expensive for participants, which allows Cutting Edge to extend its commitment to providing workshop materials to a wider audience of interested faculty. Also, synchronous sessions can be recorded and posted on the website for broader community access. In terms of best practices, the most important lesson learned is the need to make the experience as “real” as possible so that participants stay engaged and feel connected to the workshop experience. This can be accomplished by making the presentations interactive, continued leader participation in threaded discussions and break out groups, and providing multiple channels for contribution and participation. Despite some initial hesitation in jumping into a virtual environment, participants gained experience and became more comfortable with collaboration via online technologies. Participants had access to their own scientific and instructional materials at their home offices, and as a result could design and complete new teaching resources more effectively during the workshop. Peer review of new instructional resources was also completed during the workshop, and virtual networks were established to support continuing work. Online workshops can be used to effectively minimize costs, extend participation, build and sustain community networks, and develop thematic collections of instructional resources and activities. Based on the success of the 2010 workshops, more online workshops are planned for the coming years.

  10. Resources for Designing, Selecting and Teaching with Visualizations in the Geoscience Classroom

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Ormand, C. J.; McDaris, J. R.

    2009-12-01

    Geoscience is a highly visual field, and effective use of visualizations can enhance student learning, appeal to students’ emotions and help them acquire skills for interpreting visual information. The On the Cutting Edge website, “Teaching Geoscience with Visualizations” presents information of interest to faculty who are teaching with visualizations, as well as those who are designing visualizations. The website contains best practices for effective visualizations, drawn from the educational literature and from experts in the field. For example, a case is made for careful selection of visualizations so that faculty can align the correct visualization with their teaching goals and audience level. Appropriate visualizations will contain the desired geoscience content without adding extraneous information that may distract or confuse students. Features such as labels, arrows and contextual information can help guide students through imagery and help to explain the relevant concepts. Because students learn by constructing their own mental image of processes, it is helpful to select visualizations that reflect the same type of mental picture that students should create. A host of recommended readings and presentations from the On the Cutting Edge visualization workshops can provide further grounding for the educational uses of visualizations. Several different collections of visualizations, datasets with visualizations and visualization tools are available on the website. Examples include animations of tsunamis, El Nino conditions, braided stream formation and mountain uplift. These collections are grouped by topic and range from simple animations to interactive models. A series of example activities that incorporate visualizations into classroom and laboratory activities illustrate various tactics for using these materials in different types of settings. Activities cover topics such as ocean circulation, land use changes, earthquake simulations and the use of Google Earth to explore geologic processes. These materials can be found at http://serc.carleton.edu/NAGTWorkshops/visualization. Faculty and developers of visualization tools are encouraged to submit teaching activities, references or visualizations to the collections.

  11. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  12. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  13. WebArray: an online platform for microarray data analysis

    PubMed Central

    Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng

    2005-01-01

    Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165

  14. Accomplishing Transformative Research in a Challenging Fiscal Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, E. J.; Paxton, L. J.; Bust, G.

    2014-12-01

    The shift in funding is forcing scientists to promise transformative research for a pittance. To accomplish this, researchers need to transform their methodology to include societal buy-in, use of commercial off-the-shelf (COTS) technology, and cross-discipline platform usage. As the cutting edge of research expands to view the system on the global scale with extremely fine resolution, fiscally reasonable budgets present a challenge to be met. Consider how do we measure a specific variable over 45-degrees of latitude in an isolated and hostile region of Earth - the total electron count over the South Pole? This work examines this transformative research using hosted payloads on buoys, balloons, and unmanned aerial vehicles (UAVs). We will show cutting edge research occurring simultaneous with education and public outreach, offering societal buy-in through interactive websites and student-built hosted payloads. These interactions provide a vision to the public and a new database to the scientists. The use of COTS technology and cross-discipline (oceanography and space) platforms keep the cost low. We will discuss a general methodology for accomplishing transformative research in a challenging fiscal environment through integration of COTS technology, assimilative and first principle models, and observing systems simulation experiments (OSSEs).

  15. Device for cutting protrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz M

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade.more » The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.« less

  16. Language study on Spliced Semigraph using Folding techniques

    NASA Astrophysics Data System (ADS)

    Thiagarajan, K.; Padmashree, J.

    2018-04-01

    In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.

  17. Powered protrusion cutter

    DOEpatents

    Bzorgi, Fariborz M.

    2010-03-09

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  18. Microcutting characteristics on the single crystal diamond tool with edge radius using molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong-Du; Moon, Chan-Hong

    1995-12-31

    Ultraprecision metal cutting (UPMC) technology which makes possible submicrometer form accuracy and manometer roughness is developed to reach the 1nm nominal (undeformed) thickness of cut. At this thickness level, a few of atom`s layers should be considered. In this paper using the Molecuar Dynamics simulation, the phenomena of microcutting with a subnanometer chip thickness, the cutting mechanism for tool edge configuration to consider the sharp edge and round edge tool, the cut material and cutting speed are evaluated. Cutting mechanism of subnanometer depth of cut is evaluated.

  19. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    PubMed

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  20. Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge

    NASA Astrophysics Data System (ADS)

    Kozlov, V.; Gerasimov, A.; Kim, A.

    2016-04-01

    In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti6Al2Mo2Cr), ductile (63Cu) and brittle (57Cu1Al3Mn) brasses are described. Investigations were carried out by the method of ‘split cutter’ and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2… 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100…500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (specific contact load as a stress σ or τ) hf - the width of the flank wear land (chamfer) of the cutting tool, flank wear land can be natural or artificial like the one in this paper [mm]; xh - distance from the cutting edge on the surface of the flank-land [mm]; σh - normal specific contact load on the flank land [MPa]; τh - tangential (shear) specific contact load on the flank land [MPa]; HSS - high speed steel (material of cutting tool); Py - radial component of cutting force [N]; Py r - radial component of cutting force on the rake face [N]; Pz - tangential component of cutting force [N]; γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°] αh - clearance angle of the flank wear land [°] ρ - rounding off radius of the cutting edge [mm]; b - width of the machined disk [mm].

  1. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  2. On the Cutting Edge Professional Development Program: Workshop and Web Resources for Current and Future Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    Recognizing that many college and university faculty receive little formal training in teaching, are largely unaware of advances in research on teaching and learning, and face a variety of challenges in advancing in academic careers, the National Science Foundation-funded program On the Cutting Edge provides professional development for current and future faculty in the geosciences at various stages in their careers. The program includes a series of six multi-day workshops, sessions and one-day workshops at professional meetings, and a website with information about workshop opportunities and a variety of resources that bring workshop content to faculty (http://serc.carleton.edu/NAGTWorkshops). The program helps faculty improve their teaching and their job satisfaction by providing resources on instructional methods, geoscience content, and strategies for career planning. Workshop and website resources address innovative and effective practices in teaching, course design, delivery of instructional materials, and career planning, as well as approaches for teaching particular topics and strategies for starting and maintaining a research program in various institutional settings. Each year, special workshops for graduate students and post-doctoral fellows interested in academic careers and for early career faculty complement offerings on course design and emerging topics that are open to the full geoscience community. These special workshops include sessions on topics such as dual careers, gender issues, family-work balance, interviewing and negotiating strategies. The workshops serve as opportunities for networking and community building, with participants building connections with other participants as well as workshop leaders. Workshop participants reflect the full range of institutional diversity as well as ethnic and racial diversity beyond that of the geoscience faculty workforce. More than 40 percent of the faculty participants are female. Of the faculty participants in workshops offered July 2002 through June 2004, workshop participants have come from more than 250 colleges and universities in 49 states and the District of Columbia. Workshop evaluations indicate that the workshops are well received with faculty particularly appreciating the content of the workshops and the opportunities for networking. An important aspect of the program is involvement of the geoscience community in workshop leadership. Leadership roles include serving as co-conveners, invited speakers, demonstration leaders, working group leaders, co-conveners of post-workshop sessions at professional meetings, and contributors to the website.

  3. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  4. CUTTING AND WEDGING JACKET REMOVER

    DOEpatents

    Freedman, M.; Raynor, S.

    1959-04-01

    A tool is presented for stripping cladded jackets from fissionable fuel elements. The tool is a tube which fits closely around the jacket and which has two cutting edges at opposite sides of one end. These cutting edges are adjusted to penetrate only the jacket so that by moving the edges downward the jacket is cut into two pieces.

  5. Cutting tool form compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  6. Cutting tool form compensaton system and method

    DOEpatents

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

  7. Modelling bucket excavation by finite element

    NASA Astrophysics Data System (ADS)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the rectangular profile appears the "clogging" phenomenon of the cutting edge and at the polygonal profile the point of application remains constant without going inside. From the finite element method done in this paper it can be concluded that the polygonal profiles made of dihedral angles are much more durable and asymmetric cups tend to have uniform tension along the entire perimeter.

  8. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation — A Progress Report

    NASA Astrophysics Data System (ADS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan

    2004-06-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.

  9. Influence of the cutting edge angle of a titanium instrument on chip formation in the machining of trabecular and cortical bone.

    PubMed

    von See, Constantin; Stoetzer, Marcus; Ruecker, Martin; Wagner, Max; Schumann, Paul; Gellrich, Nils-Claudius

    2014-01-01

    The placement of self-tapping implants is associated with microfractures and the formation of bone chips along the cutting flutes. This study was conducted to investigate the effect of different cutting edge angles on chip formation during the machining of trabecular and cortical bone using instruments with a rough titanium surface. Mandibular cortical and trabecular bone specimens were obtained from freshly slaughtered domestic pigs. A predefined thrust force was applied to the specimens. Four specially designed cutting instruments that simulated dental implants and had a rough titanium surface were allowed to complete one full revolution at cutting edge angles of 55, 65, 75, and 85 degrees, respectively. Torque and thrust were measured during the cutting process. Bone chips were measured and weighed under a microscope. Different cutting edge angles did not lead to significant differences in torque. The lowest torque values were measured when the cutting edges were positioned at 65 degrees in trabecular bone and at 85 degrees in cortical bone. Bone chips were significantly larger and heavier at angles of 55 and 65 degrees than at angles of 75 and 85 degrees in trabecular bone. Instruments with a rough titanium surface show considerable angle-dependent differences in chip formation. In addition to bone density, the angle of the cutting edges should be taken into consideration during the placement of dental implants. Good results were obtained when the cutting edges were positioned at an angle of 65 degrees. This angle can have positive effects on osseointegration.

  10. Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels

    NASA Astrophysics Data System (ADS)

    Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.

    2017-09-01

    The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.

  11. Iron aluminide knife and method thereof

    DOEpatents

    Sikka, Vinod K.

    1997-01-01

    Fabricating an article of manufacture having a Fe.sub.3 Al-based alloy cutting edge. The fabrication comprises the steps of casting an Fe.sub.3 Al-based alloy, extruding into rectangular cross section, rolling into a sheet at 800.degree. C. for a period of time followed by rolling at 650.degree. C., cutting the rolled sheet into an article having an edge, and grinding the edge of the article to form a cutting edge.

  12. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    NASA Astrophysics Data System (ADS)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-12-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  13. Laser cutting of Kevlar laminates and thermal stress formed at cutting sections

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.

    2012-02-01

    Laser cutting of Kevlar laminates is carried out and thermal stress field developed in the cutting region is predicted using the finite element code. Temperature predictions are validated through the thermocouple data. The morphological changes in the cutting section are examined by incorporating optical and scanning electron microscopes. It is found that temperature predictions agree well with the thermocouple data. High values of von Mises stress are observed at the cutting edges and at the mid-thickness of the Kevlar laminate due to thermal compression formed in this region. The laser cut edges are free from whiskers; however, striation formation and some small sideways burning is observed at the kerf edges.

  14. Cutting-Edge: Integrating Students with Intellectual and Developmental Disabilities into a 4-Year Liberal Arts College

    ERIC Educational Resources Information Center

    Hafner, Dedra; Moffatt, Courtney; Kisa, Nutullah

    2011-01-01

    Cutting-Edge provides inclusion in college for students with intellectual disabilities (SWID). Cutting-Edge students attended college by taking undergraduate courses, resided in student housing, and engaged in student-life events as well as pursued community service, internships and employment. Undergraduate students were the best means to teach…

  15. Numerical approach in defining milling force taking into account curved cutting-edge of applied mills

    NASA Astrophysics Data System (ADS)

    Bondarenko, I. R.

    2018-03-01

    The paper tackles the task of applying the numerical approach to determine the cutting forces of carbon steel machining with curved cutting edge mill. To solve the abovementioned task the curved surface of the cutting edge was subject to step approximation, and the chips section was split into discrete elements. As a result, the cutting force was defined as the sum of elementary forces observed during the cut of every element. Comparison and analysis of calculations with regard to the proposed method and the method with Kienzle dependence showed its sufficient accuracy, which makes it possible to apply the method in practice.

  16. Iron aluminide knife and method thereof

    DOEpatents

    Sikka, V.K.

    1997-08-05

    Fabricating an article of manufacture having a Fe{sub 3}Al-based alloy cutting edge is discussed. The fabrication comprises the steps of casting an Fe{sub 3}Al-based alloy, extruding into rectangular cross section, rolling into a sheet at 800 C for a period of time followed by rolling at 650 C, cutting the rolled sheet into an article having an edge, and grinding the edge of the article to form a cutting edge. 1 fig.

  17. Apparatus for cutting elastomeric materials

    NASA Technical Reports Server (NTRS)

    Corbett, A. B.

    1974-01-01

    Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.

  18. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission

    PubMed Central

    Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal

    2016-01-01

    Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919

  19. Double diameter boring tool

    DOEpatents

    Ashbaugh, Fred N.; Murry, Kenneth R.

    1988-12-27

    A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.

  20. Double diameter boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashbaugh, F.N.; Murry, K.R.

    A method of boring two concentric holes of different depths is described utilizing an elongated boring tool having a tool axis of rotation, a longitudinally disposed tool centerline axis, and first and second transverse cutting edges at one end thereof extending across the boring tool, the second cutting edge being longitudinally rearwardly recessed with respect to the first cutting edge. The method consists of inserting the boring tool into an adjustable boring head, adjusting a distance B between the tool centerline axis and the tool axis of rotation such that the tool axis of rotation intersects a first boring areamore » of the first cutting edge; and boring the concentric holes having respectively larger and smaller diameters.« less

  1. Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-05-01

    The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.

  2. Grading technologies for the manufacture of innovative cutting blades

    NASA Astrophysics Data System (ADS)

    Rostek, Tim; Homberg, Werner

    2018-05-01

    Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.

  3. Some aspects of precise laser machining - Part 2: Experimental

    NASA Astrophysics Data System (ADS)

    Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert

    2018-05-01

    The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.

  4. Field testing of alternative carbide edge snow plow blades : [technical memorandum].

    DOT National Transportation Integrated Search

    2004-03-01

    The Maine Department of Transportation uses almost 2,500 carbide cutting edges on its fleet of highway snow plow trucks : each winter. This represents almost 9,000 linear ft. of cutting edges and an annual expenditure of roughly $150,000 each winter ...

  5. Side Flow Effect on Surface Generation in Nano Cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-05-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  6. Side Flow Effect on Surface Generation in Nano Cutting.

    PubMed

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  7. Design and Analysis of Bionic Cutting Blades Using Finite Element Method.

    PubMed

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.

  8. Design and Analysis of Bionic Cutting Blades Using Finite Element Method

    PubMed Central

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583

  9. Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-03-01

    The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.

  10. Preliminary results from field testing of alternative carbide edge snow plow blades.

    DOT National Transportation Integrated Search

    2003-04-01

    The Maine Department of Transportation uses almost 2,500 carbide cutting edges on its fleet of highway snow plow trucks : each winter. This represents almost 9,000 linear ft. of cutting edges and an annual expenditure of roughly $150,000 each winter ...

  11. Universal ripper miner

    DOEpatents

    Morrell, Roger J.; Larson, David A.

    1991-01-01

    A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.

  12. Cutting edge technology to enhance nursing classroom instruction at Coppin State University.

    PubMed

    Black, Crystal Day; Watties-Daniels, A Denyce

    2006-01-01

    Educational technologies have changed the paradigm of the teacher-student relationship in nursing education. Nursing students expect to use and to learn from cutting edge technology during their academic careers. Varied technology, from specified software programs (Tegrity and Blackboard) to the use of the Internet as a research medium, can enhance student learning. The authors provide an overview of current cutting edge technologies in nursing classroom instruction and its impact on future nursing practice.

  13. Computation of two-dimensional flows past ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Mittal, S.; Saxena, P.; Singh, A.

    2001-03-01

    Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright

  14. Material Behavior At The Extreme Cutting Edge In Bandsawing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Mohammed; Haider, Julfikar; Persson, Martin

    2011-01-17

    In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can leadmore » to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.« less

  15. Cutting thin glass by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Shin, Hyesung; Kim, Dongsik

    2018-06-01

    The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.

  16. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.

  17. Machining of Silicon-Ribbon-Forming Dies

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  18. International Observe the Moon Night: Using Public Outreach Events to Tell Your Story to the Public

    NASA Astrophysics Data System (ADS)

    Hsu, B. C.; International Observe the Moon Night Coordinating Committee

    2011-12-01

    From various interpretations of the lunar "face," early pictograms of the Moon's phases, or to the use of the lunar cycle for festivals or harvests, the Moon has an undeniable influence on human civilization. International Observe the Moon Night (InOMN) capitalizes on the human connection to the Moon by engaging the public in annual lunar observation campaigns that share the excitement of lunar science and exploration. In 2010 (InOMN's inaugural year), over 500,000 people attended events in 53 countries around the world. About 68% of InOMN hosts - astronomy clubs, museums, schools, or other groups - used the resources on the InOMN website (http://observethemoonnight.org). The InOMN website provided supporting materials for InOMN event hosts in the form of downloadable advertising materials, Moon maps, suggestions for hands-on educational activities, and links to lunar science content. InOMN event participants shared their experiences with the world using the Web and social media, event hosts shared their experiences with evaluation data, and amateur astronomers and photographers shared their images of the Moon through the lunar photography contest. The overwhelming response from InOMN in 2010 represents an untapped potential for infusing cutting edge lunar science and exploration into a large-scale public outreach event.

  19. Influence of edging practices on cutting yields of Alaska birch lumber

    Treesearch

    David L. Nicholls; J.W. Funck; C.C. Brunner; J.E. Reeb

    2009-01-01

    Birch lumber is often characterized by a high degree of knots, bark pockets, heartwood, and other features which force sawmill owners to decide whether to edge and trim boards to produce standard grade lumber vs. proprietary grade character-marked lumber. In addition, the edging strategies used with irregularly shaped flitches can greatly influence cut-stock recovery....

  20. Commissioning a hobby cutting device for radiochromic film preparation.

    PubMed

    Zolfaghari, Somayeh; Francis, Kirby E; Kairn, Tanya; Crowe, Scott B

    2017-06-01

    In addition to a high spatial resolution and well characterised dose response, one of the major advantages of radiochromic film as a dosimeter is that sheets of film can be cut into pieces suitable for use as calibration films, and for in vivo and phantom measurements. The cutting of film is typically done using scissors or a guillotine, and this process can be time-consuming, limited in precision, requires extensive handling and does not allow holes to be cut from the film without cutting from an existing edge. This study investigated the use of a Brother ScanNCut hobby cutting system for EBT3 film preparation. The optimal operating parameters (blade size, pressure, speed) that resulted in precise cuts with minimal delamination at cut edges were identified using test cutting patterns. These parameters were then used to cut a large film insert for a stereotactic head phantom for comparison against an insert cut with scissors. While the hobby cutting system caused a wider region of delamination at the film edge (1.8 mm) compared to scissors (1 mm), the hobby cutting system was found to be able to produce reproducible cuts more efficiently and more accurately than scissors. The use of the hobby cutting system is recommended for complex phantom inserts (containing sharp corners or holes for alignment rods) or in situations where large numbers of film pieces need to be prepared.

  1. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  2. Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic

    NASA Astrophysics Data System (ADS)

    Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong

    2017-09-01

    Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.

  3. [Scanning electron microscopic investigations of cutting edge quality in lamellar keratotomy using the Wavelight femtosecond laser (FS-200) : What influence do spot distance and an additional tunnel have?

    PubMed

    Hammer, T; Höche, T; Heichel, J

    2018-01-01

    Femtosecond lasers (fs-lasers) are established cutting instruments for the creation of LASIK flaps. Previous studies often showed even rougher surfaces after application of fs-laser systems compared to lamellar keratotomy with mechanical microkeratomes. When cutting the cornea with fs-lasers, an intrastromal gas development occurs, which has a potentially negative influence on the cutting quality if the gas cannot be dissipated; therefore, manufacturers have chosen the way of gas assimilation in so-called pockets. The investigated system creates a tunnel which opens under the conjunctiva. The aim of this study was to investigate the effects of a tunnel as well as the influence of different spot distances on the quality of cut surfaces and edges. In this experimental study on freshly enucleated porcine eyes (n = 15), the following cuts were carried out with the FS-200 (Wavelight, Erlangen, Germany): 1. standard setting (spot and line separation 8 µm), 2. with tunnel for gas drainage, 3. without gas-conducting tunnel, 4. with increased spot spacing (spot and line separation 9 μm instead of 8 μm) and 5. with reduced spot spacing (spot and line separation 7 μm instead of 8 μm). Subsequently, scanning electron microscopy (FEI Quanta 650, Hillsboro, OR) of the cut edges and surfaces as well as the gas drain tunnel were performed. The evaluation was based on an established score. The current fs-laser system (200 Hz) is able to create smooth cutting surfaces and sharp edges. The changed density of laser pulses compared to the standard settings with a reduced or increased distance between the pulses, did not achieve any further improvement in the surface quality. The gas-conducting tunnel could be detected by scanning electron microscope. In the case of cutting without a tunnel, roughened surfaces and irregularities on the cutting edges were found. When the FS-200 fs-laser is used, LASIK cuts with very smooth cut surfaces and sharp cutting edges are achieved. This is only valid as long as an additional tunnel with the fs-laser is placed under the conjunctiva. It can be assumed that the resulting gas is effectively drained through this tunnel. The installation of the tunnel represents a new possibility to replace previous techniques of gas assimilation in deeper lying cutting areas.

  4. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    PubMed Central

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature. PMID:25505977

  5. Analysis of femtosecond laser assisted capsulotomy cutting edges and manual capsulorhexis using environmental scanning electron microscopy.

    PubMed

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  6. Influence of Surface Features for Increased Heat Dissipation on Tool Wear

    PubMed Central

    Beno, Tomas; Hoier, Philipp; Wretland, Anders

    2018-01-01

    The critical problems faced during the machining process of heat resistant superalloys, (HRSA), is the concentration of heat in the cutting zone and the difficulty in dissipating it. The concentrated heat in the cutting zone has a negative influence on the tool life and surface quality of the machined surface, which in turn, contributes to higher manufacturing costs. This paper investigates improved heat dissipation from the cutting zone on the tool wear through surface features on the cutting tools. Firstly, the objective was to increase the available surface area in high temperature regions of the cutting tool. Secondly, multiple surface features were fabricated for the purpose of acting as channels in the rake face to create better access for the coolant to the proximity of the cutting edge. The purpose was thereby to improve the cooling of the cutting edge itself, which exhibits the highest temperature during machining. These modified inserts were experimentally investigated in face turning of Alloy 718 with high-pressure coolant. Overall results exhibited that surface featured inserts decreased flank wear, abrasion of the flank face, cutting edge deterioration and crater wear probably due to better heat dissipation from the cutting zone. PMID:29693579

  7. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  8. A next generation processing system for edging and trimming

    Treesearch

    A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman

    2000-01-01

    This paper describes a prototype scanning system that is being developed for the processing of rough hardwood lumber. The overall goal of the system is to automate the selection of cutting positions for the edges and ends of rough, green lumber. Such edge and trim cuts are typically performed at sawmills in an effort to increase board value prior to sale, and this...

  9. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    NASA Astrophysics Data System (ADS)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  10. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    NASA Astrophysics Data System (ADS)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  11. Evaluation of alternative snow plow cutting edges.

    DOT National Transportation Integrated Search

    2009-05-01

    With approximately 450 snow plow trucks, the Maine Department of Transportation (MaineDOT) uses in : excess of 10,000 linear feet of plow cutting edges each winter season. Using the 2008-2009 cost per linear : foot of $48.32, the Departments total co...

  12. "Meniscus Sign" to Identify the Lenticule Edge in Small-Incision Lenticule Extraction.

    PubMed

    Titiyal, Jeewan S; Kaur, Manpreet; Brar, Anand S; Falera, Ruchita

    2018-06-01

    To describe our technique of lenticule edge identification in small-incision lenticule extraction using the "meniscus sign" to prevent lenticule misdissection. Femtosecond laser application for small-incision lenticule extraction was performed. A "double ring" was visible, signifying the edge of the cap cut (outer ring) and lenticule cut (inner ring). The anterior and posterior lamellar planes were delineated in 2 different directions. During creation of the posterior lamellar channel, the lenticule edge was slightly pushed away from the surgeon to create a gap between the inner ring (diameter of the lenticule cut) and the lenticule edge. The lenticule edge assumed a frilled wavy appearance, and the meniscus sign was observed as a gap between the lenticule edge and the inner ring. The meniscus-shaped gap served as a landmark to identify the lenticule edge, and the relationship between the frilled lenticule edge and surgical instruments further acted as a guide to identify the correct plane of dissection. This technique was successfully undertaken in 50 eyes of 25 patients. The meniscus sign was observed in all cases, and no case had cap lenticular adhesions. The meniscus sign helps to identify the lenticule edge and correct dissection planes and provides a visual landmark during the entire surgical procedure.

  13. CO2 laser cutting of ultra thin (75 μm) glass based rigid optical solar reflector (OSR) for spacecraft application

    NASA Astrophysics Data System (ADS)

    Mishra, Shubham; Sridhara, N.; Mitra, Avijit; Yougandar, B.; Dash, Sarat Kumar; Agarwal, Sanjay; Dey, Arjun

    2017-03-01

    Present study reports for the first time laser cutting of multilayered coatings on both side of ultra thin (i.e., 75 μm) glass substrate based rigid optical solar reflector (OSR) for spacecraft thermal control application. The optimization of cutting parameters was carried out as a function of laser power, cutting speed and number of cutting passes and their effect on cutting edge quality. Systematic and in-detail microstructural characterizations were carried out by optical and scanning electron microscopy techniques to study the laser affected zone and cutting edge quality. Sheet resistance and water contact angle experiments were also conducted locally both prior and after laser cut to investigate the changes of electrical and surface properties, if any.

  14. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  15. Translating Research Into E/PO That Addresses Real Needs in K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    van der Veen, Wil E.; Belbruno, E. A.; Roelofsen Moody, T.

    2009-01-01

    One of the challenges in NASA ROSES E/PO is translating cutting edge research into products for which there is a demonstrated need. Rather than working from the premise that the "research is so cool’ that K-12 students or the public should learn about it, it is key to consult with the target audience to identify what their needs really are. The partnership between NJACE, Innovative Orbital Design, Inc., and Princeton offered a unique opportunity to translate intriguing but theoretical and mathematical research related to low energy orbits into a valuable education product. NJACE worked with educators to identify several needs with an intellectual link to this research: 1) Understanding of Gravity and Newton's Laws, 2) Understanding of Energy and Energy Transformations, 3) Integration of the sciences with math and technology, and 4) Knowledge of NASA's past accomplishments (such as the moon landings). Based on these identified needs, two science units were developed for students in grades 5-12 that integrate astronomy, physics, and the life sciences with math and technology. In addition an engaging public lecture was developed that tells a personal story of the quest for more economic space travel. In the past year, the workshops have been presented on three occasions, reaching over 75 teachers and demand exceeded available space with numerous teachers on waiting lists. The lecture has been presented numerous times at planetariums, museums, amateur astronomy and other clubs. We hope that our partnership will serve as a useful example of how to translate cutting edge research into valuable education products with an identified need. We will provide handouts with links to a website where the products and training can be downloaded in hope that others will help disseminate our product.

  16. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  17. Preset pivotal tool holder

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool fixture is provided for precise pre-alignment of a radiused edge cutting tool in a tool holder relative to a fixed reference pivot point established on said holder about which the tool holder may be selectively pivoted relative to the fixture base member to change the contact point of the tool cutting edge with a workpiece while maintaining the precise same tool cutting radius relative to the reference pivot point.

  18. Cut marks on bone surfaces: influences on variation in the form of traces of ancient behaviour

    PubMed Central

    Braun, David R.; Pante, Michael; Archer, William

    2016-01-01

    Although we know that our lineage has been producing sharp-edged tools for over 2.6 Myr, our knowledge of what they were doing with these tools is far less complete. Studies of these sharp-edged stone tools show that they were most probably used as cutting implements. However, the only substantial evidence of this is the presence of cut marks on the bones of animals found in association with stone tools in ancient deposits. Numerous studies have aimed to quantify the frequency and placement of these marks. At present there is little consensus on the meaning of these marks and how the frequency relates to specific behaviours in the past. Here we investigate the possibility that mechanical properties associated with edges of stone tools as well as the properties of bones themselves may contribute to the overall morphology of these marks and ultimately their placement in the archaeological record. Standardized tests of rock mechanics (Young's modulus and Vickers hardness) indicate that the hardness of tool edges significantly affects cut-mark morphology. In addition, we show that indentation hardness of bones also impacts the overall morphology of cut marks. Our results show that rock type and bone portions influence the shape and prevalence of cut marks on animal bones. PMID:27274806

  19. [The morphological characteristic of the skin lesions inflicted by plastic knives with four cutting edges].

    PubMed

    Leonov, S V; Finkel'shtein, V T

    2015-01-01

    The objective of the present work was to study the morphological features of the skin lesions inflicted by the blades of the Fgx Boot Blade I knives having four cutting edges. The study revealed the signs that can be used to distinguish between morphological characteristics of the stab and lacerated wounds having the primary and secondary incisions made by the four-edge blade.

  20. Edge-entanglement spectrum correspondence in a nonchiral topological phase and Kramers-Wannier duality

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Cincio, Lukasz; Moradi, Heidar; Gaiotto, Davide; Vidal, Guifre

    2015-03-01

    In a system with chiral topological order, there is a remarkable correspondence between the edge and entanglement spectra: the low-energy spectrum of the system in the presence of a physical edge coincides with the lowest part of the entanglement spectrum (ES) across a virtual cut of the system into two parts, up to rescaling and shifting. This correspondence is believed to be due to the existence of protected gapless edge modes. In this paper, we explore whether the edge-entanglement spectrum correspondence extends to nonchiral topological phases, where there are no protected gapless edge modes. Specifically, we consider the Wen-plaquette model, which is equivalent to the Kitaev toric code model and has Z2 topological order (quantum double of Z2) . The unperturbed Wen-plaquette model displays an exact correspondence: both the edge and entanglement spectra within each topological sector a (a =1 ,⋯,4 ) are flat and equally degenerate. Here, we show, through a detailed microscopic calculation, that in the presence of generic local perturbations: (i) the effective degrees of freedom for both the physical edge and the entanglement cut consist of a (spin-1 /2 ) spin chain, with effective Hamiltonians Hedgea and Henta, respectively, both of which have a Z2 symmetry enforced by the bulk topological order; (ii) there is in general no match between the low-energy spectra of Hedgea and Henta, that is, there is no edge-ES correspondence. However, if supplement the Z2 topological order with a global symmetry (translational invariance along the edge/entanglement cut), i.e., by considering the Wen-plaquette model as a symmetry-enriched topological phase (SET), then there is a finite domain in Hamiltonian space in which both Hedgea and Henta realize the critical Ising model, whose low-energy effective theory is the c =1 /2 Ising CFT. This is achieved because the presence of the global symmetry implies that the effective degrees of freedom of both the edge and entanglement cut are governed by Kramers-Wannier self-dual Hamiltonians, in addition to them being Z2 symmetric, which is imposed by the topological order. Thus, by considering the Wen-plaquette model as a SET, the topological order in the bulk together with the translation invariance of the perturbations along the edge/cut imply an edge-ES correspondence at least in some finite domain in Hamiltonian space.

  1. Convergence: Yea or Nay?

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    Colleges and universities can never be too prepared, whether for physical attacks or data security breaches. A quick data slice of over 7,000 US higher ed institutions, using the Office of Postsecondary Education's Campus Security Data Analysis Cutting Tool Website and cutting across public and private two- and four-year schools, reveals some…

  2. Thin edge-defined film-fed growth (EFG) octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1992-03-01

    Mobil Solar Energy Corp. investigated manufacturing crystalline silicon wafers using the edge-defined film-fed growth (EFG) technique. This report identifies the following: (1) current capabilities for manufacturing 200-micron-thick crystalline silicon wafers (10 cm x 10 cm) produced by growing octagons using the EFG technique and laser cutting them into wafers; (2) potential manufacturing improvements from decreasing the thickness of the wafers, improving the quality of the laser cut edge, and increasing cutting speed, all of which lead to reduce manufacturing costs, improved performance, and increased production capacities; (3) problems that impede achieving these potentials; and (4) costs and other requirements involved in overcoming the problems.

  3. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  4. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G [Albuquerque, NM; Fleming, legal representative, Carol; Sniegowski, Jeffry J [Tijeras, NM; Montague, Stephen [Albuquerque, NM

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  5. Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers

    NASA Astrophysics Data System (ADS)

    Rodrigues, G. Costa; Duflou, J. R.

    As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.

  6. Collaborative Cyber-infrastructures for the Management of the UNESCO-IGCP Research Project "Forecast of tephra fallout"

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Cordoba, G.

    2009-04-01

    Tephra fallout following explosive volcanic eruptions produces several hazardous effects on inhabitants, infrastructure, and property and represents a serious threat for communities located around active volcanoes. In order to mitigate the effects on the surrounding areas, scientists and civil decision-making authorities need reliable short-term forecasts during episodes of eruptive crisis and long-term probabilistic maps to plan territorial policies and land use. Modelling, together with field studies and volcano monitoring, constitutes an indispensable tool to achieve these objectives. The UNESCO-IGCP research project proposal "Forecast of tephra fallout" has the aim to produce a series of tools capable to elaborate both short-term forecasts and long-term hazard assessments using the cutting-edge models for tephra transport and sedimentation. A special project website will be designed to supply a set of models, procedures and expertise to several Latino-American Institutes based in countries seriously threatened by this geo-hazard (Argentina, Chile, Colombia, Ecuador, Mexico, and Nicaragua). This will proportionate to the final users a tool to elaborate short-term forecasts of tephra deposition on the ground, and determine airborne ash concentrations (a quantity of special relevance for aerial navigation safety) during eruptions and emergencies. The project web-site will have a public section and a password-protected area to exchange information and data among participants and, eventually, to allow remote execution of high-resolution mesoscale meteorological forecasts at the BSC facilities. The public website section will be updated periodically and will include sections describing the project objectives and achievements as well as the hazard maps for the investigated volcanoes, and will be linked to other relevant websites such as IAVCEI, IGCP, IUGS and UNESCO homepages. A part of the public section of the website will be devoted to disseminate achieved scientific results, provide general advice, and display hazard maps to a larger public beyond the scientific community. The website private section will include a software and documentation download section as well as a gateway to run the WRF mesoscale meteorological model and the parallel version of the FALL3D model at the BSC facilities. It will be invaluable during an eventual emergency if the affected institution does not yet have an agreement with its national weather service.

  7. The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed.

    PubMed

    Malzer, Iain; Helm, Barbara

    2015-01-01

    Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such 'edge effects' have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use.

  8. Environmental Dataset Gateway (EDG) Search Widget

    EPA Pesticide Factsheets

    Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other other applications. This allows individuals to provide direct access to EPA's metadata outside the EDG interface. The EDG Search Widget makes it possible to search the EDG from another web page or application. The search widget can be included on your website by simply inserting one or two lines of code. Users can type a search term or lucene search query in the search field and retrieve a pop-up list of records that match that search.

  9. The Cutting Edge, 1999-2000.

    ERIC Educational Resources Information Center

    Cutting Edge, 2000

    2000-01-01

    The Cutting Edge is a bimonthly newsletter of the Regional Center for Applied Technology and Training at Danville Community College (DCC) (Virginia) that provides the latest information on a wide range of issues including technology, business, employment trends, and new legislation. Articles from the first five issues discuss: (1) the July 2000…

  10. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    NASA Astrophysics Data System (ADS)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  11. Designing and Using Videos in Undergraduate Geoscience Education - a workshop and resource website review

    NASA Astrophysics Data System (ADS)

    Wiese, K.; Mcconnell, D. A.

    2014-12-01

    Do you use video in your teaching? Do you make your own video? Interested in joining our growing community of geoscience educators designing and using video inside and outside the classroom? Over four months in Spring 2014, 22 educators of varying video design and development expertise participated in an NSF-funded On the Cutting Edge virtual workshop to review the best educational research on video design and use; to share video-development/use strategies and experiences; and to develop a website of resources for a growing community of geoscience educators who use video: http://serc.carleton.edu/NAGTWorkshops/video/workshop2014/index.html. The site includes links to workshop presentations, teaching activity collections, and a growing collection of online video resources, including "How-To" videos for various video editing or video-making software and hardware options. Additional web resources support several topical themes including: using videos to flip classes, handling ADA access and copyright issues, assessing the effectiveness of videos inside and outside the classroom, best design principles for video learning, and lists and links of the best videos publicly available for use. The workshop represents an initial step in the creation of an informal team of collaborators devoted to the development and support of an ongoing network of geoscience educators designing and using video. Instructors who are interested in joining this effort are encouraged to contact the lead author.

  12. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  13. An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades.

    PubMed

    Bonney, Heather

    2014-08-01

    Analysis of cut marks in bone is largely limited to two dimensional qualitative description. Development of morphological classification methods using measurements from cut mark cross sections could have multiple uses across palaeoanthropological and archaeological disciplines, where cutting edge types are used to investigate and reconstruct behavioral patterns. An experimental study was undertaken, using porcine bone, to determine the usefulness of discriminant function analysis in classifying cut marks by blade edge type, from a number of measurements taken from their cross-sectional profile. The discriminant analysis correctly classified 86.7% of the experimental cut marks into serrated, non-serrated and bamboo blade types. The technique was then used to investigate a series of cut marks of unknown origin from a collection of trophy skulls from the Torres Strait Islands, to investigate whether they were made by bamboo or metal blades. Nineteen out of twenty of the cut marks investigated were classified as bamboo which supports the non-contemporaneous ethnographic accounts of the knives used for trophy taking and defleshing remains. With further investigation across a variety of blade types, this technique could prove a valuable tool in the interpretation of cut mark evidence from a wide variety of contexts, particularly in forensic anthropology where the requirement for presentation of evidence in a statistical format is becoming increasingly important. © 2014 Wiley Periodicals, Inc.

  14. Computing the Edge-Neighbour-Scattering Number of Graphs

    NASA Astrophysics Data System (ADS)

    Wei, Zongtian; Qi, Nannan; Yue, Xiaokui

    2013-11-01

    A set of edges X is subverted from a graph G by removing the closed neighbourhood N[X] from G. We denote the survival subgraph by G=X. An edge-subversion strategy X is called an edge-cut strategy of G if G=X is disconnected, a single vertex, or empty. The edge-neighbour-scattering number of a graph G is defined as ENS(G) = max{ω(G/X)-|X| : X is an edge-cut strategy of G}, where w(G=X) is the number of components of G=X. This parameter can be used to measure the vulnerability of networks when some edges are failed, especially spy networks and virus-infected networks. In this paper, we prove that the problem of computing the edge-neighbour-scattering number of a graph is NP-complete and give some upper and lower bounds for this parameter.

  15. The Cutting Edge: Workplace English. Instructional Guide.

    ERIC Educational Resources Information Center

    El Paso Community Coll., TX. Literacy Center.

    The instructional guide for the Cutting Edge workplace literacy program, a cooperative project of El Paso Community College (Texas) and Levi Strauss and Company, is an expanded version of one appendix the project handbook. It describes and provides an instructional model for the three-part, job-specific, video-based program of English as a Second…

  16. Minimizing Expected Maximum Risk from Cyber-Attacks with Probabilistic Attack Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuiyan, Tanveer H.; Nandi, Apurba; Medal, Hugh

    The goal of our work is to enhance network security by generating partial cut-sets, which are a subset of edges that remove paths from initially vulnerable nodes (initial security conditions) to goal nodes (critical assets), on an attack graph given costs for cutting an edge and a limited overall budget.

  17. Cutting-Edge Technologies and Social Media Use in Higher Education

    ERIC Educational Resources Information Center

    Benson, Vladlena, Ed.; Morgan, Stephanie

    2014-01-01

    The inclusion of social media in higher education has transformed the way instructors teach and students learn. In order to effectively reach their students in this networked world, teachers must learn to utilize the latest technologies in their classrooms. "Cutting-Edge Technologies and Social Media Use in Higher Education" brings…

  18. The Community College Baccalaureate Movement: Cutting-Edge Dissertation Research

    ERIC Educational Resources Information Center

    Hrabak, Michael R.

    2009-01-01

    In this review of dissertations, the researcher presents summaries of 10 of the most recent and cutting-edge dissertations focusing on the ever-growing and complex field of the community college baccalaureate movement. These studies focus on the gamut of specific legislation, case studies of particular programs and schools, financing of such…

  19. Tapping Recent Alumni for the Development of Cutting-Edge, Investigative Teaching Laboratory Experiments

    ERIC Educational Resources Information Center

    Brodl, Mark R.

    2005-01-01

    This project presents a model for the development of an innovative, highly-experimental teaching laboratory course that centers upon collaborative efforts between recent alumni currently enrolled in Ph. D. programs (consultants) and current faculty. Because these consultants are involved in cutting-edge research, their combined talents represent a…

  20. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  1. The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed

    PubMed Central

    Malzer, Iain; Helm, Barbara

    2015-01-01

    Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such ‘edge effects’ have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use. PMID:26448338

  2. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    NASA Astrophysics Data System (ADS)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  3. Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates

    PubMed Central

    Clarkson, Chris

    2016-01-01

    The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135

  4. Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.

    PubMed

    Muller, Antoine; Clarkson, Chris

    2016-01-01

    The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.

  5. Development of an Open Source, Air-Deployable Weather Station

    NASA Astrophysics Data System (ADS)

    Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.

    2017-12-01

    We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.

  6. Hydrothermal Vents of Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Stark, Joyce

    As a member of REVEL (Research and Education: Volcanoes, Exploration and Life), I had an opportunity to participant in a scientific research cruise focused on the active volcanoes along the Juan de Fuca Ridge, the submarine spreading center off the Washington- Oregon-Canada coast. REVEL was sponsored by the National Science Foundation, University of Washington, Pennsylvania State University and the American Museum of Natural History. We studied the geological, chemical and biological processes associated with active hydrothermal systems and my research focused on the biological communities of the sulfide structures. We worked on board the Woods Hole Oceanographic Institution Vessel, R/V Atlantis and the submersible ALVIN was used to sample the "Black Smokers". As a member of the scientific party, I participated in collection and sorting of biological specimens from the vent communities, attended lectures by scientists, contributed to the cruise log website, maintained a journal and developed my own research project. It was my responsibility to bring this cutting-edge research back to the classroom.

  7. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  8. A cutting-edge solution for 1µm laser metal processing

    NASA Astrophysics Data System (ADS)

    Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.

    2017-02-01

    The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.

  9. 50 CFR Figures 18a, 18b and 18c to... - Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...

  10. 50 CFR Figures 18a, 18b and 18c to... - Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...

  11. 50 CFR Figures 18a, 18b and 18c to... - Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts and Leading Edge Cut; Large Frame TED Escape Opening; Minimum Dimensions Using All-Points...—Large Frame TED Escape Opening; Minimum Dimensions Using All-Bar Cuts (Triangular Cuts); Large Frame TED...

  12. Quantum Max-flow/Min-cut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less

  13. What's Your Story?: Dutch Library DOK's New Cutting-Edge Community Tech Projects

    ERIC Educational Resources Information Center

    Boekesteijn, Erik

    2010-01-01

    DOK, the cutting-edge library center in Delft, the Netherlands, has been finding new ways to elaborate on the social networking impulse. A good library unites people from all levels of society, and DOK's unique innovation department focuses specifically on how media can bring people together. It's doing so using technology to inspire and connect…

  14. Information Commons Features Cutting-Edge Conservation and Technology

    ERIC Educational Resources Information Center

    Gilroy, Marilyn

    2011-01-01

    This article features Richard J. Klarchek Information Commons (IC) at Loyola University Chicago, an all-glass library building on the shore of Chicago's Lake Michigan that is not only a state-of-the-art digital research library and study space--it also runs on cutting-edge energy technology. The building has attracted attention and visitors from…

  15. Gradient cuts and extremal edges in relative depth and figure-ground perception.

    PubMed

    Ghose, Tandra; Palmer, Stephen E

    2016-02-01

    Extremal edges (EEs) are borders consisting of luminance gradients along the projected edge of a partly self-occluding curved surface (e.g., a cylinder), with equiluminant contours (ELCs) that run approximately parallel to that edge. Gradient cuts (GCs) are similar luminance gradients with ELCs that intersect (are "cut" by) an edge that could be due to occlusion. EEs are strongly biased toward being seen as closer/figural surfaces (Palmer & Ghose, Psychological Science, 19(1), 77-83, 2008). Do GCs produce a complementary bias toward being seen as ground? Experiment 1 shows that, with EEs on the opposite side, GCs produce a ground bias that increases with increasing ELC angles between ELCs and the shared edge. Experiment 2 shows that, with flat surfaces on the opposite side, GCs do not produce a ground bias, suggesting that more than one factor may be operating. We suggest that two partially dissociable factors may operate for curved surfaces-ELC angle and 3-D surface convexity-that reinforce each other in the figural cues of EEs but compete with each other in GCs. Moreover, this figural bias is modulated by the presence of EEs and GCs, as specified by the ELC angle between ELCs and the shared contour.

  16. INTERIOR VIEW SHOWING PROTOTYPE BEGUN APRIL 1988 METHOD OF CUTTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING PROTOTYPE BEGUN APRIL 1988 METHOD OF CUTTING GLASS, "PERFECT TIN? MACHINE." MANUFACTURED IN DALLAS, TEXAS AND USED FOR CUTTING GLASS WITH A FINISHED EDGE. - Chambers-McKee Window Glass Company, Cutting House, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  17. Computation of the Distribution of the Fiber-Matrix Interface Cracks in the Edge Trimming of CFRP

    NASA Astrophysics Data System (ADS)

    Wang, Fu-ji; Zhang, Bo-yu; Ma, Jian-wei; Bi, Guang-jian; Hu, Hai-bo

    2018-04-01

    Edge trimming is commonly used to bring the CFRP components to right dimension and shape in aerospace industries. However, various forms of undesirable machining damage occur frequently which will significantly decrease the material performance of CFRP. The damage is difficult to predict and control due to the complicated changing laws, causing unsatisfactory machining quality of CFRP components. Since the most of damage has the same essence: the fiber-matrix interface cracks, this study aims to calculate the distribution of them in edge trimming of CFRP, thereby to obtain the effects of the machining parameters, which could be helpful to guide the optimal selection of the machining parameters in engineering. Through the orthogonal cutting experiments, the quantitative relation between the fiber-matrix interface crack depth and the fiber cutting angle, cutting depth as well as cutting speed is established. According to the analysis on material removal process on any location of the workpiece in edge trimming, the instantaneous cutting parameters are calculated, and the formation process of the fiber-matrix interface crack is revealed. Finally, the computational method for the fiber-matrix interface cracks in edge trimming of CFRP is proposed. Upon the computational results, it is found that the fiber orientations of CFRP workpieces is the most significant factor on the fiber-matrix interface cracks, which can not only change the depth of them from micrometers to millimeters, but control the distribution image of them. Other machining parameters, only influence the fiber-matrix interface cracks depth but have little effect on the distribution image.

  18. The Zooniverse: Cutting Edge Scientific Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Borden, K. A.; Whyte, L. F.; Smith, A.; Tarnoff, A.; Schmitt, H.

    2012-12-01

    Increasingly scientists and researchers from a multitude of disciplines are finding themselves inundated with more data than they could possibly interpret in a lifetime. Computers can be used entirely or partially for some data analysis; but there are some tasks that are currently best suited to human eyes, ears and brains. Zooniverse (www.zooniverse.org) invites members of the public to help researchers analyze and interpret data. To date, hundreds of thousands of volunteers have been involved in classifying images, interpreting sounds and transcribing texts. Zooniverse citizen scientists are providing valuable analyses across a variety of fields, from the hunt for exoplanets in Planet Hunters (planethunters.org) to the transcription of Greek papyri in Ancient Lives (ancientlives.org). Multiple academic publications have resulted from the combined efforts of the Zooniverse community and science teams demonstrating that citizen science is more than ever becoming a well-established method of doing research. Unlike most research projects the data, analysis and interactions with the science teams have an established and visible online presence through the project website and related discussion sites and blogs. These in themselves provide a valuable classroom resource, an opportunity for free and easy access to cutting edge scientific research. Anecdotal evidence exists that teacher can and already do use Zooniverse projects. By providing a rich and varied scaffolding to accompany the Zooniverse projects the opportunity exists for bringing citizen scientists to a wider classroom audience. An audience that may include non-specialist teachers, who require additional support to deliver challenging content, or time strapped educators who haven't the time to develop their own accompanying resources to weave Zooniverse projects into their lessons. During the session we will discuss the recent Zooniverse projects specifically designed to support and promote classroom adoption locally, within the Chicago Public School (CPS) system and nationally within the United States. Introducing ZooTeach, a website where educators may share and search for lesson plans, activities, and resources. Beyond a simple lesson plan repository, ZooTeach is a community where educators are encouraged to modify, comment on, and otherwise actively participate in the educational efforts of Zooniverse. Teacher workshops run at Adler have and will continue to have the dual effect of promoting the Zooniverse and it's educational effort while increasing the pool of resources available nationally via ZooTeach. In house developed teacher guides and interactive tools allowing for the collection and manipulation of data will further enhance the classroom education experience and further lower the bar for entry into the world of citizen science.

  19. Consider outsourcing IT projects when cutting-edge technology, specialized focus are needed.

    PubMed

    1999-05-01

    Looking outside to meet information technology needs proves a smart way to avert extra staffing costs. Kaiser Permanente saves thousands each year by contracting out cutting-edge IT projects instead of hiring more full-time staff it doesn't need. Learn how the organization incorporates outsourcing and other temporary work methods into its IT staffing strategy.

  20. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    PubMed

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for conservation. © 2016 by the Ecological Society of America.

  1. Controlled Bending of a Thin Mirror to Regain Figure after Warping due to Edge-Cutting

    NASA Astrophysics Data System (ADS)

    Humphries, C. M.

    1990-03-01

    A thin circular Cer-Vit mirror, diameter 1.3 m, that had been polished flat was cut along 10 edges to form a 12-sided pseudo-elliptical plate. As a result of the edge-cutting, the mirror distorted and an experiment that investigated the effect of reverse stressing to counteract the distortion is described and analysed. The configuration adopted for stressing the mirror when installed as a driven coudé flat in the UK Infrared Telescope is also described. The reverse stressing results can be understood in terms of thin plate theory for pure bending and, in general, if the distortion is toroidal (including the case of a sphere) an orthogonal pair of bending moments can be chosen that will remove the undesired curvatures.

  2. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE PAGES

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; ...

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  3. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  4. Using New Media to Spread the Word About the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Masetti, Maggie; Krishnamurthi, A.

    2008-05-01

    The James Webb Space Telescope is a 6.5 m infrared telescope that will be launched in 2013. This modern telescope will look very different from the simple telescope Galileo used to look up at the skies 400 years ago. Modern technology, coupled with scientific curiosity, is enabling science to help us understand a Universe Galileo had not dreamed of in his time. The International Year of Astronomy presents an excellent opportunity to take the public along on the journey of the development of the Webb Telescope and its technological innovations. In keeping with the cutting-edge nature of the Webb, its education and public outreach (EPO) team is using a variety of new media to engage the public. We will discuss several of our EPO projects including our website, exhibits and displays in Second Life (an internet-based virtual world), and involvement in podcasts. Webb's EPO team is looking to expand past a passive web presence to engage the new and growing internet-savvy audiences. We are making our website more interactive through a variety of means, including a Flash game that allows the user to compare the Webb to a common reflecting telescope. This will enable the user to learn about the changes in telescopes that have come about since Galileo's time. We are also taking advantage of other new media opportunities as they present themselves - we participate in podcasts and have an engaging presence for the Webb Telescope on NASA's "islands” in Second Life.

  5. Pupillometry: Cutting Edge Biometrics for Early Intervention in Increased Intracranial Pressure.

    PubMed

    John, Jennilee St

    2015-10-01

    The pupillometer, a cutting-edge biometric device, is a valuable assessment tool that can aid in the early detection and prompt treatment of neurological abnormalities. Pupil assessment is a critical component of the neurological examination, and manual pupil assessment leaves much room for error. Automated pupillometry improves the quality and reliability of pupillary and neurological assessments, ultimately improving patient outcomes. Copyright 2015, SLACK Incorporated.

  6. The Landsat Image Mosaic of Antarctica (LIMA): A Cutting-Edge Way for Students and Teachers to Learn about Antarctica

    ERIC Educational Resources Information Center

    Campbell, Brian; Bindschadler, Robert

    2009-01-01

    By studying Antarctica via satellite and through ground-truthing research, we can learn where the ice is melting and why. The Landsat Image Mosaic of Antarctica (LIMA), a new and cutting-edge way for scientists, researchers, educators, students, and the public to look at Antarctica, supports this research and allows for unprecedented views of our…

  7. The Snowmastodon Project: cutting-edge science on the blade of a bulldozer

    USGS Publications Warehouse

    Pigati, Jeffery S.; Miller, Ian M.; Johnson, Kirk R.

    2015-01-01

    Cutting-edge science happens at a variety of scales, from the individual and intimate to the large-scale and collaborative. The publication of a special issue of Quaternary Research in Nov. 2014 dedicated to the scientific findings of the “Snowmastodon Project” highlights what can be done when natural history museums, governmental agencies, and academic institutions work toward a common goal.

  8. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  9. Welding And Cutting A Nickel Alloy By Laser

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1990-01-01

    Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.

  10. Development of methods of producing large areas of silicon sheet by the slicing of silicon ingots using Inside Diameter (I.D.) saws

    NASA Technical Reports Server (NTRS)

    Aharonyan, P.

    1980-01-01

    Modifications to a 16 inch STC automated saw included: a programmable feed system; a crystal rotating system; and a STC dynatrack blade boring and control system. By controlling the plating operation and by grinding the cutting edge, 16 inch I.D. blades were produced with a cutting edge thickness of .22 mm. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge I.D. slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.

  11. Lumped Parameter experiments for Single Mode Fiber Laser Cutting of Thin Stainless Steel Plate

    NASA Astrophysics Data System (ADS)

    Lai, Shengying; Jia, Ye; Han, Bing; Wang, Jun; Liu, Zongkai; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2017-06-01

    The present work reports the parameters on laser cutting stainless steel including workpiece thickness, cutting speed, defocus length and assisting gas pressure. The cutting kerf width, dross attachment and cut edge squareness deviation are examined to provide information on cutting quality. The results show that with the increasing thickness, the cutting speed decrease rate is about 27%. The optimal ranges of cutting speed, defocus length and gas pressure are obtained with maximum quality. The first section in your paper

  12. Discussion of Planning and Operating of Chongming Qianwei Village's Nongjiale tourism site

    NASA Astrophysics Data System (ADS)

    Guo, Qingqing; Liu, Min

    According to the sufficient market research the paper put forward the Construction and operation of Chongming Qianwei village Nongjiale tour website completed the Building program of this Business Website. Through needs analysis and feasibility analysis, this paper proposed business model for the target system, transaction mode, revenue model and competitive edge. Opening of the bridge which contact Shanghai and Chongming, coming of the shanghai expo; will bring the growth of passenger traffic of chongming's tourism industry. This article is based on this background, discussing the exploitation and plan of tour website of ChongMing, Enhancing the Popularity and Competitiveness of Chongming's Tourism.

  13. A Study towards Building An Optimal Graph Theory Based Model For The Design of Tourism Website

    NASA Astrophysics Data System (ADS)

    Panigrahi, Goutam; Das, Anirban; Basu, Kajla

    2010-10-01

    Effective tourism website is a key to attract tourists from different parts of the world. Here we identify the factors of improving the effectiveness of website by considering it as a graph, where web pages including homepage are the nodes and hyperlinks are the edges between the nodes. In this model, the design constraints for building a tourism website are taken into consideration. Our objectives are to build a framework of an effective tourism website providing adequate level of information, service and also to enable the users to reach to the desired page by spending minimal loading time. In this paper an information hierarchy specifying the upper limit of outgoing link of a page has also been proposed. Following the hierarchy, the web developer can prepare an effective tourism website. Here loading time depends on page size and network traffic. We have assumed network traffic as uniform and the loading time is directly proportional with page size. This approach is done by quantifying the link structure of a tourism website. In this approach we also propose a page size distribution pattern of a tourism website.

  14. Paronychia

    MedlinePlus

    ... toenails, and an emery board for smoothing the edges. Trim nails after bathing, when they are softer. Trim fingernails with a slightly rounded edge. Trim toenails straight across and do not cut ...

  15. Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.

    2017-01-01

    In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.

  16. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect

    NASA Astrophysics Data System (ADS)

    Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.

    2017-05-01

    In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.

  17. Modified soldering iron speeds cutting of synthetic materials

    NASA Technical Reports Server (NTRS)

    Schafer, W. G., Jr.

    1966-01-01

    Modified soldering iron cuts large lots of synthetic materials economically without leaving frayed or jagged edges. The soldering iron is modified by machining an axial slot in its heating element tip and mounting a cutting disk in it. An alternate design has an axially threaded bore in the tip to permit the use of various shapes of cutting blades.

  18. Cutting holes in fabric-faced panels

    NASA Technical Reports Server (NTRS)

    Peterson, S. A.

    1981-01-01

    Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.

  19. Universal router concept

    NASA Technical Reports Server (NTRS)

    Pesch, W. A.

    1970-01-01

    Portable universal router can cut holes of large diameter and irregular shapes, machine recesses, and drill holes with certain edge-distance limitations. Rectangular and round holes may be cut without a template.

  20. Cutting Edge Research in Homeopathy: HRI's second international research conference in Rome.

    PubMed

    Tournier, Alexander L; Roberts, E Rachel

    2016-02-01

    Rome, 3rd-5th June 2015, was the setting for the Homeopathy Research Institute's (HRI) second conference with the theme 'Cutting Edge Research in Homeopathy'. Attended by over 250 delegates from 39 countries, this event provided an intense two and a half day programme of presentations and a forum for the sharing of ideas and the creation of international scientific collaborations. With 35 oral presentations from leaders in the field, the scientific calibre of the programme was high and the content diverse. This report summarises the key themes underpinning the cutting edge data presented by the speakers, including six key-note presentations, covering advancements in both basic and clinical research. Given the clear commitment of the global homeopathic community to high quality research, the resounding success of both Barcelona 2013 and Rome 2015 HRI conferences, and the dedicated support of colleagues, the HRI moves confidently forward towards the next biennial conference. Copyright © 2015.

  1. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the public at large to cutting-edge, exploratory research and for engaging students in active learning.

  2. Descriptive Analysis of In Vitro Cutting of Swine Mitral Cusps: Comparison of High-Power Laser and Scalpel Blade Cutting Techniques.

    PubMed

    Pinto, Nathali Cordeiro; Pomerantzeff, Pablo Maria Alberto; Deana, Alessandro; Zezell, Denise; Benetti, Carolina; Aiello, Vera Demarchi; Lopes, Luciana Almeida; Jatene, Fabio Biscegli; Chavantes, M Cristina

    2017-02-01

    The most common injury to the heart valve with rheumatic involvement is mitral stenosis, which is the reason for a big number of cardiac operations in Brazil. Commissurotomy is the traditional technique that is still widely used for this condition, although late postoperative restenosis is concerning. This study's purpose was to compare the histological findings of porcine cusp mitral valves treated in vitro with commissurotomy with a scalpel blade to those treated with high-power laser (HPL) cutting, using appropriate staining techniques. Five mitral valves from healthy swine were randomly divided into two groups: Cusp group (G1), cut with a scalpel blade (n = 5), and Cusp group (G2), cut with a laser (n = 5). G2 cusps were treated using a diode laser (λ = 980 nm, power = 9.0 W, time = 12 sec, irradiance = 5625 W/cm 2 , and energy = 108 J). In G1, no histological change was observed in tissue. A hyaline basophilic aspect was focally observed in G2, along with a dark red color on the edges and areas of lower birefringence, when stained with hematoxylin-eosin, Masson's trichrome, and Sirius red. Further, the mean distances from the cutting edge in cusps submitted to laser application and stained with Masson's trichrome and Sirius red were 416.7 and 778.6 μm, respectively, never overcoming 1 mm in length. Thermal changes were unique in the group submitted to HPL and not observed in the cusp group cut with a scalpel blade. The mean distance of the cusps' collagen injury from the cutting edge was less than 1 mm with laser treatment. Additional studies are needed to establish the histological evolution of the laser cutting and to answer whether laser cutting may avoid valvular restenosis better than blade cutting.

  3. Ductile-regime turning of germanium and silicon

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  4. Cutter-loader apparatus having overhung shearer drum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groger, H.; Harms, E.E.

    1984-05-01

    A longwall mining machine includes a drum cutter-loader and face conveyor wherein the drum cutter-loader is overhung and is supported by a support arm adjacent to the mine face. Nozzles direct high pressure liquid jets against the forward edge of the support arm to cut away the mining face and permit the face side support arm to advance as the mining machine advances. In one embodiment the nozzles are provided along an inclined cutting edge at the forward end of the support arm. Such nozzles may be fixed or oscillating. In an alternative embodiment the nozzles are provided in themore » cylindrical edge zone of the shearer drum and direct the high pressure fluid jets against the cutter edge at the forward end of the support arm.« less

  5. Tubing cutter for tight spaces

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  6. Strength of inserts in titanium alloy machining

    NASA Astrophysics Data System (ADS)

    Kozlov, V.; Huang, Z.; Zhang, J.

    2016-04-01

    In this paper, a stressed state of a non-worn cutting wedge in a machined titanium alloy (Ti6Al2Mo2Cr) is analyzed. The distribution of contact loads on the face of a cutting tool was obtained experimentally with the use of a ‘split cutting tool’. Calculation of internal stresses in the indexable insert made from cemented carbide (WC8Co) was carried out with the help of ANSYS 14.0 software. Investigations showed that a small thickness of the cutting insert leads to extremely high compressive stresses near the cutting edge, stresses that exceed the ultimate compressive strength of cemented carbide. The face and the base of the insert experience high tensile stresses, which approach the ultimate tensile strength of cemented carbide and increase a probability of cutting insert destruction. If the thickness of the cutting insert is bigger than 5 mm, compressive stresses near the cutting edge decrease, and tensile stresses on the face and base decrease to zero. The dependences of the greatest normal and tangential stresses on thickness of the cutting insert were found. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (dimension of specific contact loads and stresses); γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°].

  7. Experiments and FE-simulations of stretch flanging of DP-steels with different shear cut edge quality

    NASA Astrophysics Data System (ADS)

    Sigvant, M.; Falk, J.; Pilthammar, J.

    2017-09-01

    Dual-Phase (DP) steels are today used in the automotive industry due to its large strength to weight ratio. However, the high strength of DP-steel does have a negative impact on the general formability in sheet metal forming. Unfavourable process conditions in the press shop will, on top of this, reduce the formability of DP-steels even more. This paper addresses the problem of edge fracture in stretch flanges in sheet metal parts made of DP-steel. The experimental part involves tests of ten different DP590 and DP780 steel grades with three different shear cut qualities. The influence on the fracture strain of the sample orientation of the shear cut are also studied by facing the burr away or towards the punch and testing samples with the cut edge parallel with the rolling direction and the transverse direction. The strains are measured with an ARAMIS system in each test, together with punch displacement and punch force. All tests are then simulated with AutoFormplus R7 and the results from these simulations are compared with the experimental results in order to find the appropriate failure strain for each combination of supplier, coating, thickness and shear cut quality.

  8. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.

    PubMed

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-01-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  9. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  10. Advances in the Study of the Middle Cranial Fossa through Cutting Edge Neuroimaging Techniques.

    PubMed

    Juanes Méndez, Juan A; Ruisoto, Pablo; Paniagua, Juan C; Prats, Alberto

    2018-01-16

    The objective of this paper is to present a morphometric study of the middle cranial fossa from the study of 87 patients using cutting edge multislice computed tomography scans (32 detectors) and Magnetic Resonance Imaging. The study presents a detailed anatomical-radiological and morphometric analysis of the middle cranial fossa as well as its neurovascular elements in normal conditions. The implications of this investigation in training and clinical contexts are discussed.

  11. Enameloid microstructure of the serrated cutting edges in certain fossil carcharhiniform and lamniform sharks.

    PubMed

    Andreev, Plamen S

    2010-07-01

    The triple-layered enameloid organization of neoselachian teeth has proven to be a reliable systematic character of the group. This study uses scanning electron microscopy to investigate the orientation of the parallel enameloid bundles in the area of the serrated cutting edges in certain fossil elasmobranchs. The examined teeth come from two Upper Cretaceous Squalicorax species and the Upper Miocene carcharhiniforms Galeocerdo sp., Carcharhinus sp., and Hemipristis serra. The parallel bundles are revealed by surface etching, which removes the superficial shiny-layered enameloid. In the teeth of Squalicorax, the bundles around the cutting edge bend once, before they reach the serrations. The studied carcharhiniform species show a more complicated pattern with a change of parallel bundle course inside the serrations. H. serra teeth do not display the first bending of the bundles, whereas it was present in the other two carcharhiniforms. The course of the crystalline bundles in both Squalicorax species is not affected by the presence of the serrations, regardless of the twofold difference in tooth size between them. In the carcharhiniform species, the bended bundles occur within the primary and secondary serrations and are always associated with them. This feature might have functional significance by strengthening the cutting edge or could simply develop as a consequence of the enameloid mineralization around the individual serrae. (c) 2009 Wiley-Liss, Inc.

  12. Dermatology education and the Internet: traditional and cutting-edge resources.

    PubMed

    Hanson, Anne H; Krause, L Kendall; Simmons, Rachel N; Ellis, Jeffrey I; Gamble, Ryan G; Jensen, J Daniel; Noble, Melissa N; Orser, Michael L; Suarez, Andrea L; Dellavalle, Robert P

    2011-10-01

    The number and variety of dermatological medical resources available online has grown exponentially over the past decade. Internet-based resources allow for immediate and easy access to information for both medical education and reference purposes. Although clinicians continue to turn to the Internet for clinical information and still images, tech-savvy medical students are currently accessing a variety of exciting new resources, including discussion boards, wikis, streaming video, podcasts, journal clubs, online communities, and interactive diagnostic experiences to augment their medical education. The objective of this study was to identify traditional and cutting-edge online dermatology resources. We present a sampling of the top dermatology Internet resources, as assessed by a group of medical students in our university dermatology research lab. These resources were ranked by using a matrix derived from the Silberg Criteria, which assessed authorship, attribution, disclosure, currency, and content. Results indicate comparable ranking and approval of cutting-edge resources as traditional online sources. The ranked resources in each category are provided with URLs for readers' use. These cutting-edge online dermatology resources represent excellent sources for continuing education for students and clinicians alike. Resources such as these likely represent the future of medical education, as they allow for self-directed and supplementary education as well as remote access. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  13. A model for managing edge effects in harvest scheduling using spatial optimization

    Treesearch

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  14. Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing.

    PubMed

    Yang, Hao; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2018-05-01

    Subaperture polishing techniques usually produce rolled edges due to edge effect. The rolled edges, especially those in millimeter scale on small components, are difficult to eliminate using conventional polishing methods. Magnetorheological jet polishing (MJP) offers the possibility of the removal of these structures, owing to its small tool influence function (TIF) size. Hence, we investigate the removal characters of inclined MJP jetting models by means of computational fluid dynamics (CFD) simulations and polishing experiments. A discrete phase model (DPM) is introduced in the simulation to get the influence of abrasive particle concentration on the removal mechanism. Therefore, a more accurate model for MJP removal mechanisms is built. With several critical problems solved, a small bevel-cut-like TIF (B-TIF), which has fine acentric and unimodal characteristics, is obtained through inclined jetting. The B-TIF proves to have little edge effect and is applied in surface polishing of thin rolled edges. Finally, the RMS of the experimental section profile converges from 10.5 nm to 1.4 nm, and the rolled edges are successfully suppressed. Consequently, it is validated that the B-TIF has remarkable ability in the removal of millimeter-scale rolled edges.

  15. A new way to experience the International Gastric Cancer Association Congress: the Web Round Tables.

    PubMed

    Morgagni, Paolo; Verlato, Giuseppe; Marrelli, Daniele; Roviello, Franco; de Manzoni, Giovanni

    2014-10-01

    In an attempt to attract a wider diversity of professionals to the 10th International Gastric Cancer Association Congress (IGCC) held in June 2013, the Scientific Committee of the conference organized a number of pre-congress Web Round Tables to discuss cutting-edge topics relating to gastric cancer treatment. Twenty Web Round Tables, each coordinated by a different chairman, were proposed on the IGCC Website 1 year before the congress. Each chairman identified a number of studies related to the theme of his/her Round Table and invited corresponding authors to send an update of their conclusions in light of their subsequent experience, which would then form the basis of discussion of the Web Round Tables. The chairmen posted several questions regarding these updates on the web and opened a forum for a period of 1-2 months. The forum was free and specifically intended for congress participants. Fifty-one (9.9 %) of the 516 authors contacted took part in the initiative. Two hundred fifty participants from 21 countries joined the forum discussion and posted 671 comments. The Web Round Tables were viewed 15,810 times while the forum was open. Overall, the Web Round Tables aroused considerable interest, especially among young professionals working in the area of gastric cancer who had the opportunity to contact and interact with experts in what often turned out to be an interesting and lively exchange of views. All the discussions are now freely available for consultation on the IGCC website. The Web Round Table experience was presented, with great success, during the conference at special afternoon sessions.

  16. Supporting Faculty Learning About Teaching: The On the Cutting Edge Website

    NASA Astrophysics Data System (ADS)

    Fox, S.; Iverson, E. A.; Manduca, C. A.; Kirk, K. B.; McDaris, J. R.; Ormand, C. J.; Bruckner, M. Z.

    2011-12-01

    The On the Cutting Edge website captures information about teaching geoscience from workshop participants and leaders. Designed to both support workshop participants in making use of ideas developed at the workshop and to allow a broader audience to access these ideas, the site includes more than 4900 pages of content in 39 topical collections with more than 1400 community-contributed teaching activities. The site is well used: in 2010, 850,000 visitors made more than one million visits to the site viewing more than 2.1 million pages. To obtain a more detailed understanding of site use within our target population, we interviewed a sample of 30 geoscience faculty. Five primary uses were described repeatedly and in depth: finding ideas for teaching, understanding what colleagues are doing in specific teaching situations, learning about methods, tools, or topic in education or geoscience, finding visualizations, and networking or career planning. Interviewees could describe particular instances where they made use of teaching materials and could cite reasons why they believed this improved student learning. To understand how these uses are manifest in the weblogs, a sample of 73 sessions that lasted at least 10 minutes, and viewed 10 or more pages were selected from March 2009 logs. Sessions were selected to sample heavy use of one or more topical collections, and to sample the diversity of log characteristics. The sessions were described qualitatively and the resulting descriptions categorized. Four recognizable use patterns emerged: activity browsing in some cases combined with study of a pedagogic method, browsing visualizations and associated topical content, digging deep within a particular topical collection, and cross-site browsing. These patterns seem consistent with the uses reported in the interviews. An analysis of characteristics of all sessions in 2008 viewing 10 or more pages indicate that the major uses described in the interview study by 30 faculty are in fact widespread among the 16,000 users seeing 10 or more pages. The most widespread identifiable use is finding teaching activities or finding out what colleagues are doing in a particular teaching situation (20-40% of use). Roughly 30% of use appears to be related to seeking visualizations for class. Another 20% of use includes learning about pedagogic methods, though that may not be the users' intention when they enter the site. As in the interview study, use associated with finding career information is significant though less common (10% of use). The relative distribution of page views across modules is well aligned with the reported uses, and offers further confirmation that these uses are widely represented in the deep sessions.

  17. Simulation of router action on a lathe to test the cutting tool performance in edge-trimming of graphite/epoxy composite

    NASA Astrophysics Data System (ADS)

    Ramulu, M.; Rogers, E.

    1994-04-01

    The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.

  18. Hard particle effect on surface generation in nano-cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The influence of the hard particle on the surface generation, plastic deformation and processing forces in nano-cutting of aluminum is investigated by means of molecular dynamics simulations. In this investigation, a hard particle which is simplified as a diamond ball is embedded under the free surface of workpiece with different depths. The influence of the position of the hard ball on the surface generation and other material removal mechanism, such as the movement of the ball under the action of cutting tool edge, is revealed. The results show that when the hard particle is removed, only a small shallow pit is left on the machined surface. Otherwise, it is pressed down to the subsurface of the workpiece left larger and deeper pit on the generated surface. Besides that, the hard particle in the workpiece would increase the processing force when the cutting tool edge or the plastic carriers interact with the hard particle. It is helpful to optimize the cutting parameters and material properties for obtaining better surface quality in nano-cutting of composites or other materials with micro/nanoscale hard particles in it.

  19. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.

    PubMed

    Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza

    2017-01-01

    In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.

  20. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  1. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  2. Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick

    2009-01-01

    Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters

  3. Nanosecond plasma-mediated electrosurgery with elongated electrodes

    NASA Astrophysics Data System (ADS)

    Vankov, Alexander; Palanker, Daniel

    2007-06-01

    Progress in interventional medicine is associated with the development of more delicate and less invasive surgical procedures, which requires more precise and less traumatic, yet affordable, surgical instruments. Previously we reported on the development of the pulsed electron avalanche knife for dissection of soft tissue in liquid media using the 100 ns plasma-mediated electric discharges applied via a 25 μm disk microelectrode. Cavitation bubbles accompanying explosive vaporization of the liquid medium in front of such a pointed electrode produced a series of craters that did not always merge into a continuous cut. In addition, this approach of surface ablation provided a limited depth of cutting. Application of an elongated electrode capable of cutting with its edge rather than just with its pointed apex faces a problem of nonuniformity of the electric field on a nonspherical electrode. In this article we explore dynamics of the plasma-mediated nanosecond discharges in liquid medium in positive and negative polarities and describe the geometry of an electrode that provides a sufficiently uniform electric field along an extended edge of a surgical probe. A highly enhanced and uniform electric field was obtained on very sharp (2.5 μm) exposed edges of a planar electrode insulated on its flat sides. Uniform ionization and simultaneous vaporization was obtained along the whole edge of such a blade with 100 ns pulses at 4-6 kV. A continuous cutting rate of 1 mm/s in the retina and in soft membranes was achieved at a pulse repetition rate of 100 Hz. The collateral damage zone at the edges of incision did not exceed 80 μm. Negative polarity was found advantageous due to the lower rate of electrode erosion and due to better spatial confinement of the plasma-mediated discharge in liquid.

  4. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    PubMed

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. WWBT? What Would Ben Think about Killer Apps, Cutting Edges, and Tipping Points in the History of Weather and Climate?

    NASA Astrophysics Data System (ADS)

    Fleming, J. R.

    2006-12-01

    This paper examines the history of weather and climate since 1706 along three intertwined analytical axes: technology (killer apps), science (cutting edges), and social issues (tipping points). For example, Franklin's best-known killer app, the lightning rod, gains added significance when seen in light of his cutting edge contributions to the science of electricity, his lifelong promotion of useful knowledge, and the societal tipping point his work triggered in our relationship to the sky. Subsequently, other major tipping points and conceptual shifts followed the introduction of telegraphy, radio, television, digital computers, and rocketry into meteorology. Following an analysis of the career and contributions of Benjamin Franklin (1706-1790), the paper examines later historical moments and watersheds, not merely in retrospect, but from the perspective of leading participants at the time. It focuses on technologies of significant promise, especially those involving electro- magnetism, up to and including the dawn of the twenty-first century, and asks playfully, "What would Ben think?"

  6. Impact of high-pressure coolant supply on chip formation in milling

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Döbbeler, B.; Lakner, T.

    2017-10-01

    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  7. Cutting thin sections of bone

    NASA Technical Reports Server (NTRS)

    Ashley, W. W.

    1972-01-01

    Medical equipment for obtaining repetitive planoparallel sections of bone to study healing of bone structure under high gravity stress is described. Device consists of modified saw with diamond cutting edges. Construction of device and manner of use are explained.

  8. Surgeon General Outlines Opioid Plan | NIH MedlinePlus the Magazine

    MedlinePlus

    ... staff, Dr. Adams said the opioid epidemic is cutting too many American lives short. “Ninety-one Americans ... public health data and reporting Providing support for cutting-edge research on pain and addiction Advancing the ...

  9. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning

    NASA Astrophysics Data System (ADS)

    Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.

    2018-01-01

    Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.

  10. The effect of handpiece spray patterns on cutting efficiency.

    PubMed

    Siegel, Sharon C; von Fraunhofer, J Anthony

    2002-02-01

    High-speed handpieces' spray ports direct coolant at the cutting interface. The authors evaluated the effect of the number of ports and their positions on cutting rates, or CRs. The authors performed cutting studies on a machinable ceramic block using an established testing regimen. One-port, three-port and four-port handpieces from one manufacturer were operated at maximum torque and rotation speed under a water flow of 25 milliliters per minute. The authors made 6-millimeter long edge and groove cuts in 13-mm cross-section blocks using six medium-grit diamond burs for each handpiece. Each bur cut a total of 78 mm. The authors determined CR as the time to transect the block and analyzed the data by two-way analysis of variance with post hoc Scheffé tests. CRs varied by the type of cut and the number of spray ports. No differences were found in CRs for the three handpieces during edge cutting. The one-port handpiece cut significantly slower (P < .001) than did the three- and four-port handpieces during groove cutting. The data indicate that the number of handpiece spray ports, and their positioning relative to the bur affect water supply to the cutting interface and, consequently, the CR under these study conditions. Optimal cutting efficiency requires good coolant access, especially within restricted areas. A multiple-port handpiece may be advantageous when preparing the interproximal region for a crown or a proximal box, owing to the better water spray pattern. Dentists should consider the influence of the number of spray ports when selecting handpieces for cutting procedures.

  11. Plate forming and break down pizza box

    DOEpatents

    Pantisano, Frank; Devine, Scott M.

    1992-01-01

    A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.

  12. Pilot study of manual sugarcane harvesting using biomechanical analysis.

    PubMed

    Clementson, C L; Hansen, A C

    2008-07-01

    In many countries, sugar cane harvesting is a very labor-intensive activity in which workers usually become fatigued after manually cutting the cane for a few hours. They need frequent pauses for rest, and they experience sustained injuries from excessive stress on the joints and muscles of the body. The cutting tool and motion involved directly influence the stresses created. A cutting tool that has not been designed by taking into consideration occupational biomechanics can lead to unnecessary strains in the body's muscle system, resulting in injuries. The purpose of this research was to carry out a pilot study of the impact of two common manual sugarcane cutting tools and the cutting posture they induce on the body with the aid of biomechanics. The machete and the cutlass from South Africa and Guyana, respectively, were examined to determine the cutting forces. Using static strength prediction modeling, the body stress levels at the point of cut in the cutting motion were determined. The cutting postures of three subjects were contrasted, their extreme postures were identified, and suggestions were made to improve the ergonomics of the cutting activity. The results of this pilot study showed that the cutlass required less cutting force than the machete because of the slicing cut provided by the curved blade edge of the cutlass. However, the biomechanical analysis indicated that the bent blade of the machete required less flexion of the back and therefore was likely to cause less back fatigue and injury. An improved design of the sugarcane manual harvesting tool should incorporate the bend of the machete to reduce flexion and a curved cutting edge that provides a slicing cut.

  13. Laser processing of phenolic wood substitutes

    NASA Astrophysics Data System (ADS)

    Quintero, F.; Riveiro, A.; Lusquiños, F.; Penide, J.; Arias-González, F.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Phenolic resin boards (PRB) are wood substitutes that comprises of a thick core exclusively made of phenolic resin covered by a thin sheet of melamine resin imitating the aspect of natural wood. The use of these materials in furniture and in construction industry has proliferated during last years. Boards made of phenolic resins are dense, hard and very difficult to cut using band saws, disc saws, or milling cutters. Nevertheless, these difficulties can be overcome by means of laser cutting, which is one of the most firmly established techniques for separating materials. This is due to the great advantages of this technique over traditional cutting methods, such as its versatility and flexibility that allow effective cutting. Nevertheless, charring of the cut edge surface caused by laser induced thermal degradation degrades the cut quality under non-optimized processing conditions. In this research work the viability and quality of CO2 laser cutting process of phenolic resin boards and wood particleboard panels has been evaluated. The present work validates the cut of phenolic resin boards by CO2 lasers using a high laser power and elevated cutting speeds. Moreover, this process involves a serious health hazard since the combustion and decomposition of wood may produce fumes and vapors, which can be toxic and carcinogenic according to the International Chemical Safety Cards (ICSC). Therefore, this work was complemented by the assessment of the potential toxicity of the condensed residues formed on the cut edges, and assessment of the chemistry of the generated fumes by chromatography.

  14. Vertical-Control Subsystem for Automatic Coal Mining

    NASA Technical Reports Server (NTRS)

    Griffiths, W. R.; Smirlock, M.; Aplin, J.; Fish, R. B.; Fish, D.

    1984-01-01

    Guidance and control system automatically positions cutting drums of double-ended longwall shearer so they follow coal seam. System determines location of upper interface between coal and shale and continuously adjusts cutting-drum positions, upward or downward, to track undulating interface. Objective to keep cutting edges as close as practicable to interface and thus extract as much coal as possible from seam.

  15. Predicting tool life in turning operations using neural networks and image processing

    NASA Astrophysics Data System (ADS)

    Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.

    2018-05-01

    A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.

  16. The X-point effects on the peeling-ballooning stability conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Linjin

    2017-10-01

    Due to the X-point singularity the safety factor tends to infinity as the last closed flux surface is approached. The usual numerical treatment of X-point singularity is to cut off a small fraction of edge region for system stability evaluation or simply use an up-down symmetric equilibrium without X-point included. This type of treatments have been used to make the peeling-ballooning stability diagram. We found that the mode types, peel or ballooning, can vary depending on how much the edge portion is cut off. When the cutting-off leads the edge safety factor (qa) to become close to a mode rational number, the peeling modes dominate; otherwise the ballooning type of modes prevail. The stability condition for peeling modes with qa being close to a rational number is much stringent than that for ballooning type of modes. Because qa tends to infinite near the separatrix, the mode rational surfaces are concentrated in the plasma region and thus the peeling modes are basically excluded. This extrapolation indicates that the stability boundary for high edge current, which is related to the peeling modes, need to be reexamined to take into account the X-point effects. Supported by U. S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  17. Automated Laser Cutting In Three Dimensions

    NASA Technical Reports Server (NTRS)

    Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.

    1995-01-01

    Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.

  18. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness

    PubMed Central

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-01

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479

  19. Influence of a falling edge on high power microwave pulse combination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts offmore » the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.« less

  20. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β 12-Borophene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam

    2018-03-01

    This work presents an investigation of nanoribbons cut from β 12-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons (BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β 12-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β 12 BNRs are potential candidates for next-generation spintronic devices. [Figure not available: see fulltext.

  1. Influence of a falling edge on high power microwave pulse combination

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Huang, Wenhua; Zhu, Qi; Xiao, Renzhen; Shao, Hao

    2016-07-01

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts off the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.

  2. Finite Element Simulation of Machining of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-05-01

    Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life. In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.

  3. The geometry of the cutting front created by Fibre and CO2 lasers when profiling stainless steel under standard commercial conditions

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.

    2018-07-01

    Cutting fronts created by CO2 and fibre lasers in stainless steel at thicknesses between 2 mm and 10 mm have been 'frozen' and their geometry has been measured. Standard commercial cutting parameters were used to generate the cuts for both types of laser. The resulting three-dimensional cutting front shapes have been curve fitted as polynomials and semicircles. Various features of the cutting front geometry are discussed including the lack of correlation of the cut front inclination with either the relevant Brewster angle or the inclination of the striations on the cut edge.

  4. On the Ocean, Communicating Science Through Radio Broadcasts

    NASA Astrophysics Data System (ADS)

    Daugherty, M.; Campbell, L.

    2016-02-01

    The outcomes of oceanic research are of critical importance to the general public. Communicating these results in a relatable and efficient manner however, is no simple task. To further the cause of scientific outreach done for the benefit of society, a weekly radio show was created at Texas A&M University, taking cutting edge research and translating it into applicable, interesting radio segments. The show, named "On the Ocean", was created by the Department of Oceanography to inform and entertain listeners of the general public on marine issues affecting their lives. On the Ocean is an effort to present high-level research without sacrificing the complexity of the science conducted. On the Ocean is a uniquely designed module with a systematic approach in teaching a new oceanographic concept each month. On the Ocean has a format of monthly topics with a two minute show each week. The first monthly installment is general, introducing the topic and its relevancy. The second and third shows are cause or effect, or possibly something very interesting the public would not already know. The fourth installment highlights how researchers study the topic, with the contributing professor's specific research methods emphasized. All shows are co-created with, and inspected for validity, by Texas A&M University professors, and edited for radio adaption by graduate students. In addition to airing on public broadcast radio to the College Station/Bryan TX area, the show also includes a globally accessible interactive website with podcasts, additional figures, and links to better elaborate on the material presented, as well as credit the contributing professors. The website also allows these professors the opportunity to present their research visually and link to their current work. Overall, On the Ocean is a new tool to deliver applicable science.

  5. Web-based Collaboration and Visualization in the ANDRILL Program

    NASA Astrophysics Data System (ADS)

    Reed, J.; Rack, F. R.; Huffman, L. T.; Cattadori, M.

    2009-12-01

    ANDRILL has embraced the web as a platform for facilitating collaboration and communicating science with educators, students and researchers alike. Two recent ANDRILL education and outreach projects, Project Circle 2008 and the Climate Change Student Summit, brought together classrooms from around the world to participate in cutting edge science. A large component of each project was the online collaboration achieved through project websites, blogs, and the GroupHub--a secure online environment where students could meet to send messages, exchange presentations and pictures, and even chat live. These technologies enabled students from different countries and time zones to connect and participate in a shared 'conversation' about climate change research. ANDRILL has also developed several interactive, web-based visualizations to make scientific drilling data more engaging and accessible to the science community and the public. Each visualization is designed around three core concepts that enable the Web 2.0 platform, namely, that they are: (1) customizable - a user can customize the visualization to display the exact data she is interested in; (2) linkable - each view in the visualization has a distinct URL that the user can share with her friends via sites like Facebook and Twitter; and (3) mashable - the user can take the visualization, mash it up with data from other sites or her own research, and embed it in her blog or website. The web offers an ideal environment for visualization and collaboration because it requires no special software and works across all computer platforms, which allows organizations and research projects to engage much larger audiences. In this presentation we will describe past challenges and successes, as well as future plans.

  6. On-line Resources for Teaching Sustainability

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Larsen, K.; Buhr, S. M.; Kirk, K. B.; Ledley, T. S.; Manduca, C. A.; Mogk, D. W.; Savina, M. E.; Tewksbury, B. J.

    2012-12-01

    Sustainability encompasses broad interdisciplinary topics such as climate change, agricultural food production, and water resource use that include both scientific and societal components. Today's students will need to learn how to address complex, interdisciplinary, sustainability-related challenges throughout their lives. To support faculty in teaching complex concepts in sustainability to undergraduates, the Science Education Resource Center (SERC) now provides integrated access to all resources on teaching sustainability developed by projects hosted on SERC websites. Drawing extensively from collections developed by On the Cutting Edge: Professional Development for Geoscience Faculty, InTeGrate: Interdisciplinary Teaching of Geoscience for a Sustainable Future, the Climate Literacy and Energy Awareness Network (CLEAN), as well as more than 10 smaller projects, these resources include browsable access to (1) over 120 course descriptions submitted by faculty that provide information about course goals, assessments, and syllabi used in teaching courses with a sustainability focus, (2) over 160 faculty-submitted descriptions of activities that can be used to incorporate and address sustainability concepts, and (3) more than 90 interdisciplinary essays that highlight how faculty incorporate sustainability concepts into their teaching. The Sustainability Portal additionally includes several collections of lessons focused on a central theme, such as carbon footprint exercises and materials for teaching about energy that incorporate quantitative skills. The Sustainability Portal provides access to information about incorporating sustainability issues into geoscience courses and examples of how these concepts can be taught for topics such as geology and human health, public policy and Earth science, complex systems, urban students and urban environments, energy, and climate change. A rich collection of innovative pedagogical approaches conducive to teaching about sustainability are presented in the portal, including service learning, campus-based learning, experience-based environmental projects, and teaching with an Earth systems approach. Faculty can find more information about how to get involved with sustainability projects through webinars, workshops, web page authoring, and other professional development opportunities via links to projects such as On the Cutting Edge, CLEAN, and InTeGrate. The Sustainability Portal also provides access to materials generated from previous workshops, featuring interdisciplinary visions for teaching sustainability to undergraduate students. The SERC portal for Teaching Sustainability can be found at the URL below.

  7. Design and process evaluation of an informative website tailored to breast cancer survivors' and intimate partners' post-treatment care needs.

    PubMed

    Pauwels, Evelyn; Van Hoof, Elke; Charlier, Caroline; Lechner, Lilian; De Bourdeaudhuij, Ilse

    2012-10-03

    On-line provision of information during the transition phase after treatment carries great promise in meeting shortcomings in post-treatment care for breast cancer survivors and their partners. The objectives of this study are to describe the development and process evaluation of a tailored informative website and to assess which characteristics of survivors and partners, participating in the feasibility study, are related to visiting the website. The development process included quantitative and qualitative assessments of survivors' and partners' care needs and preferences. Participants' use and evaluation of the website were explored by conducting baseline and post-measurements. During the intervening 10-12 weeks 57 survivors and 28 partners were granted access to the website. Fifty-seven percent (n=21) of survivors who took part in the post-measurement indicated that they had visited the website. Compared to non-visitors (n=16), they were more likely to have a partner and a higher income, reported higher levels of self-esteem and had completed treatment for a longer period of time. Partners who consulted the on-line information (42%, n=8) were younger and reported lower levels of social support compared to partners who did not visit the website (n=11). Visitors generally evaluated the content and lay-out positively, yet some believed the information was incomplete and impersonal. The website reached only about half of survivors and partners, yet was mostly well-received. Besides other ways of providing information and support, a website containing clear-cut and tailored information could be a useful tool in post-treatment care provision.

  8. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  9. Online matchmaking: It's not just for dating sites anymore! Connecting the Climate Voices Science Speakers Network to Educators

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Herrin, S.; Schmidt, C.

    2015-12-01

    Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.

  10. Online Matchmaking: It's Not Just for Dating Sites Anymore! Connecting the Climate Voices Science Speakers Network to Educators

    NASA Technical Reports Server (NTRS)

    Wegner, Kristin; Herrin, Sara; Schmidt, Cynthia

    2015-01-01

    Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.

  11. Slice-push, formation of grooves and the scale effect in cutting.

    PubMed

    Atkins, A G

    2016-06-06

    Three separate aspects of cutting are investigated which complement other papers on the mechanics of separation processes presented at this interdisciplinary Theo Murphy meeting. They apply in all types of cutting whether blades are sharp or blunt, and whether the material being cut is 'hard, stiff and strong' or 'soft, compliant and weak'. The first topic discusses why it is easier to cut when there is motion along (parallel to) the blade as well motion across (perpendicular to) the cutting edge, and the analysis is applied to optimization of blade geometries to produce minimum cutting forces and hence minimum damage to cut surfaces. The second topic concerns cutting with more than one edge with particular application to the formation of grooves in surfaces by hard pointed tools. The mechanics are investigated and applied to the topic of abrasive wear by hard particles. Traditional analyses say that abrasive wear resistance increases monotonically with the hardness of the workpiece, but we show that the fracture toughness of the surface material is also important, and that behaviour is determined by the toughness-to-hardness ratio rather than hardness alone. Scaling forms the third subject. As cutting is a branch of elasto-plastic fracture mechanics, cube-square energy scaling applies in which the important length scale is (ER/k (2)), where E is Young's modulus, R is the fracture toughness and k is the shear yield strength. Whether, in cutting, material is removed as ductile ribbons, as semi-ductile discontinuous chips, or by brittle 'knocking lumps out' is shown to depend on the depth of cut relative to this characteristic length parameter. Scaling in biology is called allometry and its relationship with engineering scaling is discussed. Some speculative predictions are made in relation to the action of teeth on food.

  12. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  13. Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Rangaswamy, T.

    2018-04-01

    Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.

  14. Growing Cutting-edge X-ray Optics

    ScienceCinema

    Conley, Ray

    2018-03-02

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015.

  15. Educators on the Edge: Big Ideas for Change and Innovation. Australian College of Educators (ACE) National Conference Proceedings (Brisbane, Australia, September 24-25, 2015)

    ERIC Educational Resources Information Center

    Finger, Glenn, Ed.; Ghirelli, Paola S., Ed.

    2015-01-01

    The 2015 Australian College of Educators (ACE) National Conference theme is "Educators on the Edge: Big Ideas for Change and Innovation." ACE presented an opportunity for all education professionals to gather, discuss, and share cutting-edge, creative and innovative practices, nationally and globally at the conference held on September…

  16. Comparing the Effectiveness of Online Sunrise/Sunset Calculators

    NASA Astrophysics Data System (ADS)

    Phlips, Alan; Wilson, Teresa; Chizek Frouard, Malynda; Bartlett, Jennifer Lynn

    2018-01-01

    The USNO is responsible for providing information through its website on various types of natural phenomena, including times of sunrise and sunset for any given day and location. Alternative websites were explored to see what options are available in case the USNO can no longer support this on-line tool in the future. Websites with sunrise/sunset calculators were examined to see what algorithm they cited, if any. A large percentage of the websites took their calculations from three main sources (USNO, Meeus, and Schlyter). For ease of comparison, one website with an Application Programming Interface (API) for each algorithm was used to generate sunrise/sunset times for 2 dates per year for 24 years at latitudes from the equator to each pole along the prime meridian. Additionally, dates on which only one phenomenon was expected (first and last day of polar day and night) were tested to examine how each algorithm would perform for these extreme edge cases. At mid-latitudes, all of the algorithms agreed within 1 minute of each other but their predictions began to diverge as they approached the poles. Close to the poles, all three differed by more than a minute. While the algorithms diverged well before reaching the poles, Schlyter did so at much lower latitudes compared to the other two. In the edge cases, Schlyter and Meeus did not correctly document the missing sunrise/sunsets. Until a set of arctic or antarctic observations of sunrise and sunset times can be analyzed, we cannot ascertain which algorithm is the most accurate. However, the USNO algorithm handled cases of continuous day and night better than the others. There currently seems to be no better alternative to provide robust sunrise/set times than the USNO Complete Sun and Moon Data for One Day (http://aa.usno.navy.mil/data/docs/RS_OneDay.php).

  17. Experiences in implementing uHTS--cutting edge technology meets the real world.

    PubMed

    Gribbon, Philip; Schaertl, Sabine; Wickenden, Malcolm; Williams, Gareth; Grimley, Rachel; Stuhmeier, Frank; Preckel, Hartwig; Eggeling, Christian; Kraemer, Joachim; Everett, Jeremy; Keighley, Wilma W; Sewing, Andreas

    2004-01-01

    Driven by growing corporate compound files, the demands of target biology, and attempts to cut cost, the number of solutions to HTS has spiralled. In quick succession new assay technologies and screening platforms are appearing on the market, with the promise of screening faster than ever in low volume high density formats whilst providing high quality data. Within this world of rapid change, Pfizer has applied cutting edge technology to HTS by introducing screening in 1 microl formats utilising single molecule detection technology. Instead of resource intensive in-house development, Pfizer entered into a collaboration with Evotec OAI / Evotec Technologies and introduced their Mark-II EVOscreen platform. In this article we will outline the benefits of the approach taken at Pfizer, Sandwich, and introduce the Mark-II EVOscreen platform, illustrating the potential but also possible pitfalls of HTS miniaturisation.

  18. Microfabricated instrument for tissue biopsy and analysis

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    2001-01-01

    A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate.

  19. Positive edge effects on forest-interior cryptogams in clear-cuts.

    PubMed

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists.

  20. Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts

    PubMed Central

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0–50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists. PMID:22114728

  1. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-17

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasivemore » and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.« less

  2. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    NASA Astrophysics Data System (ADS)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-01

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  3. A new method to measure circular runout of end-milling spindle based on cutting mark

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlai; Liu, Shuchun

    2008-12-01

    A practical method is introduced to measure the circular runout of a end-milling spindle system at high speed rotations without the need of a reference sphere. A workpiece is held on a linear slide which moves along the axial direction of the spindle. The spindle is then programmed to run at a specific speed. A very sharp edge cutter must be used and the depth of cut will be very shallow in order to keep the cutting force very small. The workpiece is then fed into the end mill in order to make a cutting mark of teens μm in depth. The cutting marks are circular, and their diameters are related to the circular runout of the spindle system. The cutting mark that is generated at a specific speed is expected to contain information about the spindle circular runout at this speed. In practice the cutting marks are not perfectly circular. Therefore, a best-fit circle of a cutting mark is needed to determine its diameter. A high-resolution edge detector machine is used for this purpose. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. It is demonstrated that this technique for the measurement of spindle circular runout is an effective tool in verifying the actual running accuracy of spindles at their actual operating speeds and can be accomplished without the need for a reference sphere.

  4. 44 CFR 63.17 - Procedures and data requirements for imminent collapse certifications by States.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... forth. (i) Top edge of bluff (cliff top). (ii) Top edge of escarpment on an eroding dune (i.e., a nearly vertical erosional cut at the seaward face of the dune). The normal high tide should be near the toe of the... high bluff or dune and not accessible from the water side, the top edge of the bluff or dune will be...

  5. Design and process evaluation of an informative website tailored to breast cancer survivors’ and intimate partners’ post-treatment care needs

    PubMed Central

    2012-01-01

    Background On-line provision of information during the transition phase after treatment carries great promise in meeting shortcomings in post-treatment care for breast cancer survivors and their partners. The objectives of this study are to describe the development and process evaluation of a tailored informative website and to assess which characteristics of survivors and partners, participating in the feasibility study, are related to visiting the website. Methods The development process included quantitative and qualitative assessments of survivors’ and partners’ care needs and preferences. Participants’ use and evaluation of the website were explored by conducting baseline and post-measurements. During the intervening 10–12 weeks 57 survivors and 28 partners were granted access to the website. Results Fifty-seven percent (n=21) of survivors who took part in the post-measurement indicated that they had visited the website. Compared to non-visitors (n=16), they were more likely to have a partner and a higher income, reported higher levels of self-esteem and had completed treatment for a longer period of time. Partners who consulted the on-line information (42%, n=8) were younger and reported lower levels of social support compared to partners who did not visit the website (n=11). Visitors generally evaluated the content and lay-out positively, yet some believed the information was incomplete and impersonal. Conclusions The website reached only about half of survivors and partners, yet was mostly well-received. Besides other ways of providing information and support, a website containing clear-cut and tailored information could be a useful tool in post-treatment care provision. PMID:23034161

  6. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.

  7. Nanometric edge profile measurement of cutting tools on a diamond turning machine

    NASA Astrophysics Data System (ADS)

    Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei

    2008-10-01

    Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.

  8. Available Tools and Challenges Classifying Cutting-Edge and Historical Astronomical Documents

    NASA Astrophysics Data System (ADS)

    Lagerstrom, Jill

    2015-08-01

    The STScI Library assists the Science Policies Division in evaluating and choosing scientific keywords and categories for proposals for the Hubble Space Telescope mission and the upcoming James Webb Space Telescope mission. In addition we are often faced with the question “what is the shape of the astronomical literature?” However, subject classification in astronomy in recent times has not been cultivated. This talk will address the available tools and challenges of classifying cutting-edge as well as historical astronomical documents. In at the process, we will give an overview of current and upcoming practices of subject classification in astronomy.

  9. Diagnosis of edge condition based on force measurement during milling of composites

    NASA Astrophysics Data System (ADS)

    Felusiak, Agata; Twardowski, Paweł

    2018-04-01

    The present paper presents comparative results of the forecasting of a cutting tool wear with the application of different methods of diagnostic deduction based on the measurement of cutting force components. The research was carried out during the milling of the Duralcan F3S.10S aluminum-ceramic composite. Prediction of the toolwear was based on one variable, two variables regression Multilayer Perceptron(MLP)and Radial Basis Function(RBF)neural networks. Forecasting the condition of the cutting tool on the basis of cutting forces has yielded very satisfactory results.

  10. Making the Cut: Lattice Kirigami Rules

    NASA Astrophysics Data System (ADS)

    Castle, Toen; Cho, Yigil; Gong, Xingting; Jung, Euiyeon; Sussman, Daniel M.; Yang, Shu; Kamien, Randall D.

    2014-12-01

    In this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed providing a framework for exploring and building kirigami—folding, cutting, and pasting the edges of paper.

  11. A facile top-down etching to create a Cu2O jagged polyhedron covered with numerous {110} edges and {111} corners with enhanced photocatalytic activity.

    PubMed

    Shang, Yang; Sun, Du; Shao, Yiming; Zhang, Dongfeng; Guo, Lin; Yang, Shihe

    2012-11-05

    Cutting edge: A Cu(2)O jagged polyhedron, with numerous {110} edges and {111} corners, has been developed through a top-down selective oxidative etching process at the expense of the original {111} facet (see figure). The as-prepared nanocrystals exhibited higher photocatalytic activities for the degradation of methylene orange, which may be primarily ascribed to the increased edges and corners. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  13. ScMO(BO3) (M = Ca and Cd): new Sc-based oxyborates featuring interesting edge-sharing sandwich-like chains and UV cut-off edges.

    PubMed

    Ma, Ruru; Xu, Dongdong; Yang, Yun; Su, Xin; Lei, Binghua; Yang, Zhihua; Pan, Shilie

    2017-11-07

    Two new isostructural rare-earth oxyborates ScMO(BO 3 ) (M = Ca and Cd) with a three-dimensional (3D) cationic framework and parallel arranged [BO 3 ] triangles have been synthesized by the flux method. In the 3D cationic framework, an interesting sandwich-like basic building unit (BBU) is constructed by two [Ca(1)O 4 ] 6- chains and two [Sc(1)O 4 ] 5- chains. ScMO(BO 3 ) melt incongruently, which shows that title compounds can be grown by the flux method. The UV cut-off edges for ScCaO(BO 3 ) and ScCdO(BO 3 ) are 230 and 249 nm, respectively. In addition, the first-principles calculations are performed to gain further insights into the relationship between the microscopic electronic structures and associated optical properties.

  14. Towards crack-free ablation cutting of thin glass sheets with picosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Eppelt, Urs; Hartmann, Claudia; Schulz, Wolfgang; Zhu, Jianqiang; Lin, Zunqi

    2017-08-01

    We investigated the morphology and mechanism of laser-induced damage in the ablation cutting of thin glass sheets with picosecond laser. Two kinds of damage morphologies observed on the cross-section of the cut channel, are caused by high-density free-electrons and the temperature accumulation, respectively. Notches and micro-cracks can be observed on the top surface of the sample near the cut edge. The surface micro-cracks were related to high energy free-electrons and also the heat-affected zone. Heat-affected-zone and visible-cracks free conditions of glass cutting were achieved by controlling the repetition rate and spatial overlap of laser pulses.

  15. The Cutting-Edge Challenge

    ERIC Educational Resources Information Center

    Share, Joani

    2005-01-01

    In a time of educational budget cuts, the arts seem to take the major brunt of the financial ax. Fine arts programs are often pitted against one another for survival. The music industry and supporting corporations, such as American Express, campaign to have instruments donated or purchased to keep educational programs alive. The visual arts do not…

  16. Microfabricated instrument for tissue biopsy and analysis

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    1999-01-01

    A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate. For automation purposes, microvalves and micropumps may be incorporated. Also, specimens in parallel may be cut and treated with identical or varied chemicals. The instrument is disposable due to its low cost and thus could replace current expensive microtome and histology equipment.

  17. Reducing contact resistance in graphene devices through contact area patterning.

    PubMed

    Smith, Joshua T; Franklin, Aaron D; Farmer, Damon B; Dimitrakopoulos, Christos D

    2013-04-23

    Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are oriented normal to the channel and facilitate bonding between the contact metal and carbon atoms at the graphene cut edges, reproducibly maximizing "edge-contacted" injection. Despite the reduction in M-G contact area caused by these cuts, we find that a 32% reduction in contact resistance results in Cu-contacted, two-terminal devices, while a 22% reduction is achieved for top-gated graphene transistors with Pd contacts as compared to conventionally fabricated devices. The crucial role of contact annealing to facilitate this improvement is also elucidated. This simple approach provides a reliable and reproducible means of lowering contact resistance in graphene devices to bolster performance. Importantly, this enhancement requires no additional processing steps.

  18. Experimental evaluation of tool run-out in micro milling

    NASA Astrophysics Data System (ADS)

    Attanasio, Aldo; Ceretti, Elisabetta

    2018-05-01

    This paper deals with micro milling cutting process focusing the attention on tool run-out measurement. In fact, among the effects of the scale reduction from macro to micro (i.e., size effects) tool run-out plays an important role. This research is aimed at developing an easy and reliable method to measure tool run-out in micro milling based on experimental tests and an analytical model. From an Industry 4.0 perspective this measuring strategy can be integrated into an adaptive system for controlling cutting forces, with the objective of improving the production quality, the process stability, reducing at the same time the tool wear and the machining costs. The proposed procedure estimates the tool run-out parameters from the tool diameter, the channel width, and the phase angle between the cutting edges. The cutting edge phase measurement is based on the force signal analysis. The developed procedure has been tested on data coming from micro milling experimental tests performed on a Ti6Al4V sample. The results showed that the developed procedure can be successfully used for tool run-out estimation.

  19. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    PubMed Central

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-01-01

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534

  20. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    PubMed

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  1. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part

    PubMed Central

    Fox-Rabinovich, German; Wagg, Terry

    2017-01-01

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405

  2. High speed pulsed laser cutting of LiCoO2 Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Carmignato, Simone; Fiorini, Maurizio

    2017-09-01

    Laser cutting of Li-ion battery electrodes represents an alternative to mechanical blanking that avoids complications associated with tool wear and allows assembly of different cell geometries with a single device. In this study, laser cutting of LiCoO2 Li-ion battery electrodes is performed at up to 5m /s with a 1064nm wavelength nanosecond pulsed fiber laser with a maximum average power of 500W and a repetition rate of up to 2MHz . Minimum average cutting power for cathode and anode multi-layer films is established for 12 parameter groups with velocities over the range 1 - 5m /s , varying laser pulse fluence and overlap. Within the tested parameter range, minimum energy per unit cut length is found to decrease with increasing repetition rate and velocity. SEM analysis of the resulting cut edges reveals visible clearance widths in the range 20 - 50 μm , with cut quality found to improve with velocity due to a reduction in lateral heat conduction losses. Raman line map spectra reveal changes in the cathode at 60 μm from the cut edge, where bands at 486cm-1 and 595cm-1 , corresponding to the Eg and A1g modes of LiCoO2 , are replaced with a single wide band centered at 544cm-1 , and evidence of carbon black is no longer present. No changes in Raman spectra are observed in the anode. The obtained results suggest that further improvements in cutting efficiency and quality could be achieved by increasing the repetition rate above 2MHz , thereby improving ablation efficiency of the metallic conductor layers. The laser source utilized in the present study nonetheless represents an immediately available solution for repeatability and throughput that are superior to mechanical blanking.

  3. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  4. Method and apparatus for diamond wire cutting of metal structures

    DOEpatents

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  5. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  6. Trajectory Calculator for Finite-Radius Cutter on a Lathe

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan

    2009-01-01

    A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.

  7. Energy Scaling of Nanosecond Gain-Switched Cr2+:ZnSe Lasers

    DTIC Science & Technology

    2011-01-01

    outcoupler or absorption from the lightly-doped active ions. Additionally, the edges of the crystals are cut at the Brewster angle , which raises...experiments we used Brewster cut Cr:ZnSe gain elements with a chromium concentration of 8x1018 cm-3. Under Cr:Tm:Ho:YAG pumping, the first Cr:ZnSe laser...the energy scaling of nanosecond gain-switched Cr:ZnSe lasers is optimization of the gain medium. In this study we used Brewster cut Cr:ZnSe gain

  8. Travelers Edge: A Model on the Cutting Edge of Corporate College Access and Success Support

    ERIC Educational Resources Information Center

    Pell Institute for the Study of Opportunity in Higher Education, 2012

    2012-01-01

    It is intuitive for businesses and corporations to be worried about the nation's economic competitiveness in the globalized marketplace. To help close this income-based degree attainment gap, models of college access and success programs continue to emerge among the corporate sector. For years, many corporations have established internship and/or…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisterson, Douglas

    Research meteorologist Doug Sisterson discusses climate change and the cutting-edge research taking place at Argonne as well as collaborative research with other institutions, including the University of Chicago.

  10. Survey on fall detection and fall prevention using wearable and external sensors.

    PubMed

    Delahoz, Yueng Santiago; Labrador, Miguel Angel

    2014-10-22

    According to nihseniorhealth.gov (a website for older adults), falling represents a great threat as people get older, and providing mechanisms to detect and prevent falls is critical to improve people's lives. Over 1.6 million U.S. adults are treated for fall-related injuries in emergency rooms every year suffering fractures, loss of independence, and even death. It is clear then, that this problem must be addressed in a prompt manner, and the use of pervasive computing plays a key role to achieve this. Fall detection (FD) and fall prevention (FP) are research areas that have been active for over a decade, and they both strive for improving people's lives through the use of pervasive computing. This paper surveys the state of the art in FD and FP systems, including qualitative comparisons among various studies. It aims to serve as a point of reference for future research on the mentioned systems. A general description of FD and FP systems is provided, including the different types of sensors used in both approaches. Challenges and current solutions are presented and described in great detail. A 3-level taxonomy associated with the risk factors of a fall is proposed. Finally, cutting edge FD and FP systems are thoroughly reviewed and qualitatively compared, in terms of design issues and other parameters.

  11. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  12. Geometric and computer-aided spline hob modeling

    NASA Astrophysics Data System (ADS)

    Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.

    2018-03-01

    The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.

  13. Minimal processing of iceberg lettuce has no substantial influence on the survival, attachment and internalization of E. coli O157 and Salmonella.

    PubMed

    Van der Linden, Inge; Avalos Llano, Karina R; Eriksson, Markus; De Vos, Winnok H; Van Damme, Els J M; Uyttendaele, Mieke; Devlieghere, Frank

    2016-12-05

    The influence of a selection of minimal processing techniques (sanitizing wash prior to packaging, modified atmosphere, storage conditions under light or in the dark) was investigated in relation to the survival of, attachment to and internalization of enteric pathogens in fresh produce. Cut Iceberg lettuce was chosen as a model for fresh produce, Escherichia coli O157:H7 (E. coli O157) and Salmonella enterica were chosen as pathogen models. Care was taken to simulate industrial post-harvest processing. A total of 50±0.1g of fresh-cut Iceberg lettuce was packed in bags under near ambient atmospheric air with approximately 21% O 2 (NAA) conditions or equilibrium modified atmosphere with 3% O 2 (EMAP). Two lettuce pieces inoculated with E. coli O157 BRMSID 188 or Salmonella Typhimurium labeled with green fluorescent protein (GFP) were added to each package. The bags with cut lettuce were stored under either dark or light conditions for 2days at 7°C. The pathogens' capacity to attach to the lettuce surface and cut edge was evaluated 2days after inoculation using conventional plating technique and the internalization of the bacteria was investigated and quantified using confocal microscopy. The effect of a sanitizing wash step (40mg/L NaClO or 40mg/L peracetic acid+1143mg/L lactic acid) of the cut lettuce prior to packaging was evaluated as well. Our results indicate that both pathogens behaved similarly under the investigated conditions. Pathogen growth was not observed, nor was there any substantial influence of the investigated atmospheric conditions or light/dark storage conditions on their attachment/internalization. The pathogens attached to and internalized via cut edges and wounds, from which they were able to penetrate into the parenchyma. Internalization through the stomata into the parenchyma was not observed, although some bacteria were found in the substomatal cavity. Washing the cut edges with sanitizing agents to reduce enteric pathogen numbers was not more effective than a rinse with precooled tap water prior to packaging. Our results confirm that cut surfaces are the main risk for postharvest attachment and internalization of E. coli O157 and Salmonella during minimal processing and that storage and packaging conditions have no important effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    NASA Astrophysics Data System (ADS)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  15. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  16. Craterlike structures on the laser cut surface

    NASA Astrophysics Data System (ADS)

    Shulyatyev, V. B.; Orishich, A. M.

    2017-10-01

    Analysis of the laser cut surface morphology remain topical. It is related with the fact that the surface roughness is the main index of the cut quality. The present paper deals with the experimental study of the relatively unstudied type of defects on the laser cut surface, dimples, or craters. According to the measurement results, amount of craters per unit of the laser cut surface area rises as the sheet thickness rises. The crater diameter rises together with the sheet thickness and distance from the upper sheet edge. The obtained data permit concluding that the defects like craters are observed predominantly in the case of thick sheets. The results agree with the hypothesis of crater formation as impact structures resulting from the melt drops getting on the cut channel walls upon separation from the cut front by the gas flow.

  17. Finding minimum-quotient cuts in planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.K.; Phillips, C.A.

    Given a graph G = (V, E) where each vertex v {element_of} V is assigned a weight w(v) and each edge e {element_of} E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and {bar S} is c(S, {bar S})/min{l_brace}w(S), w(S){r_brace}, where c(S, {bar S}) is the sum of the costs of the edges crossing the cut and w(S) and w({bar S}) are the sum of the weights of the vertices in S and {bar S}, respectively. The problem of finding a cut whose quotient is minimum for a graph hasmore » in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,{bar S}) minimizing c(S,{bar S}) subject to the constraint bW {le} w(S) {le} (1 {minus} b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b {le} {1/2}. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao`s algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao`s most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less

  18. Finding minimum-quotient cuts in planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.K.; Phillips, C.A.

    Given a graph G = (V, E) where each vertex v [element of] V is assigned a weight w(v) and each edge e [element of] E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and [bar S] is c(S, [bar S])/min[l brace]w(S), w(S)[r brace], where c(S, [bar S]) is the sum of the costs of the edges crossing the cut and w(S) and w([bar S]) are the sum of the weights of the vertices in S and [bar S], respectively. The problem of finding a cut whose quotient is minimummore » for a graph has in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,[bar S]) minimizing c(S,[bar S]) subject to the constraint bW [le] w(S) [le] (1 [minus] b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b [le] [1/2]. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao's algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao's most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less

  19. Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels

    NASA Astrophysics Data System (ADS)

    Farrokhi, F.; Nielsen, S. E.; Schmidt, R. H.; Pedersen, S. S.; Kristiansen, M.

    From an industrial point of view, in a laser cutting-welding production chain, it is of great importance to know the influence of the attainable laser cut quality on the subsequent hybrid laser arc welding process. Many studies have been carried out in the literature to obtain lower surface roughness values on the laser cut edge. However, in practice, the cost and reliability of the cutting process is crucial and it does not always comply with obtaining the highest surface quality. In this study, a number of experiments on 25 mm steel plates were carried out to evaluate the influence of cut surface quality on the final quality of the subsequent hybrid laser welded joints. The different cut surfaces were obtained by different industrial cutting methods including laser cutting, abrasive water cutting, plasma cutting, and milling. It was found that the mentioned cutting methods could be used as preparation processes for the subsequent hybrid laser arc welding. However, cut quality could determine the choice of process parameters of the following hybrid laser arc welding.

  20. Tubing and cable cutting tool

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  1. Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh

    NASA Astrophysics Data System (ADS)

    Wenhua, Wang; Yanying, Wang

    2010-05-01

    This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.

  2. Characteristics and Machining Performance of TiN and TiAlN Coatings on a Milling Cutter

    NASA Astrophysics Data System (ADS)

    Sarwar, Mohammed; Haider, Julfikar

    2011-01-01

    Titanium Nitride (TiN) coating deposited by Physical Vapour Deposition (PVD) or Chemical Vapour Deposition (CVD) techniques on cutting tools (single point or multipoint) has contributed towards the improvement of tool life, productivity and product quality [1]. Addition of Al in TiN coating (e.g., TiAlN or AlTiN) has further improved the coating properties required for machining applications [2, 3]. This work presents a comparative investigation on TiN and TiAlN coatings deposited on to a Powder Metallurgy High Speed Steel (PM HSS) milling cutter used for machining bimetal (M42+D6A) steel strips. PVD (Arc evaporation) technique was used to deposit the coatings after carefully preparing the cutting edges of the milling cutter. Microstructure, chemical composition, hardness and adhesion of the coatings have been characterised using different techniques. The incorporation of Al into TiN coating results in an improvement in hardness, wear resistance and cutting performance. Examination of the worn flank in the coated cutting edges revealed that abrasive and adhesive wear are the predominant failure mechanisms. Tool designers, coating suppliers and manufacturing engineers could benefit from the information provided.

  3. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  4. Optimized cutting and forming parameters for a robust collar drawing process for hot-rolled complex-phase steels

    NASA Astrophysics Data System (ADS)

    Kovacs, S.; Beier, T.; Woestmann, S.

    2017-09-01

    The demands on materials for automotive applications are steadily increasing. For chassis components, the trend is towards thinner and higher strength materials for weight and cost reduction. In view of attainable strengths of up to 1200 MPa for hot rolled materials, certain aspects need to be analysed and evaluated in advance in the development process using these materials. Collars in particular, for example in control arms, have been in focus for part and process design. Issues concerning edge and surface cracks are observed due to improper geometry and process layout. The hole expansion capability of the chosen material grade has direct influence on the achievable collar height. In general, shear cutting reduces the residual formability of blank edges and the hole expansion capability. In this paper, using the example of the complex phase steel CP-W® 800 of thyssenkrupp, it is shown how a suitable geometry of a collar and optimum shear cutting parameters can be chosen.

  5. Can Consumers Trust Web-Based Information About Celiac Disease? Accuracy, Comprehensiveness, Transparency, and Readability of Information on the Internet

    PubMed Central

    McNally, Shawna L; Donohue, Michael C; Newton, Kimberly P; Ogletree, Sandra P; Conner, Kristen K; Ingegneri, Sarah E

    2012-01-01

    Background Celiac disease is an autoimmune disease that affects approximately 1% of the US population. Disease is characterized by damage to the small intestinal lining and malabsorption of nutrients. Celiac disease is activated in genetically susceptible individuals by dietary exposure to gluten in wheat and gluten-like proteins in rye and barley. Symptoms are diverse and include gastrointestinal and extraintestinal manifestations. Treatment requires strict adherence to a gluten-free diet. The Internet is a major source of health information about celiac disease. Nonetheless, information about celiac disease that is available on various websites often is questioned by patients and other health care professionals regarding its reliability and content. Objectives To determine the accuracy, comprehensiveness, transparency, and readability of information on 100 of the most widely accessed websites that provide information on celiac disease. Methods Using the search term celiac disease, we analyzed 100 of the top English-language websites published by academic, commercial, nonprofit, and other professional (nonacademic) sources for accuracy, comprehensiveness, transparency, and reading grade level. Each site was assessed independently by 3 reviewers. Website accuracy and comprehensiveness were probed independently using a set of objective core information about celiac disease. We used 19 general criteria to assess website transparency. Website readability was determined by the Flesch-Kincaid reading grade level. Results for each parameter were analyzed independently. In addition, we weighted and combined parameters to generate an overall score, termed website quality. Results We included 98 websites in the final analysis. Of these, 47 (48%) provided specific information about celiac disease that was less than 95% accurate (ie, the predetermined cut-off considered a minimum acceptable level of accuracy). Independent of whether the information posted was accurate, 51 of 98 (52%) websites contained less than 50% of the core celiac disease information that was considered important for inclusion on websites that provide general information about celiac disease. Academic websites were significantly less transparent (P = .005) than commercial websites in attributing authorship, timeliness of information, sources of information, and other important disclosures. The type of website publisher did not predict website accuracy, comprehensiveness, or overall website quality. Only 4 of 98 (4%) websites achieved an overall quality score of 80 or above, which a priori was set as the minimum score for a website to be judged trustworthy and reliable. Conclusions The information on many websites addressing celiac disease was not sufficiently accurate, comprehensive, and transparent, or presented at an appropriate reading grade level, to be considered sufficiently trustworthy and reliable for patients, health care providers, celiac disease support groups, and the general public. This has the potential to adversely affect decision making about important aspects of celiac disease, including its appropriate and proper diagnosis, treatment, and management. PMID:23611901

  6. Can consumers trust web-based information about celiac disease? Accuracy, comprehensiveness, transparency, and readability of information on the internet.

    PubMed

    McNally, Shawna L; Donohue, Michael C; Newton, Kimberly P; Ogletree, Sandra P; Conner, Kristen K; Ingegneri, Sarah E; Kagnoff, Martin F

    2012-04-04

    Celiac disease is an autoimmune disease that affects approximately 1% of the US population. Disease is characterized by damage to the small intestinal lining and malabsorption of nutrients. Celiac disease is activated in genetically susceptible individuals by dietary exposure to gluten in wheat and gluten-like proteins in rye and barley. Symptoms are diverse and include gastrointestinal and extraintestinal manifestations. Treatment requires strict adherence to a gluten-free diet. The Internet is a major source of health information about celiac disease. Nonetheless, information about celiac disease that is available on various websites often is questioned by patients and other health care professionals regarding its reliability and content. To determine the accuracy, comprehensiveness, transparency, and readability of information on 100 of the most widely accessed websites that provide information on celiac disease. Using the search term celiac disease, we analyzed 100 of the top English-language websites published by academic, commercial, nonprofit, and other professional (nonacademic) sources for accuracy, comprehensiveness, transparency, and reading grade level. Each site was assessed independently by 3 reviewers. Website accuracy and comprehensiveness were probed independently using a set of objective core information about celiac disease. We used 19 general criteria to assess website transparency. Website readability was determined by the Flesch-Kincaid reading grade level. Results for each parameter were analyzed independently. In addition, we weighted and combined parameters to generate an overall score, termed website quality. We included 98 websites in the final analysis. Of these, 47 (48%) provided specific information about celiac disease that was less than 95% accurate (ie, the predetermined cut-off considered a minimum acceptable level of accuracy). Independent of whether the information posted was accurate, 51 of 98 (52%) websites contained less than 50% of the core celiac disease information that was considered important for inclusion on websites that provide general information about celiac disease. Academic websites were significantly less transparent (P = .005) than commercial websites in attributing authorship, timeliness of information, sources of information, and other important disclosures. The type of website publisher did not predict website accuracy, comprehensiveness, or overall website quality. Only 4 of 98 (4%) websites achieved an overall quality score of 80 or above, which a priori was set as the minimum score for a website to be judged trustworthy and reliable. The information on many websites addressing celiac disease was not sufficiently accurate, comprehensive, and transparent, or presented at an appropriate reading grade level, to be considered sufficiently trustworthy and reliable for patients, health care providers, celiac disease support groups, and the general public. This has the potential to adversely affect decision making about important aspects of celiac disease, including its appropriate and proper diagnosis, treatment, and management.

  7. Design of a surgical instrument for removing bone to provide screw access to a spinal fusion cage.

    PubMed

    Jabbary Aslani, F; Hukins, D W L; Shepherd, D E T; Parry, J J; Fennell, A J; Lambell, S

    2012-01-01

    A surgical instrument to aid implantation of a range of lumbar spinal fusion cages has been developed. Once the cage is in position, the entrance to screw holes is partially blocked by the edge of the vertebral body. In order to insert fixation screws to secure the cage between the vertebrae, some part of the blocking edge has to be removed. Rongeurs are currently being used, but they can be time consuming and have the disadvantage that they may remove more bone than is necessary and may cause damage to the fusion cage if not used with care. In addition, access around some of the screw holes may be difficult. The aim of this instrument was to overcome these shortcomings. This paper describes the design of a surgical instrument for cutting edges from vertebral bodies. The development and evaluation of concept designs are presented and discussed. Potential risks were considered and modifications were performed on the selected concept. Functional prototypes were manufactured and tested on sheep lumbar vertebrae. The results showed that the newly designed cutting instrument functions as required and removes the required amount of bone from the vertebral body edge.

  8. Psychotherapy supervision developments and innovations for the new millennium: contributions from the cutting edge.

    PubMed

    Watkins, C Edward

    2014-01-01

    What are some of the most recent, cutting-edge developments and innovations in psychotherapy supervision? And what is their particular significance for supervision now and into its future? In this special supervision issue of the American Journal of Psychotherapy, those questions are considered, and some compelling answers are provided. In what follows, I introduce this special journal issue: (a) define supervision and indicate its purposes; (b) summarize the contents of each innovative paper; and (c) accentuate the significance of each presented development/innovation. The papers contained in this issue boldly speak to supervision's future and provide exciting--and highly profitable--directions to pursue in forever making psychotherapy supervision a far more anchored, accountable, and educational experience.

  9. Coherent structures shed by multiscale cut-in trailing edge serrations on lifting wings

    NASA Astrophysics Data System (ADS)

    Prigent, S. L.; Buxton, O. R. H.; Bruce, P. J. K.

    2017-07-01

    This experimental study presents the effect of multiscale cut-in trailing edge serrations on the coherent structures shed into the wake of a lifting wing. Two-probe span-wise hot-wire traverses are performed to study spectra, coherence, and phase shift. In addition, planar particle image velocimetry is used to study the spatio-temporal structure of the vortices shed by the airfoils. Compared with a single tone sinusoidal serration, the multiscale ones reduce the vortex shedding energy as well as the span-wise coherence. Results indicate that the vortex shedding is locked into an arch-shaped cell structure. This structure is weakened by the multiscale patterns, which explains the reduction in both shedding energy and coherence.

  10. Conveying Cutting-Edge Discoveries to Nonscientists: Effective Communication with Media

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Hamilton, Kathleen; Chamot, Joshua

    2013-07-01

    The benefits of using information and news media for disseminating cutting-edge scientific discoveries to the public are well known. Taxpayers and lawmakers need to be informed about the implications of public investments, young students' interest can be molded toward science- and technology-based careers, and public awareness of important issues can be raised by effectively using media. However, communication with news media is different from the means commonly used by scientists—journal publications and conference presentations. This article is intended to provide information on three basic aspects of media interactions—why, what, and how to communicate. The increasing importance of this mode of dissemination in this information age cannot be ignored; rather, it can be effectively utilized for educating a wider population base.

  11. Three-Dimensional Printing of Nanomaterial Scaffolds for Complex Tissue Regeneration

    PubMed Central

    O'Brien, Christopher M.; Holmes, Benjamin; Faucett, Scott

    2015-01-01

    Three-dimensional (3D) printing has recently expanded in popularity, and become the cutting edge of tissue engineering research. A growing emphasis from clinicians on patient-specific care, coupled with an increasing knowledge of cellular and biomaterial interaction, has led researchers to explore new methods that enable the greatest possible control over the arrangement of cells and bioactive nanomaterials in defined scaffold geometries. In this light, the cutting edge technology of 3D printing also enables researchers to more effectively compose multi-material and cell-laden scaffolds with less effort. In this review, we explore the current state of 3D printing with a focus on printing of nanomaterials and their effect on various complex tissue regeneration applications. PMID:25084122

  12. Single crystal diamond lapping procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, R.A.

    A facility capable of resharpening quality cutting edges on single crystal diamond cutting tools was needed as the demand in precision machining of special optical surfaces became a common occurrence here at Lawrence Livermore National Laboratory. A specially constructed lapping machine using an air bearing spindle was built to achieve the required edge quality. The basic design for this lap was taken out of a technical report by W.L. Duke and R.T. Lovell of Oak Ridge Y-12 Plant Union Carbide Corp. We have also purchased two commercially built lapping machines recommended to us by Mr. Cory A. Knottenbelt, formerly ofmore » R.C.A. Diamond Lapping Facility, in Indianapolis, Indiana, now doing state-of-the-art polishing and relapping at LLNL facilities.« less

  13. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.

    1995-01-01

    Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.

  14. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  15. United Leukodystrophy Foundation

    MedlinePlus

    ... in 1982, is a non-profit, voluntary health organization dedicated to funding cutting-edge research and to providing patients and their families with disease information and medical referrals. The Foundation ...

  16. Emergency Response and Management Activities

    EPA Pesticide Factsheets

    This quarterly report, highlighting accomplishments over the past several months, showcases EPA’s unique emergency response capabilities through the use of cutting-edge technologies and innovative cleanup strategies.

  17. Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools

    NASA Astrophysics Data System (ADS)

    Jagadesh, Thangavel; Samuel, G. L.

    2017-02-01

    The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.

  18. Cutting thread at flexible endoscopy.

    PubMed

    Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T

    1996-12-01

    New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.

  19. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  20. The Effect of Cutting Speed in Metallic Glass Grinding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serbest, Erdinc; Bakkal, Mustafa; Karipcin, Ilker

    2011-01-17

    In this paper, the effects of the cutting speed in metallic glass grinding were investigated in dry conditions. The results showed that grinding forces decrease as grinding energy increase with the increasing cutting speeds. The present investigations on ground surface and grinding chips morphologies -shows that material removal and surface formation of the BMG are mainly due to the ductile chip deformation and ploughing as well as brittle fracture of some particles from the edges of the tracks. The roughness values obtained with the Cubic Boron Nitride wheels are acceptable for the grinding operation.

  1. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  2. The sensitivity of tokamak magnetohydrodynamics stability on the edge equilibrium

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.

    2017-10-01

    Due to the X-point singularity, the safety factor tends to infinity as approaching to the last closed flux surface. The numerical treatments of the near X-point behavior become challenging both for equilibrium and stability. The usual solution is to cut off a small fraction of edge region for system stability evaluation or simply use an up-down symmetric equilibrium without X-point as an approximation. In this work, we assess the sensitivity of this type of equilibrium treatments on the stability calculation. It is found that the system stability can depend strongly on the safety factor value (qa) at the edge after the cutting-off. When the edge safety factor value falls in the vicinity of a rational mode number (referred to as the resonant gap), the system becomes quite unstable due to the excitation of the peeling type modes. Instead, when the edge safety factor is outside the resonant gaps, the system is much more stable and the predominant modes become the usual external kink (or ballooning and infernal) type. It is also found that the resonant gaps become smaller and smaller as qa increases. The ideal magnetohydrodynamic peeling ballooning stability diagram is widely used to explain the experimental observations, and the current results indicate that the conventional peeling ballooning stability diagram based on the simplified equilibrium needs to be reexamined.

  3. Impact Of Recent Timber Harvests On Autumn Scenic Beauty Of Near-Stand Views

    Treesearch

    Rebecca J. Ray Barlow; Victor A. Rudis

    2004-01-01

    Abstract - This study estimated the impact of 10 recent timber cutting regimes on the autumn scenic beauty of shortleaf pine-hardwood forests in the Ouachita Mountains of Arkansas. Scenes were photographed near forest stand edges—views typically observed by sightseeing visitors—from 36 treated areas cut the previous winter and 3 comparable untreated...

  4. Calculating and Mitigating the Risk of a Cut Glove to a Space Walking Astronaut

    NASA Technical Reports Server (NTRS)

    Castillo, Theresa; Haught, Megan

    2013-01-01

    One of the high risk operations on the International Space Station (ISS) is conducting a space walk, or an Extra Vehicular Activity (EVA). Threats to the space walking crew include airlock failures, space suit failures, and strikes from micro ]meteoroids and orbital debris (MM/OD). There are risks of becoming untethered from the space station, being pinched between the robotic arm and a piece of equipment, tearing your suit on a sharp edge, and other human errors that can be catastrophic. For decades NASA identified and tried to control sharp edges on external structure and equipment by design; however a new and unexpected source of sharp edges has since become apparent. Until recently, one of the underappreciated environmental risks was damage to EVA gloves during a spacewalk. The ISS has some elements which have been flying in the environment of space for over 14 years. It has and continues to be bombarded with MM/OD strikes that have created small, sharp craters all over the structure, including the dedicated EVA handrails and surrounding structure. These craters are capable of cutting through several layers of the EVA gloves. Starting in 2006, five EVA crewmembers reported cuts in their gloves so large they rendered the gloves unusable and in some cases cut the spacewalk short for the safety of the crew. This new hazard took engineers and managers by surprise. NASA has set out to mitigate this risk to safety and operations by redesigning the spacesuit gloves to be more resilient and designing a clamp to isolate MM/OD strikes on handrails, and is considering the necessity of an additional tool to repair strikes on non ]handrail surfaces (such as a file). This paper will address how the ISS Risk Team quantified an estimate of the MM/OD damage to the ISS, and the resulting likelihood of sustaining a cut glove in order to measure the effectiveness of the solutions being investigated to mitigate this risk to the mission and crew.

  5. Sectioning Coated Specimens Without Edge Rounding

    NASA Technical Reports Server (NTRS)

    Mckechnie, Timothy N.

    1988-01-01

    New method devised for preparation of cross sections of coated specimens for scanning electron microscopy or energy-dispersive analysis without rounding edges of coatings. After cutting and polishing, specimen section remains smooth and flat so it can be examined under high magnification out to edge of coating. Sectioned blade first electroplated with hard nickel 0.003 in., then encapsulated in two layers of material: soft conductive material at bottom and 0.25 in. of hard diallyl phthalate at top. Nickel plate provides electrical path from surface of section to conductive material below.

  6. Theoretical study of cut area of reduction of large surfaces of rotation parts on machines with rotary cutters “Extra”

    NASA Astrophysics Data System (ADS)

    Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.

    2018-03-01

    Large parts can be treated without disassembling machines using “Extra”, having technological and design challenges, which differ from the challenges in the processing of these components on the stationary machine. Extension machines are used to restore large parts up to the condition allowing one to use them in a production environment. To achieve the desired accuracy and surface roughness parameters, the surface after rotary grinding becomes recoverable, which greatly increases complexity. In order to improve production efficiency and productivity of the process, the qualitative rotary processing of the machined surface is applied. The rotary cutting process includes a continuous change of the cutting edge surfaces. The kinematic parameters of a rotary cutting define its main features and patterns, the cutting operation of the rotary cutting instrument.

  7. The Social Validation of Institutional Indicators to Promote System-Wide Web Accessibility in Postsecondary Institutions

    ERIC Educational Resources Information Center

    Mariger, Heather Ann

    2011-01-01

    The Internet is an integral part of higher education today. Students, faculty, and staff must have access to the institutional web for essential activities. For persons with disabilities, the web is a double-edged sword. While an accessibly designed website can mitigate or remove barriers, an inaccessible one can make access impossible. If…

  8. Control of the pattern of perithecium development in Sordaria fimicola on agar medium.

    PubMed

    Pollock, R T

    1975-06-01

    In a Sordaria fimicola (Rob.) Ces. and de Not. colony grown on agar medium in a petri plate, perithecia developed in a narrow band around the plate edge after the colony margin reached the edge. Physical wounding of the colony carried out shortly before or during the time perithecia were developing around the plate edge stimulated perithecium development in the wound area. Diffusion barriers were created by cutting small trenches in the agar parallel to the plate edge. The trenches were made at several different positions between the plate center and edge using cultures of several different ages, and the resultant distribution of perithecia along the trench edges suggested that the colony center and periphery produce diffusible inhibitors of perithecium development. These inhibitors may be responsible, in part, for the observed pattern of perithecium development in the colony.

  9. The fracture properties and mechanical design of human fingernails.

    PubMed

    Farren, L; Shayler, S; Ennos, A R

    2004-02-01

    Fingernails are a characteristic feature of primates, and are composed of three layers of the fibrous composite keratin. This study examined the structure and fracture properties of human fingernails to determine how they resist bending forces while preventing fractures running longitudinally into the nail bed. Nail clippings were first torn manually to examine the preferred crack direction. Next, scissor cutting tests were carried out to compare the fracture toughness of central and outer areas in both the transverse and longitudinal direction. The fracture toughness of each of the three isolated layers was also measured in this way to determine their relative contributions to the toughness. Finally, the structure was examined by carrying out scanning electron microscopy of free fracture surfaces and polarized light microscopy of nail sections. When nails were torn, cracks were always diverted transversely, parallel to the free edge of the nail. Cutting tests showed that this occurred because the energy to cut nails transversely, at approximately 3 kJ m(-2), was about half that needed (approx. 6 kJ m(-2)) to cut them longitudinally. This anisotropy was imparted by the thick intermediate layer, which comprises long, narrow cells that are oriented transversely; the energy needed to cut this layer transversely was only a quarter of that needed to cut it longitudinally. In contrast the tile-like cells in the thinner dorsal and ventral layers showed isotropic behaviour. They probably act to increase the nail's bending strength, and as they wrap around the edge of the nail, they also help prevent cracks from forming. These results cast light on the mechanical behaviour and care of fingernails.

  10. European road lighting technologies

    DOT National Transportation Integrated Search

    2001-09-01

    The objective of this scanning tour was to gather information from European transportation ministries and lighting professionals regarding cutting-edge research and technologies in highway and roadway lighting systems, including tunnel illumination, ...

  11. Process For Cutting Polymers Electrolyte Multi-Layer Batteries And Batteries Obtained Thereby

    DOEpatents

    Gauthier, Michel; Lessard, Ginette; Dussault, Gaston; Rouillard, Roger; Simoneau, Martin; Miller, Alan Paul

    2003-09-09

    A stacking of battery laminate is prepared, each battery consisting of anode, polymer electrolyte, cathode films and possibly an insulating film, under conditions suitable to constitute a rigid monoblock assembly, in which the films are unitary with one another. The assembly obtained is thereafter cut in predetermined shape by using a mechanical device without macroscopic deformation of the films constituting the assembly and without inducing permanent short circuits. The battery which is obtained after cutting includes at least one end which appears as a uniform cut, the various films constituting the assembly having undergone no macroscopic deformation, the edges of the films of the anode including an electronically insulating passivation film.

  12. Effects of blade-vane ratio and rotor-stator spacing of fan noise with forward velocity

    NASA Astrophysics Data System (ADS)

    Woodward, R. P.; Glaser, F. W.

    1981-08-01

    A research fan stage was acoustically tested in an anechoic wind tunnel with a 41 m/sec tunnel flow. Two stator vane numbers giving cut-on and cut-off conditions were tested at three rotor-stator spacings ranging from about 0.5 to 2.0 rotor chords. These two stators were designed for similar aerodynamic performance. Hot film anemometer turbulence measurements were made at the leading edge of the stator for each spacing. The cut-off criterion strongly controlled the fundamental tone level at all spacings. The trends with spacing of the wake defect upwash component at the stator tip showed good agreement with the corresponding cut-on acoustic tone levels.

  13. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.

    1995-10-31

    Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.

  14. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Jeffrey M.

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less

  15. Open ended tubing cutters

    NASA Technical Reports Server (NTRS)

    Girala, A. S. (Inventor)

    1981-01-01

    A self clamping cutting tool which includes a handle attached to a C-shaped housing is described. Rotatably mounted within the housing is a C-shaped tool body carrying a set of clamping rolls, two support rolls, and an edged cutting roll (64). The support rolls are disposed to one side of the axis of a pipe and the cutting roll is disposed to the other side of a pipe axis so that these rolls contact a pipe at three circumferential points. Cutter advancing apparatus advance the cutting roll toward the support rollers. The support rolls and cutting roll are rotatable independently of the C-shaped housing. A one way ratchet mechanism disposed between the C-shaped housing and the C-shaped tool body permits operation by movement in one rotational direction about the pipe axis.

  16. Velcro mechanics in wood

    Treesearch

    David Kretschmann

    2003-12-01

    The remarkable deformability of wood in a moist environment resembles that of ductile metals. A combination of traditional mechanical tests and cutting-edge diffraction experiments reveal the molecular mechanism that determines such behaviour.

  17. Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method

    NASA Astrophysics Data System (ADS)

    Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin

    2017-12-01

    Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.

  18. Toward a first-principles integrated simulation of tokamak edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C S; Klasky, Scott A; Cummings, Julian

    2008-01-01

    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); andmore » (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.« less

  19. Advanced Turbine Engine Seal Test

    DTIC Science & Technology

    1976-07-01

    Transpiration- Cooled Shroud Segments. 67. ATEST Shroud Rub Pin Heights and Mid-Chord Runout . 68. Locations of Nine-Point Runout Check on Shroud Surface...69. ATEST Shroud Leading Edge Runout . 70. ATEST Shroud Trailing Edge Runout . 71. ATEST Shroud Support Posttest Runout . 72. ATEST Shroud Flow Zones...at General Electric on many prior engines with good success. It Involves the use of a grinding wheel in conjunction with a cutting fluid which is

  20. Validation of tool mark analysis of cut costal cartilage.

    PubMed

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2012-03-01

    This study was designed to establish the potential error rate associated with the generally accepted method of tool mark analysis of cut marks in costal cartilage. Three knives with different blade types were used to make experimental cut marks in costal cartilage of pigs. Each cut surface was cast, and each cast was examined by three analysts working independently. The presence of striations, regularity of striations, and presence of a primary and secondary striation pattern were recorded for each cast. The distance between each striation was measured. The results showed that striations were not consistently impressed on the cut surface by the blade's cutting edge. Also, blade type classification by the presence or absence of striations led to a 65% misclassification rate. Use of the classification tree and cross-validation methods and inclusion of the mean interstriation distance decreased the error rate to c. 50%. © 2011 American Academy of Forensic Sciences.

  1. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    NASA Astrophysics Data System (ADS)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  2. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    PubMed Central

    Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao

    2018-01-01

    A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730

  3. Advances in Biological Science.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  4. 21 CFR 882.5900 - Preformed craniosynostosis strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bone edges of craniectomy sites (sites where the skull has been cut) to prevent the bone from regrowing in patients whose skull sutures are abnormally fused together. (b) Classification. Class II...

  5. Female high school biology students' biofilm-focused learning: The contributions of three instructional strategies to patterns in understanding and motivation

    NASA Astrophysics Data System (ADS)

    Ales, Jo Dale Hill

    2000-12-01

    This exploratory study examined three instructional strategies used with female high school biology students. The relative contributions of the strategies to student understanding of microbiology and motivation in science were analyzed. The science education community targeted underachievement in science by implementing changes in content and practices (NRC, 1996). Research suggested that teachers facilitate learnirig environments based on human constructivism (Mintzes, Wandersee, & Novak, 1997) that is rooted in meaningful learning theory (Ausubel, Novak & Hanesian, 1978). Teachers were advised to use both visual and verbal instructional strategies (Paivio, 1983) and encourage students to construct understandings by connecting new experiences to prior knowledge. The American Society for Microbiology supports the study of microorganisms because of their prominence in the biosphere (ASK 1997). In this study, two participating teachers taught selected microbiology concepts while focused on the cutting edge science of biofilms. Biology students accessed digitized biofilm images on an ASM web page and adapted them into products, communicated with biofilm researchers, and adapted a professional-quality instructional video for cross-age teaching. The study revealed improvements in understanding as evidenced on a written test; however, differences in learnirig outcomes were not significant. Other data, including student journal reflections, observations of student interactions, and student clinical interviews indicate that students were engaged in cutting edge science and adapted biofilm images in ways that increased understanding of microbiology (with respect to both science content and as a way of knowing) and motivation. An ASM CD-ROM of the images did not effectively enhance learning and this study provides insights into what could make it more successful. It also identifies why, in most cases, students' E-mail communication with biofilm researchers was unsuccessful. The positive experiences of successful students indicate that teacher management could maximize the benefits of experiencing cutting edge science this way. Cutting edge science can be used to make science more relevant to students, enhance science learning, and insure a more scientifically literate society. Cross-age teachers effectively adapted an instructional video, communicated science, and increased their understanding of selected microbiology concepts and self-confidence. They also increased or maintained their motivation to study science.

  6. Femtosecond laser-assisted cataract surgery in Alport syndrome with anterior lenticonus.

    PubMed

    Ecsedy, Mónika; Súndor, Gúbor L; Takúcs, Úgnes I; Krúnitz, Kinga; Kiss, Zoltún; Kolev, Krasimir; Nagy, Zoltún Z

    2015-01-01

    To report the surgical treatment of 3 eyes of 2 patients with bilateral anterior lenticonus due to Alport syndrome using femtosecond laser-assisted cataract surgery (FLACS). Two patients with Alport syndrome presented to our department due to anterior lenticonus in both eyes. We performed FLACS with posterior chamber lens implantation in both eyes of one patient and in one eye of the other patient. Anterior segment morphologic changes were visualized with a Scheimpflug camera, and anterior segment optical coherence tomography preoperatively and 3 months after surgery. Ultrastructure of the cut capsule edges was observed with scanning electron microscopy and compared to the edge of femtosecond laser capsulotomy performed on an otherwise healthy patient with cataract (control). The intraocular lens (IOL) postoperative positioning parameters met the international requirements of aspherical and wavefront customized IOLs (tilt <10 degree, decentration <800 µm). Scanning electron microscopy revealed the same characteristics of the cut capsule edges in the Alport and in the control eyes. Femtosecond laser cataract surgery can be a safe and successful method for optical rehabilitation of anterior lenticonus in patients with Alport syndrome.

  7. Tool holder for preparation and inspection of a radiused edge cutting tool

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.

  8. Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.; Honn, D. K.

    2011-12-01

    We are assembling a group of web-based educational modules for a course entitled "Introduction to Mineral Physics". Although the modules are designed to function as part of a full semester course, each module will also be able to stand alone. The modules are targeted at entry level graduate students and advanced undergraduate students. Learning outcomes for the course are being developed in consultation with educators throughout the mineral physics community. Potential users include mineral physicists teaching "bricks and mortar" graduate classes at their own institutions, mineral physicists teaching graduate classes in a distance education setting, mineralogy teachers interested in including supplementary material in their undergraduate mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other subdisciplines who wish to brush up on mineral physics topics. The modules reside on the Science Education Resource Center at Carleton College web site in the On the Cutting Edge - Teaching Mineralogy collection. Links to the materials will be posted on the Consortium for Materials Properties Research in Earth Sciences website. The modules will be piloted in a graduate level distance education course in mineral physics taught from UNLV during the spring 2012 semester. This course and others like it can address the current problems faced by faculty in state universities where rising minimum enrollments are making it difficult to teach a suitable graduate course to incoming students.

  9. Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors

    PubMed Central

    Delahoz, Yueng Santiago; Labrador, Miguel Angel

    2014-01-01

    According to nihseniorhealth.gov (a website for older adults), falling represents a great threat as people get older, and providing mechanisms to detect and prevent falls is critical to improve people's lives. Over 1.6 million U.S. adults are treated for fall-related injuries in emergency rooms every year suffering fractures, loss of independence, and even death. It is clear then, that this problem must be addressed in a prompt manner, and the use of pervasive computing plays a key role to achieve this. Fall detection (FD) and fall prevention (FP) are research areas that have been active for over a decade, and they both strive for improving people's lives through the use of pervasive computing. This paper surveys the state of the art in FD and FP systems, including qualitative comparisons among various studies. It aims to serve as a point of reference for future research on the mentioned systems. A general description of FD and FP systems is provided, including the different types of sensors used in both approaches. Challenges and current solutions are presented and described in great detail. A 3-level taxonomy associated with the risk factors of a fall is proposed. Finally, cutting edge FD and FP systems are thoroughly reviewed and qualitatively compared, in terms of design issues and other parameters. PMID:25340452

  10. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  11. The effect of cutting conditions on power inputs when machining

    NASA Astrophysics Data System (ADS)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  12. Chip formation and surface integrity in high-speed machining of hardened steel

    NASA Astrophysics Data System (ADS)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated during cutting on the residual stresses. The machined specimens are also examined using x-ray diffraction technique to clarify the effect of different speeds, feeds and depths of cut as well as different edge preparations on the residual stress distribution beneath the machined surface. A reasonable agreement between the predicted and measured residual stress is obtained. The results obtained demonstrate the possibility of eliminating the existence of high tensile residual stresses in the workpiece surface by selecting the proper cutting conditions. The machined surfaces are examined using SEM to study the effect of different process parameters and edge preparations on the quality of the machined surface. The phenomenon of material side flow is investigated to clarify the mechanism of this phenomenon. The effect of process parameters and edge preparations on sub-surface deformation is also investigated.

  13. Women's empowerment and the intention to continue the practice of female genital cutting in Egypt.

    PubMed

    Afifi, Mustafa

    2009-03-01

    The study aimed to (dis)prove the association of the level of women's empowerment with their future intention to perpetuate female genital cutting for their daughters. In a national representative community-based sample of 14,393 currently-married women in Egypt, the level of empowerment, intention to continue the practice, and other socio- demographic variables were collected in the 2000 Egypt Demographic and Health Survey. Secondary in-depth analysis was conducted on data downloaded from MEASURE Demographic Health Surveys (MEASURE DHS) website. About 14% of the women intended to discontinue the practice. Twenty-six percent of the women were empowered in all household decisions. Levels of women's empowerment adjusted for age, residence, education, interaction between empowerment and education, work status, and female genital cutting status of currently-married women were entered in six logistic regression models in a sequential way. In the last model, those of high levels of empowerment and education were 8.06 times more likely not intending to perpetuate female genital cutting for their daughters than low- empowered low-educated women.

  14. Small Craft Transportability Design and Certification Process Guidance. Revision B

    DTIC Science & Technology

    2010-11-08

    49CFR393.104, wherever a tie-down strap is subject to abrasion or cutting, it should be provided with edge protection capable of resisting abrasion , cutting...commercial round connector shown in Figure 8. Tactical vehicles (e.g., MTVR, High Mobility Multi-Wheeled Vehicle (HMMWV), or Mine Resistant Ambush...a heavy-duty construction, using corrosion- and rot- resistant (or coated) materials and components. Trailer components are likely to be submerged

  15. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the...

  16. Argonne OutLoud: "Climate Change: Fact, Fiction and What You Can Do"

    ScienceCinema

    Sisterson, Douglas

    2018-06-07

    Research meteorologist Doug Sisterson discusses climate change and the cutting-edge research taking place at Argonne as well as collaborative research with other institutions, including the University of Chicago.

  17. The Future Is Coming: Electronic Health Records

    MedlinePlus

    ... Current Issue Past Issues The Future Is Coming: Electronic Health Records Past Issues / Spring 2009 Table of ... special conference on the cutting-edge topic of electronic health records (EHR) on May 20-21, 2009, ...

  18. 21 CFR 882.5900 - Preformed craniosynostosis strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... craniosynostosis strip. (a) Identification. A preformed craniosynostosis strip is a plastic strip used to cover bone edges of craniectomy sites (sites where the skull has been cut) to prevent the bone from regrowing...

  19. 21 CFR 882.5900 - Preformed craniosynostosis strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... craniosynostosis strip. (a) Identification. A preformed craniosynostosis strip is a plastic strip used to cover bone edges of craniectomy sites (sites where the skull has been cut) to prevent the bone from regrowing...

  20. 21 CFR 882.5900 - Preformed craniosynostosis strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... craniosynostosis strip. (a) Identification. A preformed craniosynostosis strip is a plastic strip used to cover bone edges of craniectomy sites (sites where the skull has been cut) to prevent the bone from regrowing...

  1. 21 CFR 882.5900 - Preformed craniosynostosis strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... craniosynostosis strip. (a) Identification. A preformed craniosynostosis strip is a plastic strip used to cover bone edges of craniectomy sites (sites where the skull has been cut) to prevent the bone from regrowing...

  2. How Stitches Help Kids Heal

    MedlinePlus

    ... cuts is a small sticky strip called a butterfly bandage. It keeps the edges of a shallow ... help. Different kinds of materials — sutures, glue, and butterflies — need different kinds of care. The doctor probably ...

  3. NASA Balloon Highlights 2015-2017

    NASA Technical Reports Server (NTRS)

    Fairbrother, Debora

    2017-01-01

    The NASA Balloon Program provides low-cost, quick response, near space access to NASAs science Community for conducting Cutting Edge Science Investigations. Serve as a technology development platform. Excellent training for NASA scientists and engineers.

  4. SSBRP User Operations Facility (UOF) Overview and Development Strategy

    NASA Technical Reports Server (NTRS)

    Picinich, Lou; Stone, Thom; Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1995-01-01

    This paper will present the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF) architecture and development strategy. A major element of the UOF at NASA Ames Research Center, the Communication and Data System (CDS) will be the primary focus of the discussions. CDS operational, telescience, security, and development objectives will be discussed along with CDS implementation strategy. The implementation strategy discussions will include: Object Oriented Analysis & Design, System & Software Prototyping, and Technology Utilization. A CDS design overview that includes: CDS Context Diagram, CDS Architecture, Object Models, Use Cases, and User Interfaces will also be presented. CDS development brings together "cutting edge" technologies and techniques such as: object oriented development, network security, multimedia networking, web-based data distribution, JAVA, and graphical user interfaces. Use of these "cutting edge" technologies and techniques translates directly to lower development and operations costs.

  5. Variability in Chemical Vapor Deposited Zinc Sulfide: Assessment of Legacy and International CVD ZnS Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Korenstein, Ralph

    2009-10-06

    Samples of CVD ZnS from the United States, Germany, Israel, and China were evaluated using transmission spectroscopy, x-ray diffraction, photoluminescence, and biaxial flexure testing. Visible and near-infrared scattering, 6 μm absorption, and ultraviolet cut-on edge varied substantially in tested materials. Crystallographic hexagonality and texture was determined and correlated with optical scattering. Transmission cut-on (ultraviolet edge) blue-shifts with annealing and corresponds to visible color but not the 6 μm absorption. Photoluminescence results suggest that CVD ZnS exhibits a complex suite of electronic bandgap defects. All CVD ZnS tested with biaxial flexure exhibit similar fracture strength values and Weibull moduli. This surveymore » suggests that technical understanding of the structure and optical properties CVD ZnS is still in its infancy.« less

  6. Monitoring of peri-distal gastrectomy carbohydrate antigen 19-9 level in gastric juice and its significance

    PubMed Central

    Xu, A-Man; Huang, Lei; Han, Wen-Xiu; Wei, Zhi-Jian

    2014-01-01

    Gastric carcinoma is one of the most common and deadly malignancies nowadays, and carbohydrate antigen 19-9 (CA 19-9) in gastric juice has been rarely studied. To compare peri-distal gastrectomy (DG) gastric juice and serum CA 19-9 and reveal its significance, we selected 67 patients diagnosed with gastric carcinoma who underwent DG, and collected their perioperative gastric juice whose CA 19-9 was detected, with serum CA 19-9 monitored as a comparison. We found that: gastric juice CA 19-9 pre-gastrectomy was significantly correlated with tumor TNM classification, regarding tumor size, level of gastric wall invaded, differentiated grade and number of metastatic lymph nodes as influencing factors, while serum CA 19-9 revealed little information; gastric juice CA 19-9 was significantly correlated with radical degree, and regarded number of resected lymph nodes and classification of cutting edge as impact factors; thirteen patients whose gastric juice CA 19-9 rose post-DG showed features indicating poor prognosis; the difference of gastric juice CA 19-9 between pre- and post-gastrectomy was correlated with tumor TNM classification and radical degree, and regarded tumor size, number of resected metastatic and normal lymph nodes, sum of distances from tumor to cutting edges and classification of cutting edge as influential factors. We conclude that peri-DG gastric juice CA 19-9 reveals much information about tumor and radical gastrectomy, and may indicate prognosis; while serum CA 19-9 has limited significance. PMID:24482710

  7. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  8. The Importance of Why: An Intelligence Approach for a Multi-Polar World

    DTIC Science & Technology

    2016-04-04

    December 27, 2015). 12. 2 Jupiter Scientific, “Definitions of Important Terms in Chaos Theory ,” Jupiter Scientific website, http...Important Terms in Chaos Theory .” Linearizing a system is approximating a nonlinear system through the application of linear system model. 25...Complexity Theory to Anticipate Strategic Surprise,” 24. 16 M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (New

  9. The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone.

    PubMed

    Norman, D G; Watson, D G; Burnett, B; Fenne, P M; Williams, M A

    2018-02-01

    Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle captured by micro-CT imaging, to predict the knife responsible. In Experiment 1 a mechanical stab rig and two knives were used to create 14 knife cut marks on dry pig ribs. The toolmarks were laser and micro-CT scanned to allow for quantitative measurements of numerous toolmark properties. The findings from Experiment 1 demonstrated that both knives produced statistically different cut mark widths, wall angle and shapes. Experiment 2 examined knife marks created on fleshed pig torsos with conditions designed to better simulate real-world stabbings. Eight knives were used to generate 64 incision cut marks that were also micro-CT scanned. Statistical exploration of these cut marks suggested that knife type, serrated or plain, can be predicted from cut mark width and wall angle. Preliminary results suggest that knives type can be predicted from cut mark width, and that knife edge thickness correlates with cut mark width. An additional 16 cut marks walls were imaged for striation marks using scanning electron microscopy with results suggesting that this approach might not be useful for knife mark analysis. Results also indicated that observer judgements of cut mark shape were more consistent when rated from micro-CT images than light microscopy images. The potential to combine micro-CT data, medical grade CT data and photographs to develop highly realistic virtual models for visualisation and 3D printing is also demonstrated. This is the first study to statistically explore simulated real-world knife marks imaged by micro-CT to demonstrate the potential of quantitative approaches in knife mark analysis. Findings and methods presented in this study are relevant to both forensic toolmark researchers as well as practitioners. Limitations of the experimental methodologies and imaging techniques are discussed, and further work is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Using Q-Chem on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    initio quantum chemistry package with special strengths in excited state methods, non-adiabatic coupling , solvation models, explicitly correlated wavefunction methods, and cutting-edge DFT. Running Q-Chem on

  11. Technologies Taking Us There

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotrell, Jason; Veers, Paul

    2015-09-29

    Keynote presentation at the Iowa State Wind Energy Symposium. This presentation examines several cutting-edge technologies and research being performed by the National Renewable Energy Laboratory that is helping achieve the U.S. Department of Energy's Wind Vision.

  12. Research Publications.

    ERIC Educational Resources Information Center

    Yarbrough, Cornelia, Comp.

    1994-01-01

    Asserts that research can provide a cutting edge for the profession and essential information for teachers as they plan new instructional strategies, evaluation techniques, and advocacy efforts. Presents an annotated bibliography of 17 items related to music education research. (ACM)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Lightweight Materials research and development (R&D) area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing lightweight materials for passenger and commercial vehicles.

  14. ENVIRONMENTAL STATISTICS INITIATIVE

    EPA Science Inventory

    EPA's Center of Excellence (COE) for Environmental Computational Science is intended to integrate cutting-edge science and emerging information technology (IT) solutions for input to the decision-making process. Complementing the research goals of EPA's COE, the NERL has initiat...

  15. LDSD Test Device Arrives in Hawaii

    NASA Image and Video Library

    2014-05-28

    Engineers unload ground support equipment for a June engineering test flight above Kauai, Hawaii. The test flight is part of NASA LDSD project, which is investigating cutting-edge landing technologies that could fly on future Mars missions.

  16. 50 CFR 635.20 - Size limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... forward edge of the cut. (d) Billfish. (1) No person shall take, retain or possess a blue marlin taken... remain in effect through the end of the applicable fishing year or until otherwise adjusted. (e) Sharks...

  17. 50 CFR 635.20 - Size limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... forward edge of the cut. (d) Billfish. (1) No person shall take, retain or possess a blue marlin taken... remain in effect through the end of the applicable fishing year or until otherwise adjusted. (e) Sharks...

  18. Small arms ammunition

    DOEpatents

    Huerta, Joseph

    1992-01-01

    An elongate projectile for small arms use has a single unitary mass with a hollow nose cavity defined by a sharp rigid cutting edge adapted to make initial contact with the target surface and cut therethrough. The projectile then enters the target mass in an unstable flight mode. The projectile base is substantially solid such that the nose cavity, while relatively deep, does not extend entirely through the base and the projectile center of gravity is aft of its geometric center.

  19. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  20. Infrastructure for the life sciences: design and implementation of the UniProt website.

    PubMed

    Jain, Eric; Bairoch, Amos; Duvaud, Severine; Phan, Isabelle; Redaschi, Nicole; Suzek, Baris E; Martin, Maria J; McGarvey, Peter; Gasteiger, Elisabeth

    2009-05-08

    The UniProt consortium was formed in 2002 by groups from the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) at Georgetown University, and soon afterwards the website http://www.uniprot.org was set up as a central entry point to UniProt resources. Requests to this address were redirected to one of the three organisations' websites. While these sites shared a set of static pages with general information about UniProt, their pages for searching and viewing data were different. To provide users with a consistent view and to cut the cost of maintaining three separate sites, the consortium decided to develop a common website for UniProt. Following several years of intense development and a year of public beta testing, the http://www.uniprot.org domain was switched to the newly developed site described in this paper in July 2008. The UniProt consortium is the main provider of protein sequence and annotation data for much of the life sciences community. The http://www.uniprot.org website is the primary access point to this data and to documentation and basic tools for the data. These tools include full text and field-based text search, similarity search, multiple sequence alignment, batch retrieval and database identifier mapping. This paper discusses the design and implementation of the new website, which was released in July 2008, and shows how it improves data access for users with different levels of experience, as well as to machines for programmatic access.http://www.uniprot.org/ is open for both academic and commercial use. The site was built with open source tools and libraries. Feedback is very welcome and should be sent to help@uniprot.org. The new UniProt website makes accessing and understanding UniProt easier than ever. The two main lessons learned are that getting the basics right for such a data provider website has huge benefits, but is not trivial and easy to underestimate, and that there is no substitute for using empirical data throughout the development process to decide on what is and what is not working for your users.

  1. Expanding the Use of Time/Frequency Difference of Arrival Geolocation in the Department of Defense

    DTIC Science & Technology

    2012-01-01

    next decade. Military acquisition and research , development, test , and evaluation will likely be the hardest hit by spending cuts (Eaglen and Nguyen...Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law...Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint

  2. Variable diameter CO2 laser ring-cutting system adapted to a zoom microscope for applications on polymer tapes.

    PubMed

    Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert

    2016-11-20

    This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.

  3. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with campus career centers, incorporate career advising and mentoring throughout the degree program, and recognize that co-curricular experiences are also important avenues through which students can also develop as professionals. Graduate students and post-doctoral fellows have many questions about academic jobs and the academic job search process and many are uncertain about the nature of academic positions at different kinds of educational institutions (two-year colleges, primarily undergraduate institutions, and research universities). On the Cutting Edge workshops and webinars provide insights into academic careers in different institutional settings, various teaching strategies and course design, strategies for moving research forward, effective teaching and research statements, the job search process, and negotiation. The website provides resources on these topics as well as others and includes screen casts of the webinar sessions, making these resources available to all.

  4. Teaching Service Learning in the Geosciences: An On the Cutting Edge Workshop Report

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; Laine, E. P.; Mogk, D. W.; O'Connell, S.; Kirk, K. B.

    2010-12-01

    Service learning is an instructional method that combines community service and academic instruction within the context of an established academic course. It is a particularly effective approach that uses active and experiential learning to develop the academic skills required of a course of study and to simultaneously address authentic community needs. Service learning projects can energize and motivate students by engaging a sense of civic responsibility by working in concert with community partners. The geosciences provide abundant opportunities to develop service learning projects on topics related to natural hazards, resources, land use, water quality, community planning, public policy, and education (K-12 and public outreach). To explore the opportunities of teaching service learning in the geosciences, the On the Cutting Edge program convened an online workshop in February 2010. The goals of the workshop were to: 1) introduce the principles and practices of effective service learning instructional activities; 2) provide examples of successful service learning projects and practical advice about "what works;" 3) provide participants with the opportunity to design, develop, and refine their own service learning courses or projects; 4) develop collections of supporting resources related to the pedagogy of service learning; and 5) support a community of scholars interested in continued work on service learning in the geoscience curriculum. The workshop consisted of a series of web-based synchronous and asynchronous sessions, including presentations from experienced practitioners of service learning, panel discussions, threaded discussions, and editable web pages used to develop new material for the website. Time was also provided for small group and individual work and for participants to peer-review each others' service learning projects and to revise their own activities based on reviewer comments. Insights from the workshop were integrated into new web pages that can help others implement service learning projects in their own institutions and communities. Online resources developed by the workshop participants, conveners, and supporting staff include an assemblage of online and print resources, a searchable collection of peer-reviewed examples of service learning projects, a tutorial on using the "8-Block Model" to design and implement a service learning project, tips on finding service learning partners, advice on motivating students, departments and the community, and example assessment instruments. Faculty are encouraged to submit their own examples of additional service learning projects in the geosciences. The entire workshop program, resources and activities are available online at: http://serc.carleton.edu/NAGTWorkshops/servicelearning/index.html

  5. Tool wear analysis during duplex stainless steel trochoidal milling

    NASA Astrophysics Data System (ADS)

    Amaro, Paulo; Ferreira, Pedro; Simões, Fernando

    2018-05-01

    In this study a tool with interchangeable inserts of sintered carbides coated with AlTiN were used to mill a duplex stainless steel with trochoidal strategies. Cutting speed range from 120 to 300 m/min were used and t he evaluation of tool deterioration and tool life was made according international standard ISO 8688-1. It was observed a progressive development of a flank wear and a cumulative cyclic process of localized adhesion of the chip to the cutting edge, followed by chipping, loss of the coating and substrate exposure. The tool life reached a maximum of 35 min. for cutting speed of 120 m/min. However, it was possible to maintain a tool life of 20-25 minutes when the cutting speed was increased up to 240 m/min.

  6. Green Turning of FCD 700 Ductile Cast Iron Using Coated Carbide Tool

    NASA Astrophysics Data System (ADS)

    Rodzi, Mohd Nor Azmi Mohd; Ghani, Jaharah A.; Eghawail, A. M.; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che

    2010-10-01

    This paper presents the performance of carbide coated cutting insert in turning FCD700 ductile cast iron in various dry machining conditions (without air, using air and chilled air). The turning parameters studied were, cutting speed of 120 m/min., feed rate of 0.15 mm/rev-0.4 mm/rev, and depth of cut of 0.6 mm-1.0 mm. The results show that the tool life was significantly controlled by the type of air coolant used, whereas the cutting force and surface roughness were not influenced by these coolants. Chilled air was found to be significantly improved the tool life by about 30% and 40% respectively when compared with normal air and without air conditions. The wear mechanism was predominantly controlled by the flank and crater wears on the flank and rake faces respectively. Due to the low cutting speed used in the experiment, both flank and crater wears were uniformly formed along the cutting edge and no catastrophic failure was observed under the scanning electron microscope (SEM).

  7. Cutting roller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, G.; Weikert, N.B.

    1984-05-29

    A cutting roller for a mining machine, having a substantially conical closure member arranged to face the workings and a tubular body member which has a larger diameter at the end nearer the face working face than at the discharge end. The tubular member carries at least one cutting blade, and the closure member mounts at least one cutting blade; each blade is provided at its edge region with a plurality of bit holders for the attachment of cutter bits. The outer surface of the body member merges into the substantially conical closure member in a smooth, even curve, somore » that the outside diameter of the body member in the region of the working face is substantially greater than the diameter in the region of the discharge end of the cutting roller. The roller is provided with liquid distribution channels on each cutting blade, which channels are connected to a single liquid distribution ring channel in the region of the substantially conical closure member.« less

  8. Infectious Agents and Cancer Epidemiology Research Webinar Series

    Cancer.gov

    Infectious Agents and Cancer Epidemiology Research Webinar Series highlights emerging and cutting-edge research related to infection-associated cancers, shares scientific knowledge about technologies and methods, and fosters cross-disciplinary discussions on infectious agents and cancer epidemiology.

  9. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…

  10. CSE - International Workshop on Photon Tools for Combustion and Energy

    Science.gov Websites

    participants. A defining feature of the workshops is the promotion of free discussion about cutting edge and ; particle formation; sprays and applications of new technologies, e.g. free-electron laser sources

  11. A sharp knife for high temperatures

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1978-01-01

    Electrically heated nickel-chrome-steel alloy knife may be used to cut heat resistant plastic felt and similar materials with relative ease. Blade made of commercially available alloy RA 330 retains edge at temperatures as high as 927 C.

  12. Edge Supports for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Maloney, T. J.

    1984-01-01

    Mounting strips patterned after glazing gaskets. Easy to install supports for rooftop solar modules consist of extruded rubber mullions with locking zippers. Supports cut to length with utility knife and installed without special tools. Adaptable to many different roof configurations.

  13. 3 CFR 8807 - Proclamation 8807 of May 1, 2012. National Building Safety Month, 2012

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and standards, they help save lives and prevent disruption in the wake of disaster. Resilient..., withstand, and recover from disasters. We are drawing upon cutting edge science and technology to establish...

  14. Solving Graph Laplacian Systems Through Recursive Bisections and Two-Grid Preconditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Colin; Vassilevski, Panayot S.

    2016-02-18

    We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge cuts, our method decomposes a graph Laplacian in time O(n log n), and then uses that decomposition to perform a linear solve in time O(n log n). We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property. Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner's weaknesses. Wemore » present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.« less

  15. Rupture disc

    DOEpatents

    Newton, Robert G.

    1977-01-01

    The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.

  16. Hidden dental diversity in the oldest terrestrial apex predator Dimetrodon.

    PubMed

    Brink, Kirstin S; Reisz, Robert R

    2014-01-01

    Paleozoic sphenacodontid synapsids are the oldest known fully terrestrial apex predators. Dimetrodon and other sphenacodontids are the first terrestrial vertebrates to have strong heterodonty, massive skulls and well-developed labio-lingually compressed and recurved teeth with mesial and distal cutting edges (carinae). Here we reveal that the dentition of Dimetrodon and other sphenacodontids is diverse. Tooth morphology includes simple carinae with smooth cutting edges and elaborate enamel features, including the first occurrence of cusps and true denticles (ziphodonty) in the fossil record. A time-calibrated phylogenetic analysis indicates that changes in dental morphology occur in the absence of any significant changes in skull morphology, suggesting that the morphological change is associated with changes in feeding style and trophic interactions in these ecosystems. In addition, the available evidence indicates that ziphodonty evolved for the first time in the largest known species of the genus Dimetrodon and independently from the ziphodont teeth observed in some therapsids.

  17. Cultural Resources Survey of Mobile Harbor, Alabama.

    DTIC Science & Technology

    1983-01-01

    improvement from the point of view of supply and communication with other European settlements, since it cut the lightering distance to the capital in half...order to cut the costs of building (Bathe 1978:08.00-02; Millar 1978:15-29). 32 6e The sharing of ship builders, the borrowing of vessel lines and the... Eslava Street Mobile. Burned to water’s edge during overhaul. Notes: Served as HINGHAM in Boston Harbor; served as ORIENT in Long Island Sound. Operated

  18. 11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING NORTH. THE HYDRO PLANT CENTER SITS ON THE EDGE OF RAVINE WHICH IS ACTUALLY THE BEGINNING OF THE GRAND CANAL. THE CROSS-CUT STEAM PLANT IS THE LARGE WHITE BUILDING JUST WEST OF THE HYDRO PLANT, WITH THE TRANSMISSION SWITCHYARD IN BETWEEN. THE OTHER BUILDINGS ARE SALT RIVER PROJECT FABRICATION AND EQUIPMENT SHOPS Photographer unknown, August 22, 1958 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  19. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer.

    PubMed

    Choi, Woong Kirl; Baek, Seung Yub

    2015-09-22

    In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond's extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer-platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged by the grinding process will be increased. Despite the etching method requiring more procedures to remove the Pt coating layer after FIB milling, it is a feasible method for diamond tools with under 500 nm width.

  20. Intensive Survey at 11-Jd-126, Jo Daviess County, Illinois. Volume 1.

    DTIC Science & Technology

    1983-07-01

    out. The joints between the roofing is also plastered; carefully covered about a foot thick with grass which we cut with our . knives, & four or...plaster had been pushed or smeared up against the walls or joints provide opportunities to reconstruct the diameter of the lath or withes in ,-any...of the sherds has one fairly complete edge and a small fracture on the opposing side from the opposite edge (see Figure 56), one can estimate an

  1. Hot compression process for making edge seals for fuel cells

    DOEpatents

    Dunyak, Thomas J.; Granata, Jr., Samuel J.

    1994-01-01

    A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.

  2. Website Resources and Support for Two-Year College Geoscience Educators

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Macdonald, H.; Blodgett, R. H.; Manduca, C. A.; Maier, M.

    2011-12-01

    Geoscience faculty at two-year colleges (2YC) face a number of challenges, from the wide diversity of the student population to being isolated from other geoscience faculty. Several projects have developed web resources that address some of these issues by providing professional development, teaching materials, and opportunities to connect with their colleagues at other institutions. The Role of Two-Year Colleges in Geoscience Education and in Broadening Participation in the Geosciences project brought together 2YC faculty from across the country for a planning workshop to discuss these issues and propose strategies and mechanisms to strengthen the 2YC geoscience education community (http://serc.carleton.edu/geo2yc/index.html). The website now hosts more than 30 essays on the state of 2YC education, teaching activities, and course descriptions submitted by 2YC faculty as well as an email discussion list and other ways of networking and discussing important. One outcome of this work is that the National Association of Geoscience Teachers has created a division for 2YC faculty so that members can network with each other and discuss solutions to pressing issues. (http://nagt.org/nagt/divisions/2yc/index.html) The On the Cutting Edge program has an array of professional development resources available (http://serc.carleton.edu/NAGTWorkshops/). Over its decade of work, the program has developed resources on topics of interest to 2YC faculty including: teaching introductory courses, the affective domain, teaching with data, metacognition, online courses, teaching about hazards, and many others. There are also extensive collections of teaching activities and visualizations. In addition, the program continues to hold face-to-face and virtual professional development workshops and webinars that are accessible to 2YC faculty and can help them feel less isolated The Starting Point: Teaching Introductory Geoscience (http://serc.carleton.edu/introgeo) website is specifically aimed at all those teaching introductory classes, including two-year college faculty. This website includes information about a variety of teaching strategies (e.g., lecture tutorials, service learning, just-in-time teaching) and a set of geoscience teaching examples. This is valuable for faculty interested in new approaches to teaching or who want to see examples of activities they can adopt or adapt. The interdisciplinary project Two-year College Outreach Across the Disciplines (http://serc.carleton.edu/econ/2yc/disciplines/index.html) summarizes best practices in nine disciplines, including the geosciences. At a 2011 workshop, sponsored by Economics at Community Colleges, faculty compared notes on what has worked and what hasn't in terms of strengthening disciplinary and interdisciplinary education at 2YCs. (http://serc.carleton.edu/econ/2yc/index.html) These and other projects have developed resources for supporting and enhancing the efforts of two-year college faculty in the geosciences. A variety of these materials is available via the Teach the Earth portal at http://serc.carleton.edu/teachearth/.

  3. EPA Science Matters Newsletter: Volume 2, Number 4

    EPA Pesticide Factsheets

    While continuing to advance the kinds of cutting edge research efforts that are the hallmark of EPA, we also are taking ambitious steps to ensure that we are as effective as we can be for the American people.

  4. Wyoming Department of Transportation (WYDOT) road condition reporting application for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2015-10-01

    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...

  5. Thermal Imaging in the Science Classroom

    ERIC Educational Resources Information Center

    Short, Daniel B.

    2012-01-01

    Thermal cameras are useful tools for use in scientific investigation and for teaching scientific concepts to students in the classroom. Demonstrations of scientific phenomena can be greatly enhanced visually by the use of this cutting-edge technology. (Contains 7 figures.)

  6. Applications of Proteomic Technologies to Toxicology

    EPA Science Inventory

    Proteomics is the large-scale study of gene expression at the protein level. This cutting edge technology has been extensively applied to toxicology research recently. The up-to-date development of proteomics has presented the toxicology community with an unprecedented opportunit...

  7. Michigan Department of Transportation (MDOT) weather responsive traveler information (Wx-TINFO) system implementation project.

    DOT National Transportation Integrated Search

    2016-01-01

    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...

  8. South Dakota Department of Transportation (SDDOT) regional traveler information system for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2015-11-01

    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...

  9. EPA Science Matters Newsletter: Volume 2, Number 4

    EPA Pesticide Factsheets

    2017-02-14

    While continuing to advance the kinds of cutting edge research efforts that are the hallmark of EPA, we also are taking ambitious steps to ensure that we are as effective as we can be for the American people.

  10. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  11. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  12. Ratio of Cut Surface Area to Leaf Sample Volume for Water Potential Measurements by Thermocouple Psychrometers

    PubMed Central

    Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.

    1984-01-01

    Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578

  13. Accidental cut-throat injuries from the broken windshield of an auto rickshaw: Two unusual cases.

    PubMed

    Swain, Rajanikanta; Dhaka, Shivani; Sharma, Munish; Bakshi, Mantaran Singh; Murty, O P; Sikary, Asit Kumar

    2018-01-01

    Accidental cut-throat injuries are extremely rare and usually involve a sharp-edged weapon. In this paper, two cases of a cut-throat wound to two auto-rickshaw drivers are presented where the broken windshield of the auto-rickshaws was responsible for the wounds. In both the cases, fatal incised wounds were present over the neck, cutting the soft tissue along with the major vessels. The death occurred due to exsanguination caused by neck-vessel injury in one case and trachea along with neck-vessel injury in the second case. Although the wounds on the neck initially suggested homicide, they were found to have occurred accidentally as a result of a road traffic accident involving a head-on collision of auto rickshaws. The injuries were inflicted by the shattered glass of the windshield.

  14. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOEpatents

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  15. Global Oncology; Harvard Global Health Catalyst summit lecture notes

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Nguyen, Paul

    2017-08-01

    The material presented in this book is at the cutting-edge of global oncology and provides highly illuminating examples, addresses frequently asked questions, and provides information and a reference for future work in global oncology care, research, education, and outreach.

  16. Cutting-edge technologies: GPS/Satellite communications-based tracking

    USDA-ARS?s Scientific Manuscript database

    Despite wide-spread adoption of GPS and satellite-communication technologies within the freight and transportation industries, commercially-available telemetry tracking systems have not kept pace with the evolving demands of ecological research. Commercial GPS tracking collars are costly ($1,500 to...

  17. Investigate plow blade optimization.

    DOT National Transportation Integrated Search

    2015-08-01

    The main technique for removing accumulated snow from roadways is through the use of snow plows and snow plow : blades (blades), or cutting edges. The blade is bolted to the snow plow, and it is the component of the plowing system that : makes contac...

  18. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  19. Development of a computer controlled underbody plow.

    DOT National Transportation Integrated Search

    2007-01-01

    Underbody plows can be very useful tools in winter maintenance, especially when compacted snow or hard ice must be removed from the roadway. By the application of significant down-force, and the use of an appropriate cutting edge angle, compacted sno...

  20. No Limit: Exploring the Science of the Universe

    ScienceCinema

    Meinecke, Jena; Remington, Bruce; Zylstra, Alex; Falcone, Roger; Rinderknecht, Hans; Casner, Alexis

    2018-06-13

    Scientists who conduct unique, cutting-edge Discovery Science experiments on Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) describe the excitement of doing research on the world’s largest and highest-energy laser system.

  1. Argonne News Brief: Cutting-Edge Science Makes 3D Printing More Efficient and Reliable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Argonne National Laboratory researchers are gaining a deeper understanding of the 3D printing process, and as a result, they are helping industries quickly and economically manufacture 3D-printed products that are truly reliable.

  2. EPA's Research at the Cutting Edge of Exposure Science

    EPA Science Inventory

    EPA’s National Exposure Research Laboratory (NERL) serves as the lead for exposure science across U.S. Federal agencies. Exposure science has gained importance with increased appreciation of environmental influences on population disease burden. At a time when population ...

  3. Big Physics at Small Places: The Mongol Horde Model of Undergraduate Research

    ERIC Educational Resources Information Center

    Voss, Philip J.; Finck, Joseph E.; Howes, Ruth H.; Brown, James; Baumann, Thomas; Schiller, Andreas; Thoennessen, Michael; DeYoung, Paul A.; Peaslee, Graham F.; Hinnefeld, Jerry; Luther, Bryan; Pancella, Paul V.; Rogers, Warren F.

    2008-01-01

    A model for engaging undergraduates in cutting-edge experimental nuclear physics research at a national user facility is discussed. Methods to involve students and examples of their success are presented. (Contains 2 figures and 3 tables.)

  4. 3 CFR 8466 - Proclamation 8466 of December 16, 2009. Wright Brothers Day, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... In these challenging times, the story of Orville and Wilbur Wright reminds us of what can be... future powered by cutting-edge ideas and new technologies, we celebrate this day by looking back to the...

  5. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M; Woo, B; Kim, J

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automaticallymore » from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI.« less

  6. Observations of Undergraduate Geoscience Instruction in the US: Measuring Student Centered Teaching

    NASA Astrophysics Data System (ADS)

    Teasdale, R.; Manduca, C. A.; Mcconnell, D. A.; Bartley, J. K.; Bruckner, M. Z.; Farthing, D.; Iverson, E. A. R.; Viskupic, K. M.

    2014-12-01

    The Reformed Teaching Observation Protocol (RTOP; Swada, et al., 2002) has been used by a trained team of On the Cutting Edge (CE) observers to characterize the degree of student-centered teaching in US college and university geoscience classrooms. Total RTOP scores are derived from scores on 25 rubric items used to characterize teaching practices in categories of lesson design, content delivery, student-instructor and student-student interactions. More than 200 classroom observations have been completed by the RTOP team in undergraduate courses at a variety of US institution types (e.g., community colleges, research universities). A balanced mix of early career, mid-career, and veteran faculty are included, and the study examines class sizes ranging from small (<30) to large (>80 students). Observations are limited to one class session and do not include laboratories or field activities. Data include RTOP scores determined by a trained observer during the classroom observation and an online survey in which the observed instructors report on their teaching practices. RTOP scores indicate that the observed geoscience classes feature varying degrees of student-centered teaching, with 30% of observed classes categorized as teacher-centered (RTOP scores ≤30), 45% of observed classes categorized as transitional classrooms (RTOP scores 31-49) and 25% are student-centered (RTOP scores ≥ 50). Instructor self-report survey data and RTOP scores indicate that geoscience faculty who have participated in one or more CE professional development event and use the CE website have an average RTOP score of 49, which is significantly higher (> 15 points) than the average score of faculty who have not participated in CE events and have not used the website. Approximately 60% of student-centered classes (those with high RTOP scores) use some traditional lecture nearly every day, but are also are likely to include an in-class activity or group discussion (e.g. Think-Pair-Share). More than 50% of instructors in student-centered classes report spending 30% or less of their class time on such activities (e.g. ≤ 15 minutes of a 50 minute class period), indicating that a relatively small investment can yield important impacts in engaging undergraduate geoscience students.

  7. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-04-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  8. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    PubMed

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  9. Plywood Inlays Thourgh CO2 Laser Cutting

    NASA Astrophysics Data System (ADS)

    Pires, Margarida C.; Araujo, J. L.; Teixeira, M. Ribau; Rodrigues, F. Carvalho

    1989-07-01

    Furniture with inlays is rather expensive. This is so on two accounts: Firstly, furniture with inlays is generally manufactured with solid wood.Secondly,wood carving and figure cutting are both time consuming and they produce a high rate of rejections. To add to it all the cutting and carving of minute figures requires an outstanding craftmanship. In fact the craftman is in most instance the artist and also the manufacturer. While desiring that the high artistic level is maintained in the industry the search for new method to produce inlays for furniture in not son expensive materials and to produce them in a repetitive and flexible way laser cutting of plywood was found to be quite suitable. This paper presents the charts for CO2 laser cutting of both positive and negatives in several types of plywood. The main problem is not so much the cutting of the positive and negatives pieces but to be able to cut the piece in a way that the fitting is done without any problems caused by the ever present charring effect, which takes palce at the edges of the cut pieces. To minimise this aspect positive and negative pieces have to be cut under stringent focusing conditions and with slight different scales. The condittions for our machine are presented.

  10. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles

    PubMed Central

    Iwema, Carrie L.; LaDue, John; Zack, Angela; Chattopadhyay, Ansuman

    2016-01-01

    The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1) to make their research immediately and freely available and (2) to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint. PMID:27508060

  11. SSC San Diego Brief 2002

    DTIC Science & Technology

    2002-01-01

    information dominance . We are at the cutting edge of the processes of transforming data into information, information into knowledge, and knowledge into...solutions for warrior information dominance . We intend to continue and expand SSC San Diego’s leadership in defining, developing, integrating, installing, and

  12. High Performance Computing and Cutting-Edge Analysis Can Open New

    Science.gov Websites

    Realms March 1, 2018 Two people looking at a 3D interactive graphical data the Visualization Center in capabilities to visualize complex, 3D images of the wakes from multiple wind turbines so that we can better

  13. On the Cutting Edge with Gene Splicing.

    ERIC Educational Resources Information Center

    Ehrman, Patrick; Fritz, Lucie

    1989-01-01

    Describes a program in which second-year biology students use plasmid isolation to remove DNA from Escherichia coli bacteria and subsequently ligate and transform it into other E. coli bacteria. Cites ways teachers can get involved in current research that allows student participation. (RT)

  14. CIDR

    Science.gov Websites

    quality, cutting-edge genomic services and technologies in order to expand our understanding of disease high quality next generation sequencing and genotyping services to investigators working to discover issues as they relate to study design, data production and quality control. Completed studies encompass

  15. Be an Alumni Relations Revolutionary.

    ERIC Educational Resources Information Center

    Bickel, Kathy

    2000-01-01

    Presents marketing guru Guy Kawasaki's seven rules for revolutionaries, and examples of alumni relations innovators who are implementing change with cutting-edge programs, services, and business practices. Rules include: "jump curves" (look for new paths); "break down barriers" (challenge roadblocks of ignorance and inertia);…

  16. On the Cutting Edge: Movements and Institutional Examples of Technological Disruption

    ERIC Educational Resources Information Center

    Leon, Marjorie Roth; Price, Todd Alan

    2016-01-01

    This chapter describes technological disruptions in higher education that pose challenges and offer opportunities to college and university students, faculty, and administrators. It provides examples of innovative responses being explored by 2-year and 4-year higher education institutions.

  17. Riding the Cutting Edge

    ERIC Educational Resources Information Center

    Freit-Hammes, Lori

    2007-01-01

    When Western Wisconsin Technical College created the Health Benefits Improvement Team, they had no experience with the complexity and ever-changing demands of health care and its associated costs. See how they've embraced their mission and are changing the way business is done in their community.

  18. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) Presentation for APHL

    EPA Science Inventory

    The US Environmental Protection Agency’s Office of Research and Development (ORD) conducts cutting-edge research that provides the underpinning of science and technology for public health and environmental policies and decisions made by federal, state and other governmental...

  19. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New leadership for the national security community by delivering cutting-edge experimental and operational sensor

  20. Advanced Space Flight and Environmental Concerns

    NASA Technical Reports Server (NTRS)

    Whitaker, A.

    2001-01-01

    The aerospace industry has conquered numerous environmental challenges during the last decade. The aerospace industry of today has evolved due in part to the environmental challenges, becoming stronger, more robust, learning to push the limits of technology, materials and manufacturing, and performing cutting edge engineering.

  1. 3 CFR 8711 - Proclamation 8711 of September 12, 2011. National Health Information Technology Week, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... economy forward and improved the lives of our people, from the industrial innovations of the nineteenth century to today’s cutting-edge science. Progress in our Nation’s health care system is no different, and...

  2. WORKSHOP ON MINING IMPACTED NATIVE AMERICAN LANDS CD

    EPA Science Inventory

    Multimedia Technology is an exciting mix of cutting-edge Information Technologies that utilize a variety of interactive structures, digital video and audio technologies, 3-D animation, high-end graphics, and peer-reviewed content that are then combined in a variety of user-friend...

  3. Habitat edge, land management, and rates of brood parasitism in tallgrass prairie.

    PubMed

    Patten, Michael A; Shochat, Eyal; Reinking, Dan L; Wolfe, Donald H; Sherrod, Steve K

    2006-04-01

    Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts, in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.

  4. Design and Fabrication of Automatic Glass Cutting Machine

    NASA Astrophysics Data System (ADS)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  5. Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo.

    PubMed

    Scheiding, Sebastian; Yi, Allen Y; Gebhardt, Andreas; Li, Lei; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2011-11-21

    We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described. © 2011 Optical Society of America

  6. Assessment of penetrating thermal tissue damage/spread associated with PhotonBlade™, Valleylab™ Pencil, Valleylab™ EDGE™ Coated Pencil, PlasmaBlade® 3.0S and PlasmaBlade® 4.0 for intraoperative tissue dissection using the fresh extirpated porcine muscle model

    NASA Astrophysics Data System (ADS)

    Bennett, Haydon E.; Taylor, Scott D.; Fugett, James H.; Shrout, Joshua L.; Davison, Paul O.; Ryan, S. Eric; Coad, James E.

    2017-02-01

    Penetrating thermal tissue damage/spread is an important aspect of many electrosurgical devices and correlates with effective tissue cutting, hemostasis, preservation of adjacent critical structures and tissue healing. This study compared the thermal damage/spread associated with the PhotonBlade, Valleylab Pencil, Valleylab EDGE Coated Pencil, PlasmaBlade 3.0S and PlasmaBlade 4.0, when performing a single pass dynamic tissue cut in fresh extirpated porcine longissimus muscle. These devices were used in a fashion that emulated their use in the clinical setting. Each device's thermal damage/spread, at Minimum, Median and Maximum power input settings, was assessed with nitroblue tetrazolium viability staining in the WVU Pathology Laboratory for Translational Medicine. The thermal damage/spread associated with the PhotonBlade was compared with the other devices tested based on the individual treatment results (n=179 cuts combined). In summary, the PhotonBlade overall demonstrated the least penetrating thermal tissue damage/spread, followed by the PlasmaBlade 4.0, then Valleylab Pencil and PlasmaBlade 3.0S and then Valleylab EDGE Coated Pencil in order of increasing thermal damage/spread depths.

  7. An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks

    NASA Astrophysics Data System (ADS)

    Xu, Jinyang; El Mansori, Mohamed

    2016-10-01

    Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.

  8. Development of AISI 316L stainless steel coronary stent

    NASA Astrophysics Data System (ADS)

    García-López, Erika; Siller, Héctor R.; Rodríguez, Ciro A.

    2018-02-01

    Coronary stents are manufactured through a sequence of processes and each step demands the process control to assure surface quality. This study is focused on the influence of laser cutting parameters and electropolishing on average surface roughness and back wall dross percentage for fiber laser cutting of AISI 316L coronary struts. A preliminary test and a design of experiments (DOE) were implemented to determine the limiting cutting conditions and the effect of these parameters on quality indicators. Preliminary results identify four cutting zones from a non-cut zone to a burned zone, in a frequency range between 1000 and 1500 Hz and a peak power between 160 to 180 W for clean cuts. From the DOE results, several interactions between factors were observed; however, a laser frequency of 1000 to 1500 Hz and a cutting speed of 250 mm/min minimize the backwall dross percentage and the surface roughness to values less than 2% and 0.9 μm, respectively. After the laser conditions selection, coronary stents were manufactured and electropolished to reduce the surface roughness on the strut edge. Electropolishing results indicate a surface roughness reduction from 0.9 μm to 0.3 μm after 300 s of electropolishing time.

  9. Root dentine and endodontic instrumentation: cutting edge microscopic imaging

    PubMed Central

    2016-01-01

    Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation—by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments. PMID:27274802

  10. Root dentine and endodontic instrumentation: cutting edge microscopic imaging.

    PubMed

    Atmeh, Amre R; Watson, Timothy F

    2016-06-06

    Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation-by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments.

  11. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance ormore » species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.« less

  12. Detecting trends in academic research from a citation network using network representation learning

    PubMed Central

    Mori, Junichiro; Ochi, Masanao; Sakata, Ichiro

    2018-01-01

    Several network features and information retrieval methods have been proposed to elucidate the structure of citation networks and to detect important nodes. However, it is difficult to retrieve information related to trends in an academic field and to detect cutting-edge areas from the citation network. In this paper, we propose a novel framework that detects the trend as the growth direction of a citation network using network representation learning(NRL). We presume that the linear growth of citation network in latent space obtained by NRL is the result of the iterative edge additional process of a citation network. On APS datasets and papers of some domains of the Web of Science, we confirm the existence of trends by observing that an academic field grows in a specific direction linearly in latent space. Next, we calculate each node’s degree of trend-following as an indicator called the intrinsic publication year (IPY). As a result, there is a correlation between the indicator and the number of future citations. Furthermore, a word frequently used in the abstracts of cutting-edge papers (high-IPY paper) is likely to be used often in future publications. These results confirm the validity of the detected trend for predicting citation network growth. PMID:29782521

  13. Cycle/Cocycle Oblique Projections on Oriented Graphs

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo

    2015-01-01

    It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.

  14. Thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-03-01

    This report describes work to advance the manufacturing line capabilities in crystal growth and laser cutting of Mobil Solar's unique edge-defined film-fed growth (EFG) octagon technology and to reduce the manufacturing costs of 10 cm x 10 cm polycrystalline silicon EFG wafers. The report summarizes the significant technical improvements in EFG technology achieved in the first 6 months of the PVMaT Phase 2 and the success in meeting program milestones. Technical results are reported for each of the three main pregrain areas: Task 5 -- Thin octagon growth (crystal growth) to reduce the thickness of the octagon to 200 microns; Task 6 -- Laser cutting-to improve the laser cutting process so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and Task 7 -- Process control and product specification to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  15. Simulation of dynamic processes when machining transition surfaces of stepped shafts

    NASA Astrophysics Data System (ADS)

    Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.

    2018-03-01

    The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.

  16. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  17. Beaming Your School into the 21st Century.

    ERIC Educational Resources Information Center

    Pfeifer, R. Scott; Robb, Rick

    2001-01-01

    Mindsurf Networks--a partnership involving a suburban Baltimore high school, Sylvan Ventures, and Aether Systems--provides a cutting-edge, reasonably priced, networked mobile computing platform for learning. Handheld computers help students solve problems and beam information to teachers and each other. Partnership initiation strategies for…

  18. Using Interactive Science Notebooks for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Chesbro, Robert

    2006-01-01

    The interactive science notebook (ISN) is a perfect opportunity for science educators to encapsulate and promote the most cutting-edge constructivist teaching strategies while simultaneously addressing standards, differentiation of instruction, literacy development, and maintenance of an organized notebook as laboratory and field scientists do.…

  19. Inaugural Technology Showcase Aims to Increase Industry Partnerships and Commercialization of Cancer-Related Inventions | FNLCR Staging

    Cancer.gov

    Biotechnology stakeholders from across the region will have the opportunity to learn about cutting-edge technologies addressing urgent and intractable problems in cancer research at the 2017 Technology Showcase, to be held at the Frederick National

  20. Work with Us | Water Power | NREL

    Science.gov Websites

    the center's facilities and research and development capabilities. An aerial photo of buildings at the : Partner with us through technology partnership agreements. Participate in subcontracted water research through solicitations and requests for proposals. Use our cutting-edge research facilities to develop

  1. Immersive Technologies and Language Learning

    ERIC Educational Resources Information Center

    Blyth, Carl

    2018-01-01

    This article briefly traces the historical conceptualization of linguistic and cultural immersion through technological applications, from the early days of locally networked computers to the cutting-edge technologies known as virtual reality and augmented reality. Next, the article explores the challenges of immersive technologies for the field…

  2. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  3. EPA'S PARTNERSHIP WITH AWMA'S EM MAGAZINE: AN OUTREACH MODEL

    EPA Science Inventory

    EPA has many cutting edge research products that can help environmental professionals protect human health and the environment. However, these professionals can only use research tools of which they are aware. If research results are published yet not highlighted well to target a...

  4. Gender and Choice in Education and Occupation.

    ERIC Educational Resources Information Center

    Radford, John, Ed.

    Nine chapters present cutting-edge research on "brainsex" and its effects on personality, education, and choice. It targets concepts such as job attributes, work flexibility, long-term life planning, home-work conflict, prestige versus occupational interest, and intrinsic motivational mechanisms to explain the relative failure of…

  5. Future Directions in Distance Learning and Communication Technologies

    ERIC Educational Resources Information Center

    Shih, Timothy; Hung, Jason

    2007-01-01

    Future Directions in Distance Learning and Communication Technologies presents theoretical studies and practical solutions for engineers, educational professionals, and graduate students in the research areas of e-learning, distance education, and instructional design. This book provides readers with cutting-edge solutions and research directions…

  6. Digitizing and Securing Archived Laboratory Notebooks

    ERIC Educational Resources Information Center

    Caporizzo, Marilyn

    2008-01-01

    The Information Group at Millipore has been successfully using a digital rights management tool to secure the email distribution of archived laboratory notebooks. Millipore is a life science leader providing cutting-edge technologies, tools, and services for bioscience research and biopharmaceutical manufacturing. Consisting of four full-time…

  7. All Aboard! For a Lesson on Magnetic Levitated Trains.

    ERIC Educational Resources Information Center

    Moore, Virginia S.; Kaszas, William J.

    1995-01-01

    Presents an activity that explores the operation of Maglev trains. Demonstrates that elementary students can master cutting-edge technology through creating and racing magnetic vehicles on a specially designed track, researching the history of rail transportation, and exploring a current science issue. (NB)

  8. Trendspotting 2011

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses Connecticut Library Consortium's (CLC) recently held fifth annual Trendspotting symposium, "E-books: Collections at the Crossroads." She was pleased to work with CLC to develop a cutting-edge program of dynamic, thought-provoking speakers and presentations, including an outstanding keynote by Eli Neiburger on…

  9. Measuring the Value of AI in Space Science and Exploration

    NASA Astrophysics Data System (ADS)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  10. Inspiring Future Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  11. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  12. Skype Me! Astronomers, Students, and Cutting-Edge Research

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  13. Determination of functions of controlling drives of main executive mechanisms of mining excavators

    NASA Astrophysics Data System (ADS)

    Lagunova, Yu A.; Komissarov, A. P.; Lukashuk, O. A.

    2018-03-01

    It is shown that a special shovel is a feature of the structure of the drives of the main mechanisms (mechanisms of lifting and pressure) of career excavators with working equipment, the presence in the transfer device of a two-crank-lever mechanism of working equipment that connects the main mechanisms with the working body (bucket). In this case, the transformation of the mechanical energy parameters of the motors into energy-force parameters realized at the cutting edge of the bucket (teeth) takes place depending on the type of the kinematic scheme of the two-link-lever mechanism. The concept of “control function” defining the relationship between the parameters characterizing the position of the bucket in the face (the coordinates of the tip of the cutting edge of the bucket, the digging speed) and the required control level are introduced. These are the values of the lifting and head speeds ensuring the bucket movement along a given trajectory.

  14. Modeling the forces of cutting with scissors.

    PubMed

    Mahvash, Mohsen; Voo, Liming M; Kim, Diana; Jeung, Kristin; Wainer, Joshua; Okamura, Allison M

    2008-03-01

    Modeling forces applied to scissors during cutting of biological materials is useful for surgical simulation. Previous approaches to haptic display of scissor cutting are based on recording and replaying measured data. This paper presents an analytical model based on the concepts of contact mechanics and fracture mechanics to calculate forces applied to scissors during cutting of a slab of material. The model considers the process of cutting as a sequence of deformation and fracture phases. During deformation phases, forces applied to the scissors are calculated from a torque-angle response model synthesized from measurement data multiplied by a ratio that depends on the position of the cutting crack edge and the curve of the blades. Using the principle of conservation of energy, the forces of fracture are related to the fracture toughness of the material and the geometry of the blades of the scissors. The forces applied to scissors generally include high-frequency fluctuations. We show that the analytical model accurately predicts the average applied force. The cutting model is computationally efficient, so it can be used for real-time computations such as haptic rendering. Experimental results from cutting samples of paper, plastic, cloth, and chicken skin confirm the model, and the model is rendered in a haptic virtual environment.

  15. Controllable Edge Feature Sharpening for Dental Applications

    PubMed Central

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry. PMID:24741376

  16. Controllable edge feature sharpening for dental applications.

    PubMed

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  17. Laser cutting: influence on morphological and physicochemical properties of polyhydroxybutyrate.

    PubMed

    Lootz, D; Behrend, D; Kramer, S; Freier, T; Haubold, A; Benkiesser, G; Schmitz, K P; Becher, B

    2001-09-01

    Polyhydroxybutyrate (PHB) is a biocompatible and resorbable implant material. For these reasons, it has been used for the fabrication of temporary stents, bone plates, nails and screws (Peng et al. Biomaterials 1996;17:685). In some cases, the brittle mechanical properties of PHB homopolymer limit its application. A typical plasticizer, triethylcitrate (TEC), was used to overcome such limitations by making the material more pliable. In the past few years, CO2-laser cutting of PHB was used in the manufacturing of small medical devices such as stents. Embrittlement of plasticized PHB tubes has been observed, after laser machining. Consequently, the physicochemical and morphological properties of laser-processed surfaces and cut edges of plasticized polymer samples were examined to determine the extent of changes in polymer properties as a result of laser machining. These studies included determination of the depth of the laser-induced heat affected zone by polariscopy of thin polymer sections. Molecular weight changes and changes in the TEC content as a function of distance from the laser-cut edge were determined. In a preliminary test, the cellular response to the processed material was investigated by cell culture study of L929 mouse fibroblasts on laser-machined surfaces. The heat-affected zone was readily classified into four different regions with a total depth of about 60 to 100 microm (Klamp, Master Thesis, University of Rostock, 1998). These results correspond well with the chemical analysis and molecular weight measurements. Furthermore, it was found that cells grew preferentially on the laser-machined area. These findings have significant implications for the manufacture of medical implants from PHB by laser machining.

  18. Kirkwood Community College: A Leader in Turbulent Times

    ERIC Educational Resources Information Center

    Root, Cynthia

    2005-01-01

    With its global vision, community partners and cutting edge curriculum, Kirkwood Community College has become a leader in emergency preparedness and response training. The college is integrally involved with a variety of training consortia and entities including HMTRI (Hazardous Materials Training Research Institute), PETE (Partnership for…

  19. Investigation of pathogen infiltration into produce using Xradia Bio MicroCT

    USDA-ARS?s Scientific Manuscript database

    The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...

  20. Renewal through Lesson Study

    ERIC Educational Resources Information Center

    Ahearn, Sarah

    2011-01-01

    The author felt comfortably settled in her career. She had been teaching middle school science for seven years. She attended cutting-edge classes in college, received a master's degree in educational technology, earned a license in administration, and had attended a variety of classes and professional development workshops. Looking back, she…

  1. Think green.

    PubMed

    Serb, Chris

    2008-08-01

    Hospitals typically don't come to mind when you think about cutting-edge environmental programs, but that's changing. Rising energy costs, the need to replace older facilities, and a growing environmental consciousness have spurred hospitals nationwide to embrace a green ideology. The executive suite is a vocal and active player in these efforts.

  2. Cognitive Development: An Advanced Textbook

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.; Lamb, Michael E., Ed.

    2011-01-01

    This new text consists of parts of Bornstein and Lamb's Developmental Science, 6th edition along with new introductory material that as a whole provides a cutting edge and comprehensive overview of cognitive development. Each of the world-renowned contributors masterfully introduces the history and systems, methodologies, and measurement and…

  3. Organocatalyzed enantioselective desymmetrization of aziridines and epoxides

    PubMed Central

    2013-01-01

    Summary Enantioselective desymmetrization of meso-aziridines and meso-epoxides with various nucleophiles by organocatalysis has emerged as a cutting-edge approach in recent years. This review summarizes the origin and recent developments of enantioselective desymmetrization of meso-aziridines and meso-epoxides in the presence of organocatalysts. PMID:24062828

  4. Beginning Farmer Education in Iowa: Implications to Extension.

    ERIC Educational Resources Information Center

    Trede, Larry D.

    1998-01-01

    Responses from 138 of 286 beginning Iowa farmers rated experiential learning, problem solving, and critical thinking as important skills. Cutting-edge technologies were preferred for extension program delivery, as well as verbal rather than printed information. Highly rated topics included business management of farming. Extension was well…

  5. 6. View of lower dam masonry pier which houses the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of lower dam masonry pier which houses the sluice. Photograph taken from cut stone apron edging in Millstone Creek. VIEW WEST. - Loleta Recreation Area, Lower Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  6. Development of a model for the ice scraping process.

    DOT National Transportation Integrated Search

    1996-10-01

    A laboratory study has been conducted with two aims in mind. The first goal was : to develop a description of how a cutting edge scrapes ice from the road surface. The : second goal was to investigate the extent, if any, to which serrated blades were...

  7. Work with Us | Wind | NREL

    Science.gov Websites

    our cutting-edge research facilities to develop, test, and evaluate wind technologies. License Our advantage of the center's facilities and research and development capabilities. An aerial photo of buildings wind-generated electricity. Companies partner with NREL when they have particular design challenges

  8. 78 FR 37423 - National Small Business Week, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Business Week, 2013 Proclamation 8995--World Elder Abuse Awareness Day, 2013 Proclamation 8996--Father's... of June 14, 2013 National Small Business Week, 2013 By the President of the United States of America... startups that keep our country on the cutting edge. This week, we celebrate America's entrepreneurial...

  9. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits under white tents line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  10. Enhancing Teaching Excellence through a Scientist-Science Teacher Collaborative Process.

    ERIC Educational Resources Information Center

    Haakonsen, Harry; And Others

    1993-01-01

    The Institute for Science Instruction and Study (ISIS) at Southern Connecticut State University was established to place experienced science teachers in extended contact with a variety of research scientists working at the cutting edge of their fields. Reports program goals, format, requirements, and evaluation. (LZ)

  11. Omics, microbial modeling, and food safety information infrastructure: a food safety perspective

    USDA-ARS?s Scientific Manuscript database

    Over the last three decades, advances in a variety of cutting-edge “omics” technologies, including genomics, proteomics, and metabolomics, as well as in molecular and mathematical modeling approaches have provided the ability to more easily determine and interpret the mechanisms underlying pathogene...

  12. NERACOOS | weather | ocean | marine forecast | waves | buoy | marine

    Science.gov Websites

    to address today's highly complex ocean and coastal challenges through integrated graduate education Avery Point campus faculty, staff and students carry out cutting-edge research in coastal oceanography Ocean Data Products team Regional Coastal Observing Systems: Alaska * Pacific Northwest * Central and

  13. Sharpening ball-nose mill cutters

    NASA Technical Reports Server (NTRS)

    Burch, C. F.

    1977-01-01

    Economical attachment allows faster, more precise grinding. Vibrationless and rigid relation between grinding wheel and cutter allows for extremely high finish and accurate grinding. Leveling device levels flutes with respect to toolholder rotation that generates ball-nose radius. Constant relief around entire profile of cutting edge produces longer tool life.

  14. Social and Personality Development: An Advanced Textbook

    ERIC Educational Resources Information Center

    Lamb, Michael E., Ed.; Bornstein, Marc H., Ed.

    2011-01-01

    This new text contains parts of Bornstein and Lamb's "Developmental Science, 6th edition", along with new introductory material, providing a cutting edge and comprehensive overview of social and personality development. Each of the world-renowned contributors masterfully introduces the history and systems, methodologies, and measurement and…

  15. Blog Overload

    ERIC Educational Resources Information Center

    Dawson, Kara M.

    2007-01-01

    The most effective blogs provide important and cutting-edge information (e.g., Tech Crunch), communicate deeply personal experiences through narrative (e.g., the Cancer Blog), or write to a specific audience (e.g., chemistry teachers). Most people with successful blogs are deeply committed to posting, for personal reasons, such as a passion for…

  16. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Signage points the way to NASA exhibits at the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  17. Multicultural Counseling Schools: A Practical Handbook.

    ERIC Educational Resources Information Center

    Pedersen, Paul B.; Carey, John C.

    The second edition of "Multicultural Counseling in Schools" documents the tremendous change and improvement that is evident in the theory and practice of multicultural school counseling. Consistent with the new directions of the American School Counselor Association, this edition reflects cutting-edge thinking about the proper role and…

  18. Handbook of Early Literacy Research. Volume 2

    ERIC Educational Resources Information Center

    Dickinson, David K., Ed.; Neuman, Susan B., Ed.

    2006-01-01

    Current research increasingly highlights the role of early literacy in young children's development--and informs practices and policies that promote success among diverse learners. This handbook presents cutting-edge knowledge on all aspects of literacy learning in the early years. Volume 2 provides additional perspectives on important topics…

  19. Vocabulary Acquisition: Implications for Reading Comprehension

    ERIC Educational Resources Information Center

    Wagner, Richard K., Ed.; Muse, Andrea E., Ed.; Tannenbaum, Kendra R., Ed.

    2006-01-01

    Understanding a text requires more than the ability to read individual words: it depends greatly on vocabulary knowledge. This important book brings together leading literacy scholars to synthesize cutting-edge research on vocabulary development and its connections to reading comprehension. The volume also reviews an array of approaches to…

  20. Biophysical system models advance agricultural research and technology: Some examples and further research needs

    USDA-ARS?s Scientific Manuscript database

    Environmental concerns of the general public, droughts, and climate change effects require continual adaptation and optimization of agricultural systems through changes in cropping and management. Advancement of science and technology to achieve these changes requires cutting-edge field research, us...

  1. Implications of Home Technology for School Decision-Making.

    ERIC Educational Resources Information Center

    Hollingsworth, Helen L.; Eastman, Susan Tyler

    1998-01-01

    Surveys at a midwestern middle school showed that most students have much greater access to computer technology than previously predicted. While students want the hardware and software to produce original, professional-looking documents, teachers want both traditional television hookups and cutting-edge instructional tools. Information about…

  2. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  3. Networks’ Characteristics Matter for Systems Biology

    PubMed Central

    Rider, Andrew K.; Milenković, Tijana; Siwo, Geoffrey H.; Pinapati, Richard S.; Emrich, Scott J.; Ferdig, Michael T.; Chawla, Nitesh V.

    2015-01-01

    A fundamental goal of systems biology is to create models that describe relationships between biological components. Networks are an increasingly popular approach to this problem. However, a scientist interested in modeling biological (e.g., gene expression) data as a network is quickly confounded by the fundamental problem: how to construct the network? It is fairly easy to construct a network, but is it the network for the problem being considered? This is an important problem with three fundamental issues: How to weight edges in the network in order to capture actual biological interactions? What is the effect of the type of biological experiment used to collect the data from which the network is constructed? How to prune the weighted edges (or what cut-off to apply)? Differences in the construction of networks could lead to different biological interpretations. Indeed, we find that there are statistically significant dissimilarities in the functional content and topology between gene co-expression networks constructed using different edge weighting methods, data types, and edge cut-offs. We show that different types of known interactions, such as those found through Affinity Capture-Luminescence or Synthetic Lethality experiments, appear in significantly varying amounts in networks constructed in different ways. Hence, we demonstrate that different biological questions may be answered by the different networks. Consequently, we posit that the approach taken to build a network can be matched to biological questions to get targeted answers. More study is required to understand the implications of different network inference approaches and to draw reliable conclusions from networks used in the field of systems biology. PMID:26500772

  4. Interface quality of different corneal lamellar–cut depths for femtosecond laser–assisted lamellar anterior keratoplasty

    PubMed Central

    Zhang, Chenxing; Bald, Matthew; Tang, Maolong; Li, Yan; Huang, David

    2015-01-01

    PURPOSE To evaluate interface quality of different corneal lamellar–cut depths with the femtosecond laser and determine a feasible range of depth for femtosecond laser–assisted lamellar anterior keratoplasty. SETTING Casey Eye Institute, Portland, Oregon, USA. DESIGN Experimental study. METHODS Full lamellar cuts were made on 20 deepithelialized human cadaver corneas using the femtosecond laser. The cut depth was 17% to 21% (100 μm), 31%, 35%, 38% to 40%, and 45% to 48% of the central stromal thickness. Scanning electron microscopy images of cap and bed surfaces were subjectively graded for ridge and roughness using a scale of 1 to 5 (1 = best). The graft–host match was evaluated by photography and optical coherence tomography in a simulated procedure. RESULTS The ridge score was correlated with the cut depth (P = .0078, R = 0.58) and better correlated with the percentage cut depth (P = .00024, R = 0.73). The shallowest cuts had the least ridges (score 1.25). The 31% cut depth produced significantly less ridges (score 2.15) than deeper cuts. The roughness score ranged from 2.19 to 3.08 for various depths. A simulated procedure using a 100 μm host cut and a 177 μm (31%) graft had a smooth interface and flush anterior junction using an inverted side-cut design. CONCLUSIONS The femtosecond laser produced more ridges in deeper lamellar cuts. A depth setting of 31% stromal thickness might produce adequate surface quality for femtosecond laser–assisted lamellar anterior keratoplasty. The inverted side-cut design produced good edge apposition even when the graft was thicker than the host lamellar–cut depth. PMID:25747165

  5. More than Money Matters: Establishing Effective School-Corporate Partnerships

    ERIC Educational Resources Information Center

    Flynn, Nancy

    2007-01-01

    Given the financial constraints facing U.S. schools and the expense of cutting-edge technology, partnerships between schools and corporations that specialize in technology are becoming more vital in the quest to remain competitive in today's educational market. Schools can benefit from these partnerships by receiving the latest hardware and…

  6. Work with Us | Research Site Name | NREL

    Science.gov Websites

    ullamco laboris nisi ut aliquip ex ea commodo consequat. Hero Image - Width of 1746px - Height can vary ex ea commodo consequat. Learn about our technology partnership agreements. Use our cutting-edge commercialization programs. Join Our Team Find an opportunity: Job | Internship | Post Doc | Director's Postdoctoral

  7. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  8. Alternative Education: The Cutting Edge?

    ERIC Educational Resources Information Center

    Byrne, Jay

    2004-01-01

    Miami Valley Career Technology Youth Connections, an alternative high school located in Dayton, Ohio, has an enrollment of 160 students and was created as a joint venture among local politicians to address the high dropout rates in Montgomery County, Ohio. To achieve this, the Montgomery County commissioners created a task force to develop…

  9. Physical Chemistry in Practice: Evaluation of DVD Modules

    ERIC Educational Resources Information Center

    Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.

    2007-01-01

    The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…

  10. Cutting Edge Technologies in Community Colleges.

    ERIC Educational Resources Information Center

    Harlacher, Ervin L., Ed.

    This collection of essays provides case studies of current uses of technology in community colleges and projections for the future. The collection includes: (1) "Education and Curriculum Futures: Impacts from Technological Advances and Global Trends," by Earl C. Joseph; (2) "The Sociological Implications of the New Technology," by Bernard G.…

  11. Assessment for Intervention: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Brown-Chidsey, Rachel, Ed.

    2005-01-01

    This cutting-edge volume offers a complete primer on conducting problem-solving based assessments in school or clinical settings. Presented are an effective framework and up-to-date tools for identifying and remediating the many environmental factors that may contribute to a student's academic, emotional, or behavioral difficulties, and for…

  12. Power Electronics and Electric Machines | Transportation Research | NREL

    Science.gov Websites

    -to resource for information from cutting-edge thermal management research, making wide-scale adoption battery, the motor, and other powertrain components. NREL's thermal management and reliability research is thermal management technologies to improve performance, cost, and reliability for power electronics and

  13. Not Getting Along?

    ERIC Educational Resources Information Center

    Adams, Caralee

    2007-01-01

    Crafting a positive school work environment takes time and will that many educators often lack. Yet some experts say that how the principal, teachers, and staff get along is paramount to parental involvement and to cutting-edge instruction. Unfortunately, according to this author, the workplace culture in many schools is undeniably dysfunctional.…

  14. Teaching Strategic Processes in Reading. Second Edition

    ERIC Educational Resources Information Center

    Almasi, Janice F.; Fullerton, Susan King

    2012-01-01

    This accessible teacher resource and course text shows how to incorporate strategy instruction into the K-8 classroom every day. Cutting-edge theory and research are integrated with practical guidance and reflections from experienced teachers of novice and struggling readers. The book describes the nuts and bolts of creating classroom contexts…

  15. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. Genetics Curriculum Materials for the 21st Century

    ERIC Educational Resources Information Center

    Dawson, Vaille; Carson, Katherine; Venville, Grady

    2010-01-01

    The purpose of this project was to provide innovative and cutting edge genetics materials for 14-17 year olds (Year 10-12) in Australian schools, which aimed to engage students and encourage evidence based decision-making. In 2008, an Australian School Innovation in Science, Technology and Mathematics (ASISTM) project called "Genetics…

  17. NAIRTL Grants Initiative: Evaluation of Impact

    ERIC Educational Resources Information Center

    Murphy, Jennifer; Brennan, Aimie

    2011-01-01

    The mission of the National Academy for Integration of Research, Teaching and Learning (NAIRTL) is to ensure that all higher education students are exposed to cutting edge research in their classrooms, and that students at undergraduate and postgraduate levels are actively engaged in relevant and authentic research in their chosen discipline. To…

  18. Evaluation of the Kuper-Tuca SX36 snow plow cutting edges.

    DOT National Transportation Integrated Search

    2010-06-01

    For the winter of 2009-2010, the MaineDOT experimented with three sets of the Kuper Tuca SX36 : plow blades. Two of these sets were used in the Region 4, Bangor maintenance facility and one set was : used in the Region 3, Turner facility. : Maine...

  19. Getting from Procedures and Approach to Innovation in Grantsmanship

    ERIC Educational Resources Information Center

    Bell, Nancy B.

    2013-01-01

    Call it innovation, creativity, imagination, cutting edge, paradigm shift, or any other term for new information, an assessment of innovation may now impact the final decision on awarding grants to investigators. What exactly is innovation and how does the reviewer perceive innovation in the research approach? Procedures, the approach, and…

  20. NASA and general aviation

    NASA Technical Reports Server (NTRS)

    Ethell, J. L.

    1986-01-01

    General aviation remains the single most misunderstood sector of aeronautics in the United States. A detailed look at how general aviation functions and how NASA helps keep it on the cutting edge of technology in airfoils, airframes, commuter travel, environmental concerns, engines, propellers, air traffic control, agricultural development, electronics, and safety is given.

  1. UW Team Reaches Out to Grade- and High-School Students.

    ERIC Educational Resources Information Center

    Hood, Leroy

    1994-01-01

    Describes an outreach program designed to expose high school students to cutting-edge science. High school students are provided with hands-on experience in molecular biology (polymerase chain reaction, restriction mapping, chromatography, gel electrophoresis, human DNA sequencing, etc.) and may have an opportunity to participate in the Human…

  2. Perspectives from the European Language Portfolio: Learner Autonomy and Self-Assessment

    ERIC Educational Resources Information Center

    Kuhn, Barbel, Ed.; Cavana, Maria Luisa Perez, Ed.

    2012-01-01

    Using constructivist principles and autonomous learning techniques the ELP has pioneered innovative and cutting edge approaches to learning languages that can be applied to learning across the spectrum. Although articles on the success of the ELP project have appeared in some academic journals, "Perspectives from the European Language…

  3. Attracting Cutting-Edge Skills Through Reserve Component Participation

    DTIC Science & Technology

    2003-01-01

    specific recruitment pool of faculty and students within these institutions who possess the state-of-the- art science and technical skills or the most...identify a specific recruitment pool of faculty and students within these institutions who possess the state-of-the- art science and technical skills or

  4. Student Storytellers--One School Librarian's Digital Journey

    ERIC Educational Resources Information Center

    Smollar, Sally

    2016-01-01

    As an elementary school librarian, Sally Smollar has had access to the latest technologies since document scanners were considered cutting edge. Even then, allowing students to scan images to insert into their stories was a game changer. Since those days, Smollar writes that she has never stopped experimenting with various platforms and…

  5. Inaugural Technology Showcase Aims to Increase Industry Partnerships and Commercialization of Cancer-Related Inventions | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Biotechnology stakeholders from across the region will have the opportunity to learn about cutting-edge technologies addressing urgent and intractable problems in cancer research at the 2017 Technology Showcase, to be held at the Frederick National

  6. Fractal and Multifractal Models Applied to Porous Media - Editorial

    USDA-ARS?s Scientific Manuscript database

    Given the current high level of interest in the use of fractal geometry to characterize natural porous media, a special issue of the Vadose Zone Journal was organized in order to expose established fractal analysis techniques and cutting-edge new developments to a wider Earth science audience. The ...

  7. Work with Us | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    agreements. Use our cutting-edge research facilities to develop, test, and evaluate hydrogen and fuel cell science behind emerging hydrogen and fuel cell technologies and develop, test, and validate new for qualified partners to participate in cooperative research and development agreement (CRADA

  8. Curriculum for the Twenty-First Century: Recent Advances in Economic Theory and Undergraduate Economics

    ERIC Educational Resources Information Center

    Ferguson, William D.

    2011-01-01

    Undergraduate economics lags behind cutting-edge economic theory. The author briefly reviews six related advances that profoundly extend and deepen economic analysis: game-theoretic modeling, collective-action problems, information economics and contracting, social preference theory, conceptualizing rationality, and institutional theory. He offers…

  9. Moving Past "Hello World": Learning to Mod in an Online Affinity Space

    ERIC Educational Resources Information Center

    Subramanian, Shree Durga

    2012-01-01

    Game modding has increasingly become a mainstream and "cutting edge" medium to foster a broad range of critical software design and programming practices to learners coming from wide-ranging educational and professional backgrounds. Participatory practices, like game modding, are highly interest-driven and entail intense engagement with…

  10. Advertising to Children: Concepts and Controversies.

    ERIC Educational Resources Information Center

    Macklin, M. Carole, Ed.; Carlson, Les, Ed.

    This book presents cutting-edge research designed to stimulate and inform the debate over advertising to the children's market and the effects such advertising has on children. Perspectives are organized in sections to address what children know and think about advertising, how advertising works with children, and what issues are at the forefront…

  11. Building on the Cutting Edge

    ERIC Educational Resources Information Center

    Wong, Wylie

    2007-01-01

    Administrators of today's community college are sprucing up facilities with new amenities and services to attract students and cater to their needs. Administrators say competition for students is fierce and that good facilities can make a big difference when students are deciding on which school to attend. While students cite academic quality as…

  12. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  13. Special Education for a New Century

    ERIC Educational Resources Information Center

    Katzman, Lauren I., Ed.; Gandhi, Allison Gruner, Ed.; Harbour, Wendy S., Ed.; LaRock, J. D., Ed.

    2005-01-01

    "Special Education for a New Century" pays particularly close attention to how inclusive education practices can best be promoted in the era of standards-based accountability. An updated version of the best-selling "Special Education at the Century's End", this new volume combines cutting-edge research and theory about students…

  14. Green Chemistry Teaching in Higher Education: A Review of Effective Practices

    ERIC Educational Resources Information Center

    Andraos, John; Dicks, Andrew P.

    2012-01-01

    This account reviews published green chemistry teaching resources in print and online literature and our experiences in teaching the subject to undergraduate students. Effective practices in lecture and laboratory are highlighted and ongoing challenges are addressed, including areas in cutting edge green chemistry research that impact its teaching…

  15. Making and Mentors: What It Takes to Make Them Better Together

    ERIC Educational Resources Information Center

    Kekelis, Linda; Ryoo, Jean J.; McLeod, Emily

    2017-01-01

    "Making" as an educational approach holds promise both for introducing mentors into STEM programming and for showing girls new pathways into STEM (Wittemyer & Gill, 2014). With its merger of cutting-edge technology and traditional arts and crafts, "Making" can help girls learn about electronics, robotics, metalwork,…

  16. Vocabulary Instruction for Struggling Students. What Works for Special-Needs Learners Series

    ERIC Educational Resources Information Center

    Vadasy, Patricia F.; Nelson, J. Ron

    2012-01-01

    Addressing a key skill in reading, writing, and speaking, this comprehensive book is grounded in cutting-edge research on vocabulary development. It presents evidence-based instructional approaches for at-risk students, including English language learners and those with learning difficulties. Coverage ranges from storybook reading interventions…

  17. CONASTA Brings Teachers a Kaleidoscope of Science

    ERIC Educational Resources Information Center

    Teaching Science, 2015

    2015-01-01

    From star systems to social systems, CONASTA 64 connects teachers to researchers and scientists working on the cutting edge of modern science. We asked two CONASTA 64 Keynote speakers, Steven Tingay and Ian Walker to share their passion for their work and their dedication for giving back to the science community.

  18. Understanding RTI in Mathematics: Proven Methods and Applications

    ERIC Educational Resources Information Center

    Gersten, Russell, Ed.; Newman-Gonchar, Rebecca, Ed.

    2011-01-01

    Edited by National Math Panel veteran Russell Gersten with contributions by all of the country's leading researchers on RTI and math, this cutting-edge text blends the existing evidence base with practical guidelines for RTI implementation. Current and future RTI coordinators, curriculum developers, math specialists, and department heads will get…

  19. Augmented Reality as a Visual and Spatial Learning Tool in Technology Education

    ERIC Educational Resources Information Center

    Thornton, Timothy; Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    Improvement in instructional practices through dynamic means of delivery remains a central consideration to technology educators. To help accomplish this, one must constantly utilize contemporary and cutting-edge technological applications in attempts to provide a more beneficial learning experience for students. These technologies must…

  20. Best Practices in Literacy Instruction. Second Edition.

    ERIC Educational Resources Information Center

    Morrow, Lesley Mandel, Ed.; Gambrell, Linda B., Ed.; Pressley, Michael, Ed.

    Now revised and updated, this book's second edition aims to guide teachers in providing effective, engaging literacy instruction that meets the challenges of today's legislative mandates. Identified in the book are principles of best practice that reflect cutting-edge scientific research as well as decades of hands-on classroom experience.…

  1. The Cutting Edge: Satellite Chamber, Lasers Spur LC Preservation Effort.

    ERIC Educational Resources Information Center

    Brandehoff, Susan E.

    1982-01-01

    Describes efforts to preserve important library materials at the Library of Congress through the use of two new technologies: a patented deacidification process in which books are placed in a vacuum chamber, and the use of optical disc recording techniques to miniaturize and store print and nonprint images. (JL)

  2. Genome wide association studies on yield components using a lentil genetic diversity panel

    USDA-ARS?s Scientific Manuscript database

    The cool season food legume research community are now at the threshold of deploying the cutting-edge molecular genetics and genomics tools that have led to significant and rapid expansion of gene discovery, knowledge of gene function (including tolerance to biotic and abiotic stresses) and genetic ...

  3. Getting Started in Multimedia Training: Cutting or Bleeding Edge?

    ERIC Educational Resources Information Center

    Anderson, Vicki; Sleezer, Catherine M.

    1995-01-01

    Defines multimedia, explores uses of multimedia training, and discusses the effects and challenges of adding multimedia such as graphics, photographs, full motion video, sound effects, or CD-ROMs to existing training methods. Offers planning tips, and suggests software and hardware tools to help set up multimedia training programs. (JMV)

  4. Urban Literacies: Critical Perspectives on Language, Learning, and Community. Language & Literacy Series

    ERIC Educational Resources Information Center

    Kinloch, Valerie, Ed.

    2011-01-01

    Urban Literacies showcases cutting-edge perspectives on urban education and language and literacy by respected junior and senior scholars, researchers, and teacher educators. The authors explore--through various theoretical orientations and diverse methodologies--meanings of urban education in the lives of students and their families across three…

  5. 78 FR 64960 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... unwarranted invasion of personal privacy. Name of Committee: National Institute on Drug Abuse Special Emphasis..., Ph.D., Scientific Review Officer, Office of Extramural Affairs, National Institute on Drug Abuse, NIH... . Name of Committee: National Institute on Drug Abuse Special Emphasis Panel; CEBRA: Cutting-Edge Basic...

  6. Scholasticism: Causes and Cures

    ERIC Educational Resources Information Center

    Mead, Lawrence M.

    2011-01-01

    The claim that faculty conduct research is one of the main justifications for the modern university. Supposedly, academe carries out important, cutting-edge inquiries in which society has an interest. In fact, states this author, research at American universities is becoming narrow and artificial, out of touch with social realities, and of…

  7. Psychological and Pedagogical Considerations in Digital Textbook Use and Development

    ERIC Educational Resources Information Center

    Railean, Elena

    2015-01-01

    With the emergence of digital tools into mainstream society, new applications for cutting-edge technologies enable innovations in the dissemination of information. Careful consideration of the impact of these tools is important to maximize benefits while avoiding misuse. "Psychological and Pedagogical Considerations in Digital Textbook Use…

  8. Not Your Grandparents' Vocational School

    ERIC Educational Resources Information Center

    Schachter, Ron

    2012-01-01

    Manufacturing biodiesel fuel, building a geodesic-domed greenhouse, measuring the environmental impact of abandoned industrial canals--these might well fit the mission of cutting-edge companies specializing in green technologies, or they could be part of the curriculum at an institution of advanced science and engineering such as MIT or Cal Tech.…

  9. Accessible Research Experiences: A New Paradigm for In-Lab Chemical Education

    ERIC Educational Resources Information Center

    Baum, Marc M.; Krider, Elizabeth S.; Moss, John A.

    2006-01-01

    The preliminary efforts to engage students in the physical sciences through research projects in environmental chemistry are described. The successful involvement of two demographics, community college (CC) students and female students in cutting-edge chemistry research suggests that recruiting methods were effective and the feedback from…

  10. The New Literacies: Multiple Perspectives on Research and Practice

    ERIC Educational Resources Information Center

    Baker, Elizabeth A., Ed.

    2010-01-01

    With contributions from leading scholars, this compelling volume offers fresh insights into literacy teaching and learning--and the changing nature of literacy itself--in today's K-12 classrooms. The focus is on varied technologies and literacies such as social networking sites, text messaging, and online communities. Cutting-edge approaches to…

  11. SCRAP TIRE RECYCLING: CONVINCING BUSINESSES TO INTEGRATE INEXPENSIVE, CUTTING-EDGE TECHNOLOGY TO CONVERT TIRES INTO VARIOUS CONSTRUCTION MATERIALS

    EPA Science Inventory

    Scrap tires cause serious environmental pollution and health problems. Although worldwide figures are imprecise, it is known that one-fourth of the 283 million tires scrapped in the United States were landfilled last year. Hundreds of millions more tires ar...

  12. Say No to Speed Bumps!

    ERIC Educational Resources Information Center

    Brannon, Sian

    2010-01-01

    No matter how cutting edge (and nicely funded) one's library is, there is always something cooler and more efficient on the horizon. Granted, not all new technology may be necessary in the library. But chances are one is going to want to get something--RFID (radio frequency identification), text reference, downloadable content, gaming,…

  13. Chalk, What Chalk?

    ERIC Educational Resources Information Center

    Butler, Loren L.

    2004-01-01

    When it comes to technological wizardry in the classroom, interactive whiteboards stand on the cutting edge of the future. Students seem innately able to manipulate any type of computerized equipment, and, more important, they are highly motivated to engage in "techno-discovery." It is the duty of every educator to facilitate further discovery and…

  14. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  15. Students' Attitudes toward Gene Technology: Deconstructing a Construct

    ERIC Educational Resources Information Center

    Gardner, Grant E.; Troelstrup, Angelique

    2015-01-01

    Emergent technologies are commonly characterized as involving cutting-edge developments while lacking wide-scale public implementation. Although currently prevalent in many applications, gene technology is often considered emergent in that the science changes so rapidly. Science educators at all levels of formal education are faced with a unique…

  16. Family and Consumer Sciences Education. Subject Matters Volume 2, No. 2, Nov/Dec 2000.

    ERIC Educational Resources Information Center

    Techniques: Connecting Education and Careers, 2000

    2000-01-01

    Includes "Addressing the Critical Shortage of FACS [Family and Consumer Sciences] Educators"; "Leaving Home Economics in the Past" (Ruth E. Thaler-Carter); "Cutting-Edge Training and Career Relevance" (Ruth E. Thaler-Carter); and "Meeting the Demands of a Growth Industry" (Laird Livingston). (JOW)

  17. Knowledge Development in Early Childhood: Sources of Learning and Classroom Implications

    ERIC Educational Resources Information Center

    Pinkham, Ashley M., Ed.; Kaefer, Tanya, Ed.; Neuman, Susan B., Ed.

    2012-01-01

    Synthesizing cutting-edge research from multiple disciplines, this book explores how young children acquire knowledge in the "real world" and describes practical applications for early childhood classrooms. The breadth and depth of a child's knowledge base are important predictors of later literacy development and academic achievement. Leading…

  18. NEW MEDIA TECHNOLOGY DEVELOPMENT TO ENHANCE AND IMPROVE COMMUNICATIONS AT USEPA'S NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

    EPA Science Inventory

    New media technology (NT) interactive applications are currently being developed in house at ORD/NRMRL to enhance and improve communication of NRMRL's 1) research projects, 2) workshops/conferences and 3) specialized training. NT is an exciting mix of cutting-edge information tec...

  19. Toxicological Tipping Points and Cell Stress (SOT 2016 Symposium Discriminating between adaptation and adversity))

    EPA Science Inventory

    This symposium will bring together cutting-edge ideas on HCI as alternative testing paradigm for predictive toxicology and will focus on: 1) innovative tools for interrogating the molecular and cellular state of cells; 2) evaluating sentinel stress response pathways that can prof...

  20. Meeting the Challenge of Adolescent Literacy: Research We Have, Research We Need

    ERIC Educational Resources Information Center

    Conley, Mark W., Ed.; Freidhoff, Joseph R., Ed.; Sherry, Michael B., Ed.; Tuckey, Steven Forbes, Ed.

    2008-01-01

    In this concise, thought-provoking book, prominent researchers analyze existing knowledge on adolescent literacy, examine the implications for classroom instruction, and offer specific goals for future research. The volume reviews cutting-edge approaches to understanding the unique features of teaching and learning in secondary schools. Particular…

Top