NASA Astrophysics Data System (ADS)
Lawal, S. A.; Choudhury, I. A.; Nukman, Y.
2015-01-01
The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.
NASA Astrophysics Data System (ADS)
Anan, Ruito; Matsuoka, Hironori; Ono, Hajime; Ryu, Takahiro; Nakae, Takashi; Shuto, Schuichi; Watanabe, Suguru; Sato, Yuta
2017-04-01
This study examined the improvements to the tool life and finished surface roughness by using water-miscible cutting fluids in carbon fiber reinforced plastics end milling. In cutting tests, it was found that the use of emulsion type, soluble type, and solution type cutting fluids improved tool life compared with the case of dry cutting. Specifically, significant differences in tool life were observed at a high cutting speed of 171 m/min. In addition, the finished surface exhibited a low level of roughness when the solution type cutting fluid was used, regardless of the cutting speed.
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Cutting fluid application plays a significant role in the manufacturing industries that acts as a coolant as well as a lubricant. The conventional flood cooling application of cutting fluids not only increases the production cost on account of the expenses involved in procurement, storage and disposal but also creates serious environmental and health hazards. In order to overcome these negative effects, techniques like Minimum quantity lubrication (MQL) and Minimal Cutting fluid application (MCFA) have increasingly found their way into the area of metal cutting and have already been established as an alternative to conventional wet machining. This paper investigates the effect of minimal Cutting fluid application (MCFA) which involves application of high velocity pulsing jet of proprietary cutting fluids at the contact zones using a special fluid application system. During hard turning of oil hardened non shrinkable steel (OHNS) on cutting temperature and tool wear and to compare the performance with Minimum quantity lubrication (MQL) assisted hard turning in which cutting fluid is carried in a high velocity stream of air. An attempt was also made to compare the performance during Turning with MCFA and MQL application with conventional wet and dry turning by analysing the tool wear pattern using SEM images.
The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon
NASA Astrophysics Data System (ADS)
Kumar, Arkadeep; Melkote, Shreyes N.
2017-07-01
The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.
NASA Astrophysics Data System (ADS)
Giri Prasad, M. J.; Abhishek Raaj, A. S.; Rishi Kumar, R.; Gladson, Frank; M, Gautham
2016-09-01
The present study is concerned with resolving the problems pertaining to the conventional cutting fluids. Two samples of nano cutting fluids were prepared by dispersing 0.01 vol% of MWCNTs and a mixture of 0.01 vol% of MWCNTs and 0.01 vol% of nano ZnO in the soluble oil. The thermophysical properties such as the kinematic viscosity, density, flash point and the tribological properties of the prepared nano cutting fluid samples were experimentally investigated and were compared with those of plain soluble oil. In addition to this, a milling process was carried by varying the process parameters and by application of different samples of cutting fluids and an attempt was made to determine optimal cutting condition using the Taguchi optimization technique.
Aqueous cutting fluid for machining fissionable materials
Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley
1984-01-01
The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.
NASA Astrophysics Data System (ADS)
Sato, Yuta; Matsuoka, Hironori; Kubo, Akio; Ono, Hajime; Ryu, Takahiro; Qiu, Hua; Nakae, Takashi; Shuto, Shuichi; Watanabe, Suguru; Anan, Ruito
2017-04-01
This paper deals with the influence of water-miscible cutting fluid on tool life (flank wear) compared with that with dry cutting and water-insoluble cutting oil in hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The following results were clarified. (1) The water-miscible cutting fluid used in the test prolongs the tool life for TiN-, TiAlN-, TiSiN- and AlCrSiN-coated tools in comparison with that obtained by dry cutting and water-insoluble cutting oil. (2) It was presumed that the tool wear decreases and the tool life is improved by the lubrication effect of the synthetic lubrication additive, mineral oil and sulfuric EP additive contained in the water-miscible cutting fluid, and also by the cooling effect.
AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)
Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
NASA Astrophysics Data System (ADS)
Jyothi, P. N.; Susmitha, M.; Sharan, P.
2017-04-01
Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.
Code of Federal Regulations, 2013 CFR
2013-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Code of Federal Regulations, 2014 CFR
2014-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Code of Federal Regulations, 2012 CFR
2012-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Health Hazard Evaluation Report HETA 83-107-1574, Dana Corporation, Fort Wayne, Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, R.G.; Wallingford, K.M.
1985-04-01
Environmental and breathing-zone samples of cutting fluids and oils were analyzed at Dana Corporation, Fort Wayne, Indiana in May, 1983. The survey was requested by a company representative to evaluate the cause of dermatitis among machine-tool operators. A cutting fluid used at the facility was thought to be the cause of the dermatitis. Medical questionnaires were administered to 95 workers. Company dispensary records were reviewed. N-nitrosodimethylamine and triethanolamine were detected in new and used cutting fluid samples. Nickel, chromium, and zinc were detected in a sample of used cutting oil residue. Chloromethyl-phenol was found in two cutting fluid mix samples.more » The authors conclude that a health hazard exists at the facility. The skin problems appear to be related to exposure to cutting fluids and solvents in general, rather than a specific agent. Recommendations include using protective clothing, using waterless hand cleaners instead of solvents, and avoiding contact with chlorothene.« less
NASA Technical Reports Server (NTRS)
Peters, R. L.
1969-01-01
Improved cutting fluid completely controls the heat generated from machining operations, thus providing longer tool life. Fluid is especially useful in the working of plastics and replaces less efficient contaminating oils.
Cutting fluid mists that are generated during machining processes represent a significant waste stream as well as a health hazard to humans. Epidemiological studies have shown a link between worker exposure to cutting fluid mist and an increase in respiratory ailments and seve...
Effect of magneto rheological damper on tool vibration during hard turning
NASA Astrophysics Data System (ADS)
Paul, P. Sam; Varadarajan, A. S.
2012-12-01
Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.
NDELA and nickel modulation of triazine disposition in skin.
Baynes, Ronald E; Brooks, James D; Barlow, Beth M; Riviere, Jim E
2005-10-01
Cutting fluids can become contaminated with metals (e.g., nickel, Ni) and nitrosamines (e.g., N-nitrosodiethanolamine, NDELA) and there is concern that these classes of contaminants can modulate dermal disposition and ultimately the toxicity of cutting fluid additives, such as irritant biocides (e.g., triazine). Biocides are added to these formulations to prevent bacterial degradation of commercial cutting fluids. The purpose of this study was to assess the dermal absorption and skin deposition of 14C-triazine when topically applied to porcine skin in an in vitro flow-through diffusion cell system as aqueous soluble oil (mineral oil, MO) or aqueous synthetic (polyethylene glycol, PEG) mixtures. 14C-Triazine mixtures were formulated with NDELA and/or Ni, or with a combination of three additional cutting fluid additives; namely, 5% linear alkylbenzene sulfonate (LAS), 5% triethanolamine (TEA) and 5% sulfurized ricinoleic acid. Neither Ni nor NDELA was absorbed during these 8-h studies. However, 14C-triazine absorption ranged from 2.72 to 3.29% dose in MO and 2.29-2.88% dose in PEG with significantly greater triazine absorption in MO than PEG when all additives and contaminates were present. The difference between these two diluents was most pronounced when NDELA and/or Ni were present in cutting fluids. These contaminants also enhanced triazine deposition on the skin surface and skin tissues especially with PEG-based mixtures. In essence, the dermal disposition of irritant biocides could be dependent on whether the worker is exposed to a soluble oil or synthetic fluid when these contaminants are present. Workers should therefore not only be concerned about dermatotoxicity of these contaminants, but also the modulated dermal disposition of cutting fluid additives when these contaminants are present in cutting fluid formulations.
Variability in the skin exposure of machine operators exposed to cutting fluids.
Wassenius, O; Järvholm, B; Engström, T; Lillienberg, L; Meding, B
1998-04-01
This study describes a new technique for measuring skin exposure to cutting fluids and evaluates the variability of skin exposure among machine operators performing cyclic (repetitive) work. The technique is based on video recording and subsequent analysis of the video tape by means of computer-synchronized video equipment. The time intervals at which the machine operator's hand was exposed to fluid were registered, and the total wet time of the skin was calculated by assuming different evaporation times for the fluid. The exposure of 12 operators with different work methods was analyzed in 6 different workshops, which included a range of machine types, from highly automated metal cutting machines (ie, actual cutting and chip removal machines) requiring operator supervision to conventional metal cutting machines, where the operator was required to maneuver the machine and manually exchange products. The relative wet time varied between 0% and 100%. A significant association between short cycle time and high relative wet time was noted. However, there was no relationship between the degree of automatization of the metal cutting machines and wet time. The study shows that skin exposure to cutting fluids can vary considerably between machine operators involved in manufacturing processes using different types of metal cutting machines. The machine type was not associated with dermal wetness. The technique appears to give objective information about dermal wetness.
Aerated drilling cutting transport analysis in geothermal well
NASA Astrophysics Data System (ADS)
Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar
2017-12-01
Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.
Optimizing drilling performance using a selected drilling fluid
Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.
2011-04-19
To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.
Method and apparatus for jet-assisted drilling or cutting
Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz
2012-09-04
An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.
Method and apparatus for jet-assisted drilling or cutting
Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz
2013-07-02
An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.
Health effects of oil mists: a brief review.
Mackerer, C R
1989-05-01
Metal cutting/grinding fluids are of three basic types: straight oil (insoluble), oil-in-water emulsions (soluble) and synthetic/semisynthetic. All contain a variety of additives to improve performance. Human exposure occurs primarily by direct skin contact with the liquid or by skin and respiratory contact after fluid misting. Dermatitis caused by primary or direct skin irritation is the most prevalent health effect of exposure to cutting fluids. Occasionally allergic dermatitis is seen which is related to the development of sensitization to one or more of the additive components. Recent studies indicate that long-term exposure to cutting fluids does not result in increased incidences of lung cancer, urinary bladder cancer, gastrointestinal cancer, or death from non-malignant respiratory diseases. Long-term exposure to certain cutting fluids, however, is believed to have resulted in certain types of skin cancer, especially scrotal cancer. It is likely that these carcinogenic responses were caused by contact with polycyclic aromatic compounds (PCA) of 3-7 rings. Modern base oils which are severely refined have very low levels of PCA, are not carcinogenic in animal bioassays, and are unlikely to be carcinogenic in man. This is not necessarily true for re-refined oils which may contain significant levels of PCA and polychlorinated biphenyls derived from comingling used cutting oils with used engine oils and transformer oils. Cutting oils, themselves, generally do not accumulate significant levels of carcinogenic PCA during use. Additives, in theory, can cause a variety of health effects either directly or through the generation of reaction products such as nitrosamines. In actual use, adverse health effects appear to be limited to occasional instances of allergic contact dermatitis. Nitrosamines are extremely carcinogenic in test animals; although no human cancer cases directly attributable to nitrosamine contamination have been observed, nitrosating agents and amines should not be combined in cutting fluid formulations. It is difficult to anticipate or predict the potential toxicity of a particular cutting fluid formulation because of the presence of variable amounts of proprietary additives which, themselves, are often complex reaction mixtures. Thus, each additive and final formulation must be evaluated on a case by case basis to appropriately assess potential health hazards.
Characteristics and treatability of oil-bearing wastes from aluminum alloy machining operations.
Chen, Luke; Hsieh, Chueh-Chen; Wetherbee, John; Yang, Chen-Lu
2008-04-15
Enomoto Industry Co., exclusively uses water-based cutting fluids in its aluminum alloy machining operations. Since the cost of disposal can be much greater than the cost of purchase, the treatability of spent cutting fluids is becoming a major criterion for cutting fluid selection. Samples were collected from the machining lines at Enomoto's facility to determine their characteristics and evaluate their treatability with centrifugation, chemical coagulation and electrochemical coagulation. As expected, oil and grease (O&G) and total suspended solids (TSS) are the main reasons that spent cutting fluids are prohibited from being discharged into local swage systems. The average O&G found in the spent cutting fluids is 87,354 mg/L with TSS of more than 70,000 mg/L. Both O&G and TSS are the major contributors to the high turbidity of these waste effluents. A centrifuge with a relative centrifugal force of 1318 x g, was able to reduce 60% of the turbidity. By adding the coagulant aluminum chloride, the oil-water emulsion was destabilized, and the turbidity was reduced from 3249 Formazin Attenuation Units (FAU) to around 314 FAU. With freshly generated aluminum ions in the spent cutting fluid, the electrochemical process destabilized the oil-water emulsion system. The coalesced oil droplets were adsorbed onto the highly dispersed aluminum coagulant. The oil-rich sludge that was generated in the operation was then floated to the surface, forming a blanket that was removed by skimming. The electrochemical treatment was able to reduce the turbidity to less than 14 FAU, which is the detection limit of the Hach DR/4000 UV-vis spectrophotometer.
NASA Astrophysics Data System (ADS)
Inoue, Shigeru; Aoyama, Tojiro
Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.
NASA Astrophysics Data System (ADS)
Jamaludin, A. S.; Hosokawa, A.; Furumoto, T.; Koyano, T.; Hashimoto, Y.
2018-03-01
Cutting process of difficult-to-cut material such as stainless steel, generates immensely excessive heat, which is one of the major causes related to shortening tool life and lower quality of surface finish. It is proven that application of cutting fluid during the cutting process of difficult-to-cut material is able to improve the cutting performance, but excessive application of cutting fluid leads to another problem such as increasing processing cost and environmental hazardous pollution of workplace. In the study, Extreme Cold Mist system is designed and tested along with various Minimum Quantity Lubrication (MQL) systems on turning process of stainless steel AISI 316. In the study, it is obtained that, Extreme Cold Mist system is able to reduce cutting force up to 60N and improve the surface roughness of the machined surface significantly.
Investigations on high speed machining of EN-353 steel alloy under different machining environments
NASA Astrophysics Data System (ADS)
Venkata Vishnu, A.; Jamaleswara Kumar, P.
2018-03-01
The addition of Nano Particles into conventional cutting fluids enhances its cooling capabilities; in the present paper an attempt is made by adding nano sized particles into conventional cutting fluids. Taguchi Robust Design Methodology is employed in order to study the performance characteristics of different turning parameters i.e. cutting speed, feed rate, depth of cut and type of tool under different machining environments i.e. dry machining, machining with lubricant - SAE 40 and machining with mixture of nano sized particles of Boric acid and base fluid SAE 40. A series of turning operations were performed using L27 (3)13 orthogonal array, considering high cutting speeds and the other machining parameters to measure hardness. The results are compared among the different machining environments, and it is concluded that there is considerable improvement in the machining performance using lubricant SAE 40 and mixture of SAE 40 + boric acid compared with dry machining. The ANOVA suggests that the selected parameters and the interactions are significant and cutting speed has most significant effect on hardness.
NASA Astrophysics Data System (ADS)
Hikiji, R.
2018-01-01
The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.
CHIP MORPHOLOGY AND HOLE SURFACE TEXTURE IN THE DRILLING OF CAST ALUMINUM ALLOYS. (R825370C057)
The effects of cutting fluid and other process variables on chip morphology when drilling cast aluminium alloys are investigated. The effects of workpiece material, speed, feed, hole depth, cutting-fluid presence and percentage oil concentration, workpiece temperature, drill t...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test
Code of Federal Regulations, 2010 CFR
2010-07-01
... drilling fluids, drill cuttings, produced sand, and well treatment, completion and workover fluids. “Free... drill cuttings or produced sand are introduced into ambient seawater in a container having an air-to... specified. 6. Quality Control Procedures None currently specified. 7. Sample Collection and Handling 7...
NASA Astrophysics Data System (ADS)
Patole, Pralhad B.; Kulkarni, Vivek V.
2018-06-01
This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.
NASA Astrophysics Data System (ADS)
Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver
2015-08-01
Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.
Critically Loaded Hole Technology Pilot Collaborative Test Programme.
1980-11-01
270 rpm Spindle Speed - 1450 rpm Feed Rate - Manual Feed Rate - Manual Cutting Fluid - Dry Cutting Fluid - Dry Tool Type - Cordia S-18 Tool Type... Cordia S-18 TABLE XI MANUFACTURING DETAILS FOR HIGH AND LOW QUALITY HOLES SELECTED BY THE UNITED KINGDOM HIGH QUALITY LOW QUALITY Pilot Hole: - 1/8 inch
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
2001-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
1999-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Utilization of sulphurized palm oil as cutting fluid base oil for broaching process
NASA Astrophysics Data System (ADS)
Sukirno; Ningsih, Y. R.
2017-03-01
Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is applicable for industrial cutting fluids formulation.
NASA Astrophysics Data System (ADS)
Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree
2017-09-01
Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.
Nanofluid as coolant for grinding process: An overview
NASA Astrophysics Data System (ADS)
Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.
2018-04-01
This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.
NASA Astrophysics Data System (ADS)
Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd
2017-09-01
Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.
NASA Astrophysics Data System (ADS)
Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.
2016-11-01
In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.
Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh
NASA Astrophysics Data System (ADS)
Wenhua, Wang; Yanying, Wang
2010-05-01
This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.
Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.
2017-01-01
In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.
Chang, K C; Chan, M C; Leung, W M; Kong, F Y; Mak, C M; Chen, S Pl; Yu, W C
2018-02-01
Pleural fluid adenosine deaminase level can be applied to rapidly detect tuberculous pleural effusion. We aimed to establish a local diagnostic cut-off value for pleural fluid adenosine deaminase to identify patients with tuberculous pleural effusion, and optimise its utility. We retrospectively reviewed the medical records of consecutive adults with pleural fluid adenosine deaminase level measured by the Diazyme commercial kit (Diazyme Laboratories, San Diego [CA], United States) during 1 January to 31 December 2011 in a cluster of public hospitals in Hong Kong. We considered its level alongside early (within 2 weeks) findings in pleural fluid and pleural biopsy, with and without applying Light's criteria in multiple scenarios. For each scenario, we used the receiver operating characteristic curve to identify a diagnostic cut-off value for pleural fluid adenosine deaminase, and estimated its positive and negative predictive values. A total of 860 medical records were reviewed. Pleural effusion was caused by congestive heart failure, chronic renal failure, or hypoalbuminaemia caused by liver or kidney diseases in 246 (28.6%) patients, malignancy in 198 (23.0%), non-tuberculous infection in 168 (19.5%), tuberculous pleural effusion in 157 (18.3%), and miscellaneous causes in 91 (10.6%). All those with tuberculous pleural effusion had a pleural fluid adenosine deaminase level of ≤100 U/L. When analysis was restricted to 689 patients with pleural fluid adenosine deaminase level of ≤100 U/L and early negative findings for malignancy and non-tuberculous infection in pleural fluid, the positive predictive value was significantly increased and the negative predictive value non-significantly reduced. Using this approach, neither additionally restricting analysis to exudates by Light's criteria nor adding closed pleural biopsy would further enhance predictive values. As such, the diagnostic cut-off value for pleural fluid adenosine deaminase is 26.5 U/L, with a sensitivity of 87.3%, specificity of 93.2%, positive predictive value of 79.2%, negative predictive value of 96.1%, and accuracy of 91.9%. Sex, age, and co-morbidity did not significantly affect prediction of tuberculous pleural effusion using the cut-off value. We have established a diagnostic cut-off level for pleural fluid adenosine deaminase in the diagnosis of tuberculous pleural effusion by restricting analysis to a level of ≤100 U/L, and considering early pleural fluid findings for malignancy and non-tuberculous infection, but not Light's criteria.
Identifying Malignant Pleural Effusion by A Cancer Ratio (Serum LDH: Pleural Fluid ADA Ratio).
Verma, Akash; Abisheganaden, John; Light, R W
2016-02-01
We studied the diagnostic potential of serum lactate dehydrogenase (LDH) in malignant pleural effusion. Retrospective analysis of patients hospitalized with exudative pleural effusion in 2013. Serum LDH and serum LDH: pleural fluid ADA ratio was significantly higher in cancer patients presenting with exudative pleural effusion. In multivariate logistic regression analysis, pleural fluid ADA was negatively correlated 0.62 (0.45-0.85, p = 0.003) with malignancy, whereas serum LDH 1.02 (1.0-1.03, p = 0.004) and serum LDH: pleural fluid ADA ratio 0.94 (0.99-1.0, p = 0.04) was correlated positively with malignant pleural effusion. For serum LDH: pleural fluid ADA ratio, a cut-off level of >20 showed sensitivity, specificity of 0.98 (95 % CI 0.92-0.99) and 0.94 (95 % CI 0.83-0.98), respectively. The positive likelihood ratio was 32.6 (95 % CI 10.7-99.6), while the negative likelihood ratio at this cut-off was 0.03 (95 % CI 0.01-0.15). Higher serum LDH and serum LDH: pleural fluid ADA ratio in patients presenting with exudative pleural effusion can distinguish between malignant and non-malignant effusion on the first day of hospitalization. The cut-off level for serum LDH: pleural fluid ADA ratio of >20 is highly predictive of malignancy in patients with exudative pleural effusion (whether lymphocytic or neutrophilic) with high sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
The potentiation of the antimicrobial activities of cutting fluid preservatives by EDTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzat, I.N.; Bennett, E.O.
1978-01-01
The potentiation of the antimicrobial activities of cutting fluid preservatives by EDTA was confirmed in experiments in which 500 ppm of the disodium salt of EDTA was used in combination with 12 different metalworking fluids containing 500 ppm of o-phenylphenol, tris(hydroxymethyl) nitromethane, hexahydro- 1,3,5-tris(2-hydroxyethyl)-s-triazine alone or complexed with iodine, hexahydro- 1,3,5-triethyl-s-triazine, 1-(3-chloroallyl)- 3,5,7-triaza- 1-azoniaadamantane hydrochloride, 1,2-benzisothiazolin-3-one, 4-(2-nitrobutyl) morpholine and 4,4-(2-ethyl-2-nitrotrimethylene) dimorpholine, or the sodium salt of 2-pyridinethiol- 1-oxide as a preservative. Based on a previous observation that the proper selection of the hydraulic fluid employed in the cutting machine is a major factor in controlling rancidity, the possibility of spoilagemore » control by treating the fluid with EDTA alone was also demonstrated; the EDTA had a greater beneficial effect with a synthetic coolant than with an oil emulsion. Published data on the effects of EDTA indicate that it poses no significant water pollution problems upon disposal, exhibits a low order of animal toxicity, and rarely causes human allergies. Tables and 65 references.« less
Mathematical model of simple spalling formation during coal cutting with extracting machine
NASA Astrophysics Data System (ADS)
Gabov, V. V.; Zadkov, D. A.
2018-05-01
A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.
Rashno, Abdolreza; Nazari, Behzad; Koozekanani, Dara D.; Drayna, Paul M.; Sadri, Saeed; Rabbani, Hossein
2017-01-01
A fully-automated method based on graph shortest path, graph cut and neutrosophic (NS) sets is presented for fluid segmentation in OCT volumes for exudative age related macular degeneration (EAMD) subjects. The proposed method includes three main steps: 1) The inner limiting membrane (ILM) and the retinal pigment epithelium (RPE) layers are segmented using proposed methods based on graph shortest path in NS domain. A flattened RPE boundary is calculated such that all three types of fluid regions, intra-retinal, sub-retinal and sub-RPE, are located above it. 2) Seed points for fluid (object) and tissue (background) are initialized for graph cut by the proposed automated method. 3) A new cost function is proposed in kernel space, and is minimized with max-flow/min-cut algorithms, leading to a binary segmentation. Important properties of the proposed steps are proven and quantitative performance of each step is analyzed separately. The proposed method is evaluated using a publicly available dataset referred as Optima and a local dataset from the UMN clinic. For fluid segmentation in 2D individual slices, the proposed method outperforms the previously proposed methods by 18%, 21% with respect to the dice coefficient and sensitivity, respectively, on the Optima dataset, and by 16%, 11% and 12% with respect to the dice coefficient, sensitivity and precision, respectively, on the local UMN dataset. Finally, for 3D fluid volume segmentation, the proposed method achieves true positive rate (TPR) and false positive rate (FPR) of 90% and 0.74%, respectively, with a correlation of 95% between automated and expert manual segmentations using linear regression analysis. PMID:29059257
The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments
NASA Astrophysics Data System (ADS)
Chu, Bryan
The research presented in this thesis is aimed at investigating the use of graphene platelets (GPL) to address the challenges of excessive tool wear, reduced part quality, and high specific power consumption encountered in micro-machining processes. There are two viable methods of introducing GPL into micro-machining environments, viz., the embedded delivery method, where the platelets are embedded into the part being machined, and the external delivery method, where graphene is carried into the cutting zone by jetting or atomizing a carrier fluid. The study involving the embedded delivery method is focused on the micro-machining performance of hierarchical graphene composites. The results of this study show that the presence of graphene in the epoxy matrix improves the machinability of the composite. In general, the tool wear, cutting forces, surface roughness, and extent of delamination are all seen to be lower for the hierarchical composite when compared to the conventional two-phase glass fiber composite. These improvements are attributed to the fact that graphene platelets improve the thermal conductivity of the matrix, provide lubrication at the tool-chip interface and also improve the interface strength between the glass fibers and the matrix. The benefits of graphene are seen to also carry over to the external delivery method. The platelets provide improved cooling and lubrication performance to both environmentally-benign cutting fluids as well as to semi-synthetic cutting fluids used in micro-machining. The cutting performance is seen to be a function of the geometry (i.e., lateral size and thickness) and extent of oxygen-functionalization of the platelet. Ultrasonically exfoliated platelets (with 2--3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micro-machining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semi-synthetic cutting fluid. For the thermally-reduced platelets (with 4--8 graphene layers and in-solution characteristic lateral length of 562--2780 nm), a concentration of 0.2 wt% appears to be optimal. An investigation into the impingement dynamics of the graphene-laden colloidal solutions on a heated substrate reveals that the most important criterion dictating their machining performance is their ability to form uniform, submicron thick films of the platelets upon evaporation of the carrier fluid. As such, the characterization of the residual platelet film left behind on a heated substrate may be an effective technique for evaluating different graphene colloidal solutions for cutting fluids applications in micromachining. Graphene platelets have also recently been shown to reduce the aggressive chemical wear of diamond tools during the machining of transition metal alloys. However, the specific mechanisms responsible for this improvement are currently unknown. The modeling work presented in this thesis uses molecular dynamics techniques to shed light on the wear mitigation mechanisms that are active during the diamond cutting of steel when in the presence of graphene platelets. The dual mechanisms responsible for graphene-induced chemical wear mitigation are: 1) The formation of a physical barrier between the metal and tool atoms, preventing graphitization; and 2) The preferential transfer of carbon from the graphene platelet rather than from the diamond tool. The results of the simulations also provide new insight into the behavior of the 2D graphene platelets in the cutting zone, specifically illustrating the mechanisms of cleaving and interlayer sliding in graphene platelets under the high pressures in cutting zones.
Characterization of drilling waste from shale gas exploration in Central and Eastern Poland.
Mikos-Szymańska, Marzena; Rusek, Piotr; Borowik, Krzysztof; Rolewicz, Maciej; Bogusz, Paulina; Gluzińska, Joanna
2018-05-28
The purpose of this research was to determine and evaluate the chemical properties of drilling waste from five well sites in Central and Eastern Poland. It was found that spent drilling fluids can contain high values of nickel and mercury (270 and 8.77 mg kg -1 , respectively) and can exceed the maximum permissible limits recommended by the EC regulations for safety of soils (75 mg kg -1 for nickel and 1.5 mg kg -1 for mercury). The heavy metal concentrations in the studied drill cuttings did not exceed the maximum permissible limits recommended by the EC regulation. Drilling wastes contain macroelements (e.g., calcium, magnesium, and potassium) as well as trace elements (e.g., copper, iron, zinc, and manganese) that are essential for the plant growth. It was stated that water extracts of drilling fluids and drill cuttings, according to anions presence, had not any specific constituents of concern based on FAO irrigation guidelines, the USEPA WQC, and toxicity values. X-ray diffraction analysis was used to understand the structure and texture of waste drilling fluid solids and drill cuttings. Analysis of the mineralogical character of drilling fluid solids revealed that they contained calcite, quartz, muscovite, sylvite, barite, dolomite, and orthoclase. Drill cuttings contained calcite quartz, muscovite, barite, dolomite, and barium chloride.
Baynes, Ronald E; Brooks, James D; Barlow, Beth M; Riviere, Jim E
2002-06-01
Linear alkylbenzene sulfonate (LAS) is added to cutting fluid formulations to enhance the performance of metal machining operations, but this surfactant can cause contact dermatitis in workers involved in these operations. The purpose of this study was to determine how cutting fluid additives influence dermal disposition of 14C-LAS in mineral oil- or polyethylene glycol 200 (PEG)-based mixtures when topically applied to silastic membranes and porcine skin in an in vitro flow-through diffusion cell system. 14C-LAS mixtures were formulated with three commonly used cutting fluid additives; 0 or 2% triazine (TRI), 0 or 5% triethanolamine (TEA), and 0 or 5% sulfurized ricinoleic acid (SRA). LAS absorption was limited to less than a 0.5% dose and the additives in various combinations influenced the physicochemical characteristics of the dosing mixture. LAS was more likely to partition into the stratum corneum (SC) in mineral oil mixtures, and LAS absorption was significantly greater in the complete mixture. TRI enhanced LAS transport, and the presence of SRA decreased LAS critical micelle concentration (CMC) which reduced LAS monomers available for transport. TEA increased mixture viscosity, and this may have negated the apparent enhancing properties of TRI in several mixtures. In summary, physicochemical interactions in these mixtures influenced availability of LAS for absorption and distribution in skin, and could ultimately influence toxicological responses in skin.
Membrane technology for treating of waste nanofluids coolant: A review
NASA Astrophysics Data System (ADS)
Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi
2017-09-01
The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide is nanomaterials additive to modify the Nanopores of the surface membrane. Contact angle and average pore size were used in the investigation of the surface morphology of membranes. An adequate choice in modifying the membrane surface in waste coolant filtration may bring a promised alternative as a solution in waste coolant remediation.
Jaques, Peter A; Gao, Pengfei; Kilinc-Balci, Selcen; Portnoff, Lee; Weible, Robyn; Horvatin, Matthew; Strauch, Amanda; Shaffer, Ronald
2016-11-01
Gowns and coveralls are important components of protective ensembles used during the management of known or suspected Ebola patients. In this study, an Elbow Lean Test was used to obtain a visual semi-quantitative measure of the resistance of medical protective garments to the penetration of two bodily fluid simulants. Tests were done on swatches of continuous and discontinuous regions of fabrics cut from five gowns and four coveralls at multiple elbow pressure levels (2-44 PSI). Swatches cut from the continuous regions of one gown and two coveralls did not have any strike-through. For discontinuous regions, only the same gown consistently resisted fluid strike-through. As hypothesized, with the exception of one garment, fluid strike-through increased with higher applied elbow pressure, was higher for lower fluid surface tension, and was higher for the discontinuous regions of the protective garments.
Cold machining of high density tungsten and other materials
NASA Technical Reports Server (NTRS)
Ziegelmeier, P.
1969-01-01
Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.
“Investigations on the machinability of Waspaloy under dry environment”
NASA Astrophysics Data System (ADS)
Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.
2016-09-01
Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, Thomas J
A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.
NASA Astrophysics Data System (ADS)
Ravi, S.; Pradeep Kumar, M.
2011-09-01
Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.
Experience with the lathe cut Bausch & Lomb Soflens: Part II--Power and optics study.
Weissman, B A; Levinson, A
1978-04-01
Ten familiar spin cast and ten lathe cut Bausch & Lomb SOFLENS contact lenses were measured as to their power on a lensometer and on an eye. Both quality of the optics and quantitative measurements were considered. Lens flexure and the presence of a fluid lens between the posterior surface of the contact lens and the anterior cornea is indicated for both lenses to explain differences between power of the lens in air and on the eye. The spin cast lens design appears to create a quantitatively larger fluid lens, and one which will add positive optical power to the lens/eye system. Either from this and/or additional factors, the lathe cut lens appears to give improved optical performance both in air and on the eye.
Critical Elements in Reservoir Rocks of Produced Fluids Nevada and Utah August 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart
Critical and trace element data for drill cuttings from Beowawe, Dixie Valley, and Roosevelt Hot Springs-Blundell geothermal production fields, for drill cuttings from Uinta basin producing oil-gas wells, and from outcrops in the Sevier Thermal Anomaly-Utah.
CFD modelling of liquid-solid transport in the horizontal eccentric annuli
NASA Astrophysics Data System (ADS)
Sayindla, Sneha; Challabotla, Niranjan Reddy
2017-11-01
In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.
Predominant bacteria in an activated sludge reactor for the degradation of cutting fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, C.A.; Claus, G.W.; Taylor, P.A.
1983-01-01
For the first time, an activated sludge reactor, established for the degradation of cutting fluids, was examined for predominant bacteria. In addition, both total and viable numbers of bacteria in the reactor were determined so that the percentage of each predominant type in the total reactor population could be determined. Three samples were studied, and a total of 15 genera were detected. In each sample, the genus Pseudomonas and the genus Microcyclus were present in high numbers. Three other genera, Acinetobacter, Alcaligenes, and Corynebacterium, were also found in every sample but in lower numbers. In one sample, numerous appendage bacteriamore » were present, and one of these, the genus Seliberia, was the most predominant organism in that sample. However, in the other two samples no appendage bacteria were detected. Six genera were found in this reactor which have not been previously reported in either cutting fluids in use or in other activated sludge systems. These genera were Aeromonas, Hyphomonas, Listeria, Microcyclus, Moraxella, and Spirosoma. None of the predominant bacterial belonged to groups of strict pathogens. 22 references, 6 figures, 3 tables.« less
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves
NASA Astrophysics Data System (ADS)
Falcon, Eric; Issenmann, Bruno; Laroche, Claude
2017-11-01
We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.
Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator
NASA Astrophysics Data System (ADS)
Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan
2018-06-01
In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.
Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator
NASA Astrophysics Data System (ADS)
Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan
2016-06-01
In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.
Hydromechanical planer with cutting and breaking heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goris, H.; Gunther, R.; Ogorek, K.
1980-12-16
A hydromatic planer particularly for mining materials in a mining seam is comprised of a planer housing which advantageously has a cutting and breaking head on each end thereof, each of which includes a substantially identical construction. Each cutting head includes a vertically arranged support member which is mounted on the housing of the planer by a parallel linkage so that it may be moved upwardly and downwardly under the control of an adjustment means such as a fluid pressure operated piston and cylinder combination. Each cutting and breaking head also includes a first substantially vertically arranged support member whichmore » is connected by the linkage for upward and downward movement relative to the housing and a second support member which is movable relative to the first and mounted on this first in vertical guides for upward and downward movement. A second fluid pressure operated piston and cylinder combination is connected between first and second support members so that they may be shifted relative to each other. A second support member advantageously carries a cutting and breaking wedge which is oriented to engage the mining seam, for example, on a side thereof, and which may be adjusted relative to a similarly oriented cutting and breaking wedge carried by the first member. In addition, a separate cutting and breaking wedge is carried by the first member and it may be engaged for example against the floor thereof in a plane different from the other two wedges.« less
40 CFR 435.11 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the... limitations and NSPS means the concentration (milligrams/kilogram dry sediment) of the drilling fluid in...
LIQUID CRYSTAL POLYMERS (LCP) USED AS A MACHINING FLUID CD
This interactive CD was produced to present the science, research activities, and beneficial environmental and machining advantages for utilizing Liquid Crystal Polymers (LCPs) as a machine fluid in the manufacturing industry.
In 1995, the USEPA funded a project to cut flu...
The Structure of High Speed Fluid Jets and Their Use in Cutting Various Soil and Material Types
1975-04-30
fluid , a reduction which grows with increase in Reynolds Number (Figure 101) . Franz states that this drag reduction might explain the...176 From photographs Goldin observed that Carbopol, a viscoinelastic fluid which does not give drag reduction , gave a lower jet cohesive...tension and viscoelasticity ), (5) prop- erties of the ambient fluid , (6) the steadiness of the jet flow, and (7) nozzle velocity. In the present study
A comparative study on performance of CBN inserts when turning steel under dry and wet conditions
NASA Astrophysics Data System (ADS)
Abdullah Bagaber, Salem; Razlan Yusoff, Ahmad
2017-10-01
Cutting fluids is the most unsustainable components of machining processes, it is negatively impacting on the environmental and additional energy required. Due to its high strength and corrosion resistance, the machinability of stainless steel has attracted considerable interest. This study aims to evaluate performance of cubic boron nitride (CBN) inserts for the machining parameters includes the power consumption and surface roughness. Due to the high single cutting-edge cost of CBN, the performance of significant is importance for hard finish turning. The present work also deals with a comparative study on power consumption and surface roughness under dry and flood conditions. Turning process of the stainless steel 316 was performed. A response surface methodology based box-behnken design (BBD) was utilized for statistical analysis. The optimum process parameters are determined as the overall performance index. The comparison study has been done between dry and wet stainless-steel cut in terms of minimum value of energy and surface roughness. The result shows the stainless still can be machined under dry condition with 18.57% improvement of power consumption and acceptable quality compare to the wet cutting. The CBN tools under dry cutting stainless steel can be used to reduce the environment impacts in terms of no cutting fluid use and less energy required which is effected in machining productivity and profit.
Method for maintaining a cutting blade centered in a kerf
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2002-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Xu, Han-Yan; Li, Cheng-Ye; Su, Shan-Shan; Yang, Li; Ye, Min; Ye, Jun-Ru; Ke, Pei-Pei; Chen, Cheng-Shui; Xie, Yu-Peng; Li, Yu-Ping
2017-11-01
The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy.Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays.Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 10 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964.T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 10 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Xu, Han-Yan; Li, Cheng-Ye; Su, Shan-Shan; Yang, Li; Ye, Min; Ye, Jun-Ru; Ke, Pei-Pei; Chen, Cheng-Shui; Xie, Yu-Peng; Li, Yu-Ping
2017-01-01
Abstract The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy. Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays. Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 105 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964. T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 105 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis. PMID:29381918
Study on the effect of innovative leaching solvent on the oil removal for oily drilling cuttings
NASA Astrophysics Data System (ADS)
Li, Long; Ma, Cha; Hao, Weiwei; Li, Mu; Huang, Zhao; Liu, Yushuang
2018-02-01
A new type of leaching solvent for oily drilling cuttings was developed, and the effect of leaching solvent on the oil removal for oily cuttings was investigated. The results indicated that the leaching solvent had good capacity of oil removal for oily cuttings, and the oil content of treated cuttings is less than 0.6%. The leaching solvent could be separated from the oil phase through distillation, and the recyclable solvent could be reused to treat other cuttings. Moreover, oil resources adsorbed on the oily cuttings could be recycled and reused to prepare new drilling fluids, so the drilling cost could be reduced greatly. As a result, the leaching solvent could treat the oily cuttings effectively, and recycle and reuse oil resources, and thus produce great economic benefits. It can play an essential role in safe drilling jobs and improvement of drilling efficiency in the future.
Prediction of Cutting Force in Turning Process-an Experimental Approach
NASA Astrophysics Data System (ADS)
Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.
2018-02-01
This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.
NASA Technical Reports Server (NTRS)
Mcsmith, D. D.; Richardson, J. I. (Inventor)
1984-01-01
A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.
Study on Circular Complex viewed from Environmental Systems
NASA Astrophysics Data System (ADS)
Takeguchi, Tomoo; Adachi, Katsushige; Yoshikawa, Akira; Hiratsuka, Akira; Tsujino, Ryoji; Iguchi, Manabu
In machining processes, cutting fluids are generally used for cooling and lubricating workpieces at the point cutting. However, these fluids frequently include chlorine, sulfur, phosphorus, or other additives. The chemicals not only become a mist affecting the health of workers engaged in the processing but also make the workshop environment worse. In particular, the chlorine becomes one of the causes of global warming by treating waste oil under high temperature conditions. It is furthermore said that huge cost beyond the purchase cost of oil occurs and dioxins (carcinogen) usually exist in the waste oil. Therefore, an environmentally-friendly cooling-air cutting system is required from the standpoint of green manufacturing. This system has been noted as a technique to solve the issues against the environment mentioned above. In the cooling-air cutting processing, the amount of CO2 emission shows a low value compared with the dry cutting one which uses oil. It is therefore thought that the cooling-air cutting system is a very important processing technique as an environmental countermeasure. At present, in strictly economic and environmental situations, the compatibility of the betterment of production efficiency with the improvement of environment is a subject in the actual spot of a cut processing. This study deals with the test results of cooling-air drilling performance from the viewpoint of taking green manufacturing into account. The workpiece made of die steel SKDll was manufactured by the cooling-air drilling performance at a revolution of 840 rpm and a temperature of -20°C with a high-speed steel drill (SKH56). The results were compared with those for the dry cutting performance. The main results obtained in this study are as follows: 1) The tool life for cooling-air drilling performance was about 6 times as long as that for the dry cutting performance. 2) The chip temperature for cooling-air drilling was 220°C lower than that for the dry cutting performance.
Mirer, Franklin E
2010-08-01
Metalworking fluids (MWF) are used in the manufacture of engines, transmissions, chassis parts and other products. In 2003, OSHA denied a union petition to promulgate a standard for MWF. The 3rd Circuit Court of Appeals rejected a union lawsuit to compel OSHA to regulate MWF. OSHA relied exclusively on the 1999 Metal Working Fluids Standards Advisory Committee report, therefore, only evidence available before 1999 was quoted supporting the denial. This review was conducted to identify studies published since 1998. Electronic reference sources were queried for the terms for metalworking fluids, machining fluids, cutting fluids, cutting oils, coolants, machining, and machinist. All items returned were reviewed for relevance to MWF regulation. The review noted 227 reports in the peer reviewed literature directly relevant to regulation of MWF exposures. Of these, 26 addressed cancer; 58 respiratory effects; 32 skin effects or absorption; 45 microbial contaminants; and 76 exposure measurements and controls. Three major studies identified excess cancer including lung, liver, pancreatic, laryngeal, and leukemia associated with MWF exposures. Reports strengthened associations of asthma and hypersensitivity pneumonitis with recent exposure to MWF. Material new evidence demonstrates significant risks to material impairment of health at prevailing exposure levels and feasibility of lower exposure limits. Copyright 2010 Wiley-Liss, Inc.
Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants
NASA Astrophysics Data System (ADS)
Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James
2017-05-01
Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.
Inorganic particle analysis of dental impression elastomers.
Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho
2010-01-01
The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
NASA Astrophysics Data System (ADS)
Mansor, A. F.; Zakaria, M. S.; Azmi, A. I.; Khalil, A. N. M.; Musa, N. A.
2017-10-01
Cutting fluids play very important role in machining application in order to increase tool life, surface finish and reduce energy consumption. Instead of using petrochemical and synthetic based cutting fluids, vegetable oil based lubricants is safety for operators, environmental friendly and become more popular in the industrial applications. This research paper aims to find the advantage of using vegetable oils (coconut oil) with additional of nano particles (CuO) as lubricant to the energy consumption during machining process. The energy was measured for each run from 2 level factorial experimental layout. Obtained results illustrate that lubricant with enhancement of nanoparticles has capability to improve the energy consumption during the machining process.
NASA Technical Reports Server (NTRS)
1982-01-01
A newly patented process for slicing silicon wafers that has distinct advantages over methods now widely used is described. The primary advantage of the new system is that it allows the efficient slicing of a number of ingots simultaneously at high speed. The cutting action is performed mechanically, most often with diamond particles that are transported to the cutting zone by a fluid vehicle or have been made an integral part of the blade by plating or impregnation. The new system uses a multiple or ganged band saw, arranged and spaced so that each side, or length, segment of a blade element, or loop, provides a cutting function. Each blade is maintained precisely in position by guides as it enters and leaves each ingot. The cutting action is performed with a conventional abrasive slurry composed of diamond grit suspended in an oil- or water-based vehicle. The distribution system draws the slurry from the supply reservoir and pumps it to the injection tubes to supply it to each side of each ingot. A flush system is provided at the outer end of the work-station zone. In order to reduce potential damage, a pneumatically driven flushing fluid is provided.
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
NASA Astrophysics Data System (ADS)
de Andrea González, Ángel; González-Gutiérrez, Leo M.
2017-09-01
The Rayleigh-Taylor instability (RTI) in an infinite slab where a constant density lower fluid is initially separated from an upper stratified fluid is discussed in linear regime. The upper fluid is of increasing exponential density and surface tension is considered between both of them. It was found useful to study stability by using the initial value problem approach (IVP), so that we ensure the inclusion of certain continuum modes, otherwise neglected. This methodology includes the branch cut in the complex plane, consequently, in addition to discrete modes (surface RTI modes), a set of continuum modes (internal RTI modes) also appears. As a result, the usual information given by the normal mode method is now complete. Furthermore, a new role is found for surface tension: to transform surface RTI modes (discrete spectrum) into internal RTI modes belonging to a continuous spectrum at a critical wavenumber. As a consequence, the cut-off wavenumber disappears: i.e. the growth rate of the RTI surface mode does not decay to zero at the cut-off wavenumber, as previous researchers used to believe. Finally, we found that, due to the continuum, the asymptotic behavior of the perturbation with respect to time is slower than the exponential when only the continuous spectrum exists.
Viumdal, Håkon; Mylvaganam, Saba
2017-01-01
In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595
Automated Cell-Cutting for Cell Cloning
NASA Astrophysics Data System (ADS)
Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro
We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.
NASA Astrophysics Data System (ADS)
Zhou, Zhimin; Zhang, Yuangliang; Li, Xiaoyan; Sun, Baoyuan
2009-11-01
To further improve machined surface quality of diamond cutting titanium workpiece and reduce diamond tool wear, it puts forward a kind of machining technology with mixture of carbon dioxide gas, water and vegetable oil atomized mist as cooling media in the paper. The cooling media is sprayed to cutting area through gas-liquid atomizer device to achieve purpose of cooling, lubricating, and protecting diamond tool. Experiments indicate that carbon dioxide gas can touch cutting surface more adequately through using gas-liquid atomization technology, which makes iron atoms of cutting surface cause a chemical reaction directly with carbon in carbon dioxide gas and reduce graphitizing degree of diamond tool. Thus, this technology of using gas-liquid atomization and ultrasonic vibration together for cutting Titanium Alloy is able to improve machined surface quality of workpiece and slow of diamond tool wear.
Effect of baffle spacing and baffle cut on thermal-hydraulic characteristics of the fluid flow
NASA Astrophysics Data System (ADS)
Chernyateva, R. R.
2018-01-01
This article presents the results of investigations of the influence of baffle spacing and baffle cut on the size of dead zone formed near the cross baffles using numerical simulation methods. It is showed the structure of an additional baffle plate which can be used to reduce the dead zone and smoother flow distribution over the cross section.
Mineralogy of Drill Cuttings Beowawe, Dixie Valley and Roosevelt Hot Springs
Simmons, Stuart
2017-01-25
Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.
Hanafy, Amr S
2016-09-01
Serum-ascites albumin gradient (SAAG) has been used in the classification of ascites for the last 20 years but it has some drawbacks. This study searches for possible correlations between ascitic fluid viscosity and the etiology of ascites, renal impairment, and length of ICU stay. The study was conducted in Zagazig University Hospital, Egypt. It included 240 patients with ascites due to various causes. The patients were divided into two groups: the cirrhotic ascites group, which included 120 patients, and the noncirrhotic ascites group, which included 120 patients. Ascitic patients on medical management with diuretics, antibiotics, paracentesis, and infusion of plasma or albumin were excluded.The laboratory analysis included routine investigations to detect the cause of ascites as well as specific investigations such as ascitic fluid viscosity using a falling ball viscosimeter (microviscosimeter) at 37°C. The mean ascitic viscosity of patients with SAAG at least 1.1 was 1.16±0.56, which was associated with serum creatinine 1.35±0.52 mg/dl and ICU stay of 3.3±1.2 days. In patients with SAAG less than 1.1 g/dl, the mean ascitic viscosity was 2.98±0.87, with serum creatinine 2.1±0.56 mg/dl and ICU stay of 7.1±1.3 days. Ascitic viscosity can discriminate ascites due to portal hypertension from those associated with nonportal hypertension at a cut-off value of 1.65; it can predict renal impairment in hepatic patients at a cut-off of 1.35 and long ICU stay at a cut-off of 1.995 using receiver operating characteristic analysis. Ascitic viscosity measurement is rapid, inexpensive, and requires small sample volumes. Ascitic viscosity can discriminate ascites due to portal hypertension from those associated with nonportal hypertension at a cut-off value of 1.65. It can predict renal impairment in hepatic patients at a cut-off of 1.35 and long ICU stay at a cut-off of 1.995.
Wilner, L.B.
1960-05-24
Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.
NASA Astrophysics Data System (ADS)
Lee, Dongkyoung; Mazumder, Jyotirmoy
2018-02-01
One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.
... bowel twists on itself, cutting off the blood flow to the tissue and causing the tissue to ... stomach and upper intestines. This keeps fluid and gas from building up in the abdomen. The child ...
Randau, Thomas M; Friedrich, Max J; Wimmer, Matthias D; Reichert, Ben; Kuberra, Dominik; Stoffel-Wagner, Birgit; Limmer, Andreas; Wirtz, Dieter C; Gravius, Sascha
2014-01-01
The preoperative differentiation between septic and aseptic loosening after total hip or knee arthroplasty is essential for successful therapy and relies in part on biomarkers. The objective of this study was to assess synovial and serum levels of inflammatory proteins as diagnostic tool for periprosthetic joint infection and compare their accuracy with standard tests. 120 patients presenting with a painful knee or hip endoprosthesis for surgical revision were included in this prospective trial. Blood samples and samples of intraoperatively acquired joint fluid aspirate were collected. White blood cell count, C-reactive protein, procalcitonin and interleukin-6 were determined. The joint aspirate was analyzed for total leukocyte count and IL-6. The definite diagnosis of PJI was determined on the basis of purulent synovial fluid, histopathology and microbiology. IL-6 in serum showed significantly higher values in the PJI group as compared to aseptic loosening and control, with specificity at 58.3% and a sensitivity of 79.5% at a cut-off value of 2.6 pg/ml. With a cut-off >6.6 pg/ml, the specificity increased to 88.3%. IL-6 in joint aspirate had, at a cut-off of >2100 pg/ml, a specificity of 85.7% and sensitivity of 59.4%. At levels >9000 pg/ml, specificity was almost at 100% with sensitivity just below 50%, so PJI could be considered proven with IL-6 levels above this threshold. Our data supports the published results on IL-6 as a biomarker in PJI. In our large prospective cohort of revision arthroplasty patients, the use of IL-6 in synovial fluid appears to be a more accurate marker than either the white blood cell count or the C-reactive protein level in serum for the detection of periprosthetic joint infection. On the basis of the results we recommend the use of the synovial fluid biomarker IL-6 for the diagnosis of periprosthetic joint infection following total hip and knee arthroplasty.
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2000-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Establishment of a Cutting Fluid Control System (Phase 1)
1981-01-01
that prevent or reduce welding of contacting areas and minimize both material transfer and generation of metallic debris within the contact zone...not on ceramic abrasives. Welding between ceramics and workpiece materials is, however, less of a problem than metal-metal contact phenomena in...fluid film (hatched area) - no wear and low friction. Mating surfaces contacting at asperities with local plastic deformation and welding - wear with
Entropy of level-cut random Gaussian structures at different volume fractions
NASA Astrophysics Data System (ADS)
Marčelja, Stjepan
2017-10-01
Cutting random Gaussian fields at a given level can create a variety of morphologically different two- or several-phase structures that have often been used to describe physical systems. The entropy of such structures depends on the covariance function of the generating Gaussian random field, which in turn depends on its spectral density. But the entropy of level-cut structures also depends on the volume fractions of different phases, which is determined by the selection of the cutting level. This dependence has been neglected in earlier work. We evaluate the entropy of several lattice models to show that, even in the cases of strongly coupled systems, the dependence of the entropy of level-cut structures on molar fractions of the constituents scales with the simple ideal noninteracting system formula. In the last section, we discuss the application of the results to binary or ternary fluids and microemulsions.
NASA Astrophysics Data System (ADS)
Goldfarb, E. J.; Ikeda, K.; Tisato, N.
2017-12-01
Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and under-predicted the velocity change from fluid substitution. The mathematical approach proved to be a poor comparison for the laboratory measurement. DRP proved to be effective, and could be used in future with drill cuttings, perhaps to limit the use of expensive cores. DRP could also limit the requirement for physically testing fluid substitution.
... is very rare. Any vaginal discharge or fluid drainage will be sent to a lab for testing. ... and closes quickly. Therefore, the abscess often returns. DRAINAGE OF THE ABSCESS A small surgical cut can ...
40 CFR 435.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., safety showers, eye-wash stations, hand-wash stations, fish cleaning stations, and galleys located within... formation oil carried out from the wellbore with the drilling fluid. (2) Dry drill cuttings means the...
NASA Astrophysics Data System (ADS)
Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.
2018-01-01
A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.
Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.
Cannabinoids in oral fluid following passive exposure to marijuana smoke.
Moore, Christine; Coulter, Cynthia; Uges, Donald; Tuyay, James; van der Linde, Susanne; van Leeuwen, Arthur; Garnier, Margaux; Orbita, Jonathan
2011-10-10
The concentration of tetrahydrocannabinol (THC) and its main metabolite 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) as well as cannabinol (CBN), and cannabidiol (CBD) were measured in oral fluid following realistic exposure to marijuana in a Dutch coffee-shop. Ten healthy subjects, who were not marijuana smokers, volunteered to spend 3h in two different coffee shops in Groningen, The Netherlands. Subjects gave two oral fluid specimens at each time point: before entering the store, after 20 min, 40 min, 1h, 2h, and 3h of exposure. The specimens were collected outside the shop. Volunteers left the shop completely after 3h and also provided specimens approximately 12-22 h after beginning the exposure. The oral fluid specimens were subjected to immunoassay screening; confirmation for THC, cannabinol and cannabidiol using GC/MS; and THC-COOH using two-dimensional GC-GC/MS. THC was detectable in all oral fluid specimens taken 3h after exposure to smoke from recreationally used marijuana. In 50% of the volunteers, the concentration at the 3h time-point exceeded 4 ng/mL of THC, which is the current recommended cut-off concentration for immunoassay screening; the concentration of THC in 70% of the oral fluid specimens exceeded 2 ng/mL, currently proposed as the confirmatory cut-off concentration. THC-COOH was not detected in any specimens from passively exposed individuals. Therefore it is recommended that in order to avoid false positive oral fluid results assigned to marijuana use, by analyzing for only THC, the metabolite THC-COOH should also be monitored. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT
NASA Astrophysics Data System (ADS)
Khoshnamvand, Younes; Assareh, Mehdi
2018-04-01
In this study, free volume theory ( FVT) in combination with perturbed-chain statistical associating fluid theory is implemented for viscosity prediction of petroleum reservoir fluids containing ill-defined components such as cuts and plus fractions. FVT has three adjustable parameters for each component to calculate viscosity. These three parameters for petroleum cuts (especially plus fractions) are not available. In this work, these parameters are determined for different petroleum fractions. A model as a function of molecular weight and specific gravity is developed using 22 real reservoir fluid samples with API grades in the range of 22 to 45. Afterward, the proposed model accuracy in comparison with the accuracy of De la Porte et al. with reference to experimental data is presented. The presented model is used for six real samples in an evaluation step, and the results are compared with available experimental data and the method of De la Porte et al. Finally, the method of Lohrenz et al. and the method of Pedersen et al. as two common industrial methods for viscosity calculation are compared with the proposed approach. The absolute average deviation was 9.7 % for free volume theory method, 15.4 % for Lohrenz et al., and 22.16 for Pedersen et al.
Perioperative fluid therapy: defining a clinical algorithm between insufficient and excessive.
Strunden, Mike S; Tank, Sascha; Kerner, Thoralf
2016-12-01
In the perioperative scenario, adequate fluid and volume therapy is a challenging task. Despite improved knowledge on the physiology of the vascular barrier function and its respective pathophysiologic disturbances during the perioperative process, clear-cut therapeutic principles are difficult to implement. Neglecting the physiologic basis of the vascular barrier and the cardiovascular system, numerous studies proclaiming different approaches to fluid and volume therapy do not provide a rationale, as various surgical and patient risk groups, and different fluid regimens combined with varying hemodynamic measures and variable algorithms led to conflicting results. This review refers to the physiologic basis and answers questions inseparably conjoined to a rational approach to perioperative fluid and volume therapy: Why does fluid get lost from the vasculature perioperatively? Whereto does it get lost? Based on current findings and rationale considerations, which fluid replacement algorithm could be implemented into clinical routine? Copyright © 2016 Elsevier Inc. All rights reserved.
An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mese, Ali; Dvorkin, Jack; Shillinglaw, John
2000-09-11
This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.
NASA Astrophysics Data System (ADS)
Talib, Norfazillah; Rahim, Erween Abd.; Nasir, Ramdziah Md.
2017-11-01
The used of metalworking fluids (MWFs) from petroleum-based oil during machining process contributed negative impact to the humans and environment. Therefore, bio-based oil from vegetable oil was recently explored as an alternative solution to petroleum-based oil to implement sustainable manufacturing process. In this study, modified jatropha oil (MJO5) with and without hexagonal boron nitride (hBN) particles were evaluated through friction and wear test and orthogonal cutting performance in comparison with synthetic ester (SE). MJO5 were mixed with hBN particles at various concentrations (i.e. 0.05, 0.1 and 0.5wt.%). Experimental results showed that the addition of 0.05wt.% of hBN particles in MJO5 (MJO5a) provided lowest coefficient of friction (COF) and smallest wear scar diameter (WSD). MJO5a has the best anti-friction ability by reducing the cutting force and cutting temperature which related to the formation of thinner chips and small tool-chip contact length. MJO5a is the best substitute to SE as sustainable MWFs in the machining operation in regards to the environmental and health concern.
NASA Astrophysics Data System (ADS)
Miller, Hannah M.; Matter, Jürg M.; Kelemen, Peter; Ellison, Eric T.; Conrad, Mark E.; Fierer, Noah; Ruchala, Tyler; Tominaga, Masako; Templeton, Alexis S.
2016-04-01
The Samail ophiolite in Oman is undergoing modern hydration and carbonation of peridotite and may host a deep subsurface biosphere. Previous investigations of hyperalkaline fluids in Oman have focused on fluids released at surface seeps, which quickly lose their reducing character and precipitate carbonates upon contact with the O2/CO2-rich atmosphere. In this work, geochemical analysis of rocks and fluids from the subsurface provides new insights into the operative reactions in serpentinizing aquifers. Serpentinite rock and hyperalkaline fluids (pH > 10), which exhibit millimolar concentrations of Ca2+, H2 and CH4, as well as variable sulfate and nitrate, were accessed from wells situated in mantle peridotite near Ibra and studied to investigate their aqueous geochemistry, gas concentrations, isotopic signatures, mineralogy, Fe speciation and microbial community composition. The bulk mineralogy of drill cuttings is dominated by olivine, pyroxene, brucite, serpentine and magnetite. At depth, Fe-bearing brucite is commonly intermixed with serpentine, whereas near the surface, olivine and brucite are lost and increased magnetite and serpentine is detected. Micro-Raman spectroscopy reveals at least two distinct generations of serpentine present in drill cuttings recovered from several depths from two wells. Fe K-edge X-ray absorption near-edge spectroscopy (XANES) analysis of the lizardite shows a strong tetrahedral Fe coordination, suggesting a mixture of both Fe(II) and Fe(III) in the serpentine. Magnetite veins are also closely associated with this second generation serpentine, and 2-10 μm magnetite grains overprint all minerals in the drill cuttings. Thus we propose that the dissolved H2 that accumulates in the subsurface hyperalkaline fluids was evolved through low temperature oxidation and hydration of relict olivine, as well as destabilization of pre-existing brucite present in the partially serpentinized dunites and harzburgites. In particular, we hypothesize that Fe-bearing brucite is currently reacting with dissolved silica in the aquifer fluids to generate late-stage magnetite, additional serpentine and dissolved H2. Dissolved CH4 in the fluids exhibits the most isotopically heavy carbon in CH4 reported in the literature thus far. The CH4 may have formed through abiotic reduction of dissolved CO2 or through biogenic pathways under extreme carbon limitation. The methane isotopic composition may have also been modified by significant methane oxidation. 16S rRNA sequencing of DNA recovered from filtered hyperalkaline well fluids reveals an abundance of Meiothermus, Thermodesulfovibrionaceae (sulfate-reducers) and Clostridia (fermenters). The fluids also contain candidate phyla OP1 and OD1, as well as Methanobacterium (methanogen) and Methylococcus sp. (methanotroph). The composition of these microbial communities suggests that low-temperature hydrogen and methane generation, coupled with the presence of electron acceptors such as nitrate and sulfate, sustains subsurface microbial life within the Oman ophiolite.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa
2012-07-01
To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.
Sorio, Daniela; De Palo, Elio Franco; Bertaso, Anna; Bortolotti, Federica; Tagliaro, Franco
2017-02-01
This paper puts forward a new method for the transferrin (Tf) glycoform analysis in body fluids that involves the formation of a transferrin-terbium fluorescent adduct (TfFluo). The key idea is to validate the analytical procedure for carbohydrate-deficient transferrin (CDT), a traditional biochemical serum marker to identify chronic alcohol abuse. Terbium added to a human body-fluid sample produced TfFluo. Anion exchange HPLC technique, with fluorescence detection (λ exc 298 nm and λ em 550 nm), permitted clear separation and identification of Tf glycoform peaks without any interfering signals, allowing selective Tf sialoforms analysis in human serum and body fluids (cadaveric blood, cerebrospinal fluid, and dried blood spots) hampered for routine test. Serum samples (n = 78) were analyzed by both traditional absorbance (Abs) and fluorescence (Fl) HPLC methods and CDT% levels demonstrated a significant correlation (p < 0.001 Pearson). Intra- and inter-runs CV% was 3.1 and 4.6%, respectively. The cut-off of 1.9 CDT%, related to the HPLC Abs proposed as the reference method, by interpolation in the correlation curve with the present method demonstrated a 1.3 CDT% cut-off. Method comparison by Passing-Bablok and Bland-Altman tests demonstrated Fl versus Abs agreement. In conclusion, the novel method is a reliable test for CDT% analysis and provides a substantial analytical improvement offering important advantages in terms of types of body fluid analysis. Its sensitivity and absence of interferences extend clinical applications being reliable for CDT assay on body fluids usually not suitable for routine test. Graphical Abstract The formation of a transferrin-terbium fluorescent adduct can be used to analyze the transferrin glycoforms. The HPLC method for carbohydrate-deficient transferrin (CDT%) measurement was validated and employed to determine the levels in different body fluids.
Design and Fabrication of Automatic Glass Cutting Machine
NASA Astrophysics Data System (ADS)
Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.
2016-09-01
This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.
Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less
Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K
2009-06-01
The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.
NASA Astrophysics Data System (ADS)
Teagle, D. A. H.; Harris, M.; Crispini, L.; Deans, J. R.; Cooper, M. J.; Kelemen, P. B.; Alt, J.; Banerjee, N.; Shanks, W. C., III
2017-12-01
Anhydrite is important in mid-ocean ridge hydrothermal systems because of the high concentrations of calcium and sulfate in modern seawater and anhydrite's retrograde solubility. Because anhydrite hosts many powerful tracers of fluid-rock interactions (87Sr/86Sr, δ18O, δ34S, trace elements, fluid inclusions) it is useful for tracing the chemical evolution of hydrothermal recharge fluids and estimating time-integrated fluid fluxes. Anhydrite can form from heated seawater (>100°C), through water-rock reaction, or by mixing of seawater and hydrothermal fluids. Although abundant in active hydrothermal mounds, and predicted to form from downwelling, warming fluids during convection, anhydrite is rare in drill core from seafloor lavas, sheeted dikes and upper gabbros, with only minor amounts in ODP Holes 504B and 1256D. Because anhydrite can dissolve during weathering, its occurrence in ophiolites is unexpected. Instead, gypsum is present in Macquarie Island lavas and Miocene gypsum fills cavities within the Cretaceous Troodos ore deposits. Thus, the occurrence of numerous anhydrite veins in cores from the gabbroic lower crust of the Samail ophiolite in Oman was unanticipated. To our knowledge, anhydrite in Oman gabbros has not been previously reported. Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Gideah section of the Wadi Tayin massif. Both recovered 400 m of continuous core from sections of layered gabbros (GT1) and the foliated-layered gabbro transition (GT2). Anhydrite is present throughout both holes, some in vein networks but more commonly as isolated 1-110 mm veins (>60 mm ave). Anhydrite is mostly the sole vein filling but can occur with greenschist minerals such as epidote, quartz, chlorite and prehnite. Anhydrite commonly exhibits prismatic and bladed textures but can also be capriciously microcrystalline. Though definitive cross cutting relationships are elusive, anhydrite veins cut across some greenschist veins. Anhydrite is deformed in faults with asymmetries consistent with normal senses of shear, suggestive of formation near the ridge, or at least before obduction. Gypsum is also present in both holes, but is clearly late stage and cuts across all earlier vein sets and deformation features. Notably, anhydrite was not observed in core from Hole GT3, in the dike-gabbro transition.
Investigating Created Properties of Nanoparticles Based Drilling Mud
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar
2018-05-01
The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.
Microwave drying remediation of petroleum-contaminated drill cuttings.
Júnior, Irineu Petri; Martins, André Leibsohn; Ataíde, Carlos H; Duarte, Cláudio R
2017-07-01
The oil reservoir drilling phase generates contaminated cuttings with oil formation itself. These cuttings must be subjected to a decontamination process before being disposed of in the environment. Several technologies are cited in literature for the remediation of soil contaminated with oil or diesel, but none have been reported to remedy drill cuttings contaminated with oil from reservoir. The reservoir drill cuttings are a problem because its discharge is not allowed. The drying technology using microwave has shown promise in the decontamination of cuttings with non-aqueous base drilling fluid, conciliating good robustness and high removal efficiency. Considering the aspects mentioned previously, the application of heating and drying technology using microwave in the remediation of oil contaminated cuttings from well drill was studied. The influence of temperature, specific energy and initial content of water in the drying operation of the reservoir cuttings and of the drilling cuttings artificially contaminated with oil were analyzed. The results showed an influence of temperature in the drying of the cuttings, being necessary to reach the boiling temperature of heavier hydrocarbons to reach an efficient removal in the operation. The specific energy has a strong influence, reaching a total decontamination using 2.67 kWh/kg. The initial water content was effective in removing oil, reducing the residual level of oil with the increase of initial content of water. It also modifies the temperature profiles of the kinetic-warming of the contaminated cuttings. Both the technology and the equipment used proved effective for obtaining total decontamination of oil from the cuttings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bargar, Keith E.; ,
1993-01-01
The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.
Viscous entrainment on hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
Numerical analysis on the cutting and finishing efficiency of MRAFF process
NASA Astrophysics Data System (ADS)
Lih, F. L.
2016-03-01
The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.E.; Elders, W.A.
1981-01-01
Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon
2015-05-01
To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.
Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795
Marsh, Roy
2003-05-01
Drill cuttings piles are found underneath several hundred oil platforms in the North Sea, and are contaminated with hydrocarbons and chemical products. This study characterised the environmental risk posed by the cuttings pile at the North West Hutton (NWH) oil platform. Data on the drilling fluids and chemical products used over the platform's drilling history were transferred from archived well reports into a custom database, to which were added toxicological and safety data. Although the database contained many gaps, it established that only seven chemical products used at NWH were not in the lowest category of the Offshore Chemicals Notification Scheme, and were used in only small quantities. The study therefore supports the view that the main environmental risk posed by cuttings piles comes from hydrocarbon contamination. The (dated) well records could help future core sampling to be targeted at specific locations in the cuttings piles. Data from many platforms could also be pooled to determine generic 'discharge profiles.' Future study would benefit from the existence, in the public domain, of a standardised, 'legacy' database of chemical products.
Exposure to metal-working fluids in the automobile industry and the risk of male germ cell tumours.
Behrens, Thomas; Pohlabeln, Hermann; Mester, Birte; Langner, Ingo; Schmeisser, Nils; Ahrens, Wolfgang
2012-03-01
In a previous analysis of a case-control study of testicular cancer nested in a cohort of automobile workers, we observed an increased risk for testicular cancer among workers who had ever been involved in occupational metal-cutting tasks. We investigated whether this risk increase was due to exposure to metal-working fluids (MWF). Occupational exposure to MWF was assessed in detail using a job-specific questionnaire for metal-cutting work. We calculated ORs and associated 95% CIs individually matched for age (±2 years) and adjusted for a history of cryptorchidism by conditional logistic regression. The prevalence of exposure to MWF was 39.8% among cases and 40.1% among controls. For total germ cell tumours and seminomas we did not observe risk increases for metal-cutting tasks or occupational exposure to MWF (OR 0.95; 95% CI 0.69 to 1.32 and OR 0.88; 95% CI 0.58 to 1.35, respectively). However, dermal exposure to oil-based MWF was associated with an increased risk for non-seminomatous testicular cancer. Dermal exposure to oil-based MWF for more than 5000 h showed particularly high risk estimates (OR 4.72; 95% CI 1.48 to 15.09). Long-term dermal exposure to oil-based MWF was a risk factor for the development of non-seminomatous testicular germ cell cancer. Possible measures to reduce exposure include the introduction of engineering control measures such as venting or enclosing of machines, and enforcing the use of personal protective equipment during metal cutting.
Coiled tubing drilling with supercritical carbon dioxide
Kolle , Jack J.
2002-01-01
A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
Numerical Modeling of the Work Piece Region in the Plasma Arc Cutting Process
NASA Astrophysics Data System (ADS)
Osterhouse, David
The plasma arc cutting process is widely used for the cutting of metals. The process, however, is not fully understood and further understanding will lead to further improvements. This work aims to elucidate the fundamental physical phenomena in the region where the plasma interacts with the work piece through the use of numerical modeling techniques. This model follows standard computational fluid dynamic methods that have been suitably modified to include plasma effects, assuming either local thermodynamic equilibrium or a slight non-equilibrium captured by the two-temperature assumption. This is implemented in the general purpose, open source CFD package, OpenFOAM. The model is applied to a plasma flow through a geometry that extends from inside the plasma torch to the bottom of the slot cut in the work piece. The shape of the kerf is taken from experimental measurements. The results of this model include the temperature, velocity, and electrical current distribution throughout the plasma. From this, the heat flux to and drag force on the work piece are calculated. The location of the arc attachment in the cut slot is also noted because it is a matter of interest in the published literature as well as significantly effecting the dynamics of the heat flux and drag force. The results of this model show that the LTE formulation is not sufficient to capture the physics present due to unphysical fluid dynamic instabilities and numerical problems with the arc attachment. The two-temperature formulation, however, captures a large part of the physics present. Of particular note, it is found that an additional inelastic collision factor is necessary to describe the increased energy transfer between electrons and diatomic molecules, which is widely neglected in published literature. It is also found that inclusion of the oxygen molecular ion is necessary to accurately describe the plasma flow, which has been neglected in all published two-temperature oxygen calculations. The heat flux is found to be greatest at the top of the cut slot where the thermal boundary layer is thinnest and the arc attachment increases heat transfer.
ERIC Educational Resources Information Center
Levinson, Patrick J.
1996-01-01
Discusses how annual boiler maintenance can help cut fuel costs and prevent downtime. Outlines a cleaning program, which includes inspecting the fireside of the boiler, checking the refractory, and checking the waterside. Describes other maintenance measures, such as checking hydraulic fluid levels, and offers tips for analyzing combustion. (RJM)
Choi, Joon Young; Lee, Hea Yon; Lee, Jong Wook; Lee, Dong Gun
2017-01-01
Background The incidence of cytomegalovirus (CMV) pneumonia is increasing in patients diagnosed with hematologic malignancies. The utility of CMV-DNA viral load measurement has not been standardized, and viral cut-off values have not been established. This study was designed to investigate the utility of CMV quantitative real-time PCR (qRT-PCR) using bronchial washing fluid. Methods We retrospectively reviewed the microbiologic and pathologic results of bronchial washing fluid and biopsy specimens in addition to the patients' clinical characteristics. Results A total of 565 CMV qRT-PCR assays were performed using bronchial washing fluid from patients with hematologic malignancies. Among them, 101 were positive for CMV by qRT-PCR; of these, 24 were diagnosed with CMV pneumonia and 70 with CMV infection, and 7 were excluded due to a diagnosis of invasive pulmonary aspergillosis rather than viral pneumonia. The median CMV load determined by qPCR was 1.8 × 105 copies/mL (3.6 103-1.5 × 108) in CMV pneumonia patients and 3.0 × 103 copies/mL (5.0 × 102-1.1 × 105) in those diagnosed with CMV infection (P < 0.01). Using the ROC curve, the optimal inflection points were 18,900 copies/mL (137,970 IU/mL) in post-bone marrow transplantation (BMT) patients, 316,415 copies/mL (2,309,825 IU/mL) in no-BMT patients and 28,774 copies/mL (210,054 IU/mL) in all patients. Conclusions The CMV titers in bronchial washing fluid determined by qRT-PCR differed significantly between patients diagnosed with CMV pneumonia and those with CMV infection. The viral cut-off values in bronchial washing fluid were suggested for the diagnosis of CMV pneumonia, which were different depending on the BMT status. PMID:28061469
Lee, Hwa Young; Rhee, Chin Kook; Choi, Joon Young; Lee, Hea Yon; Lee, Jong Wook; Lee, Dong Gun
2017-06-13
The incidence of cytomegalovirus (CMV) pneumonia is increasing in patients diagnosed with hematologic malignancies. The utility of CMV-DNA viral load measurement has not been standardized, and viral cut-off values have not been established. This study was designed to investigate the utility of CMV quantitative real-time PCR (qRT-PCR) using bronchial washing fluid. We retrospectively reviewed the microbiologic and pathologic results of bronchial washing fluid and biopsy specimens in addition to the patients' clinical characteristics. A total of 565 CMV qRT-PCR assays were performed using bronchial washing fluid from patients with hematologic malignancies. Among them, 101 were positive for CMV by qRT-PCR; of these, 24 were diagnosed with CMV pneumonia and 70 with CMV infection, and 7 were excluded due to a diagnosis of invasive pulmonary aspergillosis rather than viral pneumonia. The median CMV load determined by qPCR was 1.8 × 105 copies/mL (3.6 103-1.5 × 108) in CMV pneumonia patients and 3.0 × 103 copies/mL (5.0 × 102-1.1 × 105) in those diagnosed with CMV infection (P < 0.01). Using the ROC curve, the optimal inflection points were 18,900 copies/mL (137,970 IU/mL) in post-bone marrow transplantation (BMT) patients, 316,415 copies/mL (2,309,825 IU/mL) in no-BMT patients and 28,774 copies/mL (210,054 IU/mL) in all patients. The CMV titers in bronchial washing fluid determined by qRT-PCR differed significantly between patients diagnosed with CMV pneumonia and those with CMV infection. The viral cut-off values in bronchial washing fluid were suggested for the diagnosis of CMV pneumonia, which were different depending on the BMT status.
Displaying CFD Solution Parameters on Arbitrary Cut Planes
NASA Technical Reports Server (NTRS)
Pao, S. Paul
2008-01-01
USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081
Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed. • Bulk Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} with ZT of 1.16 was obtained from Bi{sub 2}Te{sub 3} based wastes. • Different from hydrometallurgy, the recycling method introduced here was green. • Directly recycling Bi{sub 2}Te{sub 3} wastes can lower raw material costs of manufacturers.« less
Drummond-Braga, Bernardo; Peleja, Sebastião Berquó; Macedo, Guaracy; Drummond, Carlos Roberto S A; Costa, Pollyana H V; Garcia-Zapata, Marco T; Oliveira, Marcelo Magaldi
2016-12-01
Neurosurgery simulation has gained attention recently due to changes in the medical system. First-year neurosurgical residents in low-income countries usually perform their first craniotomy on a real subject. Development of high-fidelity, cheap, and largely available simulators is a challenge in residency training. An original model for the first steps of craniotomy with cerebrospinal fluid leak avoidance practice using a coconut is described. The coconut is a drupe from Cocos nucifera L. (coconut tree). The green coconut has 4 layers, and some similarity can be seen between these layers and the human skull. The materials used in the simulation are the same as those used in the operating room. The coconut is placed on the head holder support with the face up. The burr holes are made until endocarp is reached. The mesocarp is dissected, and the conductor is passed from one hole to the other with the Gigli saw. The hook handle for the wire saw is positioned, and the mesocarp and endocarp are cut. After sawing the 4 margins, mesocarp is detached from endocarp. Four burr holes are made from endocarp to endosperm. Careful dissection of the endosperm is done, avoiding liquid albumen leak. The Gigli saw is passed through the trephine holes. Hooks are placed, and the endocarp is cut. After cutting the 4 margins, it is dissected from the endosperm and removed. The main goal of the procedure is to remove the endocarp without fluid leakage. The coconut model for learning the first steps of craniotomy and cerebrospinal fluid leak avoidance has some limitations. It is more realistic while trying to remove the endocarp without damage to the endosperm. It is also cheap and can be widely used in low-income countries. However, the coconut does not have anatomic landmarks. The mesocarp makes the model less realistic because it has fibers that make the procedure more difficult and different from a real craniotomy. The model has a potential pedagogic neurosurgical application for freshman residents before they perform a real craniotomy for the first time. Further validity is necessary to confirm this hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, M. F. L.; Lana, P. C.; Silva, J.; Fachel, J. G.; Pulgati, F. H.
2009-01-01
This paper assesses the effects of non-aqueous fluids (NAFs-type III) cuttings discharge from exploratory drilling activities on deep-sea macrobenthic communities in the Campos Basin, off the southeastern Brazilian coast, Rio de Janeiro State. One hundred and fifty nine sediment samples were taken with a 0.25 m 2 box corer at a depth of 902 m on three monitoring cruises: first cruise—before drilling (April 2001), second cruise—after drilling (July 2001), and third cruise—one year after drilling (July 2002). The results indicated no significant changes in values of density, number of families and functional groups related to drilling activities in the reference area (2500 m distance), and biological variations may be result from the natural variability of the fauna. Evidence indicates that drilling activities led to measurable effects on the community structure related to NAF cuttings discharge but were limited to a 500 m radius from the drilling well. Such effects were much more evident at isolated sites in the impact area (WBF and WBF+NAF areas) and are characterized as localized impacts. One year after drilling, a recolonization was observed, with the probable recovery of the macrobenthic community in most of the study area; only at part of the WBF+NAF area (stations 05, 24 and 36) was the community still undergoing recovery.
Holdway, Douglas A
2002-03-01
A review of the acute and chronic effects of produced formation water (PFW), drilling fluids (muds) including oil-based cutting muds, water-based cutting muds, ester-based cutting muds and chemical additives, and crude oils associated with offshore oil and gas production was undertaken in relation to both temperate and tropical marine ecological processes. The main environmental effects are summarized, often in tabular form. Generally, the temporal and spatial scales of these studies, along with the large levels of inherent variation in natural environments, have precluded our ability to predict the potential long-term environmental impacts of the offshore oil and gas production industry. A series of critical questions regarding the environmental effects of the offshore oil and gas production industry that still remain unanswered are provided for future consideration.
Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B
2018-02-01
Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.
30 CFR 250.427 - What are the requirements for pressure integrity tests?
Code of Federal Regulations, 2010 CFR
2010-07-01
... related hole-behavior observations, such as pore-pressure test results, gas-cut drilling fluid, and well... integrity tests? 250.427 Section 250.427 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Operations Casing and Cementing Requirements § 250.427 What are the requirements for pressure integrity tests...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael S. Bruno
This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less
New mud system produces solids-free, reusable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water,more » or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.« less
Igneous Sheet Intrusions as a Record of Paleostress States
NASA Astrophysics Data System (ADS)
Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.
2017-12-01
The architecture of igneous sheet intrusion networks provides useful constraints on paleostress during emplacement. Several models for sill emplacement have used the close spatial relationships between sills and dikes in layered (sedimentary) host rocks to propose that dike-sill transitions are driven by layering. Such models require a stress rotation - from horizontal extension for dikes, to horizontal compression for sills - which is assumed to reflect a near-hydrostatic stress state, facilitating the dilation and intrusion of pre-existing structures (e.g. faults, joints, and bedding). Here, we present case examples of sills for which layering is not the main control on emplacement: Isle of Mull (UK), Faroe Islands (European Atlantic margin) and the San Rafael Subvolcanic Field (Utah, USA). In each case, dikes cut, or are cut by, sills; indicating that dikes were not the feeders to sills in the same section. The sills consist of linked, flat and shallowly-dipping segments that always show near-vertical opening directions. Sills cut bedding and formation contacts with consistent low-angle dips, and cut or abut against vertical faults, fractures, and tectonic foliations. From this, we infer that magma pressure during emplacement did not exceed the horizontal stress. To constrain the stress state during emplacement we present a novel approach that combines analysis of local and overall sill geometry data with mechanical models for slip tendency, dilation tendency, and fracture susceptibility. We also present a new depth-independent mechanical model, which estimates paleostress ratio and driving fluid pressure ratio using the opening angles of dilated fluid-filled fractures. Our results show that the studied sills record previously unrecognised local fluctuations in the far-field stress state, during magmatic supply. Sills, therefore, present an important tool for determining paleostress in areas where few brittle deformation structures (e.g. faults), other than intrusions, are present.
Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette
2016-11-01
Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.
Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji
2007-01-01
Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.
Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.
2010-01-01
Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.
Balsamo, Ana Cristina; Felli, Vanda Elisa Andres
2006-01-01
This descriptive and exploratory study from a quantitative approach aimed to characterize workers who were victims of work accidents related to human body fluids exposure and to evaluate the accident victim care protocol. The population consisted of 48 workers who were victims of work accidents involving exposure to human body fluids, from July 2000 to June 2001. Data were collected through a form and interviews. Results showed that nursing workers presented higher accident risk levels and that 87.50% involved piercing and cutting material, such as needles and butterflies (70%). As to the accident-related situation/activity, the workers indicated that 25% were due to an "inadequate act during the procedure"; 19.64% mentioned that "it happened" and 29.17% answered that they did not have any suggestion. This study provided important tools to review and elaborate strategies to prevent accidents involving exposure to human body fluids.
2009-09-01
25 Figure 17. IGV Cut Out from Fluid Domain...Figure 22. Installed IGVS as Viewed from the CFF Inlet.................................................30 Figure 23. Schematic of Turbine Test Rig (TTR...44 Figure 28. Close In View of Velocity Vector Plot Near IGVS for 6IGV Model..............45 Figure 29
Code of Federal Regulations, 2013 CFR
2013-07-01
... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... parameter BCT effluent limitation Produced water Oil & grease The maximum for any one day shall not exceed...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)
Code of Federal Regulations, 2014 CFR
2014-07-01
... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
Code of Federal Regulations, 2011 CFR
2011-07-01
... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Effluent limitations guidelines... control technology (BCT). 435.14 Section 435.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
Code of Federal Regulations, 2014 CFR
2014-07-01
... located beyond 3 miles from shore: Water-based drilling fluids and associated drill cuttings Free Oil No... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Effluent limitations guidelines... control technology (BCT). 435.14 Section 435.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)
Code of Federal Regulations, 2013 CFR
2013-07-01
... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test (EPA Method 1617)
Code of Federal Regulations, 2012 CFR
2012-07-01
... free oil” requirement for discharges of drilling fluids, drill cuttings, produced sand, and well... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Static Sheen Test (EPA Method 1617) 1 Appendix 1 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...
Machine Shop. Module 5: Lathes. Instructor's Guide.
ERIC Educational Resources Information Center
Nobles, Jack
This document consists of materials for a 10-unit course on the following topics: (1) types and parts of lathes; (2) lathe accessories, maintenance, and safety; (3) lathe operations and tooling; (4) lathe calculations; (5) lathe taper and thread applications; (6) planning considerations; (7) cutting fluids, lathe center alignment, and lathe gaps;…
NASA Astrophysics Data System (ADS)
Langeroudi, H. G.; Javaherdeh, K.
2018-07-01
In present paper the effects of using typical twisted tape (TT) and V-cut twisted tape (VTT) on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) inside corrugated tube in the turbulent flow are experimentally investigated despite the fact that the wall is under uniform heat flux. The experiments are conducted by twisted tapes with different twist ratio (y = 4.5, 6.07), depth and width ratios ranging (0.285-0.5) and Reynolds number varied from 5300 to 25,700 and water was as a working fluid. The obtained results show that the Nusselt number for corrugated tube that equipped with twisted tapes increases with increasing Reynolds number and is remarkable at high Reynolds Number while the friction factor is low. Moreover, the thermal performance factor for fluid increases with increasing Reynolds number and also the thermal performance factor for all states of VTT are higher than of TT. The new empirical correlations for Nusselt number, friction factor and thermal performance factor are predicted and compared with experimental data.
Advances in multiphase flow measurements using magnetic resonance relaxometry
NASA Astrophysics Data System (ADS)
Kantzas, Apostolos; Kryuchkov, Sergey; Chandrasekaran, Blake
2009-02-01
When it comes to the measurement of bitumen and water content as they are produced from thermally exploited reservoirs (cyclic steam stimulation or steam assisted gravity drainage) most of the current tools that are available in the market fail. This was demonstrated previously when our group introduced the first concept of a magnetic resonance based water-cut meter. The use of magnetic resonance as a potential tool for fluid cut metering from thermally produced heavy oil and bitumen reservoirs is revisited. At first a review of the work to date is presented. Our recent approach in the tackling of this problem follows. A patented process is coupled with a patented pipe design that can be used inside a magnetic field and can capture fluids up to 260°C and 4.2MPa. The paper describes the technical advances to this goal and offers a first glimpse of field data from an actual thermal facility for bitumen production. The paper also addresses an approach for converting the current discrete measurement device into a continuous measurement system. Preliminary results for this new concept are also presented.
Creating compact and microscale features in paper-based devices by laser cutting.
Mahmud, Md Almostasim; Blondeel, Eric J M; Kaddoura, Moufeed; MacDonald, Brendan D
2016-11-14
In this work we describe a fabrication method to create compact and microscale features in paper-based microfluidic devices using a CO 2 laser cutting/engraving machine. Using this method we are able to produce the smallest features with the narrowest barriers yet reported for paper-based microfluidic devices. The method uses foil backed paper as the base material and yields inexpensive paper-based devices capable of using small fluid sample volumes and thus small reagent volumes, which is also suitable for mass production. The laser parameters (power and laser head speed) were adjusted to minimize the width of hydrophobic barriers and we were able to create barriers with a width of 39 ± 15 μm that were capable of preventing cross-barrier bleeding. We generated channels with a width of 128 ± 30 μm, which we found to be the physical limit for small features in the chromatography paper we used. We demonstrate how miniaturizing of paper-based microfluidic devices enables eight tests on a single bioassay device using only 2 μL of sample fluid volume.
NASA Astrophysics Data System (ADS)
Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert
2018-01-01
The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.
Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
Shakouri, Ehsan; Sadeghi, Mohammad H; Maerefat, Mehdi; Shajari, Shaghayegh
2014-04-01
Bone loss due to thermo necrosis may weaken the purchase of surgically placed screws and pins, causing them to loosen postoperatively. The heat generated during the bone drilling is proportional to cutting speed and force and may be partially dissipated by the blood and tissue fluids, and somehow carried away by the chips formed. Increasing cutting speed will reduce cutting force and machining time. Therefore, it is of interest to study the effects of the increasing cutting speed on bone drilling characteristics. In this article, the effects of the increasing cutting speed ranging from 500 up to 18,000 r/min on the thrust force and the temperature rise are studied for bovine femur bone. The results of this study reveal that the high-speed drilling of 6000-7000 r/min may effectively reduce the two parameters of maximum cortical temperature and duration of exposure at temperatures above the allowable levels, which in turn reduce the probability of thermal necrosis in the drill site. This is due to the reduction of the cutting force and the increase in the chip disposal speed. However, more increases in the drill bit rotational speed result in an increase in the amount of temperature elevation, not because of sensible change in drilling force but a considerable increase in friction among the chips, drill bit and the hole walls.
Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne
2009-11-15
Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).
Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquariello, Vito, E-mail: vito.pasquariello@tum.de; Hammerl, Georg; Örley, Felix
2016-02-15
We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. Wemore » validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.« less
Metallogeny of the Mont-de-l'Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada
NASA Astrophysics Data System (ADS)
Simard, M.; Beaudoin, G.; Bernard, J.; Hupé, A.
2006-09-01
The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro-Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu-Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N-S and NW-SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=-1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (-0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Chen, M.; Lu, C.; Sun, Y.; Hao, Y.; Elliot, T. R.; Celia, M. A.; Bielicki, J. M.
2012-12-01
The challenges of mitigating climate change and generating sustainable renewable energy are inseparable and can be addressed by synergistic integration of geothermal energy production with secure geologic CO2 storage (GCS). Pressure buildup can be a limiting factor for GCS and geothermal reservoir operations, due to a number of concerns, including the potential for CO2 leakage and induced seismicity, while pressure depletion can limit geothermal energy recovery. Water-use demands can also be a limiting factor for GCS and geothermal operations, particularly where water resources are already scarce. Economic optimization of geothermal-GCS involves trade-offs of various benefits and risks, along with their associated costs: (1) heat extraction per ton of delivered CO2, (2) permanent CO2 storage, (3) energy recovery per unit well (and working-fluid recirculation) costs, and (4) economic lifetime of a project. We analyze a hybrid, multi-stage approach using both formation brine and injected CO2 as working fluids to attempt to optimize the benefits of sustainable energy production and permanent CO2 storage, while conserving water resources and minimizing environmental risks. We consider a range of well-field patterns and operational schemes. Initially, the fluid production is entirely brine. After CO2 breakthrough, the fraction of CO2 in production, which is called the CO2 "cut", increases with time. Thus, brine is the predominant working fluid for early time, with the contribution of CO2 to heat extraction increasing with CO2 cut (and time). We find that smaller well spacing between CO2 injectors and producers favors earlier CO2 breakthrough and a more rapid rise in CO2 cut, which increases the contribution of recirculated CO2, thereby improving the heat extraction per ton of delivered CO2. On the other hand, larger well spacing increases permanent CO2 storage, energy production per unit well cost, while reducing the thermal drawdown rate, which extends the economic lifetime of a project. For the range of cases considered, we were never able to eliminate the co-production of brine; thus, brine management is likely to be important for reservoir operations, whether or not brine is considered as a candidate working fluid. Future work will address site-specific reservoir conditions and infrastructure factors, such as proximity to potential CO2 sources. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Roybal, C Nathaniel; Tsui, Irena; Sanfilippo, Christian; Hubschman, Jean-Pierre
2013-01-01
External drainage of subretinal fluid as part of a scleral buckling procedure rapidly restores the retinal pigment epithelium-neural retina interface in rhegmatogenous retinal detachments but carries the inherent risk of subretinal hemorrhage and retinal incarceration. The authors investigated variations to the technique to reduce the chance of subretinal hemorrhage originating from the choroid. A novel method for needle drainage using electrocautery of the sclerochoroidal layers before puncture was employed. The effect of 0% to 50% scleral electrocautery in a porcine model was investigated. A significant decrease in choroidal vessel diameter and choroidal vessel density at 40% electrocautery was demonstrated. Electrocautery without scleral cut-down before external drainage of subretinal fluid likely decreases the chance of subretinal hemorrhage by decreasing choroidal vascularity. Copyright 2013, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Arunachalam, U.; Edwin, M.
2018-03-01
This paper presents experimental studies on the convective heat transfer and friction factor characteristics of flows in a straight circular tube with and without V-cut twisted tapeinserts using Al2O3-Cu/water hybrid nanofluid as working fluid and also comparative studies between Alumina nanofluid and (Cu-Alumina) hybrid nanofluid is conducted. This work is restricted to one type of hybrid nanofluid only. It also does not include the effect of twisted tape dimensions on heat transfer coefficient and pressure drop.Itis observed that the experimental convective heat transfer coefficient increases slightly with an increase in particle volume concentration from 0.1 and 0.4%. The experimental data is in good agreement with the previous models and correlations.The experimental results showed a good enhancement in Nusselt number for Peclet number from 2580 to 11,780 compared to Nusselt number of water, when the copper nanofluid is 0.01% volume concentration and mixed with 0.4% concentration of Alumina nanofluid.Itis also noticed that 0.01% Al2O3-Cu/water hybrid nanofluidhas a higher friction factor than the Al2O3/water nanofluid and base fluid. Since the magnitude of thermal enhancement factor (η) has been observed to be only marginally higher than unity (1.01 to 1.05), the net benefit of inserting V - cut twisted tapes in nanofluids is also nevertheless marginal.
Soil properties affecting wheat yields following drilling-fluid application.
Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D
2005-01-01
Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.
Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H
2009-09-01
Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to <350 ms. Patients were connected to a monitoring device, obtaining SVV by APCO. Haemodynamic variables were recorded before and after fluid bolus application. Fluid responsiveness was defined as an increase in stroke volume index >10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.
Fracture, fluid flow and paleostress at Sunrise Dam Gold Mine, W. Australia
NASA Astrophysics Data System (ADS)
Blenkinsop, Thomas; Sanderson, David; Nugus, Michael
2017-04-01
Some of the clearest examples of Interactions between fracture, fluid flow, pore fluid pressure and differential stress can be inferred from underground observations in mines. This study examines the inferred stress conditions and resulting fracture network that constitutes a stockwork type ore body at Sunrise Dam gold mine, Western Australia. Stockworks in mine workings are particularly instructive for such analyses, because the abundance of veins allows cross-cutting relationships to be observed, which are commonly hard to see in situations of lower fracture intensity or incomplete outcrop. Sunrise Dam has produced in excess of 8.5Moz of gold since 1989, with current Mineral Resources and Ore Reserves at 58.96Mt@2.41g/t Au (4.55Moz) and 21.45Mt@1.87g/t Au (1.29Moz), respectively. The stockwork examined is in the Astro ore body, and consists of three sets of extensional veins and one set of low-angle strike-slip shear veins. Cross-cutting relationships suggest broadly contemporaneous formation of all fracture sets, which are also related by a common quartz-carbonate mineralogy. The extensional veins intersect the shear veins along the direction of shear, a geometry that can be predicted for certain stress ratios. Combined with observations and paleostress inferences from other parts of the mine, the veining and gold mineralisation can be associated with a D4 strike-slip shearing event, which had a maximum compressive stress plunging gently NE. Fracture intensity varies by 50% on a scale of 10s of metres. The stockwork formed by repeated extensional and shear failure events, showing fluctuations in pore fluid pressure and stress conditions, which would have required fracture healing/sealing in order for the deformation to spread throughout the stockwork volume.
NASA Astrophysics Data System (ADS)
Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.
2017-09-01
Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.
Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O
2014-01-14
There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.
Rutter, Ernest; Hackston, Abigail
2017-09-28
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Rutter, Ernest; Hackston, Abigail
2017-08-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.
Hackston, Abigail
2017-01-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’. PMID:28827423
Supercritical fluid processing: opportunities for new resist materials and processes
NASA Astrophysics Data System (ADS)
Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.
1996-05-01
Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.
Amylase in drain fluid for the diagnosis of pancreatic leak in post-pancreatic resection.
Davidson, Tsetsegdemberel Bat-Ulzii; Yaghoobi, Mohammad; Davidson, Brian R; Gurusamy, Kurinchi Selvan
2017-04-07
The treatment of people with clinically significant postoperative pancreatic leaks is different from those without clinically significant pancreatic leaks. It is important to know the diagnostic accuracy of drain fluid amylase as a triage test for the detection of clinically significant pancreatic leaks, so that an informed decision can be made as to whether the patient with a suspected pancreatic leak needs further investigations and treatment. There is currently no systematic review of the diagnostic test accuracy of drain fluid amylase for the diagnosis of clinically relevant pancreatic leak. To determine the diagnostic accuracy of amylase in drain fluid at 48 hours or more for the diagnosis of pancreatic leak in people who had undergone pancreatic resection. We searched MEDLINE, Embase, the Science Citation Index Expanded, and the National Institute for Health Research Health Technology Assessment (NIHR HTA) websites up to 20 February 2017. We searched the references of the included studies to identify additional studies. We did not restrict studies based on language or publication status, or whether data were collected prospectively or retrospectively. We also performed a 'related search' and 'citing reference' search in MEDLINE and Embase. We included all studies that evaluated the diagnostic test accuracy of amylase in the drain fluid at 48 hours or more for the diagnosis of pancreatic leak in people who had undergone pancreatic resection excluding total pancreatectomy. We planned to exclude case-control studies because these studies are prone to bias, but did not find any. At least two authors independently searched and screened the references produced by the search to identify relevant studies. Two review authors independently extracted data from the included studies. The included studies reported drain fluid amylase on different postoperative days and measured at different cut-off levels, so it was not possible to perform a meta-analysis using the bivariate model as planned. We have reported the sensitivity, specificity, post-test probability of a positive and negative drain fluid amylase along with 95% confidence interval (CI) on each of the different postoperative days and measured at different cut-off levels. A total of five studies including 868 participants met the inclusion criteria for this review. The five studies included in this review reported the value of drain fluid amylase at different thresholds and different postoperative days. The sensitivities and specificities were variable; the sensitivities ranged between 0.72 and 1.00 while the specificities ranged between 0.73 and 0.99 for different thresholds on different postoperative days. At the median prevalence (pre-test probability) of 15.9%, the post-test probabilities for pancreatic leak ranged between 35.9% and 95.4% for a positive drain fluid amylase test and ranged between 0% and 5.5% for a negative drain fluid amylase test.None of the studies used the reference standard of confirmation by surgery or by a combination of surgery and clinical follow-up, but used the International Study Group on Pancreatic Fistula (ISGPF) grade B and C as the reference standard. The overall methodological quality was unclear or high in all the studies. Because of the paucity of data and methodological deficiencies in the studies, we are uncertain whether drain fluid amylase should be used as a method for testing for pancreatic leak in an unselected population after pancreatic resection; and we judge that the optimal cut-off of drain fluid amylase for making the diagnosis of pancreatic leak is also not clear. Further well-designed diagnostic test accuracy studies with pre-specified index test threshold of drain fluid amylase (at three times more on postoperative day 5 or another suitable pre-specified threshold), appropriate follow-up (for at least six to eight weeks to ensure that there are no pancreatic leaks), and clearly defined reference standards (of surgical, clinical, and radiological confirmation of pancreatic leak) are important to reliably determine the diagnostic accuracy of drain fluid amylase in the diagnosis of pancreatic leak.
Hydrodynamics of confined colloidal fluids in two dimensions
NASA Astrophysics Data System (ADS)
Sané, Jimaan; Padding, Johan T.; Louis, Ard A.
2009-05-01
We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the dynamics of two-dimensional colloidal disks in confined geometries. We calculate the velocity autocorrelation functions and observe the predicted t-1 long-time hydrodynamic tail that characterizes unconfined fluids, as well as more complex oscillating behavior and negative tails for strongly confined geometries. Because the t-1 tail of the velocity autocorrelation function is cut off for longer times in finite systems, the related diffusion coefficient does not diverge but instead depends logarithmically on the overall size of the system. The Langevin equation gives a poor approximation to the velocity autocorrelation function at both short and long times.
[Application of Ischemia Modified Albumin for Acute Ischemic Heart Disease in Forensic Science].
Wang, P; Zhu, Z L; Zhu, N; Yu, H; Yue, Q; Wang, X L; Feng, C M; Wang, C L; Zhang, G H
2017-10-01
To explore the application value and forensic significance of ischemia modified albumin (IMA) in pericardial fluid to diagnose sudden cardiac death. IMA level in pericardial fluid was detected in acute ischemic heart disease group ( n =36), acute myocardial infarction group ( n =6), cardiomyopathy group ( n =4) and control group ( n =15) by albumin cobalt binding method. The levels of IMA were compared among these groups. The best cut-off IMA value was estimated and the sensitivity and specificity of acute myocardial ischemia group was distinguished from control group by receiver operating characteristics (ROC) curve. The IMA level in acute ischemic heart disease group was significantly higher than that of control group ( P <0.05). Compared with acute myocardial infarction group and cardiomyopathy group, the IMA level in acute ischemic heart disease group had no significant difference ( P >0.05). The cut-off value for the identification of acute myocardial ischemia which obtained by ROC analysis was 40.65 U/mL. And the sensitivity and specificity for distinguishing acute ischemia cardiac disease was 60.0% and 80.5%, respectively. The IMA value in pericardial fluid can be a reference marker for the diagnosis of acute myocardial ischemia, which also can provide objective basis for the forensic identification of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine
Gallo, Jiri; Juranova, Jarmila; Svoboda, Michal; Zapletalova, Jana
2017-09-01
The aim of this study was to evaluate the characteristics of synovial fluid (SF) white cell count (SWCC) and neutrophil/lymphocyte percentage in the diagnosis of prosthetic joint infection (PJI) for particular threshold values. This was a prospective study of 391 patients in whom SF specimens were collected before total joint replacement revisions. SF was aspirated before joint capsule incision. The PJI diagnosis was based only on non-SF data. Receiver operating characteristic plots were constructed for the SWCC and differential counts of leukocytes in aspirated fluid. Logistic binomic regression was used to distinguish infected and non-infected cases in the combined data. PJI was diagnosed in 78 patients, and aseptic revision in 313 patients. The areas (AUC) under the curve for the SWCC, the neutrophil and lymphocyte percentages were 0.974, 0.962, and 0.951, respectively. The optimal cut-off for PJI was 3,450 cells/μL, 74.6% neutrophils, and 14.6% lymphocytes. Positive likelihood ratios for the SWCC, neutrophil and lymphocyte percentages were 19.0, 10.4, and 9.5, respectively. Negative likelihood ratios for the SWCC, neutrophil and lymphocyte percentages were 0.06, 0.076, and 0.092, respectively. Based on AUC, the present study identified cut-off values for the SWCC and differential leukocyte count for the diagnosis of PJI. The likelihood ratio for positive/negative SWCCs can significantly change the pre-test probability of PJI.
Analysis Of The Surface Roughness Obtained During The Dry Turning Of UNS A97050-T7 Aluminium Alloys
NASA Astrophysics Data System (ADS)
de Agustina, B.; Rubio, E. M.; Villeta, M.; Sebastián, M. A.
2009-11-01
Currently, in the aeronautical, aerospace and automotive industries there is high demand of materials such as the aluminium alloys that have high resistance even at high temperatures as well as a low density. For this reason, these alloys are widely used for the production of different elements that compose aircraft and aerospace vehicles. Nevertheless, in spite of the important role these materials have from the competitive point of view, they can commonly show problems of machinability associated with the tool wear. That has made that traditionally cutting fluids had been used in machining processes. However, they can contain environmentally harmful constituents and increase considerably the total cost of the process. Therefore, researches have been focused on the development of cleaner production technologies applications as dry machining. This leads to the search for combinations of cutting parameters and type of tools (types of coatings and different geometries) that could improve the machining under such conditions. The aim of this study is to analyse the relationship between the surface roughness obtained during the dry turning of aluminium UNS A97050-T7 bars and the cutting parameters (cutting speed and feed) using three different tools. As a first conclusion it could be affirmed that the feed was the cutting parameter more influential on the surface roughness and to a lesser extend the cutting speed, the type of tool and the interaction between the type of tool and the feed.
Design and evaluation of a 3 million DN series-hybrid thrust bearing
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Winn, L. W.; Eusepi, M.
1976-01-01
The design and experimental evaluation of a series-hybrid thrust bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, is presented. Tests were conducted up to 16,000 rpm and at this speed an axial load of 15,600 N (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. A speed reduction of this magnitude would result in a tenfold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system produced a flawless return to the original mode of hybrid operation.
Didier, Ryne A; Hopkins, Katharine L; Coakley, Fergus V; Krishnaswami, Sanjay; Spiro, David M; Foster, Bryan R
2017-09-01
Magnetic resonance imaging (MRI) has emerged as a promising modality for evaluating pediatric appendicitis. However optimal imaging protocols, including roles of contrast agents and sedation, have not been established and diagnostic criteria have not been fully evaluated. To investigate performance characteristics of rapid MRI without contrast agents or sedation in the diagnosis of pediatric appendicitis. We included patients ages 4-18 years with suspicion of appendicitis who underwent rapid MRI between October 2013 and March 2015 without contrast agent or sedation. After two-radiologist review, we determined performance characteristics of individual diagnostic criteria and aggregate diagnostic criteria by comparing MRI results to clinical outcomes. We used receiver operating characteristic (ROC) curves to determine cut-points for appendiceal diameter and wall thickness for optimization of predictive power, and we calculated area under the curve (AUC) as a measure of test accuracy. Ninety-eight MRI examinations were performed in 97 subjects. Overall, MRI had a 94% sensitivity, 95% specificity, 91% positive predictive value and 97% negative predictive value. Optimal cut-points for appendiceal diameter and wall thickness were ≥7 mm and ≥2 mm, respectively. Independently, those cut-points produced sensitivities of 91% and 84% and specificities of 84% and 43%. Presence of intraluminal fluid (30/33) or localized periappendiceal fluid (32/33) showed a significant association with acute appendicitis (P<0.01), with sensitivities of 91% and 97% and specificities of 60% and 50%. For examinations in which the appendix was not identified by one or both reviewers (23/98), the clinical outcome was negative. Rapid MRI without contrast agents or sedation is accurate for diagnosis of pediatric appendicitis when multiple diagnostic criteria are considered in aggregate. Individual diagnostic criteria including optimized cut-points of ≥7 mm for diameter and ≥2 mm for wall thickness demonstrate high sensitivities but relatively low specificities. Nonvisualization of the appendix favors a negative diagnosis.
The Induced Seismicity Roller Coaster: Up, and then Down, and then Up Again
NASA Astrophysics Data System (ADS)
Riffault, J.; Dempsey, D.
2017-12-01
Diverse industries from oil & gas, to geothermal and CO2 storage have triggered significant numbers of earthquakes in the last decade. There is broad agreement that the underlying cause is injection of large volumes of fluid and subsequent pressure rise in the disposal and connected formations. Thus, it stands to reason that reducing injection will have a flow-through effect on the seismicity. For example, in an attempt to mitigate earthquakes in Oklahoma, a 40% injection rate reduction was enforced, resulting in a significant decrease in the seismicity rate. Here, we show that, under certain conditions, cutting the injection rate leads to transients in the seismicity rate that could mislead operators and regulators into a false sense of security. We used semi-analytic solutions of injection and fluid flow in a radial geometry coupled with a model that links the pressure rise with the rate of induced seismicity. We find that cutting the injection rate causes complex pressure transients around the injection well: (i) initially, pressure will continue to increase; (ii), then, it reaches a peak and starts to decline; (iii) finally, the decline is reversed and pressure starts to increase again. Depending on the stress criticality of the system and the size of the injection rate cut, the outcome can be a short-term decrease, or even a total cessation, of the seismicity. However, over the longer term, seismicity will increase to a new steady-state (which is nevertheless lower than that preceding the rate cut.) Our results imply that it can be misleading to rely on observations of the seismicity rate shortly after mitigation measures are implemented as an indicator of their efficacy. It is also possible to use this model to interpret the results injection well step tests, with the aim of quantifying aspects of the crustal stress state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, M.L.; Hartmann, S.; Ueckert, D.N.
Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush (Atriplex canescens (Pursh Nutt.)) and buffalograss (Buchloe dactyloides (Nutt.) Engelm.) transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both speciesmore » was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected.« less
Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan
2015-01-01
Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980
Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan
2015-08-11
Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.
ERIC Educational Resources Information Center
Kaume-Mwinzi, Regina K.
2016-01-01
Studies have indicated that in education, the traditional management paradigm maintains an inward focus with the aim of cutting costs, upholding rules and division of labour. However, the 21st century has ushered in a new revolution in education leadership structures which are less hierarchical, more flattened and more fluid organizations. The…
Nazir, Mudasir; Wani, Wasim Ahmad; Malik, Muzaffar Ahmad; Mir, Mohd Rafiq; Ashraf, Younis; Kawoosa, Khalid; Ali, Syed Wajid
To assess the performance of cerebrospinal fluid (CSF) lactate as a biomarker to differentiate bacterial meningitis from viral meningitis in children, and to define an optimal CSF lactate concentration that can be called significant for the differentiation. Children with clinical findings compatible with meningitis were studied. CSF lactate and other conventional CSF parameters were recorded. At a cut-off value of 3mmol/L, CSF lactate had a sensitivity of 0.90, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.963, with an accuracy of 0.972. The positive and negative likelihood ratios were 23.6 and 0.1, respectively. When comparing between bacterial and viral meningitis, the area under the curve for CSF lactate was 0.979. The authors concluded that CSF lactate has high sensitivity and specificity in differentiating bacterial from viral meningitis. While at a cut-off value of 3mmol/L, CSF lactate has high diagnostic accuracy for bacterial meningitis, mean levels in viral meningitis remain essentially below 2mmol/L. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Tilting at wave beams: a new perspective on the St Andrew's Cross
NASA Astrophysics Data System (ADS)
Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.
2017-11-01
The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.
High Energy Cutting and Stripping Utilizing Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Hume, Howard; Noah, Donald E.; Hayes, Paul W.
2005-01-01
The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over a very wide range providing considerable flexibility for various operations. The NitroJet(TM) is an advance on the nitrogen fluid jet technology initially developed at the Idaho National Engineering Laboratory in Idaho Falls, Idaho. NitroCision(R) first introduced the NitroJet(TM) into a commercial setting in 2003 and there has been considerable interest from many diverse sectors of government and industry since then. While the current system is an industrial system with the size and mass normally associated with industrial applications, a smaller system that is much more compact is being contemplated for those applications that do not need the full capabilities of the larger system. The NitroJet(TM) can be deployed as a fixed or mobile system with multiple end effectors capable of cutting, stripping, cleaning, and surface profiling either in robotic or manual applications.
Toxicity of used drilling fluids to mysids (Mysidopsis bahia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaetz, C.T.; Montgomery, R.; Duke, T.W.
1986-01-01
Static, acute toxicity tests were conducted with mysids (Mysidopsis bahia) and 11 used drilling fluids (also called drilling muds) obtained from active drilling platforms in the Gulf of Mexico, U.S.A. Each whole mud was tested, along with three phases of each mud: a liquid phase with all particulate materials removed; a suspended particulate phase composed of soluble and lighter particulate fractions; and a solid phase composed mainly of drill cuttings and rapidly settling particulates. These muds represented seven of the eight generic mud types described by the U.S. Environmental Protection Agency for use on the U.S. Outer Continental Shelf. Themore » toxicity of the 11 muds tested was apparently enhanced by the presence of aromatics. Furthermore, one mud tested repeatedly showed loss of toxicity with time, possibly from volatilization of aromatic fractions. The data demonstrated that aromatics in the drilling fluids affected their toxicity to M. bahia.« less
Huang, Bo; Li, Zhou; Ren, Xinling; Ai, Jihui; Zhu, Lixia; Jin, Lei
2017-06-01
The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.
Networks of channels for self-healing composite materials
NASA Astrophysics Data System (ADS)
Bejan, A.; Lorente, S.; Wang, K.-M.
2006-08-01
This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
2016-03-09
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall
Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less
Iborra-Moltó, Carmelo; López-Roig, Sofía; Pastor-Mira, M de Los Ángeles
2012-07-17
Studies of adherence to fluid restriction show high variability in prevalence data, as different methods of measuring IWG (interdialysis weight gain) and cut-off criteria are used. To describe the prevalence of adherence to fluid restriction using daily IWG (criterion: ≤1 Kg) and daily IWG adjusted for dry weight (DW) (cut-off point adjusted criterion: DW<70 kg, IWG=1 kg/day; DW>70 kg and ≤80 kg, IWG=1.1 kg/day; DW>80 kg and ≤90 kg, IWG=1.2 kg/day; DW>90 kg, IWG=1.3 kg/day) and to study the association between this objective indicator and adherence behaviour as reported by patient. Our study included a total of 146 patients with a mean age of 66 years (SD: 13.6 years; range: 25-88 years), 66% of which were male. Ours was a longitudinal study with one month of follow-up. We collected both sociodemographic and clinical variables and mean daily IWG. Patient-reported adherence behaviour was assessed through an interview by a trained staff member from outside the department who asked the following question: "In order to avoid complications between haemodialysis sessions: during the last month, how many days did you ingest less than 1 litre of fluid per day?" (0= no days; 10= every day). A score ≤5 led to categorisation of patients as compliant with treatment. Statistical analysis included descriptive analysis, correlation test, chi-square and Crosstabs, ROC curve and logistic regression procedures. Prevalence of "objective" adherence to fluid restriction was 61% (mean daily IWG≤1kg) and 73% (mean daily IWG adjusted for dry weight). Reported adherence (prevalence: 56.2%) was associated with IWG adjusted for weight (chi-square =31.34; P=.000). In patients with objective adherence adjusted for weight, the prevalence of reported adherence was 1.65 times that of non-adherence (PR=1.65; 95% CI: 1.29-2.11). The final model for estimating the association between reported adherence behaviour and daily adjusted IWG included: age (higher), dry weight (lower), potassium (lower), time on haemodialysis treatment (less) and its interaction with reported behaviour (F=50.70; P=.000; R2=44%). The sensitivity of reported adherence behaviour for detecting objective adherence adjusted for dry weight was 89%; specificity was 58%, and the overall classification power was 85% (AUC=.85; 95% CI: 0.78-0.92). The probability of objective adherence adjusted for weight in patients who claimed proper adherence was 9 times higher than in non-compliant patients in patients who had been on HD for 2.3 years (PORp25=9.16; 95% CI: 2.58-32.51); 6 times higher in patients on HD for 4.7 years (PORP50=6.16; 95% CI: 2.1217.92); and 3 times higher in those on HD for 8.2 years (PORp75=3.44; 95% CI: 1.32-8.96). Prevalence of adherence to fluid restriction was 73% and 16% depending on daily IWG adjusted/not adjusted for dry weight, respectively. Absolute daily IWG adjusted for weight seems a good indicator of adherence, as it allows for a personalised fluid restriction regimen. Significant association between this objective indicator and reported adherence behaviour supports a combination of patient approach and objective data, which can help with the adjustment of the individual cut-off for daily IWG. This also provides useful information for designing intervention strategies to maintain and increase adherence.
Update on pancreatic cyst fluid analysis
Rockacy, Matthew; Khalid, Asif
2013-01-01
Pancreatic cystic lesions (PCL) may be incidentally detected in up to 13.5% of patients. These represent a wide variety of lesions including mucinous cysts [intraductal papillary mucinous neoplasms (IPMN) and mucinous cystic neoplasms (MCN)] that have malignant potential. The difficulty in identifying the various PCL and their unpredictable potential for malignant degeneration makes their management cumbersome. The current diagnostic evaluation of PCL often includes EUS-guided fine needle aspiration (EUS-FNA) for cyst fluid analysis. Cyst fluid can be analyzed for tumor markers, cytology, mucins, DNA analysis and amylase. Pancreatic cyst CEA level is considered the most accurate tumor marker for diagnosing mucinous cysts. Approximately 0.2 to 1.0 mL of cyst fluid is required to run the test and a cut-off of 192 ng/ mL can be expected to capture ~75% of mucinous cysts. The presence of a KRAS mutation is very specific for a mucinous cyst but lacks sensitivity. Cytology is especially helpful in diagnosing malignancy typically in the presence of a solid component in the cyst. Newer markers to improve diagnostic accuracy are on the horizon, but clinical studies are awaited. PMID:24714589
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Winn, L. W.; Eusepi, M.
1976-01-01
The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.
Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid.
Englert, Carsten; McGowan, Kevin B; Klein, Travis J; Giurea, Alexander; Schumacher, Barbara L; Sah, Robert L
2005-04-01
To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and (3)H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated (3)H-proline. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.
Role of fetal sex in amniotic fluid alphafetoprotein screening.
Knippel, Alexander Johannes
2002-10-01
Previous studies have shown that fetal gender has influence on various pregnancy complications and prenatal diagnostic biochemical markers. We have evaluated, whether elevation of amniotic fluid alphafetoprotein (AF AFP) is associated with fetal sex and whether a sex-related difference can help to identify pregnancies with AFP-associated malformations or fetal loss. From our database we obtained 6461 singleton gestations with AF AFP measurements for the period April 1997-March 1999. Patients with AF AFP >1.9 MoM were identified, details of pregnancy outcome were obtained and compared to matched-pair controls having AF AFP <2 MoM. In 232 of 262 patients having AF AFP levels >1.9 MoM outcome information was available. Of these fetuses, significantly more had male gender (147 male fetuses versus 85 female). Having a screen-positive result the risk of AFP-associated malformations was significantly higher for female fetuses (25 female fetuses (29.4%) versus 22 male fetuses (15%) with AFP-associated malformations). Adjusting the cut-off MoM to 2.5 for male and to 2.0 for female fetuses halves the false positive rate from 3.4 to 1.7% without affecting the detection rate of 95%. Pregnancies with false positive AF AFP had a significantly higher risk for fetal loss compared with pregnancies having normal AF AFP (ten fetal losses from 185 versus two fetal losses from 232), but fetal gender had no significant influence. Adjusting AF AFP MoM cut-offs for fetal gender could increase performance of AF-AFP screening. Larger studies are required to determine suitable sex-adjusted cut-off levels. Copyright 2002 John Wiley & Sons, Ltd.
Diagnostic value of cerebrospinal fluid Aβ ratios in preclinical Alzheimer's disease.
Adamczuk, Katarzyna; Schaeverbeke, Jolien; Vanderstichele, Hugo M J; Lilja, Johan; Nelissen, Natalie; Van Laere, Koen; Dupont, Patrick; Hilven, Kelly; Poesen, Koen; Vandenberghe, Rik
2015-12-18
In this study of preclinical Alzheimer's disease (AD) we assessed the added diagnostic value of using cerebrospinal fluid (CSF) Aβ ratios rather than Aβ42 in isolation for detecting individuals who are positive on amyloid positron emission tomography (PET). Thirty-eight community-recruited cognitively intact older adults (mean age 73, range 65-80 years) underwent (18)F-flutemetamol PET and CSF measurement of Aβ1-42, Aβ1-40, Aβ1-38, and total tau (ttau). (18)F-flutemetamol retention was quantified using standardized uptake value ratios in a composite cortical region (SUVRcomp) with reference to cerebellar grey matter. Based on a prior autopsy validation study, the SUVRcomp cut-off was 1.57. Sensitivities, specificities and cut-offs were defined based on receiver operating characteristic analysis with CSF analytes as variables of interest and (18)F-flutemetamol positivity as the classifier. We also determined sensitivities and CSF cut-off values at fixed specificities of 90 % and 95 %. Seven out of 38 subjects (18 %) were positive on amyloid PET. Aβ42/ttau, Aβ42/Aβ40, Aβ42/Aβ38, and Aβ42 had the highest accuracy to identify amyloid-positive subjects (area under the curve (AUC) ≥ 0.908). Aβ40 and Aβ38 had significantly lower discriminative power (AUC = 0.571). When specificity was fixed at 90 % and 95 %, Aβ42/ttau had the highest sensitivity among the different CSF markers (85.71 % and 71.43 %, respectively). Sensitivity of Aβ42 alone was significantly lower under these conditions (57.14 % and 42.86 %, respectively). For the CSF-based definition of preclinical AD, if a high specificity is required, our data support the use of Aβ42/ttau rather than using Aβ42 in isolation.
Test drilling in basalts, Lalamilo area, South Kohala District, Hawaii
Teasdale, Warren E.
1980-01-01
Test drilling has determined that a downhole-percussion airhammer can be used effectively to drill basalts in Hawaii. When used in conjunction with a foam-type drilling fluid, the hammer-bit penetration rate was rapid. Continuous drill cuttings from the materials penetrated were obtained throughout the borehole except from extremely fractured or weathered basalt zones where circulation was lost or limited. Cementing of these zones as soon as encountered reduced problems of stuck tools, washouts, and loss of drill-cuttings. Supplies and logistics on the Hawaiian Islands, always a major concern, require that all anticipated drilling supplies, spare rig and tool parts, drilling muds and additives, foam, and miscellaneous hardware be on hand before starting to drill. If not, the resulting rig downtime is costly in both time and money. (USGS)
Cutter-loader apparatus having overhung shearer drum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groger, H.; Harms, E.E.
1984-05-01
A longwall mining machine includes a drum cutter-loader and face conveyor wherein the drum cutter-loader is overhung and is supported by a support arm adjacent to the mine face. Nozzles direct high pressure liquid jets against the forward edge of the support arm to cut away the mining face and permit the face side support arm to advance as the mining machine advances. In one embodiment the nozzles are provided along an inclined cutting edge at the forward end of the support arm. Such nozzles may be fixed or oscillating. In an alternative embodiment the nozzles are provided in themore » cylindrical edge zone of the shearer drum and direct the high pressure fluid jets against the cutter edge at the forward end of the support arm.« less
NASA Astrophysics Data System (ADS)
Litvinova, Tamara; Petrova, Alevtina
2017-04-01
The work have for an object to study of a deep structure of the region of Eastern Siberia, allocation of zones of the most ancient magnetoactive horizons and search of exits of fluid and magmatic aktivization, on the periphery of thermal structures within which the most part of ore gold deposits, copper and other polymetals concentrates. Researches of not uniformity of the base in the field of the Siberian magnetic anomaly are executed on the basis of interpretation of anomalies of the module of vertical and horizontal components of the magnetic field of Earth, and also anomalies of gravity. The zone of all-round permafrost settles down from the Arctic coast of Siberia to 60 - 62N. World anomaly of a magnetic field of Earth of Eastern Siberia gets on a permafrost zone. It extends from North Siberian Lowland on Taimyr to Lake Baikal. On the isoline of 60 000 nT it occupies the space from 75N to 50N and from 80 to 130 E. For the purpose of studying of a deep structure and clarification of the nature of magnetization of anomalies of the base cards of anomalies vertical and horizontal the magnetic field of Earth component were used. Density cuts are received on anomalies of gravity. On deep sections the dense and magnetic horizon located in the range of depths the 10-15th is visible. Detection of anomalies vertical components means that the specific magnetoactive layer possesses thermoresidual magnetization which direction doesn't coincide with the modern direction and testifies to early time of its education. The most brightly thermoresidual anomalies are expressed on Plateau of Putoran and the Anabar shield. In the territory of Eastern Siberia near Lake Baikal sources of thermal waters are known. The great interest represents search of thermal auras - talik - to the north of Lake Baikal in a zone of universal permafrost. One of the most important factors of formation of thermal auras is carrying out of the fluid streams delivered from deep-focal fluid systems. Visualization of deep cuts allowed to reveal location in crust of fluid systems and to estimate depth of their bedding. In magnetic and density cuts of a way of migration of streams from fluid system are reflected in a view of the low-magnetic bringing canals of the lowered density. As a result, of research such auras are allocated within a permafrost zone in area of World magnetic anomaly in Eastern Siberia and on the Taimyr Peninsula. The analysis low-frequency components of an anomalous magnetic field within the Taimyr peninsula allows to localize family the of geological sources which form anomalies in the depth interval of 9 500-14 500 m in an interval of depths of 9 500-14 500 m that answers the level close to a roof of a granitometamorfic layer. The geoblocks limiting structure of the Yenisei-Hatanga deflection from northern and southern flanks answer areas of uplift of the Archaean and Proterozoic basis.
Eldin, Eman N.; Omar, Asmaa; Khairy, Mahmoud; Mekawy, Adel H. M.; Ghanem, Maha K.
2012-01-01
BACKGROUND: Noninvasive diagnosis of pleural tuberculosis (TB) remains a challenge due to the paucibacillary nature of the disease. As Mycobacterium tuberculosis (MTB)-specific T cells are recruited into pleural space in TB effusion; their indirect detection may provide useful clinical information. OBJECTIVES: Evaluation of pleural fluid interferon (INF)-γ levels vs Quantiferon–TB Gold In tube assay (QFT- IT) in blood and its adapted variants, using pleural fluid or isolated pleural fluid cells in the diagnosis of pleural TB. METHODS: Thirty-eight patients with pleural effusion of unknown etiology presented at Assiut University Hospital, Egypt, were recruited. Blood and pleural fluid were collected at presentation for INF-γ assays. Ex vivo pleural fluid INF-γ levels, QFT-IT in blood and its adapted variants were compared with final diagnosis as confirmed by other tools including blind and/or thoracoscopic pleural biopsy. RESULTS: The final clinical diagnosis was TB in 20 (53%), malignancy in 10 (26%), and effusion due to other causes in eight patients (21%). Ex vivo pleural fluid INF-γ levels accurately identified TB in all patients and were superior to the QFT-IT assays using blood or pleural fluid (70 and 78% sensitivity, with 60 and 83% specificity, respectively). QFT-IT assay applied to isolated pleural fluid cells had 100% sensitivity and 72% specificity. The optimal cut-off obtained with ROC analysis was 0.73 for TB Gold assay in blood assay, 0.82 IU/ml for the cultured pleural fluid assay, and 0.94 for isolated pleural cells assay. CONCLUSION: The ex vivo pleural fluid INF-γ level is an accurate marker for the diagnosis of pleural TB. QFT- IT assay in peripheral blood or its adapted versions of the assay using pleural fluid and/or washed pleural fluid cells had no diagnostic advantage over pleural fluid INF-γ in the diagnosis of pleural TB. PMID:23189099
Advanced Turbine Engine Seal Test
1976-07-01
Transpiration- Cooled Shroud Segments. 67. ATEST Shroud Rub Pin Heights and Mid-Chord Runout . 68. Locations of Nine-Point Runout Check on Shroud Surface...69. ATEST Shroud Leading Edge Runout . 70. ATEST Shroud Trailing Edge Runout . 71. ATEST Shroud Support Posttest Runout . 72. ATEST Shroud Flow Zones...at General Electric on many prior engines with good success. It Involves the use of a grinding wheel in conjunction with a cutting fluid which is
Fourier, Anthony; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Quadrio, Isabelle; Perret-Liaudet, Armand
2015-09-20
A panel of cerebrospinal fluid (CSF) biomarkers including total Tau (t-Tau), phosphorylated Tau protein at residue 181 (p-Tau) and β-amyloid peptides (Aβ42 and Aβ40), is frequently used as an aid in Alzheimer's disease (AD) diagnosis for young patients with cognitive impairment, for predicting prodromal AD in mild cognitive impairment (MCI) subjects, for AD discrimination in atypical clinical phenotypes and for inclusion/exclusion and stratification of patients in clinical trials. Due to variability in absolute levels between laboratories, there is no consensus on medical cut-off value for the CSF AD signature. Thus, for full implementation of this core AD biomarker panel in clinical routine, this issue has to be solved. Variability can be explained both by pre-analytical and analytical factors. For example, the plastic tubes used for CSF collection and storage, the lack of reference material and the variability of the analytical protocols were identified as important sources of variability. The aim of this review is to highlight these pre-analytical and analytical factors and describe efforts done to counteract them in order to establish cut-off values for core CSF AD biomarkers. This review will give the current state of recommendations. Copyright © 2015. Published by Elsevier B.V.
Balan, A S S; Vijayaraghavan, L; Krishnamurthy, R; Kuppan, P; Oyyaravelu, R
2016-09-01
The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the effects of different grinding environments such as dry, minimum quantity lubrication (MQL) and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2) and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50-65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.
Biffin, A H; Jones, M A; Palmer, S R
1993-07-01
The routine use of ELISA and complement fixation tests in the diagnosis of suspected clinical cases of hydatid disease was evaluated. In the ELISA test, dialysed and filtered sheep cyst fluid was used as antigen and two positive cut-off points--+3SD and +2SD of the mean absorbance values of the control sera--were evaluated. The predictive values of ELISA tests were 82% and 90% for positive tests, and 86% and 82% for negative tests, respectively with the two cut-off points. In a population survey of blood donors and veterinary workers in Powys, 4% and 8%, respectively, had ELISA values above the lower cut-off point. However, it would not be appropriate to use the same test for diagnostic population screening in Wales since the predictive value of the test is likely to be very low in this setting. Serological surveys with the ELISA may be of use in monitoring the progress of the South Powys Hydatid Control Programme. The use of cumulative percentages was found to be a useful method of comparing whole distributions of results in different populations.
NASA Astrophysics Data System (ADS)
Court, Sébastien; Fournié, Michel
2015-05-01
The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.
Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper.
Glavan, Ana C; Martinez, Ramses V; Maxwell, E Jane; Subramaniam, Anand Bala; Nunes, Rui M D; Soh, Siowling; Whitesides, George M
2013-08-07
This paper describes the fabrication of pressure-driven, open-channel microfluidic systems with lateral dimensions of 45-300 microns carved in omniphobic paper using a craft-cutting tool. Vapor phase silanization with a fluorinated alkyltrichlorosilane renders paper omniphobic, but preserves its high gas permeability and mechanical properties. When sealed with tape, the carved channels form conduits capable of guiding liquid transport in the low-Reynolds number regime (i.e. laminar flow). These devices are compatible with complex fluids such as droplets of water in oil. The combination of omniphobic paper and a craft cutter enables the development of new types of valves and switches, such as "fold valves" and "porous switches," which provide new methods to control fluid flow.
Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth
NASA Astrophysics Data System (ADS)
Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.
2016-12-01
The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011) Earth Planet Sci Lett 308, 65-76. [3] Peters and Pettke (2016) GGR, DOI: 10.1111/ggr.12125.
NASA Astrophysics Data System (ADS)
Holdsworth, R. E.; van Diggelen, E.; Spiers, C.; de Bresser, J. H.; Smith, S. A.
2009-12-01
In the region of the SAFOD borehole, the San Andreas Fault (SAF) separates two very different geological terranes referred to here as the Salinian and Great Valley blocks (SB, GVB). The three sections of core preserve a diverse range of fault rocks and pass through the two currently active, highly localised slipping sections, the so-called ‘10480’ and ‘10830’ fault zones . These coincide with a broader region - perhaps as much as 100m wide - of high strain fault rocks formed at some time in the geological past, but now currently inactive. Both the slipping segments and older high strain zone(s) are developed in the GVB located NE of the terrane boundary. This is likely influenced by the phyllosilicate-rich protolith of the GVB and the large volume of trapped fluid known to exist NE and below the SAF in this region. Microstructurally, lower strain domains (most of Core 1 cutting the SB, significant parts of Core 3 cutting the GVB) preserve clear evidence for classic upper crustal cataclastic brittle faulting processes and associated fluid flow. The GVB in particular shows clear geological evidence for both fluid pressure and differential stress cycling (variable modes of hydrofacture associated with faults) during seismicity. There is also some evidence in all minor faults for the operation of limited amounts of solution-precipitation creep. High strain domains (much of Core 2 cutting the GVB, parts of Core 3 adjacent to the 10830 fault) are characterised by the development of foliated cataclasites and gouge largely due to the new growth of fine-grained phyllosilicate networks (predominantly smectite-bearing mixed layer clays, locally serpentinite, but not talc). The most deformed sections are characterised by the development of shear band fabrics and asymmetric folds. Reworking and reactivation is widespread manifested by: i) the preservation of one or more earlier generations of gouge preserved as clasts; and ii) by the development of later interconnected, polished and striated slip surfaces at low angles or sub-parallel to the foliation. These are coated with thin phyllosilicate films and are closely associated with the development of lozenge, arrow-head and triangular mineral veins (mostly calcite) inferred to be precipitated in dilation sites during slip. The largest displacement gouges also preserve numerous rounded ‘exotic’ clasts. These include serpentinite, crystalline carbonate, anhydrite and quartzofeldspathic units that texturally look very similar to clasts found in the SB. The SAFOD core fault rocks highlight the fundamental role played by fluid-rock interactions in upper crustal fault zones. There is clear evidence for the development of high pore fluid pressures (hydrofracture development), reaction weakening (phyllosilicate growth following cataclasis) and geometric weakening due to the development of weak interconnected layers (foliations, polished striated slip surfaces). There are also very significant similarities between the fault rocks seen here and those preserved along other deeply exhumed weak fault elsewhere in the world.
Measurement of Interleukin-6 in Cerebrospinal Fluid for the Diagnosis of Bacterial Meningitis.
Dano, Ibrahim Dan; Sadou, Hassimi; Issaka, Bassira; Oukem-Boyer, Odile Ouwe Missi
It is assessed whether the measurement of interleukin-6 in the cerebrospinal fluid can serve as a biomarker for the diagnosis of bacterial meningitis. Cerebrospinal fluid was obtained from 152 patients aged 0-15 years suspected of having meningitis. These patients were classified into the following groups: Bacterial meningitis (n = 85), aseptic meningitis (n = 35) and non-meningitis/control (n = 32) based on leukocyte count and bacterial identification by culture and molecular biology. Interleukin-6 concentrations in cerebrospinal fluid were measured by enzyme-linked immunosorbent assay. This study found a significant difference of the mean cerebrospinal fluid interleukin-6 level (p≤0.01) between patients with bacterial meningitis (3,538.69±2,560.78 pg mL -1) and patients with aseptic meningitis (332.51±470.69 pg mL -1) or those of the control group (205.83±79.39 pg mL -1). There was also a significant difference of the mean cerebrospinal fluid interleukin-6 level between patients with aseptic meningitis and those of the control group. Interleukin-6 had the highest area under the ROC curve: 0.94 (95% confidence interval: 0.901-0.979) compared to that of cerebrospinal fluid glucose and total protein. At a cut-off value of 1,065.96 pg mL -1, interleukin-6 had a sensitivity of 76.2% and specificity of 100%. Interleukin-6 is a potential biomarker for the differential diagnosis of meningitis.
Lens-free microscopy of cerebrospinal fluid for the laboratory diagnosis of meningitis
NASA Astrophysics Data System (ADS)
Delacroix, Robin; Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Blandin, Pierre; Dinten, Jean-Marc; Drancourt, Michel; Allier, Cédric
2018-02-01
The cytology of the cerebrospinal fluid is traditionally performed by an operator (physician, biologist) by means of a conventional light microscope. The operator visually counts the leukocytes (white blood cells) present in a sample of cerebrospinal fluid (10 μl). It is a tedious job and the result is operator-dependent. Here in order to circumvent the limitations of manual counting, we approach the question of numeration of erythrocytes and leukocytes for the cytological diagnosis of meningitis by means of lens-free microscopy. In a first step, a prospective counts of leukocytes was performed by five different operators using conventional optical microscopy. The visual counting yielded an overall 16.7% misclassification of 72 cerebrospinal fluid specimens in meningitis/non-meningitis categories using a 10 leukocyte/μL cut-off. In a second step, the lens-free microscopy algorithm was adapted step-by-step for counting cerebrospinal fluid cells and discriminating leukocytes from erythrocytes. The optimization of the automatic lens-free counting was based on the prospective analysis of 215 cerebrospinal fluid specimens. The optimized algorithm yielded a 100% sensitivity and a 86% specificity compared to confirmed diagnostics. In a third step, a blind lens-free microscopic analysis of 116 cerebrospinal fluid specimens, including six cases of microbiology confirmed infectious meningitis, yielded a 100% sensitivity and a 79% specificity. Adapted lens-free microscopy is thus emerging as an operator-independent technique for the rapid numeration of leukocytes and erythrocytes in cerebrospinal fluid. In particular, this technique is well suited to the rapid diagnosis of meningitis at point-of-care laboratories.
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
Cutting boards in Salmonella cross-contamination.
Cliver, Dean O
2006-01-01
Cutting boards are commonly perceived as important fomites in cross-contamination of foods with agents such as Salmonella spp., despite the lack of supporting epidemiological data. A variety of woods and plastics have been used to make work surfaces for cutting. In general, wood is said to dull knives less than plastic, and plastic is seen as less porous than wood. Research to model the hypothetical cross-contamination has been done in a variety of ways and has yielded a variety of results. At least some of the work with knife-scarred plastic indicates that the surface is very difficult to clean and disinfect, although this may vary among the polymers used. High-density polyethylene, which is most used in commercial applications, has been shown to delaminate in response to knife scarring. Wood is intrinsically porous, which allows food juices and bacteria to enter the body of the wood unless a highly hydrophobic residue covers the surface. The moisture is drawn in by capillary action until there is no more free fluid on the surface, at which point immigration ceases. Bacteria in the wood pores are not killed instantly, but neither do they return to the surface. Destructive sampling reveals infectious bacteria for hours, but resurrection of these bacteria via knife edges has not been demonstrated. Small plastic cutting boards can be cleaned in a dishwasher (as can some specially treated wooden boards), but the dishwasher may distribute the bacteria onto other food-contact surfaces. Most small wooden boards (i.e., those with no metal joiners in them) can be sterilized in a microwave oven, but this should be unnecessary if accumulation of food residues is prevented. However, 2 epidemiological studies seem to show that cutting board cleaning habits have little influence on the incidence of sporadic salmonellosis. Further, one of these studies indicated that use of plastic cutting boards in home kitchens is hazardous, whereas use of wooden cutting boards is not.
Hanging drop crystal growth apparatus and method
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)
1989-01-01
An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.
Binesh, Fariba; Halvani, Abolhassan
2013-01-01
Current diagnostic tests for tuberculosis (TB) are time-consuming. The aim of this study was to evaluate the diagnostic usefulness of ADA in bronchoalveolar lavage fluid in patients with pulmonary TB. A cross-sectional study was performed in Yazd, Iran, between 2009 and 2010. Patients suspected of pulmonary TB with negative sputum smear for AFB were included in the study. Mean ADA levels in BAL fluids were measured and compared between study groups. Sixty-three patients were enrolled in the study among which 15 cases had pulmonary TB, 33 had pulmonary diseases other than TB, and 15 subjects with normal bronchoscopy results were considered as controls. Mean ADA levels in BAL fluid were 4.13 ± 2.55, 2.42 ± 1.06, and 1.93 ± 0.88, respectively. This rate was significantly higher in the pulmonary TB group compared to the other two groups (P = 0.001). Using ROC curve with a cut-off value of 3.5 IU/L, the highest sensitivity (57%) and specificity (84%) were obtained in diagnosis of TB. The results showed that although ADA activity in BAL fluid of pulmonary TB patients was higher than those seen in other diseases, a negative test does not rule out pulmonary TB.
Theory and application of drilling fluid hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, A.
1985-01-01
The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less
Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions
NASA Astrophysics Data System (ADS)
Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.
2016-10-01
The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.
Low-cost 420nm blue laser diode for tissue cutting and hemostasis
NASA Astrophysics Data System (ADS)
Linden, Kurt J.
2016-03-01
This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.
NASA Astrophysics Data System (ADS)
Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas
2017-04-01
A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had been completed within ca. 3 years. The short-lived, pulse-like character of this process is in accordance with the notion that fluid flow related to oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the plate interface which may trigger slip events reported from many subduction zones.
Ninth Thermal and Fluids Analysis Workshop Proceedings
NASA Technical Reports Server (NTRS)
Sakowski, Barbara (Compiler)
1999-01-01
The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.
Bharucha, Tehmina; Chanthongthip, Anisone; Phuangpanom, Soumphou; Phonemixay, Ooyanong; Sengvilaipaseuth, Onanong; Vongsouvath, Manivanh; Lee, Sue; Newton, Paul N.; Dubot-Pérès, Audrey
2016-01-01
Background The use of filter paper as a simple, inexpensive tool for storage and transportation of blood, ‘Dried Blood Spots’ or Guthrie cards, for diagnostic assays is well-established. In contrast, there are a paucity of diagnostic evaluations of dried cerebrospinal fluid (CSF) spots. These have potential applications in low-resource settings, such as Laos, where laboratory facilities for central nervous system (CNS) diagnostics are only available in Vientiane. In Laos, a major cause of CNS infection is Japanese encephalitis virus (JEV). We aimed to develop a dried CSF spot protocol and to evaluate its diagnostic performance using the World Health Organisation recommended anti-JEV IgM antibody capture enzyme-linked immunosorbent assay (JEV MAC-ELISA). Methodology and Principal Findings Sample volumes, spotting techniques and filter paper type were evaluated using a CSF-substitute of anti-JEV IgM positive serum diluted in Phosphate Buffer Solution (PBS) to end-limits of detection by JEV MAC-ELISA. A conventional protocol, involving eluting one paper punch in 200μl PBS, did not detect the end-dilution, nor did multiple punches utilising diverse spotting techniques. However, pre-cut filter paper enabled saturation with five times the volume of CSF-substitute, sufficiently improving sensitivity to detect the end-dilution. The diagnostic accuracy of this optimised protocol was compared with routine, neat CSF in a pilot, retrospective study of JEV MAC-ELISA on consecutive CSF samples, collected 2009–15, from three Lao hospitals. In comparison to neat CSF, 132 CSF samples stored as dried CSF spots for one month at 25–30°C showed 81.6% (65.7–92.3 95%CI) positive agreement, 96.8% (91.0–99.3 95%CI) negative agreement, with a kappa coefficient of 0.81 (0.70–0.92 95%CI). Conclusions/Significance The novel design of pre-cut filter paper saturated with CSF could provide a useful tool for JEV diagnostics in settings with limited laboratory access. It has the potential to improve national JEV surveillance and inform vaccination policies. The saturation of filter paper has potential use in the wider context of pathogen detection, including dried spots for detecting other analytes in CSF, and other body fluids. PMID:26986061
NASA Astrophysics Data System (ADS)
Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe
2014-05-01
Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.
NASA Astrophysics Data System (ADS)
Johnson, A. C.; Anastasio, D. J.; Bebout, G. E.
2002-05-01
Calcite veins and Mississippian carbonates from the Sevier thrust front record syntectonic meteoric fluid infiltration and hydrocarbon migration. The Tendoy and Four Eyes Canyon thrust sheets were emplaced onto the western margin of the Late Cretaceous Western Interior Seaway \\{WIS\\}. Low salinity \\{Tice = -0.6° C to +3.6° C\\} and low temperature \\{110° C +/- 10\\} fluids interacted with hanging-wall carbonates at a depth of 5km. Most veins have single or multiple generations of varying apertures, composed predominately of large euhedral crystals with some finer grained layers and protolith inclusions. Orientation analysis of mutually cross-cutting, high-angle vein sets suggest development concurrent with Four Eyes Canyon thrusting but prior to Tendoy thrusting. These vein sets are generally cut by later synfolding bed-parallel shear veins. Reactivation of both the bed-parallel and bed-perpendicular vein sets \\{strike parallel and strike perpendicular\\} in the Four Eyes Canyon thrust sheet occurred subsequent to Sevier compression, creating wide, coarse crystalline veins that often transect Sevier structures. Oxygen and Carbon isotope analyses of veins allow for reconstruction of fluid-rock interactions during thrust sheet emplacement and later reactivation. All veins and variably deformed host-rocks were microsampled and analyzed for δ 18OV-SMOW and δ 13CV-PDB. Small Tendoy veins \\{1mm-1cm wide\\} have calcite δ 18O values of +8.9 to +28.8‰ and calculated fluid \\{as H2O\\} of -8.3 to +11.6‰ \\{100° C\\}, -7.3 to +12.6‰ \\{110° C\\}, and -6.3 to +13.6‰ \\{120° C\\}. Four Eyes Canyon veins \\{1cm-3m wide\\} have calcite δ 18O values of +5.9 to +17.0‰ and calculated fluid of -11.3 to -0.2‰ \\{100° C\\}, -10.3 to +0.8‰ \\{110° C\\}, and -9.3 to +1.8‰ \\{120° C\\}. While there is significant variation in δ 18O there is relatively little systematic variation seen in δ 13C. Protolith carbonate has δ 18O values of +22.2‰ +/- 3.2; and some multi-layered veins are more depleted in δ 18O in earlier-formed generations. For three sites in the Lost River Range \\{LRR\\}, Idaho, the calculated minimum fluid δ 18O is -7.5‰ \\{+150 to +250° C\\} \\{Bebout et al., 2001; GRL\\}. Although the uncertainty of the regional temperature is large, when assuming a temperature of 110° C +/- 10 the Tendoy has a minimum calculated δ 18O H2O value of -8.3 to -6.3‰ and the Four Eyes Canyon has a minimum calculated δ 18O H2O value of -11.3 to -9.3‰ . These fluid O-isotope compositions are similar to the minimum H2O δ 18O calculated for the LRR sites - all pointing to infiltration of the thrust sheets by meteoric waters, possibly relatively nearshore meteoric waters with isotopic compositions strongly influenced by the nearby WIS. Surficial fluids possibly infiltrated into the thrust sheets by topographic recharge and migrated updip towards the foreland, mixing to varying degrees with more deeply roused fluids. Smaller veins and longer travel times and distances favored more extensive fluid-rock interaction and thus more rock-controlled fluid compositions. Microfractures in veins healed by hydrocarbons indicate that hydrocarbons migrated with freshwater fluids. Calcite veins record a dynamic history of fluid pathways and fluid flow as permeability evolved during thrust emplacement.
Chao, Wen-Cheng; Tseng, Chien-Hua; Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng
2018-01-01
Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1-4 as a cut-off point, we found that a negative cumulative day 1-4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1-4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1-4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007-1.174). A negative day 1-4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza.
Engineering Fracking Fluids with Computer Simulation
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
Maloney, Kelly O.; Yoxtheimer, David A.
2012-01-01
The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some issues with data were uncovered during the analytical process (e.g., correct geospatial location of disposal sites and the proper reporting of end use of waste) that obfuscated the analyses; correcting these issues will help future analyses.
Analysis of Aircraft Fuels and Related Materials
1979-03-01
the fluid. Similarly, a specimen of a metal - reinforced braided fuel hose was cut into two pieces of nominally 50 mm length, with each being weighed...fuel hose was there significant weight gain. That particular specimen, due to its fabrication in layers of elast)mer, cord and metal reinforcing, gave...FUELS The combustion products of certain JP-9 fuels were reported to cause pitting and erosion of MAR M509 metal , an alloy of chro- $ mium and cobalt
CXCL13 as a Cerebrospinal Fluid Marker for Neurosyphilis in HIV-infected Patients with Syphilis
Marra, Christina M.; Tantalo, Lauren C.; Sahi, Sharon K.; Maxwell, Clare L.; Lukehart, Sheila A.
2010-01-01
Background Asymptomatic neurosyphilis is more difficult to diagnose in HIV-infected patients because HIV itself can cause cerebrospinal fluid (CSF) pleocytosis. The proportion of CSF lymphocytes that are B cells is elevated in neurosyphilis, suggesting that the CSF concentration of the B cell chemoattractant, chemokine (C-X-C motif) ligand 13 (CXCL13) concentration may also be elevated. Methods CSF and blood were collected from 199 HIV-infected patients with syphilis and neurosyphilis. Serum and CSF CXCL13 concentrations were determined. Results Patients with neurosyphilis had higher CSF and serum CXCL13 concentrations compared to patients with syphilis but not neurosyphilis. The odds of having symptomatic neurosyphilis were increased by 2.23 fold for every log increase in CSF CXCL13 concentration and were independent of CSF WBC and plasma HIV RNA concentrations, peripheral blood CD4+ T cell count and use of antiretroviral medications. A cut-off of 10 pg/mL CSF CXCL13 had high sensitivity and a cut-off of 250 pg/mL or evidence of intrathecal synthesis of CXCL13 had high specificity for diagnosis of both symptomatic and asymptomatic neurosyphilis. CSF concentrations of CXCL13 declined after treatment for neurosyphilis. Conclusions CSF CXCL13 concentration may be particularly useful for diagnosis of neurosyphilis in HIV-infected patients because it is independent of CSF pleocytosis and markers of HIV disease. PMID:20393380
Raviraj; Henry, Renoy A; Rao, G Ganapathi
2017-04-01
Tuberculous meningitis is an infection of the meninges caused by Mycobacterium tuberculosis . It is one of the most common infectious diseases of the Central Nervous System (CNS) and a major health problem in developing countries like India. If there is delay in diagnosis and initiation of specific treatment, it causes significant morbidity and mortality. CSF-ADA 10 U/l is the standard cut off value that is used for differentiation between Tuberculous (TBM) and Non-Tuberculous Meningitis (non-TBM). To determine and validate a lower cut off value for CSF-ADA for diagnosing TBM in an Indian setting. This was a prospective study involving 85 cases of meningitis whose CSF were analysed and ADA estimated using an enzymatic deamination assay kit. Diagnosis of various types of meningitis was made based on specified diagnostic criteria. The comparison of mean value of CSF- ADA activity of the two types of meningitis was done using two Sample t-test. A p-value of <0.05 was considered as significant. Cut off value to differentiate between TBM and non-TBM meningitis was determined using ROC curve analysis. The CSF-ADA activity of TBM and non-TBM cases was compared. The mean CSF-ADA activity was found to be significantly higher in TBM patients (10.97±4.43; Mean±SD) than in non-TBM patients (5.09±1.53) which was statistically significant with a p-value of <0.001. A cut off value of 6.65 was calculated using ROC curve for the diagnosis of TBM which gave a sensitivity of 85.3% and a specificity of 84.3% for differentiating TBM from non-TBM. The positive predictive value was 78.3% and negative predictive value of 89.5% using the above cut off. The positive likelihood ratio was 5.44 and negative likelihood ratio of 0.17 when this lower cut off value was applied. This study has demonstrated that CSF-ADA can be used as an important diagnostic tool in early diagnosis of TBM using a cut off value of 6.65. This cut off value gave a good sensitivity and specificity in differentiating it from non-TBM.
Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
NASA Astrophysics Data System (ADS)
Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin
2017-09-01
In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 < Re < 300. A constant heat flux of 10,000 W/m2 is exercised on the lower walls of the studied geometry. Further, the effect of triangular ribs with angle of attacks of 30°, 45° and 60° is studied on flow parameters and heat transfer due to the fluid flow. The results show that an increase in the volume fraction of nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).
NASA Astrophysics Data System (ADS)
Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.
2017-12-01
A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
NASA Astrophysics Data System (ADS)
Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.
2017-12-01
South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to a strong structural control on the hot reservoir location and meteoric water content, T3 allowing deeper hot fluid provenances and T1 more meteoric influx.
Non-invasive determination of external forces in vortex-pair-cylinder interactions
NASA Astrophysics Data System (ADS)
Hartmann, D.; Schröder, W.; Shashikanth, B. N.
2012-06-01
Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.
Ben-Horin, Shomron; Bank, Ilan; Shinfeld, Ami; Kachel, Erez; Guetta, Victor; Livneh, Avi
2007-05-01
In contrast to pleural effusion or ascites, there are few data regarding the chemical and cell-count parameters of pericardial effusions (PEs) to aid diagnosis. In the present work, all patients who underwent pericardiocentesis during a 9-year period (1995 to 2004) at a tertiary hospital and who had available fluid laboratory results were retrospectively identified. Causes of PE were diagnosed using predetermined criteria. The results of pericardial fluid biochemical and hematologic tests were compared with blood test results and analyzed to identify cut-off points that could distinguish among the various causes or among various groups of causes. Of 173 patients who underwent pericardiocentesis in the study period, 120 had available fluid laboratory results, and these patients constituted the study population. The most common causes of PE were neoplastic, idiopathic, and effusion related to acute pericarditis (accounting for 42, 22, and 17 of 120 patients, respectively). Most fluids (118 of 120) would have been classified as exudates by adopting Light's pleural effusion criteria. Moreover, in all parameters examined, there was a considerable overlap of test results among the different pericardial disorders. Thus, no biochemical or cell-count parameter was found useful at reasonable accuracy for differentiating among the individual causes or among various groups of pericardial disorders. In conclusion, most PEs are exudates. The analysis of pericardial fluid biochemical and cell-count composition is generally not helpful for the diagnosis of most PEs.
Li, Qiao-Xin; Villemagne, Victor L; Doecke, James D; Rembach, Alan; Sarros, Shannon; Varghese, Shiji; McGlade, Amelia; Laughton, Katrina M; Pertile, Kelly K; Fowler, Christopher J; Rumble, Rebecca L; Trounson, Brett O; Taddei, Kevin; Rainey-Smith, Stephanie R; Laws, Simon M; Robertson, Joanne S; Evered, Lisbeth A; Silbert, Brendan; Ellis, Kathryn A; Rowe, Christopher C; Macaulay, S Lance; Darby, David; Martins, Ralph N; Ames, David; Masters, Colin L; Collins, Steven
2015-01-01
The cerebrospinal fluid (CSF) amyloid-β (Aβ)(1-42), total-tau (T-tau), and phosphorylated-tau (P-tau181P) profile has been established as a valuable biomarker for Alzheimer's disease (AD). The current study aimed to determine CSF biomarker cut-points using positron emission tomography (PET) Aβ imaging screened subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, as well as correlate CSF analyte cut-points across a range of PET Aβ amyloid ligands. Aβ pathology was determined by PET imaging, utilizing ¹¹C-Pittsburgh Compound B, ¹⁸F-flutemetamol, or ¹⁸F-florbetapir, in 157 AIBL participants who also underwent CSF collection. Using an INNOTEST assay, cut-points were established (Aβ(1-42) >544 ng/L, T-tau <407 ng/L, and P-tau181P <78 ng/L) employing a rank based method to define a "positive" CSF in the sub-cohort of amyloid-PET negative healthy participants (n = 97), and compared with the presence of PET demonstrated AD pathology. CSF Aβ(1-42) was the strongest individual biomarker, detecting cognitively impaired PET positive mild cognitive impairment (MCI)/AD with 85% sensitivity and 91% specificity. The ratio of P-tau181P or T-tau to Aβ(1-42) provided greater accuracy, predicting MCI/AD with Aβ pathology with ≥92% sensitivity and specificity. Cross-validated accuracy, using all three biomarkers or the ratio of P-tau or T-tau to Aβ(1-42) to predict MCI/AD, reached ≥92% sensitivity and specificity. CSF Aβ(1-42) levels and analyte combination ratios demonstrated very high correlation with PET Aβ imaging. Our study offers additional support for CSF biomarkers in the early and accurate detection of AD pathology, including enrichment of patient cohorts for treatment trials even at the pre-symptomatic stage.
Krotulski, Alex J; Mohr, Amanda L A; Friscia, Melissa; Logan, Barry K
2018-04-01
The collection and analysis of drugs in oral fluid (OF) at the roadside has become more feasible with the introduction of portable testing devices such as the Alere™ DDS®2 Mobile Test System (DDS®2). The objective of this study was to compare the on-site results for the DDS®2 to laboratory-based confirmatory assays with respect to detection of drugs of abuse in human subjects. As part of a larger Institutional Review Board approved study, two OF samples were collected from each participant at a music festival in Miami, FL, USA. One OF sample was field screened using the DDS®2, and a confirmatory OF sample was collected using the Quantisal™ OF collection device and submitted to the laboratory for testing. In total, 124 subjects participated in this study providing two contemporaneous OF samples. DDS®2 field screening yielded positive results for delta-9-tetrahydrocannabinol (THC) (n = 27), cocaine (n = 12), amphetamine (n = 3), methamphetamine (n = 3) and benzodiazepine (n = 1). No opiate-positive OF samples were detected. For cocaine, amphetamine, methamphetamine and benzodiazepines, the DDS®2 displayed sensitivity, specificity and accuracy of 100%. For THC, the DDS®2 displayed sensitivity of 90%, specificity of 100% and accuracy of 97.5%, when the threshold for confirmation matched that of the manufacturers advertised cut-off. When this confirmatory threshold was lowered to the analytical limit of detection (i.e., 1 ng/mL), apparent device performance for THC was poorer due to additional samples testing positive by confirmatory assay that had tested negative on the DDS®2, demonstrating a need for correlation between manufacturer cut-off and analytical reporting limit. These results from drug-using subjects demonstrate the value of field-based OF testing, and illustrate the significance of selecting an appropriate confirmation cut-off concentration with respect to performance evaluation and detection of drug use.
Agarwal, Ashok Kumar; Bansal, Sonia; Nand, Vidya
2014-02-01
Tuberculosis kills 3.70 lakh patients in India every year,out of which 7-12 % are meningeal involvement. Delay in its diagnosis and initiation of treatment results in poor prognosis and squeal in up to 25% of cases. The aim of the present study is to look for a simple, rapid, cost effective, and fairly specific test in differentiating tubercular aetiology from other causes of meningitis. In the present study we measured the adenosine deaminase activity (ADA) in Cerebrospinal Fluid (CSF) of Tubercular Meningitis (TBM) and non-TBM patients. Fifty six patients attending hospital with symptoms and signs of meningitis were selected and divided into three groups: tubercular, pyogenic, and aseptic meningitis, depending upon the accepted criteria. CSF was drawn and ADA estimated. Out of 32 tubercular patients, 28 had CSF-ADA at or above the cut-off value while four had below. Out of 24 non-tuberculous patients (pyogenic and aseptic meningitis), two aseptic meningitis (AM) patient had ADA levels at or above the cut-off value while 22 had below this value. RESULTS of our study indicate that ADA level estimation in CSF is not only of considerable value in the diagnosis of TBM, CSF, and ADA level 10 U/L as a cut-off value with sensitivity 87.5% and specificity 83.33% and positive predictive value of the test was 87.5%.and 83.3% negative predictive value. It can be concluded that ADA estimation in CSF is not only simple, inexpensive and rapid but also fairly specific method for making a diagnosis of tuberculous aetiology in TBM, especially when there is a dilemma of differentiating the tuberculous aetiology from non-tuberculous ones. For this reason ADA estimation in TBM may find a place as a routine investigation.
Development of Flexible Extremities Protection utilizing Shear Thickening Fluid/Fabric Composites
2012-01-19
absorption frequencies. With the addition of Gluta, the peak for each of the three bonds increased indicating that the total number of bonds (i.e., cross...fiber to be investigated a gage length of 127 mm. The fiber was clamped at one end and at a position of 127 mm at that end. A Celanese food ...general behavior of high performance fibers during cut resistance testing at normal incidence with a Celanese food processing blade. This data is the
2008 Program of Study: Perspectives and Challenges in GFD (Geophysical Fluid Dynamics)
2009-03-01
half of the complex k- plane , and Φ− is similarly well defined in the lower half of 338 PSfrag replacements Im k Re k−i +i Figure 2: Branch cuts in...domains ⊕ and , which include, respectively, the upper and lower half k- planes . The full Fourier transform of φ (and of h, d, etc.) is then well defined in...contour at infinity in the lower half k- plane ; the solution will only contain waves arising from poles located in the
Analysis and Optimization of the Production Process of Cooked Sausage Meat Matrices
NASA Astrophysics Data System (ADS)
Diez, L.; Rauh, C.; Delgado, A.
2010-09-01
In the production of cooked sausages a critical step for product quality is the cutting process, where the comminuting and mixing of meat, fat, ice and spices are carried out. These processes take usually place in bowl cutters, which main control parameters are the working time, knife geometry (shape and sharpness) and rotational velocities of the knives and the bowl. The choice of the geometry and sharpness of the knives influences not only the meat matrix properties (mechanical, rheological, etc.) and, as a consequence, the sensory value of the sausages (size of connective tissue particles, water binding, etc.), but also the energetic demand for the production. However, the cutting process proves to be understood only fragmentarily due to the complex colloid chemical and mechanical behavior of the product. This is documented on the one hand by numerous knife types on the market, extremely empirical approach during determination of geometry and process parameters in practice as well as, on the other hand, by contradictory statements and explanation approaches of observed phenomena present in literature. The present contribution applies numerical simulations to analyze thermo fluid mechanical phenomena, e.g. shear stresses, during the cutting process of the non-Newtonian meat matrix. Combining these results with selected experimental investigations from literature, e.g. sensory properties, knife geometry, velocity of the knife and bowl, improvements of the cutting and mixing process are proposed using cognitive algorithms (Artificial neural networks) aiming at an optimization regarding energy and time demand and product quality.
Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring
NASA Astrophysics Data System (ADS)
Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.
2005-12-01
Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakopoulos, A.
1991-01-01
This paper presents a study of hydrothermal alteration on Milos Island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals. The chemical composition of the minerals (104 analyses) was determined with Electron Probe Microanalysis. The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken frommore » 341 m depth were determined and used for geochemical calculations. A number of reactions feasible at the P-T conditions of the geothermal field are given to establish the chemical evolution of the hydrothermal fluid. The distribution of the hydrothermal minerals indicates the dilution of the K-, Na- Cl-rich hydrothermal fluid of the deep reservoir by a Ca-, Mg-rich cold water at a shallower level.« less
3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls
NASA Astrophysics Data System (ADS)
Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook
2017-03-01
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.
Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species.
Pillard, D A; Cornell, J S; Dufresne, D L; Hernandez, M T
2001-02-01
Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures such as coolants, deicers, surface coatings, cutting fluids, and hydraulic fluids. Recent studies have shown that benzotriazole derivatives are a major component of aircraft deicing fluids (ADFs) responsible for toxicity to bacteria (Microtox). Our current research compared the toxicity of benzotriazole (BT), two methylbenzotriazole (MeBT) isomers, and butylbenzotriazole (BBT). Acute toxicity assays were used to model the response of three common test organisms: Microtox bacteria (Vibrio fischeri), fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia). The response of all the three organisms varied over two orders of magnitude among all compounds. Vibrio fischeri was more sensitive than either C. dubia or P. promelas to all the test materials, while C. dubia was less sensitive than P. promelas. The response of test organisms to unmethylated benzotriazole and 4-methylbenzotriazole was similar, whereas 5-methylbenzotriazole was more toxic than either of these two compounds. BBT was the most toxic benzotriazole derivative tested, inducing acute toxicity at a concentration of < or = 3.3 mg/l to all organisms.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.
2016-04-01
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.
Supercritical fluid technology: concepts and pharmaceutical applications.
Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama
2011-01-01
In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.
Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R
2013-03-01
The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.
Liu, Guangyun; Huang, Huibin; Qin, Hanyu; Du, Bin
2018-05-01
To evaluate the accuracy of central venous-to-arterial carbon dioxide partial pressure difference (Pcv-aCO 2 ) before and after rapid rehydration test (fluid challenge) in predicting the fluid responsiveness in patients with septic shock. A prospective observation was conducted. Forty septic shock patients admitted to medical intensive care unit (ICU) of Peking Union Medical College Hospital from October 2015 to June 2017 were enrolled. All of the patients received fluid challenge in the presence of invasive hemodynamic monitoring. Heart rate (HR), blood pressure, cardiac index (CI), Pcv-aCO 2 and other physiological variables were recorded at 10 minutes before and immediately after fluid challenge. Fluid responsiveness was defined as an increase in CI greater than 10% after fluid challenge, whereas fluid non-responsiveness was defined as no increase or increase in CI less than 10%. The correlation between Pcv-aCO 2 and CI was explored by Pearson correlation analysis. Receiver operating characteristic (ROC) curves were established to evaluate the discriminatory abilities of baseline and the changes after fluid challenge in Pcv-aCO 2 and other physiological variables to define the fluid responsiveness. The patients were separated into two groups according to the initial value of Pcv-aCO 2 . The cut-off value of 6 mmHg (1 mmHg = 0.133 kPa) was chosen according to previous studies. The discriminatory abilities of baseline and the change in Pcv-aCO 2 (ΔPcv-aCO 2 ) were assessed in each group. A total of 40 patients were finally included in this study. Twenty-two patients responded to the fluid challenge (responders). Eighteen patients were fluid non-responders. There was no significant difference in baseline physiological variable between the two groups. Fluid challenge could increase CI and blood pressure significantly, decrease HR notably and had no effect on Pcv-aCO 2 in fluid responders. In non-responders, blood pressure was increased significantly and CI, HR, Pcv-aCO 2 showed no change after fluid challenge. Pcv-aCO 2 was comparable in responders and non-responders. In 40 patients, CI and Pcv-aCO 2 was inversely correlated before fluid challenge (r = -0.391, P = 0.012) and the correlation between them weakened after fluid challenge (r = -0.301, P = 0.059). There was no significant correlation between the changes in CI and Pcv-aCO 2 after fluid challenge (r = -0.164, P = 0.312). The baseline Pcv-aCO 2 and ΔPcv-aCO 2 could not discriminate between responders and non-responders, with the area under ROC curve (AUC) of 0.50 [95% confidence interval (95%CI) = 0.32-0.69] and 0.51 (95%CI = 0.33-0.70), respectively. HR and blood pressure before fluid challenge and their changes after fluid challenge showed very poor discriminative performances. Before fluid challenge, 16 patients had a Pcv-aCO 2 > 6 mmHg. Their mean CI was significantly lower and Pcv-aCO 2 was significantly higher than that in 24 patients whose Pcv-aCO 2 ≤ 6 mmHg [n = 24; CI (mL×s -1 ×m -2 ): 48.3±11.7 vs. 65.0±18.3, P < 0.01; Pcv-aCO 2 (mmHg): 8.4±1.9 vs. 2.9±2.8, P < 0.01]. Pcv-aCO 2 was decreased significantly after fluid challenge in patients with an initial Pcv-aCO 2 > 6 mmHg and their ΔPcv-aCO 2 was notably different as compared with the patients whose baseline Pcv-aCO 2 ≤ 6 mmHg (mmHg: -3.8±3.4 vs. 0.9±2.9, P < 0.01). 68.8% (11/16) patients responded to the fluid challenge in patients with an initial Pcv-aCO 2 > 6 mmHg. The AUC of the baseline Pcv-aCO 2 and ΔPcv-aCO 2 to define fluid responsiveness was 0.85 (95%CI = 0.66-1.00) and 0.84 (95%CI = 0.63-1.00), respectively, and the positive predictive value was 1 when the cut-off value was 8.0 mmHg and -4.2 mmHg, respectively. 45.8% (11/24) patients responded to the fluid challenge in patients whose baseline Pcv-aCO 2 ≤ 6 mmHg. There was no predictive value of baseline Pcv-aCO 2 and ΔPcv-aCO 2 on fluid responsiveness. Pcv-aCO 2 and its change cannot serve as a surrogate of the change in cardiac output to define the response to fluid challenge in septic shock patients whose baseline Pcv-aCO 2 ≤ 6 mmHg, while the predictive values of baseline Pcv-aCO 2 and the change in Pcv-aCO 2 are presented in patients with the initial value of Pcv-aCO 2 > 6 mmHg. Clinical Trials, NCT01941472.
NASA Astrophysics Data System (ADS)
Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J.
2016-12-01
The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime-(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid-borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U-Th-Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.
Menéndez-Valladares, P; García-Sánchez, M I; Cuadri Benítez, P; Lucas, M; Adorna Martínez, M; Carranco Galán, V; García De Veas Silva, J L; Bermudo Guitarte, C; Izquierdo Ayuso, G
2015-01-01
Multiple sclerosis (MS) initiates with a first attack or clinically isolated syndrome (CIS). The importance of an early treatment in MS leads to the search, as soon as possible, for novel biomarkers which can predict conversion from CIS to MS. The purpose of this study was to assess the predictive value of the kappa index ([Formula: see text] index), using kappa free light light chains ([Formula: see text]FLCs) in cerebrospinal fluid (CSF), for the conversion of CIS patients to MS, and compare its accuracy with other parameters used in clinical practice. FLC levels were analysed in CSF from 176 patients: 70 as control group, 77 CIS, and 29 relapsing-remitting MS. FLC levels were quantified by nephelometry. [Formula: see text] Index sensitivity and specificity (93.1%; 95.7%) was higher than those from the immunoglobulin G (IgG) index (75.9%; 94.3%), and lower than those from oligoclonal IgG bands (OCGBs) (96.5%; 98.6%). The optimal cut-off for [Formula: see text] index was 10.62. Most of the CIS patients with [Formula: see text] index >10.62 presented OCGBs, IgG index >0.56 and fulfilled magnetic resonance imaging (MRI) criteria. CIS patients above [Formula: see text] index cut-off of 10.62 present 7.34-fold risk of conversion to MS than CIS below this value. The [Formula: see text] index correlated with positive OCGBs, IgG index above 0.56 and MRI criteria.
Menéndez-Valladares, P; García-Sánchez, MI; Cuadri Benítez, P; Lucas, M; Adorna Martínez, M; Carranco Galán, V; García De Veas Silva, JL; Bermudo Guitarte, C
2015-01-01
Background Multiple sclerosis (MS) initiates with a first attack or clinically isolated syndrome (CIS). The importance of an early treatment in MS leads to the search, as soon as possible, for novel biomarkers which can predict conversion from CIS to MS. Objective The purpose of this study was to assess the predictive value of the kappa index (κ index), using kappa free light light chains (κFLCs) in cerebrospinal fluid (CSF), for the conversion of CIS patients to MS, and compare its accuracy with other parameters used in clinical practice. Methods FLC levels were analysed in CSF from 176 patients: 70 as control group, 77 CIS, and 29 relapsing–remitting MS. FLC levels were quantified by nephelometry. Results κ Index sensitivity and specificity (93.1%; 95.7%) was higher than those from the immunoglobulin G (IgG) index (75.9%; 94.3%), and lower than those from oligoclonal IgG bands (OCGBs) (96.5%; 98.6%). The optimal cut-off for κ index was 10.62. Most of the CIS patients with κ index >10.62 presented OCGBs, IgG index >0.56 and fulfilled magnetic resonance imaging (MRI) criteria. Conclusion CIS patients above κ index cut-off of 10.62 present 7.34-fold risk of conversion to MS than CIS below this value. The κ index correlated with positive OCGBs, IgG index above 0.56 and MRI criteria. PMID:28607709
Effect of a water-based drilling waste on receiving soil properties and plants growth.
Saint-Fort, Roger; Ashtani, Sahar
2014-01-01
This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.
Assessment of a multiple biomarker panel for diagnosis of amyotrophic lateral sclerosis.
Chen, Xueping; Chen, Yongping; Wei, Qianqian; Ou, Ruwei; Cao, Bei; Zhao, Bi; Shang, Hui-Fang
2016-09-15
The aim of the study was to assess a panel of promising biomarkers for their ability to improve diagnosis of sporadic amyotrophic lateral sclerosis (ALS). Forty patients with sporadic ALS and 40 controls with other neurological diseases were evaluated. Levels of phosphorylated neurofilament heavy chain (pNfH), S100-β, cystatin C, and chitotriosidase (CHIT) in cerebrospinal fluid were assayed using two-site solid-phase sandwich ELISA. Patients with sporadic ALS showed higher levels of pNfH and CHIT than controls, but lower levels of cystatin C. Multivariate logistic regression that adjusted for patient age and sex identified significant associations between sporadic ALS and levels of pNfH, CHIT and cystatin C. Levels of pNfH correlated positively with rate of progression and decline based on the Amyotrophic Lateral Sclerosis Functional Rating Scale - Revised. Based on receiver operating curve analysis, a pNfH cut-off of 437 ng/L discriminated patients from controls with a sensitivity of 97.3 % and specificity of 83.8 %. A CHIT cut-off of 1593.779 ng/L discriminated patients from controls with a sensitivity of 83.8 % and specificity of 81.1 %. Combining the two biomarkers gave a sensitivity of 83.8 % and specificity of 91.9 %. Levels of pNfH in cerebrospinal fluid may be a reliable biomarker for diagnosing ALS, and combining this biomarker with levels of CHIT may improve diagnostic accuracy.
A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations
NASA Technical Reports Server (NTRS)
Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.
2013-01-01
This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.
ADVANCED CUTTINGS TRANSPORT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan Miska; Troy Reed; Ergun Kuru
2004-09-30
The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less
Chien, Ying-Chun; Sheu, Chau-Chyun; Tsai, Ming-Ju; Fang, Wen-Feng; Chen, Yu-Mu; Kao, Kuo-Chin; Hu, Han-Chung; Perng, Wann-Cherng; Yang, Kuang-Yao; Chen, Wei-Chih; Liang, Shinn-Jye; Wu, Chieh-Liang; Wang, Hao-Chien; Chan, Ming-Cheng
2018-01-01
Background Fluid balance is a fundamental management of patients with sepsis, and this study aimed to investigate the impact of cumulative fluid balance on critically ill patients with influenza admitted to an intensive care unit (ICU). Methods This multicenter retrospective cohort study was conducted by the Taiwan Severe Influenza Research Consortium (TSIRC) which includes eight medical centers. Patients with virology-proven influenza infection admitted to ICUs between October 2015 and March 2016 were included for analysis. Results A total of 296 patients were enrolled (mean age: 61.4±15.6 years; 62.8% men), and 92.2% (273/296) of them required mechanical ventilation. In the survivors, the daily fluid balance was positive from day 1 to day 3, and then gradually became negative from day 4 to day 7, whereas daily fluid balance was continuously positive in the non-survivors. Using the cumulative fluid balance from day 1–4 as a cut-off point, we found that a negative cumulative day 1–4 fluid balance was associated with a lower 30-day mortality rate (log-rank test, P = 0.003). To evaluate the impact of shock on this association, we divided the patients into shock and non-shock groups. The positive correlation between negative day 1–4 fluid balance and mortality was significant in the non-shock group (log-rank test, P = 0.008), but not in the shock group (log-rank test, P = 0.396). In a multivariate Cox proportional hazard regression model adjusted for age, sex, cerebrovascular disease, and PaO2/FiO2, day 1–4 fluid balance was independently associated with a higher 30-day mortality rate (aHR 1.088, 95% CI: 1.007–1.174). Conclusions A negative day 1–4 cumulative fluid balance was associated with a lower mortality rate in critically ill patients with influenza. Our findings indicate the critical role of conservative fluid strategy in the management of patients with complicated influenza. PMID:29315320
Stability of fault submitted to fluid injections
NASA Astrophysics Data System (ADS)
Brantut, N.; Passelegue, F. X.; Mitchell, T. M.
2017-12-01
Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes recently observed in Oklahoma (Mw 5.6, 2016).
NASA Astrophysics Data System (ADS)
Bartram, H.; Tobin, H. J.; Goodwin, L. B.
2015-12-01
Plate-bounding subduction zone thrust systems are the source of major earthquakes and tsunamis, but their mechanics and internal structure remain poorly understood and relatively little-studied compared to faults in continental crust. Exposures in exhumed accretionary wedges present an opportunity to study seismogenic subduction thrusts in detail. In the Marin Headlands, a series of thrusts imbricates mechanically distinct lithologic units of the Mesozoic Franciscan Complex including pillow basalt, radiolarian chert, black mudstone, and turbidites. We examine variations in distribution and character of structure and vein occurrence in two exposures of the Rodeo Cove thrust, a fossil plate boundary exposed in the Marin Headlands. We observe a lithologic control on the degree and nature of fault localization. At Black Sand Beach, deformation is localized in broad fault cores of sheared black mudstone. Altered basalts, thrust over greywacke, mudstone, and chert, retain their coherence and pillow structures. Veins are only locally present. In contrast, mudstone is virtually absent from the exposure 2 km away at Rodeo Beach. At this location, deformation is concentrated in the altered basalts, which display evidence of extensive vein-rock interaction. Altered basalts exhibit a pervasive foliation, which is locally disrupted by both foliation-parallel and cross-cutting carbonate-filled veins and carbonate cemented breccia. Veins are voluminous (~50%) at this location. All the structures are cut by anastomosing brittle shear zones of foliated cataclasite or gouge. Analyses of vein chemistry will allow us to compare the sources of fluids that precipitated the common vein sets at Rodeo Beach to the locally developed veins at Black Sand Beach. These observations lead us to hypothesize that in the absence of a mechanically weak lithology, elevated pore fluid pressure is required for shear failure. If so, the vein-rich altered basalt at Rodeo Beach may record failure of an igneous basement asperity.
Design and fabrication of magnetic coolant filter
NASA Astrophysics Data System (ADS)
Prashanth, B. N.
2017-07-01
Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not lose its strength even number of years of use. Dirty coolant is fed from the machines in to the reservoir of the coolant filter either by a pump or taken by the gravity and flows under the tray. This attracts the ferrous particles and builds up a cake of ferrous material and finally taken away by the scraper. The moving permanent magnets mounted on the shaft attracts ferrous chips and slide them on to plate and then to the discharge end or sludge bin. The coolant separated from chips flow back to the coolant tank. Well in this fast changing growth of metal working operation the recycling of cutting fluids become very important for the management of coolant. With the help of this developed model of magnetic coolant separator we can get highly efficient way of filtration guarantying fine finish, dimensional accuracy and increased tool life. The most significant role of this filter is that, it will reduce the waste disposal of coolant and a net profit for the production industries.
Nwanyanwu, O C; Tabasuri, T H; Harris, G R
1989-08-01
In 1982 the Centers for Disease Control published a set of recommendations and measures to protect persons working in health care settings or performing mortician services from possible exposure to the human immunodeficiency virus. This study of a number of funeral homes in the Fort Worth area was designed to determine the level of exposure of funeral home workers to blood and other body fluids and also to assess existing protective measures and practices in the industry. Workers in 22 funeral home franchises were surveyed with a predesigned questionnaire. Eighty-five responses from 20 of the 22 establishments were received. All 85 respondents admitted exposure of varying degrees to blood and body fluids. Sixty persons (70%) admitted heavy exposure, that is, frequent splashes. Analysis of the responses showed that 81 of 85 (95.3%) persons consistently wore gloves while performing tasks that might expose them to blood or other body fluids. Of the 60 persons who were heavily exposed, 43 wore long-sleeved gowns, 27 wore waterproof aprons, 17 surgical masks, and 15 goggles. The study further revealed that 52.9% (45/85) of the respondents had sustained accidental cuts or puncture wounds on the job. In light of these findings it is important to target educational efforts to persons in this industry to help them minimize their risks of infection with blood and body fluid borne infections.
Chen, Jiao; Li, Xiaozhong; Bai, Zhenjiang; Fang, Fang; Hua, Jun; Li, Ying; Pan, Jian; Wang, Jian; Feng, Xing; Li, Yanhong
2016-01-01
Objective To evaluate whether early and acquired daily fluid overload (FO), as well as fluctuations in fluid accumulation, were associated with adverse outcomes in critically ill children with severe sepsis. Methods This study enrolled 202 children in a pediatric intensive care unit (PICU) with severe sepsis. Early fluid overload was defined as ≥5% fluid accumulation occurring in the first 24 hours of PICU admission. The maximum daily fluid accumulation ≥5% occurring during the next 6 days in patients with at least 48 hours of PICU stay was defined as PICU-acquired daily fluid overload. The fluctuation in fluid accumulation was calculated as the difference between the maximum and the minimum daily fluid accumulation obtained during the first 7 days after admission. Results Of the 202 patients, 61 (30.2%) died during PICU stay. Among all patients, 41 (20.3%) experienced early fluid overload, including 9 with a FO ≥10%. Among patients with at least 48 hours of PICU stay (n = 154), 36 (23.4%) developed PICU-acquired daily fluid overload, including 2 with a FO ≥10%. Both early fluid overload (AOR = 1.20; 95% CI 1.08–1.33; P = 0.001; n = 202) and PICU-acquired daily fluid overload (AOR = 5.47 per log increase; 95% CI 1.15–25.96; P = 0.032; n = 154) were independent risk factors associated with mortality after adjusting for age, illness severity, etc. However, fluctuations in fluid accumulation were not associated with mortality after adjustment. Length of PICU stay increased with greater fluctuations in fluid accumulation in all patients with at least 48 hours of PICU stay (FO <5%, 5%-10% vs. ≥10%: 4 [3–8], 7 [4–11] vs. 10 [6–16] days; P <0.001; n = 154) and in survivors (4 [3–8], 7 [5–11] vs. 10 [5–15] days; P <0.001; n = 121). Early fluid overload achieved an area under-the-receiver-operating-characteristic curve of 0.74 (95% CI 0.65–0.82; P <0.001; n = 202) for predicting mortality in patients with severe sepsis, with a sensitivity of 67.2% and a specificity of 80.1% at the optimal cut-off value of 2.65%. Conclusions Both early and acquired daily fluid overload were independently associated with PICU mortality in children with severe sepsis. PMID:27467522
NASA Astrophysics Data System (ADS)
Williams, Jack N.; Toy, Virginia G.; Smith, Steven A. F.; Boulton, Carolyn
2017-10-01
The Alpine Fault has a <50 m wide geochemically distinct hanging-wall alteration zone. Using a combination of petrological and cathodoluminescence (CL) microscopy, Energy Dispersive Spectroscopy and X-ray diffraction, we document the habitat and mineralising phases of macro- and micro-fractures within the alteration zone using samples derived from outcrop and the Deep Fault Drilling Project. Veins predominantly contain calcite, chlorite, K-feldspar or muscovite. Gouge-filled fractures are also observed and reflect filling from mechanical wear and chlorite mineralisation. CL imaging suggests that each calcite vein was opened and sealed in one episode, possibly corresponding to a single seismic cycle. The thermal stability of mineralising phases and their mutually cross-cutting relationships indicates a cyclic history of fracture opening and mineralisation that extends throughout the seismogenic zone. Cataclasites contain intragranular veins that are hosted within quartzofeldspathic clasts, as well as veins that cross-cut clasts and the surrounding matrix. Intragranular calcite veins formed prior to or during cataclasis. Cross-cutting veins are interpreted to have formed by fracturing of relatively indurated cataclasites after near-surface slip localisation within the Alpine Fault's principal slip zone gouges (PSZs). These observations clearly demonstrate that shear strain is most localised in the shallowest part of the seismogenic zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn
2014-01-01
The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less
Graphics supercomputer for computational fluid dynamics research
NASA Astrophysics Data System (ADS)
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
Numerical simulation of heat transfer and fluid flow in laser drilling of metals
NASA Astrophysics Data System (ADS)
Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian
2015-05-01
Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.
Fluid intake rates in ants correlate with their feeding habits.
Paul, J; Roces, F
2003-04-01
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.
2012-01-01
Once the swine were anesthetized, left cervical cut downs were performed and a central venous polyethylene catheter was inserted into the external...open and the liver injury will be examined for evidence of re-bleeding. The venous and arterial pressures at which re-bleeding occur will be...Fig. 1) Figure 1. Clamp used for the pig liver injury model The clamp is placed centrally in the liver and it produces laceration of 1
1991-01-01
8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The
2015-01-01
total volume of blood products (80.4mL/kg vs. 16.7 mL/kg, p G 0.001). Tranexamic acid use was more frequent in the MT+ group (12.4% vs. 1.3%, p G 0.001...kg 80.4 [55.2 to 128.8] 16.7 [10.0 to 25.0] G0.001 Total fluids, mL/kg 179.3 [132.1 to 255.9] 82.4 [48.8 to 120.5] G0.001 Tranexamic acid , n (%) 55
Ouyang, Yiwen; Li, Jingyi; Phaneuf, Christopher; Riehl, Paul S; Forest, Craig; Begley, Matthew; Haverstick, Doris M; Landers, James P
2016-01-21
This paper presents a simple and cost-effective polyester toner microchip fabricated with laser print and cut lithography (PCL) to use with a battery-powered centrifugal platform for fluid handling. The combination of the PCL microfluidic disc and centrifugal platform: (1) allows parallel aliquoting of two different reagents of four different volumes ranging from nL to μL with an accuracy comparable to a piston-driven air pipette; (2) incorporates a reciprocating mixing unit driven by a surface-tension pump for further dilution of reagents, and (3) is amenable to larger scale integration of assay multiplexing (including all valves and mixers) without substantially increasing fabrication cost and time. For a proof of principle, a 10 min colorimetric assay for the quantitation of the protein level in the human blood plasma samples is demonstrated on chip with a limit of detection of ∼5 mg mL(-1) and coefficient of variance of ∼7%.
Bailey, Z.C.; Hanchar, D.W.
1988-01-01
Twenty-four wells were constructed at nine sites at Bear Creek Valley to provide geologic and hydrologic information. Lithologic samples and suits of geophysical logs were obtained from the deepest boreholes at six of the sites. Two of these boreholes at the base of Chestnut Ridge were completed in the Maynardville Limestone and two were completed in the Nolichucky Shale. Two boreholes along Pine Ridge were completed in the Rome Formation. Zones of similar lithology within a borehole were delineated from rock cutting refined by examination of geophysical logs. The contact between the Maynardville Limestone and Nolichucky Shale was identified in two of the boreholes. Fractures and cavities were readily identifiable on the acoustic-televiewer and caliper logs. Distinct water-bearing intervals were also identified from the temperature, fluid resistance, and resistivity logs. Depths at which the drilling encounterd a thrust were identified in two boreholes in the Rome Formation from both rock cutting and geophysical logs. (USGS)
High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh
2012-01-01
A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger distances. To demonstrate the transporting action, a video camera was used to record the movement. The speed of particles was measured from the video images.
McCullough, J; Keller, H
2018-01-01
Hospital malnutrition is an under-recognized issue that leads to a variety of adverse outcomes, especially for older adults. Food/fluid intake (FFI) monitoring in hospital can be used to identify those who are improving and those who need further treatment. Current monitoring practices such as calorie counts are impractical for all patients and a patient-completed tool, if valid, could support routine FFI monitoring. The aim of this research was to determine whether the patient-completed My Meal Intake Tool (M-MIT) can accurately represent FFI at a single meal. Cross-sectional, multi-site. Four acute care hospitals in Canada. 120 patients (65+ yrs, adequate cognition). Participants completed M-MIT for a single meal. Food and fluid waste was visually estimated by a research dietitian at each hospital. Sensitivity (Se), specificity (Sp) and overall agreement were calculated for both food and fluid intake by comparing M-MIT and dietitian estimations to determine criterion validity of M-MIT. Patient and research dietitian comments were used to make revisions to the M-MIT. Using a cut-point of ≤50% intake, Se was 76.2% and 61.9% and Sp was 74.0% and 80.5% for solid and fluids respectively (p<0.001). M-MIT identified a greater proportion of participants (37.2%) as having low FFI (≤50%) than dietitians (25.0%), as well as a greater proportion identified with low fluid intake (28.3% vs. 24.6%). Modest revisions were made to improve the tool. This study has demonstrated initial validity of M-MIT for use in older patients with adequate cognition. Use of M-MIT could promote FFI monitoring as a routine practice to make clinical decisions about care.
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Urai, Janos L.; de Bresser, Johannes H. P.
2012-10-01
We used a combination of broad ion beam cross-sectioning and cryogenic SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary microstructures and fluid distribution in naturally deformed halite from the Qom Kuh salt glacier (central Iran). At the scale of observations, four types of fluid-filled grain boundary can be distinguished by morphology (from straight to wavy), thickness (from 5000 to 50 nm) and the presence of fluid inclusions. The mobility of the brine is shown after cutting the inclusions by broad ion beam (BIB) in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, grain boundary brine is shown either as continuous film or in isolated inclusions. The halite-halite grain boundary between isolated fluid inclusions is interpreted to have formed by fluid-assisted grain boundary healing. Preliminary experiments on the samples at shear stress conditions of natural salt glacier show very slow strain rates (7.4 × 10-10 s-1 and 1 × 10-9 s-1), which are less than expected for pressure solution creep. Both microstructures and deformation experiments suggest interfacial energy-driven grain boundary healing and therefore rendering inactive the pressure solution creep in our samples. This result disagrees with previous microstructural studies of the same sample, which showed microstructural evidence for pressure solution (and dislocation creep). Different explanations are discussed, which imply that both healing and reactivation of grain boundaries are important in salt glaciers, leading to heterogeneous distribution of deformation mechanisms and strain rates in both space and time.
Marsh, E.E.; Goldfarb, R.J.; Hart, C.J.R.; Johnson, C.A.
2003-01-01
The Clear Creek gold occurrences lie within deformed lower greenschist-facies rocks of the western Selwyn basin. They consist of auriferous, sheeted quartz veins that cut six Cretaceous stocks and their hornfels. The veins contain 1-2% combined pyrite and arsenopyrite, with lesser pyrrhotite, bismuthinite, and scheelite, as well as 2-5 g/t Au. New 40Ar/39Ar geochronology of hydrothermal micas indicates that the veins formed within 1-2 million years of granitoid emplacement. Fluid inclusion microthermometry defines a parent ore fluid of -81 mol.% H2O, 14 mol.% CO2, 4 mol.% NaCl ?? KCl, and 1 mol.% CH4, which unmixed into a low- and high-salinity immiscible pair. This suggests a more saline parent fluid and a greater degree of fluid unmixing relative to the other occurrences in the eastern Tintina Gold Province. Inclusions trapped in As- and Bi-rich, high-gold grade veins have homogenization temperatures of 300-350??C, whereas inclusions found in more Ag- and Pb-rich veins are characterized by temperatures of 250-300??C. Fluid inclusion geobarometry suggests hydro-fracturing and gold deposition at 5-7 km depth. The ??18O values of quartz samples range from 13-16??? (per mil) and ??34S for sulfides are also consistent between -3.0???, 0???, with the exception of some outliers from the Contact Zone of the Pukelman stock that indicate a lower temperature second phase of mineralization. It remains uncertain as to whether the Clear Creek ore fluids were exsolved from magmas at depth or from devolatilization reactions within the contact metamorphic aureoles of the intrusions.
Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.
1994-01-01
The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. ?? 1994.
NASA Astrophysics Data System (ADS)
Sotnikova, Irina; Vladykin, Nikolai
2015-04-01
Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and thermobarometric evidence suggests that apatite-fluorite rocks were formed from the residual fluid-melt, separated after crystallization of rare-metal pegmatites. Petrochemical and geochemical data Burpalinsky are in accord of general trend of crystal differentiation of alkaline magma containing small concentrations of CO2 and higher P2O5 and F, which accumulated significantly separated from the pegmatite melts. In some pegmatites fluorite with rare-metal minerals (flyuocerit etc) are separating in schlieren. Apatite-fluorite rocks are cut by leucogranite dyke, having genetic connection with rare-metal pegmatites. Late granitic phases has its own association of rare-metal minerals described by A.A. Ganzeev (1972). Thermobarometric geochemical study of apatite-fluorite rocks Burpala massif found a large number of primary fluid inclusions (15-50 micrometers). Thermal and cryometric research of 60 individual fluid inclusions in fluorite showed the domination of Na, Ca, Mg chlorides and high temperatures salt inclusions in fluorites (above 550C) and melt inclusions in apatites (800C). Apatite-fluorite rocks in massif are similar to foskorites in carbonatite complexes, with similar high Ca content, but instead fluorite, together with other "foskoritovymi" minerals - apatite, magnetite, mica, and pyroxene were formed instead for calcite. Isotopic studies (Sr-Nd) indicate the mantle source of primary magma Burpala massif close to EM-2, which is characteristic of alkaline intrusions in the folded belts (Vladykin 2009). RBRF grant 14-45-04057
Thermally driven microfluidic pumping via reversible shape memory polymers
NASA Astrophysics Data System (ADS)
Robertson, J. M.; Rodriguez, R. X.; Holmes, L. R., Jr.; Mather, P. T.; Wetzel, E. D.
2016-08-01
The need exists for autonomous microfluidic pumping systems that utilize environmental cues to transport fluid within a network of channels for such purposes as heat distribution, self-healing, or optical reconfiguration. Here, we report on reversible thermally driven microfluidic pumping enabled by two-way shape memory polymers. After developing a suitable shape memory polymer (SMP) through variation in the crosslink density, thin and flexible microfluidic devices were constructed by lamination of plastic films with channels defined by laser-cutting of double-sided adhesive film. SMP blisters integrated into the devices provide thermally driven pumping, while opposing elastic blisters are used to generate backpressure for reversible operation. Thermal cycling of the device was found to drive reversible fluid flow: upon heating to 60 °C, the SMP rapidly contracted to fill the surface channels with a transparent fluid, and upon cooling to 8 °C the flow reversed and the channel re-filled with black ink. Combined with a metallized backing layer, this device results in refection of incident light at high temperatures and absorption of light (at the portions covered with channels) at low temperatures. We discuss power-free, autonomous applications ranging from thermal regulation of structures to thermal indication via color change.
Wille, Sarah M R; Ramírez-Fernandez, Maria Del Mar; Samyn, Nele; De Boeck, Gert
2010-04-01
In the past decade much research concerning the impact of cannabis use on road safety has been conducted. More specifically, studies on effects of cannabis smoking on driving performance, as well as epidemiological studies and cannabis-detection techniques have been published. As a result, several countries have adopted driving under the influence of drugs (DUID) legislations, with varying approaches worldwide. A wide variety of bodily fluids have been utilized to determine the presence of cannabis. Urine and blood are the most widely used matrices for DUID legislations. However, more and more publications focus on the usability of oral fluid testing for this purpose. Each matrix provides different information about time and extent of use and likelihood of impairment. This review will focus on the practical aspects of implying a DUID legislation. The pros and cons of the different biological matrices used for Δ(9)-tetrahydrocannabinol screening and quantification will be discussed. In addition, a literature overview concerning (roadside) cannabinoid detection, as well as laboratory confirmation techniques is given. Finally, we will discuss important issues influencing interpretation of these data, such as oral fluid collection, choice of cut-offs, stability and proficiency testing.
Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an
2015-01-01
Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.
Paper pump for passive and programmable transport
Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian
2013-01-01
In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff
2016-11-01
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.
2014-11-01
Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.
Diverter bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J. R.; Alexander, G. G.; Carbaugh, W. L.
1985-06-25
A system and method for installing a fluid flow controller and telescoping spools beneath an offshore bottom supported drilling rig rotary table is disclosed. Upper and lower telescoping spools are provided for initially connecting a Diverter/BOP convertible fluid flow controller between structural casing in the well and a permanent housing beneath the drilling rig rotary table. Clamp means are provided for clamping the rig vent line to an opening in the housing wall of the fluid flow controller during drilling of the borehole through the structural casing in preparation for setting and cementing the conductor casing. In that mode, themore » system is adapted as a diverter system. After the well is drilled for the conductor casing and the conductor casing is cemented and cut off at its top, a mandrel is fitted at the top of the conductor casing to which the lower end of the lower spool may be connected. The system may be used in this configuration as a diverter system, or after removal of the vent line and connection of a kill line to the housing outlet, the system may be used as a low pressure blowout preventer system.« less
Xu, Hong; Liu, Yang; Song, WenYe; Kan, ShunLi; Liu, FeiFei; Zhang, Di; Ning, GuangZhi; Feng, ShiQing
2017-01-01
Abstract Background: Postdural puncture headache (PDPH), mainly resulting from the loss of cerebral spinal fluid (CSF), is a well-known iatrogenic complication of spinal anesthesia and diagnostic lumbar puncture. Spinal needles have been modified to minimize complications. Modifiable risk factors of PDPH mainly included needle size and needle shape. However, whether the incidence of PDPH is significantly different between cutting-point and pencil-point needles was controversial. Then we did a meta-analysis to assess the incidence of PDPH of cutting spinal needle and pencil-point spinal needle. Methods: We included all randomly designed trials, assessing the clinical outcomes in patients given elective spinal anesthesia or diagnostic lumbar puncture with either cutting or pencil-point spinal needle as eligible studies. All selected studies and the risk of bias of them were assessed by 2 investigators. Clinical outcomes including success rates, frequency of PDPH, reported severe PDPH, and the use of epidural blood patch (EBP) were recorded as primary results. Results were evaluated using risk ratio (RR) with 95% confidence interval (CI) for dichotomous variables. Rev Man software (version 5.3) was used to analyze all appropriate data. Results: Twenty-five randomized controlled trials (RCTs) were included in our study. The analysis result revealed that pencil-point spinal needle would result in lower rate of PDPH (RR 2.50; 95% CI [1.96, 3.19]; P < 0.00001) and severe PDPH (RR 3.27; 95% CI [2.15, 4.96]; P < 0.00001). Furthermore, EBP was less used in pencil-point spine needle group (RR 3.69; 95% CI [1.96, 6.95]; P < 0.0001). Conclusions: Current evidences suggest that pencil-point spinal needle was significantly superior compared with cutting spinal needle regarding the frequency of PDPH, PDPH severity, and the use of EBP. In view of this, we recommend the use of pencil-point spinal needle in spinal anesthesia and lumbar puncture. PMID:28383416
Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J
2010-12-31
Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.
NASA Astrophysics Data System (ADS)
DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB
2018-03-01
Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.
NASA Astrophysics Data System (ADS)
Schuck, B.; Janssen, C.; Schleicher, A. M.; Toy, V. G.; Dresen, G.
2018-05-01
The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.
Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off
NASA Technical Reports Server (NTRS)
Kim, Sura; West, Jeff
2011-01-01
NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.
NASA Astrophysics Data System (ADS)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2018-01-01
The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.
Björkhem, Ingemar; Lövgren-Sandblom, Anita; Leoni, Valerio; Meaney, Steve; Brodin, Lovisa; Salveson, Lisette; Winge, Kristian; Pålhagen, Sven; Svenningsson, Per
2013-10-25
Oxysterols are important for cholesterol homeostasis in the brain and may be affected in neurodegenerative diseases. The levels of the brain-derived oxysterol 24S-hydroxycholesterol (24S-OH) have been reported to be markedly reduced in the circulation of patients with Parkinson's disease (PD) (Lee et al., Antioxid. Redox Signal. 11 (2009) 407-420). The finding is surprising in view of the fact that other neurodegenerative diseases are associated with relatively modest effects on the circulating levels of 24S-OH. We determined the plasma and cerebrospinal fluid (CSF) levels of 24S-OH and 27-hydroxycholesterol (27-OH) in patients with PD with different disease duration using a highly accurate method based on isotope dilution-mass spectrometry. All the patients had plasma levels of the different oxysterols within the normal range. When analyzing CSF, 10% of the PD patients were found to have levels of 24S-OH above the cut-off level and interestingly there was a significant correlation between levels of 24S-OH in CSF and duration of the disease (r=0.40, P<0.05). The CSF level of 27-OH was found to be above the cut-off level in 10% of the patients, indicating a defect blood-brain barrier function. There was no correlation between levels of 27-OH in CSF and duration of the disease. These data indicates that oxysterol levels in CSF may be of value to follow disease progression. Copyright © 2013. Published by Elsevier Ireland Ltd.
Alzheimer’s disease cerebrospinal fluid biomarker in cognitively normal subjects
Toledo, Jon B.; Zetterberg, Henrik; van Harten, Argonde C.; Glodzik, Lidia; Martinez-Lage, Pablo; Bocchio-Chiavetto, Luisella; Rami, Lorena; Hansson, Oskar; Sperling, Reisa; Engelborghs, Sebastiaan; Osorio, Ricardo S.; Vanderstichele, Hugo; Vandijck, Manu; Hampel, Harald; Teipl, Stefan; Moghekar, Abhay; Albert, Marilyn; Hu, William T.; Monge Argilés, Jose A.; Gorostidi, Ana; Teunissen, Charlotte E.; De Deyn, Peter P.; Hyman, Bradley T.; Molinuevo, Jose L.; Frisoni, Giovanni B.; Linazasoro, Gurutz; de Leon, Mony J.; van der Flier, Wiesje M.; Scheltens, Philip; Blennow, Kaj; Shaw, Leslie M.
2015-01-01
In a large multicentre sample of cognitively normal subjects, as a function of age, gender and APOE genotype, we studied the frequency of abnormal cerebrospinal fluid levels of Alzheimer’s disease biomarkers including: total tau, phosphorylated tau and amyloid-β1-42. Fifteen cohorts from 12 different centres with either enzyme-linked immunosorbent assays or Luminex® measurements were selected for this study. Each centre sent nine new cerebrospinal fluid aliquots that were used to measure total tau, phosphorylated tau and amyloid-β1-42 in the Gothenburg laboratory. Seven centres showed a high correlation with the new Gothenburg measurements; therefore, 10 cohorts from these centres are included in the analyses here (1233 healthy control subjects, 40–84 years old). Amyloid-β amyloid status (negative or positive) and neurodegeneration status (negative or positive) was established based on the pathological cerebrospinal fluid Alzheimer’s disease cut-off values for cerebrospinal fluid amyloid-β1-42 and total tau, respectively. While gender did not affect these biomarker values, APOE genotype modified the age-associated changes in cerebrospinal fluid biomarkers such that APOE ε4 carriers showed stronger age-related changes in cerebrospinal fluid phosphorylated tau, total tau and amyloid-β1-42 values and APOE ε2 carriers showed the opposite effect. At 40 years of age, 76% of the subjects were classified as amyloid negative, neurodegeneration negative and their frequency decreased to 32% at 85 years. The amyloid-positive neurodegeneration-negative group remained stable. The amyloid-negative neurodegeneration-positive group frequency increased slowly from 1% at 44 years to 16% at 85 years, but its frequency was not affected by APOE genotype. The amyloid-positive neurodegeneration-positive frequency increased from 1% at 53 years to 28% at 85 years. Abnormally low cerebrospinal fluid amyloid-β1-42 levels were already frequent in midlife and APOE genotype strongly affects the levels of cerebrospinal fluid amyloid-β1-42, phosphorylated tau and total tau across the lifespan without influencing the frequency of subjects with suspected non-amyloid pathology. PMID:26220940
Stable Isotopes of Tilted Ignimbrite Calderas in Nevada
NASA Astrophysics Data System (ADS)
John, D. A.; Watts, K. E.; Hofstra, A. H.; Colgan, J. P.; Henry, C.; Bindeman, I. N.
2013-12-01
Mid-Tertiary calderas are exceptionally well exposed in tilted fault blocks of the northern Great Basin, facilitating detailed evolutionary models of their magmatic-hydrothermal systems. The 29.4 Ma Job Canyon caldera, the oldest of 3 overlapping calderas in the Stillwater Range, west-central Nevada, is tilted ~90° exposing a 10-km-thick section of the crust. Large parts of the >7 km-diameter caldera system, including >2 km thickness of intracaldera rhyolitic tuff, lower parts of an ~2 km thick sequence of post-caldera intermediate lavas, and the upper 500 m of the resurgent granodioritic IXL pluton, were pervasively altered to propylitic, argillic, and sericitic assemblages. Sparse quartz×calcite veins cut the tuff. δ18O values of altered whole rock samples range from +4.8 to -9.1‰ but are mostly -6 to -9‰ at paleodepths >2 km. Calculated magmatic δ18O and δD values range from +6.4 to 8.2‰ and ~-70‰, respectively. Calculated fluid compositions using temperatures from fluid inclusions and mineral assemblages are δ18OH2O=-9.5 to -15‰ and δDH2O=-125 to -135‰ (chlorite) and -70 to -80‰ (epidote). Chlorite-whole rock data suggest fluids that were derived from moderately 18O-exchanged meteoric water. Fault blocks in north-central Nevada expose a >5 km upper crustal cross section through the 12-17 x 20 km, 34 Ma Caetano caldera, including >3 km thickness intracaldera rhyolitic Caetano Tuff. Asymmetric caldera subsidence left a depression >1 km deep partly filled with a lake. Magma resurgence and emplacement of shallow granite porphyry plutons drove a hydrothermal system that altered >120 km2 of the caldera to depths >1.5 km. Alteration was focused in an early granite porphyry intrusion and surrounding upper Caetano Tuff and lacustrine sediments. Early pervasive quartz-kaolinite-pyrite alteration grades outward and downward into more restricted quartz-illite/smectite-pyrite alteration. Hematite, quartz, and barite veins and hydrothermal breccias cut early alteration. Whole rock δ18O values of kaolinite-altered tuff and intrusions are +1.7 to +4.7‰. Magmatic δ18O values of Caetano rocks calculated from zircon and major phenocrysts range narrowly from +10.0 to +10.5‰. Calculated fluid compositions from kaolinite are δ18OH2O=-3 to -7‰ and δDH2O=-148 to -160‰, and from quartz and barite veins are δ18OH2O=-4 to -11‰, indicating that hydrothermal fluids also were dominantly 18O-exchanged meteoric water. Compared to the Job Canyon caldera, δDH2O values for Caetano hydrothermal fluids are ~25‰ lower, suggesting that Caetano formed at an elevation about 1 km higher than Job Canyon along the crest of the Nevadaplano. Both calderas hosted vigorous hydrothermal systems driven by heat from magma resurgence that pervasively altered and exchanged 18O and D with 10s to 100s km3 of rock. However, significant assimilation of low-18O hydrothermally altered rocks is not apparent by the exclusively normal-δ18O values of Job Canyon, Caetano, and adjacent younger magmas. Neither caldera is strongly mineralized, probably in part due to low sulfur contents of the hydrothermal fluids. More acidic fluids at Caetano suggest a larger magmatic gas (HCl) input likely resulting from degassing of shallow resurgent magma into the caldera lake.
Development of hybrid fluid jet/float polishing process
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.
2013-09-01
On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.
Bailey, Karen J.
2016-01-01
Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked. PMID:27053722
Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications
NASA Astrophysics Data System (ADS)
Taha Tijerina, Jose Jaime
Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk thermal conductivity. Moreover, bot h-BN and graphene are exfoliated through the same method. In essence, this project, for the first time, unravels the behavior of the exfoliated h-BN effect on reinforced conventional fluids under the influence of atomistic scale structures (particularly, electrically insulating and lubricant/cutting fluids), thereby linking the physical, electrical and mechanical properties of these nanoscale materials. The innovative experimental approach is expected to result in de novo strategies for introducing these systems for new concepts and variables to engineer nanofluid properties suitable for very promising industrial applications.
NASA Astrophysics Data System (ADS)
Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier
2016-04-01
At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and fluid-rock interactions including organic matter present in the whole-rock during ore precipitation. These features show the positive feedback between localization of ductile-brittle deformation-recrystallization, fluid circulation and ore deposition. Accordingly, during orogenic gravitational collapse, the activation of mylonitic-cataclastic low-angle detachments, controlled at first order by temperature, are, at second order, influenced by lithologic heterogeneities that are determinant at localizing fluid circulation, allowing thus a multi-localization of the DBT and ore deposition.
NASA Astrophysics Data System (ADS)
Botella, Olivier; Ait-Messaoud, Mazigh; Pertat, Adrien; Cheny, Yoann; Rigal, Claire
2015-04-01
This paper presents the extension of a well-established immersed boundary/cut-cell method, the LS-STAG method (Cheny and Botella in J Comput Phys 229:1043-1076, 2010), to non-Newtonian flow computations in 2D irregular geometries. One of the distinguished features of our IB method is to use level-set techniques in the cut-cells near the irregular boundary, where accurate discretization is of paramount importance for stability and accuracy of the computations. For this purpose, we present here an accurate discretization of the velocity gradients and shear rate in the cut-cells that fits elegantly in the framework of the velocity-pressure-stress staggered arrangement and the special quadratures developed previously for viscoelastic flows. After assessing the accuracy of the discretization on a benchmark solution for power-law fluids, the LS-STAG code is applied to the flow of various shear-thinning xanthan solutions in a wide-gap, non-coaxial, Taylor-Couette reactor for which rheological characterization, experimental flow measurements (PIV) and FLUENT simulations have recently been performed in our group. Our numerical investigation will give new insight on the flow patterns (onset, size and position of the recirculation zone) and will firmly correlate them to global flow properties such as shear-thinning index, generalized Reynolds number and torque ratio at the cylinders.
Dual Laser-Assisted Lamellar Anterior Keratoplasty with Tophat Graft: A Laboratory Study
Cleary, Catherine; Song, Jonathan C.; Tang, Maolong; Li, Yan; Liu, Ying; Yiu, Samuel; Huang, David
2011-01-01
Objectives To develop a dual laser-assisted lamellar anterior keratoplasty (LALAK) technique, using excimer and femtosecond lasers to perform surgery on eye-bank eyes. Methods First we compared corneal stromal surfaces produced by (1) deep excimer ablation, (2) femtosecond lamellar cuts, and (3) manual dissection, and evaluated the effect of excimer laser smoothing with fluid masking on each surface. Masked observers graded scanning electron microscopy (SEM) images on a 5-point roughness scale. Then we performed a 6-mm diameter excimer laser phototherapeutic keratectomy (PTK) ablation to a residual bed thickness of 200μm, followed by laser smoothing. We used the femtosecond laser to cut donors in a modified top-hat design with a thin tapered brim, which fitted into a manually dissected circumferential pocket at the base of the recipient bed. Fourier-domain optical coherence tomography (OCT) was used to measure corneal pachymetry and evaluate graft fit. Results Deep excimer ablation with smoothing (n=4) produced a significantly (p<0.05) smoother surface (grade=3.5) than deep excimer alone (n=4, grade=3.8) or manual dissection with (n=1, grade=3.8) and without smoothing (n=1, grade=4.8). Deep femtosecond cuts (n=2) produced macroscopic concentric ridges on the stromal surface. Experimental LALAK was performed on 4 recipients prepared by deep excimer ablation and 4 donors cut with the femtosecond laser. After suturing good peripheral graft-host match was observed on FD-OCT imaging. Conclusion These preliminary studies show that the LALAK technique permits improved interface smoothness and graft edge matching. Clinical trials are needed to determine whether these improvements can translate to better vision. PMID:22378114
Lefebvre, Daniel R; Strande, Louise F; Hewitt, Charles W
2008-01-01
Acquiring a blood-borne disease is a risk of performing operations. Most data about seroconversion are based on hollow-bore needlesticks. Some studies have examined the inoculation volumes of pure blood delivered by suture needles. There is a lack of data about the effect of double-gloving on contaminant transmission in less viscous fluids that are not prone to coagulation. We used enzymatic colorimetry to quantify the volume of inoculation delivered by a suture needle that was coated with an aqueous contaminant. Substrate color change was measured using a microplate reader. Both cutting and tapered suture needles were tested against five different glove types and differing numbers of glove layers (from zero to three). One glove layer removed 97% of contaminant from tapered needles and 65% from cutting needles, compared with the no-glove control data. Additional glove layers did not significantly improve contaminant removal from tapered needles (p > 0.05). For the cutting needle, 2 glove layers removed 91% of contaminant, which was significantly better than a single glove (p = 0.002). Three glove layers did not afford statistically significant additional protection (p = 0.122). There were no statistically significant differences between glove types (p = 0.41). With an aqueous needle contaminant, a single glove layer removes contaminant from tapered needles as effectively as multiple glove layers. For cutting needles, double-glove layering offers superior protection. There is no advantage to triple-glove layering. A surgeon should double-glove for maximum safety. Additionally, a surgeon should take advantage of other risk-reduction strategies, such as sharps safety, risk management, and use of sharpless instrumentation when possible.
Recognising Paleoseismic Events and Slip Styles in Vein Microstructures - is Incrementality Enough?
NASA Astrophysics Data System (ADS)
Fagereng, A.; Sibson, R. H.
2008-12-01
'Subduction channels', containing highly sheared, fluid-saturated, trench-fill sediments, are commonly present along subduction thrust interfaces. These shear zones accommodate fast plate boundary slip rates (1~-~10~cm/yr) and exhibit high levels of seismicity, accomplishing slip in a broad range of styles including standard earthquakes, slow slip, non-volcanic tremor and aseismic creep. Exhumed subduction channel fault rocks provide a time-integrated record of these varied slip modes though the degree of overprinting may be considerable. The Chrystalls Beach accretionary mélange, within the Otago Schist accretion-collision assemblage, New Zealand, is analogous to an active subduction channel assemblage. It contains asymmetric lenses of sandstone, chert and minor basalt enclosed within a relatively incompetent, cleaved pelitic matrix. This assemblage has been intensely sheared in a mixed continuous/discontinuous style within a flat-lying, <~4~km thick, shear zone. Ductile structures such as folds, S/C-like structures, and asymmetric boudins and clasts formed by soft sediment deformation and pressure solution creep. An extensive anastomosing vein system can be divided into mutually cross-cutting extension fractures (V1) and slickenfibre shear veins (V2). V1 commonly cut competent lenses within the mélange, while V2 mostly follow lithological contacts. Both vein sets are predominantly elongate-blocky with 'crack-seal' extension and shear increments of 10~- ~100~μm. Little sign of wall rock alteration or heating is present adjacent to V1 veins, which likely formed by incremental hydrofracture with episodic fluid influx. Post-fracture drop in Pf promoted solute precipitation from advecting fluids. This process may reflect fracture and fluid flow in a distributed fault-fracture mesh, an often inferred mechanism of non-volcanic tremor. In contrast, wall rock alteration and pressure solution seams are common adjacent to V2 veins. Slickenfibres on these shear surfaces likely formed by relatively slow dissolution and precipitation of wall rock material, which may translate to a slip mode of rise-time intermediate between earthquakes (seconds - minutes) and aseismic creep (years - infinite). Fibres are typically ≤ 10 cm long, similar to slip observed in slow slip events (rise-time weeks - months). We propose that these veins are possible records of slow slip along weak, fluid-saturated and highly overpressured planes. No definite record of large, fast earthquakes is observed in the complex, either because the rocks never experienced such events, or because significant shear heating was inhibited by thermal pressurisation. The only record of fast events would be discrete planes of cataclasite, easily overprinted by slow interseismic material diffusion. The mélange is a record of episodic, distributed deformation over a range of time- and length-scales, which may reflect distributed seismic activity accommodated by a range of slip modes including episodic tremor and slow slip.
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1991-01-01
The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.
Microgravity Science Laboratory (MSL-1)
NASA Technical Reports Server (NTRS)
Robinson, M. B. (Compiler)
1998-01-01
The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.
NASA Astrophysics Data System (ADS)
Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini
2017-09-01
Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.
13. CLOSEUP OF AFT BULKHEAD IN THE MAIN HOLD. HORIZONTAL ...
13. CLOSE-UP OF AFT BULKHEAD IN THE MAIN HOLD. HORIZONTAL ALUMINUM SCALE RESTING ON STEP IS FOUR FEET LONG. THE BOTTOM OF THE HOLD IS MADE OF POURED CONCRETE AND HAS A CENTER DRAIN TO COLLECT WATER FROM MELTING ICE AND OTHER FLUIDS. THE DRAIN LED TO A SUMP CLEARED BY A BILGE PUMP WHICH PUMPED OVERBOARD. THE RECTANGULAR OPENING IN THE BULKHEAD WAS CUT TO ENABLE EASIER REMOVAL OF THE ENGINE AFTER THE EVELINA M. GOULART WAS ABANDONED. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA
Rotation in Free Fall of Rectangular Wings of Elongated Shape
NASA Technical Reports Server (NTRS)
Dupleich, Paul
1949-01-01
The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department.We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them.
The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone
NASA Astrophysics Data System (ADS)
Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.
2013-12-01
Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins. Whole-rock XRF analyses show Al and Ca content decrease with increasing Si, whereas Na increases towards the core. This can be interpreted as compositional changes of plagioclase to albite-rich ones due to chloritic-propylitic alteration. In the damage zone, LOI increases towards the core but decreases inside of it. This is explained by H2O-rich clays and gypsum in the fault core boundary represented as fault gouge zones whereas in the cataclastic core zone, the decrease in LOI is explained by epidote. Our results show the JF had an evolving permeability structure where a cataclasite-rich core is formed at an early stage, and then a gouge-bounded core is developed which acted as a barrier to fluid from east to west of the fault.
Auble, Gregor T.; Andrews, Austin K.; Ellison, Richard A.; Hamilton, David B.; Johnson, Richard A.; Roelle, James E.; Marmorek, David R.
1983-01-01
Drilling fluids or "muds" are essential components of modern drilling operations. They provide integrity for the well bore, a medium for removal of formation cuttings, and lubrication and cooling of the drill bit and pipe. The modeling workshop described in this report was conducted September 14-18, 1981 in Gulf Breeze, Florida to consider potential impacts of discharged drilling muds and cuttings on the marine environment. The broad goals of the workshop were synthesis of information on fate and effects, identification of general relationships between drilling fluids and the marine environment, and identification of site-specific variables likely to determine impacts of drilling muds and cuttings in various marine sites. The workshop was structured around construction of a model simulating fate and effects of discharges from a single rig into open water areas of the Gulf of Mexico, and discussion of factors that might produce different fate and effects in enclosed areas such as bays and estuaries. The simulation model was composed of four connected submodels. A Discharge/Fate submodel dealt with the discharge characteristics of the rig and the subsequent fate of discharged material. Three effects submodels then calculated biological responses at distances away from the rig for the water column, soft bottom benthos (assuming the rig was located over a soft bottom environment), and hard bottom benthos (assuming the rig was located over a hard bottom environment). The model focused on direct linkages between the discharge and various organisms rather than on how the marine ecosystem itself is interconnected. Behavior of the simulation model indicated relatively localized effects of drilling muds and cuttings discharged from a single platform into open water areas. Water column fate and effects were dominated by rapid dilution. Effects from deposition of spent mud and cuttings were spatially limited with relatively rapid recovery, especially in soft bottom benthic communities which were conceptualized as being adapted to frequent storms. This behavior was generated by the set of assumptions about linkages and functional relationships used to construct the model. Areas of uncertainty included methods for extrapolating 96-hr LC50 so results to exposures of varying lengths and concentrations; recovery rates of benthic communities; responses to various depths and rates of burial; fate and effects of the plume in relationship to stratification layers; and long-term and sub-lethal effects of slightly elevated concentrations of discharged materials. Evaluation of the assumptions of the Soft Bottom Submodel suggest that the assumptions used may have been relatively liberal estimates of resiliency of these communities. Discussion of "closed" water bodies such as bays and estuaries indicated several reasons to expect different and more complex fate and effects behavior in these areas. These factors included different species and communities (such as aquatic macrophytes and oyster beds), more complex circulation and stratification patterns, and potentially more active resuspension processes. Much of the possible difference in behavior in these areas centers around the extent to which they are “closed” or in the relative residence times of water and sediments in these areas as they determine the long-term dispersion of discharged material. Despite the complexity and variability of these areas, a large body of knowledge (such as that concerning fate and physical effects of dredge spoil) that could be effectively employed in analysis of potential fate and physical effects in enclosed areas was identified.
Evaluation of VEGF-C and tumor markers in bronchoalveolar lavage fluid for lung cancer diagnosis.
Cao, Chao; Chen, Zhong-Bo; Sun, Shi-Fang; Yu, Yi-Ming; Ding, Qun-Li; Deng, Zai-Chun
2013-12-11
A total of 87 patients were enrolled and bronchoalveolar lavage fluid (BALF) samples were obtained from all subjects. A significant difference was found in BALF VEGF-C level between patients with squamous cell carcinoma and benign diseases (P = 0.043). In addition, the concentration of NSE in BALF form the malignant group was significantly higher compared with that of the benign groups (P = 0.018). However, no statistical difference was observed in BALF CEA (P = 0.375) or CYFRA21-1 (P = 0.838) between lung cancer patients and nonmalignant controls. With a cut-off value of 2.06 ng/ml, NSE had a sensitivity of 72.9%, a specificity of 69.2%, respectively, in predicting the malignant nature of pulmonary mass. Our study observed that the level of VEGF-C was increased in BALF of patients with squamous cell carcinoma. Moreover, we found that NSE was significantly higher in BALF of lung cancer patients than in benign diseases.
Fluid Surface Deformation by Objects in the Cheerios Effect
NASA Astrophysics Data System (ADS)
Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team
2012-11-01
Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.
NASA Technical Reports Server (NTRS)
Fleming, J. R.
1978-01-01
The limits of blade tolerance were defined. The standard blades are T-2 thickness tolerance. Good results were obtained by using a slurry fluid consisting of mineral oil and a lubricity additive. Adjustments of the formulation and fine tuning of the cutting process with the new fluid are necessary. Test results and consultation indicate that the blade breakage encountered with water based slurries is unavoidable. Two full capacity (974 wafer) runs were made on the large prototype saw. Both runs resulted in extremely low yield. However, the reasons for the low yield were lack of proper technique rather than problems with machine function. The test on the effect of amount of material etched off of an as-sawn wafer on solar cell efficiency were completed. The results agree with previous work at JPL in that the minimum material removed per side that gives maximum efficiency is on the order of 10 microns.
NASA Astrophysics Data System (ADS)
Smith, S. A. F.; Scott, J.; Tarling, M.; Tulley, C. J.; le Roux, P. J.
2017-12-01
At the slab-mantle interface in subduction zones, hydrous fluids released by dehydration reactions are fluxed upwards into the fore-arc mantle corner. The extent to which these fluids can move across the plate interface shear zone has significant implications for understanding the composition of the mantle wedge and the origin of episodic tremor and slow slip. The >1000 km long Livingstone Fault in New Zealand provides a superbly exposed analogue (both in terms of scale and the rock types involved) for the serpentinite shear zone likely to be present along the slab-mantle interface. The Livingstone Fault is a sheared serpentinite mélange up to several hundreds of meters wide that separates greenschist-facies quartzofeldspathic metasediments (e.g. analogue for slab sediments) from variably-serpentinized harzburgitic peridotite (e.g. analogue for mantle wedge). To track element mobility and paleo-fluid flow across the shear zone, Sr and Nd isotopes were measured in five transects across the metasediments, mélange and serpentinized peridotites. Results show that the mélange and serpentinized peridotites (originally with Sr and Nd similar to Permian MORB) were progressively overprinted with the isotopic composition of the metasediments at distances of up to c. 400 m from the mélange-metasediment contact. Mass balance calculations require that many elements were mobile across the mélange shear zone, but permeability modeling indicates that diffusive transfer of such elements is unrealistically slow. Instead, it appears that fluid and element percolation in to and across the mélange was aided by episodic over-pressuring and fracturing, as indicated by the widespread presence of tremolite-bearing breccias and veins that mutually cross-cut the serpentinite mélange fabrics. Overall, the field and isotopic results indicate that fluid and element redistribution within major serpentinite-bearing shear zones is strongly aided by fracturing and brecciation that are triggered by episodic fluid over-pressuring. By comparison to recent geophysical and experimental results, we infer that high fluid pressures and the resultant brittle failure processes may contribute to the slow slip and tremor signal near the forearc mantle corner.
Kim, Eun-Jung; Choi, Myung-Jin; Lee, Jeoung-Hwan; Oh, Ji-Eun; Seo, Jang-Won; Lee, Young-Ki; Yoon, Jong-Woo; Kim, Hyung-Jik; Noh, Jung-Woo
2017-01-01
Background In hemodialysis patients, fluid overload and malnutrition are accompanied by extracellular fluid (ECF) expansion and intracellular fluid (ICF) depletion, respectively. We investigated the relationship between ECF/ICF ratio (as an integrated marker reflecting both fluid overload and malnutrition) and survival and cardiovascular disease (CVD) in the context of malnutrition-inflammation-arteriosclerosis (MIA) complex. Methods Seventy-seven patients from a single hemodialysis unit were prospectively enrolled. The ECF/ICF volume was measured by segmental multi-frequency bioimpedance analysis. MIA and volume status were measured by serum albumin, C-reactive protein (CRP), pulse wave velocity (PWV) and plasma B-type natriuretic peptide (BNP), respectively. Results The mean ECF/ICF ratio was 0.56±0.06 and the cut-off value for maximum discrimination of survival was 0.57. Compared with the low ECF/ICF group, the high ECF/ICF group (ratio≥0.57, 42%) had higher all-cause mortality, CVD, CRP, PWV, and BNP, but lower serum albumin. During the 5-year follow-up, 24 all-cause mortality and 38 CVD occurred (18 and 24, respectively, in the high ECF/ICF group versus 6 and 14 respectively in the low ECF/ICF group, P<0.001). In the adjusted Cox analysis, the ECF/ICF ratio nullifies the effects of the MIA and volume status on survival and CVD and was an independent predictor of all-cause mortality and CVD: hazard ratio (95% confidence interval); 1.12 (1.01–1.25) and 1.09 (1.01–1.18) for a 0.01 increase in the ECF/ICF ratio. The degree of malnutrition (albumin), inflammation (CRP), arteriosclerosis (PWV), and fluid overload (BNP) were correlated well with the ECF/ICF ratio. Conclusions Hemodialysis patients with high ECF/ICF ratio are not only fluid overloaded, but malnourished and have stiff artery with more inflammation. The ECF/ICF ratio is highly related to the MIA complex, and is a major risk indicator for all-cause mortality and CVD. PMID:28099511
NASA Astrophysics Data System (ADS)
Lambrecht, Glenn; Diamond, Larryn William
2014-09-01
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.
Jodłowski, Paweł; Macuda, Jan; Nowak, Jakub; Nguyen Dinh, Chau
2017-09-01
In the present study, the K-40, U-238, Ra-226, Pb-210, Ra-228 and Th-228 activity concentrations were measured in 64 samples of wastes generated from shale gas exploration in North-Eastern Poland. The measured samples consist of drill cuttings, solid phase of waste drilling muds, fracking fluids, return fracking fluids and waste proppants. The measured activity concentrations in solid samples vary in a wide range from 116 to around 1100 Bq/kg for K-40, from 14 to 393 Bq/kg for U-238, from 15 to 415 Bq/kg for Ra-226, from 12 to 391 Bq/kg for Pb-210, from a few Bq/kg to 516 Bq/kg for Ra-228 and from a few Bq/kg to 515 Bq/kg for Th-228. Excluding the waste proppants, the measured activity concentrations in solid samples oscillate around their worldwide average values in soil. In the case of the waste proppants, the activity concentrations of radionuclides from uranium and thorium decay series are significantly elevated and equal to several hundreds of Bq/kg but it is connected with the mineralogical composition of proppants. The significant enhancement of Ra-226 and Ra-228 activity concentrations after fracking process was observed in the case of return fracking fluids, but the radium isotopes content in these fluids is comparable with that in waste waters from copper and coal mines in Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gold nanoparticle chemiresistors operating in biological fluids.
Hubble, Lee J; Chow, Edith; Cooper, James S; Webster, Melissa; Müller, Karl-Heinz; Wieczorek, Lech; Raguse, Burkhard
2012-09-07
Functionalised gold nanoparticle (Au(NP)) chemiresistors are investigated for direct sensing of small organic molecules in biological fluids. The principle reason that Au(NP) chemiresistors, and many other sensing devices, have limited operation in biological fluids is due to protein and lipid fouling deactivating the sensing mechanism. In order to extend the capability of such chemiresistor sensors to operate directly in biofluids, it is essential to minimise undesirable matrix effects due to protein and lipidic components. Ultrafiltration membranes were investigated as semi-permeable size-selective barriers to prevent large biomolecule interactions with Au(NP) chemiresistors operating in protein-loaded biofluids. All of the ultrafiltration membranes protected the Au(NP) chemiresistors from fouling by the globular biomolecules, with the 10 kDa molecular weight cut-off size being optimum for operation in biofluids. Titrations of toluene in different protein-loaded fluids indicated that small molecule detection was possible. A sensor array consisting of six different thiolate-functionalised Au(NP) chemiresistors protected with a size-selective ultrafiltration membrane successfully identified, and discriminated the spoilage of pasteurised bovine milk. This proof-of-principle study demonstrates the on-chip protein separation and small metabolite detection capability, illustrating the potential for this technology in the field of microbial metabolomics. Overall, these results demonstrate that a sensor array can be protected from protein fouling with the use of a membrane, significantly increasing the possible application areas of Au(NP) chemiresistors ranging from the food industry to health services.
Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.
2014-01-01
Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.
NASA Astrophysics Data System (ADS)
Xu, Jiafu; Ozbayoglu, Evren; Miska, Stefan Z.; Yu, Mengjiao; Takach, Nicholas
2013-06-01
Along with the rapidly growing demand and development activities in unconventional resources, is the growth of environmental awareness and concerns among the public. Foam, as an alternative to traditional drilling fluid, is gaining more and more momentum in the drilling industry. Drilling with foam can minimize formation damage, water usage, and drag and torque. Foam also costs less and leaves a much smaller environmental footprint than other commonly used drilling fluids, such as synthetic oil-based fluids, when developing vulnerable formations such as shale gas. As drilling in horizontal and near horizontal sections has become very common, and the need for such sections is increasing, it is very important to understand cuttings transport and hole cleaning issues when drilling with foam in such sections. A team from University of Tulsa Drilling Research Projects (TUDRP) conducted a series of experiments focused on studying the effects of change in hole inclination angle from 90 degrees to 70 degrees on cuttings transport with foam under Elevated Pressure and Elevated Temperature (EPET) conditions. This experimental and theoretical study also includes other influential parameters such as foam quality, foam flow rate, polymer concentration and drill pipe rotary speed. We have observed that there is no significant difference in cuttings concentration and frictional pressure losses as inclination changes from 70 to 90 degrees. Also, an increase in superficial foam velocity reduces cuttings concentration within the annulus. Pipe rotation influences cuttings concentration and frictional pressure losses for low quality foams, but does not have a significant effect on high quality foams. A correlation for the cuttings bed area and a computer simulator are developed for practical design and field applications. The predicted results are compared with experimental results from this study and previous studies. The comparison shows good agreement. We believe that the findings of this paper will help designers with the choice of optimal drilling fluid for drilling horizontal wells in unconventional (shale) gas/oil reservoirs. Równolegle ze stale rosnącym zapotrzebowaniem na prowadzenia prac udostępniających w złożach niekonwencjonalnych notuje się wzrost świadomości społecznej odnośnie zagadnień ochrony środowiska. Piana jako alternatywa dla tradycyjnej płuczki wiertniczej nabiera coraz większego znaczenia w górnictwie otworowym. Wiercenie przy użyciu piany pomogą ograniczać zniszczenia formacji geologicznych, redukuje zużycie wody, pozwala na zminimalizowanie oporów ruchu i momentów obrotowych silników. Ponadto, koszty piany są niższe a jej oddziaływanie na środowisko naturalne jest mniej znaczne niż w przypadku typowych płuczek opartych na olejach syntetycznych używanych w trakcie udostępniania trudnych w eksploatacji złóż, np. gazu łupkowego. Wiercenia odcinków poziomych lub prawie poziomych są już szeroko stosowane a zapotrzebowanie na takie odcinki wrasta, ważnym jest właściwe rozpoznanie problemów związanych z transportem urobku wiertniczego i czyszczeniem otworu w trakcie prowadzenia prac wiertniczych na tych odcinkach przy użyciu piany. Zespól badaczy z uniwersytetu w Tulsa zaangażowanych w projekt badawczy w dziedzinie wiertnictwa (TUDRP) przeprowadził serię eksperymentów mających na celu zbadanie wpływu zmiany kąta nachylenia otworu z 90 na 70 stopni na przebieg transportu urobku wiertniczego z wykorzystanie piany w warunkach podwyższonego ciśnienia i podwyższonych temperatur. Badania eksperymentalne i teoretyczne obejmowały także analizę pozostałych parametrów procesu: jakość piany, natężenie przepływu piany, stężenie polimerów, prędkość obrotowa przewodu wiertniczego. Nie stwierdzono znacznych różnic w stężeniu zwiercin ani utraty ciśnienia wskutek tarcia w trakcie zmiany kąta nachylenia z 90 na 70 stopni. Ponadto, dodatkowy wzrost prędkości ruchu piany prowadzi do zmniejszenia stężenia zwiercin w pierścieniu. Prędkość obrotowa przewodu wpływa na stężenie zwiercin i straty ciśnienia wskutek tarcia w przypadku stosowania pian niskiej jakości, efektu tego nie notuje się gdy wykorzystywane są wysokiej jakości piany. Dane z obszaru wiercenia skorelowane zostały z wynikami symulacji komputerowych do wspomagania projektowania i do wykorzystania w terenie. Prognozowane wyniki porównano z wynikami eksperymentów uzyskanymi w tym oraz w poprzednim programie badawczym. Porównanie to wykazuje dużą zgodność wyników. Mamy nadzieję, że wyniki obecnej pracy pomogą inżynierom projektantom w wyborze optymalnej płuczki wiertniczej do wierceń poziomych odcinków otworów przy eksploatacji niekonwencjonalnych złóż ropy i gazu (np. gazu łupkowego).
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Gibson, J. C.; Bangs, N. L.; McIntosh, K.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Offshore southern Costa Rica we have identified 161 potential fluid seepage sites on the shelf and slope regions within an 11 x 55 km strip where no fluid indicators had been reported previously using conventional deep-water mutlibeam bathymetry (100 m grid cell size) and deep towed side scan sonar. Evidence includes large and small pockmarks, mounds, ridges, and slope failure features with localized anomalous high-amplitude backscatter strength. The majority of seepage indicators are associated with shallow sub-bottom reversed polarity bright spots and flat spots imaged within the CRISP 3D seismic grid. Data were collected ~50 km west of Osa Peninsula, Costa Rica onboard the R/V Marcus G. Langseth during the spring of 2011. We obtained EM122 multibeam data using fixed, closely spaced receiver beams and 9-10 times swath overlap, which greatly improved the signal-to-noise ratio and sounding density and allowed for very small grid and mosaic cell sizes (2-10 m). A gas plume in the water column, seen on a 3.5 kHz profile, is located along a fault trace and above surface and subsurface seep indicators. Fluid indicators on the outer shelf occur largely on a dense array of faults, some of which cut through the reflective basement. Seismic flat spots commonly underlie axes of large anticlines on the shelf and slope. Pockmarks are also located at the foot of mid-slope canyons, very near to the upper end of the BSR. These pockmarks appear to be associated with canyon abandonment and folded beds that channel fluids upward, causing hydrate instability. Our findings suggest that significant amounts of methane are venting into ocean and potentially into the atmosphere across the heavily deformed shelf and slope of Costa Rica.
Gharbiya, M; Malagola, R; Mariotti, C; Parisi, F; De Vico, U; Ganino, C; Grandinetti, F
2015-01-01
Purpose To determine the predictive value of markers for persistent subretinal fluid (SRF) absorption and the influence of subfoveal fluid on visual outcome after scleral buckle (SB) surgery for rhegmatogenous retinal detachment (RRD). Patients and methods This was a retrospective, observational study. We reviewed the medical records of 64 eyes of 64 patients who underwent SB surgery for macula-off RRD. Patients underwent clinical examination and spectral-domain optical coherence tomography before surgery, at 1 month and every 3 months postoperatively. The height and width of SRF bleb(s) were measured over time. Results Persistent SRF at 1 month was observed in 40 eyes (62.5%). SRF blebs were first detected 1.7±2.2 months postoperatively. In 29 cases that could be fully followed up, SRF blebs were completely absorbed 7.8±4.4 months postoperatively. Resolution of fluid was associated with an improvement of VA (P=0.003). Serial measurements of SRF bleb size showed that bleb width decreased significantly at all time points during the 12-month follow-up period (P<0.05), while significant bleb height decrease occurred from postoperative sixth month only (P<0.05). There was no correlation between VA outcomes and subfoveal bleb height or width (P>0.05). The cut-off value of the bleb width-to-height ratio level for predicting bleb absorption at 6 months was 7, with 89% sensitivity and 83% specificity. Conclusions Visual improvement may occur with late resolution of residual subfoveal fluid. A bleb width-to-height ratio >7 indicates a higher risk of SRF to persist beyond 6 months after surgery. PMID:26139048
NASA Astrophysics Data System (ADS)
Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie
2015-05-01
Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.
Woskie, S R; Smith, T J; Hallock, M F; Hammond, S K; Rosenthal, F; Eisen, E A; Kriebel, D; Greaves, I A
1994-01-01
The current metal-working fluid exposures at three locations that manufacture automotive parts were assessed in conjunction with epidemiological studies of the mortality and respiratory morbidity experiences of workers at these plants. A rationale is presented for selecting and characterizing epidemiologic exposure groups in this environment. More than 475 full-shift personal aerosol samples were taken using a two-stage personal cascade impactor with median size cut-offs of 9.8 microns and 3.5 microns, plus a backup filter. For a sample of 403 workers exposed to aerosols of machining or grinding fluids, the mean total exposure was 706 micrograms/m3 (standard error (SE) = 21 micrograms/m3). Among 72 assemblers unexposed to machining fluids, the mean total exposure was 187 +/- 10 (SE) micrograms/m3. An analysis of variance model identified factors significantly associated with exposure level and permitted estimates of exposure for workers in the unsampled machine type/metal-working fluid groups. Comparison of the results obtained from personal impactor samples with predictions from an aerosol-deposition model for the human respiratory tract showed high correlation. However, the amount collected on the impactor stage underestimates extrathoracic deposition and overestimates tracheobronchial and alveolar deposition, as calculated by the deposition model. When both the impactor concentration and the deposition-model concentration were used to estimate cumulative thoracic concentrations for the worklives of a subset of auto workers, there was no significant difference in the rank order of the subjects' cumulative concentration. However, the cumulative impactor concentration values were significantly higher than the cumulative deposition-model concentration values for the subjects.
Fischer, S Taylor; Lili, Loukia N; Li, Shuzhao; Tran, ViLinh T; Stewart, Kim B; Schwartz, Charles E; Jones, Dean P; Sherman, Stephanie L; Fridovich-Keil, Judith L
2017-10-01
Decades of public health research have documented that smoking in pregnancy poses significant health risks to both mother and child. More recent studies have shown that even passive maternal exposure to secondhand smoke associates with negative birth outcomes. However, the mechanisms linking exposure to outcomes have remained obscure. As a first step toward defining the metabolic consequence of low-level nicotine exposure on fetal development, we conducted an untargeted metabolomic analysis of 81 paired samples of maternal serum and amniotic fluid collected from karyotypically normal pregnancies in the second trimester. By comparing the m/z and retention times of our mass spectral features with confirmed standards, we identified cotinine, a nicotine derivative, and used the calculated cotinine concentrations to classify our maternal serum samples into exposure groups using previously defined cut-offs. We found that cotinine levels consistent with low-level maternal exposure to nicotine associated with distinct metabolic perturbations, particularly in amniotic fluid. In fact, the metabolic effects in amniotic fluid of ostensibly low-level exposed mothers showed greater overlap with perturbations previously observed in the sera of adult smokers than did the perturbations observed in the corresponding maternal sera. Dysregulated fetal pathways included aspartate and asparagine metabolism, pyrimidine metabolism, and metabolism of other amino acids. We also observed a strong negative association between level of maternal serum cotinine and acetylated polyamines in the amniotic fluid. Combined, these results confirm that low-level maternal nicotine exposure, indicated by a maternal serum cotinine level of 2-10ng/mL, is associated with striking metabolic consequences in the fetal compartment, and that the affected pathways overlap those perturbed in the sera of adult smokers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study.
Surowiec, Izabella; Karimpour, Masoumeh; Gouveia-Figueira, Sandra; Wu, Junfang; Unosson, Jon; Bosson, Jenny A; Blomberg, Anders; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Trygg, Johan; Nording, Malin L
2016-07-01
Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry.
Bailey, Karen J; Leegood, Richard C
2016-04-01
Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico
Teasdale, W.E.; Pemberton, R.R.
1984-01-01
This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)
Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogstad, Eirik J.
2013-08-01
Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150-1000 μm). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.« less
Al-Husseiny, Fatma; Sobh, Mohamed Ahmed; Ashour, Rehab H; Foud, Samah; Medhat, Tarek; El-Gilany, Abdel-Hady; Elghannam, Doaa; Abdel-Ghaffar, Hassan; Saad, Mohamed-Ahdy; Sobh, Mohamed
2016-05-30
Cisplatin is a nephrotoxic chemotherapeutic agent. So, preventive measures worth to be evaluated. Human amniotic fluid stem cells (hAFSCs) in prevention or amelioration of cisplatin-induced acute kidney injury (AKI) in Sprague-Dawley rates have been tested. 80 Sprague-Dawley rats (250~300 g) were used and divided into 4 major groups, 20 rats each. Group I: Saline-injected group. Group II: Cisplatin-injected group (5 mg/kg I.P). Group III: Cisplatin-injected and hAFSCs-treated group (5×10⁶ hAFSCs I.V. one day after cisplatin administration). Group IV: Cisplatin-injected and culture media-treated group. Each major group was further divided into 4 equal subgroups according to the timing of sacrifice; 4, 7, 11 and 30 days post-cisplatin injection. Renal function tests were done. Kidney tissue homogenate oxidative stress parameters malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were determined. Histopathological scoring systems for active injury, regenerative and chronic changes were analyzed separately. hAFSCs characterization and differentiation was proved. Cisplatin injection resulted in a significant increase in serum creatinine and MDA and decrease in SOD, GSH and creatinine clearance. These changes were attenuated early by day 4 with the use of hAFSCs. Cisplatin injection induced tubular necrosis, atrophy, inflammatory cells infiltration and fibrosis. The use of hAFSCs was associated with significantly lowered injury score at day 4, 7, 11 and 30 with marked regenerative changes starting from day 4. hAFSCs have both a protective and regenerative activities largely through an antioxidant activity. This activity cut short the acuteness of cisplatin nephrotoxicity.
2011-01-01
Introduction The objective of this study was to determine the ability of various parameters commonly used for the diagnosis of acute meningitis to differentiate between bacterial and viral meningitis, in adult patients with a negative direct cerebrospinal fluid (CSF) examination. Methods This was a prospective study, started in 1997, including all patients admitted to the emergency unit with acute meningitis and a negative direct CSF examination. Serum and CSF samples were taken immediately on admission. The patients were divided into two groups according to the type of meningitis: bacterial (BM; group I) or viral (VM; group II). The CSF parameters investigated were cytology, protein, glucose, and lactate; the serum parameters evaluated were C-reactive protein and procalcitonin. CSF/serum glucose and lactate ratios were also assessed. Results Of the 254 patients with meningitis with a negative direct CSF examination, 35 had BM and 181, VM. The most highly discriminative parameters for the differential diagnosis of BM proved to be CSF lactate, with a sensitivity of 94%, a specificity of 92%, a negative predictive value of 99%, a positive predictive value of 82% at a diagnostic cut-off level of 3.8 mmol/L (area under the curve (AUC), 0.96; 95% confidence interval (CI), 0.95 to 1), and serum procalcitonin, with a sensitivity of 95%, a specificity of 100%, a negative predictive value of 100%, and a positive predictive value of 97% at a diagnostic cut-off level of 0.28 ng/ml (AUC, 0.99; 95% CI, 0.99 to 1). Conclusions Serum procalcitonin and CSF lactate concentrations appear to be the most highly discriminative parameters for the differential diagnosis of BM and VM. PMID:21645387
NASA Astrophysics Data System (ADS)
Scambelluri, M.; Pennacchioni, G.; Gilio, M.; Bestmann, M.
2016-12-01
While geophysical studies and laboratory experiments provide much information on subduction earthquakes, field studies identifying the rock types for earthquake development and the deep seismogenic environments are still scarce. To date, fluid overpressure and volume decrease during hydrous mineral breakdown the widely favoured trigger of subduction earthquakes in serpentinized lithospheric mantle and hydrated low-velocity layers atop slabs. Here we document up to 40 cm-thick pseudotachylyte (PST) in Alpine oceanic gabbro and peridotite (2-2.5 GPa-550-620°C), the analogue of a modern cold subducting oceanic lithosphere. These rocks mostly remained unaltered dry systems; only very minor domains (<1%) record partial hydration and static eclogitic metamorphism. Meta-peridotite shows high-pressure olivine + antigorite (garnet + zoisite + chlorite after mantle plagioclase); meta-gabbro develops omphacite + zoisite + talc + chloritoid + garnet. Abundant syn-eclogitic pseudotachylyte cut the dry gabbro-peridotite and the eclogitized domains. In meta-peridotite, PST shows olivine, orthopyroxene, spinel microliths and clasts of high-pressure olivine + antigorite and garnet + zoisite + chlorite aggregates. In metagabbro, microfaults in damage zones near PST cut brecciated igneous pyroxene cemented by omphacite. In unaltered gabbro, glassy PST contains micron-scale garnet replacing plagioclase microliths during, or soon after, PST cooling. In the host rock, garnet coronas between igneous olivine and plagioclase only occur near PST and between closely spaced PST veins. Absence of garnet away from PST indicates that garnet growth was triggered by mineral seeds and by heat released by PST. The above evidence shows that pseudotachylyte formed at eclogite-facies conditions. In such setting, strong, dry, metastable gabbro-peridotite concentrate stress to generate large intermediate depth subduction earthquakes without much involvement of free fluid.
3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook
2017-01-01
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.
Insufficient sensitivity of joint aspiration during the two-stage exchange of the hip with spacers.
Boelch, Sebastian Philipp; Weissenberger, Manuel; Spohn, Frederik; Rudert, Maximilian; Luedemann, Martin
2018-01-10
Evaluation of infection persistence during the two-stage exchange of the hip is challenging. Joint aspiration before reconstruction is supposed to rule out infection persistence. Sensitivity and specificity of synovial fluid culture and synovial leucocyte count for detecting infection persistence during the two-stage exchange of the hip were evaluated. Ninety-two aspirations before planned joint reconstruction during the two-stage exchange with spacers of the hip were retrospectively analyzed. The sensitivity and specificity of synovial fluid culture was 4.6 and 94.3%. The sensitivity and specificity of synovial leucocyte count at a cut-off value of 2000 cells/μl was 25.0 and 96.9%. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were significantly higher before prosthesis removal and reconstruction or spacer exchange (p = 0.00; p = 0.013 and p = 0.039; p = 0.002) in the infection persistence group. Receiver operating characteristic area under the curve values before prosthesis removal and reconstruction or spacer exchange for ESR were lower (0.516 and 0.635) than for CRP (0.720 and 0.671). Synovial fluid culture and leucocyte count cannot rule out infection persistence during the two-stage exchange of the hip.
The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
Ogam, Erick; Fellah, Z E A; Baki, Paul
2013-03-01
The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].
[Potential role of cholesterol in distinguishing malignant from benign pleural effusion].
Plavec, Goran; Tomić, Ilija; Nidzović, Natasa; Radojcić, Branko; Aćimović, Slobodan; Bokun, Radojka
2004-01-01
Cholesterol and carcinoembryonic antigen (CEA) levels in pleural effusion and sera, were measured in 199 patients with pleural effusions of various origins. Malignant cause was found in 93, and nonmalignant in 106 patients. Mean cholesterol level in sera of patient with malignant disease was 5.0 +/- 0.93 mmol/L, and in nonmalignant group 4.34 +/- 1.32 mmol/L. The difference was not statistically significant. Mean cholesterol level in nonmalignant pleural effusions was higher thAn those in malignant (2.51 +/- 1.23 mmol/L; and 2.28 +/- 1.06 mmol/L), but the difference was also not significant. Average pleural fluid/serum cholesterol ratio (Holl/S) in nonmalignant group was 0.61 +/- 0.32 and in malignant group 0.46 +/- 0.22. The difference between those mean values was significant. Higher ratio, at the cut off value of 0.5 was found in 79/106 and in 25/93 malignant patients. Calculated sensitivity was 75%, specificity 73%, positive predictive value 76%, negative predictive value 65% and accuracy 69%. Significant negative correlation between Holi/S and pleural fluid CEA was found (p < 0.05). It was assumed that pleural fluid/serum cholesterol ratio lower than 0.5 could be of great benefit, as an additional test in the differentiation of malignant from benign pleural effusion.
Vass, David G; Hodson, James; Isaac, John; Marudanayagam, Ravi; Mirza, Darius F; Muiesan, Paolo; Roberts, Keith; Sutcliffe, Robert P
2018-05-22
Early exclusion of a postoperative pancreatic fistula (POPF) may facilitate earlier drain removal in selected patients after distal pancreatectomy. The purpose of this study was to evaluate the role of first postoperative day drain fluid amylase (DFA1) measurement to predict POPF. Patients in whom DFA1 was measured after distal pancreatectomy were identified from a prospectively maintained database over a five-year period. A cut-off value of DFA1 was derived using ROC analysis, which yielded sensitivity and negative predictive value of 100% for excluding POPF. DFA1 was available in 53 of 138 (38%) patients who underwent distal pancreatectomy. 19 of 53 patients (36%) developed a pancreatic fistula (Grade A - 15, Grade B - 3, Grade C - 1). Median DFA1 was significantly higher in those who developed a pancreatic fistula (5473; range 613-28,450) compared those without (802; range 57-2350). p < 0.0001. Using ROC analysis, a DFA1 less than 600 excluded pancreatic fistula with a sensitivity of 100% (AUROC of 0.91; SE = 0.04, p < 0.001). First postoperative day drain fluid amylase measurement may have a role in excluding pancreatic fistula after distal pancreatectomy. Such patients may be suitable for earlier drain removal. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jover, J.; Haslam, A. J.; Galindo, A.; Jackson, G.; Müller, E. A.
2012-10-01
We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for mc = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, mc, approaches a limiting value at reasonably small values, mc < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.
NASA Astrophysics Data System (ADS)
Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.
2017-12-01
Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment, positive Eu anomalies, decreased MgO/SiO2, and increases in Sr and Cs. One serpentinite 40 m from the fault has d34S = 4.5‰, consistent with a hydrothermal sulfur source. Far from the fault (1 km) ophicalcites near the paleo-seafloor have negative Ce anomalies indicating seawater alteration, and suggesting a limit to hydrothermal influence on the length scale of 1 km.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study
Tisdall, Martin M.; Girbes, Armand R.; Martinian, Lillian; Thom, Maria; Kitchen, Neil; Smith, Martin
2011-01-01
Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov’s enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH476−986 and NfH476−1026, can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (>4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, <2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15–27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov’s enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH476−986 and NfH476−1026) applicable to in vivo monitoring of diffuse axonal injury and neuronal loss in traumatic brain injury. PMID:21278408
NASA Astrophysics Data System (ADS)
Polito, Paul A.; Kurt Kyser, T.; Thomas, David; Marlatt, Jim; Drever, Garth
2005-11-01
The world class Jabiluka unconformity-related uranium deposit in the Alligator Rivers Uranium Field, Australia, contains >163,000 tons of contained U3O8. Mineralization is hosted by shallow-to-steeply dipping basement rocks comprising graphitic units of chlorite-biotite-muscovite schist. These rocks are overlain by flat-lying coarse-grained sandstones belonging to the Kombolgie Subgroup. The deposit was discovered in 1971, but has never been mined. The construction of an 1,150 m decline into the upper eastern sector of the Jabiluka II deposit combined with closely spaced underground drilling in 1998 and 1999 allowed mapping and sampling from underground for the first time. Structural mapping, drill core logging and petrographic studies on polished thin sections established a detailed paragenesis that provided the framework for subsequent electron microprobe and X-ray diffraction, fluid inclusion, and O-H, U-Pb and 40Ar/39Ar isotope analysis. Uranium mineralization is structurally controlled within semi-brittle shears that are sub-conformable to the basement stratigraphy, and breccias that are developed within the hinge zone of fault-related folds adjacent to the shears. Uraninite is intimately associated with chlorite, sericite, hematite ± quartz. Electron microprobe and X-ray diffraction analysis of syn-ore illite and chlorite indicates a mineralization temperature of 200°C. Pre- and syn-ore minerals extracted from the Kombolgie Subgroup overlying the deposit and syn-ore alteration minerals in the Cahill Formation have δ18Ofluid and δ D fluid values of 4.0±3.7 and -27±17‰, respectively. These values are indistinguishable from illite separates extracted from diagenetic aquifers in the Kombolgie Subgroup up to 70 km to the south and east of the deposit and believed to be the source of the uraniferous fluid. New fluid inclusion microthermometry data reveal that the mineralising brine was saline, but not saturated. U-Pb and 207Pb/206Pb ratios of uraninite by laser-ablation ICP-MS suggest that massive uraninite first precipitated at ca. 1,680 Ma, which is coincident with the timing of brine migration out from the Kombolgie Subgroup as indicated by 40Ar/39Ar ages of 1,683±11 Ma from sandstone-hosted illite. Unmineralized breccias cemeted by chlorite, quartz and sericite cross-cut the mineralized breccias and are in turn cut by straight-sided, high-angle veins of drusy quartz, sulphide and dolomite. U-Pb and 207Pb/206Pb ratios combined with fluid inclusion and stable isotope data indicate that these post-ore minerals formed when mixing between two fluids occurred sometime between ca. 1,450 and 550 Ma. Distinct 207Pb/206Pb age populations occur at ca. 1,302±37, 1,191±27 and 802±57 Ma, which respectively correlate with the intrusion of the Maningkorrirr/Mudginberri phonolitic dykes and the Derim Derim Dolerite between 1,370 and 1,316 Ma, the amalgamation of Australia and Laurentia during the Grenville Orogen at ca. 1,140 Ma, and the break-up of Rodinia between 1,000 and 750 Ma.
Guo, Zhe; He, Wei; Hou, Jing; Li, Tong; Zhou, Hua; Xu, Yuan; Xi, Xiuming
2014-09-01
To approach the evaluative effect of respiratory variation of superior vena cava peak flow velocity measured using transthoracic echocardiography (TTE) on fluid responsiveness in patients with mechanical ventilation. A prospective cohort study was conducted. All mechanical ventilated critically ill patients whose fluid therapy was planned due to hypovolemia in Department of Critical Care Medicine of Beijing Tongren Hospital of Capital Medical University from April 2011 to April 2013 were enrolled. Volume expansion was performed with 500 mL Linger solution within 30 minutes. Patients were classified as responders if pulse pressure variation (PPV) increased ≥ 13% before volume expansion. The respiratory variation in superior vena cava peak velocity was calculated as the difference between maximum and minimum values of velocity in peak A, peak S and peak D over a single respiratory circle, and their variations (ΔA, ΔS, ΔD) were also calculated. The receiver operating characteristic curve (ROC curve) was plotted to assess the evaluative effect of respiratory variation of superior vena cava peak velocity on fluid responsiveness. Twenty-seven patients were enrolled in this study. Volume expansion increased PPV ≥ 13% happened in 14 patients (responders). The velocity of superior vena cava in peak A, peak S, peak D was significantly increased after volume expansion compared with that before volume expansion in responders [peak A (cm/s): 34.6 ± 2.2 vs. 31.3 ± 2.1, t=-2.493, P=0.027; peak S (cm/s): 39.1 ± 1.3 vs. 35.3 ± 2.1, t=-2.564, P=0.024; peak D (cm/s): 28.1 ± 1.2 vs. 23.3 ± 1.4, t=-4.995, P=0.000], but there was no significant difference in ΔA, ΔS and ΔD between before and after volume expansion. The ΔA, ΔS and ΔD were positively correlated with PPV (r=0.040, P=0.854; r=0.350, P=0.074; r=0.749, P=0.000). The area under ROC curve (AUC) of peak S was 0.36 [95% confidence interval (95%CI): 0.11-0.52], but the AUC of ΔS was 0.68 (95%CI 0.47-0.89), the AUC of peak D was 0.41 (95%CI 0.19-0.63), but the AUC of ΔD was 0.95 (95%CI 0.86-1.00), so the aberration rate of superior vena cava in respiration was better than the flow rate in superior vena cava. When the cut-off value of ΔS was 20.7% for predicting fluid responsiveness, the sensitivity was 78.6% and the specificity was 61.5%. When the cut-off value of ΔD was 12.7% for predicting fluid responsiveness, the sensitivity was 92.0% and the specificity was 92.3%. Respiratory variations in superior vena cava peak velocity measured by TTE could assess fluid responsiveness in patients with mechanical ventilation.
James, K E; Smith, W A; Packham, A E; Conrad, P A; Pusterla, N
2017-06-01
While toxoplasmosis is not commonly considered a clinical disease of equines, previous seroprevalence studies have reported differing background rates of Toxoplasma gondii infection in horses globally. The objective of this study was to evaluate possible associations between T. gondii seroprevalence and clinical signs of equine protozoal myeloencephalitis (EPM) in horses. Using a case-control study design, 720 Californian horses with neurologic signs compatible with EPM were compared to healthy, non-neurologic horses for the presence of T. gondii antibodies (using indirect fluorescent antibody tests [IFAT]). Toxoplasma gondii seroprevalence among cases and controls was determined at standard serum cut-offs: 40, 80, 160, 320, and 640. At a T. gondii titre cut-off of 320, horses with clinical signs compatible with EPM had 3.55 times the odds of a seropositive test compared to those without clinical signs (P<0.01) when adjusted for covariates. When restricted to the autumn season and at the same titre cut-off, an EPM suspect horse had 6.4 times the odds of testing seropositive to T. gondii, compared to non-neurologic horses. The association between high T. gondii titres and clinical signs compatible with EPM is potentially reflective of toxoplasmosis in equines. Serologic testing of cerebrospinal fluid and isolation of T. gondii in EPM suspect cases should be considered. Future studies investigating the relationship between T. gondii and EPM are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto
2012-02-01
Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.
The chemical signatures of progressive dehydration stages in subducted serpentinites
NASA Astrophysics Data System (ADS)
Pettke, T.; Spandler, C.; Kodolanyi, J.; Scambelluri, M.
2009-04-01
Fluids mediate chemical cycling in subduction zones. Nonetheless, the chemistry of serpentinite-dehydration fluids from down-going slabs and their chemical effects on ascent are only very poorly constrained. We report new data on discontinuous dehydration reactions, including the measurement of individual fluid inclusions in prograde minerals from natural occurrences, and one case study tracing the infiltration of serpentinite-derived fluid in mafic eclogite. Together, these studies demonstrate that serpentinite-derived fluids are commonly dilute, but that there may be selected trace element abundances (and ratios ?) that characterize such fluid provenance. Brucite dehydration represents the first relevant liberation of crystal-bound water from serpentinites formed on the ocean floor (ocean floor mantle hydration chemistry is addressed in Kodolanyi et al., this session). Discordant olivine-Ti-clinohumite-antigorite-clinopyroxene-magnetite veins in ca. 2.3 GPa antigorite serpentinites of the Erro Tobbio in the Ligurian Alps, Italy, formed from aqueous, dilute fluids containing Li, Sr, Ba, Rb, Pb as determined on texturally-early fluid inclusions in olivine. This prograde olivine preserves high Ni (1500 - 3000 µg/g) and is identified most readily by elevated Li (1-20 µg/g), B (1-20 µg/g) and Mn contents. Aqueous fluid inclusions in some clinopyroxene (Cpx) of the same veins host variably (sometimes highly) saline fluid inclusions, interpreted to represent the "spent" fluid after formation of hydrous vein minerals (chlorite, antigorite). Vein bulk-rock trace-element concentrations show enrichment in Ti, Ba, Nb, Li, HREE and Cu relative to the wall rocks, accompanied by depletion in Cr. This mostly reflects the mineral transformations (sources / sinks) occurring at this stage of serpentinite dehydration. Antigorite-breakdown is arguably the most prominent water release from down-going slabs. Olivine-orthopyroxene-chlorite rocks at Cerro del Almirez (Spain), recording this dehydration event, contain olivine-hosted polyphase inclusions interpreted to represent fluid inclusions trapped during antigorite breakdown. Preliminary compositional data show enrichments in B, Cs, Pb, Li, Sr, Rb, K, Ba (decreasing order) and depletions in Ca, Ti, La relative to primitive mantle, closely corresponding to the incompatible element pattern of typical island arc lavas. Transfer of such fluids to the melting source of island arc magmas may be critical to developing their distinctive trace element signatures. Omphacite-rich (± garnet, rutile, talc and zircon) veins cutting eclogite (Fe-Ti gabbro protolith, Monviso, W Italian Alps) record serpentinite-derived fluid pathways though the subducted slab at ca. 70 km depth. Although these veins largely formed by local eclogite-derived fluids, they also preserve discrete generations of vein minerals enriched in Mg, Cr, Ni, B, As and Sb, and zircon with elevated Epsilon(Hf) compared to host-rock eclogite zircon. These chemical and isotopic characteristics suggest external fluid input, from serpentinite dehydration. Moreover, distinctive oscillatory or irregular Cr zonations observed in omphacite, garnet and rutile from the veins are interpreted to record episodic fracturing and fluid infiltration over >10 m along transient brittle fractures at high pressures. Our current data suggest that dehydration fluid pervades the rock at the site of liberation, and that episodic fluid escape from the dehydration site may be effectively channelized. This supports growing evidence for highly focused reactive fluid flow through slabs. Robust constraints on the chemical composition and nature of dehydration fluids from serpentinites and how they evolve during ascent may greatly aid in recognizing such features from outcrop to thin-section scales, in turn providing us with more comprehensive sample material to advance our understanding on fluid-mediated cycling in subduction zones. Reference Kodolanyi et al., this session
Metalworking fluids: oil mist and beyond.
Gauthier, Stephen L
2003-11-01
This article is based upon my own experiences with metalworking fluids and the adverse health effects and medical conditions associated with exposure to metalworking fluids. I have researched and witnessed the benefits that can be achieved when metalworking fluids are properly maintained and managed. My experiences have provided insight into how a shop operates, including comprehension of the equipment used, processes, mist generating points, engineering controls currently being adopted, and procedures that are used to maintain metalworking fluids. I have been able to share my personal experiences with the country's leading experts in the field of metalworking fluids. I have presented my insights on the topic in Washington, D.C., to the Standard Advisory Committee of OSHA, as well as at many other conferences nationwide. I have provided awareness training for a number of union and nonunion workers. Being a part of developing successful metal removal fluid programs, I realize the importance of transferring and sharing information. Many times an organization is not fully aware of certain conditions and how to combat them. My mission and intent is to properly educate those who are exposed to the harm that metalworking fluids can invoke and to inform those involved of the possible methods of reducing long- and short-term risk. One thing that must be kept in mind is the way we view these fluids. Many shops categorize the fluids as a type of "operating expense" when they should actually be seen as a sort of investment. Just as performing a scheduled maintenance on a machine promises the best possible longevity of that machine, the upkeep of metalworking fluid also provides longer "tool life." Monitoring and maintaining the fluids also provides for more effective and efficient productivity. If we fail to consider that proper management of the fluids can cut cost dramatically, then we will miss out on the financial impact they can have on a company. Try looking at the fluids as a liquid tool. Doing so I believe will bring a better understanding of the value of a successful metalworking fluids program. With this new understanding, it can be seen just who must play a role in the management of metalworking fluids. The employees who deal with the daily tasks involving the coolant play a major part. They are on the floor where these metalworking fluids are being used. In many shops, it is assumed that the environmental health & safety departments are responsible for standard operating procedures and management of fluids. The EH&S department should only be responsible for the protection from exposure and the transfer of information regarding policy and procedure to their employees. Not all shops have the resources required to develop and implement the proper standard operating procedure. Therefore, we must understand that what is feasible for one may not be for another. Companies that lack the sufficient resources should not be neglected. It is crucial that awareness of proper standard operating procedure is shared with everyone involved with the fluids in order to provide proper metalworking fluids management. Fluids are as dynamic as the formulations themselves (complex & dynamic). These fluids can quickly become contaminated with foreign materials and chemicals, thereby become aerosolized into mist. With proper education and training, one will be able to control what gets aerosolized.
Kekelia, S.A.; Kekelia, M.A.; Kuloshvili, S.I.; Sadradze, N.G.; Gagnidze, N.E.; Yaroshevich, V.Z.; Asatiani, G.G.; Doebrich, J.L.; Goldfarb, R.J.; Marsh, E.E.
2008-01-01
The south-central part of the Greater Caucasus region, Georgia Republic, represents an extremely prospective region for significant orogenic gold deposits. Gold-bearing quartz veins are concentrated in two extensive WNW-trending belts, the Mestia-Racha and Svaneti districts, within the northern margin of the Southern Slope Zone of the Great Caucasus orogen. This metalliferous region is dominated by Early to Middle Jurassic slates, which are part of a terrane that likely accreted to the continental margin from late Paleozoic to Jurassic. The slates were subsequently intruded by both Middle to Late Jurassic and Neogene granitoids. Quartz veins in the more carbonaceous slate units are most consistently enriched in As, Au, Hg, Sb, and W, and show mineralization styles most consistent with typical orogenic gold deposits. Quartz veins in the Mestia-Racha district were mined in Soviet times for As, Sb, and W, but many of these are now being recognized as gold resource targets. The veins occur in the footwall of a thrust fault between the Southern Slope zone and an earlier accreted terrane, the Main Zone, to the north. Many veins in the district continue along strike for > 1??km and some cut Neogene intrusions, constraining ore formation to the most recent 4 to 5??million years. Gold deposition thus correlates with final collision of the Arabian plate to the south and uplift of the ore-hosting Greater Caucasus. The Zopkhito deposit, previously mined for antimony, contains an estimated 55??t Au at a cutoff grade of 0.5??g/t. The veins are localized in an area where smaller-order structures show a major change in strike from N-S to more E-W trends. A pyrite-arsenopyrite ore stage includes gold concentrated in both sulfide phases; it is overprinted by a later stibnite-dominant stage. Fluid-inclusion studies of ore samples from the Zopkhito deposit indicate minimum trapping temperatures of 300 to 350????C and 200 to 300????C for the two stages, respectively, and minimum trapping pressures of 0.2 to 0.5??kbar. Ore-forming fluids, with approximately 5 to 20??mol% non-aqueous gas, evolved from N2-dominant to CO2-dominant during evolution of the hydrothermal system. ??34S values of + 1 to + 4??? for ore-related sulfides at Zopkhito are consistent with a sedimentary rock source for the sulfur, and ??18O quartz measurements of 16 to 21??? are consistent with either a magmatic or metamorphic fluid. More than 60 gold-bearing lodes and placers in the Svaneti district occur along the thrust between the Southern Slope and Main Zones. Lode gold potential was first recognized in the historic placer district in the 1980s, with many auriferous quartz veins cutting Middle Jurassic igneous rocks. Brecciated veins in the 18??t Au Lukhra deposit cut a small granodioritic to dioritic stock; the latter intrudes Devonian schist immediately north of the thrust. Presently, there are three recognized ore zones in the deposit, with the most significant occurring over an area 140??m in length and 12??m-wide, with typical grades of 7 to 9??g/t Au. Reconnaissance fluid-inclusion studies of ore samples from the Lukhra deposit indicate minimum trapping temperatures of 220????C. Measurements of ??18Oquartz of about 10??? suggest buffering of isotopic composition by the igneous host rocks.
Purser, Autun
2015-01-01
As hotspots of local biodiversity in the deep sea, preservation of cold-water coral reef communities is of great importance. In European waters the most extensive reefs are found at depths of 300 – 500 m on the continental margin. In Norwegian waters many of these reefs are located in areas of interest for oil and gas exploration and production. In this study drilling was carried out in the Morvin drill field in proximity to a number of small Lophelia pertusa coral reefs (closest reefs 100 m upstream and 350 m downstream of point of waste drill material release). In a novel monitoring study, ROV video surveys of 9 reefs were conducted prior, during, immediately after and >1 year after drilling operations. Behavior of coral polyps inhabiting reefs exposed to differing concentrations of drill cuttings and drilling fluids (waste drilling material) were compared. Levels of expected exposure to these waste materials were determined for each reef by modelling drill cutting transport following release, using accurate in-situ hydrodynamic data collected during the drilling period and drill cutting discharge data as parameters of a dispersal model. The presence / absence of associate reef species (Acesta excavata, Paragorgia arborea and Primnoa resedaeformis) were also determined from each survey video. There were no significant differences in Lophelia pertusa polyp behavior in corals modelled to have been exposed to pulses of >25 ppm drill cutting material and those modelled to be exposed to negligible concentrations of material. From the video data collected, there were no observed degradations of reef structure over time, nor reductions of associate fauna abundance, regardless of modelled exposure concentration at any of the surveyed reefs. This study focused exclusively on adult fauna, and did not assess the potential hazard posed by waste drilling material to coral or other larvae. Video data was collected by various ROV’s, using different camera and lighting setups throughout the survey campaign, making comparison of observations prior, during and post drilling problematic. A standardization of video monitoring in future monitoring campaigns is recommended. PMID:26218658
Dheda, Keertan; Van-Zyl Smit, Richard N.; Sechi, Leonardo A.; Badri, Motasim; Meldau, Richard; Symons, Gregory; Khalfey, Hoosein; Carr, Igshaan; Maredza, Alice; Dawson, Rodney; Wainright, Helen; Whitelaw, Andrew; Bateman, Eric D.; Zumla, Alimuddin
2009-01-01
Background Current tools for the diagnosis of tuberculosis pleural effusions are sub-optimal. Data about the value of new diagnostic technologies are limited, particularly, in high burden settings. Preliminary case control studies have identified IFN-γ-inducible-10kDa protein (IP-10) as a promising diagnostic marker; however, its diagnostic utility in a day-to-day clinical setting is unclear. Detection of LAM antigen has not previously been evaluated in pleural fluid. Methods We investigated the comparative diagnostic utility of established (adenosine deaminase [ADA]), more recent (standardized nucleic-acid-amplification-test [NAAT]) and newer technologies (a standardized LAM mycobacterial antigen-detection assay and IP-10 levels) for the evaluation of pleural effusions in 78 consecutively recruited South African tuberculosis suspects. All consenting participants underwent pleural biopsy unless contra-indicated or refused. The reference standard comprised culture positivity for M. tuberculosis or histology suggestive of tuberculosis. Principal Findings Of 74 evaluable subjects 48, 7 and 19 had definite, probable and non-TB, respectively. IP-10 levels were significantly higher in TB vs non-TB participants (p<0.0001). The respective outcomes [sensitivity, specificity, PPV, NPV %] for the different diagnostic modalities were: ADA at the 30 IU/L cut-point [96; 69; 90; 85], NAAT [6; 93; 67; 28], IP-10 at the 28,170 pg/ml ROC-derived cut-point [80; 82; 91; 64], and IP-10 at the 4035 pg/ml cut-point [100; 53; 83; 100]. Thus IP-10, using the ROC-derived cut-point, missed ∼20% of TB cases and mis-diagnosed ∼20% of non-TB cases. By contrast, when a lower cut-point was used a negative test excluded TB. The NAAT had a poor sensitivity but high specificity. LAM antigen-detection was not diagnostically useful. Conclusion Although IP-10, like ADA, has sub-optimal specificity, it may be a clinically useful rule-out test for tuberculous pleural effusions. Larger multi-centric studies are now required to confirm our findings. PMID:19277111
Opportunities for research in aerothermodynamics
NASA Technical Reports Server (NTRS)
Graham, R. W.
1983-01-01
"Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
Ancient impact and aqueous processes at Endeavour Crater, Mars
Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.
2012-01-01
The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.
Two-dimensional airflow modeling underpredicts the wind velocity over dunes
Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten
2015-01-01
We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966
Shock waves generated by sudden expansions of a water jet
NASA Astrophysics Data System (ADS)
Salinas-Vázquez, M.; Echeverría, C.; Porta, D.; Stern, C. E.; Ascanio, G.; Vicente, W.; Aguayo, J. P.
2018-07-01
Direct shadowgraph with parallel light combined with high-speed recording has been used to analyze the water jet of a cutting machine. The use of image processing allowed observing sudden expansions in the jet diameter as well as estimating the jet velocity by means of the Mach angle, obtaining velocities of about 500 m s^{-1}. The technique used here revealed the development of hydrodynamic instabilities in the jet. Additionally, this is the first reporting of the onset of shock waves generated by small fluctuations of a continuous flow of water at high velocity surrounded by air, a result confirmed by a transient computational fluid dynamics simulation.
NASA Astrophysics Data System (ADS)
Gwon, S.; Edwards, P.; Kim, Y. S.
2015-12-01
Hydrofracturing associated with elevated fluid pressure coupled with changes in stress has been crucial in enhancing the production and recovery of hydrocarbons. Furthermore, it is also an important issue to access the efficiency and stability of long-term CO2 geologic storage reservoirs. Veins are mineral-filled extension fractures developed along the plane of σ1-σ2 and perpendicular to σ3, and the fluid pressure must exceed σ3applied to the plane when the vein opens. Therefore, vein is a well-known natural analogue for fluid migration in a paleo-reservoir. In the Salt Wash Graben of SE Utah, CO2-charged vein systems hosted in the bleached Entrada Formation are well developed and examined to understand the conditions of fluid pressure and stress during the injections of CO2-charged fluid. Based on color and relative cross-cutting relationship in the field, veins are subdivided into two sets; sub-vertical black mineral-rich veins and orthogonal calcite veins that have previously been described as 'grid-lock fractures'. The vein distribution and fluid leakage along through-going fractures in mechanic units allow us to determine the stress regime and driving stress condition through 3D-Mohr circle reconstruction. The results of this statistical analysis for the veins show that the orthogonal veins indicate a 'stress transition' with maximum principal stress direction changing from vertical to NNW-SSE sub-horizontal which coincides with the current regional stress regime. The possible causes of the stress transition can be considered. The process of repeated sealing, reactivation and localization of veins within the bleached zone is a natural indication of a coupled change in pore pressure and stress in the reservoir. Thus, an understanding of the effect of stress changes due to the volumetric injection of CO2 in the subsurface as well as a knowledge of how pre-existing fractures affect fluid flow with respect to elevated pore pressures in layered rocks are important for reservoir characterization and efficient site selection of geologic CO2 storage in the subsurface.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less
Who cares about Mid-Ocean Ridge Earthquakes? And Why?
NASA Astrophysics Data System (ADS)
Tolstoy, M.
2004-12-01
Every day the surface of our planet is being slowly ripped apart by the forces of plate tectonics. Much of this activity occurs underwater and goes unnoticed except for by a few marine seismologists who avidly follow the creaks and groans of the ocean floor in an attempt to understand the spreading and formation of oceanic crust. Are marine seismologists really the only ones that care? As it turns out, deep beneath the ocean surface, earthquakes play a fundamental role in a myriad of activity centered on mid-ocean ridges where new crust forms and breaks on a regular basis. This activity takes the form of exotic geological structures hosting roasting hot fluids and bizarre chemosynthetic life forms. One of the fundamental drivers for this other world on the seafloor is earthquakes. Earthquakes provide cracks that allow seawater to penetrate the rocks, heat up, and resurface as hydrothermal vent fluids, thus providing chemicals to feed a thriving biological community. Earthquakes can cause pressure changes along cracks that can fundamentally alter fluid flow rates and paths. Thus earthquakes can both cut off existing communities from their nutrient source and provide new oases on the seafloor around which life can thrive. This poster will present some of the fundamental physical principals of how earthquakes can impact fluid flow, and hence life on the seafloor. Using these other-wordly landscapes and alien-like life forms to woe the unsuspecting passerby, we will sneak geophysics into the picture and tell the story of why earthquakes are so fundamental to life on the seafloor, and perhaps life elsewhere in the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Losh, S.; Eglinton, L.; Schoell, M.
1999-02-01
Data from sediments in and near a large growth fault adjacent to the giant South Eugene Island Block 330 field, offshore Louisiana, indicate that the fault has acted as a conduit for fluids whose flux has varied in space and time. Core and cuttings samples from two wells that penetrated the same fault about 300 m apart show markedly different thermal histories and evidence for mass flux. Sediments within and adjacent to the fault zone in the US Department of Energy-Pennzoil Pathfinder well at about 2200 m SSTVD (subsea true vertical depth) showed little paleothermal or geochemical evidence for through-goingmore » fluid flow. The sediments were characterized by low vitrinite reflectances (R{sub {omicron}}), averaging 0.3% R{sub {omicron}}, moderate to high {delta}{sup 18}O and {delta}{sup 13}C values, and little difference in major or trace element composition between deformed and undeformed sediments. In contrast, faulted sediments from the A6ST well, which intersects the A fault at 1993 m SSTVD, show evidence for a paleothermal anomaly (0.55% R{sub {omicron}}) and depleted {delta}{sup 18}O and {delta}{sup 13}C values. Overall, indicators of mass and heat flux indicate the main growth fault zone in South Eugene Island Block 330 has acted as a conduit for ascending fluids, although the cumulative fluxes vary along strike. This conclusion is corroborated by oil and gas distribution in downthrown sands in Blocks 330 and 331, which identify the fault system in northwestern Block 330 as a major feeder.« less
Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.
1994-01-01
Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (<10 m below seafloor; mbsf) hemipelagic sediment. The contrasting clastic and diagenetic lithologies should be apparent in side scan images. However, sonar also responds to variations in bottom slope, so unprocessed images mix topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.
NASA Astrophysics Data System (ADS)
Santana, Miriela María Ulloa; Moura, Márcia Abrahão; Olivo, Gema R.; Botelho, Nilson Francisquini; Kyser, T. Kurtis; Bühn, Bernhard
2011-01-01
The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc-alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O-NaCl-(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480-505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical-chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore-related epidote-chlorite alteration can be classified as propylitic and not the classic potassic and/or phyllic alteration. The low copper contents in the prospect could be due to a mineralizing fluid previously saturated in copper, which is indicated by trapped chalcopyrite crystals in high-temperature fluid inclusions. The low-temperature paragenesis, represented by carbonate, zeolite and barite, indicates epithermal overprint. The study shows the potential for other gold porphyry-type deposits in the Cretaceous volcanoplutonic arc of Cuba.
Fluid-induced Blueschist Preservation on Syros, Cyclades, Southern Greece
NASA Astrophysics Data System (ADS)
Kleine, B. I.; Huet, B.; Skelton, A. D. L.
2012-04-01
Local examples of preservation of high-pressure, low-temperature (HP-LT) mineral assemblages within retrograde metamorphosed greenschist are recorded from the Cyclades, Greece. Several models have been proposed to explain the preservation of HP-LT rocks in these areas. On Sifnos, a capping effect of impermeable marble units below the preserved blueschists caused diversion of the upward, cross-layer infiltration of retrograde fluids [1]. On Tinos, blueschist preservation occurred due to retrograde fluid flow channelization along lithological contacts with high flux rates [2]. HP-LT minerals were preserved in regions adjacent to these contacts where fluid fluxes were smaller. We propose a different mechanism of blueschist preservation based on observations from a costal section near Fabrika on Syros. At this locality a high strain zone cuts through a retrograde greenschist. Along the fault a dark blue halo occurs within the greenschist. Whole rock analyses along a profile from the fault into the greenschist show that only the areas directly adjacent to the deformation zone show chemical evidence of metasomatism, whereas the areas further away are chemically similar to greenschist. Point counting of 1000 evenly spaced points in thin sections of the profile shows a clear blueschist to greenschist transition with a blueschist mineral assemblage (glaucophane+phengite+calcite) nearer to the metasomatic zone and a typical greenschist mineral assemblage (epidote+chlorite+albite) farther away. We propose the following model to explain preservation of HP-LT mineral assemblage in this locality. During retrograde metamorphism a water-rich fluid infiltrated the blueschist rock from below. This occurred close to the brittle-ductile transition. This fluid caused a reaction front to propagate into the overlying blueschist at which its mineral assemblage glaucophane+phengite+calcite was replaced by the greenschist mineral assemblage epidote+albite+chlorite. Upwards-flowing fluid passing through the reaction front is buffered to higher X(CO2) by the reaction glaucophane+phengite+calcite+H2O=albite+chlorite+epidote+quartz+CO2. This fluid travels faster along paths of structural weakness (e.g. shear zones, faults). If this fluid reaches colder regions more rapidly such that the fluid chemistry is unable to "keep up" with the position of the reaction equilibria as the temperature falls, X(CO2) will be effectively shifted back into the blueschist stability field and blueschist will be preserved, specifically within high flux regions, such as shear zones and faults. [1] Matthews & Schliestedt (1984), Contributions to Mineralogy and Petrology, 88, 150-163. [2] Breeding et al. (2003), Geochemistry Geophysics Geosystems, 4, 1-11.
NASA Astrophysics Data System (ADS)
Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.
2017-12-01
The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting mutual cross-cutting relations, attests for episodic fluid flow and mineralization within the PSZ. We interpret these as microstructural evidence for transient fault core permeability resulting from rupture nucleation due to supra-lithostatic fluid pressures following during fault-valve behavior.
Alex, J; Kolisch, G; Krause, K
2002-01-01
The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.
2015-05-15
This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less
NASA Astrophysics Data System (ADS)
Uvarova, Yulia A.; Pearce, Mark A.; Liu, Weihua; Cleverley, James S.; Hough, Robert M.
2018-04-01
The Emmie Bluff iron oxide, copper, gold (IOCG) prospect is located in the Olympic Dam district, South Australia, and hosts sub-economic 150-m-thick Cu-Au mineralisation associated with the hematite-chlorite-sericite alteration with chalcopyrite commonly replacing pre-existing pyrite at a depth of 800 m. With the use of cutting-edge synchrotron X-ray fluorescence microscopy and field emission gun-scanning electron microscopy, it is shown for the first time that sub-economic IOCG mineralisation in the Olympic Dam district was affected by a late fluid event, which resulted in partial dissolution of Cu mineralisation and transport of Cu in the form of chloride complexes. The porous chlorite-sericite matrix associated with the late alteration of chalcopyrite hosts a Cu-Cl-OH phase previously undescribed in IOCG rocks, which was identified as one of the polymorphs of the atacamite group of minerals, Cu2Cl(OH)3. Thermodynamic modelling shows that "atacamite" is produced during dissolution of chalcopyrite by an oxidised, Cl-bearing fluid. An acidic environment is produced within millimetres of the chalcopyrite grains during oxidation. This process drives chlorite recrystallisation that is recorded by compositional variation of chlorite proximal to chalcopyrite. The existence of the atacamite is discussed in the context of fluid evolution and interaction with IOCG-type mineralisation and its implications to ore preservation versus destruction and remobilisation.
Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A
2012-10-14
We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.
Optimal Magnetorheological Fluid for Finishing of Chemical-Vapor-Deposited Zinc Sulfide
NASA Astrophysics Data System (ADS)
Salzman, Sivan
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor- deposited zinc sulfide (ZnS) optics leaves visible surface artifacts known as "pebbles". These artifacts are a direct result of the material's inner structure that consists of cone-like features that grow larger (up to a few millimeters in size) as deposition takes place, and manifest on the top deposited surface as "pebbles". Polishing the pebble features from a CVD ZnS substrate to a flat, smooth surface to below 10 nm root-mean-square is challenging, especially for a non-destructive polishing process such as MRF. This work explores ways to improve the surface finish of CVD ZnS processed with MRF through modification of the magnetorheological (MR) fluid's properties. A materials science approach is presented to define the anisotropy of CVD ZnS through a combination of chemical and mechanical experiments and theoretical predictions. Magnetorheological finishing experiments with single crystal samples of ZnS, whose cuts and orientations represent most of the facets known to occur in the polycrystalline CVD ZnS, were performed to explore the influence of material anisotropy on the material removal rate during MRF. By adjusting the fluid's viscosity, abrasive type concentration, and pH to find the chemo-mechanical conditions that equalize removal rates among all single crystal facets during MRF, we established an optimized, novel MR formulation to polish CVD ZnS without degrading the surface finish of the optic.
Numerical analysis of the transient flow in a scroll refrigeration compressor
NASA Astrophysics Data System (ADS)
Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi
2017-08-01
In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.
Koh, Myung Je; Lee, In Jae; Kim, Joo-Hee
2016-06-01
To assess the relationship between imaging features of pulmonary tuberculosis at computed tomography (CT) and adenosine deaminase (ADA) values via pleural fluid analysis in patients with pleural tuberculosis. This retrospective study enrolled 60 patients who underwent fluid analysis for ADA and chest CT and were diagnosed with tuberculosis by culture or polymerase chain reaction of pleural fluid and sputum. The presence of centrilobular nodules, consolidation, cavitation, and mediastinal lymphadenopathy at CT were evaluated. The relationship between ADA values and the pattern of pulmonary involvement of tuberculosis was analysed. Pulmonary involvement was seen in 42 of the 60 patients. A centrilobular nodular pattern was seen in 37 and consolidation in 22. In 17 patients, both findings were identified. A centrilobular nodular pattern was more common than consolidation or cavitary lesions. When ADA values were high, pulmonary involvement was more frequent (p=0.002). Comparing low and high ADA groups using an obtained cut-off value of 80 IU/l, the high group had more frequent pulmonary involvement (p<0.001). Patients with tuberculous pleurisy who had high ADA values had a higher probability of manifesting pulmonary tuberculosis. High ADA values may help predict contagious pleuroparenchymal tuberculosis. The most common pulmonary involvement of tuberculous pleurisy showed a centrilobular nodular pattern. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Ali, N; Nath, N C; Parvin, R; Rahman, A; Bhuiyan, T M; Rahman, M; Mohsin M N
2014-12-01
This cross sectional study was carried out in the department of gastroenterology, BIRDEM, Dhaka from January 2010 to May 2011 to determine the role of ascitic fluid ADA and serum CA-125 in the diagnosis of clinically suspected tubercular peritonitis. Total 30 patients (age 39.69 ± 21.26, 18M/12F) with clinical suspicion of tuberculosis peritonitis were included in this study after analyzing selection criteria. Laparoscopic peritoneal biopsy with 'histopathological diagnosis' was considered gold standard against which accuracics of two biomarkers (ADA & CA-125) were compared. Cut off value of ADA and CA-125 are 24 u/l, 35 U/ml respectively. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of ADA as a diagnostic modality in tuberculos peritonitis were 87.5%, 83.33%, 95.45%, 62.5% and 86.67% respectively where as CA-125 was found to have 83.33% sensitivity, 50% specificity, 86.9% positive predictive value, 42.85% negative predictive value and 76.6% accuracy. Both biomarkers are simple, non-invasive, rapid and relatively cheap diagnostic test where as laparoscopy is an invasive procedure, costly & requires trained staff and not without risk and also not feasible in all the centre in our country. So ascitic fluid ADA and serum CA-125 are important diagnostic test for peritoneal tuberculosis.
Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.
1997-01-01
A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Pooja, Pathania, Y.; Ahluwalia, P. K.
2015-05-01
This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.
Induction of Fish Biomarkers by Synthetic-Based Drilling Muds
Gagnon, Marthe Monique; Bakhtyar, Sajida
2013-01-01
The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs. PMID:23894492
Pulgati, Fernando H; Ayup-Zouain, Ricardo N; Landau, Luiz; Fachel, Jandyra M G
2010-08-01
This paper describes the use of Bayesian spatial models to develop the concept of a spatial-temporal mask for the purpose of identifying regions in which before and after drilling effects are most clearly defined and from which the consequences of exposure of macrofauna and meiofauna to the release of drilling discharges can be evaluated over time. To determine the effects of drilling fluids and drill-cuttings on the marine benthic community, it is essential to know not only where discharged materials ended up within the possible impact area, but also the chemical concentrations to which biota were exposed during and after drilling. Barium and light hydrocarbons were used as chemical tracers for water-based and non-aqueous-based fluids in a shallow water site in the Campos Basin, off the coast of Brazil. Since the site showed evidence of exposure to waste material from earlier drilling, the analysis needed to take into account the background concentrations of these compounds. Using the Bayesian models, concentrations at unsampled sites were predicted and regions altered and previously contaminated were identified.
Laboratory accidents--a matter of attitude.
Karim, N; Choe, C K
2000-12-01
This is a prospective study on accidents occurring in the Pathology laboratories of Hospital Ipoh over the 3-year period from January 1996 to October 1999. 15 mishaps were recorded. The location of the accidents were the histology (40%), microbiology (33%), haematology (20%) and cytology (7%) laboratories. No mishaps were reported from the clinical chemistry, blood bank and outpatient laboratories. Cuts by sharp objects were the most common injuries sustained (47%) followed by splashes and squirts by fluid such as blood or chemicals (27%). There was 1 case each of contact with biohazardous fluid, burn, allergy and accidental drinking of disinfectant. 67% of the accidents involved medical laboratory technicians, 20% involved attendants and the rest were medical officers and the junior laboratory technicians. Although the accidents reported appeared trivial, it is vital to document them and bring them to the attention of all concerned in the laboratory, in order to prevent major accidents and also because of medico-legal implications. The role of the Laboratory Safety Committee cannot be overemphasised. Modification of staff attitude is considered an important remedial goal.
Process for removing polychlorinated biphenyls from soil
Hancher, C.W.; Saunders, M.B.; Googin, J.M.
1984-11-16
The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert
1998-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: Shocks; Vortex ores; Regions of Recirculation; Boundary Layers; Wakes.
Davatzes, Nicholas C.; Hickman, Stephen H.
2009-01-01
A suite of geophysical logs has been acquired for structural, fluid flow and stress analysis of well 27-15 in the Desert Peak Geothermal Field, Nevada, in preparation for stimulation and development of an Enhanced Geothermal System (EGS). Advanced Logic Technologies Borehole Televiewer (BHTV) and Schlumberger Formation MicroScanner (FMS) image logs reveal extensive drilling-induced tensile fractures, showing that the current minimum compressive horizontal stress, Shmin, in the vicinity of well 27-15 is oriented along an azimuth of 114±17°. This orientation is consistent with the dip direction of recently active normal faults mapped at the surface and with extensive sets of fractures and some formation boundaries seen in the BHTV and FMS logs. Temperature and spinner flowmeter surveys reveal several minor flowing fractures that are well oriented for normal slip, although over-all permeability in the well is quite low. These results indicate that well 27-15 is a viable candidate for EGS stimulation and complements research by other investigators including cuttings analysis, a reflection seismic survey, pressure transient and tracer testing, and micro-seismic monitoring.
NASA Astrophysics Data System (ADS)
Lowenstern, J. B.; Audétat, A.
2013-12-01
Melt and fluid inclusions yield important clues to the history of igneous melts and their related hydrothermal ore deposits (1). Under ideal conditions, melt inclusions in volcanic rocks yield data on the actual concentrations of ore metals and volatiles during instantaneous snapshots of crystallization and degassing. Their varying compositions can directly reflect sequestration of ore-metals in fractionating minerals and/or exsolving brines and vapors. Frequently, scientists compare the concentration of volatile elements in melt inclusions with their abundance in devolatilized matrix glass. Though this provides an informative qualitative overview of volatility, it is essentially impossible to use such data to calculate thermodynamically relevant partition coefficients. The resulting partitioning ratio instead represents fractionation over a wide range of pressures, and compositions (for both exsolved fluid and silicate melt). Ideally, workers should identify co-entrapped fluid and glass inclusions to provide more thermodynamically meaningful partitioning ratios for volatile metals and gases (2,3). Unfortunately, the occurrence of fluid inclusions co-entrapped with silicate melt is relatively rare, and studies of synthetic fluid and melt inclusions may be the most practical means of exploring the effect of crystallization and degassing in 'natural' systems. As with melt inclusions, under ideal conditions, fluid inclusions in intrusive rocks represent the compositions of fluids generated within associated magmatic-hydrothermal fluid systems. Multiple generations of cross-cutting fractures may be generated, resulting in trails of secondary and pseudosecondary inclusions in igneous minerals, and primary and secondary inclusions in hydrothermal assemblages. Chemistry of the fluids preserved within different inclusion generations will change markedly due to changes in magmatic temperature and pressure and mixing of diverse external fluids from meteoric and metamorphic sources. For example, ore elements sequestered by magmatic crystallization at high temperature may be liberated and re-transported by fluids upon magma cooling due to breakdown and dissolution of oxides and sulfides at low temperature. Both fluid and melt inclusions can be open to modification between initial formation and ultimate petrographic inspection. In melt inclusions, bubbles separate from glass and variably re-hydrate the glass during cooling. In addition, crystals can form and elements can diffuse between glass and host mineral. These problems are yet more exaggerated in intrusive rocks, but workers are still able to obtain useful information through meticulous inspection, categorization and analysis through diverse techniques. This presentation will review a variety of recent studies that illustrate these concepts and demonstrate how to extract useful information from inclusions from a variety of deposit types. (1) Audétat, A. & Lowenstern, J.B. (in press) Melt Inclusions. In Scott. S. (ed.) Geochemistry of Mineral Resources: Treatise of Geochemistry, 2nd edition. (2) Zajacz Z, et al. (2008) Geochim et Cosmochim.Acta, 72: 2169-2197. (3) Lerchbaumer, L. & Audétat, A., (2013) Econ. Geol. v. 108, p. 987-1013.
Yang, Hao; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli
2018-05-01
Subaperture polishing techniques usually produce rolled edges due to edge effect. The rolled edges, especially those in millimeter scale on small components, are difficult to eliminate using conventional polishing methods. Magnetorheological jet polishing (MJP) offers the possibility of the removal of these structures, owing to its small tool influence function (TIF) size. Hence, we investigate the removal characters of inclined MJP jetting models by means of computational fluid dynamics (CFD) simulations and polishing experiments. A discrete phase model (DPM) is introduced in the simulation to get the influence of abrasive particle concentration on the removal mechanism. Therefore, a more accurate model for MJP removal mechanisms is built. With several critical problems solved, a small bevel-cut-like TIF (B-TIF), which has fine acentric and unimodal characteristics, is obtained through inclined jetting. The B-TIF proves to have little edge effect and is applied in surface polishing of thin rolled edges. Finally, the RMS of the experimental section profile converges from 10.5 nm to 1.4 nm, and the rolled edges are successfully suppressed. Consequently, it is validated that the B-TIF has remarkable ability in the removal of millimeter-scale rolled edges.
PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD
NASA Technical Reports Server (NTRS)
Suhs, Norman E.; Rogers, Stuart E.; Dietz, William E.; Kwak, Dochan (Technical Monitor)
2002-01-01
An all new, automated version of the PEGASUS software has been developed and tested. PEGASUS provides the hole-cutting and connectivity information between overlapping grids, and is used as the final part of the grid generation process for overset-grid computational fluid dynamics approaches. The new PEGASUS code (Version 5) has many new features: automated hole cutting; a projection scheme for fixing gaps in overset surfaces; more efficient interpolation search methods using an alternating digital tree; hole-size optimization based on adding additional layers of fringe points; and an automatic restart capability. The new code has also been parallelized using the Message Passing Interface standard. The parallelization performance provides efficient speed-up of the execution time by an order of magnitude, and up to a factor of 30 for very large problems. The results of three example cases are presented: a three-element high-lift airfoil, a generic business jet configuration, and a complete Boeing 777-200 aircraft in a high-lift landing configuration. Comparisons of the computed flow fields for the airfoil and 777 test cases between the old and new versions of the PEGASUS codes show excellent agreement with each other and with experimental results.
Analysis of the radar cross-section (RCS) of aircraft vortices
NASA Astrophysics Data System (ADS)
Shariff, Karim; Wray, Alan
1999-11-01
Radar has been proposed as one way to track wake vortices to reduce aircraft spacing. Radar echoes from aircraft wakes are usually interpreted qualitatively using Tatarski's theory of scattering by isotropic atmospheric turbulence. The present work predicts RCS by (1) Keeping the weak scattering approximation but dropping the assumptions of a far-field and a uniform incident wave, neither of which is generally valid for a coherent wake (2) Considering three simple mechanisms for the structure and magnitude of refractive index variations: (i) Radial density gradient in each vortex (ii) Adiabatic transport of atmospheric fluid in the oval surrounding the vortices (iii) 3D fluctuations in the vortex cores. For mechanism (ii) the predictions agree with available data. However, the predictions have a cut-off away from normal incidence which is not present in the measurements due possibly to 3D fluctuations in the oval. The reflectivity of mechanism (i) is comparable but cuts-off at frequencies lower than those considered in the experiment. Finally, we suggest that hot engine exhaust could increase RCS by 40 db and reveal vortex circulation, provided its mixing is prevented in the laminar vortices.
Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow
NASA Astrophysics Data System (ADS)
Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.
2011-12-01
Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference between the hydrocarbon and aqueous sand slurries controls the the critical radius of the contacts between dolomite cemented and limonite cemented sand bodies. The cross-cutting relationships established in the field show that the laminations formed at the jamming transition in the aqueous sand slurry. We interpret the laminations as preserving evidence for dynamic permeability instabilities in the dewatering slurry. Relatively high permeability channels formed as pore fluid flow rearranged grains during initial dewatering. Once initiated, the flow localized further into the higher permeability channels resulting in a feedback that caused the permeability in the channels to increase.
NASA Astrophysics Data System (ADS)
Gu, C.; Mighani, S.; Prieto, G. A.; Mok, U.; Evans, J. B.; Hager, B. H.; Toksoz, M. N.
2017-12-01
Repeating earthquakes have been found in subduction zones and interpreted as repeated ruptures of small local asperities. Repeating earthquakes have also been found in oil/gas fields, interpreted as the reactivation of pre-existing faults due to fluid injection/extraction. To mimic the fault rupture of a fault with local asperities, we designed a "stick-slip" experiment using a saw-cut cylindrical Lucite sample, which had sharp localized ridges parallel to the strike of the fault plane. The sample was subjected to conventional triaxial loading with a constant confining pressure of 10 MPa. The axial load was then increased to 6 MPa at a constant rate of 0.12 MPa/sec until the sliding occurred along the fault plane. Ultrasonic acoustic emissions (AEs) were monitored with eight PZT sensors. Two cycles of AEs were detected with the occurrence rate that decreased from the beginning to the end of each cycle, while the relative magnitudes increased. Correlation analysis indicated that these AEs were clustered into two groups - those with frequency content between 200-300kHz and a second group with frequency content between 10-50kHz. The locations of the high-frequency events, with almost identical waveforms, show that these events are from the sharp localized ridges on the saw-cut plane. The locations of the low-frequency events show an approaching process to the high-frequency events for each cycle. In this single experiment, there was a correlation of the proximity of the low-frequency events with the subsequent triggering of large high-frequency repeating events.
AN Fitting Reconditioning Tool
NASA Technical Reports Server (NTRS)
Lopez, Jason
2011-01-01
A tool was developed to repair or replace AN fittings on the shuttle external tank (ET). (The AN thread is a type of fitting used to connect flexible hoses and rigid metal tubing that carry fluid. It is a U.S. military-derived specification agreed upon by the Army and Navy, hence AN.) The tool is used on a drill and is guided by a pilot shaft that follows the inside bore. The cutting edge of the tool is a standard-size replaceable insert. In the typical Post Launch Maintenance/Repair process for the AN fittings, the six fittings are removed from the ET's GUCP (ground umbilical carrier plate) for reconditioning. The fittings are inspected for damage to the sealing surface per standard operations maintenance instructions. When damage is found on the sealing surface, the condition is documented. A new AN reconditioning tool is set up to cut and remove the surface damage. It is then inspected to verify the fitting still meets drawing requirements. The tool features a cone-shaped interior at 36.5 , and may be adjusted at a precise angle with go-no-go gauges to insure that the cutting edge could be adjusted as it wore down. One tool, one setting block, and one go-no-go gauge were fabricated. At the time of this reporting, the tool has reconditioned/returned to spec 36 AN fittings with 100-percent success of no leakage. This tool provides a quick solution to repair a leaky AN fitting. The tool could easily be modified with different-sized pilot shafts to different-sized fittings.
Grauch, Richard I.; Desborough, George A.; Meeker, Gregory P.; Foster, A.L.; Tysdal, Russell G.; Herring, J. R.; Lowers, Heather A.; Ball, B. A.; Zielinski, Robert A.; Johnson, E.A.
2004-01-01
The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts the ore mined by the phosphate industry of southeast Idaho. It also hosts environmentally sensitive elements (ESE) such as Se, As, Hg, Ni, Cd, Zn, and Cr. Primary chemistry, elemental distribution patterns, and mineralogy within the Meade Peak were modified by element migration and possibly the introduction of elements. Fluids moved within the Meade Peak throughout its history, although the passage of fluids was highly variable in space and time, resulting in small domains of different rock chemistry and different mineralogy. Timing of major events affecting the Meade Peak and mineral habit are used to differentiate among detrital, diagenetic, epigenetic, and supergene mineral assemblages. Cross-cutting relationships among minerals are too rare to provide much paragenetic infor- mation. Carbonate fluorapatite (CFA) occurs in several forms, but dominantly as pelloids, some of which may have formed in situ during diagenesis. The other volumetrically signifi- cant form of CFA is interstitial cement that formed during diagenesis. Beginning during diagenesis and continuing intermittently, multiple generations of carbonate (dolomite and calcite) formed overgrowths and texturally complex carbonate cements. Movement and precipitation of silica followed a similar pattern. The ammonium feldspar buddingtonite, which generally rims orthoclase, also formed during diagenesis. Bacteria apparently played a significant role during diagenesis as well as during supergene processes, resulting in extreme fractionation of S isotopes and the possible bacterially mediated formation of minerals such as glauconite and sphalerite.Catagenesis, apparently culminating in oil generation, was the last significant diagenetic change. Thrusting accompanied by fluid (oil and brine) migration began during catagenesis in the Late Jurassic or Cretaceous and continued into the early Eocene.Fluorite ± carbonate ± barite± bitumen veins formed as a result of brittle deformation and accompanying fluid movement. This fracturing event may have been associated with a period of extension and normal faulting (Neogene to Holocene). Passage of the Yellowstone hot spot to the north of the area during the Neogene is marked by silicic domes and basaltic flows. The enrichment of Hg in fracture coatings might be the result of deposition from warm fluids associated with the emplacement of the silicic domes or a generally elevated, regional thermal gradient associated with the volcanism.Many of the fracture systems are still open and continue to provide fluid pathways that are the primary depositional sites for a wide variety of supergene minerals (such as Se, efflorescent salts) and element associations (such as Hg, Cd-S, Fe-Cr-O) in which many of the ESE are concentrated. Native Se is the most commonly identified host of Se in the studied samples. The largest concentration of Se occurs in open-fracture systems that cross-cut waste rock and ore units. The age(s) of native Se formation is not known; how- ever, the latest period of Se mobility is the present. Direct measurement of efflorescent “salts” forming on new mine faces indicate that several ESE, including both Se and Zn, are concentrated on the faces soon after they are exposed. Zinc is present as hydrous sulfates, but the residence of Se in these “salts” is unknown.
NASA Astrophysics Data System (ADS)
Bongiolo, Everton Marques; Renac, Christophe; Piza, Patricia d'Almeida de Toledo; Schmitt, Renata da Silva; Mexias, André Sampaio
2016-01-01
The Ponta Negra Pegmatites (PNP), part of a pegmatitic province in Rio de Janeiro State, Brazil, crop out along an intensely deformed, medium- to high-grade metamorphic area that is proximal to a crustal-scale thrust zone developed during the Brasiliano/Pan-African Orogeny. Fieldwork shows that the pegmatites formed in two distinct stages: (i) syn-collisional leucosome veins (Group I) conformable with the tectonic foliation of the gneissic host rocks and (ii) late- to post-collisional dykes (Group II) that cross-cut the same tectonic foliation at a high angle. In this paper, we use geochemistry of whole-rock and mineral separates (alkali-feldspar and biotite), fluid inclusion microthermometry and stable isotopic (δ18O, δD, δ13C) determinations on minerals (quartz, alkali-feldspar, biotite and magnetite) and fluid inclusions to provide insights into the composition of the pegmatite-forming melts, associated fluids, and their geotectonic significance. U-Pb SHRIMP dating of the Cajú syenogranite was performed to evaluate and compare the timing of magmatic events along the Cabo Frio Tectonic Domain as this is the closest post-collisional pluton to the studied pegmatites. The calculated temperature for the Group I syn-collisional veins (740 °C) is similar to previous estimates for the peak metamorphic conditions in the study area. Variations in the temperature of the Group II pegmatite dykes obtained from stable isotopes (380 to 720 °C), and microthermometric data from primary fluid inclusions with traces of N2 (Th = 280 to 360 °C), may reflect the thermodynamics of the pegmatite crystallization, exsolution textures and isotopic exchange. The composition of fluids in equilibrium within the pegmatite dykes consists of magmatic and metamorphic components. The minimum pressures calculated for the emplacement of the pegmatites are equivalent to a shallow crustal depth between 1.7 and 3.5 km, which corresponds to the exhumation of the orogen since the emplacement of the pegmatites. A linear trend of decreasing CO2 content and δ13CCO2 is consistent with mixtures between (i) carbon derived from organic matter or volatilization of skarns and (ii) inorganic carbon (carbonate). Based on the data obtained, we propose that the pegmatites of Ponta Negra are close to an LCT-type geochemical signature (highly peraluminous magmas with normative corundum), and originated by partial melting of the metasedimentary Palmital succession at depth, during the waning stages of the Búzios Orogeny. The primary melts of the PNP cross-cut both the Neoproterozoic supracrustals and the Paleoproterozoic orthogneissic basement during its ascent and emplacement at higher crustal levels. Variable melt sources explain the slight differences in geochemical compositions among the studied rocks within the metasedimentary succession, which probably include Mn-bearing exhalites, as well as differentiation processes. The 454 ± 5 Ma U-Pb (zircon) age of the Cajú syenogranite overlaps previous geochronological data of 440 ± 11 Ma obtained on a pegmatite dyke at Ponta Negra, bracketing and extending the time interval for the Gondwana assembly collapse magmatism in the region. The heat that triggered this magmatic event could still be a consequence of the collisional orogeny, increasing contents of heat-producing elements, or, a large intraplate extension that followed the Gondwana amalgamation and initiated the formation of Paleozoic basins.
Fluid flow and permeabilities in basement fault zones
NASA Astrophysics Data System (ADS)
Hollinsworth, Allan; Koehn, Daniel
2017-04-01
Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault rocks, and younger Mesozoic age faults may provide analogues for the West Shetland basin. Samples have been collected from both of these localities, and will be examined by optical and scanning electron microscopy. X-Ray micro-tomography will also be used to analyse the permeability characteristics of the fault rocks. Our understanding of fault zone permeability is crucial for a number of research areas, including earthquake geoscience, economic mineral formation, and hydrocarbon systems. As a result, this research has relevance to a variety of industry sectors, including oil and gas (and ccs), nuclear waste disposal, geothermal and mining.
NASA Astrophysics Data System (ADS)
Soloviev, Serguei G.; Kryazhev, Sergey G.
2017-08-01
The Skrytoe deposit (>145 Kt WO3, average grade 0.449% WO3) in the Sikhote-Alin orogenic system (Eastern Russia) is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in a late to post-collisional tectonic environment after cessation of active subduction. It is localized within a mineralized district of reduced-type skarn W and veined Au (±W) deposits and occurrences related to the Early Cretaceous ilmenite-series plutonic suite. The deposit incorporates large stockworks of scheelite-bearing veinlets related to propylitic (amphibole, chlorite, quartz) and phyllic (quartz, sericite, albite, apatite, and carbonate) hydrothermal alteration. The stockwork cuts flat-lying mafic volcanic rocks and limestone partially replaced by pyroxene skarn that host the major W orebodies. Scheelite is associated with pyrrhotite and/or arsenopyrite, with minor chalcopyrite and other sulfide minerals; the late phyllic stage assemblages hosts Bi and Au mineralization. The fluid evolution included low-salinity moderate-temperature, moderate-pressure (˜370-390 °C, ˜800 bars) methane-dominated carbonic-aqueous fluids that formed post-skarn propylitic alteration assemblages. Then, at the phyllic stage, there has been an evolution from methane-dominated, moderate-temperature (330-360 °C), low-salinity (<12.3 wt% NaCl equiv.) fluids forming the early quartz-sericite-albite-arsenopyrite assemblage, through lower temperature (290-330 °C) methane-dominated, low-salinity (˜9-10 wt% NaCl equiv.) fluids forming the intermediate quartz-sericite-albite-scheelite-pyrrhotite assemblage, to yet lower temperature (245-320 °C) CO2-dominated carbonic-aqueous low-salinity (˜1-7 wt% NaCl equiv.) fluids forming the late quartz-sericite-sulfide-Bi-Au assemblage. Recurrent fluid immiscibility (phase separation) and cooling probably affected W solubility and promoted scheelite deposition. The stable isotope data support a sedimentary source of carbon (δ13Cfluid = ˜-21 to -10 ‰), a magmatic source for water (δ18OH2O = +7.4 to +7.7 ‰), and dominantly crustal-derived source of sulfur (δ34S = -4.6 to -2.9 ‰) in the hydrothermal fluids. This is consistent with the development of larger, longer crystallizing crustal intermediate to felsic magma chambers in the late to post-collisional tectonic environment, with their protracted magmatic evolution advancing magmatic differentiation and partitioning of W into magmatic-hydrothermal fluid. The dominating role of the crustal-derived magmatic water, sulfur, and carbon appears to be an important feature of reduced W skarn deposits related to ilmenite-series granitoids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavignet, A.A.; Wick, C.J.
In current practice, pressure drops in the mud circulating system and the settling velocity of cuttings are calculated with simple rheological models and simple equations. Wellsite computers now allow more sophistication in drilling computations. In this paper, experimental results on the settling velocity of spheres in drilling fluids are reported, along with rheograms done over a wide range of shear rates. The flow curves are fitted to polynomials and general methods are developed to predict friction losses and settling velocities as functions of the polynomial coefficients. These methods were incorporated in a software package that can handle any rig configurationmore » system, including riser booster. Graphic displays show the effect of each parameter on the performance of the circulating system.« less
Deceleration of a supersonic flow behind a curved shock wave with isentropic precompression
NASA Technical Reports Server (NTRS)
Dulov, V. G.; Shchepanovskiy, V. A.
1985-01-01
Three-dimensional supersonic flows of an ideal fluid in the neighborhood of bodies formed by being cut out along the streamlines of an axisymmetric flow are investigated. The flow consists of a region of isoentropic compression and a region of vortex flow. An exact solution with variable entropy is used to describe the flow in the vortex region. In the continuous flow region an approximate solution is constructed by expanding the solution in a series in a small parameter. The effect of the shape of the excision and the vorticity of the flow on compression of the jet and and the total pressure loss coefficient is studied.
[Sodium and potassium content of various Chilean foods].
Alvarez de Araya, C; Farah, M; Zuccarelli, M T; Masson, L
1981-03-01
Sodium and potassium contents of 40 high-protein dietary products were determined in order to complete the Table de Composición Química se Alimentos Chilenos (Chemical Composition Table of Chilean Foods). These cations' level must be strictly controlled in diets of many renal and heart patients. In Chile, Nutritionists who are in charge of preparing these diets, do not have a national composition table related to the sodium and potassium content for most of the food products. Samples of fluid cow's milk, dried milk with different fat contents, some cheeses, hen eggs, bovine entrails, some meat derivates and several meat cuts, including bovine, pork, lamb and chicken were studied.
ADVANCED CUTTINGS TRANSPORT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan Miska; Nicholas Takach; Kaveh Ashenayi
2004-01-31
Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolatemore » both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of pressure and temperature. Several parameters were measured during these tests including differential pressure and mixture density in the annulus. Flow patterns during the aerated fluids test have been observed through the view port in the annulus and recorded by a video camera. Most of the flow patterns were slug flow. Further increase in gas flow rate changed the wavy flow pattern to slug flow. At this stage, all of the planned cuttings transport tests have been completed. The results clearly show that temperature significantly affects the cuttings transport efficiency of aerated muds, in addition to the liquid flow rate and gas liquid ratio (GLR). Since the printed circuit board is functioning (Task 11) with acceptable noise level we were able to conduct several tests. We used the newly designed pipe test section to conduct tests. We tested to verify that we can distinguish between different depths of sand in a static bed of sand in the pipe section. The results indicated that we can distinguish between different sand levels. We tested with water, air and a mix of the two mediums. Major modifications (installation of magnetic flow meter, pipe fittings and pipelines) to the dynamic bubble characterization facility (DTF, Task 12) were completed. An Excel program that allows obtaining the desired foam quality in DTF was developed. The program predicts the foam quality by recording the time it takes to pressurize the loop with nitrogen.« less
Kirkpatrick, Andrew W.; Tien, Homer; LaPorta, Anthony T.; Lavell, Kit; Keillor, Jocelyn; Wright Beatty, Heather E.; McKee, Jessica Lynn; Brien, Susan; Roberts, Derek J.; Wong, Jonathan; Ball, Chad G.; Beckett, Andrew
2015-01-01
BACKGROUND Hemorrhage is the leading cause of preventable posttraumatic death. Many such deaths may be potentially salvageable with remote damage-control surgical interventions. As recent innovations in information technology enable remote specialist support to point-of-care providers, advanced interventions, such as remote damage-control surgery, may be possible in remote settings. METHODS An anatomically realistic perfused surgical training mannequin with intrinsic fluid loss measurements (the “Cut Suit”) was used to study perihepatic packing with massive liver hemorrhage. The primary outcome was loss of simulated blood (water) during six stages, namely, incision, retraction, direction, identification, packing, and postpacking. Six fully credentialed surgeons performed the same task as 12 military medical technicians who were randomized to remotely telementored (RTM) (n = 7) or unmentored (UTM) (n=5) real-time guidance by a trauma surgeon. RESULTS There were no significant differences in fluid loss between the surgeons and the UTM group or between the UTM and RTM groups. However, when comparing the RTM group with the surgeons, there was significantly more total fluid loss (p = 0.001) and greater loss during the identification (p = 0.002), retraction (p = 0.035), direction (p = 0.014), and packing(p = 0.022) stages. There were no significant differences in fluid loss after packing between the groups despite differences in the number of sponges used; RTM group used more sponges than the surgeons and significantly more than the UTM group (p = 0.048). However, mentoring significantly increased self-assessed nonsurgeon procedural confidence (p = 0.004). CONCLUSION Perihepatic packing of an exsanguinating liver hemorrhage model was readily performed by military medical technicians after a focused briefing. While real-time telementoring did not improve fluid loss, it significantly increased nonsurgeon procedural confidence, which may augment the feasibility of the concept by allowing them to undertake psychologically daunting procedures. PMID:26422331
Gray, J.E.; Gent, C.A.; Snee, L.W.
2000-01-01
A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.
Mesa-Guzman, Miguel; Periklis, Perikleous; Niwaz, Zakiyah; Socci, Laura; Raubenheimer, Hilgardt; Adams, Ben; Gurung, Lokesh; Uzzaman, Mohsin
2015-01-01
Background Chest drain duration is one of the most important influencing aspects of hospital stay but the management is perhaps one of the most variable aspects of thoracic surgical care. The aim of our study is to report outcomes associated with increasing fluid and air leak criteria of protocol based management. Methods A 6-year retrospective analysis of protocolised chest drain management starting in 2007 with a fluid criteria of 3 mL/kg increasing to 7 mL/kg in 2011 to no fluid criteria in 2012, and an air leak criteria of 24 hours without leak till 2012 when digital air leak monitoring was introduced with a criteria of <20 mL/min of air leak for more than 6 hours. Patient data were obtained from electronic hospital records and digital chest films were reviewed to determine the duration of chest tube drainage and post-drain removal complications. Results From 2009 to 2012, 626 consecutive patients underwent thoracic surgery procedures under a single consultant. A total of 160 did not require a chest drain and data was missing in 22, leaving 444 for analysis. The mean age [standard deviation (SD)] was 57±19 years and 272 (61%) were men. There were no differences in the incidence of pneumothoraces (P=0.191), effusion (P=0.344) or re-interventions (P=0.431) for drain re-insertions as progressively permissive criteria were applied. The median drain duration dropped from 1-3 days (P<0.001) and accordingly hospital stay reduced from 4-6 days (P<0.001). Conclusions Our results show that chest drains can be safely removed without fluid criteria and air leak of less than 20 mL/min with median drain duration of 1 day, associated with a reduced length of hospital stay. PMID:26716045
Musa, Sanjin; Peek-Asa, Corinne; Young, Tracy; Jovanovic, Nina
2014-01-01
Health Professional exposures of health care workers (HCW) to potentially infective blood and body fluids presents a serious health threat, including hepatitis B, hepatitis C and HIV transmission. This study was conducted to assess the risk for and reporting of needle stick injuries, sharp injuries and other occupational exposures of health care workers in a large healthcare center in Sarajevo. This cross-sectional survey was conducted in May 2013. The study target population included all hospital health care workers who had a high potential for exposure. The estimated sample size was 48 physicians, 132 nurses/technicians and 30 auxiliary personnel. During their career, 124 (63.3%) HCW reported exposures to blood and body fluids. In total, needle stick injuries (66.1%) were the most common source of exposure, followed by contact with intact skin (12.1%) and cut with sharp object (11.3%). Only 43 (35.5%) reported any of these exposures to health authorities during their career. The odds of exposure to needle stick injuries and other occupational exposures to blood and bodily fluids were significantly higher among medical nurses/technicians (AOR=4.98, 95%CI=1.52-16,1) and auxiliary (AOR=4.30, 95% CI=1.07-17.34) personnel when compared to physicians. HCW in the operation room, intervention ambulance and laboratory (AOR=3.73, 95%CI=1.43-9.72) had higher odds of exposure than workers in the ambulatory departments. Needle stick Injuries, Sharp Injuries and other Occupational Exposures to Blood and Body Fluids among health care workers are underestimated hazard. Especially, for HCW who work in operation room/interventional ambulance. There is a need for preventive programs for HCW and further work on the establishment of an effective surveillance system.
McWilliams, C.K.; Wintsch, R.P.; Kunk, Michael J.
2007-01-01
Detailed electron microprobe analyses of phyllosilicates in crenulated phyllites from south-eastern Vermont show that grain-scale zoning is common, and sympathetic zoning in adjacent minerals is nearly universal. We interpret this to reflect a pressure-solution mechanism for cleavage development, where precipitation from a very small fluid reservoir fractionated that fluid. Multiple analyses along single muscovite, biotite and chlorite grains (30–200 μm in length) show zoning patterns indicating Tschermakitic substitutions in muscovite and both Tschermakitic and di/trioctahedral substitutions in biotite and chlorite. Using cross-cutting relationships and mineral chemistry it is shown that these patterns persist in cleavages produced at metamorphic conditions of chlorite-grade, chlorite-grade overprinted by biotite-grade and biotite-grade. Zoning patterns are comparable in all three settings, requiring a similar cleavage-forming mechanism independent of metamorphic grade. Moreover, the use of 40Ar/39Ar geochronology demonstrates this is true regardless of age. Furthermore, samples with chlorite-grade cleavages overprinted by biotite porphyroblasts suggest the closure temperatures for the diffusion of Al, Si, Mg and Fe ions are greater than the temperature of the biotite isograd (>∼400 °C). Parallel and smoothly fanning tie lines produced by coexisting muscovite–chlorite, and muscovite–biotite pairs on compositional diagrams demonstrate effectively instantaneous chemical equilibrium and probably indicate simultaneous crystallization.These results do not support theories suggesting cleavages form in fluid-dominated systems. If crenulation cleavages formed in systems in which the chemical potentials of all major components are fixed by an external reservoir, then the compositions of individual grains defining these cleavages would be uniform. On the contrary, the fine-scale chemical zoning observed probably reflects a grain-scale process consistent with a pressure-solution mechanism in which the aqueous activities of major components are defined by local dissolution and precipitation. Thus the role of fluids was probably limited to one of catalysing pressure-solution and fluids apparently did not drive cleavage development.
Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R.
2003-01-01
Metamorphic belts are complex regions where accretion or collision has added to, or thickened, continental crust. Gold-rich deposits can be formed at all stages of orogen evolution, so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other. This partly explains the high level of controversy on the origin of some deposit types, particularly those formed or overprinted/remobilized during the major compressional orogeny that shaped the final geometry of the hosting metamorphic belts. These include gold-dominated orogenic and intrusion-related deposits, but also particularly controversial gold deposits with atypical metal associations. There are a number of outstanding problems for all types of gold deposits in metamorphc belts. These include the following: (1) definitive classifications, (2) unequivocal recognition of fluid and metal sources, (3) understanding of fluid migration and focusing at all scales, (4) resolution of the precise role of granitoid magmatism, (5) precise gold-depositional mechanisms, particularly those producing high gold grades, and (6) understanding of the release of CO2-rich fluids from subducting slabs and subcreted oceanic crust and granitoid magmas at different crustal levels. Research needs to be better coordinated and more integrated, such that detailed fluid-inclusion, trace-element, and isotopic studies of both gold deposits and potential source rocks, using cutting-edge technology, are embedded in a firm geological framework at terrane to deposit scales. Ultimately, four-dimensional models need to be developed, involving high-quality, three-dimensional geological data combined with integrated chemical and fluid-flow modeling, to understand the total history of the hydrothermal systems involved. Such research, particularly that which can predict superior targets visible in data sets available to exploration companies before discovery, has obvious spin-offs for global- to deposit-scale targeting of deposits with superior size and grade in the covered terranes that will be the exploration focus of the twenty-first century.
NASA Astrophysics Data System (ADS)
Prante, M. R.; Evans, J. P.
2012-12-01
Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite pseudomorphs after biotite and alteration of mafic phases to epidote, sericite and calcite alteration of albite, and calcite and chlorite filled veins. Cross-cutting calcite veins contain fine-grained calcite with abundant twins up to 20 μm-thick. Multiple pseudotachylyte injection veins and reworked pseudotachylyte in cataclastic rock suggest multiple earthquakes along the GPF and GLF at depths favorable to pseudotachylyte formation. Abundant hydrothermal alteration and cross-cutting calcite veins with thick (> 1 μm) twins is consistent with ambient temperatures between 170 and 200°C. These temperatures are generally consistent with the reported ambient temperature conditions during pseudotachylyte formation. Crystal-plastic deformation of quartz and feldspar in the GPF and GLF zones is consistent with deformation at temperatures between 200-400°C. Frictional melt and associated brittle and plastic deformation, and fluid alteration are presumed to have occurred at similar temperature conditions and may be coeval. These results have important implication for understanding energy sinks associated with seismic slip and the conditions of tectonic pseudotachylyte formation.
Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy
NASA Astrophysics Data System (ADS)
Nunn, J. A.; Dutrow, B. L.
2012-12-01
One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to more precisely identify the mineralogy of the cuttings. Based on this data with depth, they were asked to predict an approximate temperature range and calculate various fluid parameters for these conditions. The second research project was completed individually, each student covered aspects of heat transport and geologic materials on a specific geothermal field of their choice, created a poster, and gave a brief oral presentation of the poster similar to what is done at scientific meetings. This not only helped students develop communication skills it also provide the class and the instructors information on the breath and diversity of geothermal projects already underway throughout the world and helped to improve critical thinking skills. Continued integration of our research and graduate training programs in Geology and Geophysics, Petroleum Engineering, and Mathematics will occur in 2012-2013. The Petroleum Engineering course will be offered in the fall semester of 2012 and the Mathematics class in the spring semester of 2013. Providing this three semester sequence of courses across the STEM disciplines promotes comprehensive cross-training among disciplines and provides a template for future directions of teaching sustainability across the disciplines.
NASA Astrophysics Data System (ADS)
Kah, L. C.; Kronyak, R. E.; Van Beek, J.; Nachon, M.; Mangold, N.; Thompson, L. M.; Wiens, R. C.; Grotzinger, J. P.; Schieber, J.
2015-12-01
The Murray formation in its type section at Pahrump Hills, consists of approximately 14 meters of recessive-weathering mudstone interbedded with decimeter-scale cross-bedded sandstone in the upper portions of the exposed section. Mudstone textures vary from massive, to poorly laminated, to well laminated. Unusual 3-dimensional crystal clusters and dendrites occur in the lowermost part of the section and are erosionally resistant with respect to the host rock. Crystal clusters consist of elongate lathes that occur within individual blocks of the fractured substrate. Individual lathes show tabular morphologies with a pseudo-rectangular cross-section and the three dimensional morphology of the crystal clusters cross-cut host rock lamination with little or no deformation. Dendritic structures are typically larger and show predominantly planar growth aligned with bedding planes. Individual lathes within the dendrites are elongate and pseudo-rectangular in cross-section. Unlike crystal clusters, dendritic morphologies appear to nucleate at bedrock fractures and near mineralized veins. Here we show evidence that crystal clusters and dendrites are post-depositional, potentially burial diagenetic features. Association of features with through-going fractures suggests that fractures may have been a primary transport pathway for ions responsible for dendrite growth. Even where dendrites do not occur, enhanced cementation suggests that fluids permeated the rock matrix. We suggest that growth of clusters proceeded as inter-particle crystal growth, wherein mineral growth within inter-particle spaces resulted in cementation and porosity loss, with little further effect on the rock matrix. Crystal clusters and dendrites are most likely to form when mineral saturation states are highest, for instance with initial intrusion of fracture-borne fluids and mixing with ambient pore fluids, and thus emphasize the importance of fractures in ion transport during late diagenesis.
Arnold, David T.; Bhatnagar, Rahul; Fairbanks, Lynette D.; Zahan-Evans, Natalie; Clive, Amelia O.; Morley, Anna J.; Medford, Andrew R. L.; Maskell, Nicholas A.
2015-01-01
Introduction Previous studies have assessed the diagnostic ability of pleural fluid adenosine deaminase (pfADA) in detecting tuberculous pleural effusions, with good specificity and sensitivity reported. However, in North Western Europe pfADA is not routinely used in the investigation of a patient with an undiagnosed pleural effusion, mainly due to a lack of evidence as to its utility in populations with low mycobacterium tuberculosis (mTB) incidence. Methods Patients presenting with an undiagnosed pleural effusion to a tertiary pleural centre in South-West England over a 3 year period, were prospectively recruited to a pleural biomarker study. Pleural fluid from consecutive patients with robust 12-month follow up data and confirmed diagnosis were sent for pfADA analysis. Results Of 338 patients enrolled, 7 had confirmed tuberculous pleural effusion (2%). All mTB effusions were lymphocyte predominant with a median pfADA of 72.0 IU/L (range- 26.7 to 91.5) compared to a population median of 12.0 IU/L (range- 0.3 to 568.4). The optimal pfADA cut off was 35 IU/L, which had a negative predictive value (NPV) of 99.7% (95% CI; 98.2-99.9%) for the exclusion of mTB, and sensitivity of 85.7% (95% CI; 42.2-97.6%) with an area under the curve of 0.88 (95% CI; 0.732–1.000). Discussion This is the first study examining the diagnostic utility of pfADA in a low mTB incidence area. The chance of an effusion with a pfADA under 35 IU/L being of tuberculous aetiology was negligible. A pfADA of over 35 IU/L in lymphocyte-predominant pleural fluid gives a strong suspicion of mTB. PMID:25647479
NASA Astrophysics Data System (ADS)
Abd El Monsef, Mohamed; Salem, Ibrahim; Slobodník, Marek; Ragab, Ahmed
2018-07-01
Scanning electron microscope (SEM), Electron microprobe (EMPA) and fluid inclusion studies of the ore body, as well as geochemical analyses of country rocks were performed to determine the nature and characteristics of the mineralizing fluid responsible for Au-Cu deposits in Um Balad area, Northern Eastern Desert of Egypt. The Um Balad Au-Cu deposits are confined to well developed-quartz veins and veinlets cutting through the hosting country rocks. Petrographic and geochemical investigations of the hosting rocks distinguished between two main rock units; 1) metagabbro-diorite rocks with tholeiitic nature derived in island arc/continental margin tectonic regime, and 2) granodiorite rocks formed from calc-alkaline magma in continental margin regime. Wallrock alterations are represented by propylitic and argillic types. The mineralized quartz veins are striking in NE-SW direction and dipping between (35°-45°) in SE direction, other mineralized mafic dykes enriched with auriferous quartz veinlets are trending NE-SW and dipping 70°/SE. The main ore minerals are represented by gold, chalcopyrite, pyrite, sphalerite, malachite, covellite and goethite. While, geffroyite, cuprite, chrysocolla, pseudomalachite, britholite, wolframite, scheelite, hematite and rutile are detected as minor constituents. Fluid inclusions microthermometry and isochore calculations combined with chlorite geothermometry revealed that the Um Balad deposits were formed at temperature ranging from 305 °C to 325 °C and pressure between (100-500 bar). The mineralization had been developed in the shallow levels, beneath the water table at depth of 350-1760 m, rather than common mesothermal vein-type deposits in Egypt. Magmatic water have been suggested as the main source for the mineralized fluid. The transportation of the gold metal seems to be happen as bisulfide complexes in moderately acidic environment. The deposition was resulted from combination of changes in physico-chemical parameters, temperature and pressure plus the instability of the reduced sulfur complexes. A contamination with metamorphic and/or meteoric water was also proposed that has strong influence during the depositional process.
Computer Simulation To Assess The Feasibility Of Coring Magma
NASA Astrophysics Data System (ADS)
Su, J.; Eichelberger, J. C.
2017-12-01
Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and temperature of magma, coolant flow rate, rotation speed, and rate of penetration (ROP). The modeling results indicate that there are combinations of process parameters that will provide sufficient cooling to enable the desired coring process in magma.
How can fluid overpressures be developed and maintained in crustal fault zones ?
NASA Astrophysics Data System (ADS)
LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.
2013-12-01
The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50% of the elastic properties between host rock and core zone. Data also show a higher dependence of the permeability on the effective pressure for the host rock compared with the damage zone and core zone. This heterogeneity of properties is related to the development of different microstructures such as microcracks, S-C structures and microbreccia across the fault zone achieved during the tectonic history of the fault. From these physical property values and the fault zone architecture, we then analyzed the effects of sudden mechanical loading approximating to static normal-stress transfer following an earthquake on a neighbouring fault, on the development of fluid overpressures. A series of 1-D hydromechanical numerical models was used to show that sudden normal stress increase is a viable mechanism for fluid overpressuring in the studied fault-zone. The models also showed that fluid overpressures can be temporarily maintained in the studied fault zone and that the maintenance of fluid overpressures is controlled by the structure and fluid-flow properties of the fault zone.
NASA Astrophysics Data System (ADS)
Guha, Jayanta; Lu, Huan-Zhang; Gagnon, Michel
1990-03-01
A quadrupole mass spectrometer and a solid probe which can be inserted directly into the ionization chamber have been used to analyze gas compositions of fluid inclusions. The probe holds a solid sample which can be heated continuously or stepwise from 30 to 750°C using variable heating rates. The decrepitated gas is released directly into the spectrometer source, thus reducing contamination. A Single Ion Monitoring mode program is used for the analysis, which is capable of detecting 26 preselected gases separately, and gases at picogram levels have been analyzed with this method. Each single burst of inclusions is detected and analyzed separately using a surface area integrator, and the computer program automatically traces the baseline above the background. Gas ratios are calculated for single bursts, or bursts over different ranges of temperature, as well as the sum of the total range. Routine petrographic and microthermometric analyses are used to determine the different generations of inclusions and their decrepitation temperatures. Then tiny pieces of the doubly polished section containing representative fluid inclusions or inclusions targeted for analysis are cut and introduced into the solid probe and heated accordingly. The principal gas species which have been analyzed are CO 2, CON 2 (not discriminated), H 2O, H 2S, and nearly all light hydrocarbons. Fluid inclusions from different host minerals such as quartz, fluorite, barite, and sulfides have also been analyzed. The most important advantage of this method is that analytical results can be correlated with specific inclusion types since a small amount of sample material is required which makes it easier to choose specific areas from doubly polished sections. Another advantage is its capability to match the presence of gases in inclusions in quartz with those in associated sulfides, thereby confirming or denying that similar fluids were trapped by both the minerals. More tests are underway to examine the use of fluid inclusion data from sulfides. Preliminary tests on samples from an Archean gold deposit indicate the potential of this method, not only to detect the presence of different gases in the fluid, but also to determine gas ratios of fluid inclusions rapidly and fairly accurately. It has previously been established through alteration assemblage studies that CO 2H 2O ratios of the fluid decreased outwards from the gold-bearing zones and the new fluid inclusion data confirm this. This method also detected the presence of other gases such as CO/N 2, CH 4, C 2H 6, and H 2S, indicating a multi-component C-O-N-H-S system. This method can be useful for both reconnaissance and detailed investigations where gas compositions of fluid inclusions are important for the understanding of fluid evolution processes.
Development of fluid overpressures in crustal faults and implications for earthquakes mechanics
NASA Astrophysics Data System (ADS)
Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier
2013-04-01
The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the permeability values of one order of magnitude between host rock and fault zone and a decrease of 50% of the elastic properties between host rock and core zone. The heterogeneity of properties is related to the development of different microstructures across the fault-zone during the tectonic history. From these physical property values and the fault zone architecture, we analyze the effects of sudden mechanical loading on the development of fluid overpressures in fault-zone. To do this, we use a series of 1-D hydromechanical numerical models to show that sudden mechanical stress increase is a viable mechanism for fluid overpressuring in fault-zone with spatially-varying elastic and hydraulic properties. Based on these results, we discuss the implications for earthquake triggering.on crustal-scale faults.
Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Zoheir, Basem A.; Akawy, Ahmed
2010-06-01
Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al-in-chlorite geothermometry of chlorite associated with sulphides in the mineralised quartz veins. Fracturing enhanced fluid circulation through the wallrock and related BIF, allowing reaction of the S-bearing ore fluid with iron oxides. This caused pyrite formation and concomitant Au precipitation, enhanced by fluid immiscibility as H 2S partitioned preferentially into the carbonic phase. The ore fluids may have originated from granitoid intrusions (likely the post-Hammamat felsites, whereas gold and base metals might have been leached from the Abu Marawat basic metavolcanics.
NASA Astrophysics Data System (ADS)
Michel, Guillaume; Dupré, Stéphanie; Baltzer, Agnès; Imbert, Patrice; Ehrhold, Axel; Battani, Anne; Deville, Eric
2017-04-01
The recent discovery of biogenic methane emissions associated with methane-derived authigenic carbonate mounds along the Aquitaine Shelf edge offshore SW France (140 to 220 m water depth) questions about the initiation and temporal evolution of this fluid system (80 km N-S and 8 km E-W). Based on a multi-data study (including multibeam echosounder, subbottom profiler, single channel sparker seismic, 80 traces air gun seismic data and well cuttings and logs), different scenarii are proposed for the organic matter source levels and migration pathways of the methane. Several evidence of the presence of gas are observed on seismic data and interpreted to be linked to the biogenic system. Single channel sparker seismic lines exhibit an acoustic blanking (between 75-100 ms TWT below seafloor and the first multiple) below the present-day seepage area and westwards up to 8 km beyond the shelf-break. An air gun seismic line exhibits chaotic reflections along 8 km below the seepage area from the seabed down to 700 ms TWT below seafloor. Based on 1) the local geothermal gradient about 26 °C/km and 2) the window for microbial methanogenesis ranging from 4 to 56 °C, the estimation of the bottom limit for biogenic generation window is about 1.5 km below seafloor. Cuttings from 3 wells of the area within the methanogenesis window show average TOC (Total Organic Carbon) of 0.5 %; however, one well shows some coal levels with 30-35 % TOC in the Oligocene between 1490 and 1540 m below seafloor. Geochemical analysis on crushed cuttings evidenced heavy hydrocarbons up to mid-Paleogene, while shallower series did not evidence any. In the first scenario, we propose that methane is sourced from the Neogene prograding system. The 0.5% average TOC is sufficient to generate a large volume of methane over the thickness of this interval (up to 1 km at the shelf break area). In the second scenario, methane would be sourced from the Oligocene coals; however their spatial extension with regard to available data is too limited to supply the gas system along 80 km from north to south. The third scenario corresponds to methane production in the early Paleogene and Cretaceous source levels; but evidence for heavy hydrocarbons is not consistent with the isotopic signatures of the gases seeping at the seabed. The first scenario is therefore the most coherent one even if the TOC is relatively low in the Neogene formations. Regarding the fluid system geometry and the associated source level position, migration pathways may involve 1) upslope migration from the base of the Neogene clinoforms, 2) sub-vertical migration through faults and fractures at the shelf edge, and 3) groundwater circulation from onshore forcing methane migration westward through hydrodynamism. The PhD thesis of Guillaume Michel as well as the oceanographic expeditions Gazcogne1 (http://dx.doi.org/10.17600/13020070) and Gazcogne2 (http://dx.doi.org/10.17600/13030090) are co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.
The role of ascitic fluid viscosity in the differential diagnosis of ascites
Gokturk, Huseyin Savas; Demir, Mehmet; Ozturk, Nevin Akcaer; Unler, Gulhan Kanat; Kulaksizoglu, Sevsen; Kozanoglu, Ilknur; Serin, Ender; Yilmaz, Ugur
2010-01-01
BACKGROUND: Ascites is defined as the pathological accumulation of fluid in the peritoneal cavity. It is the most common complication of cirrhosis, which is also the most common cause of ascites. Viscosity is a measure of the resistance of a fluid to deform under shear stress. Plasma viscosity is influenced by the concentration of plasma proteins and lipoproteins, with the major contribution from fibrinogen. To our knowledge, the viscosity of ascitic fluid has not yet been studied. OBJECTIVE: To evaluate the role of ascitic fluid viscosity in discriminating between ascites due to portal hypertension-related and nonportal hypertension-related causes, and to compare results with the serum-ascites albumin gradient (SAAG). METHODS: The present study involved 142 patients with ascites presenting with diverse medical problems. Serum total protein, albumin, glucose, lactate dehydrogenase (LDH) levels and complete blood count were obtained for all subjects. Paracentesis was performed routinely on admission and all ascitic fluid samples were evaluated by manual cell count with differential, ascitic fluid culture and biochemistry (total protein, albumin, glucose and LDH). Cultures of ascitic fluid were performed at bedside in all patients using blood culture bottles. Ascitic fluid viscosity was measured in a commercially available cone and plate viscometer. RESULTS: Of the 142 patients studied, 34 (24%) had an SAAG of 11 g/L or less, whereas 108 (76%) had an SAAG of greater than 11 g/L. Sex and mean age did not differ significantly between the two groups (P>0.05). Serum total protein, albumin, glucose, LDH levels, leukocyte count, ascitic fluid glucose levels and ascitic fluid leukocyte counts were similar in both groups, with no statistically significant relationship detected (P>0.05). However, the mean (±SD) ascitic fluid total protein (0.0172±0.1104 g/L versus 0.043±0.011 g/L), albumin (0.0104±0.0064 g/L versus 0.0276±0.0069 g/L) and LDH (102.76±80.95 U/L versus 885.71±199.93 U/L) were found to be higher in patients with an SAAG of 11 g/L or less than in those with an SAAG of greater than 11 g/L (P<0.001). The mean ascitic fluid viscosities were 0.86±0.12 centipoise (cP) and 1.22±0.25 cP in patients with an SAAG greater than 11 g/L and an SAAG of 11 g/L or less, respectively (P<0.001). Although ascitic fluid infection was detected in 35 patients (24.6%) (19 patients with spontaneous bacterial peritonitis, seven patients with culture-negative neutrocytic ascites, three patients with monobacterial non-neutrocytic bacterascites and six patients with secondary bacterial peritonitis), no significant effect on ascitic fluid viscosity was detected. Multiple linear regression analysis revealed that ascitic fluid total protein, albumin and LDH levels were independent predictors of ascitic fluid viscosity (P<0.001). The sensitivity, specificity, and positive and negative predictive values of ascitic fluid viscosity for the discrimination between ascites due to portal hypertension-related and nonportal hypertension-related causes according to the SAAG were determined by receiver operating characteristic analysis. Regarding the cut-off value of 1.03 cP, ascitic fluid viscosity measurement had a high sensitivity, specificity (98% and 80%, respectively), and positive and negative predictive value (79% and 94%, respectively) for the etiological discrimination of ascites. CONCLUSION: The measurement of ascitic fluid viscosity correlates significantly with SAAG values. In view of its simplicity, low cost, small sample volume requirement and allowance for measurement in previously frozen samples, measurement of ascites viscosity could be useful for the accurate and rapid classification of ascites. PMID:20431815
Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorie M. Dilley
Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trappedmore » in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.« less
Spitting cobras: fluid jets in nature as models for technical applications
NASA Astrophysics Data System (ADS)
Balmert, Alexander; Hess, David; Brücker, Christoph; Bleckmann, Horst; Westhoff, Guido
2011-04-01
Spitting cobras defend themselves by ejecting rapid jets of venom through their fangs towards the face of an offender. To generate these jets, the venom delivery system of spitting cobras has some unique adaptations, such as prominent ridges on the surface of the venom channel. We examined the fluid acceleration mechanisms in three spitting cobra species of the genus Naja. To investigate the liquid-flow through the venom channel we built a three-dimensional 60:1 scale model. First we determined the three-dimensional structure of the channel by using microcomputer tomography. With help of the micro computer tomographical data we then created a negative form out of wax. Finally, silicon was casted around the wax form and the wax removed, resulting in a completely transparent model of the cobrás venom channel. The physical-chemical properties of the cobra venom were measured by micro rheometry and tensiometry. Thereafter, an artificial fluid with similar properties was generated. Particle image velocimetry (PIV) was performed to visualize the flow of the artificial liquid in the three-dimensional model. Our experiments show how the surface structure of the venom channel determines the liquid flow through the channel and ultimately the form of the liquid jet. Understanding the biological mechanisms of venom ejection helps to enhance industrial processes such as water jet cutting and cleaning as well as injection methods in technical and medical sectors, e.g. liquid microjet dissection in microsurgery.
NASA Astrophysics Data System (ADS)
Lisabeth, H. P.; Zoback, M. D.
2017-12-01
Understanding the flow of fluids through fractures in clay-rich rocks is fundamental to a number of geoengineering enterprises, including development of unconventional hydrocarbon resources, nuclear waste storage and geological carbon sequestration. High clay content tends to make rocks plastic, low-porosity and anisotropic. In addition, some gasses adsorb to clay mineral surfaces, resulting in swelling and concomitant changes in physical properties. These complexities can lead to coupled behaviors that render prediction of fluid behavior in the subsurface difficult. We present the results of a suite of triaxial experiments on binary mixtures of quartz and illite grains to separate and quantify the effects of hydrostatic pressure, differential stress, clay content and gas chemistry on the evolution of mechanical and hydraulic characteristics of the gouge material during deformation. Tests are run on saw-cut samples prepared with gouge at 20 MPa confining pressure, 10 MPa pore pressure and at room temperature. Argon or carbon dioxide is used as pore fluid. Sample permeability, stress and strain are monitored continuously during hydrostatic and axial deformation. We find that pressure and shearing both lead to reductions in permeability. Adsorbing gas leads to swelling and promotes permeability reduction, but appears to have no effect on frictional properties. These results indicate that the seal integrity of clay-rich caprocks may not be compromised by shear deformation, and that depletion and shear deformation of unconventional reservoirs is expected to result in production declines.
Using computational fluid dynamics to test functional and ecological hypotheses in fossil taxa
NASA Astrophysics Data System (ADS)
Rahman, Imran
2016-04-01
Reconstructing how ancient organisms moved and fed is a major focus of study in palaeontology. Traditionally, this has been hampered by a lack of objective data on the functional morphology of extinct species, especially those without a clear modern analogue. However, cutting-edge techniques for characterizing specimens digitally and in three dimensions, coupled with state-of-the-art computer models, now provide a robust framework for testing functional and ecological hypotheses even in problematic fossil taxa. One such approach is computational fluid dynamics (CFD), a method for simulating fluid flows around objects that has primarily been applied to complex engineering-design problems. Here, I will present three case studies of CFD applied to fossil taxa, spanning a range of specimen sizes, taxonomic groups and geological ages. First, I will show how CFD enabled a rigorous test of hypothesized feeding modes in an enigmatic Ediacaran organism with three-fold symmetry, revealing previously unappreciated complexity of pre-Cambrian ecosystems. Second, I will show how CFD was used to evaluate hydrodynamic performance and feeding in Cambrian stem-group echinoderms, shedding light on the probable feeding strategy of the latest common ancestor of all deuterostomes. Third, I will show how CFD allowed us to explore the link between form and function in Mesozoic ichthyosaurs. These case studies serve to demonstrate the enormous potential of CFD for addressing long-standing hypotheses for a variety of fossil taxa, opening up an exciting new avenue in palaeontological studies of functional morphology.
Arnau, Antonio
2008-01-01
From the first applications of AT-cut quartz crystals as sensors in solutions more than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor is becoming into a good alternative analytical method in a great deal of applications such as biosensors, analysis of biomolecular interactions, study of bacterial adhesion at specific interfaces, pathogen and microorganism detection, study of polymer film-biomolecule or cell-substrate interactions, immunosensors and an extensive use in fluids and polymer characterization and electrochemical applications among others. The appropriate evaluation of this analytical method requires recognizing the different steps involved and to be conscious of their importance and limitations. The first step involved in a QCM system is the accurate and appropriate characterization of the sensor in relation to the specific application. The use of the piezoelectric sensor in contact with solutions strongly affects its behavior and appropriate electronic interfaces must be used for an adequate sensor characterization. Systems based on different principles and techniques have been implemented during the last 25 years. The interface selection for the specific application is important and its limitations must be known to be conscious of its suitability, and for avoiding the possible error propagation in the interpretation of results. This article presents a comprehensive overview of the different techniques used for AT-cut quartz crystal microbalance in in-solution applications, which are based on the following principles: network or impedance analyzers, decay methods, oscillators and lock-in techniques. The electronic interfaces based on oscillators and phase-locked techniques are treated in detail, with the description of different configurations, since these techniques are the most used in applications for detection of analytes in solutions, and in those where a fast sensor response is necessary. PMID:27879713
Yu, Young-Dong; Kim, Dong-Sik; Jung, Sung-Won; Han, Jae-Hyun; Suh, Sung-Ock
2016-07-01
Anti-adhesive agents are increasingly used to reduce the incidence of postoperative adhesions following abdominal surgery. Bile leakage after liver resection remains a major cause of postoperative morbidity. The aim of this study was to examine the effect of anti-adhesive agent on bile leakage after liver resection. 77 patients were enrolled to receive an anti-adhesive agent (study group) during liver resection between May 2012 and August 2013. The study group was compared to a match-paired control group. Clinical data were collected including bilirubin concentration in serum and drain fluid and bile leakage rate. In addition, a separate analysis was performed between patients with and without postoperative bile leakage. There was no difference in bile leakage rate or hospital stay between the study group (n = 77) and control group (n = 77). Of the total number of patients (n = 154), there were 29 patients with postoperative bile leak and 125 patients without bile leak. On univariate analysis, patients without history of hepatitis were significantly associated with bile leakage. In addition, liver resection with broader cut surface area was associated with bile leakage. Application of anti-adhesive agent was not associated with bile leakage. On multivariate analysis, resection with broader cut surface area (OR = 2.788, p = 0.026) and patients without history of hepatitis (OR = 5.153, p = 0.039) were significantly associated with bile leakage. Larger area of cut-surface and patients without history of hepatitis were significant risk factors for bile leakage. The use of anti-adhesive agent was not associated with increased risk of bile leakage. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Depecker, Marianne; Richard, Eric A; Pitel, Pierre-Hugues; Fortier, Guillaume; Leleu, Claire; Couroucé-Malblanc, Anne
2014-01-01
The aim of this study was to determine whether the lung side being sampled would significantly influence bronchoalveolar lavage (BAL) cytological profiles and subsequent diagnosis in Standardbred racehorses. One hundred and thirty-eight French Trotters in active training and racing were included in a prospective observational study. BAL was performed using videoendoscopy in both right and left lungs during summer meetings in 2011 (64 horses) and 2012 (74 horses). Cytological data performed 24h later from right and left lungs were compared and specifically used to classify horses as affected with exercise-induced pulmonary haemorrhage (EIPH), inflammatory airway disease (IAD), or were 'controls'. For IAD, cytological definition was based on two different cut off values. Neutrophil percentages, haemosiderophage percentages and the haemosiderophage/macrophage (H/M) ratios were significantly higher in the right compared to the left lung. Measures of intra-class correlation coefficients revealed a fair agreement between left and right lungs for percentages of mast cells, eosinophils, and for the H/M ratio, and a moderate agreement for neutrophil percentages. Fair to moderate agreements were observed between left and right lungs for the diagnosis of IAD and/or EIPH based on kappa coefficients. When sampling one lung only, the risk of incorrectly classifying a horse as a 'control' increased with the use of the restraint cut-off values for IAD. As BAL from one lung is not representative of the other lung in the same horse, both lungs should be sampled for a better assessment of lung cellularity and for a precise diagnosis of lower airway diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamics of large-diameter water pipes in hydroelectric power plants
NASA Astrophysics Data System (ADS)
Pavić, G.; Chevillotte, F.; Heraud, J.
2017-04-01
An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind
2018-04-01
The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.
Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.
Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd
2018-01-08
We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.
Gearing up to the factory of the future
NASA Astrophysics Data System (ADS)
Godfrey, D. E.
1985-01-01
The features of factories and manufacturing techniques and tools of the near future are discussed. The spur to incorporate new technologies on the factory floor will originate in management, who must guide the interfacing of computer-enhanced equipment with traditional manpower, materials and machines. Electronic control with responsiveness and flexibility will be the key concept in an integrated approach to processing materials. Microprocessor controlled laser and fluid cutters add accuracy to cutting operations. Unattended operation will become feasible when automated inspection is added to a work station through developments in robot vision. Optimum shop management will be achieved through AI programming of parts manufacturing, optimized work flows, and cost accounting. The automation enhancements will allow designers to affect directly parts being produced on the factory floor.
High speed shutter. [electrically actuated ribbon loop for shuttering optical or fluid passageways
NASA Technical Reports Server (NTRS)
Mcclenahan, J. O. (Inventor)
1974-01-01
A shutter element is described which is formed by a loop of an electrically conductive ribbon disposed adjacent to the end of a passageway to be shuttered. The shuttered end of the passageway is cut at an acute angle. The two leg portions of the ribbon loop are closely spaced to each other and disposed in a plane parallel to the axis of the passageway. A pulse of high current is switched through the loop to cause the current flowing in opposite directions through adjacent leg portions of the ribbon. This produces a magnetically induced pressure on one of the legs of the ribbon forcing the leg over the end of the passageway in gas tight sealing engagement, and thereby blocking passageway.
Temperature rise and flow of Zr-based bulk metallic glasses under high shearing stress
NASA Astrophysics Data System (ADS)
Zhang, Weiguo; Ma, Mingzhen; Song, Aijun; Liang, Shunxing; Hao, Qiuhong; Tan, Chunlin; Jing, Qin; Liu, Riping
2011-11-01
Deformation of the bulk metallic glasses (BMGs) and the creation and propagation of the shear bands are closely interconnected. Shearing force was loaded on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5(Vit.1) BMGs by cutting during the turning of the BMG rod. The temperature rise of alloy on the shear bands was calculated and the result showed that it could reach the temperature of the super-cooled liquid zone or exceed the melting point. The temperature rise caused viscous fluid flow and brought about the deformation of BMGs. This suggested that the deformation of BMGs was derived, at least to some extent, from the adiabatic shear temperature rise.
Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration.
Nikitichev, Daniil I; Shakir, Dzhoshkun I; Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom
2017-02-23
We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community.
NASA Technical Reports Server (NTRS)
Tamir, David; Flanigan, Lee A.; Weeks, Jack L.; Siewert, Thomas A.; Kimbrough, Andrew G.; Mcclure, Sidney R.
1994-01-01
This paper proposes a new series of on-orbit capabilities to support the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These proposed capabilities form a toolkit termed Space Construction, Repair, and Maintenance (SCRAM). SCRAM addresses both intra-Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) needs. SCRAM provides a variety of tools which enable welding, brazing, cutting, coating, heating, and cleaning, as well as corresponding nondestructive examination. Near-term IVA-SCRAM applications include repair and modification to fluid lines, structure, and laboratory equipment inside a shirt-sleeve environment (i.e. inside Spacelab or Space Station). Near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by contaminants. The SCRAM tool-kit also promises future EVA applications involving mass production tasks automated by robotics and artificial intelligence, for construction of large truss, aerobrake, and nuclear reactor shadow shields structures. The leading candidate tool processes for SCRAM, currently undergoing research and development, include Electron Beam, Gas Tungsten Arc, Plasma Arc, and Laser Beam. A series of strategic space flight experiments would make SCRAM available to help conquer the space frontier.
Occurrence of high gravity oil in an Oligocene Vicksburg age sandstone in Jim Hogg County, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.W.; Hilton, N.
1980-01-01
On October 1, 1979 the Guardian Oil Co. E-1 Mestena oil and gas well was completed in an Oligocene, Vicksburg sandstone. The initial potential was 245 BOPD of 75 API gravity oil. A hydrocarbon analysis of a sample obtained from the E-1 well revealed an oil composed primarily of propane and butane with a significant portion of pentane to heptane range material which accounts for the exceptionally high gravity of the liquid hydrocarbons. This analysis further showed that the E-1 well is producing almost no methane, ethane, or other hydrocarbons of greater molecular weight than nonane. Several faults, adjacent tomore » the well, could have provided a path of migration for the hydrocarbons. A detailed analysis of the butane to heptane fluid produced by the E-1 well indicated the fluid contained a large amount of compounds characteristic of an immature crude. Coal fragments present in the cutting from a nearby well and the regional geology of the Vicksburg Formation suggest that one possible source for the hydrocarbons of the E-1 well could have been lipid rich Cannel-type coal.« less
TGF-β1, IL-6, and TNF-α in bronchoalveolar lavage fluid: useful markers for lung cancer?
Chen, Zhongbo; Xu, Zhiwei; Sun, Shifang; Yu, Yiming; Lv, Dan; Cao, Chao; Deng, Zaichun
2014-07-07
Changes of cytokines in bronchoalveolar lavage fluid (BALF) reflect immunologic reactions of the lung in pulmonary malignancies. Detection of biomarkers in BALF might serve as an important method for differential diagnosis of lung cancer. A total of 78 patients admitted into hospital with suspected lung cancer were included in our study. BALF samples were obtained from all patients, and were analyzed for TGF-β1, IL-6, and TNF-α using commercially available sandwich ELISA kits. The levels of TGF-β1 in BALF were significantly higher in patients with lung cancer compared with patients with benign diseases (P = 0.003). However, no significant difference of IL-6 (P = 0.61) or TNF-α (P = 0.72) in BALF was observed between malignant and nonmalignant groups. With a cut-off value of 10.85 pg/ml, TGF-β1 showed a sensitivity of 62.2%, and a specificity of 60.6%, in predicting the malignant nature of pulmonary disease. Our data suggest that TGF-β1 in BALF might be a valuable biomarker for lung cancer. However, measurement of IL-6 or TNF-α in BALF has poor diagnostic value in lung cancer.
Heng, Siow-Chin; Chen, Sharon C-A; Morrissey, C Orla; Thursky, Karin; Manser, Renee L; De Silva, Harini D; Halliday, Catriona L; Seymour, John F; Nation, Roger L; Kong, David C M; Slavin, Monica A
2014-07-01
Interpretation of Aspergillus galactomannan (GM) and PCR results in bronchoalveolar lavage (BAL) fluid for the diagnosis of invasive pulmonary aspergillosis (IPA) in patients with haematological malignancies requires clarification. A total of 116 patients underwent BAL for investigation of new lung infiltrates: 40% were neutropenic, 68% and 36% were receiving mould-active antifungal agents and β-lactam antibiotics. The diagnosis of proven IPA (n = 3), probable IPA (n = 15), and possible invasive fungal disease (IFD, n = 50) was made without inclusion of GM results. BAL GM (at cut-off of 0.8) had lower diagnostic sensitivity for IPA than PCR (61% versus 78%) but higher specificity (93% versus 79%). Both tests had excellent negative predictive values (85-90%), supporting their utility in excluding IPA. The use of BAL GM and PCR results increased the certainty of Aspergillus aetiology in 7 probable IPA cases where fungal hyphae were detected in respiratory samples by microscopy, and upgraded 24 patients from possible IFD to probable IPA. Use of BAL GM and PCR improves the diagnosis of IPA. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Neiffer, Donald L; Klein, Edwin C; Calle, Paul P; Linn, Michael; Terrell, Scott P; Walker, Rodney L; Todd, Donna; Vice, Carol C; Marks, Steven K
2002-09-01
Two adult North American river otters (Lontra canadensis) and an adult red panda (Ailurus fulgens fulgens) at three separate institutions died within 22 hr after receiving single 2.5- to 2.7-mg/kg doses of melarsomine dihydrochloride administered in the epaxial musculature as a treatment for filarid nematodes. One otter had a suspected Dirofilaria immitis infection, the other had a confirmed D. lutrae infection, and the red panda had a confirmed Dirofilaria sp. infection, presumably with D. immitis. Postmortem examinations revealed similar gross lesions, although they were less severe in the red panda. The trachea and primary bronchi contained abundant foamy fluid, the lungs were mottled with areas of consolidation, and the pulmonary parenchyma exuded abundant fluid at the cut section. Histologic evaluation revealed acute pulmonary edema, which resulted in respiratory failure and death. There may have been direct pulmonary cellular toxicity of melarsomine dihydrochloride or a severe systemic anaphylactic reaction to antigens released after parasite death. An idiosyncratic drug reaction or a low therapeutic index of melarsomine probably caused the death of the three individuals. Melarsomine dihydrochloride use should be avoided in North American river otters and red pandas.
NASA Astrophysics Data System (ADS)
Nigodjuk, V. E.; Sulinov, A. V.
2018-01-01
The article presents the results of an experimental study of the hydraulic characteristics of capillary elements of the injector head of jet engines in isothermal fluid flow and the proposed method of their calculation. The main geometric dimensions of the capillaries in the experiment were changed in the following range: Inner diameter from 0.16 to 0.36 mm, length from 4.3 to 158 mm and relative length from 25 to 614 and the inlet edge of the capillaries: sharp or smooth the leading edge. As the working fluid during the tests were distilled water, acetone and ethyl alcohol. Based on the results of a study of the dependences for calculation of ultimate losses in laminar and turbulent flow regimes in capillary tubes with smooth and sharp edges input. The influence of surface tension forces on loss of input on a sharp cutting edge. Experimentally confirmed the possibility of calculating the linear coefficient of hydraulic resistance of capillary tubes with a diameter of 0.16-0.36 mm in isothermal stable during the known dependencies that are valid for hydrodynamically smooth round tube.
Farris-Tang retractor in optic nerve sheath decompression surgery.
Spiegel, Jennifer A; Sokol, Jason A; Whittaker, Thomas J; Bernard, Benjamin; Farris, Bradley K
2016-01-01
Our purpose is to introduce the use of the Farris-Tang retractor in optic nerve sheath decompression surgery. The procedure of optic nerve sheath fenestration was reviewed at our tertiary care teaching hospital, including the use of the Farris-Tang retractor. Pseudotumor cerebri is a syndrome of increased intracranial pressure without a clear cause. Surgical treatment can be effective in cases in which medical therapy has failed and disc swelling with visual field loss progresses. Optic nerve sheath decompression surgery (ONDS) involves cutting slits or windows in the optic nerve sheath to allow cerebrospinal fluid to escape, reducing the pressure around the optic nerve. We introduce the Farris-Tang retractor, a retractor that allows for excellent visualization of the optic nerve sheath during this surgery, facilitating the fenestration of the sheath and visualization of the subsequent cerebrospinal fluid egress. Utilizing a medial conjunctival approach, the Farris-Tang retractor allows for easy retraction of the medial orbital tissue and reduces the incidence of orbital fat protrusion through Tenon's capsule. The Farris-Tang retractor allows safe, easy, and effective access to the optic nerve with good visualization in optic nerve sheath decompression surgery. This, in turn, allows for greater surgical efficiency and positive patient outcomes.
Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration
Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom
2017-01-01
We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community. PMID:28287588
Process for producing fluid fuel from coal
Hyde, Richard W.; Reber, Stephen A.; Schutte, August H.; Nadkarni, Ravindra M.
1977-01-01
Process for producing fluid fuel from coal. Moisture-free coal in particulate form is slurried with a hydrogen-donor solvent and the heated slurry is charged into a drum wherein the pressure is so regulated as to maintain a portion of the solvent in liquid form. During extraction of the hydrocarbons from the coal, additional solvent is added to agitate the drum mass and keep it up to temperature. Subsequently, the pressure is released to vaporize the solvent and at least a portion of the hydrocarbons extracted. The temperature of the mass in the drum is then raised under conditions required to crack the hydrocarbons in the drum and to produce, after subsequent stripping, a solid coke residue. The hydrocarbon products are removed and fractionated into several cuts, one of which is hydrotreated to form the required hydrogen-donor solvent while other fractions can be hydrotreated or hydrocracked to produce a synthetic crude product. The heaviest fraction can be used to produce ash-free coke especially adapted for hydrogen manufacture. The process can be made self-sufficient in hydrogen and furnishes as a by-product a solid carbonaceous material with a useful heating value.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Principi, T; Falzetti, G; Elisei, D; Donati, A; Pelaia, P
2009-04-01
The behavior of B-type natriuretic peptide (BNP) is assessed during mechanical ventilation (MV) and spontaneous breathing after extubation in critical patients. Thirty patients admitted in the Intensive Care Unit (ICU) were enrolled. BNP, fluid balance (FB), airway pressure (AP) and dobutamine infusion needing (DP) were registered in three stages: T0, admission to ICU; T1, before extubation; T2, 24 h after extubation. Patients with congestive heart failure (CHF) had BNP values higher than other patients. The value of BNP during MV was greater than normal in all patients. The cut-off to discriminate patients with heart failure during MV was 286 pgxmL(-1)(sensitivity: 86%; specificity: 90%). The increase of BNP during MV directly correlated with FB and inversely correlated with AP and DP. The plasmatic level of BNP remained higher than normal values 24 h after extubation. The underlying disease of an ICU patient seems to play a relevant role for BNP production and is probably linked to different aspects of therapeutic approach required by the patient. Our data suggest a cut-off value of BNP higher than the usual is necessary to discriminate mechanically-ventilated patients without CHF. This study should be repeated with an enlarged population.
Black Hole Firewalls and Lorentzian Relativity
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2013-04-01
In a paper published (Z. f. Naturforsch. 56a, 889, 2001) I had shown that the pre-Einstein theory of relativity by Lorentz and Poincare, extended to the general theory of relativity and quantum mechanics, predicts the disintegration of matter by passing through the event horizon. The zero point vacuum energy is there cut-off at the Planck energy, but Lorentz-invariant all the way up to this energy. The cut-off creates a distinguished reference system in which this energy is at rest. For non-relativistic velocities relative to this reference system, the special and general relativity remain a good approximations, with matter held together in a stable equilibrium by electrostatic forces (or forces acting like them) as a solution of an elliptic partial differential equation derived from Maxwell's equation. But in approaching and crossing the velocity of light in the distinguished reference system, which is equivalent in approaching and crossing of the event horizon, the elliptic differential equation goes over into a hyperbolic differential equation (as in fluid dynamics from subsonic to supersonic flow), and there is no such equilibrium. According to Schwarzschild's interior solution, the event horizon of a collapsing mass appears first as a point in its center, thereafter moving radially outwards, thereby converting all the mass into energy, explaining the observed gamma ray bursters.
Simulation of Collision of Arbitrary Shape Particles with Wall in a Viscous Fluid
NASA Astrophysics Data System (ADS)
Mohaghegh, Fazlolah; Udaykumar, H. S.
2016-11-01
Collision of finite size arbitrary shape particles with wall in a viscous flow is modeled using immersed boundary method. A potential function indicating the distance from the interface is introduced for the particles and the wall. The potential can be defined by using either an analytical expression or level set method. The collision starts when the indicator potentials of the particle and wall are overlapping based on a minimum cut off. A simplified mass spring model is used in order to apply the collision forces. Instead of using a dashpot in order to damp the energy, the spring stiffness is adjusted during the bounce. The results for the case of collision of a falling sphere with the bottom wall agrees well with the experiments. Moreover, it is shown that the results are independent from the minimum collision cut off distance value. Finally, when the particle's shape is ellipsoidal, the rotation of the particle after the collision becomes important and noticeable: At low Stokes number values, the particle almost adheres to the wall in one side and rotates until it reaches the minimum gravitational potential. At high Stokes numbers, the particle bounces and loses the energy until it reaches a situation with low Stokes number.
Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication
NASA Astrophysics Data System (ADS)
Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Rahman Shah Rosli, Abdul; Banu, Asfana
2017-03-01
The demand for micro-parts is expected to grow and micro-machining has been shown to be a viable manufacturing process to produce these products. These micro-products may be produced from hard-to-machine materials such as superalloys under little or no metal cutting fluids to reduce machining cost or drawbacks associated with health and environment. This project aims to investigate the capability of micro end-milling process of Inconel 718 with minimum quantity lubrication (MQL). Microtools DT-110 multi-process micro machine was used to machine 10 micro-channels with MQL and 10 more under dry condition while maintaining the same machining parameters. The width of the micro-channels was measured using digital microscope and used to determine the process capability indices, Cp and Cpk. QI Macros SPC for Excel was used to analyze the resultant machining data. The results indicated that micro end-milling process of Inconel 718 was not capable under both MQL and dry cutting conditions as indicated by the Cp values of less than 1.0. However, the use of MQL helped the process to be more stable and capable. Results obtained showed that the process variation was greatly reduced by using MQL in micro end-milling of Inconel 718.
Inverted Meandering Rivers at a Possible Future Mars Landing Site
2015-11-27
This image from NASA Mars Reconnaissance Orbiter spacecraft contains interesting examples of crosscutting, sinuous and straight ridges. The ridge in the lower left of the image (orange) has gradual bends and well-defined positive relief, while the ridge in the upper right (blue) exhibits a degree of high sinuosity. Both ridges may be ancient river deposits. In the southern part of the image, there are also possible cut bank and point bar deposition scars (green), but these do not possess visible positive relief. Although lacking relief, the sinuosity of these scars implies an ancient, mature, and low-gradient meandering river. The upper right ridge exhibits a sinuous geometry with positive relief reminiscent of a mature meandering river. Cementation of by underground fluids may have given the river deposits a higher resistance to erosion compared to the surrounding flood plain. Subsequent weathering removed the deposits in the flood plain, leaving behind the river channel positive relief. Offsets of the lower left ridge along possible fault scarps (red) suggest that the area was cut by faults either during or after deposition of the river deposits. There also appears to be a less pronounced fault at the terminus of the upper right ridge. http://photojournal.jpl.nasa.gov/catalog/PIA20160
Nowroozi, B. N.; Brainerd, E. L.
2012-01-01
Unlike mammalian, disc-shaped intervertebral joints (IVJs), the IVJs in fishes are biconid structures, filled with fluid and thought to act as hydrostatic hinge joints during swimming. However, it remains unclear which IVJ structures are dominant in mechanical resistance to forces in fishes, and whether variation in these tissues might impact the function of the vertebral column along its length. Here, we measured the dynamic mechanical behaviour of IVJs from striped bass, Morone saxatilis. During lateral bending, angular stiffness was significantly lower in the caudal and cervical regions, relative to the abdominal region. The neutral zone, defined as the range of motion (ROM) at bending moments less than 0.001 Nm, was longer in the caudal relative to the abdominal IVJs. Hysteresis was 30–40% in all regions, suggesting that IVJs may play a role in energy dissipation during swimming. Cutting the vertical septum had no statistically significant effect, but cutting the encapsulating tissues caused a sharp decline in angular stiffness and a substantial increase in ROM and hysteresis. We conclude that stiffness decreases and ROM increases from cranial to caudal in striped bass, and that the encapsulating tissues play a prominent role in mechanical variation along the length of the vertebral column. PMID:22552920
Nowroozi, B N; Brainerd, E L
2012-10-07
Unlike mammalian, disc-shaped intervertebral joints (IVJs), the IVJs in fishes are biconid structures, filled with fluid and thought to act as hydrostatic hinge joints during swimming. However, it remains unclear which IVJ structures are dominant in mechanical resistance to forces in fishes, and whether variation in these tissues might impact the function of the vertebral column along its length. Here, we measured the dynamic mechanical behaviour of IVJs from striped bass, Morone saxatilis. During lateral bending, angular stiffness was significantly lower in the caudal and cervical regions, relative to the abdominal region. The neutral zone, defined as the range of motion (ROM) at bending moments less than 0.001 Nm, was longer in the caudal relative to the abdominal IVJs. Hysteresis was 30-40% in all regions, suggesting that IVJs may play a role in energy dissipation during swimming. Cutting the vertical septum had no statistically significant effect, but cutting the encapsulating tissues caused a sharp decline in angular stiffness and a substantial increase in ROM and hysteresis. We conclude that stiffness decreases and ROM increases from cranial to caudal in striped bass, and that the encapsulating tissues play a prominent role in mechanical variation along the length of the vertebral column.
Pelvic Hydatidosis Mimicking a Malignant Multicystic Ovarian Tumor
Mushtaq, Deeba; Verma, Neetu; Mahajan, N. C.
2010-01-01
Echinococcosis is a multisystem disease and has propensity to involve any organ, an unusual anatomical site, and can mimic any disease process. Primary peritoneal echinococcosis is known to occur secondary to hepatic involvement but occasional cases of primary peritoneal hydatid disease including pelvic involvement have also been reported. We report here 1 such case of primary pelvic hydatidosis mimicking a malignant multicystic ovarian tumor where there was no evidence of involvement of the liver or spleen. Our patient, a 27-year-old female, was detected to have a large right cystic adnexal mass on per vaginal examination which was confirmed by ultrasonography. Her biochemical parameters were normal and CA-125 levels, though mildly raised, were below the cut off point. She underwent surgery and on exploratory laparotomy, another cystic mass was found attached to the mesentery of the small gut. The resected cysts were processed histopathologically. On cut sections both large cysts revealed numerous daughter cysts. Microscopic examination of fluid from the cysts revealed free scolices with hooklets and the cyst wall had a typical laminated membrane with inner germinal layer containing degenerated protoplasmic mass. The diagnosis of pelvic hydatid disease was confirmed and patient was managed accordingly. Hydatid disease must be considered while making the differential diagnosis of pelvic cystic masses, especially in endemic areas. PMID:20877508
Volume requirements for aerated mud drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.; Rajtar, J.M.
1995-09-01
Aerated mud drilling has been recognized as having many advantages over conventional mud drilling, such ass higher penetration rate, less formation damage, minimized lost circulation, and lower drilling cost. In some areas, the use of aerated mud as a circulating medium for drilling oil and gas wells is becoming an attractive practice. Maintaining an optimum combination of liquid and air flow rates is important in aerated drilling operations. However, most drilling operators are unclear on what constitutes the ``optimum combination of the liquid and air flow rates.`` Guo et al. presented a mathematical approach to determining the flowing bottomhole pressuremore » (BHP) for aerated mud drilling. This paper addresses the use of Guo et al.`s mathematical model to determine liquid and air volume requirements considering wellbore stability, pipe sticking, and formation damage as well as the cuttings-carry capacity of the aerated mud. For a formation-damage-prevention point of view, the liquid fraction in the fluid stream should e as low as possible. However, a sufficient mud flow rate is always required to make the hole stable and to maintain the cuttings-carrying capacity of the aerated mud without injecting much air volume. This paper provides a simple approach to determining the liquid and air volume requirements for aerated mud drilling.« less
NASA Astrophysics Data System (ADS)
Gómez-Urrea, H. A.; Escorcia-García, J.; Duque, C. A.; Mora-Ramos, M. E.
2017-11-01
The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin-Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin-Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter-Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc - a forbidden frequency band for propagation - that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin-Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity - which reaches a value of several tens - corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers.
Modified kinetic theory applied to the shear flows of granular materials
Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.; ...
2017-04-11
Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less
Modified kinetic theory applied to the shear flows of granular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.
Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less
Laurs, B.M.; Dilles, J.H.; Wairrach, Y.; Kausar, A.B.; Snee, L.W.
1998-01-01
Miarolitic granitic pegmatites in the Stak valley in the northeast part of the Nanga Parbat - Haramosh Massif, in northern Pakistan, locally contain economic quantities of bi- and tricolored tourmaline. The pegmatites form flat-lying sills that range from less than 1 m to more than 3 m thick and show symmetrical internal zonation. A narrow outer or border zone of medium-to coarse-grained oligoclase - K-feldspar - quartz grades inward to a very coarse-grained wall zone characterized by K-feldspar - oligoclase - quartz - schorl tourmaline. Radiating sprays of schorl and flaring megacrysts of K-feldspar (intermediate microcline) point inward, indicating progressive crystallization toward the core. The core zone consists of variable mixtures of blocky K-feldspar (intermediate microcline), oligoclase, quartz, and sparse schorl or elbaite, with local bodies of sodic aplite and miarolitic cavities or "pockets". Minor spessartine-almandine garnet and lo??llingite are disseminated throughout the pegmatite, but were not observed in the pockets. The pockets contain well-formed crystals of albite, quartz, K-feldspar (maximum microcline ?? orthoclase overgrowths), schorl-elbaite tourmaline, muscovite or lepidolite, topaz, and small amounts of other minerals. Elbaite is color-zoned from core to rim: green (Fe2+- and Mn2+-bearing), colorless (Mn2+-bearing), and light pink (trace Mn3+). Within ???10 cm of the pegmatites, the granitic gneiss wallrock is bleached owing to conversion of biotite to muscovite, with local quartz and albite added. Schorl is disseminated through the altered gneiss, and veins of schorl with bleached selvages locally traverse the wallrock up to 1 m from the pegmatite contact. The schorl veins can be traced into the outer part of the wall zone, which suggests that they formed from aqueous fluids derived during early saturation of the pegmatite-forming leucogranitic magma rich in H2O, F, B, and Li. Progressive crystallization resulted in a late-stage sodic magma and abundant aqueous fluids. Two late stages of volatile escape are recognized: the first stage caused pressure-quenching of the last magma, which produced aplite and caused albitization (An3 to An8) of earlier crystallized K-feldspar and oligoclase. The second stage, released during the rupture of miarolitic cavities, produced platy albite ("cleavelandite," An1) locally associated with F-rich moscovite and elbaite. Albitization is likely due to cooling of alkali-fluoride-dominated fluids at less than 2 kbar pressure. The pegmatites are derived from Himalayan leucogranitic magma emplaced prior to 5 Ma into granulitic gneiss that was at 300?? to 550??C and 1.5 to 2 kbar. The pegmatites were emplaced during uplift of the Haramosh Massif, since they cross-cut ductile normal faults but are cut by brittle normal faults. Economically important pink tourmaline mineralization formed in pockets concentrated near the crest of a broad antiform, as a result of trapping of late magmatic aqueous fluids that had become Fe-poor owing to the prior crystallization of schorl.
Interactions of fluid and gas movement and faulting in the Colorado Plateau, southeastern Utah
NASA Astrophysics Data System (ADS)
Shipton, Z. K.; Evans, J. P.; Kirschner, D.; Heath, J.; Williams, A.; Dockrill, B.
2002-12-01
The east-west and west-northwest striking Salt Wash and the Little Grand Wash normal faults in the Colorado Plateau of southeastern Utah emit large amounts of CO2 gas from abandon drill holes, springs and a hydrocarbon seep. The leakage of similar CO2 charged water has also occurred in the past as shown by large localized tufa deposits and horizontal veins along the fault traces. These deposits consist of thick tufa terraces and mound extending up to 50 meters from the fault damage zones. The faults cut a north plunging anticline of siltstones, shales, and sandstones, and the fault rocks are fine-grained with clay-rich gouge. The Little Grand Wash fault displaces these rocks approximately 290 m and the Salt Wash graben offsets rocks approximately 130 m; both faults extend at least to the top of the Pennsylvanian Paradox Formation, which contains thick salt horizons 1.5 - 2 km at depth. Well log, geologic surface and geochemical data indicate the CO2 reservoirs and sources have been cut by the faults at depth providing a conduit for the vertical migration of CO2 to the surface, but limited horizontal flow across the fault plane. Three- dimensional flow modals show how the faults damage zones permeability is adjacent to the faults and the leakage though the damage zones is localized near the regional anticlines fold axis. Analysis of the fluids emanating from the faults aims to locate the sources and determine the chemical evolutions of the fluids. δ2H and δ18O isotopic data show that the ground waters are meteoric and have not circulated deeply enough to experience an oxygen-isotope shift. δ13C data and PCO2 values indicate that the gas is external to the ground water systems (i.e., not from soil zone gas or dissolution of carbonate aquifer material alone). 3He/4He ratio 0.30 - 0.31 from springs and geysers indicate that the majority of the gas is crustally derived and contains a minimal component of mantle or magmatic gases. δ13C values of 4 to 5 per mil from the veins indicate the possible carbon sources of dissolution of isotopically heavy marine carbonates or the thermal decarbonization of carbonates. Thus, our conceptual model is that gases from 1.5 km or greater in the basin are migrate upwards along the faults and charge shallower ground water systems, where chemical exchange occurs during discharge at and near surface. The faults have been active since ~42 Ma, corresponding to the rapid uplift of the region. Fault-fluid interactions are likely trigged by salt movement at depth, and also in response to the modern state of stress, in which north-northeast extension of the area is caused by NNE-oriented σ 3, and that the faults may reflect a critcally stressed crust in the region.
NASA Astrophysics Data System (ADS)
Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre
2016-04-01
Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).
An ore genetic model for the Lubin—Sieroszowice mining district, Poland
NASA Astrophysics Data System (ADS)
Wodzicki, A.; Piestrzyński, A.
1994-04-01
The Lubin-Sieroszowice mining district is a world-class copper-silver, stratabound ore deposit that lies near the Lower-Upper Permian boundary. It transgresses the Werra dolomite, the Kupferschiefer organicrich shale and the Weissliegendes sandstone, which overlie barren Rotliegendes sandstone. On the basis of underground and microscope observations and light stable isotope data, and thermodynamic calculations, a new ore genesis model is proposed whereby ore minerals were deposited in the following stages: Stage 0 was synsedimentary or earliest diagenetic and contains 100s ppm of base metals trapped by clay minerals, and minor sulphides. Stage I was early diagenetic and contains 1000s ppm base metals. It is characterized by bornite and overlying chalcopyrite + pyrite that lie a short distance above the Rotliegendes/Weissliegendes contact. The sulphides were deposited near the interface between an overlying, buffered, reducing fluid (1), largely derived from the Kupferschiefer, and an oxidizing fluid (2) in the Rotliegendes. Stage II is the main ore-forming stage. This stage is late diagenetic, peneconcordant, lies near the Kupferschiefer/Weissliegendes contact, and contains several percent base metals.It is associated with the hematite-bearing Rote Fäule facies and is characterized by vertical zonation. A central chalcocite zone is flanked above and below by bornite and chalcopyrite. Silver occurs with all the above sulphides. Galena and sphalerite occur mainly just above copper zone, whereas pyrite is usually present in the upper part of the copper zone and together with galena and sphalerite. Metals were transported in a copper-rich oxidizing fluid (3), which probably originated deep in the Permian basin, reacted with organic matter in the Kupferschiefer, and mixed with reducing fluid (1) in the Weissliegendes, resulting in the observed mineral zonation. Stage III is late diagenetic, discordant and is represented by massive and dispersed chalcocite ore present on the peripheries and below anhydrite-cemented Weissliegendes sandstone. It resulted from redistribution of earlier copper and silver minerals by descending, reduced, sulphur-rich fluids (4). Stage IV consists of rare polymetallic veins of no economic importance that cut the stratigraphy and are probably related to Alpine tectonism. The richest and thickest ore is in the Weissliegendes, 10-15 km east of the Rote Fäule facies (Fig. 1). It probably occupies structures that trapped fluid (1) which was the main precipitant of metals in the sandstone.
Matute-Blanch, Clara; Villar, Luisa M; Álvarez-Cermeño, José C; Rejdak, Konrad; Evdoshenko, Evgeniy; Makshakov, Gleb; Nazarov, Vladimir; Lapin, Sergey; Midaglia, Luciana; Vidal-Jordana, Angela; Drulovic, Jelena; García-Merino, Antonio; Sánchez-López, Antonio J; Havrdova, Eva; Saiz, Albert; Llufriu, Sara; Alvarez-Lafuente, Roberto; Schroeder, Ina; Zettl, Uwe K; Galimberti, Daniela; Ramió-Torrentà, Lluís; Robles, René; Quintana, Ester; Hegen, Harald; Deisenhammer, Florian; Río, Jordi; Tintoré, Mar; Sánchez, Alex; Montalban, Xavier; Comabella, Manuel
2018-04-01
The prognostic role of cerebrospinal fluid molecular biomarkers determined in early pathogenic stages of multiple sclerosis has yet to be defined. In the present study, we aimed to investigate the prognostic value of chitinase 3 like 1 (CHI3L1), neurofilament light chain, and oligoclonal bands for conversion to clinically isolated syndrome and to multiple sclerosis in 75 patients with radiologically isolated syndrome. Cerebrospinal fluid levels of CHI3L1 and neurofilament light chain were measured by enzyme-linked immunosorbent assay. Uni- and multivariable Cox regression models including as covariates age at diagnosis of radiologically isolated syndrome, number of brain lesions, sex and treatment were used to investigate associations between cerebrospinal fluid CHI3L1 and neurofilament light chain levels and time to conversion to clinically isolated syndrome and multiple sclerosis. Neurofilament light chain levels and oligoclonal bands were independent risk factors for the development of clinically isolated syndrome (hazard ratio = 1.02, P = 0.019, and hazard ratio = 14.7, P = 0.012, respectively) and multiple sclerosis (hazard ratio = 1.03, P = 0.003, and hazard ratio = 8.9, P = 0.046, respectively). The best cut-off to classify cerebrospinal fluid neurofilament light chain levels into high and low was 619 ng/l, and high neurofilament light chain levels were associated with a trend to shorter time to clinically isolated syndrome (P = 0.079) and significant shorter time to multiple sclerosis (P = 0.017). Similarly, patients with radiologically isolated syndrome presenting positive oligoclonal bands converted faster to clinically isolated syndrome and multiple sclerosis (P = 0.005 and P = 0.008, respectively). The effects of high neurofilament light chain levels shortening time to clinically isolated syndrome and multiple sclerosis were more pronounced in radiologically isolated syndrome patients with ≥37 years compared to younger patients. Cerebrospinal fluid CHI3L1 levels did not influence conversion to clinically isolated syndrome and multiple sclerosis in radiologically isolated syndrome patients. Overall, these findings suggest that cerebrospinal neurofilament light chain levels and oligoclonal bands are independent predictors of clinical conversion in patients with radiologically isolated syndrome. The association with a faster development of multiple sclerosis reinforces the importance of cerebrospinal fluid analysis in patients with radiologically isolated syndrome.
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Faulkner, D. R.
2009-04-01
Models predicting crustal fluid flow are important for a variety of reasons; for example earthquake models invoking fluid triggering, predicting crustal strength modelling flow surrounding deep waste repositories or the recovery of natural resources. Crustal fluid flow is controlled by both the bulk transport properties of rocks as well as heterogeneities such as faults. In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a new model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.
Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank
2016-04-01
A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and tested a variety of chambers. This paper describes the experimental results which are in general agreement with theory within the limitations of the modeling.
NASA Astrophysics Data System (ADS)
Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.
2017-12-01
The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement. The results suggest basement and sedimentary rock in the core were altered by multiple fluids, and the pervasive fracturing in the igneous section could provide conduits for fluids to get from the porous Arbuckle Group into the basement.
NASA Astrophysics Data System (ADS)
Bardsley, C.; Sewell, S.; Cumming, W. B.; Minnick, M.; Rowland, J. V.; O'Brien, J.; Price, L.
2012-12-01
Identifying permeable zones is essential for economically viable exploration and development of conventional geothermal reservoirs with naturally high permeability. Except very close to boreholes, the resolution of geological and geophysical tools is at a much larger scale than the centimetre aperture of most geothermal fluid pathways important to production. A case study from the >250°C Rotokawa Geothermal Field, currently producing 175 MWe within the Taupo Volcanic Zone in New Zealand, illustrates how a 3D visualization of a subset of available data that are conceptually relevant at the scales of interest has enhanced the understanding of fluid flow within this system. Geoscience data sets including subsurface formation geometry and permeable zones in wells; the natural state temperature pattern deduced from wells and MT resistivity; microearthquakes (MEQ) induced by injection, and surface geology have been integrated with engineering data including production pressure responses and injection rates to constrain the location and general hydraulic properties of one of the most influential faults in the field. Stratigraphic offsets of >500 m, recorded in core and cuttings from wells drilled on either side of the field, confirm the presence of this fault, initially suspected based on a surface lineation of eight young (<22 ka) hydrothermal eruption craters. The 3D visualization of the MEQ occurrence pattern in space and time helps constrain the mechanism of the MEQs themselves and, importantly, the confinement of most of the MEQs to the eastern side of the fault closest to the injection wells. Hosted within the Mesozoic meta-sedimentary basement formation, this has provided an important conceptual constraint that explains the lack of injection fluid on the western side of this fault. Further to this, if this fault is acting as a barrier at the Mesozoic meta-sedimentary level today, this could imply a switch in the behaviour of this structure as it is inferred, based on the alignment of the hydrothermal eruption vents, that these vents were triggered by a rupture along this fault, implying it was once a conduit to fluid flow.
NASA Astrophysics Data System (ADS)
Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.
2015-12-01
Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope geothermometry to assess fracture connectivity and geothermal reservoir characteristics in the past—with the potential to help optimize resource production and injection programs and better understand structural controls on mass and heat transfer in the subsurface.
On the physics-based processes behind production-induced seismicity in natural gas fields
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan
2017-04-01
Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity. In the case of gas re-injection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, accounting for continuous production at a given reservoir and gas re-injection at a neighbouring compartment does not stop the fault from being reactivated.
A kinetic study of the replacement of calcite marble by fluorite
NASA Astrophysics Data System (ADS)
Trindade Pedrosa, Elisabete; Boeck, Lena; Putnis, Christine V.; Putnis, Andrew
2016-04-01
Replacement reactions are relevant in any situation that involves the reequilibration between a solid and an aqueous fluid phase and are commonly controlled by an interface-coupled dissolution-precipitation mechanism (Putnis and Putnis, 2007). These reactions control many large-scale Earth processes whenever aqueous fluids are available, such as during metamorphism, metasomatism, and weathering. An important consequence of coupled dissolution-precipitation is the generation of porosity in the product phase that then allows the infiltration of the fluid within the mineral being replaced. Understanding the mechanism and kinetics of the replacement of carbonates by fluorite has application in earth sciences and engineering. Fluorite (CaF2) occurs in all kinds of rocks (igneous, sedimentary, and metamorphic) and its origin is commonly associated with hydrothermal fluids. Moreover, calcium carbonate has been suggested as a successful seed material for the sequestration of fluoride from contaminated waters (Waghmare and Arfin, 2015). The aim of the present work is to investigate aspects of the replacement of calcium carbonate by fluorite to better understand the mechanism and kinetics of this reaction. Small cubes (˜ 3 × 3 × 3 mm) of Carrara marble (CaCO3 > 99 %) were cut and reacted with a 4 M ammonium fluoride (NH4F) solution for different times (1 to 48 hours) and temperatures (60, 80, 100, and 140 ° C). The microstructure of the product phases was analysed using SEM. The kinetics of replacement was monitored from the Rietveld analysis of X-ray powder diffraction patterns of the products as a function of temperature and reaction time. After reaction, all samples preserved their size and external morphology (a pseudomorphic replacement) and the product phase (fluorite) was highly porous. The activation energy Ea (kJ/mol) of the replacement reaction was empirically determined by both model-fitting and model-free methods. The isoconversional method yielded an empirical activation energy of 41 kJ/mol, and a statistical approach applied to the model-fitting method revealed that the replacement of Carrara marble by fluorite is better fitted to a diffusion-controlled process. This is consistent with ion diffusion through the fluid phase. These results suggest that the replacement reaction is dependent on the fluid migration rate through the newly formed porosity. Putnis, A., Putnis C.V., 2007. The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180, 1783-1786. Waghmare, S.S., Arfin, T. (2015). Fluoride removal from water by calcium materials: A state-of-the-art review. Int. J. Innov. Res. Sci. Eng. Technol. 4, 8090-8102.
Vernon, J.H.; Paillet, F.L.; Pedler, W.H.; Griswold, W.J.
1993-01-01
Wellbore geophysical techniques were used to characterize fractures and flow in a bedrock aquifer at a site near Blackwater Brook in Dover, New Hampshire. The primary focus ofthis study was the development of a model to assist in evaluating the area surrounding a planned water supply well where contaminants introduced at the land surface might be induced to flow towards a pumping well. Well logs and geophysical surveys used in this study included lithologic logs based on examination of cuttings obtained during drilling; conventional caliper and natural gamma logs; video camera and acoustic televiewer surveys; highresolution vertical flow measurements under ambient conditions and during pumping; and borehole fluid conductivity logs obtained after the borehole fluid was replaced with deionized water. These surveys were used for several applications: 1) to define a conceptual model of aquifer structure to be used in groundwater exploration; 2) to estimate optimum locations for test and observation wells; and 3) to delineate a wellhead protection area (WHPA) for a planned water supply well. Integration of borehole data with surface geophysical and geological mapping data indicated that the study site lies along a northeast-trending intensely fractured contact zone between surface exposures of quartz monzonite and metasedimentary rocks. Four of five bedrock boreholes at the site were estimated to produce more than 150 gallons per minute (gpm) (568 L/min) of water during drilling. Aquifer testing and other investigations indicated that water flowed to the test well along fractures parallel to the northeast-trending contact zone and along other northeast and north-northwest-trending fractures. Statistical plots of fracture strikes showed frequency maxima in the same northeast and north-northwest directions, although additional maxima occurred in other directions. Flowmeter surveys and borehole fluid conductivity logging after fluid replacement were used to identify water-producing zones in the boreholes; fractures associated with inflow into boreholes showed a dominant northeast orientation. Borehole fluid conductivity logging after fluid replacement also gave profiles of such water-quality parameters as fluid electrical conductivity (FEC), pH, temperature, and oxidation-reduction potential, strengthening the interpretation of crossconnection of boreholes by certain fracture zones. The results of this study showed that the application of these borehole geophysical techniques at the Blackwater Brook site led to an improved understanding of such parameters as fracture location, attitude, flow direction and velocity, and water quality; all of which are important in the determination of a WHPA.
NASA Technical Reports Server (NTRS)
Morgan, G. J.; Campion, R. P.
1997-01-01
The life of fluid-carrying flexible or umbilical pipes during service at elevated temperatures and pressures depends inter alia on their resistance to attack by the fluids present and the rate at which these fluids are absorbed by the pipe lining materials. The consequences of fluid ingress into the thermoplastic lining could mean a) a reduction in its mechanical strength, to increase chances of crack formation and growth and thus a loss of integrity, b) the occurrence of permeation right through the lining material, with pressure build- up in the outer pipe wall construction (of flexible pipes) or chemical attack (from a hostile permeant) on outer layers of reinforcements. Therefore it is important within this project to have relevant permeation data for Coflon and Tefzel thermoplastics: the former is plasticised, the latter is not. A previous report (CAPP/M.2) described experimental equipment and techniques used by MERL when measuring high pressure (up to 5000 psi) gas permeation and liquid diffusion through thermoplastic samples cut from extruded bar or pipe, and provided the basic theory involved. Norsk Hydro are also performing gas permeation tests on pipe sections, at up to 100 bars (1450 psi) pressure or so, and reporting separately. Some comparisons between data from Norsk Hydro and MERL have been made herein. The tests should be considered as complementary, as the Norsk Hydro test has the obvious benefit of using complete pipe sections, whilst MERL can test at much higher pressures, up to 1000 bar if necessary. The sophisticated analytical measuring equipment of Norsk Hydro can distinguish the individual components of mixed gases and hence the various permeation-linked coefficients whereas MERL, in using pressure increase at constant volume to determine permeation rate, is limited to obtaining single gas data, or apparent (or representative) coefficients for a mixed gas as a whole. Except for the initial fluid diffusion data for Tefzel described in CAPP/M.2, the present report covers all aspects of fluid permeation and diffusion for Coflon and Tefzel, including all the pen-neation data accumulated in the project to date. Test gases have mainly been methane (CH4) and carbon dioxide (CO2). More high pressure (HP) gas permeation tests have been performed since the last issue of this report, most being concerned with changes in permeation characteristics brought about by ageing in various relevant fluids. This revision supersedes previous issues.
Cross Cutting Structural Design for Exploration Systems
NASA Technical Reports Server (NTRS)
Semmes, Edmund B.
2007-01-01
The challenge of our new National Space Policy and NASA's Vision for Space Exploration (VSE) is keyed to the development of more effective space access and transportation systems. Optimizing in-space systems through innovative cross cutting structural designs that reduce mass, combine functional requirements and improve performance can significantly advance spacecraft designs to meet the ever growing demands of our new National Space Policy. Dependence on limited structural designs is no longer an option. We must create robust materials, forms, function and evolvable systems. We must advance national policy objectives in the design, development, test and operation of multi-billion dollar new generation crew capsules by enabling them to evolve in meeting the requirements of long duration missions to the moon and mars. This paper discusses several current issues and major design drivers for consideration in structural design of advanced spacecraft systems. Approaches to addressing these multifunctional requirements is presented as well as a discussion on utilizing Functional Analysis System Technique (FAST) in developing cross cutting structural designs for future spacecraft. It will be shown how easy it is to deploy such techniques in any conceptual architecture definition or ongoing preliminary design. As experts in merging mission, safety and life support requirements of the frail human existence into robust vehicle and habitat design, we will conquer the final frontier, harness new resources and develop life giving technologies for mankind through more innovative designs. The rocket equation tells us that a reduction in mass optimizes our propulsive results. Primary and secondary structural elements provide for the containment of gases, fluids and solids; translate and sustain loads/impacts; conduct/radiate thermal energy; shield from the harmful effects of radiation; provide for grounding/bonding of electrical power systems; compartmentalize operational functions; and provide physical interface with multiple systems. How can we redefine, combine, substitute, rearrange and otherwise modify our structural systems to reduce mass? New technologies will be needed to fill knowledge gaps and propagate new design methods. Such an integrated process is paramount in maintaining U.S. leadership and in executing our national policy goals. The cross cutting process can take many forms, but all forms will have a positive affect on the demanding design environment through initial radical thinking. The author will illustrate such cross cutting results achievable through a formal process called FAST. The FAST example will be used to show how a multifunctional structural system concept for long duration spacecraft might be generated.
Olubuyide, I O; Olawuyi, F
1995-08-01
An anonymous survey of 149 resident doctors was conducted to estimate the extent of accidental exposures to blood and body fluids of patients over a one-year period. There was a total of 1142 exposures. Ninety-three percent of respondents reported one or more exposure incident(s). Analysis of events and procedures leading to accidental exposures revealed that recapping needles was involved in 17%, suturing accounted for 14%, setting up intravenous lines 11%, cuts with scalpel 9% and phlebotomy 9%. Surgical residents had a threefold greater risk of exposure compared with medicine residents. No trend was found for accidental exposures by level of residency training. Seventy-four percent of the residents used universal precautions 50% or less of the time. Only half of the doctors could recall formal instruction on correct course of action after exposure and 5% of them had as undergraduates hepatitis B vaccine prior to the commencement of venepuncture duties. All but one of the residents' exposures were not reported to the Staff Medical Services Department. The doctor who reported was neither tested for hepatitis B virus or human immunodeficiency virus nor was he properly treated. Only 5 (4.6%) of the contaminating patients were evaluated serologically for their status of these viruses. These data emphasize the need for increased efforts toward improved early and continuing education, prevention and correct management of accidental exposures to blood or body fluids of patients by resident doctors in Nigeria. No recent study exists that exclusively addresses this problem in doctors in tropical Africa.
Wilhelmsen, Øivind; Trinh, Thuat T; Lervik, Anders
2018-01-01
Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.
Orsolini, Paola; Michen, Benjamin; Huch, Anja; Tingaut, Philippe; Caseri, Walter R; Zimmermann, Tanja
2015-11-25
Nanofibrillated cellulose (NFC) is a natural fibrous material that can be readily processed into membranes. NFC membranes for fluid separation work in aqueous medium, thus in their swollen state. The present study is devoted to a critical investigation of porosity, pore volume, specific surface area, and pore size distribution of dry and wet NFC nanopapers, also known as membranes, with various established techniques, such as electron microscopy, helium pycnometry, mercury intrusion, gas adsorption (N2 and Kr), and thermoporometry. Although these techniques can be successfully applied to inorganic materials (e.g., mesoporous silica), it is necessary to appraise them for organic and hydrophilic products such as NFC membranes. This is due to different phenomena occurring at the materials interfaces with the probing fluids. Mercury intrusion and gas adsorption are often used for the characterization of porosity-related properties; nevertheless, both techniques characterize materials in the dry state. In parallel, thermoporometry was employed to monitor the structure changes upon swelling, and a water permeance test was run to show the accessibility of the membranes to fluids. For the first time, the methods were systematically screened, and we highlighted the need of uniform sample treatments prior to the measurements (i.e., sample cutting and outgassing protocols) in order to harmonize results from the literature. The need for revising the applicability range of mercury intrusion and the inappropriateness of nitrogen adsorption were pointed out. We finally present a table for selecting the most appropriate method to determine a desired property and propose guidelines for results interpretation from which future users could profit.
Simulation of water flow in fractured porous medium by using discretized virtual internal bond
NASA Astrophysics Data System (ADS)
Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing
2017-12-01
The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.
NASA Astrophysics Data System (ADS)
Wilhelmsen, Øivind; Trinh, Thuat T.; Lervik, Anders
2018-01-01
Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.
Ancient Aqueous Environments at Endeavour Crater, Mars
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W.; Bell, J. F.; Catalano, J. G.; Clark, B. C.; Crumpler, L. S.; de Souza, P. A.; Fairen, A. G.; Farrand, W. H.; Fox, V. K.;
2014-01-01
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Ancient aqueous environments at Endeavour crater, Mars
Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.
2014-01-01
Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
Impacts of exploratory drilling for oil and gas on the benthic environment of Georges Bank
Neff, J. M.; Bothner, Michael H.; Maciolek, N. J.; Grassle, J. F.
1989-01-01
Cluster analysis revealed a strong relationship between community structure and both sediment type and water depth. Little seasonal variation was detected, but some interannual differences were revealed by cluster analysis and correspondence analysis. The replicates from a station always resembled each other more than they resembled any replicates from other stations. In addition, the combined replicates from a station always clustered with samples from that station taken on other cruises. This excellent replication and uniformity of the benthic infaunal community at a station over time made it possible to detect very subtle changes in community parameters that might be related to discharges of drilling fluid and drill cuttings. Nevertheless, no changes were detected in benthic communities of Georges Bank that could be attributed to drilling activities.
SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.
Sass, J.H.; Elders, W.A.
1986-01-01
The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.
Topical Report Tantalum – 2.5% Tungsten Machinability Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. J. Lazarus
2009-09-02
Protection Association (NFPA). NFPA 484, Standard for Combustible Metals, Chapter 9 Tantalum and Annex E, supplemental Information on Tantalum require cutting oil be used when machining tantalum because it burns at such a high temperature that it breaks down the water in a water-based metalworking fluid (MWF). The NFPA guide devotes approximately 20 pages to this material. The Kansas City Plant (KCP) uses Fuchs Lubricants Ecocut Base 44 LVC as a MWF. This is a highly chlorinated oil with a high flash point (above 200° F). The chlorine is very helpful in preventing BUE (Built Up Edge) that occurs frequentlymore » with this very gummy material. The Ecocut is really a MWF additive that Fuchs uses to add chlorinated fats to other non-chlorinated MWF.« less
On the suitability of refractometry for the analysis of glucose in blood-derived fluids.
Zirk, K; Poetzschke, H
2004-07-01
Refractometry is the determination of the optical refractive index of a substance or a mixture of substances. It is a very sensitive method for the detection and quantification of dissolved analytes, but it is incapable of distinguishing between different analytes. The aim of this investigation was to determine the principle suitability of refractometry for the quantification of glucose (blood sugar) in blood and various blood fluids which can readily be obtained for medical diagnosis, in particular blood plasma, blood serum, and their ultrafiltrates. After the oral intake of freshly dissolved alpha-glucose, the in vivo blood contents of the alpha and beta anomers of glucose were found to be in an at least approximate equilibrium at all times. This observation is a prerequisite for a refractometrical determination of glucose due to the fact that both molecule forms have different refractive index increments. An assessment of the glucose content in untreated blood fluids was not possible, since no suitable relationship to the refractive index was found, most probably due to the influence of the many other substances present in blood on this parameter. However, after removal of certain macromolecules by ultrafiltration, value pairs showed a high level of correlation, providing the nominal molecular weight limit (cut-off) of the ultrafilter used possessed a maximum of 300 kDa. Besides macromolecules, the osmolality of the fluids undergoing measurement also proved to be a considerable interfering factor, particularly when values were outside the normal physiological range between 285 and 293 mmol/L. If a clinical application of this method is to be contemplated it is imperative (1) that blood cells are separated and removed, (2) that macromolecules present in plasma or serum are removed, e.g. by ultrafiltration, and (3) that beyond the results presented the influence of all small molecules other than glucose on the overall refractive index be determined and included in the calculation of analysis results.
NASA Astrophysics Data System (ADS)
Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.
2016-12-01
The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.
Oman Drilling Project Phase I Borehole Geophysical Survey
NASA Astrophysics Data System (ADS)
Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.
2017-12-01
The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for holes BT1, GT3 and BA2 due to hole obstruction (e.g. collapsed borehole wall). Results from the geophysical survey including preliminary log analysis will be presented for each OmanDP Phase I borehole.
Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.
Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2016-01-01
Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.
A simple and inexpensive technique for assessing microbial contamination during drilling operations
NASA Astrophysics Data System (ADS)
Friese, André; Vuillemin, Aurèle; Kallmeyer, Jens; Wagner, Dirk
2016-04-01
Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing allochthonous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations. Several techniques have been used in the past, including fluorescent dyes, perfluorocarbon tracers and fluorescent microspheres. Fluorescent dyes are inexpensive and easy to analyze on-site but are sensitive to light, pH and water chemistry. Furthermore, significant sorption to clays can decrease the fluorescence signal. Perfluorocarbon tracers are chemically inert hydrophobic compounds that can be detected with high sensitivity via gas chromatography, which might be a problem for on-site analysis. Samples have to be taken immediately after core retrieval as otherwise the volatile tracer will have diffused out of the core. Microsphere tracers are small (0.2 - 0.5 μm diameter) fluorescent plastic particles that are mixed into the drilling fluid. For analysis, these particles can be extracted from the sediment sample, transferred onto a filter and quantified via fluorescence microscopy. However, they are very expensive and therefore unsuitable for deep drilling operations that need large amounts of drilling fluids. Here, we present an inexpensive contamination control approach using fluorescent pigments initially used for coloring plastics. The price of this tracer is nearly three orders of magnitude lower than conventional microsphere tracers. Its suitability for large drilling campaigns was tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia. The tracer was diluted 1:1000 in lake water, which was used as the drilling fluid. Additionally, a plastic bag filled with 20 mL of undiluted tracer was attached to the core catcher to increase the amount of particles in the liner fluid right at the core. After core retrieval, the core was cut and the liner fluid collected. From each whole round core (WRC) that was taken for microbiological and biogeochemical analyses, small samples of 1 cc were retrieved with sterile cutoff syringes from the rim, the center and an intermediate position. After dilution and homogenization in 9 mL MilliQ water, 10 μL of the sediment slurry was transferred onto a filter membrane and particles counted via fluorescence microscopy. Additionally, particles in the liner fluid were also quantified. This allows the quantification of the amount of drilling fluid that has entered the sediment sample during drilling. The minimum detectable volume of drilling fluid was in the order of single nanoliters per cc of sediment, which is in the range of established techniques. The presented method requires only a minimum of equipment and allows rapid determination of contamination in the sediment core and an easy to handle on-site analysis at low costs. The sensitivity is in the same range as perfluorocarbon and microsphere tracer applications. Thus, it offers an inexpensive but powerful technique for contamination assessment for future drilling campaigns.
NASA Astrophysics Data System (ADS)
Jeans, Christopher V.; Turchyn, Alexandra V.; Hu, Xu-Fang
2016-06-01
The relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from -48.6‰ at their core to -32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from -34.7‰ to +40.0‰. In the lower part of the section δ34S vary from -34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from -32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults - the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) - that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids - rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria - have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.
Insights into the martian hydrosphere from the nakhlites
NASA Astrophysics Data System (ADS)
Tomkinson, T.; Mark, D. F.; Lee, M.; Lindgren, P.; Stuart, F.
2011-12-01
The nakhlite meteorites contain minerals including clays, salts and carbonates that crystallized from water within an impact-induced hydrothermal system or subsurface aquifer [1,2]. These minerals can be used to explore the longevity, scale and evolution of the aqueous system. However, such work has proven to be challenging owing to their very fine crystal size and their compositional complexity. In this study we have used a suite of techniques including CT tomography, scanning and transmission electron microscopy and Ar/Ar dating to explore the history of secondary mineralization in the nakhlites. In total there are thirteen nakhlites, however, this study has focused on Nakhla as it is the only fall. To further understand their alteration relationships we also plan to study Lafayette, MIL 003346, Yamato 000593, 000749 and NWA 5790. In contrast to previous studies that have used polished thin sections, we have examined secondary minerals exposed on freshly produced fracture surfaces from the interior of the Nakhla meteorite. This technique has revealed six textures that have not previously been described. (1) Areas of nanocrystalline/amorphous growth of sheeted silicates appearing to nucleate from underlying Cl and C rich fibrous material. (2) Underlying material which forms on the olivine grains surface with a nanoscale fibrous structure contains intergrown <5 μm sized euhedral calcium sulphate crystals. (3) The overlying sheeted silicates are also cross-cut by veins of this Cl and C enriched fibrous material. (4) A concentrically Si, Cl, Ca, Mn and Fe zoned region of alteration with a diameter of ~90 μm that has also been observed potentially sourcing enrichments from an underlying halite grain and augite and magnetite inclusions formed from symplectic exsolution in the host olivine [3]. Additionally, we have observed (5) radial growth structures emanating from halite grains and (6) etch pits in the surfaces of olivines. We will also present preliminary Ar/Ar ages for the K-bearing alteration material within the nakhlites. The textures that we have observed suggest that the sheeted silicate material formed either during fluctuations in fluid compositions or as a result of these newly discovered sites of nucleation growth from the underlying Cl and C enriched fibrous material. The presence of the fibrous material cross-cutting the silicate could indicate the following: a subsequent injection of a saline fluid, an expansion of the fibrous material rupturing the silicate, or the remobilisation of the fibrous material. The sharp contacts of the silicate with these cross cutting veins of fibrous material suggest that this material (likely brine) was exposed to only very low temperatures [4] thus not remobilising and equilibrating with the surrounding material. Some of the features that we have found would have been lost in conventional thin section manufacture and may explain why they have not been observed previously.
Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael
2016-01-01
Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling.
Jin, Biyu; Liu, Mingzhu; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu
2017-10-03
In this work, a novel substrate building block, magnetic Fe 3 O 4 nanoparticles armed with dopamine molecules were developed via mussel-inspired metal-coordination bonds. Combined with glycidyl methacrylate, polydimethylsiloxane propyl ether methacrylate, and diethylenetriamine, the original silicone oil swelling slippery liquid-infused porous surfaces (SLIPS) were first prepared by reversible coordinate bonds and strong covalent bonds cross-linking process. The matrix mechanical characteristics and surface physicochemical properties were systematically investigated. Results showed that the mechanical property of copolymer matrix and surface wettability of SLIPS can be remarkably recovered, which were due to the synergistic interactions of magnetic nanoparticles' intrinsic photothermal effect, reversible Fe-catechol coordination, and diffused lubricating liquid. After irradiating with sunlamp for 2 h and sequentially healing for 10 h under ambient conditions, the crack almost disappeared under optical microscopy with 78.25% healing efficiency (HEf) of toughness, and surface slippery was completely retrieved to water droplets. The efficient self-heal of copolymer matrix (66.5% HEf after eighth cutting-healing cycle) and recovering of slipperiness (SA < 5° and 5° < SA < 17° after fourth and eighth cutting-centrifuging-healing cycles, respectively) would extend longevity of SLIPS when subjected to multiple damages. Moreover, the prepared SLIPS displayed superb self-cleaning and liquid-repellent properties to a wide range of particulate contaminants and fluids.
Normalised quantitative polymerase chain reaction for diagnosis of tuberculosis-associated uveitis.
Barik, Manas Ranjan; Rath, Soveeta; Modi, Rohit; Rana, Rajkishori; Reddy, Mamatha M; Basu, Soumyava
2018-05-01
Polymerase chain reaction (PCR)-based diagnosis of tuberculosis-associated uveitis (TBU) in TB-endemic countries is challenging due to likelihood of latent mycobacterial infection in both immune and non-immune cells. In this study, we investigated normalised quantitative PCR (nqPCR) in ocular fluids (aqueous/vitreous) for diagnosis of TBU in a TB-endemic population. Mycobacterial copy numbers (mpb64 gene) were normalised to host genome copy numbers (RNAse P RNA component H1 [RPPH1] gene) in TBU (n = 16) and control (n = 13) samples (discovery cohort). The mpb64:RPPH1 ratios (normalised value) from each TBU and control sample were tested against the current reference standard i.e. clinically-diagnosed TBU, to generate Receiver Operating Characteristic (ROC) curves. The optimum cut-off value of mpb64:RPPH1 ratio (0.011) for diagnosing TBU was identified from the highest Youden index. This cut-off value was then tested in a different cohort of TBU and controls (validation cohort, 20 cases and 18 controls), where it yielded specificity, sensitivity and diagnostic accuracy of 94.4%, 85.0%, and 89.4% respectively. The above values for conventional quantitative PCR (≥1 copy of mpb64 per reaction) were 61.1%, 90.0%, and 74.3% respectively. Normalisation markedly improved the specificity and diagnostic accuracy of quantitative PCR for diagnosis of TBU. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong
2016-01-01
Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853
Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
Mitri, Farid G
2015-10-01
Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.
Kangasluoma, Juha; Franchin, Alessandro; Duplissy, Jonahtan; ...
2016-07-14
Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of an A10 Particle Size Magnifier (PSM) and an A20 Condensation Particle Counter (CPC). The effect of the inlet line pressure on the measured particle concentration was measured, and two separate regions inside the A10, where supersaturation of working fluid can take place, were identified. The possibility ofmore » varying the lower cut-off diameter of the nCNC was investigated; by scanning the growth tube temperature, the range of the lower cut-off was extended from 1–2.5 to 1–6 nm. Here we present a new inlet system, which allows automated measurement of the background concentration of homogeneously nucleated droplets, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions smaller than approximately 4.5 nm. Lastly, our view of the guidelines for the optimal use of the Airmodus nCNC is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangasluoma, Juha; Franchin, Alessandro; Duplissy, Jonahtan
Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of an A10 Particle Size Magnifier (PSM) and an A20 Condensation Particle Counter (CPC). The effect of the inlet line pressure on the measured particle concentration was measured, and two separate regions inside the A10, where supersaturation of working fluid can take place, were identified. The possibility ofmore » varying the lower cut-off diameter of the nCNC was investigated; by scanning the growth tube temperature, the range of the lower cut-off was extended from 1–2.5 to 1–6 nm. Here we present a new inlet system, which allows automated measurement of the background concentration of homogeneously nucleated droplets, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions smaller than approximately 4.5 nm. Lastly, our view of the guidelines for the optimal use of the Airmodus nCNC is provided.« less
NASA Astrophysics Data System (ADS)
Duangthongsuk, Weerapun; Wongwises, Somchai
2018-05-01
In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 × 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24-55% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area.
Watching fat digestion: a microscopic method assessing intraluminal lipolysis.
Alliet, P; Eggermont, E
1990-01-01
We investigated the utility of a microscopic method assessing lipolytic activity of duodenal fluid. The method is based on evaluating microscopically physicochemical changes along time when olive oil is mixed with duodenal fluid in the presence of excess bile salts (13 mM) and calcium ions (8 mM) at pH 6.5. Data are analyzed on duodenal aspirations from 155 children referred for failure to thrive or gastrointestinal disorders. The "fat digestion index" (FDI) is the percentage of intact olive oil droplets that underwent complete hydrolysis or are transformed into amorphous reticular bodies (ARB) at steady state. In all patients with proven exocrine pancreatic disorder, a FDI less than 25% was found. This value was thus considered as a cut-off value. When no microscopic lipolysis (FDI = 0) was observed, exocrine pancreatic enzyme assays are suggestive for a total exocrine pancreatic insufficiency. In the group of children with FDI ranging 5-25%, however, no statistical difference in exocrine pancreatic enzymes could be found, as compared to control values. Our tests thus evaluate fat digestion in a dynamic way. It further seems to give additional information on intraluminal lipolysis as compared to exocrine pancreatic enzyme concentrations, since it gives an idea about the integrated action of (co)lipase and bile salts.
NASA Astrophysics Data System (ADS)
Zuluaga, Luisa F.; Fossen, Haakon; Rotevatn, Atle
2014-11-01
Monoclinal fault propagation folds are a common type of structure in orogenic foreland settings, particularly on the Colorado Plateau. We have studied a portion of the San Rafael monocline, Utah, assumed to have formed through pure thrust- or reverse-slip (blind) fault movement, and mapped a particular sequence of subseismic cataclastic deformation structures (deformation bands) that can be related in terms of geometry, density and orientation to the dip of the forelimb or fold interlimb angle. In simple terms, deformation bands parallel to bedding are the first structures to form, increasing exponentially in number as the forelimb gets steeper. At about 30° rotation of the forelimb, bands forming ladder structures start to cross-cut bedding, consolidating themselves into a well-defined and regularly spaced network of deformation band zones that rotate with the layering during further deformation. In summary, we demonstrate a close relationship between limb dip and deformation band density that can be used to predict the distribution and orientation of such subseismic structures in subsurface reservoirs of similar type. Furthermore, given the fact that these cataclastic deformation bands compartmentalize fluid flow, this relationship can be used to predict or model fluid flow across and along comparable fault-propagation folds.