Sample records for cutting fluid performance

  1. Experimental Evaluation and Optimization of Flank Wear During Turning of AISI 4340 Steel with Coated Carbide Inserts Using Different Cutting Fluids

    NASA Astrophysics Data System (ADS)

    Lawal, S. A.; Choudhury, I. A.; Nukman, Y.

    2015-01-01

    The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.

  2. Evaluation of the performance during hard turning of OHNS steel with minimal cutting fluid application and its comparison with minimum quantity lubrication

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Cutting fluid application plays a significant role in the manufacturing industries that acts as a coolant as well as a lubricant. The conventional flood cooling application of cutting fluids not only increases the production cost on account of the expenses involved in procurement, storage and disposal but also creates serious environmental and health hazards. In order to overcome these negative effects, techniques like Minimum quantity lubrication (MQL) and Minimal Cutting fluid application (MCFA) have increasingly found their way into the area of metal cutting and have already been established as an alternative to conventional wet machining. This paper investigates the effect of minimal Cutting fluid application (MCFA) which involves application of high velocity pulsing jet of proprietary cutting fluids at the contact zones using a special fluid application system. During hard turning of oil hardened non shrinkable steel (OHNS) on cutting temperature and tool wear and to compare the performance with Minimum quantity lubrication (MQL) assisted hard turning in which cutting fluid is carried in a high velocity stream of air. An attempt was also made to compare the performance during Turning with MCFA and MQL application with conventional wet and dry turning by analysing the tool wear pattern using SEM images.

  3. Effect of magneto rheological damper on tool vibration during hard turning

    NASA Astrophysics Data System (ADS)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  4. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  5. Investigations on high speed machining of EN-353 steel alloy under different machining environments

    NASA Astrophysics Data System (ADS)

    Venkata Vishnu, A.; Jamaleswara Kumar, P.

    2018-03-01

    The addition of Nano Particles into conventional cutting fluids enhances its cooling capabilities; in the present paper an attempt is made by adding nano sized particles into conventional cutting fluids. Taguchi Robust Design Methodology is employed in order to study the performance characteristics of different turning parameters i.e. cutting speed, feed rate, depth of cut and type of tool under different machining environments i.e. dry machining, machining with lubricant - SAE 40 and machining with mixture of nano sized particles of Boric acid and base fluid SAE 40. A series of turning operations were performed using L27 (3)13 orthogonal array, considering high cutting speeds and the other machining parameters to measure hardness. The results are compared among the different machining environments, and it is concluded that there is considerable improvement in the machining performance using lubricant SAE 40 and mixture of SAE 40 + boric acid compared with dry machining. The ANOVA suggests that the selected parameters and the interactions are significant and cutting speed has most significant effect on hardness.

  6. Overview of nanofluid application through minimum quantity lubrication (MQL) in metal cutting process

    NASA Astrophysics Data System (ADS)

    Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd

    2017-09-01

    Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.

  7. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  8. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Susmitha, M.; Sharan, P.

    2017-04-01

    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  9. Performance of Metal Cutting on Endmills Manufactured by Cooling-Air and Minimum Quantity Lubrication Grinding

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeru; Aoyama, Tojiro

    Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.

  10. Influence of coolant on ductile mode processing of binderless nanocrystalline tungsten carbide through ultraprecision diamond turning

    NASA Astrophysics Data System (ADS)

    Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver

    2015-08-01

    Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.

  11. Effect of cutting fluids and cutting conditions on surface integrity and tool wear in turning of Inconel 713C

    NASA Astrophysics Data System (ADS)

    Hikiji, R.

    2018-01-01

    The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.

  12. Variability in the skin exposure of machine operators exposed to cutting fluids.

    PubMed

    Wassenius, O; Järvholm, B; Engström, T; Lillienberg, L; Meding, B

    1998-04-01

    This study describes a new technique for measuring skin exposure to cutting fluids and evaluates the variability of skin exposure among machine operators performing cyclic (repetitive) work. The technique is based on video recording and subsequent analysis of the video tape by means of computer-synchronized video equipment. The time intervals at which the machine operator's hand was exposed to fluid were registered, and the total wet time of the skin was calculated by assuming different evaporation times for the fluid. The exposure of 12 operators with different work methods was analyzed in 6 different workshops, which included a range of machine types, from highly automated metal cutting machines (ie, actual cutting and chip removal machines) requiring operator supervision to conventional metal cutting machines, where the operator was required to maneuver the machine and manually exchange products. The relative wet time varied between 0% and 100%. A significant association between short cycle time and high relative wet time was noted. However, there was no relationship between the degree of automatization of the metal cutting machines and wet time. The study shows that skin exposure to cutting fluids can vary considerably between machine operators involved in manufacturing processes using different types of metal cutting machines. The machine type was not associated with dermal wetness. The technique appears to give objective information about dermal wetness.

  13. Utilization of sulphurized palm oil as cutting fluid base oil for broaching process

    NASA Astrophysics Data System (ADS)

    Sukirno; Ningsih, Y. R.

    2017-03-01

    Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is applicable for industrial cutting fluids formulation.

  14. Study on the effectiveness of Extreme Cold Mist MQL system on turning process of stainless steel AISI 316

    NASA Astrophysics Data System (ADS)

    Jamaludin, A. S.; Hosokawa, A.; Furumoto, T.; Koyano, T.; Hashimoto, Y.

    2018-03-01

    Cutting process of difficult-to-cut material such as stainless steel, generates immensely excessive heat, which is one of the major causes related to shortening tool life and lower quality of surface finish. It is proven that application of cutting fluid during the cutting process of difficult-to-cut material is able to improve the cutting performance, but excessive application of cutting fluid leads to another problem such as increasing processing cost and environmental hazardous pollution of workplace. In the study, Extreme Cold Mist system is designed and tested along with various Minimum Quantity Lubrication (MQL) systems on turning process of stainless steel AISI 316. In the study, it is obtained that, Extreme Cold Mist system is able to reduce cutting force up to 60N and improve the surface roughness of the machined surface significantly.

  15. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  16. Nanofluid as coolant for grinding process: An overview

    NASA Astrophysics Data System (ADS)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  17. The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments

    NASA Astrophysics Data System (ADS)

    Chu, Bryan

    The research presented in this thesis is aimed at investigating the use of graphene platelets (GPL) to address the challenges of excessive tool wear, reduced part quality, and high specific power consumption encountered in micro-machining processes. There are two viable methods of introducing GPL into micro-machining environments, viz., the embedded delivery method, where the platelets are embedded into the part being machined, and the external delivery method, where graphene is carried into the cutting zone by jetting or atomizing a carrier fluid. The study involving the embedded delivery method is focused on the micro-machining performance of hierarchical graphene composites. The results of this study show that the presence of graphene in the epoxy matrix improves the machinability of the composite. In general, the tool wear, cutting forces, surface roughness, and extent of delamination are all seen to be lower for the hierarchical composite when compared to the conventional two-phase glass fiber composite. These improvements are attributed to the fact that graphene platelets improve the thermal conductivity of the matrix, provide lubrication at the tool-chip interface and also improve the interface strength between the glass fibers and the matrix. The benefits of graphene are seen to also carry over to the external delivery method. The platelets provide improved cooling and lubrication performance to both environmentally-benign cutting fluids as well as to semi-synthetic cutting fluids used in micro-machining. The cutting performance is seen to be a function of the geometry (i.e., lateral size and thickness) and extent of oxygen-functionalization of the platelet. Ultrasonically exfoliated platelets (with 2--3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micro-machining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semi-synthetic cutting fluid. For the thermally-reduced platelets (with 4--8 graphene layers and in-solution characteristic lateral length of 562--2780 nm), a concentration of 0.2 wt% appears to be optimal. An investigation into the impingement dynamics of the graphene-laden colloidal solutions on a heated substrate reveals that the most important criterion dictating their machining performance is their ability to form uniform, submicron thick films of the platelets upon evaporation of the carrier fluid. As such, the characterization of the residual platelet film left behind on a heated substrate may be an effective technique for evaluating different graphene colloidal solutions for cutting fluids applications in micromachining. Graphene platelets have also recently been shown to reduce the aggressive chemical wear of diamond tools during the machining of transition metal alloys. However, the specific mechanisms responsible for this improvement are currently unknown. The modeling work presented in this thesis uses molecular dynamics techniques to shed light on the wear mitigation mechanisms that are active during the diamond cutting of steel when in the presence of graphene platelets. The dual mechanisms responsible for graphene-induced chemical wear mitigation are: 1) The formation of a physical barrier between the metal and tool atoms, preventing graphitization; and 2) The preferential transfer of carbon from the graphene platelet rather than from the diamond tool. The results of the simulations also provide new insight into the behavior of the 2D graphene platelets in the cutting zone, specifically illustrating the mechanisms of cleaving and interlayer sliding in graphene platelets under the high pressures in cutting zones.

  18. A comparative study on performance of CBN inserts when turning steel under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Abdullah Bagaber, Salem; Razlan Yusoff, Ahmad

    2017-10-01

    Cutting fluids is the most unsustainable components of machining processes, it is negatively impacting on the environmental and additional energy required. Due to its high strength and corrosion resistance, the machinability of stainless steel has attracted considerable interest. This study aims to evaluate performance of cubic boron nitride (CBN) inserts for the machining parameters includes the power consumption and surface roughness. Due to the high single cutting-edge cost of CBN, the performance of significant is importance for hard finish turning. The present work also deals with a comparative study on power consumption and surface roughness under dry and flood conditions. Turning process of the stainless steel 316 was performed. A response surface methodology based box-behnken design (BBD) was utilized for statistical analysis. The optimum process parameters are determined as the overall performance index. The comparison study has been done between dry and wet stainless-steel cut in terms of minimum value of energy and surface roughness. The result shows the stainless still can be machined under dry condition with 18.57% improvement of power consumption and acceptable quality compare to the wet cutting. The CBN tools under dry cutting stainless steel can be used to reduce the environment impacts in terms of no cutting fluid use and less energy required which is effected in machining productivity and profit.

  19. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  20. Study on Circular Complex viewed from Environmental Systems

    NASA Astrophysics Data System (ADS)

    Takeguchi, Tomoo; Adachi, Katsushige; Yoshikawa, Akira; Hiratsuka, Akira; Tsujino, Ryoji; Iguchi, Manabu

    In machining processes, cutting fluids are generally used for cooling and lubricating workpieces at the point cutting. However, these fluids frequently include chlorine, sulfur, phosphorus, or other additives. The chemicals not only become a mist affecting the health of workers engaged in the processing but also make the workshop environment worse. In particular, the chlorine becomes one of the causes of global warming by treating waste oil under high temperature conditions. It is furthermore said that huge cost beyond the purchase cost of oil occurs and dioxins (carcinogen) usually exist in the waste oil. Therefore, an environmentally-friendly cooling-air cutting system is required from the standpoint of green manufacturing. This system has been noted as a technique to solve the issues against the environment mentioned above. In the cooling-air cutting processing, the amount of CO2 emission shows a low value compared with the dry cutting one which uses oil. It is therefore thought that the cooling-air cutting system is a very important processing technique as an environmental countermeasure. At present, in strictly economic and environmental situations, the compatibility of the betterment of production efficiency with the improvement of environment is a subject in the actual spot of a cut processing. This study deals with the test results of cooling-air drilling performance from the viewpoint of taking green manufacturing into account. The workpiece made of die steel SKDll was manufactured by the cooling-air drilling performance at a revolution of 840 rpm and a temperature of -20°C with a high-speed steel drill (SKH56). The results were compared with those for the dry cutting performance. The main results obtained in this study are as follows: 1) The tool life for cooling-air drilling performance was about 6 times as long as that for the dry cutting performance. 2) The chip temperature for cooling-air drilling was 220°C lower than that for the dry cutting performance.

  1. Health effects of oil mists: a brief review.

    PubMed

    Mackerer, C R

    1989-05-01

    Metal cutting/grinding fluids are of three basic types: straight oil (insoluble), oil-in-water emulsions (soluble) and synthetic/semisynthetic. All contain a variety of additives to improve performance. Human exposure occurs primarily by direct skin contact with the liquid or by skin and respiratory contact after fluid misting. Dermatitis caused by primary or direct skin irritation is the most prevalent health effect of exposure to cutting fluids. Occasionally allergic dermatitis is seen which is related to the development of sensitization to one or more of the additive components. Recent studies indicate that long-term exposure to cutting fluids does not result in increased incidences of lung cancer, urinary bladder cancer, gastrointestinal cancer, or death from non-malignant respiratory diseases. Long-term exposure to certain cutting fluids, however, is believed to have resulted in certain types of skin cancer, especially scrotal cancer. It is likely that these carcinogenic responses were caused by contact with polycyclic aromatic compounds (PCA) of 3-7 rings. Modern base oils which are severely refined have very low levels of PCA, are not carcinogenic in animal bioassays, and are unlikely to be carcinogenic in man. This is not necessarily true for re-refined oils which may contain significant levels of PCA and polychlorinated biphenyls derived from comingling used cutting oils with used engine oils and transformer oils. Cutting oils, themselves, generally do not accumulate significant levels of carcinogenic PCA during use. Additives, in theory, can cause a variety of health effects either directly or through the generation of reaction products such as nitrosamines. In actual use, adverse health effects appear to be limited to occasional instances of allergic contact dermatitis. Nitrosamines are extremely carcinogenic in test animals; although no human cancer cases directly attributable to nitrosamine contamination have been observed, nitrosating agents and amines should not be combined in cutting fluid formulations. It is difficult to anticipate or predict the potential toxicity of a particular cutting fluid formulation because of the presence of variable amounts of proprietary additives which, themselves, are often complex reaction mixtures. Thus, each additive and final formulation must be evaluated on a case by case basis to appropriately assess potential health hazards.

  2. A study examining the effects of water-miscible cutting fluids for end milling process of carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Anan, Ruito; Matsuoka, Hironori; Ono, Hajime; Ryu, Takahiro; Nakae, Takashi; Shuto, Schuichi; Watanabe, Suguru; Sato, Yuta

    2017-04-01

    This study examined the improvements to the tool life and finished surface roughness by using water-miscible cutting fluids in carbon fiber reinforced plastics end milling. In cutting tests, it was found that the use of emulsion type, soluble type, and solution type cutting fluids improved tool life compared with the case of dry cutting. Specifically, significant differences in tool life were observed at a high cutting speed of 171 m/min. In addition, the finished surface exhibited a low level of roughness when the solution type cutting fluid was used, regardless of the cutting speed.

  3. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  4. The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon

    NASA Astrophysics Data System (ADS)

    Kumar, Arkadeep; Melkote, Shreyes N.

    2017-07-01

    The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.

  5. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2018-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  6. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2016-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  7. Optimization of Machining Parameters of Milling Operation by Application of Semi-synthetic oil based Nano cutting Fluids

    NASA Astrophysics Data System (ADS)

    Giri Prasad, M. J.; Abhishek Raaj, A. S.; Rishi Kumar, R.; Gladson, Frank; M, Gautham

    2016-09-01

    The present study is concerned with resolving the problems pertaining to the conventional cutting fluids. Two samples of nano cutting fluids were prepared by dispersing 0.01 vol% of MWCNTs and a mixture of 0.01 vol% of MWCNTs and 0.01 vol% of nano ZnO in the soluble oil. The thermophysical properties such as the kinematic viscosity, density, flash point and the tribological properties of the prepared nano cutting fluid samples were experimentally investigated and were compared with those of plain soluble oil. In addition to this, a milling process was carried by varying the process parameters and by application of different samples of cutting fluids and an attempt was made to determine optimal cutting condition using the Taguchi optimization technique.

  8. Aqueous cutting fluid for machining fissionable materials

    DOEpatents

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  9. Influence of water-miscible cutting fluid on tool wear behavior of various coated high-speed steel tools in hobbing

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Matsuoka, Hironori; Kubo, Akio; Ono, Hajime; Ryu, Takahiro; Qiu, Hua; Nakae, Takashi; Shuto, Shuichi; Watanabe, Suguru; Anan, Ruito

    2017-04-01

    This paper deals with the influence of water-miscible cutting fluid on tool life (flank wear) compared with that with dry cutting and water-insoluble cutting oil in hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The following results were clarified. (1) The water-miscible cutting fluid used in the test prolongs the tool life for TiN-, TiAlN-, TiSiN- and AlCrSiN-coated tools in comparison with that obtained by dry cutting and water-insoluble cutting oil. (2) It was presumed that the tool wear decreases and the tool life is improved by the lubrication effect of the synthetic lubrication additive, mineral oil and sulfuric EP additive contained in the water-miscible cutting fluid, and also by the cooling effect.

  10. Diagnosis of tuberculous pleurisy with combination of adenosine deaminase and interferon-γ immunospot assay in a tuberculosis-endemic population: A prospective cohort study.

    PubMed

    Xu, Han-Yan; Li, Cheng-Ye; Su, Shan-Shan; Yang, Li; Ye, Min; Ye, Jun-Ru; Ke, Pei-Pei; Chen, Cheng-Shui; Xie, Yu-Peng; Li, Yu-Ping

    2017-11-01

    The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy.Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays.Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 10 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964.T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 10 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  11. Diagnosis of tuberculous pleurisy with combination of adenosine deaminase and interferon-γ immunospot assay in a tuberculosis-endemic population

    PubMed Central

    Xu, Han-Yan; Li, Cheng-Ye; Su, Shan-Shan; Yang, Li; Ye, Min; Ye, Jun-Ru; Ke, Pei-Pei; Chen, Cheng-Shui; Xie, Yu-Peng; Li, Yu-Ping

    2017-01-01

    Abstract The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy. Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays. Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 105 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964. T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 105 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis. PMID:29381918

  12. AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)

    EPA Science Inventory

    Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...

  13. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  14. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  15. Experience with the lathe cut Bausch & Lomb Soflens: Part II--Power and optics study.

    PubMed

    Weissman, B A; Levinson, A

    1978-04-01

    Ten familiar spin cast and ten lathe cut Bausch & Lomb SOFLENS contact lenses were measured as to their power on a lensometer and on an eye. Both quality of the optics and quantitative measurements were considered. Lens flexure and the presence of a fluid lens between the posterior surface of the contact lens and the anterior cornea is indicated for both lenses to explain differences between power of the lens in air and on the eye. The spin cast lens design appears to create a quantitatively larger fluid lens, and one which will add positive optical power to the lens/eye system. Either from this and/or additional factors, the lathe cut lens appears to give improved optical performance both in air and on the eye.

  16. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  17. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  18. 40 CFR Appendix 7 to Subpart A of... - Determination of the Amount of Non-Aqueous Drilling Fluid (NAF) Base Fluid From Drill Cuttings by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...

  19. Physicochemical determinants of linear alkylbenzene sulfonate (LAS) disposition in skin exposed to aqueous cutting fluid mixtures.

    PubMed

    Baynes, Ronald E; Brooks, James D; Barlow, Beth M; Riviere, Jim E

    2002-06-01

    Linear alkylbenzene sulfonate (LAS) is added to cutting fluid formulations to enhance the performance of metal machining operations, but this surfactant can cause contact dermatitis in workers involved in these operations. The purpose of this study was to determine how cutting fluid additives influence dermal disposition of 14C-LAS in mineral oil- or polyethylene glycol 200 (PEG)-based mixtures when topically applied to silastic membranes and porcine skin in an in vitro flow-through diffusion cell system. 14C-LAS mixtures were formulated with three commonly used cutting fluid additives; 0 or 2% triazine (TRI), 0 or 5% triethanolamine (TEA), and 0 or 5% sulfurized ricinoleic acid (SRA). LAS absorption was limited to less than a 0.5% dose and the additives in various combinations influenced the physicochemical characteristics of the dosing mixture. LAS was more likely to partition into the stratum corneum (SC) in mineral oil mixtures, and LAS absorption was significantly greater in the complete mixture. TRI enhanced LAS transport, and the presence of SRA decreased LAS critical micelle concentration (CMC) which reduced LAS monomers available for transport. TEA increased mixture viscosity, and this may have negated the apparent enhancing properties of TRI in several mixtures. In summary, physicochemical interactions in these mixtures influenced availability of LAS for absorption and distribution in skin, and could ultimately influence toxicological responses in skin.

  20. Health Hazard Evaluation Report HETA 83-107-1574, Dana Corporation, Fort Wayne, Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, R.G.; Wallingford, K.M.

    1985-04-01

    Environmental and breathing-zone samples of cutting fluids and oils were analyzed at Dana Corporation, Fort Wayne, Indiana in May, 1983. The survey was requested by a company representative to evaluate the cause of dermatitis among machine-tool operators. A cutting fluid used at the facility was thought to be the cause of the dermatitis. Medical questionnaires were administered to 95 workers. Company dispensary records were reviewed. N-nitrosodimethylamine and triethanolamine were detected in new and used cutting fluid samples. Nickel, chromium, and zinc were detected in a sample of used cutting oil residue. Chloromethyl-phenol was found in two cutting fluid mix samples.more » The authors conclude that a health hazard exists at the facility. The skin problems appear to be related to exposure to cutting fluids and solvents in general, rather than a specific agent. Recommendations include using protective clothing, using waterless hand cleaners instead of solvents, and avoiding contact with chlorothene.« less

  1. Freon, T-B1 cutting fluid

    NASA Technical Reports Server (NTRS)

    Peters, R. L.

    1969-01-01

    Improved cutting fluid completely controls the heat generated from machining operations, thus providing longer tool life. Fluid is especially useful in the working of plastics and replaces less efficient contaminating oils.

  2. System for slicing wafers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A newly patented process for slicing silicon wafers that has distinct advantages over methods now widely used is described. The primary advantage of the new system is that it allows the efficient slicing of a number of ingots simultaneously at high speed. The cutting action is performed mechanically, most often with diamond particles that are transported to the cutting zone by a fluid vehicle or have been made an integral part of the blade by plating or impregnation. The new system uses a multiple or ganged band saw, arranged and spaced so that each side, or length, segment of a blade element, or loop, provides a cutting function. Each blade is maintained precisely in position by guides as it enters and leaves each ingot. The cutting action is performed with a conventional abrasive slurry composed of diamond grit suspended in an oil- or water-based vehicle. The distribution system draws the slurry from the supply reservoir and pumps it to the injection tubes to supply it to each side of each ingot. A flush system is provided at the outer end of the work-station zone. In order to reduce potential damage, a pneumatically driven flushing fluid is provided.

  3. AN EXPERIMENTAL INVESTIGATION INTO THE EFFECT OF PROCESS CONDITIONS ON THE MASS CONCENTRATION OF CUTTING FLUID MIST IN TURNING. (R825370C057)

    EPA Science Inventory

    Cutting fluid mists that are generated during machining processes represent a significant waste stream as well as a health hazard to humans. Epidemiological studies have shown a link between worker exposure to cutting fluid mist and an increase in respiratory ailments and seve...

  4. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain

    PubMed Central

    Rashno, Abdolreza; Nazari, Behzad; Koozekanani, Dara D.; Drayna, Paul M.; Sadri, Saeed; Rabbani, Hossein

    2017-01-01

    A fully-automated method based on graph shortest path, graph cut and neutrosophic (NS) sets is presented for fluid segmentation in OCT volumes for exudative age related macular degeneration (EAMD) subjects. The proposed method includes three main steps: 1) The inner limiting membrane (ILM) and the retinal pigment epithelium (RPE) layers are segmented using proposed methods based on graph shortest path in NS domain. A flattened RPE boundary is calculated such that all three types of fluid regions, intra-retinal, sub-retinal and sub-RPE, are located above it. 2) Seed points for fluid (object) and tissue (background) are initialized for graph cut by the proposed automated method. 3) A new cost function is proposed in kernel space, and is minimized with max-flow/min-cut algorithms, leading to a binary segmentation. Important properties of the proposed steps are proven and quantitative performance of each step is analyzed separately. The proposed method is evaluated using a publicly available dataset referred as Optima and a local dataset from the UMN clinic. For fluid segmentation in 2D individual slices, the proposed method outperforms the previously proposed methods by 18%, 21% with respect to the dice coefficient and sensitivity, respectively, on the Optima dataset, and by 16%, 11% and 12% with respect to the dice coefficient, sensitivity and precision, respectively, on the local UMN dataset. Finally, for 3D fluid volume segmentation, the proposed method achieves true positive rate (TPR) and false positive rate (FPR) of 90% and 0.74%, respectively, with a correlation of 95% between automated and expert manual segmentations using linear regression analysis. PMID:29059257

  5. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  6. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    NASA Astrophysics Data System (ADS)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  7. NDELA and nickel modulation of triazine disposition in skin.

    PubMed

    Baynes, Ronald E; Brooks, James D; Barlow, Beth M; Riviere, Jim E

    2005-10-01

    Cutting fluids can become contaminated with metals (e.g., nickel, Ni) and nitrosamines (e.g., N-nitrosodiethanolamine, NDELA) and there is concern that these classes of contaminants can modulate dermal disposition and ultimately the toxicity of cutting fluid additives, such as irritant biocides (e.g., triazine). Biocides are added to these formulations to prevent bacterial degradation of commercial cutting fluids. The purpose of this study was to assess the dermal absorption and skin deposition of 14C-triazine when topically applied to porcine skin in an in vitro flow-through diffusion cell system as aqueous soluble oil (mineral oil, MO) or aqueous synthetic (polyethylene glycol, PEG) mixtures. 14C-Triazine mixtures were formulated with NDELA and/or Ni, or with a combination of three additional cutting fluid additives; namely, 5% linear alkylbenzene sulfonate (LAS), 5% triethanolamine (TEA) and 5% sulfurized ricinoleic acid. Neither Ni nor NDELA was absorbed during these 8-h studies. However, 14C-triazine absorption ranged from 2.72 to 3.29% dose in MO and 2.29-2.88% dose in PEG with significantly greater triazine absorption in MO than PEG when all additives and contaminates were present. The difference between these two diluents was most pronounced when NDELA and/or Ni were present in cutting fluids. These contaminants also enhanced triazine deposition on the skin surface and skin tissues especially with PEG-based mixtures. In essence, the dermal disposition of irritant biocides could be dependent on whether the worker is exposed to a soluble oil or synthetic fluid when these contaminants are present. Workers should therefore not only be concerned about dermatotoxicity of these contaminants, but also the modulated dermal disposition of cutting fluid additives when these contaminants are present in cutting fluid formulations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit

    Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less

  9. Membrane technology for treating of waste nanofluids coolant: A review

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi

    2017-09-01

    The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide is nanomaterials additive to modify the Nanopores of the surface membrane. Contact angle and average pore size were used in the investigation of the surface morphology of membranes. An adequate choice in modifying the membrane surface in waste coolant filtration may bring a promised alternative as a solution in waste coolant remediation.

  10. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  11. Investigation friction factor and heat transfer characteristics of turbulent flow inside the corrugated tube inserted with typical and V-cut twisted tapes

    NASA Astrophysics Data System (ADS)

    Langeroudi, H. G.; Javaherdeh, K.

    2018-07-01

    In present paper the effects of using typical twisted tape (TT) and V-cut twisted tape (VTT) on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) inside corrugated tube in the turbulent flow are experimentally investigated despite the fact that the wall is under uniform heat flux. The experiments are conducted by twisted tapes with different twist ratio (y = 4.5, 6.07), depth and width ratios ranging (0.285-0.5) and Reynolds number varied from 5300 to 25,700 and water was as a working fluid. The obtained results show that the Nusselt number for corrugated tube that equipped with twisted tapes increases with increasing Reynolds number and is remarkable at high Reynolds Number while the friction factor is low. Moreover, the thermal performance factor for fluid increases with increasing Reynolds number and also the thermal performance factor for all states of VTT are higher than of TT. The new empirical correlations for Nusselt number, friction factor and thermal performance factor are predicted and compared with experimental data.

  12. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2012-09-04

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  13. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2013-07-02

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  14. Characteristics and treatability of oil-bearing wastes from aluminum alloy machining operations.

    PubMed

    Chen, Luke; Hsieh, Chueh-Chen; Wetherbee, John; Yang, Chen-Lu

    2008-04-15

    Enomoto Industry Co., exclusively uses water-based cutting fluids in its aluminum alloy machining operations. Since the cost of disposal can be much greater than the cost of purchase, the treatability of spent cutting fluids is becoming a major criterion for cutting fluid selection. Samples were collected from the machining lines at Enomoto's facility to determine their characteristics and evaluate their treatability with centrifugation, chemical coagulation and electrochemical coagulation. As expected, oil and grease (O&G) and total suspended solids (TSS) are the main reasons that spent cutting fluids are prohibited from being discharged into local swage systems. The average O&G found in the spent cutting fluids is 87,354 mg/L with TSS of more than 70,000 mg/L. Both O&G and TSS are the major contributors to the high turbidity of these waste effluents. A centrifuge with a relative centrifugal force of 1318 x g, was able to reduce 60% of the turbidity. By adding the coagulant aluminum chloride, the oil-water emulsion was destabilized, and the turbidity was reduced from 3249 Formazin Attenuation Units (FAU) to around 314 FAU. With freshly generated aluminum ions in the spent cutting fluid, the electrochemical process destabilized the oil-water emulsion system. The coalesced oil droplets were adsorbed onto the highly dispersed aluminum coagulant. The oil-rich sludge that was generated in the operation was then floated to the surface, forming a blanket that was removed by skimming. The electrochemical treatment was able to reduce the turbidity to less than 14 FAU, which is the detection limit of the Hach DR/4000 UV-vis spectrophotometer.

  15. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing.

    PubMed

    Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B

    2018-02-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection?

    PubMed

    Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K

    2009-06-01

    The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.

  17. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    NASA Astrophysics Data System (ADS)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  18. CHIP MORPHOLOGY AND HOLE SURFACE TEXTURE IN THE DRILLING OF CAST ALUMINUM ALLOYS. (R825370C057)

    EPA Science Inventory

    The effects of cutting fluid and other process variables on chip morphology when drilling cast aluminium alloys are investigated. The effects of workpiece material, speed, feed, hole depth, cutting-fluid presence and percentage oil concentration, workpiece temperature, drill t...

  19. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drilling fluids, drill cuttings, produced sand, and well treatment, completion and workover fluids. “Free... drill cuttings or produced sand are introduced into ambient seawater in a container having an air-to... specified. 6. Quality Control Procedures None currently specified. 7. Sample Collection and Handling 7...

  20. Prediction of surface roughness and cutting force under MQL turning of AISI 4340 with nano fluid by using response surface methodology

    NASA Astrophysics Data System (ADS)

    Patole, Pralhad B.; Kulkarni, Vivek V.

    2018-06-01

    This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.

  1. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  2. Critically Loaded Hole Technology Pilot Collaborative Test Programme.

    DTIC Science & Technology

    1980-11-01

    270 rpm Spindle Speed - 1450 rpm Feed Rate - Manual Feed Rate - Manual Cutting Fluid - Dry Cutting Fluid - Dry Tool Type - Cordia S-18 Tool Type... Cordia S-18 TABLE XI MANUFACTURING DETAILS FOR HIGH AND LOW QUALITY HOLES SELECTED BY THE UNITED KINGDOM HIGH QUALITY LOW QUALITY Pilot Hole: - 1/8 inch

  3. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  4. Performance characteristics of magnetic resonance imaging without contrast agents or sedation in pediatric appendicitis.

    PubMed

    Didier, Ryne A; Hopkins, Katharine L; Coakley, Fergus V; Krishnaswami, Sanjay; Spiro, David M; Foster, Bryan R

    2017-09-01

    Magnetic resonance imaging (MRI) has emerged as a promising modality for evaluating pediatric appendicitis. However optimal imaging protocols, including roles of contrast agents and sedation, have not been established and diagnostic criteria have not been fully evaluated. To investigate performance characteristics of rapid MRI without contrast agents or sedation in the diagnosis of pediatric appendicitis. We included patients ages 4-18 years with suspicion of appendicitis who underwent rapid MRI between October 2013 and March 2015 without contrast agent or sedation. After two-radiologist review, we determined performance characteristics of individual diagnostic criteria and aggregate diagnostic criteria by comparing MRI results to clinical outcomes. We used receiver operating characteristic (ROC) curves to determine cut-points for appendiceal diameter and wall thickness for optimization of predictive power, and we calculated area under the curve (AUC) as a measure of test accuracy. Ninety-eight MRI examinations were performed in 97 subjects. Overall, MRI had a 94% sensitivity, 95% specificity, 91% positive predictive value and 97% negative predictive value. Optimal cut-points for appendiceal diameter and wall thickness were ≥7 mm and ≥2 mm, respectively. Independently, those cut-points produced sensitivities of 91% and 84% and specificities of 84% and 43%. Presence of intraluminal fluid (30/33) or localized periappendiceal fluid (32/33) showed a significant association with acute appendicitis (P<0.01), with sensitivities of 91% and 97% and specificities of 60% and 50%. For examinations in which the appendix was not identified by one or both reviewers (23/98), the clinical outcome was negative. Rapid MRI without contrast agents or sedation is accurate for diagnosis of pediatric appendicitis when multiple diagnostic criteria are considered in aggregate. Individual diagnostic criteria including optimized cut-points of ≥7 mm for diameter and ≥2 mm for wall thickness demonstrate high sensitivities but relatively low specificities. Nonvisualization of the appendix favors a negative diagnosis.

  5. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    2001-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  6. Method and apparatus for suppressing regenerative instability and related chatter in machine tools

    DOEpatents

    Segalman, Daniel J.; Redmond, James M.

    1999-01-01

    Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.

  7. Investigation of Performance Improvements Including Application of Inlet Guide Vanes to a Cross-flow Fan

    DTIC Science & Technology

    2009-09-01

    25 Figure 17. IGV Cut Out from Fluid Domain...Figure 22. Installed IGVS as Viewed from the CFF Inlet.................................................30 Figure 23. Schematic of Turbine Test Rig (TTR...44 Figure 28. Close In View of Velocity Vector Plot Near IGVS for 6IGV Model..............45 Figure 29

  8. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed. • Bulk Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} with ZT of 1.16 was obtained from Bi{sub 2}Te{sub 3} based wastes. • Different from hydrometallurgy, the recycling method introduced here was green. • Directly recycling Bi{sub 2}Te{sub 3} wastes can lower raw material costs of manufacturers.« less

  9. Tribological evaluation of hexagonal boron nitride in modified jatropha oil as sustainable metalworking fluid

    NASA Astrophysics Data System (ADS)

    Talib, Norfazillah; Rahim, Erween Abd.; Nasir, Ramdziah Md.

    2017-11-01

    The used of metalworking fluids (MWFs) from petroleum-based oil during machining process contributed negative impact to the humans and environment. Therefore, bio-based oil from vegetable oil was recently explored as an alternative solution to petroleum-based oil to implement sustainable manufacturing process. In this study, modified jatropha oil (MJO5) with and without hexagonal boron nitride (hBN) particles were evaluated through friction and wear test and orthogonal cutting performance in comparison with synthetic ester (SE). MJO5 were mixed with hBN particles at various concentrations (i.e. 0.05, 0.1 and 0.5wt.%). Experimental results showed that the addition of 0.05wt.% of hBN particles in MJO5 (MJO5a) provided lowest coefficient of friction (COF) and smallest wear scar diameter (WSD). MJO5a has the best anti-friction ability by reducing the cutting force and cutting temperature which related to the formation of thinner chips and small tool-chip contact length. MJO5a is the best substitute to SE as sustainable MWFs in the machining operation in regards to the environmental and health concern.

  10. One of possible variants of the organization for recycling lubricate cooling of technological means for small businesses

    NASA Astrophysics Data System (ADS)

    Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.

    2016-11-01

    In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.

  11. Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh

    NASA Astrophysics Data System (ADS)

    Wenhua, Wang; Yanying, Wang

    2010-05-01

    This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.

  12. Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.

    2017-01-01

    In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.

  13. Optimising the utility of pleural fluid adenosine deaminase for the diagnosis of adult tuberculous pleural effusion in Hong Kong.

    PubMed

    Chang, K C; Chan, M C; Leung, W M; Kong, F Y; Mak, C M; Chen, S Pl; Yu, W C

    2018-02-01

    Pleural fluid adenosine deaminase level can be applied to rapidly detect tuberculous pleural effusion. We aimed to establish a local diagnostic cut-off value for pleural fluid adenosine deaminase to identify patients with tuberculous pleural effusion, and optimise its utility. We retrospectively reviewed the medical records of consecutive adults with pleural fluid adenosine deaminase level measured by the Diazyme commercial kit (Diazyme Laboratories, San Diego [CA], United States) during 1 January to 31 December 2011 in a cluster of public hospitals in Hong Kong. We considered its level alongside early (within 2 weeks) findings in pleural fluid and pleural biopsy, with and without applying Light's criteria in multiple scenarios. For each scenario, we used the receiver operating characteristic curve to identify a diagnostic cut-off value for pleural fluid adenosine deaminase, and estimated its positive and negative predictive values. A total of 860 medical records were reviewed. Pleural effusion was caused by congestive heart failure, chronic renal failure, or hypoalbuminaemia caused by liver or kidney diseases in 246 (28.6%) patients, malignancy in 198 (23.0%), non-tuberculous infection in 168 (19.5%), tuberculous pleural effusion in 157 (18.3%), and miscellaneous causes in 91 (10.6%). All those with tuberculous pleural effusion had a pleural fluid adenosine deaminase level of ≤100 U/L. When analysis was restricted to 689 patients with pleural fluid adenosine deaminase level of ≤100 U/L and early negative findings for malignancy and non-tuberculous infection in pleural fluid, the positive predictive value was significantly increased and the negative predictive value non-significantly reduced. Using this approach, neither additionally restricting analysis to exudates by Light's criteria nor adding closed pleural biopsy would further enhance predictive values. As such, the diagnostic cut-off value for pleural fluid adenosine deaminase is 26.5 U/L, with a sensitivity of 87.3%, specificity of 93.2%, positive predictive value of 79.2%, negative predictive value of 96.1%, and accuracy of 91.9%. Sex, age, and co-morbidity did not significantly affect prediction of tuberculous pleural effusion using the cut-off value. We have established a diagnostic cut-off level for pleural fluid adenosine deaminase in the diagnosis of tuberculous pleural effusion by restricting analysis to a level of ≤100 U/L, and considering early pleural fluid findings for malignancy and non-tuberculous infection, but not Light's criteria.

  14. Coconut Model for Learning First Steps of Craniotomy Techniques and Cerebrospinal Fluid Leak Avoidance.

    PubMed

    Drummond-Braga, Bernardo; Peleja, Sebastião Berquó; Macedo, Guaracy; Drummond, Carlos Roberto S A; Costa, Pollyana H V; Garcia-Zapata, Marco T; Oliveira, Marcelo Magaldi

    2016-12-01

    Neurosurgery simulation has gained attention recently due to changes in the medical system. First-year neurosurgical residents in low-income countries usually perform their first craniotomy on a real subject. Development of high-fidelity, cheap, and largely available simulators is a challenge in residency training. An original model for the first steps of craniotomy with cerebrospinal fluid leak avoidance practice using a coconut is described. The coconut is a drupe from Cocos nucifera L. (coconut tree). The green coconut has 4 layers, and some similarity can be seen between these layers and the human skull. The materials used in the simulation are the same as those used in the operating room. The coconut is placed on the head holder support with the face up. The burr holes are made until endocarp is reached. The mesocarp is dissected, and the conductor is passed from one hole to the other with the Gigli saw. The hook handle for the wire saw is positioned, and the mesocarp and endocarp are cut. After sawing the 4 margins, mesocarp is detached from endocarp. Four burr holes are made from endocarp to endosperm. Careful dissection of the endosperm is done, avoiding liquid albumen leak. The Gigli saw is passed through the trephine holes. Hooks are placed, and the endocarp is cut. After cutting the 4 margins, it is dissected from the endosperm and removed. The main goal of the procedure is to remove the endocarp without fluid leakage. The coconut model for learning the first steps of craniotomy and cerebrospinal fluid leak avoidance has some limitations. It is more realistic while trying to remove the endocarp without damage to the endosperm. It is also cheap and can be widely used in low-income countries. However, the coconut does not have anatomic landmarks. The mesocarp makes the model less realistic because it has fibers that make the procedure more difficult and different from a real craniotomy. The model has a potential pedagogic neurosurgical application for freshman residents before they perform a real craniotomy for the first time. Further validity is necessary to confirm this hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Identifying Malignant Pleural Effusion by A Cancer Ratio (Serum LDH: Pleural Fluid ADA Ratio).

    PubMed

    Verma, Akash; Abisheganaden, John; Light, R W

    2016-02-01

    We studied the diagnostic potential of serum lactate dehydrogenase (LDH) in malignant pleural effusion. Retrospective analysis of patients hospitalized with exudative pleural effusion in 2013. Serum LDH and serum LDH: pleural fluid ADA ratio was significantly higher in cancer patients presenting with exudative pleural effusion. In multivariate logistic regression analysis, pleural fluid ADA was negatively correlated 0.62 (0.45-0.85, p = 0.003) with malignancy, whereas serum LDH 1.02 (1.0-1.03, p = 0.004) and serum LDH: pleural fluid ADA ratio 0.94 (0.99-1.0, p = 0.04) was correlated positively with malignant pleural effusion. For serum LDH: pleural fluid ADA ratio, a cut-off level of >20 showed sensitivity, specificity of 0.98 (95 % CI 0.92-0.99) and 0.94 (95 % CI 0.83-0.98), respectively. The positive likelihood ratio was 32.6 (95 % CI 10.7-99.6), while the negative likelihood ratio at this cut-off was 0.03 (95 % CI 0.01-0.15). Higher serum LDH and serum LDH: pleural fluid ADA ratio in patients presenting with exudative pleural effusion can distinguish between malignant and non-malignant effusion on the first day of hospitalization. The cut-off level for serum LDH: pleural fluid ADA ratio of >20 is highly predictive of malignancy in patients with exudative pleural effusion (whether lymphocytic or neutrophilic) with high sensitivity and specificity.

  16. The potentiation of the antimicrobial activities of cutting fluid preservatives by EDTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzat, I.N.; Bennett, E.O.

    1978-01-01

    The potentiation of the antimicrobial activities of cutting fluid preservatives by EDTA was confirmed in experiments in which 500 ppm of the disodium salt of EDTA was used in combination with 12 different metalworking fluids containing 500 ppm of o-phenylphenol, tris(hydroxymethyl) nitromethane, hexahydro- 1,3,5-tris(2-hydroxyethyl)-s-triazine alone or complexed with iodine, hexahydro- 1,3,5-triethyl-s-triazine, 1-(3-chloroallyl)- 3,5,7-triaza- 1-azoniaadamantane hydrochloride, 1,2-benzisothiazolin-3-one, 4-(2-nitrobutyl) morpholine and 4,4-(2-ethyl-2-nitrotrimethylene) dimorpholine, or the sodium salt of 2-pyridinethiol- 1-oxide as a preservative. Based on a previous observation that the proper selection of the hydraulic fluid employed in the cutting machine is a major factor in controlling rancidity, the possibility of spoilagemore » control by treating the fluid with EDTA alone was also demonstrated; the EDTA had a greater beneficial effect with a synthetic coolant than with an oil emulsion. Published data on the effects of EDTA indicate that it poses no significant water pollution problems upon disposal, exhibits a low order of animal toxicity, and rarely causes human allergies. Tables and 65 references.« less

  17. Mathematical model of simple spalling formation during coal cutting with extracting machine

    NASA Astrophysics Data System (ADS)

    Gabov, V. V.; Zadkov, D. A.

    2018-05-01

    A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.

  18. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751.

    PubMed

    Balan, A S S; Vijayaraghavan, L; Krishnamurthy, R; Kuppan, P; Oyyaravelu, R

    2016-09-01

    The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL) and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2) and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50-65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  19. Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.

    PubMed

    Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna

    2018-05-28

    The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.

  20. Evaluation of gowns and coveralls used by medical personnel working with Ebola patients against simulated bodily fluids using an Elbow Lean Test.

    PubMed

    Jaques, Peter A; Gao, Pengfei; Kilinc-Balci, Selcen; Portnoff, Lee; Weible, Robyn; Horvatin, Matthew; Strauch, Amanda; Shaffer, Ronald

    2016-11-01

    Gowns and coveralls are important components of protective ensembles used during the management of known or suspected Ebola patients. In this study, an Elbow Lean Test was used to obtain a visual semi-quantitative measure of the resistance of medical protective garments to the penetration of two bodily fluid simulants. Tests were done on swatches of continuous and discontinuous regions of fabrics cut from five gowns and four coveralls at multiple elbow pressure levels (2-44 PSI). Swatches cut from the continuous regions of one gown and two coveralls did not have any strike-through. For discontinuous regions, only the same gown consistently resisted fluid strike-through. As hypothesized, with the exception of one garment, fluid strike-through increased with higher applied elbow pressure, was higher for lower fluid surface tension, and was higher for the discontinuous regions of the protective garments.

  1. “Investigations on the machinability of Waspaloy under dry environment”

    NASA Astrophysics Data System (ADS)

    Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.

    2016-09-01

    Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process

  2. Laser cutting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Thomas J

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  3. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  4. Design and evaluation of a 3 million DN series-hybrid thrust bearing

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Winn, L. W.; Eusepi, M.

    1976-01-01

    The design and experimental evaluation of a series-hybrid thrust bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, is presented. Tests were conducted up to 16,000 rpm and at this speed an axial load of 15,600 N (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. A speed reduction of this magnitude would result in a tenfold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system produced a flawless return to the original mode of hybrid operation.

  5. Lens-free microscopy of cerebrospinal fluid for the laboratory diagnosis of meningitis

    NASA Astrophysics Data System (ADS)

    Delacroix, Robin; Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Blandin, Pierre; Dinten, Jean-Marc; Drancourt, Michel; Allier, Cédric

    2018-02-01

    The cytology of the cerebrospinal fluid is traditionally performed by an operator (physician, biologist) by means of a conventional light microscope. The operator visually counts the leukocytes (white blood cells) present in a sample of cerebrospinal fluid (10 μl). It is a tedious job and the result is operator-dependent. Here in order to circumvent the limitations of manual counting, we approach the question of numeration of erythrocytes and leukocytes for the cytological diagnosis of meningitis by means of lens-free microscopy. In a first step, a prospective counts of leukocytes was performed by five different operators using conventional optical microscopy. The visual counting yielded an overall 16.7% misclassification of 72 cerebrospinal fluid specimens in meningitis/non-meningitis categories using a 10 leukocyte/μL cut-off. In a second step, the lens-free microscopy algorithm was adapted step-by-step for counting cerebrospinal fluid cells and discriminating leukocytes from erythrocytes. The optimization of the automatic lens-free counting was based on the prospective analysis of 215 cerebrospinal fluid specimens. The optimized algorithm yielded a 100% sensitivity and a 86% specificity compared to confirmed diagnostics. In a third step, a blind lens-free microscopic analysis of 116 cerebrospinal fluid specimens, including six cases of microbiology confirmed infectious meningitis, yielded a 100% sensitivity and a 79% specificity. Adapted lens-free microscopy is thus emerging as an operator-independent technique for the rapid numeration of leukocytes and erythrocytes in cerebrospinal fluid. In particular, this technique is well suited to the rapid diagnosis of meningitis at point-of-care laboratories.

  6. Diagnosis of cytomegalovirus pneumonia by quantitative polymerase chain reaction using bronchial washing fluid from patients with hematologic malignancies

    PubMed Central

    Choi, Joon Young; Lee, Hea Yon; Lee, Jong Wook; Lee, Dong Gun

    2017-01-01

    Background The incidence of cytomegalovirus (CMV) pneumonia is increasing in patients diagnosed with hematologic malignancies. The utility of CMV-DNA viral load measurement has not been standardized, and viral cut-off values have not been established. This study was designed to investigate the utility of CMV quantitative real-time PCR (qRT-PCR) using bronchial washing fluid. Methods We retrospectively reviewed the microbiologic and pathologic results of bronchial washing fluid and biopsy specimens in addition to the patients' clinical characteristics. Results A total of 565 CMV qRT-PCR assays were performed using bronchial washing fluid from patients with hematologic malignancies. Among them, 101 were positive for CMV by qRT-PCR; of these, 24 were diagnosed with CMV pneumonia and 70 with CMV infection, and 7 were excluded due to a diagnosis of invasive pulmonary aspergillosis rather than viral pneumonia. The median CMV load determined by qPCR was 1.8 × 105 copies/mL (3.6 103-1.5 × 108) in CMV pneumonia patients and 3.0 × 103 copies/mL (5.0 × 102-1.1 × 105) in those diagnosed with CMV infection (P < 0.01). Using the ROC curve, the optimal inflection points were 18,900 copies/mL (137,970 IU/mL) in post-bone marrow transplantation (BMT) patients, 316,415 copies/mL (2,309,825 IU/mL) in no-BMT patients and 28,774 copies/mL (210,054 IU/mL) in all patients. Conclusions The CMV titers in bronchial washing fluid determined by qRT-PCR differed significantly between patients diagnosed with CMV pneumonia and those with CMV infection. The viral cut-off values in bronchial washing fluid were suggested for the diagnosis of CMV pneumonia, which were different depending on the BMT status. PMID:28061469

  7. Diagnosis of cytomegalovirus pneumonia by quantitative polymerase chain reaction using bronchial washing fluid from patients with hematologic malignancies.

    PubMed

    Lee, Hwa Young; Rhee, Chin Kook; Choi, Joon Young; Lee, Hea Yon; Lee, Jong Wook; Lee, Dong Gun

    2017-06-13

    The incidence of cytomegalovirus (CMV) pneumonia is increasing in patients diagnosed with hematologic malignancies. The utility of CMV-DNA viral load measurement has not been standardized, and viral cut-off values have not been established. This study was designed to investigate the utility of CMV quantitative real-time PCR (qRT-PCR) using bronchial washing fluid. We retrospectively reviewed the microbiologic and pathologic results of bronchial washing fluid and biopsy specimens in addition to the patients' clinical characteristics. A total of 565 CMV qRT-PCR assays were performed using bronchial washing fluid from patients with hematologic malignancies. Among them, 101 were positive for CMV by qRT-PCR; of these, 24 were diagnosed with CMV pneumonia and 70 with CMV infection, and 7 were excluded due to a diagnosis of invasive pulmonary aspergillosis rather than viral pneumonia. The median CMV load determined by qPCR was 1.8 × 105 copies/mL (3.6 103-1.5 × 108) in CMV pneumonia patients and 3.0 × 103 copies/mL (5.0 × 102-1.1 × 105) in those diagnosed with CMV infection (P < 0.01). Using the ROC curve, the optimal inflection points were 18,900 copies/mL (137,970 IU/mL) in post-bone marrow transplantation (BMT) patients, 316,415 copies/mL (2,309,825 IU/mL) in no-BMT patients and 28,774 copies/mL (210,054 IU/mL) in all patients. The CMV titers in bronchial washing fluid determined by qRT-PCR differed significantly between patients diagnosed with CMV pneumonia and those with CMV infection. The viral cut-off values in bronchial washing fluid were suggested for the diagnosis of CMV pneumonia, which were different depending on the BMT status.

  8. Critical Elements in Reservoir Rocks of Produced Fluids Nevada and Utah August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stuart

    Critical and trace element data for drill cuttings from Beowawe, Dixie Valley, and Roosevelt Hot Springs-Blundell geothermal production fields, for drill cuttings from Uinta basin producing oil-gas wells, and from outcrops in the Sevier Thermal Anomaly-Utah.

  9. CFD modelling of liquid-solid transport in the horizontal eccentric annuli

    NASA Astrophysics Data System (ADS)

    Sayindla, Sneha; Challabotla, Niranjan Reddy

    2017-11-01

    In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.

  10. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  11. Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, C.A.; Claus, G.W.; Taylor, P.A.

    1983-01-01

    For the first time, an activated sludge reactor, established for the degradation of cutting fluids, was examined for predominant bacteria. In addition, both total and viable numbers of bacteria in the reactor were determined so that the percentage of each predominant type in the total reactor population could be determined. Three samples were studied, and a total of 15 genera were detected. In each sample, the genus Pseudomonas and the genus Microcyclus were present in high numbers. Three other genera, Acinetobacter, Alcaligenes, and Corynebacterium, were also found in every sample but in lower numbers. In one sample, numerous appendage bacteriamore » were present, and one of these, the genus Seliberia, was the most predominant organism in that sample. However, in the other two samples no appendage bacteria were detected. Six genera were found in this reactor which have not been previously reported in either cutting fluids in use or in other activated sludge systems. These genera were Aeromonas, Hyphomonas, Listeria, Microcyclus, Moraxella, and Spirosoma. None of the predominant bacterial belonged to groups of strict pathogens. 22 references, 6 figures, 3 tables.« less

  12. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  13. Cerebrospinal fluid lactate: a differential biomarker for bacterial and viral meningitis in children.

    PubMed

    Nazir, Mudasir; Wani, Wasim Ahmad; Malik, Muzaffar Ahmad; Mir, Mohd Rafiq; Ashraf, Younis; Kawoosa, Khalid; Ali, Syed Wajid

    To assess the performance of cerebrospinal fluid (CSF) lactate as a biomarker to differentiate bacterial meningitis from viral meningitis in children, and to define an optimal CSF lactate concentration that can be called significant for the differentiation. Children with clinical findings compatible with meningitis were studied. CSF lactate and other conventional CSF parameters were recorded. At a cut-off value of 3mmol/L, CSF lactate had a sensitivity of 0.90, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.963, with an accuracy of 0.972. The positive and negative likelihood ratios were 23.6 and 0.1, respectively. When comparing between bacterial and viral meningitis, the area under the curve for CSF lactate was 0.979. The authors concluded that CSF lactate has high sensitivity and specificity in differentiating bacterial from viral meningitis. While at a cut-off value of 3mmol/L, CSF lactate has high diagnostic accuracy for bacterial meningitis, mean levels in viral meningitis remain essentially below 2mmol/L. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. Metalworking and machining fluids

    DOEpatents

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  15. Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves

    NASA Astrophysics Data System (ADS)

    Falcon, Eric; Issenmann, Bruno; Laroche, Claude

    2017-11-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.

  16. Development of Flexible Extremities Protection utilizing Shear Thickening Fluid/Fabric Composites

    DTIC Science & Technology

    2012-01-19

    absorption frequencies. With the addition of Gluta, the peak for each of the three bonds increased indicating that the total number of bonds (i.e., cross...fiber to be investigated a gage length of 127 mm. The fiber was clamped at one end and at a position of 127 mm at that end. A Celanese food ...general behavior of high performance fibers during cut resistance testing at normal incidence with a Celanese food processing blade. This data is the

  17. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over a very wide range providing considerable flexibility for various operations. The NitroJet(TM) is an advance on the nitrogen fluid jet technology initially developed at the Idaho National Engineering Laboratory in Idaho Falls, Idaho. NitroCision(R) first introduced the NitroJet(TM) into a commercial setting in 2003 and there has been considerable interest from many diverse sectors of government and industry since then. While the current system is an industrial system with the size and mass normally associated with industrial applications, a smaller system that is much more compact is being contemplated for those applications that do not need the full capabilities of the larger system. The NitroJet(TM) can be deployed as a fixed or mobile system with multiple end effectors capable of cutting, stripping, cleaning, and surface profiling either in robotic or manual applications.

  18. Hydromechanical planer with cutting and breaking heads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goris, H.; Gunther, R.; Ogorek, K.

    1980-12-16

    A hydromatic planer particularly for mining materials in a mining seam is comprised of a planer housing which advantageously has a cutting and breaking head on each end thereof, each of which includes a substantially identical construction. Each cutting head includes a vertically arranged support member which is mounted on the housing of the planer by a parallel linkage so that it may be moved upwardly and downwardly under the control of an adjustment means such as a fluid pressure operated piston and cylinder combination. Each cutting and breaking head also includes a first substantially vertically arranged support member whichmore » is connected by the linkage for upward and downward movement relative to the housing and a second support member which is movable relative to the first and mounted on this first in vertical guides for upward and downward movement. A second fluid pressure operated piston and cylinder combination is connected between first and second support members so that they may be shifted relative to each other. A second support member advantageously carries a cutting and breaking wedge which is oriented to engage the mining seam, for example, on a side thereof, and which may be adjusted relative to a similarly oriented cutting and breaking wedge carried by the first member. In addition, a separate cutting and breaking wedge is carried by the first member and it may be engaged for example against the floor thereof in a plane different from the other two wedges.« less

  19. 40 CFR 435.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the... limitations and NSPS means the concentration (milligrams/kilogram dry sediment) of the drilling fluid in...

  20. LIQUID CRYSTAL POLYMERS (LCP) USED AS A MACHINING FLUID CD

    EPA Science Inventory

    This interactive CD was produced to present the science, research activities, and beneficial environmental and machining advantages for utilizing Liquid Crystal Polymers (LCPs) as a machine fluid in the manufacturing industry.

    In 1995, the USEPA funded a project to cut flu...

  1. The Structure of High Speed Fluid Jets and Their Use in Cutting Various Soil and Material Types

    DTIC Science & Technology

    1975-04-30

    fluid , a reduction which grows with increase in Reynolds Number (Figure 101) . Franz states that this drag reduction might explain the...176 From photographs Goldin observed that Carbopol, a viscoinelastic fluid which does not give drag reduction , gave a lower jet cohesive...tension and viscoelasticity ), (5) prop- erties of the ambient fluid , (6) the steadiness of the jet flow, and (7) nozzle velocity. In the present study

  2. Method for maintaining a cutting blade centered in a kerf

    DOEpatents

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2002-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  3. Design and evaluation of a 3 million DN series-hybrid thrust bearing. [stability tests and fatigue tests

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Winn, L. W.; Eusepi, M.

    1976-01-01

    The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.

  4. Study on the effect of innovative leaching solvent on the oil removal for oily drilling cuttings

    NASA Astrophysics Data System (ADS)

    Li, Long; Ma, Cha; Hao, Weiwei; Li, Mu; Huang, Zhao; Liu, Yushuang

    2018-02-01

    A new type of leaching solvent for oily drilling cuttings was developed, and the effect of leaching solvent on the oil removal for oily cuttings was investigated. The results indicated that the leaching solvent had good capacity of oil removal for oily cuttings, and the oil content of treated cuttings is less than 0.6%. The leaching solvent could be separated from the oil phase through distillation, and the recyclable solvent could be reused to treat other cuttings. Moreover, oil resources adsorbed on the oily cuttings could be recycled and reused to prepare new drilling fluids, so the drilling cost could be reduced greatly. As a result, the leaching solvent could treat the oily cuttings effectively, and recycle and reuse oil resources, and thus produce great economic benefits. It can play an essential role in safe drilling jobs and improvement of drilling efficiency in the future.

  5. Prediction of Cutting Force in Turning Process-an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.

    2018-02-01

    This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.

  6. Dual Laser-Assisted Lamellar Anterior Keratoplasty with Tophat Graft: A Laboratory Study

    PubMed Central

    Cleary, Catherine; Song, Jonathan C.; Tang, Maolong; Li, Yan; Liu, Ying; Yiu, Samuel; Huang, David

    2011-01-01

    Objectives To develop a dual laser-assisted lamellar anterior keratoplasty (LALAK) technique, using excimer and femtosecond lasers to perform surgery on eye-bank eyes. Methods First we compared corneal stromal surfaces produced by (1) deep excimer ablation, (2) femtosecond lamellar cuts, and (3) manual dissection, and evaluated the effect of excimer laser smoothing with fluid masking on each surface. Masked observers graded scanning electron microscopy (SEM) images on a 5-point roughness scale. Then we performed a 6-mm diameter excimer laser phototherapeutic keratectomy (PTK) ablation to a residual bed thickness of 200μm, followed by laser smoothing. We used the femtosecond laser to cut donors in a modified top-hat design with a thin tapered brim, which fitted into a manually dissected circumferential pocket at the base of the recipient bed. Fourier-domain optical coherence tomography (OCT) was used to measure corneal pachymetry and evaluate graft fit. Results Deep excimer ablation with smoothing (n=4) produced a significantly (p<0.05) smoother surface (grade=3.5) than deep excimer alone (n=4, grade=3.8) or manual dissection with (n=1, grade=3.8) and without smoothing (n=1, grade=4.8). Deep femtosecond cuts (n=2) produced macroscopic concentric ridges on the stromal surface. Experimental LALAK was performed on 4 recipients prepared by deep excimer ablation and 4 donors cut with the femtosecond laser. After suturing good peripheral graft-host match was observed on FD-OCT imaging. Conclusion These preliminary studies show that the LALAK technique permits improved interface smoothness and graft edge matching. Clinical trials are needed to determine whether these improvements can translate to better vision. PMID:22378114

  7. Tubing and cable cutting tool

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  8. Amylase in drain fluid for the diagnosis of pancreatic leak in post-pancreatic resection.

    PubMed

    Davidson, Tsetsegdemberel Bat-Ulzii; Yaghoobi, Mohammad; Davidson, Brian R; Gurusamy, Kurinchi Selvan

    2017-04-07

    The treatment of people with clinically significant postoperative pancreatic leaks is different from those without clinically significant pancreatic leaks. It is important to know the diagnostic accuracy of drain fluid amylase as a triage test for the detection of clinically significant pancreatic leaks, so that an informed decision can be made as to whether the patient with a suspected pancreatic leak needs further investigations and treatment. There is currently no systematic review of the diagnostic test accuracy of drain fluid amylase for the diagnosis of clinically relevant pancreatic leak. To determine the diagnostic accuracy of amylase in drain fluid at 48 hours or more for the diagnosis of pancreatic leak in people who had undergone pancreatic resection. We searched MEDLINE, Embase, the Science Citation Index Expanded, and the National Institute for Health Research Health Technology Assessment (NIHR HTA) websites up to 20 February 2017. We searched the references of the included studies to identify additional studies. We did not restrict studies based on language or publication status, or whether data were collected prospectively or retrospectively. We also performed a 'related search' and 'citing reference' search in MEDLINE and Embase. We included all studies that evaluated the diagnostic test accuracy of amylase in the drain fluid at 48 hours or more for the diagnosis of pancreatic leak in people who had undergone pancreatic resection excluding total pancreatectomy. We planned to exclude case-control studies because these studies are prone to bias, but did not find any. At least two authors independently searched and screened the references produced by the search to identify relevant studies. Two review authors independently extracted data from the included studies. The included studies reported drain fluid amylase on different postoperative days and measured at different cut-off levels, so it was not possible to perform a meta-analysis using the bivariate model as planned. We have reported the sensitivity, specificity, post-test probability of a positive and negative drain fluid amylase along with 95% confidence interval (CI) on each of the different postoperative days and measured at different cut-off levels. A total of five studies including 868 participants met the inclusion criteria for this review. The five studies included in this review reported the value of drain fluid amylase at different thresholds and different postoperative days. The sensitivities and specificities were variable; the sensitivities ranged between 0.72 and 1.00 while the specificities ranged between 0.73 and 0.99 for different thresholds on different postoperative days. At the median prevalence (pre-test probability) of 15.9%, the post-test probabilities for pancreatic leak ranged between 35.9% and 95.4% for a positive drain fluid amylase test and ranged between 0% and 5.5% for a negative drain fluid amylase test.None of the studies used the reference standard of confirmation by surgery or by a combination of surgery and clinical follow-up, but used the International Study Group on Pancreatic Fistula (ISGPF) grade B and C as the reference standard. The overall methodological quality was unclear or high in all the studies. Because of the paucity of data and methodological deficiencies in the studies, we are uncertain whether drain fluid amylase should be used as a method for testing for pancreatic leak in an unselected population after pancreatic resection; and we judge that the optimal cut-off of drain fluid amylase for making the diagnosis of pancreatic leak is also not clear. Further well-designed diagnostic test accuracy studies with pre-specified index test threshold of drain fluid amylase (at three times more on postoperative day 5 or another suitable pre-specified threshold), appropriate follow-up (for at least six to eight weeks to ensure that there are no pancreatic leaks), and clearly defined reference standards (of surgical, clinical, and radiological confirmation of pancreatic leak) are important to reliably determine the diagnostic accuracy of drain fluid amylase in the diagnosis of pancreatic leak.

  9. Exposure to and precautions for blood and body fluids among workers in the funeral home franchises of Fort Worth, Texas.

    PubMed

    Nwanyanwu, O C; Tabasuri, T H; Harris, G R

    1989-08-01

    In 1982 the Centers for Disease Control published a set of recommendations and measures to protect persons working in health care settings or performing mortician services from possible exposure to the human immunodeficiency virus. This study of a number of funeral homes in the Fort Worth area was designed to determine the level of exposure of funeral home workers to blood and other body fluids and also to assess existing protective measures and practices in the industry. Workers in 22 funeral home franchises were surveyed with a predesigned questionnaire. Eighty-five responses from 20 of the 22 establishments were received. All 85 respondents admitted exposure of varying degrees to blood and body fluids. Sixty persons (70%) admitted heavy exposure, that is, frequent splashes. Analysis of the responses showed that 81 of 85 (95.3%) persons consistently wore gloves while performing tasks that might expose them to blood or other body fluids. Of the 60 persons who were heavily exposed, 43 wore long-sleeved gowns, 27 wore waterproof aprons, 17 surgical masks, and 15 goggles. The study further revealed that 52.9% (45/85) of the respondents had sustained accidental cuts or puncture wounds on the job. In light of these findings it is important to target educational efforts to persons in this industry to help them minimize their risks of infection with blood and body fluid borne infections.

  10. New evidence on the health hazards and control of metalworking fluids since completion of the OSHA advisory committee report.

    PubMed

    Mirer, Franklin E

    2010-08-01

    Metalworking fluids (MWF) are used in the manufacture of engines, transmissions, chassis parts and other products. In 2003, OSHA denied a union petition to promulgate a standard for MWF. The 3rd Circuit Court of Appeals rejected a union lawsuit to compel OSHA to regulate MWF. OSHA relied exclusively on the 1999 Metal Working Fluids Standards Advisory Committee report, therefore, only evidence available before 1999 was quoted supporting the denial. This review was conducted to identify studies published since 1998. Electronic reference sources were queried for the terms for metalworking fluids, machining fluids, cutting fluids, cutting oils, coolants, machining, and machinist. All items returned were reviewed for relevance to MWF regulation. The review noted 227 reports in the peer reviewed literature directly relevant to regulation of MWF exposures. Of these, 26 addressed cancer; 58 respiratory effects; 32 skin effects or absorption; 45 microbial contaminants; and 76 exposure measurements and controls. Three major studies identified excess cancer including lung, liver, pancreatic, laryngeal, and leukemia associated with MWF exposures. Reports strengthened associations of asthma and hypersensitivity pneumonitis with recent exposure to MWF. Material new evidence demonstrates significant risks to material impairment of health at prevailing exposure levels and feasibility of lower exposure limits. Copyright 2010 Wiley-Liss, Inc.

  11. Field Detection of Drugs of Abuse in Oral Fluid Using the Alere™ DDS®2 Mobile Test System with Confirmation by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Krotulski, Alex J; Mohr, Amanda L A; Friscia, Melissa; Logan, Barry K

    2018-04-01

    The collection and analysis of drugs in oral fluid (OF) at the roadside has become more feasible with the introduction of portable testing devices such as the Alere™ DDS®2 Mobile Test System (DDS®2). The objective of this study was to compare the on-site results for the DDS®2 to laboratory-based confirmatory assays with respect to detection of drugs of abuse in human subjects. As part of a larger Institutional Review Board approved study, two OF samples were collected from each participant at a music festival in Miami, FL, USA. One OF sample was field screened using the DDS®2, and a confirmatory OF sample was collected using the Quantisal™ OF collection device and submitted to the laboratory for testing. In total, 124 subjects participated in this study providing two contemporaneous OF samples. DDS®2 field screening yielded positive results for delta-9-tetrahydrocannabinol (THC) (n = 27), cocaine (n = 12), amphetamine (n = 3), methamphetamine (n = 3) and benzodiazepine (n = 1). No opiate-positive OF samples were detected. For cocaine, amphetamine, methamphetamine and benzodiazepines, the DDS®2 displayed sensitivity, specificity and accuracy of 100%. For THC, the DDS®2 displayed sensitivity of 90%, specificity of 100% and accuracy of 97.5%, when the threshold for confirmation matched that of the manufacturers advertised cut-off. When this confirmatory threshold was lowered to the analytical limit of detection (i.e., 1 ng/mL), apparent device performance for THC was poorer due to additional samples testing positive by confirmatory assay that had tested negative on the DDS®2, demonstrating a need for correlation between manufacturer cut-off and analytical reporting limit. These results from drug-using subjects demonstrate the value of field-based OF testing, and illustrate the significance of selecting an appropriate confirmation cut-off concentration with respect to performance evaluation and detection of drug use.

  12. Inorganic particle analysis of dental impression elastomers.

    PubMed

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  13. Integrated, Geothermal-CO2 Storage: An Adaptable, Hybrid, Multi-Stage, Energy-Recovery Approach to Reduce Carbon Intensity and Environmental Risk

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Chen, M.; Lu, C.; Sun, Y.; Hao, Y.; Elliot, T. R.; Celia, M. A.; Bielicki, J. M.

    2012-12-01

    The challenges of mitigating climate change and generating sustainable renewable energy are inseparable and can be addressed by synergistic integration of geothermal energy production with secure geologic CO2 storage (GCS). Pressure buildup can be a limiting factor for GCS and geothermal reservoir operations, due to a number of concerns, including the potential for CO2 leakage and induced seismicity, while pressure depletion can limit geothermal energy recovery. Water-use demands can also be a limiting factor for GCS and geothermal operations, particularly where water resources are already scarce. Economic optimization of geothermal-GCS involves trade-offs of various benefits and risks, along with their associated costs: (1) heat extraction per ton of delivered CO2, (2) permanent CO2 storage, (3) energy recovery per unit well (and working-fluid recirculation) costs, and (4) economic lifetime of a project. We analyze a hybrid, multi-stage approach using both formation brine and injected CO2 as working fluids to attempt to optimize the benefits of sustainable energy production and permanent CO2 storage, while conserving water resources and minimizing environmental risks. We consider a range of well-field patterns and operational schemes. Initially, the fluid production is entirely brine. After CO2 breakthrough, the fraction of CO2 in production, which is called the CO2 "cut", increases with time. Thus, brine is the predominant working fluid for early time, with the contribution of CO2 to heat extraction increasing with CO2 cut (and time). We find that smaller well spacing between CO2 injectors and producers favors earlier CO2 breakthrough and a more rapid rise in CO2 cut, which increases the contribution of recirculated CO2, thereby improving the heat extraction per ton of delivered CO2. On the other hand, larger well spacing increases permanent CO2 storage, energy production per unit well cost, while reducing the thermal drawdown rate, which extends the economic lifetime of a project. For the range of cases considered, we were never able to eliminate the co-production of brine; thus, brine management is likely to be important for reservoir operations, whether or not brine is considered as a candidate working fluid. Future work will address site-specific reservoir conditions and infrastructure factors, such as proximity to potential CO2 sources. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. A study of energy consumption in turning process using lubrication of nanoparticles enhanced coconut oil (NECO)

    NASA Astrophysics Data System (ADS)

    Mansor, A. F.; Zakaria, M. S.; Azmi, A. I.; Khalil, A. N. M.; Musa, N. A.

    2017-10-01

    Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.

  15. The Effect Of Hypotensive Resuscitation And Fluid Type On Mortality, Bleeding,Coagulation And Dysfunctional Inflammation In A Swine Grade V Liver Injury Model

    DTIC Science & Technology

    2012-01-01

    Once the swine were anesthetized, left cervical cut downs were performed and a central venous polyethylene catheter was inserted into the external...open and the liver injury will be examined for evidence of re-bleeding. The venous and arterial pressures at which re-bleeding occur will be...Fig. 1) Figure 1. Clamp used for the pig liver injury model The clamp is placed centrally in the liver and it produces laceration of 1

  16. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael S. Bruno

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less

  17. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  18. Effects of a semi-infinite stratification on the Rayleigh-Taylor instability in an interface with surface tension

    NASA Astrophysics Data System (ADS)

    de Andrea González, Ángel; González-Gutiérrez, Leo M.

    2017-09-01

    The Rayleigh-Taylor instability (RTI) in an infinite slab where a constant density lower fluid is initially separated from an upper stratified fluid is discussed in linear regime. The upper fluid is of increasing exponential density and surface tension is considered between both of them. It was found useful to study stability by using the initial value problem approach (IVP), so that we ensure the inclusion of certain continuum modes, otherwise neglected. This methodology includes the branch cut in the complex plane, consequently, in addition to discrete modes (surface RTI modes), a set of continuum modes (internal RTI modes) also appears. As a result, the usual information given by the normal mode method is now complete. Furthermore, a new role is found for surface tension: to transform surface RTI modes (discrete spectrum) into internal RTI modes belonging to a continuous spectrum at a critical wavenumber. As a consequence, the cut-off wavenumber disappears: i.e. the growth rate of the RTI surface mode does not decay to zero at the cut-off wavenumber, as previous researchers used to believe. Finally, we found that, due to the continuum, the asymptotic behavior of the perturbation with respect to time is slower than the exponential when only the continuous spectrum exists.

  19. Predictive Role of ADA in Bronchoalveolar Lavage Fluid in Making the Diagnosis of Pulmonary Tuberculosis.

    PubMed

    Binesh, Fariba; Halvani, Abolhassan

    2013-01-01

    Current diagnostic tests for tuberculosis (TB) are time-consuming. The aim of this study was to evaluate the diagnostic usefulness of ADA in bronchoalveolar lavage fluid in patients with pulmonary TB. A cross-sectional study was performed in Yazd, Iran, between 2009 and 2010. Patients suspected of pulmonary TB with negative sputum smear for AFB were included in the study. Mean ADA levels in BAL fluids were measured and compared between study groups. Sixty-three patients were enrolled in the study among which 15 cases had pulmonary TB, 33 had pulmonary diseases other than TB, and 15 subjects with normal bronchoscopy results were considered as controls. Mean ADA levels in BAL fluid were 4.13 ± 2.55, 2.42 ± 1.06, and 1.93 ± 0.88, respectively. This rate was significantly higher in the pulmonary TB group compared to the other two groups (P = 0.001). Using ROC curve with a cut-off value of 3.5 IU/L, the highest sensitivity (57%) and specificity (84%) were obtained in diagnosis of TB. The results showed that although ADA activity in BAL fluid of pulmonary TB patients was higher than those seen in other diseases, a negative test does not rule out pulmonary TB.

  20. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  1. Automated Cell-Cutting for Cell Cloning

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  2. Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid.

    PubMed

    Englert, Carsten; McGowan, Kevin B; Klein, Travis J; Giurea, Alexander; Schumacher, Barbara L; Sah, Robert L

    2005-04-01

    To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and (3)H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated (3)H-proline. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.

  3. Role of fetal sex in amniotic fluid alphafetoprotein screening.

    PubMed

    Knippel, Alexander Johannes

    2002-10-01

    Previous studies have shown that fetal gender has influence on various pregnancy complications and prenatal diagnostic biochemical markers. We have evaluated, whether elevation of amniotic fluid alphafetoprotein (AF AFP) is associated with fetal sex and whether a sex-related difference can help to identify pregnancies with AFP-associated malformations or fetal loss. From our database we obtained 6461 singleton gestations with AF AFP measurements for the period April 1997-March 1999. Patients with AF AFP >1.9 MoM were identified, details of pregnancy outcome were obtained and compared to matched-pair controls having AF AFP <2 MoM. In 232 of 262 patients having AF AFP levels >1.9 MoM outcome information was available. Of these fetuses, significantly more had male gender (147 male fetuses versus 85 female). Having a screen-positive result the risk of AFP-associated malformations was significantly higher for female fetuses (25 female fetuses (29.4%) versus 22 male fetuses (15%) with AFP-associated malformations). Adjusting the cut-off MoM to 2.5 for male and to 2.0 for female fetuses halves the false positive rate from 3.4 to 1.7% without affecting the detection rate of 95%. Pregnancies with false positive AF AFP had a significantly higher risk for fetal loss compared with pregnancies having normal AF AFP (ten fetal losses from 185 versus two fetal losses from 232), but fetal gender had no significant influence. Adjusting AF AFP MoM cut-offs for fetal gender could increase performance of AF-AFP screening. Larger studies are required to determine suitable sex-adjusted cut-off levels. Copyright 2002 John Wiley & Sons, Ltd.

  4. Application of gas-fluid atomization technology in ultrosonic vibration cutting titanium alloy workpiece

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Zhang, Yuangliang; Li, Xiaoyan; Sun, Baoyuan

    2009-11-01

    To further improve machined surface quality of diamond cutting titanium workpiece and reduce diamond tool wear, it puts forward a kind of machining technology with mixture of carbon dioxide gas, water and vegetable oil atomized mist as cooling media in the paper. The cooling media is sprayed to cutting area through gas-liquid atomizer device to achieve purpose of cooling, lubricating, and protecting diamond tool. Experiments indicate that carbon dioxide gas can touch cutting surface more adequately through using gas-liquid atomization technology, which makes iron atoms of cutting surface cause a chemical reaction directly with carbon in carbon dioxide gas and reduce graphitizing degree of diamond tool. Thus, this technology of using gas-liquid atomization and ultrasonic vibration together for cutting Titanium Alloy is able to improve machined surface quality of workpiece and slow of diamond tool wear.

  5. Effect of baffle spacing and baffle cut on thermal-hydraulic characteristics of the fluid flow

    NASA Astrophysics Data System (ADS)

    Chernyateva, R. R.

    2018-01-01

    This article presents the results of investigations of the influence of baffle spacing and baffle cut on the size of dead zone formed near the cross baffles using numerical simulation methods. It is showed the structure of an additional baffle plate which can be used to reduce the dead zone and smoother flow distribution over the cross section.

  6. Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs

    DOE Data Explorer

    Simmons, Stuart

    2017-01-25

    Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.

  7. The role of ascitic fluid viscosity in differentiating the nature of ascites and in the prediction of renal impairment and duration of ICU stay.

    PubMed

    Hanafy, Amr S

    2016-09-01

    Serum-ascites albumin gradient (SAAG) has been used in the classification of ascites for the last 20 years but it has some drawbacks. This study searches for possible correlations between ascitic fluid viscosity and the etiology of ascites, renal impairment, and length of ICU stay. The study was conducted in Zagazig University Hospital, Egypt. It included 240 patients with ascites due to various causes. The patients were divided into two groups: the cirrhotic ascites group, which included 120 patients, and the noncirrhotic ascites group, which included 120 patients. Ascitic patients on medical management with diuretics, antibiotics, paracentesis, and infusion of plasma or albumin were excluded.The laboratory analysis included routine investigations to detect the cause of ascites as well as specific investigations such as ascitic fluid viscosity using a falling ball viscosimeter (microviscosimeter) at 37°C. The mean ascitic viscosity of patients with SAAG at least 1.1 was 1.16±0.56, which was associated with serum creatinine 1.35±0.52 mg/dl and ICU stay of 3.3±1.2 days. In patients with SAAG less than 1.1 g/dl, the mean ascitic viscosity was 2.98±0.87, with serum creatinine 2.1±0.56 mg/dl and ICU stay of 7.1±1.3 days. Ascitic viscosity can discriminate ascites due to portal hypertension from those associated with nonportal hypertension at a cut-off value of 1.65; it can predict renal impairment in hepatic patients at a cut-off of 1.35 and long ICU stay at a cut-off of 1.995 using receiver operating characteristic analysis. Ascitic viscosity measurement is rapid, inexpensive, and requires small sample volumes. Ascitic viscosity can discriminate ascites due to portal hypertension from those associated with nonportal hypertension at a cut-off value of 1.65. It can predict renal impairment in hepatic patients at a cut-off of 1.35 and long ICU stay at a cut-off of 1.995.

  8. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  9. Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyoung; Mazumder, Jyotirmoy

    2018-02-01

    One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.

  10. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting

    NASA Astrophysics Data System (ADS)

    Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-07-01

    A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.

  11. A comparison of the thermal and hydraulic performances between miniature pin fin heat sink and microchannel heat sink with zigzag flow channel together with using nanofluids

    NASA Astrophysics Data System (ADS)

    Duangthongsuk, Weerapun; Wongwises, Somchai

    2018-05-01

    In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 × 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24-55% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area.

  12. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  13. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook

    2017-03-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.

  14. Intestinal Malrotation

    MedlinePlus

    ... bowel twists on itself, cutting off the blood flow to the tissue and causing the tissue to ... stomach and upper intestines. This keeps fluid and gas from building up in the abdomen. The child ...

  15. Interleukin-6 in serum and in synovial fluid enhances the differentiation between periprosthetic joint infection and aseptic loosening.

    PubMed

    Randau, Thomas M; Friedrich, Max J; Wimmer, Matthias D; Reichert, Ben; Kuberra, Dominik; Stoffel-Wagner, Birgit; Limmer, Andreas; Wirtz, Dieter C; Gravius, Sascha

    2014-01-01

    The preoperative differentiation between septic and aseptic loosening after total hip or knee arthroplasty is essential for successful therapy and relies in part on biomarkers. The objective of this study was to assess synovial and serum levels of inflammatory proteins as diagnostic tool for periprosthetic joint infection and compare their accuracy with standard tests. 120 patients presenting with a painful knee or hip endoprosthesis for surgical revision were included in this prospective trial. Blood samples and samples of intraoperatively acquired joint fluid aspirate were collected. White blood cell count, C-reactive protein, procalcitonin and interleukin-6 were determined. The joint aspirate was analyzed for total leukocyte count and IL-6. The definite diagnosis of PJI was determined on the basis of purulent synovial fluid, histopathology and microbiology. IL-6 in serum showed significantly higher values in the PJI group as compared to aseptic loosening and control, with specificity at 58.3% and a sensitivity of 79.5% at a cut-off value of 2.6 pg/ml. With a cut-off >6.6 pg/ml, the specificity increased to 88.3%. IL-6 in joint aspirate had, at a cut-off of >2100 pg/ml, a specificity of 85.7% and sensitivity of 59.4%. At levels >9000 pg/ml, specificity was almost at 100% with sensitivity just below 50%, so PJI could be considered proven with IL-6 levels above this threshold. Our data supports the published results on IL-6 as a biomarker in PJI. In our large prospective cohort of revision arthroplasty patients, the use of IL-6 in synovial fluid appears to be a more accurate marker than either the white blood cell count or the C-reactive protein level in serum for the detection of periprosthetic joint infection. On the basis of the results we recommend the use of the synovial fluid biomarker IL-6 for the diagnosis of periprosthetic joint infection following total hip and knee arthroplasty.

  16. Hydrodynamic blade guide

    DOEpatents

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  17. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  18. Establishment of a Cutting Fluid Control System (Phase 1)

    DTIC Science & Technology

    1981-01-01

    that prevent or reduce welding of contacting areas and minimize both material transfer and generation of metallic debris within the contact zone...not on ceramic abrasives. Welding between ceramics and workpiece materials is, however, less of a problem than metal-metal contact phenomena in...fluid film (hatched area) - no wear and low friction. Mating surfaces contacting at asperities with local plastic deformation and welding - wear with

  19. Entropy of level-cut random Gaussian structures at different volume fractions

    NASA Astrophysics Data System (ADS)

    Marčelja, Stjepan

    2017-10-01

    Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.

  20. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    NASA Astrophysics Data System (ADS)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and under-predicted the velocity change from fluid substitution. The mathematical approach proved to be a poor comparison for the laboratory measurement. DRP proved to be effective, and could be used in future with drill cuttings, perhaps to limit the use of expensive cores. DRP could also limit the requirement for physically testing fluid substitution.

  1. Bartholin cyst or abscess

    MedlinePlus

    ... is very rare. Any vaginal discharge or fluid drainage will be sent to a lab for testing. ... and closes quickly. Therefore, the abscess often returns. DRAINAGE OF THE ABSCESS A small surgical cut can ...

  2. 40 CFR 435.41 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., safety showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the...

  3. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  4. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  5. Performance of single-use and multiuse diamond rotary cutting instruments with turbine and electric handpieces.

    PubMed

    Rotella, Mario; Ercoli, Carlo; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2014-01-01

    As single-use rotary cutting instruments and electric handpieces become more available, the performance of these instruments with electric as compared to turbine handpieces requires evaluation. In addition, if rotary cutting instruments marketed as single-use instruments are used for multiple patients, the effects on their performance of cleaning, sterilization, and repeated use are of interest to the clinician. The purpose of the study was to evaluate how the cleaning, autoclaving, and repeated use of single-use and multiuse rotary cutting instruments, with either a turbine or electric handpiece, affected their performance. The effects on cutting performance of 2 handpieces (turbine and electric), 2 cleaning and sterilization conditions (cleaned and autoclaved versus noncleaned and nonautoclaved), and 6 different diamond rotary cutting instruments (4 single-use and 2 multiuse) during simulated tooth preparations were evaluated by using a 24-treatment condition full-factorial experimental design. A computer-controlled dedicated testing apparatus was used to simulate the cutting procedures, and machinable glass ceramic blocks were used as the cutting substrate for tangential cuts. In addition, for each treatment condition, 8 consecutive cuts, for a total of 192 cuts, were measured to assess the durability of the rotary cutting instruments. A linear mixed model was used to study the effect of instrument type, handpiece, cleaning, and sterilization, as well as the status and number of cuts on the outcome variables. The Tukey honestly significant difference test was used for the post hoc pairwise comparisons (α=.05). Performance, as measured by the rate of advancement, decreased with the repeated use of rotary cutting instruments (P<.001), while cleaning and sterilization procedures improved the average performance of the 8 cuts (P=.002). The electric handpiece showed a greater load than the turbine (P<.001) and a lower rate/load metric, but no differences in the rate of advancement. Significant differences were also detected among the different rotary cutting instruments tested with the Two Striper, which showed the highest cumulative performance of all groups. The repeated use of both single-use and multiuse rotary cutting instruments decreased cutting performance. The use of a cleaning and sterilization procedure between cuts improved the average cutting performance. During a tangential cutting process, although the ease of advancement (rate/load) was greater for the turbine, the electric handpiece did not produce a statistically different cutting rate. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. Cannabinoids in oral fluid following passive exposure to marijuana smoke.

    PubMed

    Moore, Christine; Coulter, Cynthia; Uges, Donald; Tuyay, James; van der Linde, Susanne; van Leeuwen, Arthur; Garnier, Margaux; Orbita, Jonathan

    2011-10-10

    The concentration of tetrahydrocannabinol (THC) and its main metabolite 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) as well as cannabinol (CBN), and cannabidiol (CBD) were measured in oral fluid following realistic exposure to marijuana in a Dutch coffee-shop. Ten healthy subjects, who were not marijuana smokers, volunteered to spend 3h in two different coffee shops in Groningen, The Netherlands. Subjects gave two oral fluid specimens at each time point: before entering the store, after 20 min, 40 min, 1h, 2h, and 3h of exposure. The specimens were collected outside the shop. Volunteers left the shop completely after 3h and also provided specimens approximately 12-22 h after beginning the exposure. The oral fluid specimens were subjected to immunoassay screening; confirmation for THC, cannabinol and cannabidiol using GC/MS; and THC-COOH using two-dimensional GC-GC/MS. THC was detectable in all oral fluid specimens taken 3h after exposure to smoke from recreationally used marijuana. In 50% of the volunteers, the concentration at the 3h time-point exceeded 4 ng/mL of THC, which is the current recommended cut-off concentration for immunoassay screening; the concentration of THC in 70% of the oral fluid specimens exceeded 2 ng/mL, currently proposed as the confirmatory cut-off concentration. THC-COOH was not detected in any specimens from passively exposed individuals. Therefore it is recommended that in order to avoid false positive oral fluid results assigned to marijuana use, by analyzing for only THC, the metabolite THC-COOH should also be monitored. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT

    NASA Astrophysics Data System (ADS)

    Khoshnamvand, Younes; Assareh, Mehdi

    2018-04-01

    In this study, free volume theory ( FVT) in combination with perturbed-chain statistical associating fluid theory is implemented for viscosity prediction of petroleum reservoir fluids containing ill-defined components such as cuts and plus fractions. FVT has three adjustable parameters for each component to calculate viscosity. These three parameters for petroleum cuts (especially plus fractions) are not available. In this work, these parameters are determined for different petroleum fractions. A model as a function of molecular weight and specific gravity is developed using 22 real reservoir fluid samples with API grades in the range of 22 to 45. Afterward, the proposed model accuracy in comparison with the accuracy of De la Porte et al. with reference to experimental data is presented. The presented model is used for six real samples in an evaluation step, and the results are compared with available experimental data and the method of De la Porte et al. Finally, the method of Lohrenz et al. and the method of Pedersen et al. as two common industrial methods for viscosity calculation are compared with the proposed approach. The absolute average deviation was 9.7 % for free volume theory method, 15.4 % for Lohrenz et al., and 22.16 for Pedersen et al.

  8. Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre

    2018-04-01

    The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.

  9. Perioperative fluid therapy: defining a clinical algorithm between insufficient and excessive.

    PubMed

    Strunden, Mike S; Tank, Sascha; Kerner, Thoralf

    2016-12-01

    In the perioperative scenario, adequate fluid and volume therapy is a challenging task. Despite improved knowledge on the physiology of the vascular barrier function and its respective pathophysiologic disturbances during the perioperative process, clear-cut therapeutic principles are difficult to implement. Neglecting the physiologic basis of the vascular barrier and the cardiovascular system, numerous studies proclaiming different approaches to fluid and volume therapy do not provide a rationale, as various surgical and patient risk groups, and different fluid regimens combined with varying hemodynamic measures and variable algorithms led to conflicting results. This review refers to the physiologic basis and answers questions inseparably conjoined to a rational approach to perioperative fluid and volume therapy: Why does fluid get lost from the vasculature perioperatively? Whereto does it get lost? Based on current findings and rationale considerations, which fluid replacement algorithm could be implemented into clinical routine? Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of Different Cutting Patterns and Experimental Conditions on the Performance of a Conical Drag Tool

    NASA Astrophysics Data System (ADS)

    Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre

    2017-06-01

    This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.

  11. An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mese, Ali; Dvorkin, Jack; Shillinglaw, John

    2000-09-11

    This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.

  12. Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability

    NASA Astrophysics Data System (ADS)

    Miller, Hannah M.; Matter, Jürg M.; Kelemen, Peter; Ellison, Eric T.; Conrad, Mark E.; Fierer, Noah; Ruchala, Tyler; Tominaga, Masako; Templeton, Alexis S.

    2016-04-01

    The Samail ophiolite in Oman is undergoing modern hydration and carbonation of peridotite and may host a deep subsurface biosphere. Previous investigations of hyperalkaline fluids in Oman have focused on fluids released at surface seeps, which quickly lose their reducing character and precipitate carbonates upon contact with the O2/CO2-rich atmosphere. In this work, geochemical analysis of rocks and fluids from the subsurface provides new insights into the operative reactions in serpentinizing aquifers. Serpentinite rock and hyperalkaline fluids (pH > 10), which exhibit millimolar concentrations of Ca2+, H2 and CH4, as well as variable sulfate and nitrate, were accessed from wells situated in mantle peridotite near Ibra and studied to investigate their aqueous geochemistry, gas concentrations, isotopic signatures, mineralogy, Fe speciation and microbial community composition. The bulk mineralogy of drill cuttings is dominated by olivine, pyroxene, brucite, serpentine and magnetite. At depth, Fe-bearing brucite is commonly intermixed with serpentine, whereas near the surface, olivine and brucite are lost and increased magnetite and serpentine is detected. Micro-Raman spectroscopy reveals at least two distinct generations of serpentine present in drill cuttings recovered from several depths from two wells. Fe K-edge X-ray absorption near-edge spectroscopy (XANES) analysis of the lizardite shows a strong tetrahedral Fe coordination, suggesting a mixture of both Fe(II) and Fe(III) in the serpentine. Magnetite veins are also closely associated with this second generation serpentine, and 2-10 μm magnetite grains overprint all minerals in the drill cuttings. Thus we propose that the dissolved H2 that accumulates in the subsurface hyperalkaline fluids was evolved through low temperature oxidation and hydration of relict olivine, as well as destabilization of pre-existing brucite present in the partially serpentinized dunites and harzburgites. In particular, we hypothesize that Fe-bearing brucite is currently reacting with dissolved silica in the aquifer fluids to generate late-stage magnetite, additional serpentine and dissolved H2. Dissolved CH4 in the fluids exhibits the most isotopically heavy carbon in CH4 reported in the literature thus far. The CH4 may have formed through abiotic reduction of dissolved CO2 or through biogenic pathways under extreme carbon limitation. The methane isotopic composition may have also been modified by significant methane oxidation. 16S rRNA sequencing of DNA recovered from filtered hyperalkaline well fluids reveals an abundance of Meiothermus, Thermodesulfovibrionaceae (sulfate-reducers) and Clostridia (fermenters). The fluids also contain candidate phyla OP1 and OD1, as well as Methanobacterium (methanogen) and Methylococcus sp. (methanotroph). The composition of these microbial communities suggests that low-temperature hydrogen and methane generation, coupled with the presence of electron acceptors such as nitrate and sulfate, sustains subsurface microbial life within the Oman ophiolite.

  13. Conventional and alternative matrices for driving under the influence of cannabis: recent progress and remaining challenges.

    PubMed

    Wille, Sarah M R; Ramírez-Fernandez, Maria Del Mar; Samyn, Nele; De Boeck, Gert

    2010-04-01

    In the past decade much research concerning the impact of cannabis use on road safety has been conducted. More specifically, studies on effects of cannabis smoking on driving performance, as well as epidemiological studies and cannabis-detection techniques have been published. As a result, several countries have adopted driving under the influence of drugs (DUID) legislations, with varying approaches worldwide. A wide variety of bodily fluids have been utilized to determine the presence of cannabis. Urine and blood are the most widely used matrices for DUID legislations. However, more and more publications focus on the usability of oral fluid testing for this purpose. Each matrix provides different information about time and extent of use and likelihood of impairment. This review will focus on the practical aspects of implying a DUID legislation. The pros and cons of the different biological matrices used for Δ(9)-tetrahydrocannabinol screening and quantification will be discussed. In addition, a literature overview concerning (roadside) cannabinoid detection, as well as laboratory confirmation techniques is given. Finally, we will discuss important issues influencing interpretation of these data, such as oral fluid collection, choice of cut-offs, stability and proficiency testing.

  14. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies.

    PubMed

    Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R

    2013-03-01

    The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.

  15. Pre-cut Filter Paper for Detecting Anti-Japanese Encephalitis Virus IgM from Dried Cerebrospinal Fluid Spots

    PubMed Central

    Bharucha, Tehmina; Chanthongthip, Anisone; Phuangpanom, Soumphou; Phonemixay, Ooyanong; Sengvilaipaseuth, Onanong; Vongsouvath, Manivanh; Lee, Sue; Newton, Paul N.; Dubot-Pérès, Audrey

    2016-01-01

    Background The use of filter paper as a simple, inexpensive tool for storage and transportation of blood, ‘Dried Blood Spots’ or Guthrie cards, for diagnostic assays is well-established. In contrast, there are a paucity of diagnostic evaluations of dried cerebrospinal fluid (CSF) spots. These have potential applications in low-resource settings, such as Laos, where laboratory facilities for central nervous system (CNS) diagnostics are only available in Vientiane. In Laos, a major cause of CNS infection is Japanese encephalitis virus (JEV). We aimed to develop a dried CSF spot protocol and to evaluate its diagnostic performance using the World Health Organisation recommended anti-JEV IgM antibody capture enzyme-linked immunosorbent assay (JEV MAC-ELISA). Methodology and Principal Findings Sample volumes, spotting techniques and filter paper type were evaluated using a CSF-substitute of anti-JEV IgM positive serum diluted in Phosphate Buffer Solution (PBS) to end-limits of detection by JEV MAC-ELISA. A conventional protocol, involving eluting one paper punch in 200μl PBS, did not detect the end-dilution, nor did multiple punches utilising diverse spotting techniques. However, pre-cut filter paper enabled saturation with five times the volume of CSF-substitute, sufficiently improving sensitivity to detect the end-dilution. The diagnostic accuracy of this optimised protocol was compared with routine, neat CSF in a pilot, retrospective study of JEV MAC-ELISA on consecutive CSF samples, collected 2009–15, from three Lao hospitals. In comparison to neat CSF, 132 CSF samples stored as dried CSF spots for one month at 25–30°C showed 81.6% (65.7–92.3 95%CI) positive agreement, 96.8% (91.0–99.3 95%CI) negative agreement, with a kappa coefficient of 0.81 (0.70–0.92 95%CI). Conclusions/Significance The novel design of pre-cut filter paper saturated with CSF could provide a useful tool for JEV diagnostics in settings with limited laboratory access. It has the potential to improve national JEV surveillance and inform vaccination policies. The saturation of filter paper has potential use in the wider context of pathogen detection, including dried spots for detecting other analytes in CSF, and other body fluids. PMID:26986061

  16. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.

  17. Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes.

    PubMed

    Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa

    2012-07-01

    To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.

  18. Fluorescent adduct formation with terbium: a novel strategy for transferrin glycoform identification in human body fluids and carbohydrate-deficient transferrin HPLC method validation.

    PubMed

    Sorio, Daniela; De Palo, Elio Franco; Bertaso, Anna; Bortolotti, Federica; Tagliaro, Franco

    2017-02-01

    This paper puts forward a new method for the transferrin (Tf) glycoform analysis in body fluids that involves the formation of a transferrin-terbium fluorescent adduct (TfFluo). The key idea is to validate the analytical procedure for carbohydrate-deficient transferrin (CDT), a traditional biochemical serum marker to identify chronic alcohol abuse. Terbium added to a human body-fluid sample produced TfFluo. Anion exchange HPLC technique, with fluorescence detection (λ exc 298 nm and λ em 550 nm), permitted clear separation and identification of Tf glycoform peaks without any interfering signals, allowing selective Tf sialoforms analysis in human serum and body fluids (cadaveric blood, cerebrospinal fluid, and dried blood spots) hampered for routine test. Serum samples (n = 78) were analyzed by both traditional absorbance (Abs) and fluorescence (Fl) HPLC methods and CDT% levels demonstrated a significant correlation (p < 0.001 Pearson). Intra- and inter-runs CV% was 3.1 and 4.6%, respectively. The cut-off of 1.9 CDT%, related to the HPLC Abs proposed as the reference method, by interpolation in the correlation curve with the present method demonstrated a 1.3 CDT% cut-off. Method comparison by Passing-Bablok and Bland-Altman tests demonstrated Fl versus Abs agreement. In conclusion, the novel method is a reliable test for CDT% analysis and provides a substantial analytical improvement offering important advantages in terms of types of body fluid analysis. Its sensitivity and absence of interferences extend clinical applications being reliable for CDT assay on body fluids usually not suitable for routine test. Graphical Abstract The formation of a transferrin-terbium fluorescent adduct can be used to analyze the transferrin glycoforms. The HPLC method for carbohydrate-deficient transferrin (CDT%) measurement was validated and employed to determine the levels in different body fluids.

  19. Design and Fabrication of Automatic Glass Cutting Machine

    NASA Astrophysics Data System (ADS)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  20. Design and Test Research on Cutting Blade of Corn Harvester Based on Bionic Principle.

    PubMed

    Tian, Kunpeng; Li, Xianwang; Zhang, Bin; Chen, Qiaomin; Shen, Cheng; Huang, Jicheng

    2017-01-01

    Existing corn harvester cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cut quality. Using bionics principles, a bionic blade was designed by extracting the cutting tooth profile curve of the B. horsfieldi palate. Using a double-blade cutting device testing system, a single stalk cutting performance contrast test for corn stalks obtained at harvest time was carried out. Results show that bionic blades have superior performance, demonstrated by strong cutting ability and good cut quality. Using statistical analysis of two groups of cutting test data, the average cutting force and cutting energy of bionic blades and ordinary blades were obtained as 480.24 N and 551.31 N and 3.91 J and 4.38 J, respectively. Average maximum cutting force and cutting energy consumption for the bionic blade were reduced by 12.89% and 10.73%, respectively. Variance analysis showed that both blade types had a significant effect on maximum cutting energy and cutting energy required to cut a corn stalk. This demonstrates that bionic blades have better cutting force and energy consumption reduction performance than ordinary blades.

  1. Tethyan Anhydrite Preserved in the Lower Ocean Crust of the Samail Ophiolite? Evidence from Oman Drilling Project Holes GT1A and 2A

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.; Harris, M.; Crispini, L.; Deans, J. R.; Cooper, M. J.; Kelemen, P. B.; Alt, J.; Banerjee, N.; Shanks, W. C., III

    2017-12-01

    Anhydrite is important in mid-ocean ridge hydrothermal systems because of the high concentrations of calcium and sulfate in modern seawater and anhydrite's retrograde solubility. Because anhydrite hosts many powerful tracers of fluid-rock interactions (87Sr/86Sr, δ18O, δ34S, trace elements, fluid inclusions) it is useful for tracing the chemical evolution of hydrothermal recharge fluids and estimating time-integrated fluid fluxes. Anhydrite can form from heated seawater (>100°C), through water-rock reaction, or by mixing of seawater and hydrothermal fluids. Although abundant in active hydrothermal mounds, and predicted to form from downwelling, warming fluids during convection, anhydrite is rare in drill core from seafloor lavas, sheeted dikes and upper gabbros, with only minor amounts in ODP Holes 504B and 1256D. Because anhydrite can dissolve during weathering, its occurrence in ophiolites is unexpected. Instead, gypsum is present in Macquarie Island lavas and Miocene gypsum fills cavities within the Cretaceous Troodos ore deposits. Thus, the occurrence of numerous anhydrite veins in cores from the gabbroic lower crust of the Samail ophiolite in Oman was unanticipated. To our knowledge, anhydrite in Oman gabbros has not been previously reported. Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Gideah section of the Wadi Tayin massif. Both recovered 400 m of continuous core from sections of layered gabbros (GT1) and the foliated-layered gabbro transition (GT2). Anhydrite is present throughout both holes, some in vein networks but more commonly as isolated 1-110 mm veins (>60 mm ave). Anhydrite is mostly the sole vein filling but can occur with greenschist minerals such as epidote, quartz, chlorite and prehnite. Anhydrite commonly exhibits prismatic and bladed textures but can also be capriciously microcrystalline. Though definitive cross cutting relationships are elusive, anhydrite veins cut across some greenschist veins. Anhydrite is deformed in faults with asymmetries consistent with normal senses of shear, suggestive of formation near the ridge, or at least before obduction. Gypsum is also present in both holes, but is clearly late stage and cuts across all earlier vein sets and deformation features. Notably, anhydrite was not observed in core from Hole GT3, in the dike-gabbro transition.

  2. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  3. Investigating Created Properties of Nanoparticles Based Drilling Mud

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  4. Microwave drying remediation of petroleum-contaminated drill cuttings.

    PubMed

    Júnior, Irineu Petri; Martins, André Leibsohn; Ataíde, Carlos H; Duarte, Cláudio R

    2017-07-01

    The oil reservoir drilling phase generates contaminated cuttings with oil formation itself. These cuttings must be subjected to a decontamination process before being disposed of in the environment. Several technologies are cited in literature for the remediation of soil contaminated with oil or diesel, but none have been reported to remedy drill cuttings contaminated with oil from reservoir. The reservoir drill cuttings are a problem because its discharge is not allowed. The drying technology using microwave has shown promise in the decontamination of cuttings with non-aqueous base drilling fluid, conciliating good robustness and high removal efficiency. Considering the aspects mentioned previously, the application of heating and drying technology using microwave in the remediation of oil contaminated cuttings from well drill was studied. The influence of temperature, specific energy and initial content of water in the drying operation of the reservoir cuttings and of the drilling cuttings artificially contaminated with oil were analyzed. The results showed an influence of temperature in the drying of the cuttings, being necessary to reach the boiling temperature of heavier hydrocarbons to reach an efficient removal in the operation. The specific energy has a strong influence, reaching a total decontamination using 2.67 kWh/kg. The initial water content was effective in removing oil, reducing the residual level of oil with the increase of initial content of water. It also modifies the temperature profiles of the kinetic-warming of the contaminated cuttings. Both the technology and the equipment used proved effective for obtaining total decontamination of oil from the cuttings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fluid-inclusion evidence for previous higher temperatures in the SUNEDCO 58-28 drill hole near Breitenbush hot springs, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; ,

    1993-01-01

    The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.

  6. Viscous entrainment on hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Brun, P.-T.; Hosoi, A. E.

    2018-02-01

    Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavignet, A.A.; Wick, C.J.

    In current practice, pressure drops in the mud circulating system and the settling velocity of cuttings are calculated with simple rheological models and simple equations. Wellsite computers now allow more sophistication in drilling computations. In this paper, experimental results on the settling velocity of spheres in drilling fluids are reported, along with rheograms done over a wide range of shear rates. The flow curves are fitted to polynomials and general methods are developed to predict friction losses and settling velocities as functions of the polynomial coefficients. These methods were incorporated in a software package that can handle any rig configurationmore » system, including riser booster. Graphic displays show the effect of each parameter on the performance of the circulating system.« less

  8. Numerical analysis on the cutting and finishing efficiency of MRAFF process

    NASA Astrophysics Data System (ADS)

    Lih, F. L.

    2016-03-01

    The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.

  9. Creative Turbulence: Experiments in Art and Physics

    NASA Astrophysics Data System (ADS)

    Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh

    2016-11-01

    Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.

  10. Improving the performance of galloping micro-power generators by passively manipulating the trailing edge

    NASA Astrophysics Data System (ADS)

    Noel, J.; Yadav, R.; Li, G.; Daqaq, M. F.

    2018-02-01

    Recent trends in distributed sensing networks have generated significant interest in the design of scalable micro-power generators. One such device exploits the galloping oscillations of a prism to harness energy from a moving fluid. Performance of galloping harvester's depends on the flow patterns around the prism, which, in turn, depend on its geometry and the Reynolds number of the flow. In this letter, we demonstrate that the useful range of the galloping instability can be extended by attaching a rigid splitter plate to the rear face of the prism. The plate provides a secondary flow reattachment point, which serves to improve the oscillation amplitude and power output of the generator. Experimental results demonstrate as much as 67% power enhancement for some prism geometries and a significant reduction in the cut-in wind speed of the generator.

  11. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    PubMed

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  12. The LS-STAG immersed boundary method for non-Newtonian flows in irregular geometries: flow of shear-thinning liquids between eccentric rotating cylinders

    NASA Astrophysics Data System (ADS)

    Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire

    2015-04-01

    This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.

  13. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  14. Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  15. The marriage of surgical simulation and telementoring for damage-control surgical training of operational first responders: A pilot study

    PubMed Central

    Kirkpatrick, Andrew W.; Tien, Homer; LaPorta, Anthony T.; Lavell, Kit; Keillor, Jocelyn; Wright Beatty, Heather E.; McKee, Jessica Lynn; Brien, Susan; Roberts, Derek J.; Wong, Jonathan; Ball, Chad G.; Beckett, Andrew

    2015-01-01

    BACKGROUND Hemorrhage is the leading cause of preventable posttraumatic death. Many such deaths may be potentially salvageable with remote damage-control surgical interventions. As recent innovations in information technology enable remote specialist support to point-of-care providers, advanced interventions, such as remote damage-control surgery, may be possible in remote settings. METHODS An anatomically realistic perfused surgical training mannequin with intrinsic fluid loss measurements (the “Cut Suit”) was used to study perihepatic packing with massive liver hemorrhage. The primary outcome was loss of simulated blood (water) during six stages, namely, incision, retraction, direction, identification, packing, and postpacking. Six fully credentialed surgeons performed the same task as 12 military medical technicians who were randomized to remotely telementored (RTM) (n = 7) or unmentored (UTM) (n=5) real-time guidance by a trauma surgeon. RESULTS There were no significant differences in fluid loss between the surgeons and the UTM group or between the UTM and RTM groups. However, when comparing the RTM group with the surgeons, there was significantly more total fluid loss (p = 0.001) and greater loss during the identification (p = 0.002), retraction (p = 0.035), direction (p = 0.014), and packing(p = 0.022) stages. There were no significant differences in fluid loss after packing between the groups despite differences in the number of sponges used; RTM group used more sponges than the surgeons and significantly more than the UTM group (p = 0.048). However, mentoring significantly increased self-assessed nonsurgeon procedural confidence (p = 0.004). CONCLUSION Perihepatic packing of an exsanguinating liver hemorrhage model was readily performed by military medical technicians after a focused briefing. While real-time telementoring did not improve fluid loss, it significantly increased nonsurgeon procedural confidence, which may augment the feasibility of the concept by allowing them to undertake psychologically daunting procedures. PMID:26422331

  16. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.

    PubMed

    Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon

    2015-05-01

    To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.

  17. Numerical investigation of heat transfer and friction factor characteristics in a circular tube fitted with V-cut twisted tape inserts.

    PubMed

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2013-01-01

    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.

  18. Numerical Investigation of Heat Transfer and Friction Factor Characteristics in a Circular Tube Fitted with V-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2013-01-01

    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795

  19. A database of archived drilling records of the drill cuttings piles at the North West Hutton oil platform.

    PubMed

    Marsh, Roy

    2003-05-01

    Drill cuttings piles are found underneath several hundred oil platforms in the North Sea, and are contaminated with hydrocarbons and chemical products. This study characterised the environmental risk posed by the cuttings pile at the North West Hutton (NWH) oil platform. Data on the drilling fluids and chemical products used over the platform's drilling history were transferred from archived well reports into a custom database, to which were added toxicological and safety data. Although the database contained many gaps, it established that only seven chemical products used at NWH were not in the lowest category of the Offshore Chemicals Notification Scheme, and were used in only small quantities. The study therefore supports the view that the main environmental risk posed by cuttings piles comes from hydrocarbon contamination. The (dated) well records could help future core sampling to be targeted at specific locations in the cuttings piles. Data from many platforms could also be pooled to determine generic 'discharge profiles.' Future study would benefit from the existence, in the public domain, of a standardised, 'legacy' database of chemical products.

  20. Bronchoalveolar lavage fluid in Standardbred racehorses: influence of unilateral/bilateral profiles and cut-off values on lower airway disease diagnosis.

    PubMed

    Depecker, Marianne; Richard, Eric A; Pitel, Pierre-Hugues; Fortier, Guillaume; Leleu, Claire; Couroucé-Malblanc, Anne

    2014-01-01

    The aim of this study was to determine whether the lung side being sampled would significantly influence bronchoalveolar lavage (BAL) cytological profiles and subsequent diagnosis in Standardbred racehorses. One hundred and thirty-eight French Trotters in active training and racing were included in a prospective observational study. BAL was performed using videoendoscopy in both right and left lungs during summer meetings in 2011 (64 horses) and 2012 (74 horses). Cytological data performed 24h later from right and left lungs were compared and specifically used to classify horses as affected with exercise-induced pulmonary haemorrhage (EIPH), inflammatory airway disease (IAD), or were 'controls'. For IAD, cytological definition was based on two different cut off values. Neutrophil percentages, haemosiderophage percentages and the haemosiderophage/macrophage (H/M) ratios were significantly higher in the right compared to the left lung. Measures of intra-class correlation coefficients revealed a fair agreement between left and right lungs for percentages of mast cells, eosinophils, and for the H/M ratio, and a moderate agreement for neutrophil percentages. Fair to moderate agreements were observed between left and right lungs for the diagnosis of IAD and/or EIPH based on kappa coefficients. When sampling one lung only, the risk of incorrectly classifying a horse as a 'control' increased with the use of the restraint cut-off values for IAD. As BAL from one lung is not representative of the other lung in the same horse, both lungs should be sampled for a better assessment of lung cellularity and for a precise diagnosis of lower airway diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Exposure to metal-working fluids in the automobile industry and the risk of male germ cell tumours.

    PubMed

    Behrens, Thomas; Pohlabeln, Hermann; Mester, Birte; Langner, Ingo; Schmeisser, Nils; Ahrens, Wolfgang

    2012-03-01

    In a previous analysis of a case-control study of testicular cancer nested in a cohort of automobile workers, we observed an increased risk for testicular cancer among workers who had ever been involved in occupational metal-cutting tasks. We investigated whether this risk increase was due to exposure to metal-working fluids (MWF). Occupational exposure to MWF was assessed in detail using a job-specific questionnaire for metal-cutting work. We calculated ORs and associated 95% CIs individually matched for age (±2 years) and adjusted for a history of cryptorchidism by conditional logistic regression. The prevalence of exposure to MWF was 39.8% among cases and 40.1% among controls. For total germ cell tumours and seminomas we did not observe risk increases for metal-cutting tasks or occupational exposure to MWF (OR 0.95; 95% CI 0.69 to 1.32 and OR 0.88; 95% CI 0.58 to 1.35, respectively). However, dermal exposure to oil-based MWF was associated with an increased risk for non-seminomatous testicular cancer. Dermal exposure to oil-based MWF for more than 5000 h showed particularly high risk estimates (OR 4.72; 95% CI 1.48 to 15.09). Long-term dermal exposure to oil-based MWF was a risk factor for the development of non-seminomatous testicular germ cell cancer. Possible measures to reduce exposure include the introduction of engineering control measures such as venting or enclosing of machines, and enforcing the use of personal protective equipment during metal cutting.

  2. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.

    PubMed

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook

    2017-01-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.

  3. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  4. Fluid intake rates in ants correlate with their feeding habits.

    PubMed

    Paul, J; Roces, F

    2003-04-01

    This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.

  5. Fluid flow monitoring device

    DOEpatents

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  6. Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.

    PubMed

    Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya

    2016-01-01

    In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.

  7. Identification and Evaluation of Integration and Cross Cutting Issues Across HRP Risks

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Shelhamer, Mark

    2015-01-01

    The HRP Integrated Research Plan contains the research plans for the 32 risks requiring research to characterize and mitigate. These risks to human health and performance in spaceflight are identified by evidence and each one focuses on a single aspect of human physiology or performance. They are further categorized by aspects of the spaceflight environment, such as altered gravity or space radiation, that that play a major role in their likelihood and consequence. From its inception the "integrate" in the Research Plan has denoted the integrated nature of risks to human health and performance, the connectedness of physiological systems within the human body regardless of the spaceflight environment, and the integrated response of the human body to the spaceflight environment. Common characteristics of the spaceflight environment include altered gravity, atmospheres and light/dark cycles, space radiation, isolation, noise, and periods of high or low workload. Long term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive and anthropometric changes; circadian misalignment; fluid shifts, deconditioning; immune dysregulation; and altered nutritional requirements. Matrix diagraming was used to systematically identify, analyze and rate the many-to-many relationships between environmental characteristics and the suite of physiological effects. It was also to identify patterns in the relationships of common physiological effects to each other. Analyses of patterns or relationships in these diagrams help to identify issues that cut across multiple risks. Cross cutting issues benefit from a multidisciplinary approach that synthesizes concepts or data from two or more disciplines to identify and characterize risk factors or develop countermeasures relevant to multiple risks. They also help to illuminate possible problem areas that may arise when a countermeasure impacts risks other than those which it was developed to mitigate, or identify groupings of physiological changes that are likely to occur that may impact the overall risk posture.

  8. An enzyme-mediated assay to quantify inoculation volume delivered by suture needlestick injury: two gloves are better than one.

    PubMed

    Lefebvre, Daniel R; Strande, Louise F; Hewitt, Charles W

    2008-01-01

    Acquiring a blood-borne disease is a risk of performing operations. Most data about seroconversion are based on hollow-bore needlesticks. Some studies have examined the inoculation volumes of pure blood delivered by suture needles. There is a lack of data about the effect of double-gloving on contaminant transmission in less viscous fluids that are not prone to coagulation. We used enzymatic colorimetry to quantify the volume of inoculation delivered by a suture needle that was coated with an aqueous contaminant. Substrate color change was measured using a microplate reader. Both cutting and tapered suture needles were tested against five different glove types and differing numbers of glove layers (from zero to three). One glove layer removed 97% of contaminant from tapered needles and 65% from cutting needles, compared with the no-glove control data. Additional glove layers did not significantly improve contaminant removal from tapered needles (p > 0.05). For the cutting needle, 2 glove layers removed 91% of contaminant, which was significantly better than a single glove (p = 0.002). Three glove layers did not afford statistically significant additional protection (p = 0.122). There were no statistically significant differences between glove types (p = 0.41). With an aqueous needle contaminant, a single glove layer removes contaminant from tapered needles as effectively as multiple glove layers. For cutting needles, double-glove layering offers superior protection. There is no advantage to triple-glove layering. A surgeon should double-glove for maximum safety. Additionally, a surgeon should take advantage of other risk-reduction strategies, such as sharps safety, risk management, and use of sharpless instrumentation when possible.

  9. Numerical Modeling of the Work Piece Region in the Plasma Arc Cutting Process

    NASA Astrophysics Data System (ADS)

    Osterhouse, David

    The plasma arc cutting process is widely used for the cutting of metals. The process, however, is not fully understood and further understanding will lead to further improvements. This work aims to elucidate the fundamental physical phenomena in the region where the plasma interacts with the work piece through the use of numerical modeling techniques. This model follows standard computational fluid dynamic methods that have been suitably modified to include plasma effects, assuming either local thermodynamic equilibrium or a slight non-equilibrium captured by the two-temperature assumption. This is implemented in the general purpose, open source CFD package, OpenFOAM. The model is applied to a plasma flow through a geometry that extends from inside the plasma torch to the bottom of the slot cut in the work piece. The shape of the kerf is taken from experimental measurements. The results of this model include the temperature, velocity, and electrical current distribution throughout the plasma. From this, the heat flux to and drag force on the work piece are calculated. The location of the arc attachment in the cut slot is also noted because it is a matter of interest in the published literature as well as significantly effecting the dynamics of the heat flux and drag force. The results of this model show that the LTE formulation is not sufficient to capture the physics present due to unphysical fluid dynamic instabilities and numerical problems with the arc attachment. The two-temperature formulation, however, captures a large part of the physics present. Of particular note, it is found that an additional inelastic collision factor is necessary to describe the increased energy transfer between electrons and diatomic molecules, which is widely neglected in published literature. It is also found that inclusion of the oxygen molecular ion is necessary to accurately describe the plasma flow, which has been neglected in all published two-temperature oxygen calculations. The heat flux is found to be greatest at the top of the cut slot where the thermal boundary layer is thinnest and the arc attachment increases heat transfer.

  10. Safety of Lumbar Puncture Procedures in Patients with Alzheimer's Disease

    PubMed Central

    Peskind, E.; Nordberg, A.; Darreh-Shori, T.; Soininen, H.

    2014-01-01

    Changes in cerebrospinal fluid (CSF) biomarkers are representative of biochemical changes in the brain. Collection of CSF by lumbar puncture (LP) is essential for biomarker analysis, which is important for research in neurodegenerative disorders. However, LP for research purposes has been controversial due to a reported high incidence of severe LP headache when using standard 18g or 20g Quincke needles with a beveled cutting tip. A procedural safety analysis was performed using the database of a multicenter, 13-week study of CSF cholinesterase activity. A 24g Sprotte atraumatic needle was used to collect CSF at baseline and at Week 13 from 63 older patients with mild to moderate Alzheimer's disease. There was a < 2% LP headache incidence, and a favorable safety profile was reported. In conclusion, LP performed with a 24g Sprotte atraumatic needle (blunt, “bullet” tip) was a well-tolerated procedure, with good acceptability. PMID:19519311

  11. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  12. Staying out of the Cold.

    ERIC Educational Resources Information Center

    Levinson, Patrick J.

    1996-01-01

    Discusses how annual boiler maintenance can help cut fuel costs and prevent downtime. Outlines a cleaning program, which includes inspecting the fireside of the boiler, checking the refractory, and checking the waterside. Describes other maintenance measures, such as checking hydraulic fluid levels, and offers tips for analyzing combustion. (RJM)

  13. Effect of micro-scale texturing on the cutting tool performance

    NASA Astrophysics Data System (ADS)

    Vasumathy, D.; Meena, Anil

    2018-05-01

    The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.

  14. 3D force/torque characterization of emergency cricothyroidotomy procedure using an instrumented scalpel.

    PubMed

    Ryason, Adam; Sankaranarayanan, Ganesh; Butler, Kathryn L; DeMoya, Marc; De, Suvranu

    2016-08-01

    Emergency Cricothyroidotomy (CCT) is a surgical procedure performed to secure a patient's airway. This high-stakes, but seldom-performed procedure is an ideal candidate for a virtual reality simulator to enhance physician training. For the first time, this study characterizes the force/torque characteristics of the cricothyroidotomy procedure, to guide development of a virtual reality CCT simulator for use in medical training. We analyze the upper force and torque thresholds experienced at the human-scalpel interface. We then group individual surgical cuts based on style of cut and cut medium and perform a regression analysis to create two models that allow us to predict the style of cut performed and the cut medium.

  15. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  16. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    PubMed Central

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-01-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853

  17. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  18. Displaying CFD Solution Parameters on Arbitrary Cut Planes

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    2008-01-01

    USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.

  19. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  20. Effects of non-aqueous fluids cuttings discharge from exploratory drilling activities on the deep-sea macrobenthic communities

    NASA Astrophysics Data System (ADS)

    Santos, M. F. L.; Lana, P. C.; Silva, J.; Fachel, J. G.; Pulgati, F. H.

    2009-01-01

    This paper assesses the effects of non-aqueous fluids (NAFs-type III) cuttings discharge from exploratory drilling activities on deep-sea macrobenthic communities in the Campos Basin, off the southeastern Brazilian coast, Rio de Janeiro State. One hundred and fifty nine sediment samples were taken with a 0.25 m 2 box corer at a depth of 902 m on three monitoring cruises: first cruise—before drilling (April 2001), second cruise—after drilling (July 2001), and third cruise—one year after drilling (July 2002). The results indicated no significant changes in values of density, number of families and functional groups related to drilling activities in the reference area (2500 m distance), and biological variations may be result from the natural variability of the fauna. Evidence indicates that drilling activities led to measurable effects on the community structure related to NAF cuttings discharge but were limited to a 500 m radius from the drilling well. Such effects were much more evident at isolated sites in the impact area (WBF and WBF+NAF areas) and are characterized as localized impacts. One year after drilling, a recolonization was observed, with the probable recovery of the macrobenthic community in most of the study area; only at part of the WBF+NAF area (stations 05, 24 and 36) was the community still undergoing recovery.

  1. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes.

    PubMed

    Holdway, Douglas A

    2002-03-01

    A review of the acute and chronic effects of produced formation water (PFW), drilling fluids (muds) including oil-based cutting muds, water-based cutting muds, ester-based cutting muds and chemical additives, and crude oils associated with offshore oil and gas production was undertaken in relation to both temperate and tropical marine ecological processes. The main environmental effects are summarized, often in tabular form. Generally, the temporal and spatial scales of these studies, along with the large levels of inherent variation in natural environments, have precluded our ability to predict the potential long-term environmental impacts of the offshore oil and gas production industry. A series of critical questions regarding the environmental effects of the offshore oil and gas production industry that still remain unanswered are provided for future consideration.

  2. 30 CFR 250.427 - What are the requirements for pressure integrity tests?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... related hole-behavior observations, such as pore-pressure test results, gas-cut drilling fluid, and well... integrity tests? 250.427 Section 250.427 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Operations Casing and Cementing Requirements § 250.427 What are the requirements for pressure integrity tests...

  3. New mud system produces solids-free, reusable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water,more » or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.« less

  4. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  5. Igneous Sheet Intrusions as a Record of Paleostress States

    NASA Astrophysics Data System (ADS)

    Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.

    2017-12-01

    The architecture of igneous sheet intrusion networks provides useful constraints on paleostress during emplacement. Several models for sill emplacement have used the close spatial relationships between sills and dikes in layered (sedimentary) host rocks to propose that dike-sill transitions are driven by layering. Such models require a stress rotation - from horizontal extension for dikes, to horizontal compression for sills - which is assumed to reflect a near-hydrostatic stress state, facilitating the dilation and intrusion of pre-existing structures (e.g. faults, joints, and bedding). Here, we present case examples of sills for which layering is not the main control on emplacement: Isle of Mull (UK), Faroe Islands (European Atlantic margin) and the San Rafael Subvolcanic Field (Utah, USA). In each case, dikes cut, or are cut by, sills; indicating that dikes were not the feeders to sills in the same section. The sills consist of linked, flat and shallowly-dipping segments that always show near-vertical opening directions. Sills cut bedding and formation contacts with consistent low-angle dips, and cut or abut against vertical faults, fractures, and tectonic foliations. From this, we infer that magma pressure during emplacement did not exceed the horizontal stress. To constrain the stress state during emplacement we present a novel approach that combines analysis of local and overall sill geometry data with mechanical models for slip tendency, dilation tendency, and fracture susceptibility. We also present a new depth-independent mechanical model, which estimates paleostress ratio and driving fluid pressure ratio using the opening angles of dilated fluid-filled fractures. Our results show that the studied sills record previously unrecognised local fluctuations in the far-field stress state, during magmatic supply. Sills, therefore, present an important tool for determining paleostress in areas where few brittle deformation structures (e.g. faults), other than intrusions, are present.

  6. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.

    PubMed

    Burd, H J; Wilde, G S

    2016-04-01

    The use of a femtosecond laser to form planes of cavitation bubbles within the ocular lens has been proposed as a potential treatment for presbyopia. The intended purpose of these planes of cavitation bubbles (referred to in this paper as 'cutting planes') is to increase the compliance of the lens, with a consequential increase in the amplitude of accommodation. The current paper describes a computational modelling study, based on three-dimensional finite element analysis, to investigate the relationship between the geometric arrangement of the cutting planes and the resulting improvement in lens accommodation performance. The study is limited to radial cutting planes. The effectiveness of a variety of cutting plane geometries was investigated by means of modelling studies conducted on a 45-year human lens. The results obtained from the analyses depend on the particular modelling procedures that are employed. When the lens substance is modelled as an incompressible material, radial cutting planes are found to be ineffective. However, when a poroelastic model is employed for the lens substance, radial cuts are shown to cause an increase in the computed accommodation performance of the lens. In this case, radial cuts made in the peripheral regions of the lens have a relatively small influence on the accommodation performance of the lens; the lentotomy process is seen to be more effective when cuts are made near to the polar axis. When the lens substance is modelled as a poroelastic material, the computational results suggest that useful improvements in lens accommodation performance can be achieved, provided that the radial cuts are extended to the polar axis. Radial cuts are ineffective when the lens substance is modelled as an incompressible material. Significant challenges remain in developing a safe and effective surgical procedure based on this lentotomy technique.

  7. Investigating bone chip formation in craniotomy.

    PubMed

    Huiyu, He; Chengyong, Wang; Yue, Zhang; Yanbin, Zheng; Linlin, Xu; Guoneng, Xie; Danna, Zhao; Bin, Chen; Haoan, Chen

    2017-10-01

    In a craniotomy, the milling cutter is one of the most important cutting tools. The operating performance, tool durability and cutting damage to patients are influenced by the tool's sharpness, intensity and structure, whereas the cutting characteristics rely on interactions between the tool and the skull. In this study, an orthogonal cutting experiment during a craniotomy of fresh pig skulls was performed to investigate chip formation on the side cutting and face cutting of the skull using a high-speed camera. The cutting forces with different combinations of cutting parameters, such as the rake angle, clearance angle, depth of cut and cutting speed, were measured. The skull bone microstructure and cutting damage were observed by scanning electron microscope. Cutting models for different cutting approaches and various depths of cut were constructed and analyzed. The study demonstrated that the effects of shearing, tension and extrusion occur during chip formation. Various chip types, such as unit chips, splintering chips and continuous chips, were generated. Continuous pieces of chips, which are advisable for easy removal from the field of operation, were formed at greater depths of cut and tool rake angles greater than 10°. Cutting damage could be relieved with a faster recovery with clearance angles greater than 20°.

  8. In vitro comparison of the cutting efficiency and temperature production of 10 different rotary cutting instruments. Part I: Turbine.

    PubMed

    Ercoli, Carlo; Rotella, Mario; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2009-04-01

    Standards to test the cutting efficiency of dental rotary cutting instruments are either nonexistent or inappropriate, and knowledge of the factors that affect their cutting performance is limited. Therefore, rotary cutting instruments for crown preparation are generally marketed with weak or unsupported claims of superior performance. The purpose of this study was to examine the cutting behavior of a wide selection of rotary cutting instruments under carefully controlled and reproducible conditions with an air-turbine handpiece. Ten groups of rotary cutting instruments (n=30) designed for tooth preparation were selected: 9 diamond rotary cutting instruments (7 multi-use, 2 disposable) and 1 carbide bur. One bur per group was imaged with a scanning electron microscope (SEM) at different magnifications. Macor blocks (n=75) were used as a substrate, and 4 cuts were made on each specimen, using a new rotary cutting instrument each time, for a total of 300 cuts. The cuts were performed with an air-turbine handpiece (Midwest Quiet Air). A computer-controlled, custom-made testing apparatus was used to monitor all sensors and control the cutting action. The data were analyzed to compare the correlation of rotary cutting instrument type, grit, amount of pressure, cutting rate, revolutions per minute (rpm), temperature, and type of handpiece, using 1-way ANOVA and Tukey's Studentized Range test (alpha=.05). Compared to the baseline temperature, all rotary cutting instruments showed a reduction of temperature in the simulated pulp chamber. The Great White Ultra (carbide bur) showed a significantly higher rate of advancement (0.15 mm/s) and lower applied load (106.46 g) and rpm (304,375.97). Tooth preparation with an adequate water flow does not cause harmful temperature changes in the pulp chamber, regardless of rotary cutting instrument type. The tested carbide bur showed greater cutting efficiency than all diamond rotary cutting instruments.

  9. PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD

    NASA Technical Reports Server (NTRS)

    Suhs, Norman E.; Rogers, Stuart E.; Dietz, William E.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    An all new, automated version of the PEGASUS software has been developed and tested. PEGASUS provides the hole-cutting and connectivity information between overlapping grids, and is used as the final part of the grid generation process for overset-grid computational fluid dynamics approaches. The new PEGASUS code (Version 5) has many new features: automated hole cutting; a projection scheme for fixing gaps in overset surfaces; more efficient interpolation search methods using an alternating digital tree; hole-size optimization based on adding additional layers of fringe points; and an automatic restart capability. The new code has also been parallelized using the Message Passing Interface standard. The parallelization performance provides efficient speed-up of the execution time by an order of magnitude, and up to a factor of 30 for very large problems. The results of three example cases are presented: a three-element high-lift airfoil, a generic business jet configuration, and a complete Boeing 777-200 aircraft in a high-lift landing configuration. Comparisons of the computed flow fields for the airfoil and 777 test cases between the old and new versions of the PEGASUS codes show excellent agreement with each other and with experimental results.

  10. Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette

    2016-11-01

    Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.

  11. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  12. Acute Effects of Static Stretching of Hamstring on Performance and Anterior Cruciate Ligament Injury Risk During Stop-Jump and Cutting Tasks in Female Athletes.

    PubMed

    Ruan, Mianfang; Zhang, Qiang; Wu, Xie

    2017-05-01

    Ruan, M, Zhang, Q, and Wu, X. Acute effects of static stretching of hamstring on performance and anterior cruciate ligament injury risk during stop-jump and cutting tasks in female athletes. J Strength Cond Res 31(5): 1241-1250, 2017-There is limited research investigating antagonist stretch. The purpose of this study was to evaluate the influence of static stretching of hamstrings (SSH) on performance and anterior cruciate ligament (ACL) injury risk during stop-jump and 180° cutting tasks. Twelve female college athletes (age 20.8 ± 0.7 years; height 1.61 ± 0.05 m; mass 54.25 ± 4.22 kg) participated in this study. Subjects performed stop-jump and 180° cutting tasks under 2 conditions: after warm-up with 4 × 30 seconds SSH or after warm-up without SSH. Three-dimensional kinematic and kinetic data as well as electromyography of biceps femoris, rectus femoris, vastus medialis, and gastrocnemius medialis were collected during testing. Static stretching of hamstrings significantly enhanced jump height by 5.1% (p = 0.009) but did not change the takeoff speed of cutting. No significant changes in peak knee adduction moment or peak anterior tibia shear force were observed with SSH regardless of the task. The peak lateral tibia shear force during cutting was significantly (p = 0.036) reduced with SSH. The co-contraction of hamstring and quadriceps during the preactivation (stop-jump: p = 0.04; cutting: p = 0.05) and downward phases (stop-jump: p = 0.04; cutting: p = 0.05) was significantly reduced after SSH regardless of the task. The results suggest that SSH enhanced the performance of stop-jump because of decreased co-contraction of hamstring and quadriceps but did not change the performance of cutting. In addition, SSH did not increase ACL injury risk during stop-jump and cutting tasks and even reduced medial-lateral knee loading during cutting.

  13. Acute Effects of Static Stretching of Hamstring on Performance and Anterior Cruciate Ligament Injury Risk During Stop-Jump and Cutting Tasks in Female Athletes

    PubMed Central

    Ruan, Mianfang; Zhang, Qiang

    2017-01-01

    Abstract Ruan, M, Zhang, Q, and Wu, X. Acute effects of static stretching of hamstring on performance and anterior cruciate ligament injury risk during stop-jump and cutting tasks in female athletes. J Strength Cond Res 31(5): 1241–1250, 2017—There is limited research investigating antagonist stretch. The purpose of this study was to evaluate the influence of static stretching of hamstrings (SSH) on performance and anterior cruciate ligament (ACL) injury risk during stop-jump and 180° cutting tasks. Twelve female college athletes (age 20.8 ± 0.7 years; height 1.61 ± 0.05 m; mass 54.25 ± 4.22 kg) participated in this study. Subjects performed stop-jump and 180° cutting tasks under 2 conditions: after warm-up with 4 × 30 seconds SSH or after warm-up without SSH. Three-dimensional kinematic and kinetic data as well as electromyography of biceps femoris, rectus femoris, vastus medialis, and gastrocnemius medialis were collected during testing. Static stretching of hamstrings significantly enhanced jump height by 5.1% (p = 0.009) but did not change the takeoff speed of cutting. No significant changes in peak knee adduction moment or peak anterior tibia shear force were observed with SSH regardless of the task. The peak lateral tibia shear force during cutting was significantly (p = 0.036) reduced with SSH. The co-contraction of hamstring and quadriceps during the preactivation (stop-jump: p = 0.04; cutting: p = 0.05) and downward phases (stop-jump: p = 0.04; cutting: p = 0.05) was significantly reduced after SSH regardless of the task. The results suggest that SSH enhanced the performance of stop-jump because of decreased co-contraction of hamstring and quadriceps but did not change the performance of cutting. In addition, SSH did not increase ACL injury risk during stop-jump and cutting tasks and even reduced medial-lateral knee loading during cutting. PMID:28118311

  14. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  15. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    PubMed

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  16. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    NASA Astrophysics Data System (ADS)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk thermal conductivity. Moreover, bot h-BN and graphene are exfoliated through the same method. In essence, this project, for the first time, unravels the behavior of the exfoliated h-BN effect on reinforced conventional fluids under the influence of atomistic scale structures (particularly, electrically insulating and lubricant/cutting fluids), thereby linking the physical, electrical and mechanical properties of these nanoscale materials. The innovative experimental approach is expected to result in de novo strategies for introducing these systems for new concepts and variables to engineer nanofluid properties suitable for very promising industrial applications.

  17. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and fluid-rock interactions including organic matter present in the whole-rock during ore precipitation. These features show the positive feedback between localization of ductile-brittle deformation-recrystallization, fluid circulation and ore deposition. Accordingly, during orogenic gravitational collapse, the activation of mylonitic-cataclastic low-angle detachments, controlled at first order by temperature, are, at second order, influenced by lithologic heterogeneities that are determinant at localizing fluid circulation, allowing thus a multi-localization of the DBT and ore deposition.

  18. ILP-based co-optimization of cut mask layout, dummy fill, and timing for sub-14nm BEOL technology

    NASA Astrophysics Data System (ADS)

    Han, Kwangsoo; Kahng, Andrew B.; Lee, Hyein; Wang, Lutong

    2015-10-01

    Self-aligned multiple patterning (SAMP), due to its low overlay error, has emerged as the leading option for 1D gridded back-end-of-line (BEOL) in sub-14nm nodes. To form actual routing patterns from a uniform "sea of wires", a cut mask is needed for line-end cutting or realization of space between routing segments. Constraints on cut shapes and minimum cut spacing result in end-of-line (EOL) extensions and non-functional (i.e. dummy fill) patterns; the resulting capacitance and timing changes must be consistent with signoff performance analyses and their impacts should be minimized. In this work, we address the co-optimization of cut mask layout, dummy fill, and design timing for sub-14nm BEOL design. Our central contribution is an optimizer based on integer linear programming (ILP) to minimize the timing impact due to EOL extensions, considering (i) minimum cut spacing arising in sub-14nm nodes; (ii) cut assignment to different cut masks (color assignment); and (iii) the eligibility to merge two unit-size cuts into a bigger cut. We also propose a heuristic approach to remove dummy fills after the ILP-based optimization by extending the usage of cut masks. Our heuristic can improve critical path performance under minimum metal density and mask density constraints. In our experiments, we study the impact of number of cut masks, minimum cut spacing and metal density under various constraints. Our studies of optimized cut mask solutions in these varying contexts give new insight into the tradeoff of performance and cost that is afforded by cut mask patterning technology options.

  19. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    NASA Astrophysics Data System (ADS)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  20. [Study of work accidents related to human body fluids exposure among health workers at a university hospital].

    PubMed

    Balsamo, Ana Cristina; Felli, Vanda Elisa Andres

    2006-01-01

    This descriptive and exploratory study from a quantitative approach aimed to characterize workers who were victims of work accidents related to human body fluids exposure and to evaluate the accident victim care protocol. The population consisted of 48 workers who were victims of work accidents involving exposure to human body fluids, from July 2000 to June 2001. Data were collected through a form and interviews. Results showed that nursing workers presented higher accident risk levels and that 87.50% involved piercing and cutting material, such as needles and butterflies (70%). As to the accident-related situation/activity, the workers indicated that 25% were due to an "inadequate act during the procedure"; 19.64% mentioned that "it happened" and 29.17% answered that they did not have any suggestion. This study provided important tools to review and elaborate strategies to prevent accidents involving exposure to human body fluids.

  1. Model structure identification for wastewater treatment simulation based on computational fluid dynamics.

    PubMed

    Alex, J; Kolisch, G; Krause, K

    2002-01-01

    The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.

  2. Optimal Magnetorheological Fluid for Finishing of Chemical-Vapor-Deposited Zinc Sulfide

    NASA Astrophysics Data System (ADS)

    Salzman, Sivan

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor- deposited zinc sulfide (ZnS) optics leaves visible surface artifacts known as "pebbles". These artifacts are a direct result of the material's inner structure that consists of cone-like features that grow larger (up to a few millimeters in size) as deposition takes place, and manifest on the top deposited surface as "pebbles". Polishing the pebble features from a CVD ZnS substrate to a flat, smooth surface to below 10 nm root-mean-square is challenging, especially for a non-destructive polishing process such as MRF. This work explores ways to improve the surface finish of CVD ZnS processed with MRF through modification of the magnetorheological (MR) fluid's properties. A materials science approach is presented to define the anisotropy of CVD ZnS through a combination of chemical and mechanical experiments and theoretical predictions. Magnetorheological finishing experiments with single crystal samples of ZnS, whose cuts and orientations represent most of the facets known to occur in the polycrystalline CVD ZnS, were performed to explore the influence of material anisotropy on the material removal rate during MRF. By adjusting the fluid's viscosity, abrasive type concentration, and pH to find the chemo-mechanical conditions that equalize removal rates among all single crystal facets during MRF, we established an optimized, novel MR formulation to polish CVD ZnS without degrading the surface finish of the optic.

  3. Numerical analysis of the transient flow in a scroll refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi

    2017-08-01

    In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.

  4. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...

  5. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...

  6. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  7. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Effluent limitations guidelines... control technology (BCT). 435.14 Section 435.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  8. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Effluent limitations guidelines... control technology (BCT). 435.14 Section 435.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  9. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  10. 40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  11. Machine Shop. Module 5: Lathes. Instructor's Guide.

    ERIC Educational Resources Information Center

    Nobles, Jack

    This document consists of materials for a 10-unit course on the following topics: (1) types and parts of lathes; (2) lathe accessories, maintenance, and safety; (3) lathe operations and tooling; (4) lathe calculations; (5) lathe taper and thread applications; (6) planning considerations; (7) cutting fluids, lathe center alignment, and lathe gaps;…

  12. Advances in multiphase flow measurements using magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kantzas, Apostolos; Kryuchkov, Sergey; Chandrasekaran, Blake

    2009-02-01

    When it comes to the measurement of bitumen and water content as they are produced from thermally exploited reservoirs (cyclic steam stimulation or steam assisted gravity drainage) most of the current tools that are available in the market fail. This was demonstrated previously when our group introduced the first concept of a magnetic resonance based water-cut meter. The use of magnetic resonance as a potential tool for fluid cut metering from thermally produced heavy oil and bitumen reservoirs is revisited. At first a review of the work to date is presented. Our recent approach in the tackling of this problem follows. A patented process is coupled with a patented pipe design that can be used inside a magnetic field and can capture fluids up to 260°C and 4.2MPa. The paper describes the technical advances to this goal and offers a first glimpse of field data from an actual thermal facility for bitumen production. The paper also addresses an approach for converting the current discrete measurement device into a continuous measurement system. Preliminary results for this new concept are also presented.

  13. Creating compact and microscale features in paper-based devices by laser cutting.

    PubMed

    Mahmud, Md Almostasim; Blondeel, Eric J M; Kaddoura, Moufeed; MacDonald, Brendan D

    2016-11-14

    In this work we describe a fabrication method to create compact and microscale features in paper-based microfluidic devices using a CO 2 laser cutting/engraving machine. Using this method we are able to produce the smallest features with the narrowest barriers yet reported for paper-based microfluidic devices. The method uses foil backed paper as the base material and yields inexpensive paper-based devices capable of using small fluid sample volumes and thus small reagent volumes, which is also suitable for mass production. The laser parameters (power and laser head speed) were adjusted to minimize the width of hydrophobic barriers and we were able to create barriers with a width of 39 ± 15 μm that were capable of preventing cross-barrier bleeding. We generated channels with a width of 128 ± 30 μm, which we found to be the physical limit for small features in the chromatography paper we used. We demonstrate how miniaturizing of paper-based microfluidic devices enables eight tests on a single bioassay device using only 2 μL of sample fluid volume.

  14. Utility of percutaneous joint aspiration and synovial biopsy in identifying culture-positive infected hip arthroplasty.

    PubMed

    Cross, M Connor; Kransdorf, Mark J; Chivers, F Spencer; Lorans, Roxanne; Roberts, Catherine C; Schwartz, Adam J; Beauchamp, Christopher P

    2014-02-01

    Percutaneous synovial biopsy has recently been reported to have a high diagnostic value in the preoperative identification of periprosthetic infection of the hip. We report our experience with this technique in the evaluation of patients undergoing revision hip arthroplasty, comparing results of preoperative synovial biopsy with joint aspiration in identifying an infected hip arthroplasty by bacteriological analysis. We retrospectively reviewed the results of the 110 most recent revision hip arthroplasties in which preoperative synovial biopsy and joint aspiration were both performed. Revision surgery for these patients occurred during the period from September 2005 to March 2012. Using this study group, results from preoperative cultures were compared with preoperative laboratory studies and the results of intraoperative cultures. Synovial aspiration was done using an 18- or 20-gauge spinal needle. Synovial biopsy was done coaxially following aspiration using a 22-gauge Chiba needle or 21-gauge Sure-Cut needle. Standard microbiological analysis was performed on preoperative synovial fluid aspirate and synovial biopsy. Intraoperative tissue biopsy bacteriological analysis results at surgical revision were accepted as the "gold standard" for the presence or absence of infection. Seventeen of 110 (15 %) of patients had intraoperative culture-positive periprosthetic infection. Of these 17 cases, there were ten cases where either the synovial fluid aspiration and/or the synovial biopsy were true positive (sensitivity of 59 %, specificity of 100 %, positive predictive value of 100 % and accuracy of 94 %). There were seven cases where aspiration and biopsy results were both falsely negative, but no false-positive results. Similar results were found for synovial fluid aspiration alone. The results of synovial biopsy alone resulted in the identification of seven infected joints with no false-positive result (sensitivity of 41 %, specificity of 100 %, positive predictive value of 100 %, and accuracy of 91 %). Standard microbiological analyses performed on percutaneous synovial biopsy specimen during the preoperative evaluation of patients undergoing revision hip arthroplasty did not improve detection of culture-positive periprosthetic infection as compared to synovial fluid aspiration alone.

  15. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    NASA Astrophysics Data System (ADS)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  16. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.

    PubMed

    Shakouri, Ehsan; Sadeghi, Mohammad H; Maerefat, Mehdi; Shajari, Shaghayegh

    2014-04-01

    Bone loss due to thermo necrosis may weaken the purchase of surgically placed screws and pins, causing them to loosen postoperatively. The heat generated during the bone drilling is proportional to cutting speed and force and may be partially dissipated by the blood and tissue fluids, and somehow carried away by the chips formed. Increasing cutting speed will reduce cutting force and machining time. Therefore, it is of interest to study the effects of the increasing cutting speed on bone drilling characteristics. In this article, the effects of the increasing cutting speed ranging from 500 up to 18,000 r/min on the thrust force and the temperature rise are studied for bovine femur bone. The results of this study reveal that the high-speed drilling of 6000-7000 r/min may effectively reduce the two parameters of maximum cortical temperature and duration of exposure at temperatures above the allowable levels, which in turn reduce the probability of thermal necrosis in the drill site. This is due to the reduction of the cutting force and the increase in the chip disposal speed. However, more increases in the drill bit rotational speed result in an increase in the amount of temperature elevation, not because of sensible change in drilling force but a considerable increase in friction among the chips, drill bit and the hole walls.

  17. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    PubMed

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  18. Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.

  19. A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in compressible flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquariello, Vito, E-mail: vito.pasquariello@tum.de; Hammerl, Georg; Örley, Felix

    2016-02-15

    We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. Wemore » validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.« less

  20. Metallogeny of the Mont-de-l'Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Simard, M.; Beaudoin, G.; Bernard, J.; Hupé, A.

    2006-09-01

    The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro-Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu-Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N-S and NW-SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=-1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (-0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.

  1. The effect of cutting parameters on the performance of ZTA-MgO cutting tool

    NASA Astrophysics Data System (ADS)

    Ali, A. M.; Hamidon, N. E.; Zaki, N. K. M.; Mokhtar, S.; Azhar, A. Z. A.; Bahar, R.; Ahmad, Z. A.

    2018-01-01

    The effect of cutting parameters on the performances of ZTA-MgO ceramic cutting tool investigated. The aim of this project is to discover the effect of cutting speed and feedrate on the performance of the ZTA-MgO cutting tool via wear and surface roughness measurement. CNC turning machining performed using the cutting speed, Vc range from 354 to 471 m/min and the feed rate, f 0.1, 0.3 and 0.5 mm/rev while the depth of cut, d is kept constant at 0.2 mm. The flank wear, crater wear, and chipping were measured accordingly using optical microscope, Matlab programming and SEM. Surface roughness of machined stainless steel 316L surface were measured using the surface roughness tester (Mitutoyo MTR097-8. The result showing the increment trend of flank wear with increment of cutting speed and feed rate with the lowest value of flank wear, 0.061 mm achieved at Vc = 354 m/min and f = 0.1 mm/rev while the highest flank wear is 0.480 mm at Vc = 471 m/min and f = 0.5 mm/rev. The increasing pattern also observed in the crater wear results. The lowest area of crater wear is 2.2736 mm2 at Vc = 354 m/min and f = 0.1 mm/rev while the highest value is 4.8524 mm2 at Vc = 471 m/min and f = 0.5 mm/rev. As for the surface roughness, the higher the cutting speed, the lower the average roughness (Ra) value. Cutting speed, Vc = 471 m/min with f = 0.1 mm/rev has the lowest value of Ra which is 0.72µm.

  2. Handpiece coolant flow rates and dental cutting.

    PubMed

    von Fraunhofer, J A; Siegel, S C; Feldman, S

    2000-01-01

    High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.

  3. Scleral electrocautery and its effects on choroid vessels: implications for subretinal fluid drainage during scleral buckling surgery.

    PubMed

    Roybal, C Nathaniel; Tsui, Irena; Sanfilippo, Christian; Hubschman, Jean-Pierre

    2013-01-01

    External drainage of subretinal fluid as part of a scleral buckling procedure rapidly restores the retinal pigment epithelium-neural retina interface in rhegmatogenous retinal detachments but carries the inherent risk of subretinal hemorrhage and retinal incarceration. The authors investigated variations to the technique to reduce the chance of subretinal hemorrhage originating from the choroid. A novel method for needle drainage using electrocautery of the sclerochoroidal layers before puncture was employed. The effect of 0% to 50% scleral electrocautery in a porcine model was investigated. A significant decrease in choroidal vessel diameter and choroidal vessel density at 40% electrocautery was demonstrated. Electrocautery without scleral cut-down before external drainage of subretinal fluid likely decreases the chance of subretinal hemorrhage by decreasing choroidal vascularity. Copyright 2013, SLACK Incorporated.

  4. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    PubMed

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  5. Experimental studies on laminar flow heat transfer in nanofluids flowing through a straight circular tube with and without V-cut twisted tape insert

    NASA Astrophysics Data System (ADS)

    Arunachalam, U.; Edwin, M.

    2018-03-01

    This paper presents experimental studies on the convective heat transfer and friction factor characteristics of flows in a straight circular tube with and without V-cut twisted tapeinserts using Al2O3-Cu/water hybrid nanofluid as working fluid and also comparative studies between Alumina nanofluid and (Cu-Alumina) hybrid nanofluid is conducted. This work is restricted to one type of hybrid nanofluid only. It also does not include the effect of twisted tape dimensions on heat transfer coefficient and pressure drop.Itis observed that the experimental convective heat transfer coefficient increases slightly with an increase in particle volume concentration from 0.1 and 0.4%. The experimental data is in good agreement with the previous models and correlations.The experimental results showed a good enhancement in Nusselt number for Peclet number from 2580 to 11,780 compared to Nusselt number of water, when the copper nanofluid is 0.01% volume concentration and mixed with 0.4% concentration of Alumina nanofluid.Itis also noticed that 0.01% Al2O3-Cu/water hybrid nanofluidhas a higher friction factor than the Al2O3/water nanofluid and base fluid. Since the magnitude of thermal enhancement factor (η) has been observed to be only marginally higher than unity (1.01 to 1.05), the net benefit of inserting V - cut twisted tapes in nanofluids is also nevertheless marginal.

  6. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  7. Horizontal Planting of Green Ash Cuttings on a Sharkey Clay Site

    Treesearch

    H. E. Kennedy

    1974-01-01

    Horizontally planted green ash cuttings made from 1-0 seedlings sprouted and grew well, as did seedlings and vertically planted cuttings. Ten- and l4-inch cuttings planted 1 and 3 inches deep sprouted best. Two-inch-long cuttings and ones planted 6 inches deep performed unsatisfactorily.

  8. Theoretical and experimental aspects of laser cutting with a direct diode laser

    NASA Astrophysics Data System (ADS)

    Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.

    2014-10-01

    Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.

  9. Evaluation of Process Performance for Sustainable Hard Machining

    NASA Astrophysics Data System (ADS)

    Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.

    This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.

  10. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively.

    PubMed

    Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H

    2009-09-01

    Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to <350 ms. Patients were connected to a monitoring device, obtaining SVV by APCO. Haemodynamic variables were recorded before and after fluid bolus application. Fluid responsiveness was defined as an increase in stroke volume index >10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.

  11. Accuracy in planar cutting of bones: an ISO-based evaluation.

    PubMed

    Cartiaux, Olivier; Paul, Laurent; Docquier, Pierre-Louis; Francq, Bernard G; Raucent, Benoît; Dombre, Etienne; Banse, Xavier

    2009-03-01

    Computer- and robot-assisted technologies are capable of improving the accuracy of planar cutting in orthopaedic surgery. This study is a first step toward formulating and validating a new evaluation methodology for planar bone cutting, based on the standards from the International Organization for Standardization. Our experimental test bed consisted of a purely geometrical model of the cutting process around a simulated bone. Cuts were performed at three levels of surgical assistance: unassisted, computer-assisted and robot-assisted. We measured three parameters of the standard ISO1101:2004: flatness, parallelism and location of the cut plane. The location was the most relevant parameter for assessing cutting errors. The three levels of assistance were easily distinguished using the location parameter. Our ISO methodology employs the location to obtain all information about translational and rotational cutting errors. Location may be used on any osseous structure to compare the performance of existing assistance technologies.

  12. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  13. Fracture, fluid flow and paleostress at Sunrise Dam Gold Mine, W. Australia

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Thomas; Sanderson, David; Nugus, Michael

    2017-04-01

    Some of the clearest examples of Interactions between fracture, fluid flow, pore fluid pressure and differential stress can be inferred from underground observations in mines. This study examines the inferred stress conditions and resulting fracture network that constitutes a stockwork type ore body at Sunrise Dam gold mine, Western Australia. Stockworks in mine workings are particularly instructive for such analyses, because the abundance of veins allows cross-cutting relationships to be observed, which are commonly hard to see in situations of lower fracture intensity or incomplete outcrop. Sunrise Dam has produced in excess of 8.5Moz of gold since 1989, with current Mineral Resources and Ore Reserves at 58.96Mt@2.41g/t Au (4.55Moz) and 21.45Mt@1.87g/t Au (1.29Moz), respectively. The stockwork examined is in the Astro ore body, and consists of three sets of extensional veins and one set of low-angle strike-slip shear veins. Cross-cutting relationships suggest broadly contemporaneous formation of all fracture sets, which are also related by a common quartz-carbonate mineralogy. The extensional veins intersect the shear veins along the direction of shear, a geometry that can be predicted for certain stress ratios. Combined with observations and paleostress inferences from other parts of the mine, the veining and gold mineralisation can be associated with a D4 strike-slip shearing event, which had a maximum compressive stress plunging gently NE. Fracture intensity varies by 50% on a scale of 10s of metres. The stockwork formed by repeated extensional and shear failure events, showing fluctuations in pore fluid pressure and stress conditions, which would have required fracture healing/sealing in order for the deformation to spread throughout the stockwork volume.

  14. A high performance sensor for triaxial cutting force measurement in turning.

    PubMed

    Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu

    2015-04-03

    This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%-0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  15. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    PubMed Central

    Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu

    2015-01-01

    This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning. PMID:25855035

  16. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  17. Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut

    NASA Astrophysics Data System (ADS)

    Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef

    2015-12-01

    This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).

  18. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  19. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    PubMed

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  20. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    NASA Astrophysics Data System (ADS)

    Rutter, Ernest; Hackston, Abigail

    2017-08-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  1. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    PubMed Central

    Hackston, Abigail

    2017-01-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’. PMID:28827423

  2. [Predictive value of central venous-to-arterial carbon dioxide partial pressure difference for fluid responsiveness in septic shock patients: a prospective clinical study].

    PubMed

    Liu, Guangyun; Huang, Huibin; Qin, Hanyu; Du, Bin

    2018-05-01

    To evaluate the accuracy of central venous-to-arterial carbon dioxide partial pressure difference (Pcv-aCO 2 ) before and after rapid rehydration test (fluid challenge) in predicting the fluid responsiveness in patients with septic shock. A prospective observation was conducted. Forty septic shock patients admitted to medical intensive care unit (ICU) of Peking Union Medical College Hospital from October 2015 to June 2017 were enrolled. All of the patients received fluid challenge in the presence of invasive hemodynamic monitoring. Heart rate (HR), blood pressure, cardiac index (CI), Pcv-aCO 2 and other physiological variables were recorded at 10 minutes before and immediately after fluid challenge. Fluid responsiveness was defined as an increase in CI greater than 10% after fluid challenge, whereas fluid non-responsiveness was defined as no increase or increase in CI less than 10%. The correlation between Pcv-aCO 2 and CI was explored by Pearson correlation analysis. Receiver operating characteristic (ROC) curves were established to evaluate the discriminatory abilities of baseline and the changes after fluid challenge in Pcv-aCO 2 and other physiological variables to define the fluid responsiveness. The patients were separated into two groups according to the initial value of Pcv-aCO 2 . The cut-off value of 6 mmHg (1 mmHg = 0.133 kPa) was chosen according to previous studies. The discriminatory abilities of baseline and the change in Pcv-aCO 2 (ΔPcv-aCO 2 ) were assessed in each group. A total of 40 patients were finally included in this study. Twenty-two patients responded to the fluid challenge (responders). Eighteen patients were fluid non-responders. There was no significant difference in baseline physiological variable between the two groups. Fluid challenge could increase CI and blood pressure significantly, decrease HR notably and had no effect on Pcv-aCO 2 in fluid responders. In non-responders, blood pressure was increased significantly and CI, HR, Pcv-aCO 2 showed no change after fluid challenge. Pcv-aCO 2 was comparable in responders and non-responders. In 40 patients, CI and Pcv-aCO 2 was inversely correlated before fluid challenge (r = -0.391, P = 0.012) and the correlation between them weakened after fluid challenge (r = -0.301, P = 0.059). There was no significant correlation between the changes in CI and Pcv-aCO 2 after fluid challenge (r = -0.164, P = 0.312). The baseline Pcv-aCO 2 and ΔPcv-aCO 2 could not discriminate between responders and non-responders, with the area under ROC curve (AUC) of 0.50 [95% confidence interval (95%CI) = 0.32-0.69] and 0.51 (95%CI = 0.33-0.70), respectively. HR and blood pressure before fluid challenge and their changes after fluid challenge showed very poor discriminative performances. Before fluid challenge, 16 patients had a Pcv-aCO 2 > 6 mmHg. Their mean CI was significantly lower and Pcv-aCO 2 was significantly higher than that in 24 patients whose Pcv-aCO 2 ≤ 6 mmHg [n = 24; CI (mL×s -1 ×m -2 ): 48.3±11.7 vs. 65.0±18.3, P < 0.01; Pcv-aCO 2 (mmHg): 8.4±1.9 vs. 2.9±2.8, P < 0.01]. Pcv-aCO 2 was decreased significantly after fluid challenge in patients with an initial Pcv-aCO 2 > 6 mmHg and their ΔPcv-aCO 2 was notably different as compared with the patients whose baseline Pcv-aCO 2 ≤ 6 mmHg (mmHg: -3.8±3.4 vs. 0.9±2.9, P < 0.01). 68.8% (11/16) patients responded to the fluid challenge in patients with an initial Pcv-aCO 2 > 6 mmHg. The AUC of the baseline Pcv-aCO 2 and ΔPcv-aCO 2 to define fluid responsiveness was 0.85 (95%CI = 0.66-1.00) and 0.84 (95%CI = 0.63-1.00), respectively, and the positive predictive value was 1 when the cut-off value was 8.0 mmHg and -4.2 mmHg, respectively. 45.8% (11/24) patients responded to the fluid challenge in patients whose baseline Pcv-aCO 2 ≤ 6 mmHg. There was no predictive value of baseline Pcv-aCO 2 and ΔPcv-aCO 2 on fluid responsiveness. Pcv-aCO 2 and its change cannot serve as a surrogate of the change in cardiac output to define the response to fluid challenge in septic shock patients whose baseline Pcv-aCO 2 ≤ 6 mmHg, while the predictive values of baseline Pcv-aCO 2 and the change in Pcv-aCO 2 are presented in patients with the initial value of Pcv-aCO 2 > 6 mmHg. Clinical Trials, NCT01941472.

  3. 30 CFR 717.14 - Backfilling and grading of road cuts, mine entry area cuts, and other surface work areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Backfilling and grading of road cuts, mine entry area cuts, and other surface work areas. 717.14 Section 717.14 Mineral Resources OFFICE OF SURFACE... MINING GENERAL PERFORMANCE STANDARDS § 717.14 Backfilling and grading of road cuts, mine entry area cuts...

  4. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.

  5. Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.

    PubMed

    Malak, Sharif F F; Anderson, Iain A

    2008-07-01

    Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.

  6. A Performance Comparison Study of Uncoated and TiAlN Coated Carbide End Mill on Machining of the Al-35Zn Alloy

    NASA Astrophysics Data System (ADS)

    Bayraktar, S.; Hekimoglu, A. P.; Turgut, Y.; Haciosmanoglu, M.

    2018-01-01

    In this study, Al-35Zn alloy was produced by permanent mold casting. To investigate the cutting performance of uncoated and TiAlN coated carbide end mills on this alloy, a series of tests were carried out in the CNC vertical machining center at a constant cutting speed, feed rate and depth of cut. The results obtained from the tests showed that uncoated carbide end mill have lower cutting force and surface roughness than TiAlN coated carbide end mill. These observations are discussed in terms of the alloys properties, cutting tool surfaces, and friction and wear behavior between the cutting tool and the material.

  7. High Pressure Gas Permeation and Liquid Diffusion Studies of Coflon and Tefzel Thermoplastics. Revision

    NASA Technical Reports Server (NTRS)

    Morgan, G. J.; Campion, R. P.

    1997-01-01

    The life of fluid-carrying flexible or umbilical pipes during service at elevated temperatures and pressures depends inter alia on their resistance to attack by the fluids present and the rate at which these fluids are absorbed by the pipe lining materials. The consequences of fluid ingress into the thermoplastic lining could mean a) a reduction in its mechanical strength, to increase chances of crack formation and growth and thus a loss of integrity, b) the occurrence of permeation right through the lining material, with pressure build- up in the outer pipe wall construction (of flexible pipes) or chemical attack (from a hostile permeant) on outer layers of reinforcements. Therefore it is important within this project to have relevant permeation data for Coflon and Tefzel thermoplastics: the former is plasticised, the latter is not. A previous report (CAPP/M.2) described experimental equipment and techniques used by MERL when measuring high pressure (up to 5000 psi) gas permeation and liquid diffusion through thermoplastic samples cut from extruded bar or pipe, and provided the basic theory involved. Norsk Hydro are also performing gas permeation tests on pipe sections, at up to 100 bars (1450 psi) pressure or so, and reporting separately. Some comparisons between data from Norsk Hydro and MERL have been made herein. The tests should be considered as complementary, as the Norsk Hydro test has the obvious benefit of using complete pipe sections, whilst MERL can test at much higher pressures, up to 1000 bar if necessary. The sophisticated analytical measuring equipment of Norsk Hydro can distinguish the individual components of mixed gases and hence the various permeation-linked coefficients whereas MERL, in using pressure increase at constant volume to determine permeation rate, is limited to obtaining single gas data, or apparent (or representative) coefficients for a mixed gas as a whole. Except for the initial fluid diffusion data for Tefzel described in CAPP/M.2, the present report covers all aspects of fluid permeation and diffusion for Coflon and Tefzel, including all the pen-neation data accumulated in the project to date. Test gases have mainly been methane (CH4) and carbon dioxide (CO2). More high pressure (HP) gas permeation tests have been performed since the last issue of this report, most being concerned with changes in permeation characteristics brought about by ageing in various relevant fluids. This revision supersedes previous issues.

  8. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  9. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission

    PubMed Central

    Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal

    2016-01-01

    Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919

  10. Hydrodynamics of confined colloidal fluids in two dimensions

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2009-05-01

    We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t-1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t-1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.

  11. [Application of Ischemia Modified Albumin for Acute Ischemic Heart Disease in Forensic Science].

    PubMed

    Wang, P; Zhu, Z L; Zhu, N; Yu, H; Yue, Q; Wang, X L; Feng, C M; Wang, C L; Zhang, G H

    2017-10-01

    To explore the application value and forensic significance of ischemia modified albumin (IMA) in pericardial fluid to diagnose sudden cardiac death. IMA level in pericardial fluid was detected in acute ischemic heart disease group ( n =36), acute myocardial infarction group ( n =6), cardiomyopathy group ( n =4) and control group ( n =15) by albumin cobalt binding method. The levels of IMA were compared among these groups. The best cut-off IMA value was estimated and the sensitivity and specificity of acute myocardial ischemia group was distinguished from control group by receiver operating characteristics (ROC) curve. The IMA level in acute ischemic heart disease group was significantly higher than that of control group ( P <0.05). Compared with acute myocardial infarction group and cardiomyopathy group, the IMA level in acute ischemic heart disease group had no significant difference ( P >0.05). The cut-off value for the identification of acute myocardial ischemia which obtained by ROC analysis was 40.65 U/mL. And the sensitivity and specificity for distinguishing acute ischemia cardiac disease was 60.0% and 80.5%, respectively. The IMA value in pericardial fluid can be a reference marker for the diagnosis of acute myocardial ischemia, which also can provide objective basis for the forensic identification of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine

  12. Excellent AUC for joint fluid cytology in the detection/exclusion of hip and knee prosthetic joint infection.

    PubMed

    Gallo, Jiri; Juranova, Jarmila; Svoboda, Michal; Zapletalova, Jana

    2017-09-01

    The aim of this study was to evaluate the characteristics of synovial fluid (SF) white cell count (SWCC) and neutrophil/lymphocyte percentage in the diagnosis of prosthetic joint infection (PJI) for particular threshold values. This was a prospective study of 391 patients in whom SF specimens were collected before total joint replacement revisions. SF was aspirated before joint capsule incision. The PJI diagnosis was based only on non-SF data. Receiver operating characteristic plots were constructed for the SWCC and differential counts of leukocytes in aspirated fluid. Logistic binomic regression was used to distinguish infected and non-infected cases in the combined data. PJI was diagnosed in 78 patients, and aseptic revision in 313 patients. The areas (AUC) under the curve for the SWCC, the neutrophil and lymphocyte percentages were 0.974, 0.962, and 0.951, respectively. The optimal cut-off for PJI was 3,450 cells/μL, 74.6% neutrophils, and 14.6% lymphocytes. Positive likelihood ratios for the SWCC, neutrophil and lymphocyte percentages were 19.0, 10.4, and 9.5, respectively. Negative likelihood ratios for the SWCC, neutrophil and lymphocyte percentages were 0.06, 0.076, and 0.092, respectively. Based on AUC, the present study identified cut-off values for the SWCC and differential leukocyte count for the diagnosis of PJI. The likelihood ratio for positive/negative SWCCs can significantly change the pre-test probability of PJI.

  13. Analysis Of The Surface Roughness Obtained During The Dry Turning Of UNS A97050-T7 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    de Agustina, B.; Rubio, E. M.; Villeta, M.; Sebastián, M. A.

    2009-11-01

    Currently, in the aeronautical, aerospace and automotive industries there is high demand of materials such as the aluminium alloys that have high resistance even at high temperatures as well as a low density. For this reason, these alloys are widely used for the production of different elements that compose aircraft and aerospace vehicles. Nevertheless, in spite of the important role these materials have from the competitive point of view, they can commonly show problems of machinability associated with the tool wear. That has made that traditionally cutting fluids had been used in machining processes. However, they can contain environmentally harmful constituents and increase considerably the total cost of the process. Therefore, researches have been focused on the development of cleaner production technologies applications as dry machining. This leads to the search for combinations of cutting parameters and type of tools (types of coatings and different geometries) that could improve the machining under such conditions. The aim of this study is to analyse the relationship between the surface roughness obtained during the dry turning of aluminium UNS A97050-T7 bars and the cutting parameters (cutting speed and feed) using three different tools. As a first conclusion it could be affirmed that the feed was the cutting parameter more influential on the surface roughness and to a lesser extend the cutting speed, the type of tool and the interaction between the type of tool and the feed.

  14. Grading technologies for the manufacture of innovative cutting blades

    NASA Astrophysics Data System (ADS)

    Rostek, Tim; Homberg, Werner

    2018-05-01

    Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.

  15. Machines employing a hot gas jet to cut metals and nonmetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyaev, V.M.; Aleksandrenkov, V.P.

    1995-07-01

    The flame-cutting of metals is a basic materials-processing operation performed in the course of machine-building and, in some sectors (shipbuilding, aircraft construction, petrochemicals) it is the most important operation. In addition, this method of cutting remains the main operation performed in the processing of scrap metal. The importance of it has occasioned the development of a wide range of cutting tools within just the last decade. Not surprisingly, VNIIavtogen-mash (the All-Union Scientific Research Institute of Machinery for the Gas Welding and Cutting of Metals) is the leading designer of metal-cutting tools in this country. The problem of efficiently cutting metalsmore » is gaining in importance and will continue to do so in coming years in connection with the conversion of military hardware to other uses, the decommissioning of old and obsolete equipment, and utilization of the enormous reserves of scrap in this country. There will thus be a significant increase in the amounts of existing high-alloy steels, nonferrous metals and their alloys, and composites that require cutting. A wide range of cutters is available for the gas-flame cutting of metals, Liquid fuels based on petroleum products are promising from the viewpoint of energy efficiency and performance. The operation of a new generation of cutters, referred to as thermo-gas jet cutters, is based on the principle of the destructive action of a hot, fast-moving, chemically active jet on the material to be cut.« less

  16. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs).

    PubMed

    Bakhtyar, Sajida; Gagnon, Marthe Monique

    2012-09-01

    Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.

  17. The Induced Seismicity Roller Coaster: Up, and then Down, and then Up Again

    NASA Astrophysics Data System (ADS)

    Riffault, J.; Dempsey, D.

    2017-12-01

    Diverse industries from oil & gas, to geothermal and CO2 storage have triggered significant numbers of earthquakes in the last decade. There is broad agreement that the underlying cause is injection of large volumes of fluid and subsequent pressure rise in the disposal and connected formations. Thus, it stands to reason that reducing injection will have a flow-through effect on the seismicity. For example, in an attempt to mitigate earthquakes in Oklahoma, a 40% injection rate reduction was enforced, resulting in a significant decrease in the seismicity rate. Here, we show that, under certain conditions, cutting the injection rate leads to transients in the seismicity rate that could mislead operators and regulators into a false sense of security. We used semi-analytic solutions of injection and fluid flow in a radial geometry coupled with a model that links the pressure rise with the rate of induced seismicity. We find that cutting the injection rate causes complex pressure transients around the injection well: (i) initially, pressure will continue to increase; (ii), then, it reaches a peak and starts to decline; (iii) finally, the decline is reversed and pressure starts to increase again. Depending on the stress criticality of the system and the size of the injection rate cut, the outcome can be a short-term decrease, or even a total cessation, of the seismicity. However, over the longer term, seismicity will increase to a new steady-state (which is nevertheless lower than that preceding the rate cut.) Our results imply that it can be misleading to rely on observations of the seismicity rate shortly after mitigation measures are implemented as an indicator of their efficacy. It is also possible to use this model to interpret the results injection well step tests, with the aim of quantifying aspects of the crustal stress state.

  18. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete

    PubMed Central

    Martynenko, V.; Martínez Krahmer, D.; Benítez, A.; Genovese, G.

    2018-01-01

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade’s matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria. PMID:29425125

  19. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    PubMed

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  20. Spitting cobras: fluid jets in nature as models for technical applications

    NASA Astrophysics Data System (ADS)

    Balmert, Alexander; Hess, David; Brücker, Christoph; Bleckmann, Horst; Westhoff, Guido

    2011-04-01

    Spitting cobras defend themselves by ejecting rapid jets of venom through their fangs towards the face of an offender. To generate these jets, the venom delivery system of spitting cobras has some unique adaptations, such as prominent ridges on the surface of the venom channel. We examined the fluid acceleration mechanisms in three spitting cobra species of the genus Naja. To investigate the liquid-flow through the venom channel we built a three-dimensional 60:1 scale model. First we determined the three-dimensional structure of the channel by using microcomputer tomography. With help of the micro computer tomographical data we then created a negative form out of wax. Finally, silicon was casted around the wax form and the wax removed, resulting in a completely transparent model of the cobrás venom channel. The physical-chemical properties of the cobra venom were measured by micro rheometry and tensiometry. Thereafter, an artificial fluid with similar properties was generated. Particle image velocimetry (PIV) was performed to visualize the flow of the artificial liquid in the three-dimensional model. Our experiments show how the surface structure of the venom channel determines the liquid flow through the channel and ultimately the form of the liquid jet. Understanding the biological mechanisms of venom ejection helps to enhance industrial processes such as water jet cutting and cleaning as well as injection methods in technical and medical sectors, e.g. liquid microjet dissection in microsurgery.

  1. Using computational fluid dynamics to test functional and ecological hypotheses in fossil taxa

    NASA Astrophysics Data System (ADS)

    Rahman, Imran

    2016-04-01

    Reconstructing how ancient organisms moved and fed is a major focus of study in palaeontology. Traditionally, this has been hampered by a lack of objective data on the functional morphology of extinct species, especially those without a clear modern analogue. However, cutting-edge techniques for characterizing specimens digitally and in three dimensions, coupled with state-of-the-art computer models, now provide a robust framework for testing functional and ecological hypotheses even in problematic fossil taxa. One such approach is computational fluid dynamics (CFD), a method for simulating fluid flows around objects that has primarily been applied to complex engineering-design problems. Here, I will present three case studies of CFD applied to fossil taxa, spanning a range of specimen sizes, taxonomic groups and geological ages. First, I will show how CFD enabled a rigorous test of hypothesized feeding modes in an enigmatic Ediacaran organism with three-fold symmetry, revealing previously unappreciated complexity of pre-Cambrian ecosystems. Second, I will show how CFD was used to evaluate hydrodynamic performance and feeding in Cambrian stem-group echinoderms, shedding light on the probable feeding strategy of the latest common ancestor of all deuterostomes. Third, I will show how CFD allowed us to explore the link between form and function in Mesozoic ichthyosaurs. These case studies serve to demonstrate the enormous potential of CFD for addressing long-standing hypotheses for a variety of fossil taxa, opening up an exciting new avenue in palaeontological studies of functional morphology.

  2. Evaluation of a self-equilibrium cutting strategy for the contour method of residual stress measurement

    DOE PAGES

    Muránsky, Ondrej; Hamelin, Cory J.; Hosseinzadeh, F.; ...

    2017-04-06

    An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. Themore » cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. Furthermore, the reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (K I) stress intensity factor (SIF) along the cut tip, and correlating trends in K I to CIP development.« less

  3. Evaluation of a self-equilibrium cutting strategy for the contour method of residual stress measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muránsky, Ondrej; Hamelin, Cory J.; Hosseinzadeh, F.

    An assessment of cutting-induced plasticity (CIP) is performed, by finite element (FE) prediction of the plastic strain accumulation along the cut tip when the EDM wire sections the NeT TG4 weld benchmark specimen along two cutting directions. The first direction corresponds to a conventional (C) cutting strategy, whereby the EDM wire cuts through the thickness of the weld specimen and travels in a direction transverse to the weld. The second direction corresponds to a self-equilibrating cutting (SE) strategy, whereby the EDM wire cuts across the transverse direction of the weld specimens and travels through the thickness of the plate. Themore » cutting thus progresses simultaneously through the compression-tension-compression regions of present weld residual stress (WRS) field. This type of cutting strategy is believed to minimize the CIP by minimising residual stress redistribution during cutting, due to stress equilibration across the sectioned material. The simulated cutting procedures are conducted under a range of clamping conditions to assess whether mechanical restraint has a primary or secondary influence on CIP accumulation. Both predictions of CIP and the resultant back-calculated WRS demonstrate that (i) mechanical restraint is the primary variable influencing CIP development, and (ii) under no circumstance does a self-equilibrating cutting strategy perform significantly better than a conventional cutting approach. Furthermore, the reason that self-equilibrating cuts are not effective is illustrated by calculating the Mode I (K I) stress intensity factor (SIF) along the cut tip, and correlating trends in K I to CIP development.« less

  4. Teaching three-dimensional surgical concepts of inguinal hernia in a time-effective manner using a two-dimensional paper-cut.

    PubMed

    Mann, B D; Seidman, A; Haley, T; Sachdeva, A K

    1997-06-01

    Because inguinal hernia repair is difficult for third-year students to comprehend, a 2-dimensional paper-cut was developed to teach the concepts of inguinal hernia in a time-effective manner before students' observation of herniorrhaphy in the operating room. Using Adobe Illustrator 5.5 for MacIntosh, a 2-dimensional inexpensively printed paper-cut was created to allow students to perform their own simulated hernia repair before observing surgery. The exercise was performed using a no.15 scalpel or an iris scissors and was evaluated by comparing 10-question pre-tests and post-tests. Seventy-five students performed the exercise, most completing it within 15 minutes. The mean pre-test score was 7.4/10 and the mean post-test score was 9.1/10. Students performing the paper-cut reported better understanding when observing actual herniorrhaphy. A 2-dimensional paper-cut ("surgical origami") may be a time-effective method to prepare students for the observation of hernia repair.

  5. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush. [Atriplex canescens; Buchloe dactyloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush (Atriplex canescens (Pursh Nutt.)) and buffalograss (Buchloe dactyloides (Nutt.) Engelm.) transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both speciesmore » was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected.« less

  6. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  7. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

  8. Administrative and Leadership Innovation in the 21st Century: A Secondary School Sub-Sector Perspective in Kenya

    ERIC Educational Resources Information Center

    Kaume-Mwinzi, Regina K.

    2016-01-01

    Studies have indicated that in education, the traditional management paradigm maintains an inward focus with the aim of cutting costs, upholding rules and division of labour. However, the 21st century has ushered in a new revolution in education leadership structures which are less hierarchical, more flattened and more fluid organizations. The…

  9. Sensitivity and specificity of the Beck Depression Inventory in cardiologic inpatients: how useful is the conventional cut-off score?

    PubMed

    Forkmann, Thomas; Vehren, Thomas; Boecker, Maren; Norra, Christine; Wirtz, Markus; Gauggel, Siegfried

    2009-10-01

    The Beck Depression Inventory (BDI) is widely used for depression screening in various patient populations. However, there are still insufficient data about its sensitivity and specificity in nonpsychiatric patients. Furthermore, some research suggests that somatic BDI items heighten its sum score artificially in physically ill patients. The aim of the present study was to validate the conventional BDI cut-off score by examination of its sensitivity and specificity in a mixed sample of cardiac inpatients and compare it to a modified "cognitive-emotional" BDI (BDI(c/e)) after exclusion of somatic items. A total of 126 cardiologic inpatients were assessed. Receiver operating characteristic curves (ROC) were calculated for total BDI (BDI(t)) and BDI(c/e). Screening performance of cut-off scores was evaluated using the Youden Index (Y). With the application of the conventional BDI cut-off score, ROC analysis revealed a moderate overall screening performance with Y=52.6 and an area under the curve (AUC) of 0.83. In contrast, Y improved to 57.5 at a cut-off score of >9, but screening performance was still not optimal. BDI(c/e) showed also a moderate screening performance (AUC=.82); Y was maximized at a cut-off score of >8 (Y=0.53.5). Again, no cut-off score provided optimal screening performance. The BDI cannot be recommended as a formal screening instrument in cardiac inpatients since no cut-off score for either BDI(t) or BDI(c/e) combined both sufficiently high sensitivity and specificity. However, the shorter BDI(c/e) could be used as alternative to BDI(t) which may be confounded in physically ill patients. Generally, researchers should consider using alternative screening instruments (e.g., the Hospital Anxiety and Depression Scale) instead.

  10. X-Z-Theta cutting method

    DOEpatents

    Bieg, Lothar F.

    1993-01-12

    A method for machining a workpiece. The method includes the use of a rotary cutting tool mounted on the end of a movable arm. The arm is adapted to move in a plane perpendicular to the axis of rotation of the cutting tool. The cutting tool has cutting teeth to cut chips of material off of the workpiece in a predetermined size and shape to facilitate better removal of the chips from the workpiece. The teeth can be of different type and length to permit the tool to both rough cut and finish cut the workpiece during machining. The total depth of cut is divided by the number of tool teeth, so that the longest tool always performs the finishing cut.

  11. Tilting at wave beams: a new perspective on the St Andrew's Cross

    NASA Astrophysics Data System (ADS)

    Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.

    2017-11-01

    The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.

  12. The role of ascitic fluid viscosity in the differential diagnosis of ascites

    PubMed Central

    Gokturk, Huseyin Savas; Demir, Mehmet; Ozturk, Nevin Akcaer; Unler, Gulhan Kanat; Kulaksizoglu, Sevsen; Kozanoglu, Ilknur; Serin, Ender; Yilmaz, Ugur

    2010-01-01

    BACKGROUND: Ascites is defined as the pathological accumulation of fluid in the peritoneal cavity. It is the most common complication of cirrhosis, which is also the most common cause of ascites. Viscosity is a measure of the resistance of a fluid to deform under shear stress. Plasma viscosity is influenced by the concentration of plasma proteins and lipoproteins, with the major contribution from fibrinogen. To our knowledge, the viscosity of ascitic fluid has not yet been studied. OBJECTIVE: To evaluate the role of ascitic fluid viscosity in discriminating between ascites due to portal hypertension-related and nonportal hypertension-related causes, and to compare results with the serum-ascites albumin gradient (SAAG). METHODS: The present study involved 142 patients with ascites presenting with diverse medical problems. Serum total protein, albumin, glucose, lactate dehydrogenase (LDH) levels and complete blood count were obtained for all subjects. Paracentesis was performed routinely on admission and all ascitic fluid samples were evaluated by manual cell count with differential, ascitic fluid culture and biochemistry (total protein, albumin, glucose and LDH). Cultures of ascitic fluid were performed at bedside in all patients using blood culture bottles. Ascitic fluid viscosity was measured in a commercially available cone and plate viscometer. RESULTS: Of the 142 patients studied, 34 (24%) had an SAAG of 11 g/L or less, whereas 108 (76%) had an SAAG of greater than 11 g/L. Sex and mean age did not differ significantly between the two groups (P>0.05). Serum total protein, albumin, glucose, LDH levels, leukocyte count, ascitic fluid glucose levels and ascitic fluid leukocyte counts were similar in both groups, with no statistically significant relationship detected (P>0.05). However, the mean (±SD) ascitic fluid total protein (0.0172±0.1104 g/L versus 0.043±0.011 g/L), albumin (0.0104±0.0064 g/L versus 0.0276±0.0069 g/L) and LDH (102.76±80.95 U/L versus 885.71±199.93 U/L) were found to be higher in patients with an SAAG of 11 g/L or less than in those with an SAAG of greater than 11 g/L (P<0.001). The mean ascitic fluid viscosities were 0.86±0.12 centipoise (cP) and 1.22±0.25 cP in patients with an SAAG greater than 11 g/L and an SAAG of 11 g/L or less, respectively (P<0.001). Although ascitic fluid infection was detected in 35 patients (24.6%) (19 patients with spontaneous bacterial peritonitis, seven patients with culture-negative neutrocytic ascites, three patients with monobacterial non-neutrocytic bacterascites and six patients with secondary bacterial peritonitis), no significant effect on ascitic fluid viscosity was detected. Multiple linear regression analysis revealed that ascitic fluid total protein, albumin and LDH levels were independent predictors of ascitic fluid viscosity (P<0.001). The sensitivity, specificity, and positive and negative predictive values of ascitic fluid viscosity for the discrimination between ascites due to portal hypertension-related and nonportal hypertension-related causes according to the SAAG were determined by receiver operating characteristic analysis. Regarding the cut-off value of 1.03 cP, ascitic fluid viscosity measurement had a high sensitivity, specificity (98% and 80%, respectively), and positive and negative predictive value (79% and 94%, respectively) for the etiological discrimination of ascites. CONCLUSION: The measurement of ascitic fluid viscosity correlates significantly with SAAG values. In view of its simplicity, low cost, small sample volume requirement and allowance for measurement in previously frozen samples, measurement of ascites viscosity could be useful for the accurate and rapid classification of ascites. PMID:20431815

  13. Biomechanical factors associated with time to complete a change of direction cutting maneuver.

    PubMed

    Marshall, Brendan M; Franklyn-Miller, Andrew D; King, Enda A; Moran, Kieran A; Strike, Siobhán C; Falvey, Éanna C

    2014-10-01

    Cutting ability is an important aspect of many team sports, however, the biomechanical determinants of cutting performance are not well understood. This study aimed to address this issue by identifying the kinetic and kinematic factors correlated with the time to complete a cutting maneuver. In addition, an analysis of the test-retest reliability of all biomechanical measures was performed. Fifteen (n = 15) elite multidirectional sports players (Gaelic hurling) were recruited, and a 3-dimensional motion capture analysis of a 75° cut was undertaken. The factors associated with cutting time were determined using bivariate Pearson's correlations. Intraclass correlation coefficients (ICCs) were used to examine the test-retest reliability of biomechanical measures. Five biomechanical factors were associated with cutting time (2.28 ± 0.11 seconds): peak ankle power (r = 0.77), peak ankle plantar flexor moment (r = 0.65), range of pelvis lateral tilt (r = -0.54), maximum thorax lateral rotation angle (r = 0.51), and total ground contact time (r = -0.48). Intraclass correlation coefficient scores for these 5 factors, and indeed for the majority of the other biomechanical measures, ranged from good to excellent (ICC >0.60). Explosive force production about the ankle, pelvic control during single-limb support, and torso rotation toward the desired direction of travel were all key factors associated with cutting time. These findings should assist in the development of more effective training programs aimed at improving similar cutting performances. In addition, test-retest reliability scores were generally strong, therefore, motion capture techniques seem well placed to further investigate the determinants of cutting ability.

  14. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cutting instruments. Part II: electric handpiece and comparison with turbine.

    PubMed

    Ercoli, Carlo; Rotella, Mario; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2009-05-01

    The cutting behavior of dental rotary cutting instruments is influenced by the handpiece used. While the turbine handpiece has been extensively tested in previous studies, limited published information exists on the use of rotary cutting instruments with the electric handpiece system and on possible interactions between rotary cutting instruments and handpiece type. The purpose of this study was to examine the cutting performance of a wide selection of rotary cutting instruments tested with the electric handpiece and compare the results with those of the air-turbine handpiece (Part I), identifying possible interactions between handpiece type and rotary cutting instruments. Ten groups of rotary cutting instruments (n=30) designed for tooth preparation were selected: 9 diamond (7 multi-use, 2 disposable) and 1 carbide. Macor blocks (n=75) were used as a substrate, and 4 cuts were made on each specimen, using a new rotary cutting instrument each time, for a total of 300 cuts. The cuts were performed with an electric handpiece (Intramatic Lux K200), with the same methods used in the Part I study. To qualitatively evaluate the rotary cutting instrument surface characteristics, 1 specimen from each group was examined 3 times with a scanning electron microscope (SEM): before use, then after use, but before being cleaned and sterilized, and finally, after ultrasonic cleaning. To compare rotary cutting instrument performance between the turbine and electric handpieces, the data were analyzed using 2-way ANOVA to study the main effects of the group of rotary cutting instruments, handpieces, and their interaction. For analysis of the significant main effect, 1-way ANOVA and Tukey's Studentized Range test were used (alpha=.05). Compared to the baseline temperature, all rotary cutting instruments showed a reduction of the temperature in the simulated pulp chamber when tested with the electric handpiece. The Great White Ultra (carbide bur) showed the highest rate of advancement (0.17 mm/s) and lowest applied load (108.35 g). Considering all rotary cutting instruments as a single group, the electric handpiece showed mean lower temperature (26.68 degrees C), higher rate of advancement (0.12 mm/s), and higher load (124.53 g) than the air-turbine handpiece (28.37 degrees C, 0.11 mm/s, and 121.7 g, respectively). Considering each single group of rotary cutting instruments, significant differences were found for the electric or air-turbine handpiece. The tested carbide bur showed greater cutting efficiency than the tested diamond rotary cutting instruments when used with the electric handpiece. The electric handpiece showed a higher cutting efficiency than the turbine, especially when used with the carbide bur, probably due to its greater torque.

  15. Loblolly pine cutting morphological traits: effects on rooting and field performance

    Treesearch

    G. Sam Foster; H.E. Stelzer; J.B. McRae

    2000-01-01

    Shoot cuttings were harvested from 4-year-old loblolly pine hedges in March and September of 1987, and placed into a series of factorial combinations of cutting length, diameter class, and the presence/absence of a terminal bud to assess effects on rooting and field performance. Average rooting in the March trial was 50 percent and only 20 percent for the September...

  16. 75 FR 52037 - Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...] Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB) Approval... requirements contained in the Welding, Cutting and Brazing Standard (29 CFR part 1910, subpart Q). The information collected is used by employers and workers whenever welding, cutting and brazing are performed...

  17. The Effects of Cryogenic Treatment on Cutting Tools

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.

    2017-08-01

    Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.

  18. Influence of anti-adhesive agent on incidence of bile leakage after liver resection: A prospective cohort study.

    PubMed

    Yu, Young-Dong; Kim, Dong-Sik; Jung, Sung-Won; Han, Jae-Hyun; Suh, Sung-Ock

    2016-07-01

    Anti-adhesive agents are increasingly used to reduce the incidence of postoperative adhesions following abdominal surgery. Bile leakage after liver resection remains a major cause of postoperative morbidity. The aim of this study was to examine the effect of anti-adhesive agent on bile leakage after liver resection. 77 patients were enrolled to receive an anti-adhesive agent (study group) during liver resection between May 2012 and August 2013. The study group was compared to a match-paired control group. Clinical data were collected including bilirubin concentration in serum and drain fluid and bile leakage rate. In addition, a separate analysis was performed between patients with and without postoperative bile leakage. There was no difference in bile leakage rate or hospital stay between the study group (n = 77) and control group (n = 77). Of the total number of patients (n = 154), there were 29 patients with postoperative bile leak and 125 patients without bile leak. On univariate analysis, patients without history of hepatitis were significantly associated with bile leakage. In addition, liver resection with broader cut surface area was associated with bile leakage. Application of anti-adhesive agent was not associated with bile leakage. On multivariate analysis, resection with broader cut surface area (OR = 2.788, p = 0.026) and patients without history of hepatitis (OR = 5.153, p = 0.039) were significantly associated with bile leakage. Larger area of cut-surface and patients without history of hepatitis were significant risk factors for bile leakage. The use of anti-adhesive agent was not associated with increased risk of bile leakage. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Toxicity of used drilling fluids to mysids (Mysidopsis bahia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaetz, C.T.; Montgomery, R.; Duke, T.W.

    1986-01-01

    Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less

  20. Embolization for Thoracic Duct Collateral Leakage in High-Output Chylothorax After Thoracic Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariya, Shuji, E-mail: kariyas@hirakata.kmu.ac.jp; Nakatani, Miyuki, E-mail: nakatanm@hirakata.kmu.ac.jp; Yoshida, Rie, E-mail: yagir@hirakata.kmu.ac.jp

    PurposeThis study was designed to investigate thoracic duct collateral leakage and the supply route of lymphatic fluid by lymphangiography and transcatheter thoracic ductography and to evaluate the results of embolization for thoracic duct collateral leakage performed to cut off this supply route.MethodsData were retrospectively collected from five patients who underwent embolization for thoracic duct collateral leakage in persistent high-output chylothorax after thoracic surgery. Extravasation of lipiodol at the ruptured thoracic duct collaterals was confirmed in all patients on lymphangiography. Transcatheter thoracic ductography was used to identify extravasation of iodinated contrast agent and to identify communication between the thoracic duct andmore » leakage site. Thoracic duct embolization (TDE) was performed using the percutaneous transabdominal approach to cut off the supply route using N-butyl cyanoacrylate (NBCA) mixed with lipiodol (1:5–1:20).ResultsClinical success (drainage volume ≤10 mL/kg/day within 7 days after TDE) was achieved in all patients. The collateral routes developed as consequence of surgical thoracic duct ligation. In three patients, NBCA-Lipiodol reached the leakage site through direct communication between the thoracic duct and the ruptured lymphatic duct. In the other two patients, direct communication and extravasation was not detected on thoracic ductography, and NBCA-Lipiodol did not reach the leakage site. However, NBCA-Lipiodol did reach the cisterna chyli, lumbar trunks, and some collateral routes via the cisterna chyli or lumbar lymphatics. As a result, leakage was stopped.ConclusionsTDE was effective for the management of leakage of the collaterals in high-output chylothorax after thoracic surgery.« less

  1. Comparing cutting efficiencies of diamond burs using a high-speed electric handpiece.

    PubMed

    Chung, Evelyn M; Sung, Eric C; Wu, Ben; Caputo, Angelo A

    2006-01-01

    This study sought to compare the cutting efficiency of different diamond burs on initial use as well as during repeated use, alternating with sterilization. Long, round-end, tapered diamond burs with similar diameter, profile, and diamond coarseness (125-150 microm grit) were used. A high-torque, high-speed electric handpiece (set at 200,000 rpm) was utilized with a coolant flow rate of 25 mL/min. Burs were tested under a constant load of 170 g while cuts were made on a machinable ceramic substrate block. Each bur was subjected to five consecutive cuts for 30 seconds of continuous operation and the cutting depths were measured. All burs performed similarly on the first cut. Cutting efficiencies for three of the bur groups decreased significantly after the first cycle; however, by the fifth cycle, all bur groups performed similarly without any significant differences (p > 0.05). A scanning electron microscope revealed significant crystal loss after each use.

  2. Laser cutting metallic plates using a 2kW direct diode laser source

    NASA Astrophysics Data System (ADS)

    Fallahi Sichani, E.; Hauschild, D.; Meinschien, J.; Powell, J.; Assunção, E. G.; Blackburn, J.; Khan, A. H.; Kong, C. Y.

    2015-07-01

    This paper investigates the feasibility of using a 2kW direct diode laser source for producing high-quality cuts in a variety of materials. Cutting trials were performed in a two-stage experimental procedure. The first phase of trials was based on a one-factor-at-a-time change of process parameters aimed at exploring the process window and finding a semi-optimum set of parameters for each material/thickness combination. In the second phase, a full factorial experimental matrix was performed for each material and thickness, as a result of which, the optimum cutting parameters were identified. Characteristic values of the optimum cuts were then measured as per BS EN ISO 9013:2002.

  3. DEGRADATION IN THE FATIGUE STRENGTH OF DENTIN BY DIAMOND BUR PREPARATIONS: IMPORTANCE OF CUTTING DIRECTION

    PubMed Central

    Majd, B.; Majd, H.; Porter, J.A.; Romberg, E.; Arola, D.

    2014-01-01

    The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored 3rd molars, including a flaw free “control”, and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly flexure lower strength (p≤0.05) than the control for both cutting directions (from 154 MPa to approx. 124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p≤0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 MPa to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. PMID:25611951

  4. Cutting efficiency of diamond burs operated with electric high-speed dental handpiece on zirconia.

    PubMed

    Nakamura, Keisuke; Katsuda, Yusuke; Ankyu, Shuhei; Harada, Akio; Tenkumo, Taichi; Kanno, Taro; Niwano, Yoshimi; Egusa, Hiroshi; Milleding, Percy; Örtengren, Ulf

    2015-10-01

    Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations. © 2015 Eur J Oral Sci.

  5. Degradation in the fatigue strength of dentin by diamond bur preparations: Importance of cutting direction.

    PubMed

    Majd, B; Majd, H; Porter, J A; Romberg, E; Arola, D

    2016-01-01

    The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored third molars, including a flaw free "control," and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly lower flexure strength (p ≤ 0.05) than the control for both cutting directions (from 154 to ∼124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p ≤ 0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. © 2014 Wiley Periodicals, Inc.

  6. Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmond, J.; Barney, P.

    This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.

  7. Free radical scavenging window of infertile patients with polycystic ovary syndrome: correlation with embryo quality.

    PubMed

    Huang, Bo; Li, Zhou; Ren, Xinling; Ai, Jihui; Zhu, Lixia; Jin, Lei

    2017-06-01

    The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.

  8. Networks of channels for self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Lorente, S.; Wang, K.-M.

    2006-08-01

    This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.

  9. [The assessment of ultrasonic measurement of superior vena cava blood flow for the volume responsiveness of patients with mechanical ventilation].

    PubMed

    Guo, Zhe; He, Wei; Hou, Jing; Li, Tong; Zhou, Hua; Xu, Yuan; Xi, Xiuming

    2014-09-01

    To approach the evaluative effect of respiratory variation of superior vena cava peak flow velocity measured using transthoracic echocardiography (TTE) on fluid responsiveness in patients with mechanical ventilation. A prospective cohort study was conducted. All mechanical ventilated critically ill patients whose fluid therapy was planned due to hypovolemia in Department of Critical Care Medicine of Beijing Tongren Hospital of Capital Medical University from April 2011 to April 2013 were enrolled. Volume expansion was performed with 500 mL Linger solution within 30 minutes. Patients were classified as responders if pulse pressure variation (PPV) increased ≥ 13% before volume expansion. The respiratory variation in superior vena cava peak velocity was calculated as the difference between maximum and minimum values of velocity in peak A, peak S and peak D over a single respiratory circle, and their variations (ΔA, ΔS, ΔD) were also calculated. The receiver operating characteristic curve (ROC curve) was plotted to assess the evaluative effect of respiratory variation of superior vena cava peak velocity on fluid responsiveness. Twenty-seven patients were enrolled in this study. Volume expansion increased PPV ≥ 13% happened in 14 patients (responders). The velocity of superior vena cava in peak A, peak S, peak D was significantly increased after volume expansion compared with that before volume expansion in responders [peak A (cm/s): 34.6 ± 2.2 vs. 31.3 ± 2.1, t=-2.493, P=0.027; peak S (cm/s): 39.1 ± 1.3 vs. 35.3 ± 2.1, t=-2.564, P=0.024; peak D (cm/s): 28.1 ± 1.2 vs. 23.3 ± 1.4, t=-4.995, P=0.000], but there was no significant difference in ΔA, ΔS and ΔD between before and after volume expansion. The ΔA, ΔS and ΔD were positively correlated with PPV (r=0.040, P=0.854; r=0.350, P=0.074; r=0.749, P=0.000). The area under ROC curve (AUC) of peak S was 0.36 [95% confidence interval (95%CI): 0.11-0.52], but the AUC of ΔS was 0.68 (95%CI 0.47-0.89), the AUC of peak D was 0.41 (95%CI 0.19-0.63), but the AUC of ΔD was 0.95 (95%CI 0.86-1.00), so the aberration rate of superior vena cava in respiration was better than the flow rate in superior vena cava. When the cut-off value of ΔS was 20.7% for predicting fluid responsiveness, the sensitivity was 78.6% and the specificity was 61.5%. When the cut-off value of ΔD was 12.7% for predicting fluid responsiveness, the sensitivity was 92.0% and the specificity was 92.3%. Respiratory variations in superior vena cava peak velocity measured by TTE could assess fluid responsiveness in patients with mechanical ventilation.

  10. Fluid evolution of Au-Cu zones in Um Balad area, North Eastern Desert of Egypt: Implications from mineral chemistry and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed; Salem, Ibrahim; Slobodník, Marek; Ragab, Ahmed

    2018-07-01

    Scanning electron microscope (SEM), Electron microprobe (EMPA) and fluid inclusion studies of the ore body, as well as geochemical analyses of country rocks were performed to determine the nature and characteristics of the mineralizing fluid responsible for Au-Cu deposits in Um Balad area, Northern Eastern Desert of Egypt. The Um Balad Au-Cu deposits are confined to well developed-quartz veins and veinlets cutting through the hosting country rocks. Petrographic and geochemical investigations of the hosting rocks distinguished between two main rock units; 1) metagabbro-diorite rocks with tholeiitic nature derived in island arc/continental margin tectonic regime, and 2) granodiorite rocks formed from calc-alkaline magma in continental margin regime. Wallrock alterations are represented by propylitic and argillic types. The mineralized quartz veins are striking in NE-SW direction and dipping between (35°-45°) in SE direction, other mineralized mafic dykes enriched with auriferous quartz veinlets are trending NE-SW and dipping 70°/SE. The main ore minerals are represented by gold, chalcopyrite, pyrite, sphalerite, malachite, covellite and goethite. While, geffroyite, cuprite, chrysocolla, pseudomalachite, britholite, wolframite, scheelite, hematite and rutile are detected as minor constituents. Fluid inclusions microthermometry and isochore calculations combined with chlorite geothermometry revealed that the Um Balad deposits were formed at temperature ranging from 305 °C to 325 °C and pressure between (100-500 bar). The mineralization had been developed in the shallow levels, beneath the water table at depth of 350-1760 m, rather than common mesothermal vein-type deposits in Egypt. Magmatic water have been suggested as the main source for the mineralized fluid. The transportation of the gold metal seems to be happen as bisulfide complexes in moderately acidic environment. The deposition was resulted from combination of changes in physico-chemical parameters, temperature and pressure plus the instability of the reduced sulfur complexes. A contamination with metamorphic and/or meteoric water was also proposed that has strong influence during the depositional process.

  11. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means of wet abrasive jet machining.

  12. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    NASA Astrophysics Data System (ADS)

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  13. High performance cutting of aircraft and turbine components

    NASA Astrophysics Data System (ADS)

    Krämer, A.; Lung, D.; Klocke, F.

    2012-04-01

    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  14. Metalworking fluids: oil mist and beyond.

    PubMed

    Gauthier, Stephen L

    2003-11-01

    This article is based upon my own experiences with metalworking fluids and the adverse health effects and medical conditions associated with exposure to metalworking fluids. I have researched and witnessed the benefits that can be achieved when metalworking fluids are properly maintained and managed. My experiences have provided insight into how a shop operates, including comprehension of the equipment used, processes, mist generating points, engineering controls currently being adopted, and procedures that are used to maintain metalworking fluids. I have been able to share my personal experiences with the country's leading experts in the field of metalworking fluids. I have presented my insights on the topic in Washington, D.C., to the Standard Advisory Committee of OSHA, as well as at many other conferences nationwide. I have provided awareness training for a number of union and nonunion workers. Being a part of developing successful metal removal fluid programs, I realize the importance of transferring and sharing information. Many times an organization is not fully aware of certain conditions and how to combat them. My mission and intent is to properly educate those who are exposed to the harm that metalworking fluids can invoke and to inform those involved of the possible methods of reducing long- and short-term risk. One thing that must be kept in mind is the way we view these fluids. Many shops categorize the fluids as a type of "operating expense" when they should actually be seen as a sort of investment. Just as performing a scheduled maintenance on a machine promises the best possible longevity of that machine, the upkeep of metalworking fluid also provides longer "tool life." Monitoring and maintaining the fluids also provides for more effective and efficient productivity. If we fail to consider that proper management of the fluids can cut cost dramatically, then we will miss out on the financial impact they can have on a company. Try looking at the fluids as a liquid tool. Doing so I believe will bring a better understanding of the value of a successful metalworking fluids program. With this new understanding, it can be seen just who must play a role in the management of metalworking fluids. The employees who deal with the daily tasks involving the coolant play a major part. They are on the floor where these metalworking fluids are being used. In many shops, it is assumed that the environmental health & safety departments are responsible for standard operating procedures and management of fluids. The EH&S department should only be responsible for the protection from exposure and the transfer of information regarding policy and procedure to their employees. Not all shops have the resources required to develop and implement the proper standard operating procedure. Therefore, we must understand that what is feasible for one may not be for another. Companies that lack the sufficient resources should not be neglected. It is crucial that awareness of proper standard operating procedure is shared with everyone involved with the fluids in order to provide proper metalworking fluids management. Fluids are as dynamic as the formulations themselves (complex & dynamic). These fluids can quickly become contaminated with foreign materials and chemicals, thereby become aerosolized into mist. With proper education and training, one will be able to control what gets aerosolized.

  15. Research Results Of Stress-Strain State Of Cutting Tool When Aviation Materials Turning

    NASA Astrophysics Data System (ADS)

    Serebrennikova, A. G.; Nikolaeva, E. P.; Savilov, A. V.; Timofeev, S. A.; Pyatykh, A. S.

    2018-01-01

    Titanium alloys and stainless steels are hard-to-machine of all the machining types. Cutting edge state of turning tool after machining titanium and high-strength aluminium alloys and corrosion-resistant high-alloy steel has been studied. Cutting forces and chip contact arears with the rake surface of cutter has been measured. The relationship of cutting forces and residual stresses are shown. Cutting forces and residual stresses vs value of cutting tool rake angle relation were obtained. Measurements of residual stresses were performed by x-ray diffraction.

  16. Postdural Puncture Headache

    PubMed Central

    Ghaleb, Ahmed

    2010-01-01

    Postdural puncture headache (PDPH) has been a problem for patients, following dural puncture, since August Bier reported the first case in 1898. His paper discussed the pathophysiology of low-pressure headache resulting from leakage of cerebrospinal fluid (CSF) from the subarachnoid to the epidural space. Clinical and laboratory research over the last 30 years has shown that use of small-gauge needles, particularly of the pencil-point design, is associated with a lower risk of PDPH than traditional cutting point needle tips (Quincke-point needle). A careful history can rule out other causes of headache. A postural component of headache is the sine qua non of PDPH. In high-risk patients , for example, age < 50 years, postpartum, large-gauge needle puncture, epidural blood patch should be performed within 24–48 h of dural puncture. The optimum volume of blood has been shown to be 12–20 mL for adult patients. Complications of AEBP are rare. PMID:20814596

  17. CFD research, parallel computation and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  18. Experimental investigation of Rayleigh Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Haley, Aaron Alan; Banerjee, Arindam

    2010-11-01

    The interface of an elastic-plastic plate accelerated by a fluid of lower density is Rayleigh Taylor (RT) unstable, the growth being mitigated by the mechanical strength of the plate. The instability is observed when metal plates are accelerated by high explosives, in explosive welding, and in volcanic island formation due to the strength of the inner crust. In contrast to the classical case involving Newtonian fluids, RT instability in accelerated solids is not well understood. The difficulties for constructing a theory for the linear growth phase in solids is essentially due to the character of elastic-plastic constitutive properties which has a nonlinear dependence on the magnitude of the rate of deformation. Experimental investigation of the phenomena is difficult due to the exceedingly small time scales (in high energy density experiments) and large measurement uncertainties of material properties. We performed experiments on our Two-Wheel facility to study the linear stage of the incompressible RT instability in elastic-plastic materials (yogurt) whose properties were well characterized. Rotation of the wheels imparted a constant centrifugal acceleration on the material interface that was cut with a small sinusoidal ripple. The controlled initial conditions and precise acceleration amplitudes are levied to investigate transition from elastic to plastic deformation and allow accurate and detailed measurements of flow properties.

  19. Study of the performances of nano-case treatment cutting tools on carbon steel work material during turning operation

    NASA Astrophysics Data System (ADS)

    Afolalu, S. A.; Okokpujie, I. P.; Salawu, E. Y.; Abioye, A. A.; Abioye, O. P.; Ikumapayi, O. M.

    2018-04-01

    The degree of holding temperature and time play a major role in nano-case treatment of cutting tools which immensely contributed to its performance during machining operation. The objective of this research work is to carryout comparative study of performance of nano-case treatment tools developed using low and medium carbon steel as work piece. Turning operation was carried out under two different categories with specific work piece on universal lathe machine using HSS cutting tools 100 mm × 12mm × 12mm that has been nano-case treated under varying conditions of temperatures and timeof 800,850, 900, 950°C and 60, 90, 120 mins respectively. The turning parameters used in evaluating this experiment were cutting speed of 270, 380 and 560mm/min, feed rate of 0.15, 0.20 and 0.25 mm/min, depth of cut of 2mm, work piece diameter of 25mm and rake angle of 7° each at three levels. The results of comparative study of their performances revealed that the timespent in the machining of low carbon steel material at a minimum temperature and time of 800°C, 60 mins were1.50, 2.17 mins while at maximum temperature and time of 950°C, 120 mins were 1.19, 2.02 mins. It was also observed that at a corresponding constant speed of 270,380 and 560mm/min at higher temperature and time, a relative increased in the length of cut were observed. Critical observation of the result showed that at higher case hardening temperature and time (950°C/120mins), the HSS cutting tool gave a better performance as lesser time was consumed during the turning operation.

  20. Quartz c-axis orientation patterns in fracture cement as a measure of fracture opening rate and a validation tool for fracture pattern models

    DOE PAGES

    Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall

    2016-03-09

    Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less

  1. Quartz c-axis orientation patterns in fracture cement as a measure of fracture opening rate and a validation tool for fracture pattern models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall

    Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less

  2. Prevalence of adherence to fluid restriction in kidney patients in haemodialysis: objective indicator and perceived compliance.

    PubMed

    Iborra-Moltó, Carmelo; López-Roig, Sofía; Pastor-Mira, M de Los Ángeles

    2012-07-17

    Studies of adherence to fluid restriction show high variability in prevalence data, as different methods of measuring IWG (interdialysis weight gain) and cut-off criteria are used. To describe the prevalence of adherence to fluid restriction using daily IWG (criterion: ≤1 Kg) and daily IWG adjusted for dry weight (DW) (cut-off point adjusted criterion: DW<70 kg, IWG=1 kg/day; DW>70 kg and ≤80 kg, IWG=1.1 kg/day; DW>80 kg and ≤90 kg, IWG=1.2 kg/day; DW>90 kg, IWG=1.3 kg/day) and to study the association between this objective indicator and adherence behaviour as reported by patient. Our study included a total of 146 patients with a mean age of 66 years (SD: 13.6 years; range: 25-88 years), 66% of which were male. Ours was a longitudinal study with one month of follow-up. We collected both sociodemographic and clinical variables and mean daily IWG. Patient-reported adherence behaviour was assessed through an interview by a trained staff member from outside the department who asked the following question: "In order to avoid complications between haemodialysis sessions: during the last month, how many days did you ingest less than 1 litre of fluid per day?" (0= no days; 10= every day). A score ≤5 led to categorisation of patients as compliant with treatment. Statistical analysis included descriptive analysis, correlation test, chi-square and Crosstabs, ROC curve and logistic regression procedures. Prevalence of "objective" adherence to fluid restriction was 61% (mean daily IWG≤1kg) and 73% (mean daily IWG adjusted for dry weight). Reported adherence (prevalence: 56.2%) was associated with IWG adjusted for weight (chi-square =31.34; P=.000). In patients with objective adherence adjusted for weight, the prevalence of reported adherence was 1.65 times that of non-adherence (PR=1.65; 95% CI: 1.29-2.11). The final model for estimating the association between reported adherence behaviour and daily adjusted IWG included: age (higher), dry weight (lower), potassium (lower), time on haemodialysis treatment (less) and its interaction with reported behaviour (F=50.70; P=.000; R2=44%). The sensitivity of reported adherence behaviour for detecting objective adherence adjusted for dry weight was 89%; specificity was 58%, and the overall classification power was 85% (AUC=.85; 95% CI: 0.78-0.92). The probability of objective adherence adjusted for weight in patients who claimed proper adherence was 9 times higher than in non-compliant patients in patients who had been on HD for 2.3 years (PORp25=9.16; 95% CI: 2.58-32.51); 6 times higher in patients on HD for 4.7 years (PORP50=6.16; 95% CI: 2.1217.92); and 3 times higher in those on HD for 8.2 years (PORp75=3.44; 95% CI: 1.32-8.96). Prevalence of adherence to fluid restriction was 73% and 16% depending on daily IWG adjusted/not adjusted for dry weight, respectively. Absolute daily IWG adjusted for weight seems a good indicator of adherence, as it allows for a personalised fluid restriction regimen. Significant association between this objective indicator and reported adherence behaviour supports a combination of patient approach and objective data, which can help with the adjustment of the individual cut-off for daily IWG. This also provides useful information for designing intervention strategies to maintain and increase adherence.

  3. Update on pancreatic cyst fluid analysis

    PubMed Central

    Rockacy, Matthew; Khalid, Asif

    2013-01-01

    Pancreatic cystic lesions (PCL) may be incidentally detected in up to 13.5% of patients. These represent a wide variety of lesions including mucinous cysts [intraductal papillary mucinous neoplasms (IPMN) and mucinous cystic neoplasms (MCN)] that have malignant potential. The difficulty in identifying the various PCL and their unpredictable potential for malignant degeneration makes their management cumbersome. The current diagnostic evaluation of PCL often includes EUS-guided fine needle aspiration (EUS-FNA) for cyst fluid analysis. Cyst fluid can be analyzed for tumor markers, cytology, mucins, DNA analysis and amylase. Pancreatic cyst CEA level is considered the most accurate tumor marker for diagnosing mucinous cysts. Approximately 0.2 to 1.0 mL of cyst fluid is required to run the test and a cut-off of 192 ng/ mL can be expected to capture ~75% of mucinous cysts. The presence of a KRAS mutation is very specific for a mucinous cyst but lacks sensitivity. Cytology is especially helpful in diagnosing malignancy typically in the presence of a solid component in the cyst. Newer markers to improve diagnostic accuracy are on the horizon, but clinical studies are awaited. PMID:24714589

  4. Criteria for assigning laboratory measurands to models for analytical performance specifications defined in the 1st EFLM Strategic Conference.

    PubMed

    Ceriotti, Ferruccio; Fernandez-Calle, Pilar; Klee, George G; Nordin, Gunnar; Sandberg, Sverre; Streichert, Thomas; Vives-Corrons, Joan-Lluis; Panteghini, Mauro

    2017-02-01

    This paper, prepared by the EFLM Task and Finish Group on Allocation of laboratory tests to different models for performance specifications (TFG-DM), is dealing with criteria for allocating measurands to the different models for analytical performance specifications (APS) recognized in the 1st EFLM Strategic Conference Consensus Statement. Model 1, based on the effect of APS on clinical outcome, is the model of choice for measurands that have a central role in the decision-making of a specific disease or clinical situation and where cut-off/decision limits are established for either diagnosing, screening or monitoring. Total cholesterol, glucose, HbA1c, serum albumin and cardiac troponins represent practical examples. Model 2 is based on components of biological variation and should be applied to measurands that do not have a central role in a specific disease or clinical situation, but where the concentration of the measurand is in a steady state. This is best achieved for measurands under strict homeostatic control in order to preserve their concentrations in the body fluid of interest, but it can also be applied to other measurands that are in a steady state in biological fluids. In this case, it is expected that the "noise" produced by the measurement procedure will not significantly alter the signal provided by the concentration of the measurand. This model especially applies to electrolytes and minerals in blood plasma (sodium, potassium, chloride, bicarbonate, calcium, magnesium, inorganic phosphate) and to creatinine, cystatin C, uric acid and total protein in plasma. Model 3, based on state-of-the-art of the measurement, should be used for all the measurands that cannot be included in models 1 or 2.

  5. Diagnostic value of cerebrospinal fluid Aβ ratios in preclinical Alzheimer's disease.

    PubMed

    Adamczuk, Katarzyna; Schaeverbeke, Jolien; Vanderstichele, Hugo M J; Lilja, Johan; Nelissen, Natalie; Van Laere, Koen; Dupont, Patrick; Hilven, Kelly; Poesen, Koen; Vandenberghe, Rik

    2015-12-18

    In this study of preclinical Alzheimer's disease (AD) we assessed the added diagnostic value of using cerebrospinal fluid (CSF) Aβ ratios rather than Aβ42 in isolation for detecting individuals who are positive on amyloid positron emission tomography (PET). Thirty-eight community-recruited cognitively intact older adults (mean age 73, range 65-80 years) underwent (18)F-flutemetamol PET and CSF measurement of Aβ1-42, Aβ1-40, Aβ1-38, and total tau (ttau). (18)F-flutemetamol retention was quantified using standardized uptake value ratios in a composite cortical region (SUVRcomp) with reference to cerebellar grey matter. Based on a prior autopsy validation study, the SUVRcomp cut-off was 1.57. Sensitivities, specificities and cut-offs were defined based on receiver operating characteristic analysis with CSF analytes as variables of interest and (18)F-flutemetamol positivity as the classifier. We also determined sensitivities and CSF cut-off values at fixed specificities of 90 % and 95 %. Seven out of 38 subjects (18 %) were positive on amyloid PET. Aβ42/ttau, Aβ42/Aβ40, Aβ42/Aβ38, and Aβ42 had the highest accuracy to identify amyloid-positive subjects (area under the curve (AUC) ≥ 0.908). Aβ40 and Aβ38 had significantly lower discriminative power (AUC = 0.571). When specificity was fixed at 90 % and 95 %, Aβ42/ttau had the highest sensitivity among the different CSF markers (85.71 % and 71.43 %, respectively). Sensitivity of Aβ42 alone was significantly lower under these conditions (57.14 % and 42.86 %, respectively). For the CSF-based definition of preclinical AD, if a high specificity is required, our data support the use of Aβ42/ttau rather than using Aβ42 in isolation.

  6. Anticipatory postural adjustments during cutting manoeuvres in football and their consequences for knee injury risk.

    PubMed

    Mornieux, Guillaume; Gehring, Dominic; Fürst, Patrick; Gollhofer, Albert

    2014-01-01

    Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement. Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact. With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009). Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs.

  7. Planting Depth and Source Affect Survival of Planted Green Ash Cuttings

    Treesearch

    Harvey E. Kennedy

    1977-01-01

    Horizontally and vertically planted cuttings from 1-0 nursery-grown green ash seedlings sprouted and grew well during the first growing season. Cuttings from 1- and 2-year-old sprouts and older material did not perform satisfactorily. Planted seedlings survived and grew well. Cuttings should be 10 to 15 inches long made from 1-0 seedlings and planted horizontally in...

  8. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  9. Cutting moments and grip forces in meat cutting operations and the effect of knife sharpness.

    PubMed

    McGorry, Raymond W; Dowd, Peter C; Dempsey, Patrick G

    2003-07-01

    The force exposure associated with meat cutting operations and the effect of knife sharpness on performance and productivity have not been well documented. Specialized hardware was used to measure grip force and reactive moments with 15 professional meat cutters performing lamb shoulder boning, beef rib trimming and beef loin trim operations in a field study conducted in two meat packing plants. A system for measuring relative blade sharpness was developed for this study. Mean and peak cutting moments observed for the meat cutting operations, averaged across subjects were 4.7 and 17.2 Nm for the shoulder boning, 3.5 and 12.9 Nm for the rib trim, and 2.3 and 10.6 Nm for the loin trim, respectively. Expressed as percent of MVC, mean grip forces of 28.3% and peak grip forces of 72.6% were observed overall. Blade sharpness was found to effect grip forces, cutting moments and cutting time, with sharper blades requiring statistically significantly lower peak and mean cutting moments, and grip forces than dull knives. Efforts aimed at providing and maintaining sharp blades could have a significant impact on force exposure.

  10. Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii

    USGS Publications Warehouse

    Teasdale, Warren E.

    1980-01-01

    Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)

  11. Cutter-loader apparatus having overhung shearer drum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groger, H.; Harms, E.E.

    1984-05-01

    A longwall mining machine includes a drum cutter-loader and face conveyor wherein the drum cutter-loader is overhung and is supported by a support arm adjacent to the mine face. Nozzles direct high pressure liquid jets against the forward edge of the support arm to cut away the mining face and permit the face side support arm to advance as the mining machine advances. In one embodiment the nozzles are provided along an inclined cutting edge at the forward end of the support arm. Such nozzles may be fixed or oscillating. In an alternative embodiment the nozzles are provided in themore » cylindrical edge zone of the shearer drum and direct the high pressure fluid jets against the cutter edge at the forward end of the support arm.« less

  12. An Experimental Study of Cutting Performances of Worn Picks

    NASA Astrophysics Data System (ADS)

    Dogruoz, Cihan; Bolukbasi, Naci; Rostami, Jamal; Acar, Cemil

    2016-01-01

    The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.

  13. Search a way out of fluid-magmatic activity on the periphery of the thermal structure Siberian magnetic anomaly

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Petrova, Alevtina

    2017-04-01

    The work have for an object to study of a deep structure of the region of Eastern Siberia, allocation of zones of the most ancient magnetoactive horizons and search of exits of fluid and magmatic aktivization, on the periphery of thermal structures within which the most part of ore gold deposits, copper and other polymetals concentrates. Researches of not uniformity of the base in the field of the Siberian magnetic anomaly are executed on the basis of interpretation of anomalies of the module of vertical and horizontal components of the magnetic field of Earth, and also anomalies of gravity. The zone of all-round permafrost settles down from the Arctic coast of Siberia to 60 - 62N. World anomaly of a magnetic field of Earth of Eastern Siberia gets on a permafrost zone. It extends from North Siberian Lowland on Taimyr to Lake Baikal. On the isoline of 60 000 nT it occupies the space from 75N to 50N and from 80 to 130 E. For the purpose of studying of a deep structure and clarification of the nature of magnetization of anomalies of the base cards of anomalies vertical and horizontal the magnetic field of Earth component were used. Density cuts are received on anomalies of gravity. On deep sections the dense and magnetic horizon located in the range of depths the 10-15th is visible. Detection of anomalies vertical components means that the specific magnetoactive layer possesses thermoresidual magnetization which direction doesn't coincide with the modern direction and testifies to early time of its education. The most brightly thermoresidual anomalies are expressed on Plateau of Putoran and the Anabar shield. In the territory of Eastern Siberia near Lake Baikal sources of thermal waters are known. The great interest represents search of thermal auras - talik - to the north of Lake Baikal in a zone of universal permafrost. One of the most important factors of formation of thermal auras is carrying out of the fluid streams delivered from deep-focal fluid systems. Visualization of deep cuts allowed to reveal location in crust of fluid systems and to estimate depth of their bedding. In magnetic and density cuts of a way of migration of streams from fluid system are reflected in a view of the low-magnetic bringing canals of the lowered density. As a result, of research such auras are allocated within a permafrost zone in area of World magnetic anomaly in Eastern Siberia and on the Taimyr Peninsula. The analysis low-frequency components of an anomalous magnetic field within the Taimyr peninsula allows to localize family the of geological sources which form anomalies in the depth interval of 9 500-14 500 m in an interval of depths of 9 500-14 500 m that answers the level close to a roof of a granitometamorfic layer. The geoblocks limiting structure of the Yenisei-Hatanga deflection from northern and southern flanks answer areas of uplift of the Archaean and Proterozoic basis.

  14. Diagnostic value of ex vivo pleural fluid interferon-gamma versus adapted whole-blood quantiferon-TB gold in tube assays in tuberculous pleural effusion

    PubMed Central

    Eldin, Eman N.; Omar, Asmaa; Khairy, Mahmoud; Mekawy, Adel H. M.; Ghanem, Maha K.

    2012-01-01

    BACKGROUND: Noninvasive diagnosis of pleural tuberculosis (TB) remains a challenge due to the paucibacillary nature of the disease. As Mycobacterium tuberculosis (MTB)-specific T cells are recruited into pleural space in TB effusion; their indirect detection may provide useful clinical information. OBJECTIVES: Evaluation of pleural fluid interferon (INF)-γ levels vs Quantiferon–TB Gold In tube assay (QFT- IT) in blood and its adapted variants, using pleural fluid or isolated pleural fluid cells in the diagnosis of pleural TB. METHODS: Thirty-eight patients with pleural effusion of unknown etiology presented at Assiut University Hospital, Egypt, were recruited. Blood and pleural fluid were collected at presentation for INF-γ assays. Ex vivo pleural fluid INF-γ levels, QFT-IT in blood and its adapted variants were compared with final diagnosis as confirmed by other tools including blind and/or thoracoscopic pleural biopsy. RESULTS: The final clinical diagnosis was TB in 20 (53%), malignancy in 10 (26%), and effusion due to other causes in eight patients (21%). Ex vivo pleural fluid INF-γ levels accurately identified TB in all patients and were superior to the QFT-IT assays using blood or pleural fluid (70 and 78% sensitivity, with 60 and 83% specificity, respectively). QFT-IT assay applied to isolated pleural fluid cells had 100% sensitivity and 72% specificity. The optimal cut-off obtained with ROC analysis was 0.73 for TB Gold assay in blood assay, 0.82 IU/ml for the cultured pleural fluid assay, and 0.94 for isolated pleural cells assay. CONCLUSION: The ex vivo pleural fluid INF-γ level is an accurate marker for the diagnosis of pleural TB. QFT- IT assay in peripheral blood or its adapted versions of the assay using pleural fluid and/or washed pleural fluid cells had no diagnostic advantage over pleural fluid INF-γ in the diagnosis of pleural TB. PMID:23189099

  15. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys.

    PubMed

    Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago

    2013-05-24

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  16. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys

    PubMed Central

    Cadena, Natalia L.; Cue-Sampedro, Rodrigo; Siller, Héctor R.; Arizmendi-Morquecho, Ana M.; Rivera-Solorio, Carlos I.; Di-Nardo, Santiago

    2013-01-01

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. PMID:28809266

  17. Advanced Turbine Engine Seal Test

    DTIC Science & Technology

    1976-07-01

    Transpiration- Cooled Shroud Segments. 67. ATEST Shroud Rub Pin Heights and Mid-Chord Runout . 68. Locations of Nine-Point Runout Check on Shroud Surface...69. ATEST Shroud Leading Edge Runout . 70. ATEST Shroud Trailing Edge Runout . 71. ATEST Shroud Support Posttest Runout . 72. ATEST Shroud Flow Zones...at General Electric on many prior engines with good success. It Involves the use of a grinding wheel in conjunction with a cutting fluid which is

  18. Pre-analytical and analytical factors influencing Alzheimer's disease cerebrospinal fluid biomarker variability.

    PubMed

    Fourier, Anthony; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Quadrio, Isabelle; Perret-Liaudet, Armand

    2015-09-20

    A panel of cerebrospinal fluid (CSF) biomarkers including total Tau (t-Tau), phosphorylated Tau protein at residue 181 (p-Tau) and β-amyloid peptides (Aβ42 and Aβ40), is frequently used as an aid in Alzheimer's disease (AD) diagnosis for young patients with cognitive impairment, for predicting prodromal AD in mild cognitive impairment (MCI) subjects, for AD discrimination in atypical clinical phenotypes and for inclusion/exclusion and stratification of patients in clinical trials. Due to variability in absolute levels between laboratories, there is no consensus on medical cut-off value for the CSF AD signature. Thus, for full implementation of this core AD biomarker panel in clinical routine, this issue has to be solved. Variability can be explained both by pre-analytical and analytical factors. For example, the plastic tubes used for CSF collection and storage, the lack of reference material and the variability of the analytical protocols were identified as important sources of variability. The aim of this review is to highlight these pre-analytical and analytical factors and describe efforts done to counteract them in order to establish cut-off values for core CSF AD biomarkers. This review will give the current state of recommendations. Copyright © 2015. Published by Elsevier B.V.

  19. 29 CFR 530.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... knitting process is performed; and the manufacture of bathing suits from any purchased fabric: Provided... other finishing of knitted shirts made in the same establishment as that where the knitting process is... embroidery, thread splitting, embroidery thread cutting, scallop cutting, lace cutting, lace making-up...

  20. 29 CFR 530.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... knitting process is performed; and the manufacture of bathing suits from any purchased fabric: Provided... other finishing of knitted shirts made in the same establishment as that where the knitting process is... embroidery, thread splitting, embroidery thread cutting, scallop cutting, lace cutting, lace making-up...

  1. 29 CFR 530.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... knitting process is performed; and the manufacture of bathing suits from any purchased fabric: Provided... other finishing of knitted shirts made in the same establishment as that where the knitting process is... embroidery, thread splitting, embroidery thread cutting, scallop cutting, lace cutting, lace making-up...

  2. 29 CFR 530.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... knitting process is performed; and the manufacture of bathing suits from any purchased fabric: Provided... other finishing of knitted shirts made in the same establishment as that where the knitting process is... embroidery, thread splitting, embroidery thread cutting, scallop cutting, lace cutting, lace making-up...

  3. Diagnostic performance and optimal cut-off scores of the Massachusetts youth screening instrument-second version in a sample of Swiss youths in welfare and juvenile justice institutions.

    PubMed

    Dölitzsch, Claudia; Leenarts, Laura E W; Schmeck, Klaus; Fegert, Jorg M; Grisso, Thomas; Schmid, Marc

    2017-02-08

    There is a growing consensus about the importance of mental health screening of youths in welfare and juvenile justice institutions. The Massachusetts Youth Screening Instrument-second version (MAYSI-2) was specifically designed, normed and validated to assist juvenile justice facilities in the United States of America (USA), in identifying youths with potential emotional or behavioral problems. However, it is not known if the USA norm-based cut-off scores can be used in Switzerland. Therefore, the primary purpose of the current study was to estimate the diagnostic performance and optimal cut-off scores of the MAYSI-2 in a sample of Swiss youths in welfare and juvenile justice institutions. As the sample was drawn from the French-, German- and Italian-speaking parts of Switzerland, the three languages were represented in the total sample of the current study and consequently we could estimate the diagnostic performance and the optimal cut-off scores of the MAYSI-2 for the language regions separately. The other main purpose of the current study was to identify potential gender differences in the diagnostic performance and optimal cut-off scores. Participants were 297 boys and 149 girls (mean age = 16.2, SD = 2.5) recruited from 64 youth welfare and juvenile justice institutions (drawn from the French-, German- and Italian-speaking parts of Switzerland). The MAYSI-2 was used to screen for mental health or behavioral problems that could require further evaluation. Psychiatric classification was based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifetime version (K-SADS-PL). The MAYSI-2 scores were submitted into Receiver-Operating Characteristic (ROC) analyses to estimate the diagnostic performance and optimal 'caution' cut-off scores of the MAYSI-2. The ROC analyses revealed that nearly all homotypic mappings of MAYSI-2 scales onto (cluster of) psychiatric disorders revealed above chance level accuracy. The optimal 'caution' cut-off scores derived from the ROC curve for predicting (cluster of) psychiatric disorders were, for several MAYSI-2 scales, comparable to the USA norm-based 'caution' cut-off scores. For some MAYSI-2 scales, however, higher optimal 'caution' cut-off scores were found. With adjusted optimal 'caution' cut-off scores, the MAYSI-2 screens potential emotional or behavioral problems well in a sample of Swiss youths in welfare and juvenile justice institutions. However, as for choosing the optimal 'caution' cut off score for the MAYSI-2, both language as well as gender seems to be of importance. The results of this study point to a compelling need to test the diagnostic performance and optimal 'caution' cut-off scores of the MAYSI-2 more elaborately in larger differentiated language samples in Europe.

  4. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    NASA Astrophysics Data System (ADS)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  5. Aqueous Cleaning and Validation for Space Shuttle Propulsion Hardware at the White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy

    1999-01-01

    The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.

  6. Genetic relationships between carcass cut weights predicted from video image analysis and other performance traits in cattle.

    PubMed

    Pabiou, T; Fikse, W F; Amer, P R; Cromie, A R; Näsholm, A; Berry, D P

    2012-09-01

    The objective of this study was to quantify the genetic associations between a range of carcass-related traits including wholesale cut weights predicted from video image analysis (VIA) technology, and a range of pre-slaughter performance traits in commercial Irish cattle. Predicted carcass cut weights comprised of cut weights based on retail value: lower value cuts (LVC), medium value cuts (MVC), high value cuts (HVC) and very high value cuts (VHVC), as well as total meat, fat and bone weights. Four main sources of data were used in the genetic analyses: price data of live animals collected from livestock auctions, live-weight data and linear type collected from both commercial and pedigree farms as well as from livestock auctions and weanling quality recorded on-farm. Heritability of carcass cut weights ranged from 0.21 to 0.39. Genetic correlations between the cut traits and the other performance traits were estimated using a series of bivariate sire linear mixed models where carcass cut weights were phenotypically adjusted to a constant carcass weight. Strongest positive genetic correlations were obtained between predicted carcass cut weights and carcass value (min r g(MVC) = 0.35; max r(g(VHVC)) = 0.69), and animal price at both weaning (min r(g(MVC)) = 0.37; max r(g(VHVC)) = 0.66) and post weaning (min r(g(MVC)) = 0.50; max r(g(VHVC)) = 0.67). Moderate genetic correlations were obtained between carcass cut weights and calf price (min r g(HVC) = 0.34; max r g(LVC) = 0.45), weanling quality (min r(g(MVC)) = 0.12; max r (g(VHVC)) = 0.49), linear scores for muscularity at both weaning (hindquarter development: min r(g(MVC)) = -0.06; max r(g(VHVC)) = 0.46), post weaning (hindquarter development: min r(g(MVC)) = 0.23; max r(g(VHVC)) = 0.44). The genetic correlations between total meat weight were consistent with those observed with the predicted wholesale cut weights. Total fat and total bone weights were generally negatively correlated with carcass value, auction prices and weanling quality. Total bone weight was, however, positively correlated with skeletal scores at weaning and post weaning. These results indicate that some traits collected early in life are moderate-to-strongly correlated with carcass cut weights predicted from VIA technology. This information can be used to improve the accuracy of selection for carcass cut weights in national genetic evaluations.

  7. Enlarging the operation range of a centrifugal compressor by cutting vanes based on CFD

    NASA Astrophysics Data System (ADS)

    Mo, J. T.; Gu, C. H.; Pan, X. H.; Y Zheng, S.

    2013-12-01

    Many centrifugal compressors are liable to insufficient operation range. The purpose of this paper is to enlarge the operation range of a centrifugal compressor used in turbocharger by cutting vanes. Some numerical works have been done based on CFD. The comparison of the calculated and measured results shows good agreement. The overall performance characteristics of the centrifugal compressor with different cutted vanes are observed and analyzed. The performance characteristic curves show that cutting vanes can increase the operation range by more than 50% with the loss of the highest efficiency limited in 1%. The flow fields are also shown in this paper and related explanations about the change of the performance characteristics curves are given. Shock wave is also detected in the simulation, and some related characteristics are summed up.

  8. A model to measure fluid outflow in rabbit capsules post glaucoma implant surgery.

    PubMed

    Nguyen, Dan Q; Ross, Craig M; Li, Yu Qin; Pandav, Surinder; Gardiner, Bruce; Smith, David; How, Alicia C; Crowston, Jonathan G; Coote, Michael A

    2012-10-05

    Prior models of glaucoma filtration surgery assess bleb morphology, which does not always reflect function. Our aim is to establish a model that directly measures tissue hydraulic conductivity of postsurgical outflow in rabbit bleb capsules following experimental glaucoma filtration surgery. Nine rabbits underwent insertion of a single-plate pediatric Molteno implant into the anterior chamber of their left eye. Right eyes were used as controls. The rabbits were then allocated to one of two groups. Group one had outflow measurements performed at 1 week after surgery (n = 5), and group two had measurements performed at 4 weeks (n = 4). Measurements were performed by cannulating the drainage tube ostium in situ with a needle attached to a pressure transducer and a fluid column at 15 mm Hg. The drop in the fluid column was measured every minute for 5 minutes. For the control eyes (n = 6), the anterior chamber of the unoperated fellow eye was cannulated. Animals were euthanized with the implant and its surrounding capsule dissected and fixed in 4% paraformaldehyde, and embedded in paraffin before 6-μm sections were cut for histologic staining. By 7 days after surgery, tube outflow was 0.117 ± 0.036 μL/min/mm Hg at 15 mm Hg (mean ± SEM), whereas at 28 days, it was 0.009 ± 0.003 μL/min/mm Hg. Control eyes had an outflow of 0.136 ± 0.007 μL/min/mm Hg (P = 0.004, one-way ANOVA). Hematoxylin and eosin staining demonstrated a thinner and looser arrangement of collagenous tissue in the capsules at 1 week compared with that at 4 weeks, which had thicker and more densely arranged collagen. We describe a new model to directly measure hydraulic conductivity in a rabbit glaucoma surgery implant model. The principal physiologic endpoint of glaucoma surgery can be reliably quantified and consistently measured with this model. At 28 days post glaucoma filtration surgery, a rabbit bleb capsule has significantly reduced tissue hydraulic conductivity, in line with loss of implant outflow facility, and increased thickness and density of fibrous encapsulation.

  9. Human hydatid disease: evaluation of an ELISA for diagnosis, population screening and monitoring of control programmes.

    PubMed

    Biffin, A H; Jones, M A; Palmer, S R

    1993-07-01

    The routine use of ELISA and complement fixation tests in the diagnosis of suspected clinical cases of hydatid disease was evaluated. In the ELISA test, dialysed and filtered sheep cyst fluid was used as antigen and two positive cut-off points--+3SD and +2SD of the mean absorbance values of the control sera--were evaluated. The predictive values of ELISA tests were 82% and 90% for positive tests, and 86% and 82% for negative tests, respectively with the two cut-off points. In a population survey of blood donors and veterinary workers in Powys, 4% and 8%, respectively, had ELISA values above the lower cut-off point. However, it would not be appropriate to use the same test for diagnostic population screening in Wales since the predictive value of the test is likely to be very low in this setting. Serological surveys with the ELISA may be of use in monitoring the progress of the South Powys Hydatid Control Programme. The use of cumulative percentages was found to be a useful method of comparing whole distributions of results in different populations.

  10. Gender Differences among Sagittal Plane Knee Kinematic and Ground Reaction Force Characteristics during a Rapid Sprint and Cut Maneuver

    ERIC Educational Resources Information Center

    James, C. Roger; Sizer, Phillip S.; Starch, David W.; Lockhart, Thurmon E.; Slauterbeck, James

    2004-01-01

    Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz).…

  11. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    PubMed

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (p<0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (p<0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p<0.05). At 90°, 135° and 180°, males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cutting angles and then stabilized compared to the 45° cutting angle (p<0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p<0.01). It can be concluded that different cutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid

    NASA Astrophysics Data System (ADS)

    Court, Sébastien; Fournié, Michel

    2015-05-01

    The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.

  13. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper.

    PubMed

    Glavan, Ana C; Martinez, Ramses V; Maxwell, E Jane; Subramaniam, Anand Bala; Nunes, Rui M D; Soh, Siowling; Whitesides, George M

    2013-08-07

    This paper describes the fabrication of pressure-driven, open-channel microfluidic systems with lateral dimensions of 45-300 microns carved in omniphobic paper using a craft-cutting tool. Vapor phase silanization with a fluorinated alkyltrichlorosilane renders paper omniphobic, but preserves its high gas permeability and mechanical properties. When sealed with tape, the carved channels form conduits capable of guiding liquid transport in the low-Reynolds number regime (i.e. laminar flow). These devices are compatible with complex fluids such as droplets of water in oil. The combination of omniphobic paper and a craft cutter enables the development of new types of valves and switches, such as "fold valves" and "porous switches," which provide new methods to control fluid flow.

  14. Diagnostic Performance of Afternoon Urine Osmolality to Assess Optimal Hydration Status in an Adult Healthy Population.

    PubMed

    Hustrini, Ni Made; Siregar, Parlindungan; Nainggolan, Ginova; Harimurti, Kuntjoro

    2017-04-01

    optimal hydration represents adequate total daily fluid intake to compensate for daily water losses, ensure adequate urine output to reduce the risk of urolithiasis and renal function decline, and also avoid the production of arginine vasopressin (AVP). Twenty-four-hour urine osmolality has been used to assess hydration status, but it is challenging because of the possibility of spilling urine and limitation of daily activities. This study is aimed to determine the performance of the afternoon urine osmolality to assess the optimal hydration status compared with 24-hour urine osmolality. a cross sectional study was conducted on healthy employees aged 18-59 years at Universitas Indonesia Medical Faculty/Cipto Mangunkusumo Hospital, with consecutive sampling method. The ROC curve was analyzed to obtain the optimal cut off point and the accuracy of the afternoon urine osmolality in assessing the optimal hydration status. between August-September 2016 there were 120 subjects (73.8% female, median age 32 years) who met the study criteria with a median 24-hour urine osmolality 463.5 (95% CI, 136-1427) mOsm/kg H2O and median afternoon urine osmolality 513 (95% CI, 73-1267). We found moderate correlation (r=0.59; p<0.001) between afternoon urine osmolality and a 24-hour urine osmolality. Using ROC curve, the AUC value was 0.792 (95% CI, 0.708-0.875) with the cut off 528 mOsm/kg H2O. To assess the optimal hydration status, the afternoon urine osmolality had the sensitivity of 0.7 (95% CI, 0.585-0.795) and the specificity of 0.76 (95% CI, 0.626-0.857), Likelihood Ratio (LR) (+) 2.917 (95% CI, 1.74-4.889) and LR (-) 0.395 (95% CI, 0.267-0.583). afternoon urine osmolality can be used as a diagnostic tool to assess the optimal hydration status in healthy population with cut off 528 mOsm/kg H2O, sensitivity of 0.7, and specificity of 0.76.

  15. Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth

    NASA Astrophysics Data System (ADS)

    Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.

    2016-12-01

    The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011) Earth Planet Sci Lett 308, 65-76. [3] Peters and Pettke (2016) GGR, DOI: 10.1111/ggr.12125.

  16. Experimental analysis of Nd-YAG laser cutting of sheet materials - A review

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Yadava, Vinod

    2018-01-01

    Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.

  17. The microstructural character and evolution of fault rocks from the SAFOD core and potential weakening mechanisms along the San Andreas Fault (Invited)

    NASA Astrophysics Data System (ADS)

    Holdsworth, R. E.; van Diggelen, E.; Spiers, C.; de Bresser, J. H.; Smith, S. A.

    2009-12-01

    In the region of the SAFOD borehole, the San Andreas Fault (SAF) separates two very different geological terranes referred to here as the Salinian and Great Valley blocks (SB, GVB). The three sections of core preserve a diverse range of fault rocks and pass through the two currently active, highly localised slipping sections, the so-called ‘10480’ and ‘10830’ fault zones . These coincide with a broader region - perhaps as much as 100m wide - of high strain fault rocks formed at some time in the geological past, but now currently inactive. Both the slipping segments and older high strain zone(s) are developed in the GVB located NE of the terrane boundary. This is likely influenced by the phyllosilicate-rich protolith of the GVB and the large volume of trapped fluid known to exist NE and below the SAF in this region. Microstructurally, lower strain domains (most of Core 1 cutting the SB, significant parts of Core 3 cutting the GVB) preserve clear evidence for classic upper crustal cataclastic brittle faulting processes and associated fluid flow. The GVB in particular shows clear geological evidence for both fluid pressure and differential stress cycling (variable modes of hydrofacture associated with faults) during seismicity. There is also some evidence in all minor faults for the operation of limited amounts of solution-precipitation creep. High strain domains (much of Core 2 cutting the GVB, parts of Core 3 adjacent to the 10830 fault) are characterised by the development of foliated cataclasites and gouge largely due to the new growth of fine-grained phyllosilicate networks (predominantly smectite-bearing mixed layer clays, locally serpentinite, but not talc). The most deformed sections are characterised by the development of shear band fabrics and asymmetric folds. Reworking and reactivation is widespread manifested by: i) the preservation of one or more earlier generations of gouge preserved as clasts; and ii) by the development of later interconnected, polished and striated slip surfaces at low angles or sub-parallel to the foliation. These are coated with thin phyllosilicate films and are closely associated with the development of lozenge, arrow-head and triangular mineral veins (mostly calcite) inferred to be precipitated in dilation sites during slip. The largest displacement gouges also preserve numerous rounded ‘exotic’ clasts. These include serpentinite, crystalline carbonate, anhydrite and quartzofeldspathic units that texturally look very similar to clasts found in the SB. The SAFOD core fault rocks highlight the fundamental role played by fluid-rock interactions in upper crustal fault zones. There is clear evidence for the development of high pore fluid pressures (hydrofracture development), reaction weakening (phyllosilicate growth following cataclasis) and geometric weakening due to the development of weak interconnected layers (foliations, polished striated slip surfaces). There are also very significant similarities between the fault rocks seen here and those preserved along other deeply exhumed weak fault elsewhere in the world.

  18. Measurement of Interleukin-6 in Cerebrospinal Fluid for the Diagnosis of Bacterial Meningitis.

    PubMed

    Dano, Ibrahim Dan; Sadou, Hassimi; Issaka, Bassira; Oukem-Boyer, Odile Ouwe Missi

    It is assessed whether the measurement of interleukin-6 in the cerebrospinal fluid can serve as a biomarker for the diagnosis of bacterial meningitis. Cerebrospinal fluid was obtained from 152 patients aged 0-15 years suspected of having meningitis. These patients were classified into the following groups: Bacterial meningitis (n = 85), aseptic meningitis (n = 35) and non-meningitis/control (n = 32) based on leukocyte count and bacterial identification by culture and molecular biology. Interleukin-6 concentrations in cerebrospinal fluid were measured by enzyme-linked immunosorbent assay. This study found a significant difference of the mean cerebrospinal fluid interleukin-6 level (p≤0.01) between patients with bacterial meningitis (3,538.69±2,560.78 pg mL -1) and patients with aseptic meningitis (332.51±470.69 pg mL -1) or those of the control group (205.83±79.39 pg mL -1). There was also a significant difference of the mean cerebrospinal fluid interleukin-6 level between patients with aseptic meningitis and those of the control group. Interleukin-6 had the highest area under the ROC curve: 0.94 (95% confidence interval: 0.901-0.979) compared to that of cerebrospinal fluid glucose and total protein. At a cut-off value of 1,065.96 pg mL -1, interleukin-6 had a sensitivity of 76.2% and specificity of 100%. Interleukin-6 is a potential biomarker for the differential diagnosis of meningitis.

  19. Sidestep and crossover lower limb kinematics during a prolonged sport-like agility test.

    PubMed

    Potter, Danielle; Reidinger, Kellie; Szymialowicz, Rebecca; Martin, Thomas; Dione, Donald; Feinn, Richard; Wallace, David; Garbalosa, Juan C

    2014-10-01

    Non-contact anterior cruciate ligament (ACL) injuries in athletes occur more often towards the end of athletic competitions. However, the exact mechanisms of how prolonged activity increases the risk for ACL injuries are not clear. To determine the effect of prolonged activity on the hip and knee kinematics observed during self-selected cutting maneuvers performed in a timed agility test. Nineteen female Division I collegiate soccer players completed a self-selected cutting agility test until they were unable to meet a set performance time (one standard deviation of the average baseline trial). Using the 3D dimensional coordinate data the cut type was identified by the principle investigators. The 3D hip and knee angles at 32ms post heel strike were analyzed using a two-factor, linear mixed model to assess the effect of prolonged activity and cut type on the recorded mean hip and knee angles. Athletes performed either sidestep or crossover cuts. An effect of cut type and prolonged activity was seen at the hip and knee. During the prolonged activity trials, the knee was relatively more adducted and both the hip and knee were less flexed than during the baseline trials regardless of cut type. Regardless of activity status, during sidestep cuts, the hip was more internally rotated and abducted, and less flexed than during crossover cuts while the knee was more abducted and less flexed during the sidestep than crossover cuts. During a sport-like agility test, prolonged activity appears to predispose the athlete to position their knee in a more extended and abducted posture and their hip in a more extended posture. This position has been suggested to place stress on the ACL and potentially increase the risk for injury. Clinicians may want to consider the effects of prolonged activity on biomechanical risk factors for sustaining ACL injuries in the design of intervention strategies to prevent ACL injuries. Level 4.

  20. Teaching learning algorithm based optimization of kerf deviations in pulsed Nd:YAG laser cutting of Kevlar-29 composite laminates

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Kevlar is the most popular aramid fiber and most commonly used in different technologically advanced industries for various applications. But the precise cutting of Kevlar composite laminates is a difficult task. The conventional cutting methods face various defects such as delamination, burr formation, fiber pullout with poor surface quality and their mechanical performance is greatly affected by these defects. The laser beam machining may be an alternative of the conventional cutting processes due to its non-contact nature, requirement of low specific energy with higher production rate. But this process also faces some problems that may be minimized by operating the machine at optimum parameters levels. This research paper examines the effective utilization of the Nd:YAG laser cutting system on difficult-to-cut Kevlar-29 composite laminates. The objective of the proposed work is to find the optimum process parameters settings for getting the minimum kerf deviations at both sides. The experiments have been conducted on Kevlar-29 composite laminates having thickness 1.25 mm by using Box-Benkhen design with two center points. The experimental data have been used for the optimization by using the proposed methodology. For the optimization, Teaching learning Algorithm based approach has been employed to obtain the minimum kerf deviation at bottom and top sides. A self coded Matlab program has been developed by using the proposed methodology and this program has been used for the optimization. Finally, the confirmation tests have been performed to compare the experimental and optimum results obtained by the proposed methodology. The comparison results show that the machining performance in the laser beam cutting process has been remarkably improved through proposed approach. Finally, the influence of different laser cutting parameters such as lamp current, pulse frequency, pulse width, compressed air pressure and cutting speed on top kerf deviation and bottom kerf deviation during the Nd:YAG laser cutting of Kevlar-29 laminates have been discussed.

  1. Performance of journal bearings with semi-compressible fluids

    NASA Technical Reports Server (NTRS)

    Carpino, M.; Peng, J.-P.

    1991-01-01

    Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.

  2. Performance of clinical prediction rules for diagnosis of pleural tuberculosis in a high-incidence setting.

    PubMed

    Solari, Lely; Soto, Alonso; Van der Stuyft, Patrick

    2017-10-01

    Diagnosis of pleural tuberculosis (PT) is still a challenge, particularly in resource-constrained settings. Alternative diagnostic tools are needed. We aimed at evaluating the utility of Clinical Prediction Rules (CPRs) for diagnosis of pleural tuberculosis in Peru. We identified CPRs for diagnosis of PT through a structured literature search. CPRs using high-complexity tests, as defined by the FDA, were excluded. We applied the identified CPRs to patients with pleural exudates attending two third-level hospitals in Lima, Peru, a setting with high incidence of tuberculosis. Besides pleural fluid analysis, patients underwent closed pleural biopsy for reaching a final diagnosis through combining microbiological and histopathological criteria. We evaluated the performance of the CPRs against this composite reference standard using classic indicators of diagnostic test validity. We found 15 eligible CPRs, of which 12 could be validated. Most included ADA, age, lymphocyte proportion and protein in pleural fluid as predictive findings. A total of 259 patients were included for their validation, of which 176 (67%) had PT and 50 (19%) malignant pleural effusion. The overall accuracy of the CPRs varied from 41% to 86%. Two had a positive likelihood ratio (LR) above 10, but none a negative LR below 0.1. ADA alone at a cut-off of ≥40 IU attained 87% diagnostic accuracy and had a positive LR of 6.6 and a negative LR of 0.2. Many CPRs for PT are available. In addition to ADA alone, none of them contributes significantly to diagnosis of PT. © 2017 John Wiley & Sons Ltd.

  3. High power laser downhole cutting tools and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  4. Experimental investigation of transient temperature characteristic in high power fiber laser cutting of a thick steel plate

    NASA Astrophysics Data System (ADS)

    Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu

    2016-10-01

    Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.

  5. Decision-Making Influences Tibial Impact Accelerations During Lateral Cutting.

    PubMed

    Lucas, Logan A; England, Benjamin S; Mason, Travis W; Lanning, Christopher R; Miller, Taylor M; Morgan, Alexander M; Almonroeder, Thomas G

    2018-05-29

    Lower extremity musculoskeletal injuries are common in sports such as basketball and soccer. Athletes competing in sports of this nature must maneuver in response to the actions of their teammates, opponents, etc. This limits their ability to pre-plan movements. The purpose of this study was to compare impact accelerations during pre-planned vs. un-planned lateral cutting. Thirty subjects (15 males, 15 females) performed pre-planned and un-planned cuts while we analyzed impact accelerations using an accelerometer secured to their tibia. For the pre-planned condition, subjects were aware of the movement to perform before initiating a trial. For the un-planned condition, subjects initiated their movement and then reacted to the illumination of one of three visual stimuli which dictated whether they would cut, land, or land-and-jump. A mixed-model ANOVA with a between factor of sex (male, female) and a within factor of condition (pre-planned, un-planned) was used to analyze the magnitude and variability of the impact accelerations for the cutting trials. Both males and females demonstrated higher impact accelerations (p = .010) and a trend toward greater inter-trial variability (p = .073) for the un-planned cutting trials (vs. pre-planned cuts). Un-planned cutting may place greater demands on the musculoskeletal system.

  6. Analysis of the convergence rules of full-range PSD surface error of magnetorheological figuring KDP crystal.

    PubMed

    Chen, Shaoshan; He, Deyu; Wu, Yi; Chen, Huangfei; Zhang, Zaijing; Chen, Yunlei

    2016-10-01

    A new non-aqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the convergence rules of the surface error of an initial single-point diamond turning (SPDT)-finished KDP crystal after MRF polishing. Currently, the SPDT process contains spiral cutting and fly cutting. The main difference of these two processes lies in the morphology of intermediate-frequency turning marks on the surface, which affects the convergence rules. The turning marks after spiral cutting are a series of concentric circles, while the turning marks after fly cutting are a series of parallel big arcs. Polishing results indicate that MRF polishing can only improve the low-frequency errors (L>10  mm) of a spiral-cutting KDP crystal. MRF polishing can improve the full-range surface errors (L>0.01  mm) of a fly-cutting KDP crystal if the polishing process is not done more than two times for single surface. We can conclude a fly-cutting KDP crystal will meet better optical performance after MRF figuring than a spiral-cutting KDP crystal with similar initial surface performance.

  7. Properties and Cutting Performance of TiAlSiN Coating Prepared by Cathode Arc Ion Plating

    NASA Astrophysics Data System (ADS)

    Zhang, Er-Geng; Chen, Qiang; Wang, Qin-Xue; Huang, Biao

    2016-06-01

    TiAlSiN coating was deposited on high-speed steel (HSS) samples and cemented carbide tool inserts, respectively, by a new coating preparation procedure, and its properties and cutting performance were characterized. The coating thickness, chemical composition, microstructure morphology and mechanical properties were investigated by X-ray fluorescence measurement system, energy dispersive spectrometer (EDS), scanning electron microscope (SEM), nanoindentation, Rockwell hardness tester and ball-on-disc tribometer. A 3D orthogonal cutting experiment model was established by DEFORM-3D to study the influences of different coating thicknesses on cutting force and temperature, and the field cutting experiment was carried out. The results show that the thickness of TiAlSiN coating is 3.14μm prepared by the 3μm preparation procedure, microhardness is 36.727GPa with the Si content of about 5.22at.% as well as good fracture toughness and adhesion strength. The TC4 and AISI 1045 cutting tool inserts with 4μm coating thickness have the minimum cutting forces of about 734.7N and 450.7N, respectively. Besides, tool inserts with a thickness of 3μm have the minimum cutting temperatures of about 510.2∘C and 230.6∘C, respectively.

  8. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  9. A new method to predict anatomical outcome after idiopathic macular hole surgery.

    PubMed

    Liu, Peipei; Sun, Yaoyao; Dong, Chongya; Song, Dan; Jiang, Yanrong; Liang, Jianhong; Yin, Hong; Li, Xiaoxin; Zhao, Mingwei

    2016-04-01

    To investigate whether a new macular hole closure index (MHCI) could predict anatomic outcome of macular hole surgery. A vitrectomy with internal limiting membrane peeling, air-fluid exchange, and gas tamponade were performed on all patients. The postoperative anatomic status of the macular hole was defined by spectral-domain OCT. MHCI was calculated as (M+N)/BASE based on the preoperative OCT status. M and N were the curve lengths of the detached photoreceptor arms, and BASE was the length of the retinal pigment epithelial layer (RPE layer) detaching from the photoreceptors. Postoperative anatomical outcomes were divided into three grades: A (bridge-like closure), B (good closure), and C (poor closure or no closure). Correlation analysis was performed between anatomical outcomes and MHCI. Receiver operating characteristic (ROC) curves were derived for MHCI, indicating good model discrimination. ROC curves were also assessed by the area under the curve, and cut-offs were calculated. Other predictive parameters reported previously, which included the MH minimum, the MH height, the macular hole index (MHI), the diameter hole index (DHI), and the tractional hole index (THI) had been compared as well. MHCI correlated significantly with postoperative anatomical outcomes (r = 0.543, p = 0.000), but other predictive parameters did not. The areas under the curves indicated that MHCI could be used as an effective predictor of anatomical outcome. Cut-off values of 0.7 and 1.0 were obtained for MHCI from ROC curve analysis. MHCI demonstrated a better predictive effect than other parameters, both in the correlation analysis and ROC analysis. MHCI could be an easily measured and accurate predictive index for postoperative anatomical outcomes.

  10. Ceramic tools insert assesment based on vickers indentation methodology

    NASA Astrophysics Data System (ADS)

    Husni; Rizal, Muhammad; Aziz M, M.; Wahyu, M.

    2018-05-01

    In the interrupted cutting process, the risk of tool chipping or fracture is higher than continues cutting. Therefore, the selection of suitable ceramic tools for interrupted cutting application become an important issue to assure that the cutting process is running effectively. At present, the performance of ceramics tools is assessed by conducting some cutting tests, which is required time and cost consuming. In this study, the performance of ceramic tools evaluated using hardness tester machine. The technique, in general, has a certain advantage compare with the more conventional methods; the experimental is straightforward involving minimal specimen preparation and the amount of material needed is small. Three types of ceramic tools AS10, CC650 and K090 have been used, each tool was polished then Vickers indentation test were performed with the load were 0.2, 0.5, 1, 2.5, 5 and 10 kgf. The results revealed that among the load used in the tests, the indentation loads of 5 kgf always produce well cracks as compared with others. Among the cutting tool used in the tests, AS10 has produced the shortest crack length and follow by CC 670, and K090. It is indicated that the shortest crack length of AS10 reflected that the tool has a highest dynamic load resistance among others insert.

  11. Optimization of multi response in end milling process of ASSAB XW-42 tool steel with liquid nitrogen cooling using Taguchi-grey relational analysis

    NASA Astrophysics Data System (ADS)

    Norcahyo, Rachmadi; Soepangkat, Bobby O. P.

    2017-06-01

    A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.

  12. Cutting boards in Salmonella cross-contamination.

    PubMed

    Cliver, Dean O

    2006-01-01

    Cutting boards are commonly perceived as important fomites in cross-contamination of foods with agents such as Salmonella spp., despite the lack of supporting epidemiological data. A variety of woods and plastics have been used to make work surfaces for cutting. In general, wood is said to dull knives less than plastic, and plastic is seen as less porous than wood. Research to model the hypothetical cross-contamination has been done in a variety of ways and has yielded a variety of results. At least some of the work with knife-scarred plastic indicates that the surface is very difficult to clean and disinfect, although this may vary among the polymers used. High-density polyethylene, which is most used in commercial applications, has been shown to delaminate in response to knife scarring. Wood is intrinsically porous, which allows food juices and bacteria to enter the body of the wood unless a highly hydrophobic residue covers the surface. The moisture is drawn in by capillary action until there is no more free fluid on the surface, at which point immigration ceases. Bacteria in the wood pores are not killed instantly, but neither do they return to the surface. Destructive sampling reveals infectious bacteria for hours, but resurrection of these bacteria via knife edges has not been demonstrated. Small plastic cutting boards can be cleaned in a dishwasher (as can some specially treated wooden boards), but the dishwasher may distribute the bacteria onto other food-contact surfaces. Most small wooden boards (i.e., those with no metal joiners in them) can be sterilized in a microwave oven, but this should be unnecessary if accumulation of food residues is prevented. However, 2 epidemiological studies seem to show that cutting board cleaning habits have little influence on the incidence of sporadic salmonellosis. Further, one of these studies indicated that use of plastic cutting boards in home kitchens is hazardous, whereas use of wooden cutting boards is not.

  13. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements.

    PubMed

    Worobets, Jay; Wannop, John William

    2015-09-01

    Prior research has shown that footwear can enhance athletic performance. However, public information is not available on what basketball shoe properties should be selected to maximise movement performance. Therefore, the purpose of the study was to investigate the influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on sprinting, jumping, and cutting performance. Each of these three basketball shoe properties was systematically varied by ± 20% to produce three shoe conditions of varying mass, three conditions of varying traction, and three conditions of varying bending stiffness. Each shoe was tested by 20 recreational basketball players completing maximal effort sprints, vertical jumps, and a cutting drill. Outsole traction had the largest influence on performance, as the participants performed significantly worse in all tests when traction was decreased by 20% (p < 0.001), and performed significantly better in the cutting drill when traction was increased by 20% (p = 0.005). Forefoot bending stiffness had a moderate effect on sprint and cutting performance (p = 0.013 and p = 0.016 respectively) and shoe mass was found to have no effect on performance. Therefore, choosing a shoe with relatively high outsole traction and forefoot bending stiffness should be prioritised, and less concern should be focused on selecting the lightest shoe.

  14. Effort, symptom validity testing, performance validity testing and traumatic brain injury.

    PubMed

    Bigler, Erin D

    2014-01-01

    To understand the neurocognitive effects of brain injury, valid neuropsychological test findings are paramount. This review examines the research on what has been referred to a symptom validity testing (SVT). Above a designated cut-score signifies a 'passing' SVT performance which is likely the best indicator of valid neuropsychological test findings. Likewise, substantially below cut-point performance that nears chance or is at chance signifies invalid test performance. Significantly below chance is the sine qua non neuropsychological indicator for malingering. However, the interpretative problems with SVT performance below the cut-point yet far above chance are substantial, as pointed out in this review. This intermediate, border-zone performance on SVT measures is where substantial interpretative challenges exist. Case studies are used to highlight the many areas where additional research is needed. Historical perspectives are reviewed along with the neurobiology of effort. Reasons why performance validity testing (PVT) may be better than the SVT term are reviewed. Advances in neuroimaging techniques may be key in better understanding the meaning of border zone SVT failure. The review demonstrates the problems with rigidity in interpretation with established cut-scores. A better understanding of how certain types of neurological, neuropsychiatric and/or even test conditions may affect SVT performance is needed.

  15. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  16. An Integrated Method Based on PSO and EDA for the Max-Cut Problem.

    PubMed

    Lin, Geng; Guan, Jian

    2016-01-01

    The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20,000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality.

  17. Performance of nursing auxiliaries and technicians in managing piercing cutting material: a necessary study.

    PubMed

    Moura, Elaine Cristina Carvalho; Moreira, Maria de Fátima Santana; da Fonseca, Soraia Martins

    2009-01-01

    This study aimed to analyze the knowledge of nursing auxiliaries and technicians in handling and disposing of piercing-cutting material and describe their performance. This qualitative-descriptive research was carried out with three nursing auxiliaries and 12 technicians at a medium-size hospital, totaling 15 participants interviewed through a semi-structured script. Discourse was analyzed through the content analysis technique. Results appoint that, even though the participants have theoretical knowledge on the management of piercing-cutting material, they do not totally follow their knowledge, which exposes them to several biological risks, revealing reproductive knowledge and performance. Thus, we propose the implementation of continuing education programs based on constructivist methodological approach aiming at effective practices in the management and disposal of piercing-cutting material. In this perspective, research clarifying how adults apprehend knowledge can deepen the results described in the study.

  18. Accuracy, reliability, and timing of visual evaluations of decay in fresh-cut lettuce

    USDA-ARS?s Scientific Manuscript database

    Visual assessments are used for evaluating the quality of food products, such as fresh-cut lettuce packaged in bags with modified atmosphere. We have compared the accuracy and the reliability of visual evaluations of decay on fresh-cut lettuce performed with experienced and inexperienced raters. In ...

  19. Performance of Slash Pine Bare-Root Seedlings and Containerized Rooted Cuttings Planted on Five Dates in Louisiana

    Treesearch

    Alper Akgul; Michael G. Messina; Alan Wilson; Joe Weber

    2004-01-01

    Landowners are interested in extending the normal planting season, as well as the comparative field performance, of nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on field performance of two stock types of slash pine (Pinus elliottii Engelm.) was examined. Slash pine bare-root seedlings (BRS) and...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuuichi Tooya; Tadahiro Washiya; Kenji Koizumi

    Japan Atomic Energy Agency (JAEA) has been leading feasibility study on commercialized fast reactor cycle systems in Japan. In this study, we have proposed a new disassembly technology by mechanical disassembly system that consists of a mechanical cutting step and a wrapper tube pulling step. In the mechanical disassembly system, high durability mechanical tool grinds the wrapper tube (Slit-cut (S/C) operation in circle direction), and then the wrapper tube is pulled out and removed from the fuel assembly. Then the fuel pins are cut (Crop-cut (C/C) operation at entrance nozzle side) and the entrance nozzle is removed. The fuel pinsmore » are transported to the shearing device in next process. The Fundamental tests were carried out with simulated FBR fuel pins and wrapper tube, and cutting performance and wrapper tube pulling performance has been confirmed by engineering scale. As results, we established an efficient disassembly procedure and the fundamental design of mechanical disassembly system. (authors)« less

  1. A severe artifact in simulation of liquid water using a long cut-off length: Appearance of a strange layer structure

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2005-04-01

    We report that a severe artifact appeared in molecular dynamics simulation of bulk water using the long cut-off length 18 Å. Our result shows that increasing the cut-off length does not always improve the simulation result. Moreover, the use of the long cut-off length can lead to a spurious result. It is suggested that the simulation of solvated biomolecules using such a long cut-off length, which has been often performed, may contain an unexpected artifact.

  2. Apparatus and method for cutting soft materials, especially meat

    DOEpatents

    Spletzer, Barry L.; Callow, Diane S.; Jones, James F.; Kuehl, Michael A.; Shaw, Dick L.; Scalia, Barbara J.

    2005-10-18

    An apparatus and method for cutting soft materials such as meat. Two or more spirally mounted helical blades are situated between two supports, and the supports are mounted to a shank. The shank is rotated to impart rotary action to the spiral shear blades, and the entire device may be used to perform various cutting operations. The distal or bottom one of the supports may also be a cutting blade, and a number of versions of bottom cutting blades are useable in the practice of the invention.

  3. On Computations of Duct Acoustics with Near Cut-Off Frequency

    NASA Technical Reports Server (NTRS)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  4. Theory and application of drilling fluid hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, A.

    1985-01-01

    The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less

  5. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  6. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late- to post-collisional stages of the Gondwana Assembly

    NASA Astrophysics Data System (ADS)

    Bongiolo, Everton Marques; Renac, Christophe; Piza, Patricia d'Almeida de Toledo; Schmitt, Renata da Silva; Mexias, André Sampaio

    2016-01-01

    The Ponta Negra Pegmatites (PNP), part of a pegmatitic province in Rio de Janeiro State, Brazil, crop out along an intensely deformed, medium- to high-grade metamorphic area that is proximal to a crustal-scale thrust zone developed during the Brasiliano/Pan-African Orogeny. Fieldwork shows that the pegmatites formed in two distinct stages: (i) syn-collisional leucosome veins (Group I) conformable with the tectonic foliation of the gneissic host rocks and (ii) late- to post-collisional dykes (Group II) that cross-cut the same tectonic foliation at a high angle. In this paper, we use geochemistry of whole-rock and mineral separates (alkali-feldspar and biotite), fluid inclusion microthermometry and stable isotopic (δ18O, δD, δ13C) determinations on minerals (quartz, alkali-feldspar, biotite and magnetite) and fluid inclusions to provide insights into the composition of the pegmatite-forming melts, associated fluids, and their geotectonic significance. U-Pb SHRIMP dating of the Cajú syenogranite was performed to evaluate and compare the timing of magmatic events along the Cabo Frio Tectonic Domain as this is the closest post-collisional pluton to the studied pegmatites. The calculated temperature for the Group I syn-collisional veins (740 °C) is similar to previous estimates for the peak metamorphic conditions in the study area. Variations in the temperature of the Group II pegmatite dykes obtained from stable isotopes (380 to 720 °C), and microthermometric data from primary fluid inclusions with traces of N2 (Th = 280 to 360 °C), may reflect the thermodynamics of the pegmatite crystallization, exsolution textures and isotopic exchange. The composition of fluids in equilibrium within the pegmatite dykes consists of magmatic and metamorphic components. The minimum pressures calculated for the emplacement of the pegmatites are equivalent to a shallow crustal depth between 1.7 and 3.5 km, which corresponds to the exhumation of the orogen since the emplacement of the pegmatites. A linear trend of decreasing CO2 content and δ13CCO2 is consistent with mixtures between (i) carbon derived from organic matter or volatilization of skarns and (ii) inorganic carbon (carbonate). Based on the data obtained, we propose that the pegmatites of Ponta Negra are close to an LCT-type geochemical signature (highly peraluminous magmas with normative corundum), and originated by partial melting of the metasedimentary Palmital succession at depth, during the waning stages of the Búzios Orogeny. The primary melts of the PNP cross-cut both the Neoproterozoic supracrustals and the Paleoproterozoic orthogneissic basement during its ascent and emplacement at higher crustal levels. Variable melt sources explain the slight differences in geochemical compositions among the studied rocks within the metasedimentary succession, which probably include Mn-bearing exhalites, as well as differentiation processes. The 454 ± 5 Ma U-Pb (zircon) age of the Cajú syenogranite overlaps previous geochronological data of 440 ± 11 Ma obtained on a pegmatite dyke at Ponta Negra, bracketing and extending the time interval for the Gondwana assembly collapse magmatism in the region. The heat that triggered this magmatic event could still be a consequence of the collisional orogeny, increasing contents of heat-producing elements, or, a large intraplate extension that followed the Gondwana amalgamation and initiated the formation of Paleozoic basins.

  7. Stress Reconstruction Analysis of Wheel Saw Cut Tests and Evaluation of Reconstruction Procedure

    DOT National Transportation Integrated Search

    1993-09-01

    The report is the fourth in a series of engineering studies on railroad vehicle wheel performance. The results of saw cut tests performed on one new and one used wheel designed for a fleet of multiple unit (MU) power cars are summarized and analyzed....

  8. Performance of a cut-to-length harvester in a single-tree and group selection cut

    Treesearch

    Neil K. Huyler; Chris LeDoux

    1999-01-01

    Presents production and cost data for a mechanized and cut-to-length (CTL) harvester used in a single-tree and group-selection cut on the Groton State Forest in central Vermont. For trees whose average volume (size) was 7 to 18 ft3, production ranged from 464 to 734 ft3 per productive machine hour (PMH). The cycle time for processing trees into bunches to forward to a...

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-01-31

    Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolatemore » both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of pressure and temperature. Several parameters were measured during these tests including differential pressure and mixture density in the annulus. Flow patterns during the aerated fluids test have been observed through the view port in the annulus and recorded by a video camera. Most of the flow patterns were slug flow. Further increase in gas flow rate changed the wavy flow pattern to slug flow. At this stage, all of the planned cuttings transport tests have been completed. The results clearly show that temperature significantly affects the cuttings transport efficiency of aerated muds, in addition to the liquid flow rate and gas liquid ratio (GLR). Since the printed circuit board is functioning (Task 11) with acceptable noise level we were able to conduct several tests. We used the newly designed pipe test section to conduct tests. We tested to verify that we can distinguish between different depths of sand in a static bed of sand in the pipe section. The results indicated that we can distinguish between different sand levels. We tested with water, air and a mix of the two mediums. Major modifications (installation of magnetic flow meter, pipe fittings and pipelines) to the dynamic bubble characterization facility (DTF, Task 12) were completed. An Excel program that allows obtaining the desired foam quality in DTF was developed. The program predicts the foam quality by recording the time it takes to pressurize the loop with nitrogen.« less

  10. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Henley, D.R.; Manion, W.J.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less

  11. Diagnostic performance of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry in blood bacterial infections: a systematic review and meta-analysis.

    PubMed

    Scott, Jamie S; Sterling, Sarah A; To, Harrison; Seals, Samantha R; Jones, Alan E

    2016-07-01

    Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has shown promise in decreasing time to identification of causative organisms compared to traditional methods; however, the utility of MALDI-TOF MS in a heterogeneous clinical setting is uncertain. To perform a systematic review on the operational performance of the Bruker MALDI-TOF MS system and evaluate published cut-off values compared to traditional blood cultures. A comprehensive literature search was performed. Studies were included if they performed direct MALDI-TOF MS analysis of blood culture specimens in human patients with suspected bacterial infections using the Bruker Biotyper software. Sensitivities and specificities of the combined studies were estimated using a hierarchical random effects linear model (REML) incorporating cut-off scores of ≥1.7 and ≥2.0. Fifty publications were identified, with 11 studies included after final review. The estimated sensitivity utilising a cut-off of ≥2.0 from the combined studies was 74.6% (95% CI = 67.9-89.3%), with an estimated specificity of 88.0% (95% CI = 74.8-94.7%). When assessing a cut-off of ≥1.7, the combined sensitivity increases to 92.8% (95% CI = 87.4-96.0%), but the estimated specificity decreased to 81.2% (95% CI = 61.9-96.6%). In this analysis, MALDI-TOF MS showed acceptable sensitivity and specificity in bacterial speciation with the current recommended cut-off point compared to blood cultures; however, lowering the cut-off point from ≥2.0 to ≥1.7 would increase the sensitivity of the test without significant detrimental effect on the specificity, which could improve clinician confidence in their results.

  12. Low-cost 420nm blue laser diode for tissue cutting and hemostasis

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.

    2016-03-01

    This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.

  13. Fast fluid-flow events within a subduction-related vein system in oceanic eclogite: implications for pore fluid pressure at the plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2017-04-01

    A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had been completed within ca. 3 years. The short-lived, pulse-like character of this process is in accordance with the notion that fluid flow related to oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the plate interface which may trigger slip events reported from many subduction zones.

  14. 43 CFR 5511.2-3 - Permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (a) Application for permit. Before timber is cut for free use, an application for permit in duplicate... performance of the provisions of the permit and the regulations in §§ 5511.2-1 to 5511.2-6. (c) Cutting rules and restrictions. All free-use timber shall be cut and removed in accordance with approved forestry...

  15. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  16. Designed experiment evaluation of key variables affecting the cutting performance of rotary instruments.

    PubMed

    Funkenbusch, Paul D; Rotella, Mario; Ercoli, Carlo

    2015-04-01

    Laboratory studies of tooth preparation are often performed under a limited range of conditions involving single values for all variables other than the 1 being tested. In contrast, in clinical settings not all variables can be tightly controlled. For example, a new dental rotary cutting instrument may be tested in the laboratory by making a specific cut with a fixed force, but in clinical practice, the instrument must make different cuts with individual dentists applying a range of different forces. Therefore, the broad applicability of laboratory results to diverse clinical conditions is uncertain and the comparison of effects across studies is difficult. The purpose of this study was to examine the effect of 9 process variables on dental cutting in a single experiment, allowing each variable to be robustly tested over a range of values for the other 8 and permitting a direct comparison of the relative importance of each on the cutting process. The effects of 9 key process variables on the efficiency of a simulated dental cutting operation were measured. A fractional factorial experiment was conducted by using a computer-controlled, dedicated testing apparatus to simulate dental cutting procedures and Macor blocks as the cutting substrate. Analysis of Variance (ANOVA) was used to judge the statistical significance (α=.05). Five variables consistently produced large, statistically significant effects (target applied load, cut length, starting rpm, diamond grit size, and cut type), while 4 variables produced relatively small, statistically insignificant effects (number of cooling ports, rotary cutting instrument diameter, disposability, and water flow rate). The control exerted by the dentist, simulated in this study by targeting a specific level of applied force, was the single most important factor affecting cutting efficiency. Cutting efficiency was also significantly affected by factors simulating patient/clinical circumstances as well as hardware choices. These results highlight the importance of local clinical conditions (procedure, dentist) in understanding dental cutting procedures and in designing adequate experimental methodologies for future studies. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Ninth Thermal and Fluids Analysis Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  18. Syntectonic Fluid-Rock Interactions Involving Surficial Waters in the Sevier Thrust Belt, Tendoy Mountains, Southwest Montana

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Anastasio, D. J.; Bebout, G. E.

    2002-05-01

    Calcite veins and Mississippian carbonates from the Sevier thrust front record syntectonic meteoric fluid infiltration and hydrocarbon migration. The Tendoy and Four Eyes Canyon thrust sheets were emplaced onto the western margin of the Late Cretaceous Western Interior Seaway \\{WIS\\}. Low salinity \\{Tice = -0.6° C to +3.6° C\\} and low temperature \\{110° C +/- 10\\} fluids interacted with hanging-wall carbonates at a depth of 5km. Most veins have single or multiple generations of varying apertures, composed predominately of large euhedral crystals with some finer grained layers and protolith inclusions. Orientation analysis of mutually cross-cutting, high-angle vein sets suggest development concurrent with Four Eyes Canyon thrusting but prior to Tendoy thrusting. These vein sets are generally cut by later synfolding bed-parallel shear veins. Reactivation of both the bed-parallel and bed-perpendicular vein sets \\{strike parallel and strike perpendicular\\} in the Four Eyes Canyon thrust sheet occurred subsequent to Sevier compression, creating wide, coarse crystalline veins that often transect Sevier structures. Oxygen and Carbon isotope analyses of veins allow for reconstruction of fluid-rock interactions during thrust sheet emplacement and later reactivation. All veins and variably deformed host-rocks were microsampled and analyzed for δ 18OV-SMOW and δ 13CV-PDB. Small Tendoy veins \\{1mm-1cm wide\\} have calcite δ 18O values of +8.9 to +28.8‰ and calculated fluid \\{as H2O\\} of -8.3 to +11.6‰ \\{100° C\\}, -7.3 to +12.6‰ \\{110° C\\}, and -6.3 to +13.6‰ \\{120° C\\}. Four Eyes Canyon veins \\{1cm-3m wide\\} have calcite δ 18O values of +5.9 to +17.0‰ and calculated fluid of -11.3 to -0.2‰ \\{100° C\\}, -10.3 to +0.8‰ \\{110° C\\}, and -9.3 to +1.8‰ \\{120° C\\}. While there is significant variation in δ 18O there is relatively little systematic variation seen in δ 13C. Protolith carbonate has δ 18O values of +22.2‰ +/- 3.2; and some multi-layered veins are more depleted in δ 18O in earlier-formed generations. For three sites in the Lost River Range \\{LRR\\}, Idaho, the calculated minimum fluid δ 18O is -7.5‰ \\{+150 to +250° C\\} \\{Bebout et al., 2001; GRL\\}. Although the uncertainty of the regional temperature is large, when assuming a temperature of 110° C +/- 10 the Tendoy has a minimum calculated δ 18O H2O value of -8.3 to -6.3‰ and the Four Eyes Canyon has a minimum calculated δ 18O H2O value of -11.3 to -9.3‰ . These fluid O-isotope compositions are similar to the minimum H2O δ 18O calculated for the LRR sites - all pointing to infiltration of the thrust sheets by meteoric waters, possibly relatively nearshore meteoric waters with isotopic compositions strongly influenced by the nearby WIS. Surficial fluids possibly infiltrated into the thrust sheets by topographic recharge and migrated updip towards the foreland, mixing to varying degrees with more deeply roused fluids. Smaller veins and longer travel times and distances favored more extensive fluid-rock interaction and thus more rock-controlled fluid compositions. Microfractures in veins healed by hydrocarbons indicate that hydrocarbons migrated with freshwater fluids. Calcite veins record a dynamic history of fluid pathways and fluid flow as permeability evolved during thrust emplacement.

  19. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan.

    PubMed

    Chao, Wen-Cheng; Tseng, Chien-Hua; Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng

    2018-01-01

    Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1-4 as a cut-off point, we found that a negative cumulative day 1-4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1-4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1-4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007-1.174). A negative day 1-4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza.

  20. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  1. Case-related factors affecting cutting errors of the proximal tibia in total knee arthroplasty assessed by computer navigation.

    PubMed

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko

    2018-05-01

    The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.

  2. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  3. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    USGS Publications Warehouse

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some issues with data were uncovered during the analytical process (e.g., correct geospatial location of disposal sites and the proper reporting of end use of waste) that obfuscated the analyses; correcting these issues will help future analyses.

  4. Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem

    NASA Astrophysics Data System (ADS)

    Octarina, Sisca; Radiana, Mutia; Bangun, Putra B. J.

    2018-01-01

    Two dimensional cutting stock problem (CSP) is a problem in determining the cutting pattern from a set of stock with standard length and width to fulfill the demand of items. Cutting patterns were determined in order to minimize the usage of stock. This research implemented pattern generation algorithm to formulate Gilmore and Gomory model of two dimensional CSP. The constraints of Gilmore and Gomory model was performed to assure the strips which cut in the first stage will be used in the second stage. Branch and Cut method was used to obtain the optimal solution. Based on the results, it found many patterns combination, if the optimal cutting patterns which correspond to the first stage were combined with the second stage.

  5. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.

  6. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2005-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  7. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2004-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  8. Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing.

    PubMed

    Meeker, John D; Cooper, Michael R; Lefkowitz, Daniel; Susi, Pam

    2009-01-01

    A number of tasks in construction generate worker overexposures to respirable crystalline silica dust, which is a significant contributor to occupational mortality and morbidity. This study evaluated the performance of commercially available engineering controls used in dusty construction tasks commonly performed by bricklayers. Local exhaust ventilation (LEV) controls for a portable abrasive cutter and for tuckpointing grinders were examined at a bricklayers' training center, as were two stationary wet saws. Personal breathing zone air samples were collected with and without the use of LEV or water suppression during simulated concrete block cutting, brick cutting, and tuckpointing. Compared with the use of no exposure control during block and brick cutting, the portable LEV unit significantly reduced mean respirable quartz exposures by 96% for block cutting and 91% for brick cutting (p < 0.01). The use of stationary wet saws was also associated with 91% reductions in exposure (p < 0.01). For tuckpointing, the reductions in mean respirable quartz concentrations were between 91% and 93% with the LEV controls (p < 0.05). Reductions of up to 96% in mean respirable quartz concentration were observed between control and no-control scenarios. These reductions with commercially available off-the-shelf tools demonstrate the effectiveness of engineering control interventions to reduce crystalline silica exposures in construction. Strategies to further improve control performance and approaches for increasing control interventions in construction are needed.

  9. Utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid for differential diagnosis of primary lung cancer.

    PubMed

    Cao, Chao; Sun, Shi-Fang; Lv, Dan; Chen, Zhong-Bo; Ding, Qun-Li; Deng, Zai-Chun

    2013-01-01

    Published data have shown that the levels of vascular endothelial growth factor (VEGF) and soluble VEGF receptor-1 (sVEGFR-1) in plasma and pleural effusion might be usefulness for lung cancer diagnosis. Here, we performed a prospective study to investigate the utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid (BALF) for differential diagnosis of primary lung cancer. A total of 56 patients with solitary pulmonary massed by chest radiograph or CT screening were enrolled in this study. BALF and plasma samples were obtained from all patients and analyzed for VEGF and sVEGFR-1 using a commercially available sandwich ELISA kit. The results showed that the levels of VEGF in BALF were significantly higher in patients with a malignant pulmonary mass compared with patients with a benign mass (P < 0.001). However, no significant difference of sVEGFR-1 in BALF was found between malignant and non-malignant groups (P = 0.43). With a cut-off value of 214 pg/ml, VEGF showed a sensitivity and specificity of 81.8% and 84.2%, respectively, in predicting the malignant nature of a solitary pulmonary mass. Our study suggests that VEGF is significantly increased in BALF among patients with lung cancer than in benign diseases. Measurement of VEGF in BALF might be helpful for differential diagnosis of primary lung cancer.

  10. Application of a 1.48-microm diode laser for bisecting oocytes into two identical hemizonae for the hemizona assay.

    PubMed

    Edenfeld, J; Schöpper, B; Sturm, R; Diedrich, K; Al-Hasani, S

    2002-04-01

    Laser systems are very promising new technical tools in assisted reproduction. It was investigated if laser radiation can replace the mechanical cutting procedure via micromanipulator in the hemizona assay (HZA), a commonly used bioassay to determine the sperm-zona pellucida binding capacity. An oocyte was bisected precisely into two identical hemizonae with approximately 20 laser pulses (pulse length 30 msec) using a 1.48-microm diode laser. Compared with the conventional method using microscalpels for zona bisection, laser treated hemizonae showed equivalent sperm-binding and within the two groups there was no detectable difference between matching hemizonae in their capacity for tight sperm-binding. To evaluate whether laser radiation affects the outcome of the HZA when effects of certain substances are investigated, the spermatozoa were preincubated with human follicular fluid (hFF), which inhibits the binding of spermatozoa to zona pellucida in vitro. Supplementation with follicular fluid exerted an inhibitory effect in both groups. The hemizona index (HZI) showed no statistical differences between the two methods. Therefore, the 1.48-microm diode laser is a suitable new instrument for generating equally sized hemizonae. There is no use for holding pipettes and microscalpels, on the contrary, for performing the HZA the laser is a precise, very quick and easy to use new working tool.

  11. Supercritical fluid extraction of 11C-labeled metabolites in tissue using supercritical ammonia.

    PubMed

    Jacobson, G B; Moulder, R; Lu, L; Bergström, M; Markides, K E; Långström, B

    1997-02-01

    Supercritical fluid extraction (SFE) of 11C-labeled tracer compounds and their metabolites from biological tissue was performed using supercritical ammonia in an attempt to develop a rapid extraction procedure that allowed subsequent analysis of the labeled metabolites. Metabolites were extracted from kidneys and brain in rats given in vivo injections of the radiotracers O-[2-11C]acetyl-L-carnitine and N-[11C]methylpiperidyl benzilate, respectively. Only a minimal sample pretreatment of the tissue was necessary, i.e., cutting into 10-20 pieces and mixing with the drying agent Hydromatrix, before it was loaded into the extraction vessel. Extraction efficiency was measured for SFE at temperatures over the range of 70-150 degrees C and a pressure of 400 bar. For O-[2-11C]acetyl-L-carnitine, 66% of the radioactivity was trapped in the collected fractions and 12% remained in the extraction vessel. For the more lipophilic N-[11C]methylpiperidyl benzilate, 93% of the activity was collected and less than 1% remained in the extraction vessel. Labeled metabolites were analyzed by LC and also, in the case, of O-[2-11C]acetyl-L-carnitine by LC/MS. The complete extraction procedure, from removal of the biological tissue until an extract was ready for analysis, was 25 min, corresponding to about one half-life of the radionuclide 11C.

  12. Evaluation of Hard Coating Performance in Drilling Compacted Graphite Iron (CGI)

    NASA Astrophysics Data System (ADS)

    de Paiva, José M. F.; Amorim, Fred L.; Soares, P.; Torres, Ricardo D.

    2013-10-01

    The aim of this investigation was to compare the performance of the following commercial coatings system, TiAlN/TiN, AlCrN, and TiSiN/AlCrN, deposited in cemented carbide tools in drilling compact graphite iron (CGI). The drilling tests were conducted adopting two cutting speeds: 80 or 150 m/min. For each test condition, the tool flank wear, the machining feed force, and the circularity and the roughness of the resulting drilled hole were determined. At the cutting speed of 80 m/min, the results revealed that the tool life, in terms of flank wear, was improved for the Cr-based coatings, while the multilayered coatings presented a better performance at the cutting speed of 150 m/min. It was also found that feed force is substantially increased when drilling at a cutting speed of 150 m/min. The holes drilled with the TiSiN/AlCrN at a cutting speed of 150 m/min showed the best circularity. The drill roughness is directly influenced by the coating system wear and iron adhesion. Consequently, it was found that the lowest holes' roughness was obtained with TiSiN/AlCrN at 80 m/min.

  13. Analysis of Aircraft Fuels and Related Materials

    DTIC Science & Technology

    1979-03-01

    the fluid. Similarly, a specimen of a metal - reinforced braided fuel hose was cut into two pieces of nominally 50 mm length, with each being weighed...fuel hose was there significant weight gain. That particular specimen, due to its fabrication in layers of elast)mer, cord and metal reinforcing, gave...FUELS The combustion products of certain JP-9 fuels were reported to cause pitting and erosion of MAR M509 metal , an alloy of chro- $ mium and cobalt

  14. CXCL13 as a Cerebrospinal Fluid Marker for Neurosyphilis in HIV-infected Patients with Syphilis

    PubMed Central

    Marra, Christina M.; Tantalo, Lauren C.; Sahi, Sharon K.; Maxwell, Clare L.; Lukehart, Sheila A.

    2010-01-01

    Background Asymptomatic neurosyphilis is more difficult to diagnose in HIV-infected patients because HIV itself can cause cerebrospinal fluid (CSF) pleocytosis. The proportion of CSF lymphocytes that are B cells is elevated in neurosyphilis, suggesting that the CSF concentration of the B cell chemoattractant, chemokine (C-X-C motif) ligand 13 (CXCL13) concentration may also be elevated. Methods CSF and blood were collected from 199 HIV-infected patients with syphilis and neurosyphilis. Serum and CSF CXCL13 concentrations were determined. Results Patients with neurosyphilis had higher CSF and serum CXCL13 concentrations compared to patients with syphilis but not neurosyphilis. The odds of having symptomatic neurosyphilis were increased by 2.23 fold for every log increase in CSF CXCL13 concentration and were independent of CSF WBC and plasma HIV RNA concentrations, peripheral blood CD4+ T cell count and use of antiretroviral medications. A cut-off of 10 pg/mL CSF CXCL13 had high sensitivity and a cut-off of 250 pg/mL or evidence of intrathecal synthesis of CXCL13 had high specificity for diagnosis of both symptomatic and asymptomatic neurosyphilis. CSF concentrations of CXCL13 declined after treatment for neurosyphilis. Conclusions CSF CXCL13 concentration may be particularly useful for diagnosis of neurosyphilis in HIV-infected patients because it is independent of CSF pleocytosis and markers of HIV disease. PMID:20393380

  15. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    PubMed

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  16. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    NASA Astrophysics Data System (ADS)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).

  17. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    NASA Astrophysics Data System (ADS)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-12-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  18. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-01

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  19. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    PubMed

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  20. Comparative analysis of anthropometric indices of obesity as correlates and potential predictors of risk for hypertension and prehypertension in a population in Nigeria.

    PubMed

    Ononamadu, Chimaobi James; Ezekwesili, Chinwe Nonyelum; Onyeukwu, Onyemaechi Faith; Umeoguaju, Uchenna Francis; Ezeigwe, Obiajulu Christian; Ihegboro, Godwin Okwudiri

    Obesity is a well-established independent risk factor for hypertension and other cardiometabolic disorders. However, the best anthropometric index of obesity that predicts or associates strongly with hypertension and related conditions remains controversial and inconclusive. This study compared the performance of eight anthropometric indices of obesity: body mass index (BMI), ponderal index (PI), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), waist-height ratio (WHtR), body adiposity index (BAI) and conicity index (CI) as correlates and potential predictors of risk of hypertension and prehypertension in a Nigerian population, and also the possible effect of combining two or more indices in that regard. This church-based, cross-sectional study was conducted in Anambra state, south-eastern Nigeria from 2012 to 2013. A total of 912 persons (436 male and 476 female) drawn randomly from three major cities (Awka, Onitsha and Nnewi) in the state participated in the study. Information on demography, medical history and lifestyle were obtained using a well-structured and validated questionnaire. The systolic/diastolic blood pressure and anthropometric measurements were taken by well-trained personnel. The resulting data were analysed using descriptive statistics, logistic regression, Poisson regression and receiver operating characteristic curve analysis. The mean values of all the anthropometric indices studied increased from normotension, through prehypertension to hypertension in both genders. BMI, WC, HC and CI were significantly higher (p < 0.05) in females than males. All the anthropometric indices studied were significantly (p < 0.001 except for CI) correlated with systolic and diastolic blood pressure. BMI, WHtR, WC and PI (with higher correlation coefficients for blood pressure) showed the best potential to predict hypertension and prehypertension in the study: BMI (cut-off = 24.49, AUC = 0.698; cut-off = 23.62, AUC = 0.659), WHtR (cut-off = 0.55, AUC = 0.682; cut-off = 0.5, AUC = 0.636), WC (cut-off = 91.44, AUC = 0.692; cut-off = 82.55, AUC = 0.645), PI (cut-off = 14.45, AUC = 0.670; cut-off = 13.69, AUC = 0.639), in males; and BMI (cut-off = 24.44, AUC = 0.622; cut-off = 28.01, AUC = 0.609), WHtR (cut-off = 0.51, AUC = 0.624; cut-off = 0.6, AUC = 0.572), WC ( cut-off = 96.62, AUC = 0.616; cut-off = 96.52, AUC = 0.584), PI ( cut-off = 16.38, AUC = 0.619; cut-off = 17.65, AUC = 0.599), in females for hypertension and prehypertension, respectively. In predicting hypertension risk, WC and WHtR did not significantly improve the performance of BMI in the models when included using our decision rule. Overall, CI had a very poor discriminatory power for both conditions in this study. BMI, WHtR, WC and PI emerged the best predictors of hypertension risk, and BMI, WC and PI of prehypertension risk in this study. The combination of high-performing anthropometric indices in a model did not improve their performance. Therefore we recommend the simultaneous but independent use of BMI and either WC or WHtR for predicting hypertension, and BMI and WC for prehypertension risk, bearing in mind that both types of index (abdominal and general obesity) account for different forms of obesity.

  1. Comparative analysis of anthropometric indices of obesity as correlates and potential predictors of risk for hypertension and prehypertension in a population in Nigeria

    PubMed Central

    Ononamadu, Chimaobi James; Ihegboro, Godwin Okwudiri; Ezekwesili, Chinwe Nonyelum; Onyeukwu, Onyemaechi Faith; Umeoguaju,, Uchenna Francis; Ezeigwe, Obiajulu Christian

    2017-01-01

    Summary Background: Obesity is a well-established independent risk factor for hypertension and other cardiometabolic disorders. However, the best anthropometric index of obesity that predicts or associates strongly with hypertension and related conditions remains controversial and inconclusive. Objective: This study compared the performance of eight anthropometric indices of obesity: body mass index (BMI), ponderal index (PI), waist circumference (WC), hip circumference (HC), waist–hip ratio (WHR), waist–height ratio (WHtR), body adiposity index (BAI) and conicity index (CI) as correlates and potential predictors of risk of hypertension and prehypertension in a Nigerian population, and also the possible effect of combining two or more indices in that regard. Methods: This church-based, cross-sectional study was conducted in Anambra state, south-eastern Nigeria from 2012 to 2013. A total of 912 persons (436 male and 476 female) drawn randomly from three major cities (Awka, Onitsha and Nnewi) in the state participated in the study. Information on demography, medical history and lifestyle were obtained using a well-structured and validated questionnaire. The systolic/diastolic blood pressure and anthropometric measurements were taken by well-trained personnel. The resulting data were analysed using descriptive statistics, logistic regression, Poisson regression and receiver operating characteristic curve analysis. Results: The mean values of all the anthropometric indices studied increased from normotension, through prehypertension to hypertension in both genders. BMI, WC, HC and CI were significantly higher (p < 0.05) in females than males. All the anthropometric indices studied were significantly (p < 0.001 except for CI) correlated with systolic and diastolic blood pressure. BMI, WHtR, WC and PI (with higher correlation coefficients for blood pressure) showed the best potential potential to predict hypertension and prehypertension in the study: BMI (cut-off = 24.49, AUC = 0.698; cut-off = 23.62, AUC = 0.659), WHtR (cut-off = 0.55, AUC = 0.682; cut-off = 0.5, AUC = 0.636), WC (cut-off = 91.44, AUC = 0.692; cut-off = 82.55, AUC = 0.645), PI (cut-off = 14.45, AUC = 0.670; cut-off = 13.69, AUC = 0.639), in males; and BMI (cut-off = 24.44, AUC = 0.622; cut-off = 28.01, AUC = 0.609), WHtR (cut-off = 0.51, AUC = 0.624; cut-off = 0.6, AUC = 0.572), WC (cut-off = 96.62, AUC = 0.616; cut-off = 96.52, AUC = 0.584), PI (cut-off = 16.38, AUC = 0.619; cut-off = 17.65, AUC = 0.599), in females for hypertension and prehypertension, respectively. In predicting hypertension risk, WC and WHtR did not significantly improve the performance of BMI in the models when included using our decision rule. Overall, CI had a very poor discriminatory power for both conditions in this study. Conclusion: BMI, WHtR, WC and PI emerged the best predictors of hypertension risk, and BMI, WC and PI of prehypertension risk in this study. The combination of high-performing anthropometric indices in a model did not improve their performance. Therefore we recommend the simultaneous but independent use of BMI and either WC or WHtR for predicting hypertension, and BMI and WC for prehypertension risk, bearing in mind that both types of index (abdominal and general obesity) account for different forms of obesity. PMID:27701484

  2. HPV self-sampling in CIN2+ detection: sensitivity and specificity of different RLU cut-off of HC2 in specimens from 786 women.

    PubMed

    Bottari, F; Igidbashian, S; Boveri, S; Tricca, A; Gulmini, C; Sesia, M; Spolti, N; Sideri, M; Landoni, F; Sandri, M T

    2017-04-01

    Mortality for cervical cancer varies between the different regions of the world, with high rates in low-income countries where screening programmes are not present and organised. However, increasing screening coverage is still a priority in all countries: one way to do that is to base screening on self-sampled screening. The success of a self-sampling screening strategy depends on capacity to recruit unscreened women, on the performance and acceptability of the device and on the clinical performance of the high-risk human papillomavirus (HPV) test. This study based on 786 enrolled women investigates the best cut-off value of Hybrid Capture 2 HPV test (HC2) for self-sampled specimens in terms of sensitivity and specificity. In this population, we found that the sensitivity and the specificity for cervical intraepithelial neoplasia grade 2 or more detection of HC2 performed on self-sampled specimens were 82.5% and 82.8%, respectively considering the relative light units (RLU) cut-off value of 1. Increasing the cut-off value the sensitivity decreases and the specificity raises and the best area under the curve for the RLU cut-off value is 1. Our results confirm that the cut-off value of 1 suggested by Qiagen for PreservCyt specimen is the best cut-off value also for self-sampled specimens. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Determination and Validation of a Lower Cut Off Value of Cerebrospinal Fluid Adenosine Deaminase (CSF-ADA) Activity in Diagnosis of Tuberculous Meningitis.

    PubMed

    Raviraj; Henry, Renoy A; Rao, G Ganapathi

    2017-04-01

    Tuberculous meningitis is an infection of the meninges caused by Mycobacterium tuberculosis . It is one of the most common infectious diseases of the Central Nervous System (CNS) and a major health problem in developing countries like India. If there is delay in diagnosis and initiation of specific treatment, it causes significant morbidity and mortality. CSF-ADA 10 U/l is the standard cut off value that is used for differentiation between Tuberculous (TBM) and Non-Tuberculous Meningitis (non-TBM). To determine and validate a lower cut off value for CSF-ADA for diagnosing TBM in an Indian setting. This was a prospective study involving 85 cases of meningitis whose CSF were analysed and ADA estimated using an enzymatic deamination assay kit. Diagnosis of various types of meningitis was made based on specified diagnostic criteria. The comparison of mean value of CSF- ADA activity of the two types of meningitis was done using two Sample t-test. A p-value of <0.05 was considered as significant. Cut off value to differentiate between TBM and non-TBM meningitis was determined using ROC curve analysis. The CSF-ADA activity of TBM and non-TBM cases was compared. The mean CSF-ADA activity was found to be significantly higher in TBM patients (10.97±4.43; Mean±SD) than in non-TBM patients (5.09±1.53) which was statistically significant with a p-value of <0.001. A cut off value of 6.65 was calculated using ROC curve for the diagnosis of TBM which gave a sensitivity of 85.3% and a specificity of 84.3% for differentiating TBM from non-TBM. The positive predictive value was 78.3% and negative predictive value of 89.5% using the above cut off. The positive likelihood ratio was 5.44 and negative likelihood ratio of 0.17 when this lower cut off value was applied. This study has demonstrated that CSF-ADA can be used as an important diagnostic tool in early diagnosis of TBM using a cut off value of 6.65. This cut off value gave a good sensitivity and specificity in differentiating it from non-TBM.

  4. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs

    NASA Astrophysics Data System (ADS)

    Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin

    2017-09-01

    In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 < Re < 300. A constant heat flux of 10,000 W/m2 is exercised on the lower walls of the studied geometry. Further, the effect of triangular ribs with angle of attacks of 30°, 45° and 60° is studied on flow parameters and heat transfer due to the fluid flow. The results show that an increase in the volume fraction of nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).

  5. Fluid pathways from mantle wedge up to forearc seafloor in the coseismic slip area of the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.

    2017-12-01

    A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.

  6. The Bookmark Procedure for Setting Cut-Scores and Finalizing Performance Standards: Strengths and Weaknesses

    ERIC Educational Resources Information Center

    Lin, Jie

    2006-01-01

    The Bookmark standard-setting procedure was developed to address the perceived problems with the most popular method for setting cut-scores: the Angoff procedure (Angoff, 1971). The purposes of this article are to review the Bookmark procedure and evaluate it in terms of Berk's (1986) criteria for evaluating cut-score setting methods. The…

  7. Early institution of pre-cutting for difficult biliary cannulation: a prospective study comparing conventional vs. a modified technique.

    PubMed

    Kaffes, Arthur J; Sriram, Parupudi V J; Rao, Guduru V; Santosh, Darisetti; Reddy, D Nageshwar

    2005-11-01

    Pre-cutting techniques have been used to gain biliary access at the expense of an increased complication rate. This may be because of the multiple attempts to achieve cannulation by using standard methods before pre-cutting and causing excess edema and papillary trauma. There are limited data on the early use of pre-cutting techniques. We performed a prospective study of the early introduction of needle-knife techniques in patients with difficult biliary cannulation. Standard biliary cannulation was attempted with a sphincterotome and a guidewire. If this failed within 10 minutes or if there were more than 5 pancreatic cannulations, the needle-knife technique was used. Either a standard method of pre-cutting (below-upward) from the papillary orifice or the modified technique of pre-cutting (above-downward), stopping short of the papillary orifice, was adopted, as per the discretion of the endoscopist. If pre-cutting failed, the cannulation was reattempted 24 to 48 hours later. A total of 346 therapeutic biliary ERCP procedures were performed between April and August 2003. Of these, 70 patients (20%) (mean age, 54 years; 38 men) underwent needle-knife pre-cut sphincterotomy (16 with the standard technique). In 58 patients (83%), the procedure was successful with the initial pre-cutting, making the total success at initial ERCP 334/346 (96.5%). Nine patients in whom pre-cut failed, returned for a second-attempt ERCP, with 7 completed successfully. The total success rate of pre-cutting was 65/70 (93%). The overall success rate of biliary cannulation, after two ERCP attempts, was 341/346 (98.5%). Six patients had mild bleeding, and one had mild pancreatitis. There was no difference in these complications between the two types of pre-cut techniques. The early use of needle knife for difficult biliary cannulation is safe and effective, irrespective of the technique used.

  8. Features of precision slot cutting with a large number of calibers using the radiation of a single-mode fiber laser

    NASA Astrophysics Data System (ADS)

    Vitshas, A. A.; Zelentsov, A. G.; Lopota, V. A.; Menakhin, V. P.; Panchenko, V. P.; Soroka, A. M.

    2014-02-01

    The results of the experimental and theoretical investigations aimed at determining the characteristics and features of precision slot cutting with a large number of calibers in sheets of low-carbon steel using the radiation of a single-mode fiber laser with pulse power up to 1 kW are presented. The description of the experimental installation, performance conditions of investigations, and variable parameters are described. Precision cutting of low-carbon steel up to 10 mm with the number of calibers ranging from 30 to 70 at a slot width of ≈60 μm is performed for the first time. Such cutting occurs only in the pulsed-periodic mode using single-mode radiation with a pulse duration of 2-3 ms, a pulse ratio of 2-4, and oxygen, whose influence differs in principle both in various cut regions over the sheet thickness and from cutting with a CO2 laser. The cutting velocity (100-50 mm/min) of sheet steel up to thicknesses of 10 mm with deep channeling, roughness parameters, hardness of the cut surface, which insignificantly (by ≈20%) exceeds the hardness of untreated steel, the phase structure of steel, and the scales of their varying inside metal are measured. The efficiency (≈3%) of precision cutting and the efficiency of transportation of radiation (25%) in large-caliber slot orifices in the "waveguide" mode are determined by the experimental data. The useful specific energy contribution of the laser radiation is w l = N l/( hbv) ≈ 2 × 1012 J/m2 for all studied thicknesses of sheet samples accurate to 20%. A qualitative model of the laser-oxygen precision cutting with deep channeling, which explains the cyclic and interrupting character of cutting and necessity of using oxygen as the cutting gas, is proposed.

  9. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  10. SIGPI. Fault Tree Cut Set System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patenaude, C.J.

    1992-01-13

    SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can bemore » input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  11. SIGPI. Fault Tree Cut Set System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patenaude, C.J.

    1992-01-14

    SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can bemore » input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  12. The use of piezosurgery in cranial surgery in children.

    PubMed

    Ramieri, Valerio; Saponaro, Gianmarco; Lenzi, Jacopo; Caporlingua, Federico; Polimeni, Antonella; Silvestri, Alessandro; Pizzuti, Antonio; Roggini, Mario; Tarani, Luigi; Papoff, Paola; Giancotti, Antonella; Castori, Marco; Manganaro, Lucia; Cascone, Piero; Piero, Cascone

    2015-05-01

    Piezosurgery is an alternative surgical technique, now widely tested, that uses ultrasounds for bone cutting. This device uses ultrasounds to section hard tissues without harming surrounding soft tissues. The authors analyzed their experience in craniomaxillofacial procedures with piezosurgery. A comparison between operation timing and complication rates between piezosurgery and traditional cutting instruments has been performed. A total of 27 patients were examined (15 females and 12 males; average age, of 5.5 months) affected by craniosynostosis. The aim of this study was to analyze the advantages and disadvantages of piezosurgery in pediatric craniofacial procedures. Piezoelectric device in this study has shown being a valid instrument for bone cutting in accurate procedures, because it allows performing a more precise and safer cutting, without the risk of harming surrounding tissues.

  13. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

  14. The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries

    NASA Astrophysics Data System (ADS)

    Nikfarjam, F.; Cheny, Y.; Botella, O.

    2018-05-01

    The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids, where the irregular boundary is sharply represented by its level-set function, results in a significant gain in computer resources (wall time, memory usage) compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established (Cheny and Botella, 2010), and this paper presents its extension to 3D geometries with translational symmetry in the z direction (hereinafter called 3D extruded configurations). This intermediate step towards the fully 3D implementation can be applied to a wide variety of canonical flows and will be regarded as the keystone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to various Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion) for which benchmark results and experimental data are available. The purpose of these investigations are (a) to investigate the formal order of accuracy of the LS-STAG method, (b) to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows) (c) to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods).

  15. Developing Lathing Parameters for PBX 9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodrum, Randall Brock

    This thesis presents the work performed on lathing PBX 9501 to gather and analyze cutting force and temperature data during the machining process. This data will be used to decrease federal-regulation-constrained machining time of the high explosive PBX 9501. The effects of machining parameters depth of cut, surface feet per minute, and inches per revolution on cutting force and cutting interface were evaluated. Cutting tools of tip radius 0.005 -inches and 0.05 -inches were tested to determine what effect the tool shape had on the machining process as well. A consistently repeatable relationship of temperature to changing depth of cutmore » and surface feet per minute is found, while only a weak dependence was found to changing inches per revolution. Results also show the relation of cutting force to depth of cut and inches per revolution, while weak dependence on SFM is found. Conclusions suggest rapid, shallow cuts optimize machining time for a billet of PBX 9501, while minimizing temperature increase and cutting force.« less

  16. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    NASA Astrophysics Data System (ADS)

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  17. On-line Tool Wear Detection on DCMT070204 Carbide Tool Tip Based on Noise Cutting Audio Signal using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.

    2018-01-01

    This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.

  18. Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation

    NASA Astrophysics Data System (ADS)

    Hartlieb, Philipp; Bock, Stefan

    2018-03-01

    This study presents a theoretical analysis of the influence of the rock mass rating on the cutting performance of roadheaders. Existing performance prediction models are assessed for their suitability for forecasting the influence of pre-damaging the rock mass with alternative methods like lasers or microwaves, prior to the mechanical excavation process. Finally, the RMCR model was chosen because it is the only reported model incorporating a range of rock mass properties into its calculations. The results show that even very tough rocks could be mechanically excavated if the occurrence, orientation and condition of joints are favourable for the cutting process. The calculated improvements in the cutting rate (m3/h) are up to 350% for the most favourable cases. In case of microwave irradiation of hard rocks with an UCS of 200 MPa, a reasonable improvement in the performance by 120% can be achieved with as little as an extra 0.7 kWh/m3 (= 1% more energy) compared to cutting only.

  19. Beneficial Use of Drilling Waste - A Wetland Restoration Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioneer Natural Resources

    2000-08-14

    This project demonstrated that treated drill cuttings derived from oil and gas operations could be used as source material for rebuilding eroding wetlands in Louisiana. Planning to supply a restoration site, drill a source well, and provide part of the funding. Scientists from southeastern Louisiana University's (SLU) Wetland Biology Department were contracted to conduct the proposed field research and to perform mesocosm studies on the SLU campus. Plans were to use and abandoned open water drill slip as a restoration site. Dredged material was to be used to create berms to form an isolated cell that would then be filledmore » with a blend of dredged material and drill cuttings. Three elevations were used to test the substrates ability to support various alternative types of marsh vegetation, i.e., submergent, emergent, and upland. The drill cuttings were not raw cuttings, but were treated by either a dewatering process (performed by Cameron, Inc.) or by a stabilization process to encapsulate undesirable constituents (performed by SWACO, Division of Smith International).« less

  20. Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach

    NASA Astrophysics Data System (ADS)

    Yahyaei, Mohsen; Bashiri, Mahdi

    2017-12-01

    The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of scenarios grows exponentially with the number of facilities. To alleviate this issue, two approaches are applied simultaneously. The first approach is to apply sample average approximation to approximate the two stochastic problem via sampling. Then, by applying the multiple cuts Benders decomposition approach, computational performance is enhanced. Numerical studies show the effective performance of the SAA in terms of optimality gap for small problem instances with numerous scenarios. Moreover, performance of multi-cut Benders decomposition is assessed through comparison with the classic version and the computational results reveal the superiority of the multi-cut approach regarding the computational time and number of iterations.

  1. LASIK Eye Surgery

    MedlinePlus

    ... commonly performed. In general, a special type of cutting laser is used to precisely change the shape ... suction ring placed on your eye just before cutting the corneal flap may cause a feeling of ...

  2. Hysterectomy

    MedlinePlus

    ... cuts in the belly, in order to perform robotic surgery You and your doctor will decide which type ... through the vagina using a laparoscope or after robotic surgery. When a larger surgical cut (incision) in the ...

  3. Governance of agro-pesticide through private environmental and social standards in the global cut flower chain from Ethiopia.

    PubMed

    Mengistie, Belay T; Mol, Arthur P J; Oosterveer, Peter

    2017-11-01

    The international cut flower industry is strongly criticized because of its environmental impacts and unsafe working conditions. Increasing certification of cut flowers is used to improve the growers' environmental and social performance. But what is the impact of this private governance instrument on regulating the use of pesticides? This paper assesses the potential of private certification on governing the environmental and social problems from pesticide use along the global cut flower supply chain. We use detailed farm-level data to analyse the environmental and social impacts of flower certification in Ethiopia by comparing different national and international certification schemes. Our analysis does not show significant differences between these different private standards for most environmental and health and safety variables. The Ethiopian cut flower industry remains far from improving its sustainability performance through private certification. However, certification schemes may enable farmers to have access to international markets and keep up their reputation.

  4. High-speed fiber laser cutting of thick stainless steel for dismantling tasks

    NASA Astrophysics Data System (ADS)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon

    2017-09-01

    A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.

  5. Effects of condensed tannins in wrapped silage bales of sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep.

    PubMed

    Theodoridou, K; Aufrère, J; Andueza, D; Le Morvan, A; Picard, F; Pourrat, J; Baumont, R

    2012-02-01

    The objective of this study was to characterize the condensed tannins (CTs) in wrapped silage bales of sainfoin (Onobrychis viciifolia) and examine their potential action on in vivo and in situ digestive characteristics in sheep. Silage was made from sainfoin, cut at two phenological stages. The first phenological stage, at which silage was made, was from the first vegetation cycle at the end of flowering and the second stage silage was made from regrowth, 5 weeks after the first cut, but before flowering. The silages made from the two phenological stages were fed to 12 rumen-fistulated sheep in a crossover design. Of the 12 sheep, six received polyethylene glycol (PEG) to bind with and remove the effects of CT, whereas the other six were dosed with water. Organic matter digestibility, total-tract N digestibility and N (N) balance were measured over 6 days. Kinetic studies were performed on total N, ammonia N (NH3-N) and volatile fatty acids (VFAs) in rumen fluid before and 1.5, 3 and 6 h after feeding. The kinetics of degradation of dry matter and N from Dacron bags suspended in the rumen were also determined. Biological activity of CT (protein-binding capacity) and CT concentration were greater for the silage made from sainfoin at the early flowering stage. Total-tract N digestibility was increased by the addition of PEG (P < 0.001) to the sainfoin silage before flowering (P < 0.001). CTs decreased N excretion in urine (P < 0.05) and increased faecal N excretion (P < 0.001), but had no effect on body N retention, which is beneficial for the animal. Ruminal N degradability was smaller in the presence of active CT (P < 0.001) at both phenological stages; however, soluble N (P = 0.2060) and NH3-N (P = 0.5225) concentrations in rumen fluid remained unchanged. The results of this experiment indicate that CT in the sainfoin retain their ability to affect the nutritive value of preserved forage legumes.

  6. Lower limb kinematics of male and female soccer players during a self-selected cutting maneuver: Effects of prolonged activity.

    PubMed

    McGovern, Andrew; Dude, Christopher; Munkley, Daniel; Martin, Thomas; Wallace, David; Feinn, Richard; Dione, Donald; Garbalosa, Juan C

    2015-12-01

    Despite the recent emphasis on injury prevention, anterior cruciate ligament (ACL) injury rates remain high. This study aimed to ascertain the effects of prolonged activity on lower limb kinematics during a self-selected cutting maneuver. Angular kinematics were recorded during an agility test performed until the completion time was greater than the mean plus one SD of baseline trials. Cut type was identified and the hip and knee angles at 33 ms post heel strike were determined. A linear mixed effects model assessed the effects of cut type, gender, and activity status on the hip and knee angles. Males performed sidestep cuts more frequently than females. Females increased the incidence of sidestep cuts after prolonged activity. At the hip, a gender-cut type interaction existed for the transverse (p=0.001) and sagittal (p=0.11) planes. Females showed more internal rotation during sidestep and more external rotation and less flexion during crossover cuts. For the frontal plane, a gender-activity status interaction (p = 0.032) was due to no change within females but greater hip adduction during prolonged activity within males. With prolonged activity, both genders displayed less hip (p=0.29) and knee (p=0.009) flexion and more knee (p=0.001) adduction. Females displayed less hip and knee flexion than men (p=0.001). Sidestep may be more risky than crossover cuts. Both genders place themselves in at-risk postures with prolonged activity due to less hip and knee flexion. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Deep Laser-Assisted Lamellar Anterior Keratoplasty with Microkeratome-Cut Grafts

    PubMed Central

    Yokogawa, Hideaki; Tang, Maolong; Li, Yan; Liu, Liang; Chamberlain, Winston; Huang, David

    2016-01-01

    Background The goals of this laboratory study were to evaluate the interface quality in laser-assisted lamellar anterior keratoplasty (LALAK) with microkeratome-cut grafts, and to achieve good graft–host apposition. Methods Simulated LALAK surgeries were performed on six pairs of eye bank corneoscleral discs. Anterior lamellar grafts were precut with microkeratomes. Deep femtosecond (FS) laser cuts were performed on host corneas followed by excimer laser smoothing. Different parameters of FS laser cuts and excimer laser smoothing were tested. OCT was used to measure corneal pachymetry and evaluate graft-host apposition. The interface quality was quantified in a masked fashion using a 5-point scale based on scanning electron microscopy images. Results Deep FS laser cuts at 226–380 μm resulted in visible ridges on the host bed. Excimer laser smoothing with central ablation depth of 29 μm and saline as a smoothing agent did not adequately reduce ridges (score = 4.0). Deeper excimer laser ablation of 58 μm and Optisol-GS as a smoothing agent smoothed ridges to an acceptable level (score = 2.1). Same sizing of the graft and host cut diameters with an approximately 50 μm deeper host side-cut relative to the central graft thickness provided the best graft–host fit. Conclusions Deep excimer laser ablation with a viscous smoothing agent was needed to remove ridges after deep FS lamellar cuts. The host side cut should be deep enough to accommodate thicker graft peripheral thickness compared to the center. This LALAK design provides smooth lamellar interfaces, moderately thick grafts, and good graft-host fits. PMID:26890667

  8. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to a strong structural control on the hot reservoir location and meteoric water content, T3 allowing deeper hot fluid provenances and T1 more meteoric influx.

  9. Non-invasive determination of external forces in vortex-pair-cylinder interactions

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Schröder, W.; Shashikanth, B. N.

    2012-06-01

    Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.

  10. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  11. Flux cutting in high- T c superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.

    We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details ofmore » the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.« less

  12. Developing Local Oral Reading Fluency Cut Scores for Predicting High-Stakes Test Performance

    ERIC Educational Resources Information Center

    Grapin, Sally L.; Kranzler, John H.; Waldron, Nancy; Joyce-Beaulieu, Diana; Algina, James

    2017-01-01

    This study evaluated the classification accuracy of a second grade oral reading fluency curriculum-based measure (R-CBM) in predicting third grade state test performance. It also compared the long-term classification accuracy of local and publisher-recommended R-CBM cut scores. Participants were 266 students who were divided into a calibration…

  13. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol

    NASA Astrophysics Data System (ADS)

    Zhang, Dongshi; Gökce, Bilal; Sommer, Steffen; Streubel, René; Barcikowski, Stephan

    2016-03-01

    In this paper, we perform liquid-assisted picosecond laser cutting of 150 μm thin germanium wafers from the rear side. By investigating the cutting efficiency (the ability to allow an one-line cut-through) and quality (characterized by groove morphologies on both sides), the pros and cons of this technique under different conditions are clarified. Specifically, with laser fluence fixed, repetition rate and scanning speed are varied to show quality and efficiency control by means of laser parameter modulation. It is found that low repetition rate ablation in liquid gives rise to a better cut quality on the front side than high repetition rate ablation since it avoids dispersed nanoparticles redeposition resulting from a bubble collapse, unlike the case of 100 kHz which leads to large nanorings near the grooves resulting from a strong interaction of bubbles and the case of 50 kHz which leads to random cutting due to the interaction of the former pulse induced cavitation bubble and the subsequent laser pulse. Furthermore, ethanol is mixed with pure distilled water to assess the liquid's impact on the cutting efficiency and cutting quality. The results show that increasing the ethanol fraction decreases the ablation efficiency but simultaneously, greatly improves the cutting quality. The improvement of cut quality as ethanol ratio increases may be attributed to less laser beam interference by a lower density of bubbles which adhere near the cut kerf during ablation. A higher density of bubbles generated from ethanol vaporization during laser ablation in liquid will cause stronger bubble shielding effect toward the laser beam propagation and therefore result in less laser energy available for the cut, which is the main reason for the decrease of cut efficiency in water-ethanol mixtures. Our findings give an insight into under which condition the rear-side laser cutting of thin solar cells should be performed: high repetition, pure distilled water and high laser power are favorable for high-speed rough cutting but the cut kerf suffers from strong side effects of ripples, nanoredeposition occurrence, while low laser power at low repetition rate (10 kHz), mixed solution (1 wt% ethanol in water) and moderate scanning speed (100 μm/s) are preferable for ultrafine high-quality debris-free cutting. The feasibility of high-quality cut is a good indication of using rear laser ablation in liquid to cut thinner wafers. More importantly, this technique spares any post cleaning steps to reduce the risk to the contamination or crack of the thin wafers.

  14. Cross Cutting Structural Design for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The challenge of our new National Space Policy and NASA's Vision for Space Exploration (VSE) is keyed to the development of more effective space access and transportation systems. Optimizing in-space systems through innovative cross cutting structural designs that reduce mass, combine functional requirements and improve performance can significantly advance spacecraft designs to meet the ever growing demands of our new National Space Policy. Dependence on limited structural designs is no longer an option. We must create robust materials, forms, function and evolvable systems. We must advance national policy objectives in the design, development, test and operation of multi-billion dollar new generation crew capsules by enabling them to evolve in meeting the requirements of long duration missions to the moon and mars. This paper discusses several current issues and major design drivers for consideration in structural design of advanced spacecraft systems. Approaches to addressing these multifunctional requirements is presented as well as a discussion on utilizing Functional Analysis System Technique (FAST) in developing cross cutting structural designs for future spacecraft. It will be shown how easy it is to deploy such techniques in any conceptual architecture definition or ongoing preliminary design. As experts in merging mission, safety and life support requirements of the frail human existence into robust vehicle and habitat design, we will conquer the final frontier, harness new resources and develop life giving technologies for mankind through more innovative designs. The rocket equation tells us that a reduction in mass optimizes our propulsive results. Primary and secondary structural elements provide for the containment of gases, fluids and solids; translate and sustain loads/impacts; conduct/radiate thermal energy; shield from the harmful effects of radiation; provide for grounding/bonding of electrical power systems; compartmentalize operational functions; and provide physical interface with multiple systems. How can we redefine, combine, substitute, rearrange and otherwise modify our structural systems to reduce mass? New technologies will be needed to fill knowledge gaps and propagate new design methods. Such an integrated process is paramount in maintaining U.S. leadership and in executing our national policy goals. The cross cutting process can take many forms, but all forms will have a positive affect on the demanding design environment through initial radical thinking. The author will illustrate such cross cutting results achievable through a formal process called FAST. The FAST example will be used to show how a multifunctional structural system concept for long duration spacecraft might be generated.

  15. Diagnostic value of the biochemical composition of pericardial effusions in patients undergoing pericardiocentesis.

    PubMed

    Ben-Horin, Shomron; Bank, Ilan; Shinfeld, Ami; Kachel, Erez; Guetta, Victor; Livneh, Avi

    2007-05-01

    In contrast to pleural effusion or ascites, there are few data regarding the chemical and cell-count parameters of pericardial effusions (PEs) to aid diagnosis. In the present work, all patients who underwent pericardiocentesis during a 9-year period (1995 to 2004) at a tertiary hospital and who had available fluid laboratory results were retrospectively identified. Causes of PE were diagnosed using predetermined criteria. The results of pericardial fluid biochemical and hematologic tests were compared with blood test results and analyzed to identify cut-off points that could distinguish among the various causes or among various groups of causes. Of 173 patients who underwent pericardiocentesis in the study period, 120 had available fluid laboratory results, and these patients constituted the study population. The most common causes of PE were neoplastic, idiopathic, and effusion related to acute pericarditis (accounting for 42, 22, and 17 of 120 patients, respectively). Most fluids (118 of 120) would have been classified as exudates by adopting Light's pleural effusion criteria. Moreover, in all parameters examined, there was a considerable overlap of test results among the different pericardial disorders. Thus, no biochemical or cell-count parameter was found useful at reasonable accuracy for differentiating among the individual causes or among various groups of pericardial disorders. In conclusion, most PEs are exudates. The analysis of pericardial fluid biochemical and cell-count composition is generally not helpful for the diagnosis of most PEs.

  16. Knee biomechanics during a jump-cut maneuver: Effects of gender & ACL surgery

    PubMed Central

    Miranda, Daniel L.; Fadale, Paul D.; Hulstyn, Michael J.; Shalvoy, Robert M.; Machan, Jason T.; Fleming, Braden C.

    2012-01-01

    Purpose The purpose of this study was to compare kinetic and knee kinematic measurements from male and female ACL-intact (ACLINT) and ACL-reconstructed (ACLREC) subjects during a jump-cut maneuver using biplanar videoradiography. Methods Twenty subjects were recruited; 10 ACLINT (5 males, 5 females) and 10 ACLREC (4 males, 6 females; five years post surgery). Each subject performed a jump-cut maneuver by landing on a single leg and performing a 45° side-step cut. Ground reaction force was measured by a force plate and expressed relative to body weight. Six-degree-of-freedom knee kinematics were determined from a biplanar videoradiography system and an optical motion capture system. Results ACLINT female subjects landed with a larger peak vertical GRF (p<0.001) compared to ACLINT male subjects. ACLINT subjects landed with a larger peak vertical GRF (p≤0.036) compared to ACLREC subjects. Regardless of ACL reconstruction status, female subjects underwent less knee flexion angle excursion (p=0.002) and had an increased average rate of anterior tibial translation (0.05±0.01%/millisecond; p=0.037) after contact compared to male subjects. Furthermore, ACLREC subjects had a lower rate of anterior tibial translation compared to ACLINT subjects (0.05±0.01%/millisecond; p=0.035). Finally, no striking differences were observed in other knee motion parameters. Conclusion Women permit a smaller amount of knee flexion angle excursion during a jump-cut maneuver, resulting in a larger peak vertical GRF and increased rate of anterior tibial translation. Notably, ACLREC subjects also perform the jump cut maneuver with lower GRF than ACLINT subjects five years post surgery. This study proposes a causal sequence whereby increased landing stiffness (larger peak vertical GRF combined with less knee flexion angle excursion) leads to an increased rate of anterior tibial translation while performing a jump-cut maneuver. PMID:23190595

  17. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less

  19. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.

    PubMed

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  20. Usefulness of cutting balloon angioplasty for the treatment of congenital heart defects.

    PubMed

    Kusa, Jacek; Mazurak, Magdalena; Skierska, Agnieszka; Szydlowski, Leslaw; Czesniewicz, Pawel; Manka, Lukasz

    2018-01-01

    Patients with complex congenital heart defects may have different hemodynamic prob-lems which require a variety of interventional procedures including angioplasty which involves using high-pressure balloons. After failure of conventional balloon angioplasty, cutting balloon angioplasty is the next treatment option available. The purpose of this study was to evaluate the safety and efficacy of cutting balloon angioplasty in children with different types of congenital heart defects. Cutting balloon angioplasty was performed in 28 children with different congenital heart defects. The indication for cutting balloon angioplasty was: pulmonary artery stenosis in 17 patients, creating or dilatation of interatrial communication in 10 patients, and stenosis of left subclavian artery in 1 patient. In the pulmonary arteries group there was a significant decrease in systolic blood pressure (SBP) in the proximal part of the artery from the average 74.33 ± 20.4 mm Hg to 55 ± 16.7 mm Hg (p < 0.001). Distal to the stenosis there was an increase in SBP from 19.8 ± 3.82 mm Hg to 30.3 ± ± 13.3 mm Hg (p = 0.04). This result remained constant in the follow-up. In atrial septal defect/fenestra-tion group, cutting balloon angioplasty was performed after an unsuccessful classic Rashkind procedure. After cutting balloon angioplasty there was a significant widening of the interatrial communication. Cutting balloon angioplasty is a feasible and effective treatment option in different con-genital heart defects.

  1. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE PAGES

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; ...

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  2. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  3. Alzheimer's Disease Normative Cerebrospinal Fluid Biomarkers Validated in PET Amyloid-β Characterized Subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study.

    PubMed

    Li, Qiao-Xin; Villemagne, Victor L; Doecke, James D; Rembach, Alan; Sarros, Shannon; Varghese, Shiji; McGlade, Amelia; Laughton, Katrina M; Pertile, Kelly K; Fowler, Christopher J; Rumble, Rebecca L; Trounson, Brett O; Taddei, Kevin; Rainey-Smith, Stephanie R; Laws, Simon M; Robertson, Joanne S; Evered, Lisbeth A; Silbert, Brendan; Ellis, Kathryn A; Rowe, Christopher C; Macaulay, S Lance; Darby, David; Martins, Ralph N; Ames, David; Masters, Colin L; Collins, Steven

    2015-01-01

    The cerebrospinal fluid (CSF) amyloid-β (Aβ)(1-42), total-tau (T-tau), and phosphorylated-tau (P-tau181P) profile has been established as a valuable biomarker for Alzheimer's disease (AD). The current study aimed to determine CSF biomarker cut-points using positron emission tomography (PET) Aβ imaging screened subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, as well as correlate CSF analyte cut-points across a range of PET Aβ amyloid ligands. Aβ pathology was determined by PET imaging, utilizing ¹¹C-Pittsburgh Compound B, ¹⁸F-flutemetamol, or ¹⁸F-florbetapir, in 157 AIBL participants who also underwent CSF collection. Using an INNOTEST assay, cut-points were established (Aβ(1-42) >544 ng/L, T-tau <407 ng/L, and P-tau181P <78 ng/L) employing a rank based method to define a "positive" CSF in the sub-cohort of amyloid-PET negative healthy participants (n = 97), and compared with the presence of PET demonstrated AD pathology. CSF Aβ(1-42) was the strongest individual biomarker, detecting cognitively impaired PET positive mild cognitive impairment (MCI)/AD with 85% sensitivity and 91% specificity. The ratio of P-tau181P or T-tau to Aβ(1-42) provided greater accuracy, predicting MCI/AD with Aβ pathology with ≥92% sensitivity and specificity. Cross-validated accuracy, using all three biomarkers or the ratio of P-tau or T-tau to Aβ(1-42) to predict MCI/AD, reached ≥92% sensitivity and specificity. CSF Aβ(1-42) levels and analyte combination ratios demonstrated very high correlation with PET Aβ imaging. Our study offers additional support for CSF biomarkers in the early and accurate detection of AD pathology, including enrichment of patient cohorts for treatment trials even at the pre-symptomatic stage.

  4. A Hospital Based Study on Estimation of Adenosine Deaminase Activity (ADA) in Cerebrospinal Fluid (CSF) in Various Types of Meningitis.

    PubMed

    Agarwal, Ashok Kumar; Bansal, Sonia; Nand, Vidya

    2014-02-01

    Tuberculosis kills 3.70 lakh patients in India every year,out of which 7-12 % are meningeal involvement. Delay in its diagnosis and initiation of treatment results in poor prognosis and squeal in up to 25% of cases. The aim of the present study is to look for a simple, rapid, cost effective, and fairly specific test in differentiating tubercular aetiology from other causes of meningitis. In the present study we measured the adenosine deaminase activity (ADA) in Cerebrospinal Fluid (CSF) of Tubercular Meningitis (TBM) and non-TBM patients. Fifty six patients attending hospital with symptoms and signs of meningitis were selected and divided into three groups: tubercular, pyogenic, and aseptic meningitis, depending upon the accepted criteria. CSF was drawn and ADA estimated. Out of 32 tubercular patients, 28 had CSF-ADA at or above the cut-off value while four had below. Out of 24 non-tuberculous patients (pyogenic and aseptic meningitis), two aseptic meningitis (AM) patient had ADA levels at or above the cut-off value while 22 had below this value. RESULTS of our study indicate that ADA level estimation in CSF is not only of considerable value in the diagnosis of TBM, CSF, and ADA level 10 U/L as a cut-off value with sensitivity 87.5% and specificity 83.33% and positive predictive value of the test was 87.5%.and 83.3% negative predictive value. It can be concluded that ADA estimation in CSF is not only simple, inexpensive and rapid but also fairly specific method for making a diagnosis of tuberculous aetiology in TBM, especially when there is a dilemma of differentiating the tuberculous aetiology from non-tuberculous ones. For this reason ADA estimation in TBM may find a place as a routine investigation.

  5. Influence of photon energy cuts on PET Monte Carlo simulation results.

    PubMed

    Mitev, Krasimir; Gerganov, Georgi; Kirov, Assen S; Schmidtlein, C Ross; Madzhunkov, Yordan; Kawrakow, Iwan

    2012-07-01

    The purpose of this work is to study the influence of photon energy cuts on the results of positron emission tomography (PET) Monte Carlo (MC) simulations. MC simulations of PET scans of a box phantom and the NEMA image quality phantom are performed for 32 photon energy cut values in the interval 0.3-350 keV using a well-validated numerical model of a PET scanner. The simulations are performed with two MC codes, egs_pet and GEANT4 Application for Tomographic Emission (GATE). The effect of photon energy cuts on the recorded number of singles, primary, scattered, random, and total coincidences as well as on the simulation time and noise-equivalent count rate is evaluated by comparing the results for higher cuts to those for 1 keV cut. To evaluate the effect of cuts on the quality of reconstructed images, MC generated sinograms of PET scans of the NEMA image quality phantom are reconstructed with iterative statistical reconstruction. The effects of photon cuts on the contrast recovery coefficients and on the comparison of images by means of commonly used similarity measures are studied. For the scanner investigated in this study, which uses bismuth germanate crystals, the transport of Bi X(K) rays must be simulated in order to obtain unbiased estimates for the number of singles, true, scattered, and random coincidences as well as for an unbiased estimate of the noise-equivalent count rate. Photon energy cuts higher than 170 keV lead to absorption of Compton scattered photons and strongly increase the number of recorded coincidences of all types and the noise-equivalent count rate. The effect of photon cuts on the reconstructed images and the similarity measures used for their comparison is statistically significant for very high cuts (e.g., 350 keV). The simulation time decreases slowly with the increase of the photon cut. The simulation of the transport of characteristic x rays plays an important role, if an accurate modeling of a PET scanner system is to be achieved. The simulation time decreases slowly with the increase of the cut which, combined with the accuracy loss at high cuts, means that the usage of high photon energy cuts is not recommended for the acceleration of MC simulations.

  6. Closed-Suction Drainage and Cerebrospinal Fluid Leakage Following Microvascular Decompression : A Retrospective Comparison Study

    PubMed Central

    Kim, Young-Hoon; Kim, Chae-Yong; Oh, Chang Wan

    2013-01-01

    Objective We performed this study to investigate whether the use of closed-suction drainage following microvascular decompression (MVD) causes cerebrospinal fluid (CSF) leakage. Methods Between 2004 and 2011, a total of 157 patients with neurovascular compression were treated with MVD. MVD was performed for hemifacial spasm in 150 (95.5%) cases and for trigeminal neuralgia in 7 (4.5%) cases. The mean age of the patients was 49.8±9.6 years (range, 20-69). Dural substitutes were used in 44 (28.0%) patients. Ninety-two patients (58.6%) were underwent a 4-5 cm craniotomy using drainage (drainage group), and 65 (41.4%) did a small 2-2.5 cm retromastoid craniectomy without closed-suction drainage (no-drainage group). Results Eleven (7.0%) patients experienced CSF leakage following MVD based on the criteria of this study; all of these patients were in the drainage group. In the unadjusted analyses, the incidence of CSF leakage was significantly related with the use of closed-suction drainage following MVD (12.0% in the drainage group vs. 0% in the no-drainage group, respectively; p=0.003; Fisher's exact test). Those who received dural substitutes and the elderly (cut-off value=60 years) exhibited a tendency to develop CSF leakage (p=0.075 and p=0.090, respectively; Fisher's exact test). In the multivariate analysis, only the use of closed-suction drainage was significantly and independently associated with the development of CSF leakage following MVD (odds ratio=9.900; 95% confidence interval, 1.418 to infinity; p=0.017). Conclusion The use of closed-suction drainage following MVD appears to be related to the development of CSF leakage. PMID:24175025

  7. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.

    PubMed

    Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun

    2016-02-01

    We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 2008 Program of Study: Perspectives and Challenges in GFD (Geophysical Fluid Dynamics)

    DTIC Science & Technology

    2009-03-01

    half of the complex k- plane , and Φ− is similarly well defined in the lower half of 338 PSfrag replacements Im k Re k−i +i Figure 2: Branch cuts in...domains ⊕ and , which include, respectively, the upper and lower half k- planes . The full Fourier transform of φ (and of h, d, etc.) is then well defined in...contour at infinity in the lower half k- plane ; the solution will only contain waves arising from poles located in the

  9. IndeCut evaluates performance of network motif discovery algorithms.

    PubMed

    Ansariola, Mitra; Megraw, Molly; Koslicki, David

    2018-05-01

    Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal. However, a reliable network motif discovery outcome requires generating random background networks which are the result of a uniform and independent graph sampling method. To date, there has been no method to numerically evaluate whether any network motif discovery algorithm performs as intended on realistically sized datasets-thus it was not possible to assess the validity of resulting network motifs. In this work, we present IndeCut, the first method to date that characterizes network motif finding algorithm performance in terms of uniform sampling on realistically sized networks. We demonstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons. First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in the most independent fashion for their network of interest among many available options. The open source software package is available at https://github.com/megrawlab/IndeCut. megrawm@science.oregonstate.edu or david.koslicki@math.oregonstate.edu. Supplementary data are available at Bioinformatics online.

  10. Preserving the PCL during the tibial cut in total knee arthroplasty.

    PubMed

    Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G

    2017-08-01

    Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.

  11. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data

    PubMed Central

    García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio

    2016-01-01

    Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882

  12. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data.

    PubMed

    García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio

    2016-01-28

    Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.

  13. Determination of six parabens residues in fresh-cut vegetables using QuEChERS with multi-walled carbon nanotubes and high performance liquid chromatography-tandem mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    In this study, an optimized QuEChERS sample preparation method was developed to analyze residues of six parabens: methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl-, and isobutyl-paraben in five fresh-cut vegetables (potato, broccoli, carrot, celery and cabbage) with high performance liquid chromatogr...

  14. Analysis and Optimization of the Production Process of Cooked Sausage Meat Matrices

    NASA Astrophysics Data System (ADS)

    Diez, L.; Rauh, C.; Delgado, A.

    2010-09-01

    In the production of cooked sausages a critical step for product quality is the cutting process, where the comminuting and mixing of meat, fat, ice and spices are carried out. These processes take usually place in bowl cutters, which main control parameters are the working time, knife geometry (shape and sharpness) and rotational velocities of the knives and the bowl. The choice of the geometry and sharpness of the knives influences not only the meat matrix properties (mechanical, rheological, etc.) and, as a consequence, the sensory value of the sausages (size of connective tissue particles, water binding, etc.), but also the energetic demand for the production. However, the cutting process proves to be understood only fragmentarily due to the complex colloid chemical and mechanical behavior of the product. This is documented on the one hand by numerous knife types on the market, extremely empirical approach during determination of geometry and process parameters in practice as well as, on the other hand, by contradictory statements and explanation approaches of observed phenomena present in literature. The present contribution applies numerical simulations to analyze thermo fluid mechanical phenomena, e.g. shear stresses, during the cutting process of the non-Newtonian meat matrix. Combining these results with selected experimental investigations from literature, e.g. sensory properties, knife geometry, velocity of the knife and bowl, improvements of the cutting and mixing process are proposed using cognitive algorithms (Artificial neural networks) aiming at an optimization regarding energy and time demand and product quality.

  15. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-17

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasivemore » and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.« less

  16. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    NASA Astrophysics Data System (ADS)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-01

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  17. Performance Monitoring Of A Computer Numerically Controlled (CNC) Lathe Using Pattern Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Daneshmend, L. K.; Pak, H. A.

    1984-02-01

    On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.

  18. Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.

    2005-12-01

    Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).

  19. Reduce, Reuse, Recycle: The Longitudinal Value of Local Cut Scores Using State Test Data

    ERIC Educational Resources Information Center

    Nelson, Peter M.; Van Norman, Ethan R.; VanDerHeyden, Amanda

    2017-01-01

    We used existing reading (n = 1,498) and math (n = 2,260) data to evaluate state test scores for screening middle school students. In Phase 1, state test data were used to create a research-derived cut score that was optimal for predicting state test performance the following year. In Phase 2, those cut scores were applied with future cohorts.…

  20. Variability in Percentage above Cut Scores Due to Discreteness in Score Scale. Research Report. ETS RR-17-32

    ERIC Educational Resources Information Center

    Lu, Ying

    2017-01-01

    For standard- or criterion-based assessments, the use of cut scores to indicate mastery, nonmastery, or different levels of skill mastery is very common. As part of performance summary, it is of interest to examine the percentage of examinees at or above the cut scores (PAC) and how PAC evolves across administrations. This paper shows that…

  1. 30 CFR 57.6802 - Bulk delivery vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Surface and Underground § 57.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a... removed. Before welding or cutting on a hollow shaft, the shaft shall be thoroughly cleaned inside and out...

  2. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    NASA Astrophysics Data System (ADS)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  3. A mineralogical petrographic and geochemical study of samples from wells in the geothermal field of Milos Island (Greece)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakopoulos, A.

    1991-01-01

    This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less

  4. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species.

    PubMed

    Pillard, D A; Cornell, J S; Dufresne, D L; Hernandez, M T

    2001-02-01

    Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures such as coolants, deicers, surface coatings, cutting fluids, and hydraulic fluids. Recent studies have shown that benzotriazole derivatives are a major component of aircraft deicing fluids (ADFs) responsible for toxicity to bacteria (Microtox). Our current research compared the toxicity of benzotriazole (BT), two methylbenzotriazole (MeBT) isomers, and butylbenzotriazole (BBT). Acute toxicity assays were used to model the response of three common test organisms: Microtox bacteria (Vibrio fischeri), fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia). The response of all the three organisms varied over two orders of magnitude among all compounds. Vibrio fischeri was more sensitive than either C. dubia or P. promelas to all the test materials, while C. dubia was less sensitive than P. promelas. The response of test organisms to unmethylated benzotriazole and 4-methylbenzotriazole was similar, whereas 5-methylbenzotriazole was more toxic than either of these two compounds. BBT was the most toxic benzotriazole derivative tested, inducing acute toxicity at a concentration of < or = 3.3 mg/l to all organisms.

  5. Toward numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.

    2016-04-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.

  6. CHARACTERIZATION OF AORTIC TISSUE CUTTING PROCESS: EXPERIMENTAL INVESTIGATION USING PORCINE ASCENDING AORTA

    PubMed Central

    Hu, Zhongwei; Sun, Wei; Zhang, Bi

    2012-01-01

    Understanding biomechanical responses during soft tissue cutting is important for developing surgical simulators and robot-assisted surgery with haptic feedback. The biomechanics involved in the aortic tissue cutting process is largely unknown. In this study, porcine ascending aorta was selected as a representative aortic tissue, and tissue cutting experiments were performed using a novel tissue cutting apparatus. The tissue cutting responses under various cutting conditions were investigated, including differing initial tissue lateral holding force and distance, cutting speed, cutter inclination angle, tissue anatomical orientation and thickness. The results from this study suggest that a “break-in” cutting force of about 4 – 12 N, a cutter “break-in” distance of 5 – 15 mm, and a continuous cutting force of 2 – 4 N were needed to cut through the porcine ascending aorta tissue. For all testing conditions investigated in this study, the cutting force vs. the cutter displacement curves exhibited similar characteristics. More importantly, this study demonstrated that tissue cutting involving one or more of the following conditions: a larger lateral holding force, a smaller lateral hold distance, a higher cutting speed or a larger inclination angle, could result in a smaller “break in” cutting force and a smaller “break-in” distance. In addition, it was found that the cutting force in the vessel longitudinal direction was larger than that in the circumferential direction. There was a strong correlation between the tissue thickness and the cutting force. The experimental results reported in this study could provide a basis for understanding the characteristic response of aortic tissue to scalpel cutting, and offer insight into the development of surgical simulators. PMID:23262306

  7. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    PubMed

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  8. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  9. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  10. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  11. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.

  12. Construction of a standard test assembly for controlled laser studies in tissues: Preliminary study on human bone material

    NASA Astrophysics Data System (ADS)

    Beer, Franziska; Passow, Harald

    2008-02-01

    The aim of the study is the construction of a test assembly, which facilitates objective, comparative studies on the cutting performance of lasers in hard tissue. To ensure the applicability of our own construction for the reproducible performance of laser incisions in hard tissue, eleven freshly extracted blocks (2×1.5cm2) of human bone were prepared with a Er,Cr:YSGG laser by using a handheld handpiece, respectively, using the constructed device for a standardized cutting. A total of 44 cuts were executed. The specimen were then histologically evaluated. The standard test assembly met the requirements concerning the provision of objective results. The findings of the histological evaluation prove the reproducibility of the results. The standard test assembly presented in this paper facilitates comparative studies of different laser systems by reducing subjective influence on the preparation to a minimum. The results of this preliminary study show that the precision of the guiding instrument for laser cutting reduces the error of cut width by 50-fold, from 50to1μm.

  13. Diamond- cBN alloy: A universal cutting material

    DOE PAGES

    Wang, Pei; He, Duanwei; Wang, Liping; ...

    2015-09-08

    Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less

  14. Diamond-cBN alloy: A universal cutting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154; He, Duanwei, E-mail: duanweihe@scu.edu.cn

    Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis andmore » characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.« less

  15. Diamond- cBN alloy: A universal cutting material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; He, Duanwei; Wang, Liping

    Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less

  16. Multi-stage evolution of xenotime-(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J.

    2016-12-01

    The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime-(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid-borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U-Th-Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.

  17. [Uniform analyzes of drugs in urine needed for rule of law].

    PubMed

    Hansson, Therese; Helander, Anders; Beck, Olof; Elmgren, Anders; Kugelberg, Fredrik; Kronstrand, Robert

    2015-09-22

    Drugs of abuse testing is used in various areas of society for detection and follow-up of drug use. In routine laboratory drug testing, immunoassays are employed for initial screening of specimens to indicate the presence of drugs. To confirm a positive screening test, a secondary analysis by mass spectrometry is performed. The "cut-off" is the pre-defined concentration threshold of a drug or drug metabolite above which the sample is considered positive. A reading below this level implies a negative test result. Swedish drug testing laboratories currently employ varying cut-offs to distinguish between a positive and a negative test result. Because a positive drug test may have serious legal consequences to the individual, it is of importance that testing is performed and judged equally, regardless of where it is performed. A national harmonization of cut-offs is therefore warranted. Based on data from four major Swedish drug testing laboratories, and considering the recommendations in international guidelines, a proposal for national harmonization of urine cut-offs for the most common set of drugs of abuse is presented.

  18. 30 CFR 56.6802 - Bulk delivery vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle... cutting on a hollow shaft, the shaft shall be thoroughly cleaned inside and out and vented with a minimum...

  19. Analysis on composition and inclusions of ballpoint pen tip steel

    NASA Astrophysics Data System (ADS)

    Yang, Qian-kun; Shen, Ping; Zhang, Dong; Wu, Yan-xin; Fu, Jian-xun

    2018-04-01

    Ballpoint pen tip steel, a super free-cutting stainless steel, exhibits excellent corrosion resistance and good machining properties. In this study, inductively coupled plasma spectroscopy, metallographic microscopy, and scanning electron microscopy were used to determine the elemental contents in five ballpoint pen tips and their components, morphologies, and inclusion distributions. The results showed that the steels were all S-Pb-Te super free-cutting ferritic stainless steel. The free-cutting phases in the steels were mainly MnS, Pb, and small amounts of PbTe. MnS inclusions were in the form of chain distributions, and the aspect ratio of each size inclusion in the chain was small. The stress concentration effect could substantially reduce the cutting force when the material was machined. Some of the Pb was distributed evenly in the steel matrix as fine particles (1-2 μm), and the rest of the Pb was distributed at the middle or at both ends of the MnS inclusions. The Pb plays a role in lubrication and melting embrittlement, which substantially increases the cutting performance. PbTe was also usually distributed in the middle and at both ends of the MnS inclusions, and Te could convert the sulfides into spindles, thereby improving the cutting performance of the steel.

  20. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings

    PubMed Central

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation (Dianthus caryophyllus) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings. PMID:29755501

Top