Sample records for cutting plane algorithm

  1. One cutting plane algorithm using auxiliary functions

    NASA Astrophysics Data System (ADS)

    Zabotin, I. Ya; Kazaeva, K. E.

    2016-11-01

    We propose an algorithm for solving a convex programming problem from the class of cutting methods. The algorithm is characterized by the construction of approximations using some auxiliary functions, instead of the objective function. Each auxiliary function bases on the exterior penalty function. In proposed algorithm the admissible set and the epigraph of each auxiliary function are embedded into polyhedral sets. In connection with the above, the iteration points are found by solving linear programming problems. We discuss the implementation of the algorithm and prove its convergence.

  2. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  3. Rotation of intramedullary alignment rods affects distal femoral cutting plane in total knee arthroplasty.

    PubMed

    Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann

    2018-02-17

    Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.

  4. Displaying CFD Solution Parameters on Arbitrary Cut Planes

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul

    2008-01-01

    USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.

  5. Cutting planes for the multistage stochastic unit commitment problem

    DOE PAGES

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    2016-04-20

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  6. Cutting planes for the multistage stochastic unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  7. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.

    PubMed

    Nairn, John A

    2016-06-06

    A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.

  8. Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force

    NASA Astrophysics Data System (ADS)

    Xu, Yingqiang; Zhang, Qinhe; Liu, Guowei

    2017-04-01

    Needle biopsy is a method to extract the cells from the patient's body with a needle for tissue pathological examination. Many factors affect the cutting process of soft tissue, including the geometry of the biopsy needle, the mechanical properties of the soft tissue, the parameters of the puncture process and the interaction between them. This paper conducted orthogonal experiment of main cutting parameters based on single plane puncture biopsy needle, and obtained the cutting force curve of single plane puncture biopsy needle by studying the influence of the inclination angle, diameter and velocity of the single plane puncture biopsy needle on the puncture force of the biopsy needle. Stage analysis of the cutting process of biopsy needle puncture was made to determine the main influencing factors of puncture force during the cutting process, which provides a certain theoretical support for the design of new type of puncture biopsy needle and the operation of puncture biopsy.

  9. Finite pure integer programming algorithms employing only hyperspherically deduced cuts

    NASA Technical Reports Server (NTRS)

    Young, R. D.

    1971-01-01

    Three algorithms are developed that may be based exclusively on hyperspherically deduced cuts. The algorithms only apply, therefore, to problems structured so that these cuts are valid. The algorithms are shown to be finite.

  10. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    NASA Astrophysics Data System (ADS)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  11. Simple Common Plane contact detection algorithm for FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-07-19

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.

  12. Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.

    PubMed

    Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin

    2017-01-01

    Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.

  13. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    PubMed Central

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491

  14. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    PubMed

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  15. Simple Common Plane contact algorithm for explicit FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-12-18

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.

  16. Multi-scale graph-cut algorithm for efficient water-fat separation.

    PubMed

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Research on cutting path optimization of sheet metal parts based on ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.

  18. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Identification of the critical depth-of-cut through a 2D image of the cutting region resulting from taper cutting of brittle materials

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo

    2018-05-01

    An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.

  20. An Interactive Artificial Cutting Plane Method for Bicriterion Integer Programming Problems

    DTIC Science & Technology

    1992-08-01

    AUTHOR(S) Diane Breivik Allen, 1st Lt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFIT Student Attending...INTERACTIVE ARTIFICIAL CUTTING PLANE METHOD FOR BICRITERION INTEGER PROGRAMMING PROBLEMS By Diane Breivik Allen A Thesis Submitted to the Faculty of...ITfiSRA&1 DTIC TAB 0 Unannounced 0 Justirication By BY Diane Breivik Allen Distributlon/ Availability CQdes Avail and/or Dist Special Approved: DTI

  1. [Improvement of magnetic resonance phase unwrapping method based on Goldstein Branch-cut algorithm].

    PubMed

    Guo, Lin; Kang, Lili; Wang, Dandan

    2013-02-01

    The phase information of magnetic resonance (MR) phase image can be used in many MR imaging techniques, but phase wrapping of the images often results in inaccurate phase information and phase unwrapping is essential for MR imaging techniques. In this paper we analyze the causes of errors in phase unwrapping with the commonly used Goldstein Brunch-cut algorithm and propose an improved algorithm. During the unwrapping process, masking, filtering, dipole- remover preprocessor, and the Prim algorithm of the minimum spanning tree were introduced to optimize the residues essential for the Goldstein Brunch-cut algorithm. Experimental results showed that the residues, branch-cuts and continuous unwrapped phase surface were efficiently reduced and the quality of MR phase images was obviously improved with the proposed method.

  2. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  3. FFT applications to plane-polar near-field antenna measurements

    NASA Technical Reports Server (NTRS)

    Gatti, Mark S.; Rahmat-Samii, Yahya

    1988-01-01

    The four-point bivariate Lagrange interpolation algorithm was applied to near-field antenna data measured in a plane-polar facility. The results were sufficiently accurate to permit the use of the FFT (fast Fourier transform) algorithm to calculate the far-field patterns of the antenna. Good agreement was obtained between the far-field patterns as calculated by the Jacobi-Bessel and the FFT algorithms. The significant advantage in using the FFT is in the calculation of the principal plane cuts, which may be made very quickly. Also, the application of the FFT algorithm directly to the near-field data was used to perform surface holographic diagnosis of a reflector antenna. The effects due to the focusing of the emergent beam from the reflector, as well as the effects of the information in the wide-angle regions, are shown. The use of the plane-polar near-field antenna test range has therfore been expanded to include these useful FFT applications.

  4. IndeCut evaluates performance of network motif discovery algorithms.

    PubMed

    Ansariola, Mitra; Megraw, Molly; Koslicki, David

    2018-05-01

    Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal. However, a reliable network motif discovery outcome requires generating random background networks which are the result of a uniform and independent graph sampling method. To date, there has been no method to numerically evaluate whether any network motif discovery algorithm performs as intended on realistically sized datasets-thus it was not possible to assess the validity of resulting network motifs. In this work, we present IndeCut, the first method to date that characterizes network motif finding algorithm performance in terms of uniform sampling on realistically sized networks. We demonstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons. First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in the most independent fashion for their network of interest among many available options. The open source software package is available at https://github.com/megrawlab/IndeCut. megrawm@science.oregonstate.edu or david.koslicki@math.oregonstate.edu. Supplementary data are available at Bioinformatics online.

  5. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  6. A reconstruction algorithm for helical CT imaging on PI-planes.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming

    2006-01-01

    In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.

  7. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    NASA Astrophysics Data System (ADS)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  8. Normalized Cut Algorithm for Automated Assignment of Protein Domains

    NASA Technical Reports Server (NTRS)

    Samanta, M. P.; Liang, S.; Zha, H.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a novel computational method for automatic assignment of protein domains from structural data. At the core of our algorithm lies a recently proposed clustering technique that has been very successful for image-partitioning applications. This grap.,l-theory based clustering method uses the notion of a normalized cut to partition. an undirected graph into its strongly-connected components. Computer implementation of our method tested on the standard comparison set of proteins from the literature shows a high success rate (84%), better than most existing alternative In addition, several other features of our algorithm, such as reliance on few adjustable parameters, linear run-time with respect to the size of the protein and reduced complexity compared to other graph-theory based algorithms, would make it an attractive tool for structural biologists.

  9. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  10. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    PubMed Central

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five

  11. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    PubMed

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long

  12. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  13. Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images

    PubMed Central

    Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun

    2013-01-01

    This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608

  14. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  15. A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corynen, G.C.

    1987-11-01

    An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less

  16. Use of One Time Pad Algorithm for Bit Plane Security Improvement

    NASA Astrophysics Data System (ADS)

    Suhardi; Suwilo, Saib; Budhiarti Nababan, Erna

    2017-12-01

    BPCS (Bit-Plane Complexity Segmentation) which is one of the steganography techniques that utilizes the human vision characteristics that cannot see the change in binary patterns that occur in the image. This technique performs message insertion by making a switch to a high-complexity bit-plane or noise-like regions with bits of secret messages. Bit messages that were previously stored precisely result the message extraction process to be done easily by rearranging a set of previously stored characters in noise-like region in the image. Therefore the secret message becomes easily known by others. In this research, the process of replacing bit plane with message bits is modified by utilizing One Time Pad cryptography technique which aims to increase security in bit plane. In the tests performed, the combination of One Time Pad cryptographic algorithm to the steganography technique of BPCS works well in the insertion of messages into the vessel image, although in insertion into low-dimensional images is poor. The comparison of the original image with the stegoimage looks identical and produces a good quality image with a mean value of PSNR above 30db when using a largedimensional image as the cover messages.

  17. A gradient based algorithm to solve inverse plane bimodular problems of identification

    NASA Astrophysics Data System (ADS)

    Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing

    2018-02-01

    This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.

  18. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  19. Effect of the focal plane position on CO2 laser beam cutting of injection molded polycarbonate sheets

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2016-11-01

    In the present research, the effect of laser beam focal plane position (FPP) on the kerf quality of the polycarbonate laser cutting is investigated. Low power CO2 laser is used as the heat source of the cutting runs. In the experiments, FPP is varied from 0 to -4mm while other processing parameters (i.e. laser power, cutting speed and gas pressure) are considered constant. Upper and lower kerf width, kerf taper, upper heat affected zone and surface roughness of the kerf wall are also considered as the responses. Observations signified that reducing the position of the laser beam focal point from zero to - 3mm reduces the upper and lower kerf width. However reducing FPP below -3mm leads to an increase in the kerf width. Results also reveals that upper heat affected zone value reduces by reduction in FPP. Moreover the best kerf wall surface roughness occurred at FPP= -3mm.

  20. A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales

    NASA Astrophysics Data System (ADS)

    Elliott, Frank W.; Majda, Andrew J.

    1995-03-01

    A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.

  1. Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.

    PubMed

    Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N

    2008-10-10

    The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America

  2. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    PubMed

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  3. Nonuniformity correction algorithm with efficient pixel offset estimation for infrared focal plane arrays.

    PubMed

    Orżanowski, Tomasz

    2016-01-01

    This paper presents an infrared focal plane array (IRFPA) response nonuniformity correction (NUC) algorithm which is easy to implement by hardware. The proposed NUC algorithm is based on the linear correction scheme with the useful method of pixel offset correction coefficients update. The new approach to IRFPA response nonuniformity correction consists in the use of pixel response change determined at the actual operating conditions in relation to the reference ones by means of shutter to compensate a pixel offset temporal drift. Moreover, it permits to remove any optics shading effect in the output image as well. To show efficiency of the proposed NUC algorithm some test results for microbolometer IRFPA are presented.

  4. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.

    PubMed

    Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N

    2016-01-01

    To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.

  5. An algebraic algorithm for nonuniformity correction in focal-plane arrays.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Hardie, Russell C

    2002-09-01

    A scene-based algorithm is developed to compensate for bias nonuniformity in focal-plane arrays. Nonuniformity can be extremely problematic, especially for mid- to far-infrared imaging systems. The technique is based on use of estimates of interframe subpixel shifts in an image sequence, in conjunction with a linear-interpolation model for the motion, to extract information on the bias nonuniformity algebraically. The performance of the proposed algorithm is analyzed by using real infrared and simulated data. One advantage of this technique is its simplicity; it requires relatively few frames to generate an effective correction matrix, thereby permitting the execution of frequent on-the-fly nonuniformity correction as drift occurs. Additionally, the performance is shown to exhibit considerable robustness with respect to lack of the common types of temporal and spatial irradiance diversity that are typically required by statistical scene-based nonuniformity correction techniques.

  6. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  7. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G [Albuquerque, NM; Fleming, legal representative, Carol; Sniegowski, Jeffry J [Tijeras, NM; Montague, Stephen [Albuquerque, NM

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  8. Joint graph cut and relative fuzzy connectedness image segmentation algorithm.

    PubMed

    Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K

    2013-12-01

    We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem

    NASA Astrophysics Data System (ADS)

    Octarina, Sisca; Radiana, Mutia; Bangun, Putra B. J.

    2018-01-01

    Two dimensional cutting stock problem (CSP) is a problem in determining the cutting pattern from a set of stock with standard length and width to fulfill the demand of items. Cutting patterns were determined in order to minimize the usage of stock. This research implemented pattern generation algorithm to formulate Gilmore and Gomory model of two dimensional CSP. The constraints of Gilmore and Gomory model was performed to assure the strips which cut in the first stage will be used in the second stage. Branch and Cut method was used to obtain the optimal solution. Based on the results, it found many patterns combination, if the optimal cutting patterns which correspond to the first stage were combined with the second stage.

  10. Determining residual reduction algorithm kinematic tracking weights for a sidestep cut via numerical optimization.

    PubMed

    Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I

    2016-12-01

    Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.

  11. Quantum approximate optimization algorithm for MaxCut: A fermionic view

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2018-02-01

    Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028; arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2 p times for which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the "ring of disagrees," or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of the QAOA for any p . It also greatly simplifies the numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  12. Apparatus for cutting elastomeric materials

    NASA Technical Reports Server (NTRS)

    Corbett, A. B.

    1974-01-01

    Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.

  13. Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem

    NASA Astrophysics Data System (ADS)

    Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang

    2015-09-01

    A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.

  14. Finding minimum-quotient cuts in planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.K.; Phillips, C.A.

    Given a graph G = (V, E) where each vertex v {element_of} V is assigned a weight w(v) and each edge e {element_of} E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and {bar S} is c(S, {bar S})/min{l_brace}w(S), w(S){r_brace}, where c(S, {bar S}) is the sum of the costs of the edges crossing the cut and w(S) and w({bar S}) are the sum of the weights of the vertices in S and {bar S}, respectively. The problem of finding a cut whose quotient is minimum for a graph hasmore » in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,{bar S}) minimizing c(S,{bar S}) subject to the constraint bW {le} w(S) {le} (1 {minus} b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b {le} {1/2}. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao`s algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao`s most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less

  15. Finding minimum-quotient cuts in planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.K.; Phillips, C.A.

    Given a graph G = (V, E) where each vertex v [element of] V is assigned a weight w(v) and each edge e [element of] E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and [bar S] is c(S, [bar S])/min[l brace]w(S), w(S)[r brace], where c(S, [bar S]) is the sum of the costs of the edges crossing the cut and w(S) and w([bar S]) are the sum of the weights of the vertices in S and [bar S], respectively. The problem of finding a cut whose quotient is minimummore » for a graph has in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,[bar S]) minimizing c(S,[bar S]) subject to the constraint bW [le] w(S) [le] (1 [minus] b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b [le] [1/2]. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao's algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao's most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less

  16. Coherent field propagation between tilted planes.

    PubMed

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  17. Tool Forces and Chip Formation In Orthogonal Cutting Of Loblolly Pine

    Treesearch

    George E. Woodson; Peter Koch

    1970-01-01

    Specimens of earlywood and latewood of Pinus taeda L. were excised so that length along the grain was 3 inches and thickness was 0.1 inch. These specimens were cut orthogonally-as with a carpenter's plane-in the three major directions. Cutting velocity was 2 inches per minute. When cutting was in the planing (90-O) direction, thin chips,...

  18. X-Z-Theta cutting method

    DOEpatents

    Bieg, Lothar F.

    1993-01-12

    A method for machining a workpiece. The method includes the use of a rotary cutting tool mounted on the end of a movable arm. The arm is adapted to move in a plane perpendicular to the axis of rotation of the cutting tool. The cutting tool has cutting teeth to cut chips of material off of the workpiece in a predetermined size and shape to facilitate better removal of the chips from the workpiece. The teeth can be of different type and length to permit the tool to both rough cut and finish cut the workpiece during machining. The total depth of cut is divided by the number of tool teeth, so that the longest tool always performs the finishing cut.

  19. A modified technique to reduce tibial keel cutting errors during an Oxford unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2017-03-01

    Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.

  20. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  1. A synthetic visual plane algorithm for visibility computation in consideration of accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Yu, Jieqing; Wu, Lixin; Hu, Qingsong; Yan, Zhigang; Zhang, Shaoliang

    2017-12-01

    Visibility computation is of great interest to location optimization, environmental planning, ecology, and tourism. Many algorithms have been developed for visibility computation. In this paper, we propose a novel method of visibility computation, called synthetic visual plane (SVP), to achieve better performance with respect to efficiency, accuracy, or both. The method uses a global horizon, which is a synthesis of line-of-sight information of all nearer points, to determine the visibility of a point, which makes it an accurate visibility method. We used discretization of horizon to gain a good performance in efficiency. After discretization, the accuracy and efficiency of SVP depends on the scale of discretization (i.e., zone width). The method is more accurate at smaller zone widths, but this requires a longer operating time. Users must strike a balance between accuracy and efficiency at their discretion. According to our experiments, SVP is less accurate but more efficient than R2 if the zone width is set to one grid. However, SVP becomes more accurate than R2 when the zone width is set to 1/24 grid, while it continues to perform as fast or faster than R2. Although SVP performs worse than reference plane and depth map with respect to efficiency, it is superior in accuracy to these other two algorithms.

  2. Cutting holes in fabric-faced panels

    NASA Technical Reports Server (NTRS)

    Peterson, S. A.

    1981-01-01

    Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.

  3. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.

    PubMed

    Wu, Guangsheng; Liu, Juan; Wang, Caihua

    2017-12-28

    Prediction of drug-disease interactions is promising for either drug repositioning or disease treatment fields. The discovery of novel drug-disease interactions, on one hand can help to find novel indictions for the approved drugs; on the other hand can provide new therapeutic approaches for the diseases. Recently, computational methods for finding drug-disease interactions have attracted lots of attention because of their far more higher efficiency and lower cost than the traditional wet experiment methods. However, they still face several challenges, such as the organization of the heterogeneous data, the performance of the model, and so on. In this work, we present to hierarchically integrate the heterogeneous data into three layers. The drug-drug and disease-disease similarities are first calculated separately in each layer, and then the similarities from three layers are linearly fused into comprehensive drug similarities and disease similarities, which can then be used to measure the similarities between two drug-disease pairs. We construct a novel weighted drug-disease pair network, where a node is a drug-disease pair with known or unknown treatment relation, an edge represents the node-node relation which is weighted with the similarity score between two pairs. Now that similar drug-disease pairs are supposed to show similar treatment patterns, we can find the optimal graph cut of the network. The drug-disease pair with unknown relation can then be considered to have similar treatment relation with that within the same cut. Therefore, we develop a semi-supervised graph cut algorithm, SSGC, to find the optimal graph cut, based on which we can identify the potential drug-disease treatment interactions. By comparing with three representative network-based methods, SSGC achieves the highest performances, in terms of both AUC score and the identification rates of true drug-disease pairs. The experiments with different integration strategies also demonstrate that

  4. Neodymium:YAG laser cutting of intraocular lens haptics.

    PubMed

    Gorn, R A; Steinert, R F

    1985-11-01

    Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.

  5. Operationalizing hippocampal volume as an enrichment biomarker for amnestic MCI trials: effect of algorithm, test-retest variability and cut-point on trial cost, duration and sample size

    PubMed Central

    Yu, P.; Sun, J.; Wolz, R.; Stephenson, D.; Brewer, J.; Fox, N.C.; Cole, P.E.; Jack, C.R.; Hill, D.L.G.; Schwarz, A.J.

    2014-01-01

    Objective To evaluate the effect of computational algorithm, measurement variability and cut-point on hippocampal volume (HCV)-based patient selection for clinical trials in mild cognitive impairment (MCI). Methods We used normal control and amnestic MCI subjects from ADNI-1 as normative reference and screening cohorts. We evaluated the enrichment performance of four widely-used hippocampal segmentation algorithms (FreeSurfer, HMAPS, LEAP and NeuroQuant) in terms of two-year changes in MMSE, ADAS-Cog and CDR-SB. We modeled the effect of algorithm, test-retest variability and cut-point on sample size, screen fail rates and trial cost and duration. Results HCV-based patient selection yielded not only reduced sample sizes (by ~40–60%) but also lower trial costs (by ~30–40%) across a wide range of cut-points. Overall, the dependence on the cut-point value was similar for the three clinical instruments considered. Conclusion These results provide a guide to the choice of HCV cut-point for aMCI clinical trials, allowing an informed trade-off between statistical and practical considerations. PMID:24211008

  6. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.

    PubMed

    Burd, H J; Wilde, G S

    2016-04-01

    The use of a femtosecond laser to form planes of cavitation bubbles within the ocular lens has been proposed as a potential treatment for presbyopia. The intended purpose of these planes of cavitation bubbles (referred to in this paper as 'cutting planes') is to increase the compliance of the lens, with a consequential increase in the amplitude of accommodation. The current paper describes a computational modelling study, based on three-dimensional finite element analysis, to investigate the relationship between the geometric arrangement of the cutting planes and the resulting improvement in lens accommodation performance. The study is limited to radial cutting planes. The effectiveness of a variety of cutting plane geometries was investigated by means of modelling studies conducted on a 45-year human lens. The results obtained from the analyses depend on the particular modelling procedures that are employed. When the lens substance is modelled as an incompressible material, radial cutting planes are found to be ineffective. However, when a poroelastic model is employed for the lens substance, radial cuts are shown to cause an increase in the computed accommodation performance of the lens. In this case, radial cuts made in the peripheral regions of the lens have a relatively small influence on the accommodation performance of the lens; the lentotomy process is seen to be more effective when cuts are made near to the polar axis. When the lens substance is modelled as a poroelastic material, the computational results suggest that useful improvements in lens accommodation performance can be achieved, provided that the radial cuts are extended to the polar axis. Radial cuts are ineffective when the lens substance is modelled as an incompressible material. Significant challenges remain in developing a safe and effective surgical procedure based on this lentotomy technique.

  7. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    NASA Astrophysics Data System (ADS)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  8. Identification of the focal plane wavefront control system using E-M algorithm

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy; Vanderbei, Robert

    2017-09-01

    In a typical focal plane wavefront control (FPWC) system, such as the adaptive optics system of NASA's WFIRST mission, the efficient controllers and estimators in use are usually model-based. As a result, the modeling accuracy of the system influences the ultimate performance of the control and estimation. Currently, a linear state space model is used and calculated based on lab measurements using Fourier optics. Although the physical model is clearly defined, it is usually biased due to incorrect distance measurements, imperfect diagnoses of the optical aberrations, and our lack of knowledge of the deformable mirrors (actuator gains and influence functions). In this paper, we present a new approach for measuring/estimating the linear state space model of a FPWC system using the expectation-maximization (E-M) algorithm. Simulation and lab results in the Princeton's High Contrast Imaging Lab (HCIL) show that the E-M algorithm can well handle both the amplitude and phase errors and accurately recover the system. Using the recovered state space model, the controller creates dark holes with faster speed. The final accuracy of the model depends on the amount of data used for learning.

  9. Predictors of Frontal Plane Knee Moments During Side-Step Cutting to 45 and 110 Degrees in Men and Women: Implications for Anterior Cruciate Ligament Injury.

    PubMed

    Sigward, Susan M; Cesar, Guilherme M; Havens, Kathryn L

    2015-11-01

    To compare frontal plane knee moments, and kinematics and kinetics associated with knee valgus moments between cutting to 45 and 110 degrees, and to determine the predictive value of kinematics and ground reaction forces (GRFs) on knee valgus moments when cutting to these angles. Also, to determine whether sex differences exist in kinematics and kinetics when cutting to 45 and 110 degrees. Cross-sectional study. Laboratory setting. Forty-five (20 females) healthy young adult soccer athletes aged 16 to 23 years. Kinematic and kinetic variables were compared between randomly cued side-step cutting maneuvers to 45 and 110 degrees. Predictors of knee valgus moment were determined for each task. Kinematic variables: knee valgus angle, hip abduction, and internal rotation angles. Kinetic variables: vertical, posterior, and lateral GRFs, and knee valgus moment. Knee valgus moments were greater when cutting to 110 degrees compared with 45 degrees, and females exhibited greater moments than males. Vertical and lateral GRFs, hip internal rotation angle, and knee valgus angle explained 63% of the variance in knee valgus moment during cutting to 45 degrees. During cutting to 110 degrees, posterior GRF, hip internal rotation angle, and knee valgus angle explained 41% of the variance in knee valgus moment. Cutting tasks with larger redirection demands result in greater knee valgus moments. Similar factors, including shear GRFs, hip internal rotation, and knee valgus position contribute to knee valgus loading during cuts performed to smaller (45 degrees) and larger (110 degrees) angles. Reducing vertical and shear GRFs during cutting maneuvers may reduce knee valgus moments and thereby potentially reduce risk for anterior cruciate ligament injury.

  10. 6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MIDSLOPE VICINITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MID-SLOPE VICINITY, CUT CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  11. Anticipatory effects on anterior cruciate ligament loading during sidestep cutting.

    PubMed

    Weinhandl, Joshua T; Earl-Boehm, Jennifer E; Ebersole, Kyle T; Huddleston, Wendy E; Armstrong, Brian S R; O'Connor, Kristian M

    2013-07-01

    A key to understanding potential anterior cruciate ligament injury mechanisms is to determine joint loading characteristics associated with an injury-causing event. However, direct measurement of anterior cruciate ligament loading during athletic tasks is invasive. Thus, previous research has been unable to study the association between neuromuscular variables and anterior cruciate ligament loading. Therefore, the purpose of this study was to determine the influence of movement anticipation on anterior cruciate ligament loading using a musculoskeletal modeling approach. Twenty healthy recreationally active females were recruited to perform anticipated and unanticipated sidestep cutting. Three-dimensional kinematics and kinetics of the right leg were calculated. Muscle, joint and anterior cruciate ligament forces were then estimated using a musculoskeletal model. Dependent t-tests were conducted to investigate differences between the two cutting conditions. ACL loading significantly increased during unanticipated sidestep cutting (p<0.05). This increase was primarily due to a significant increase in the sagittal plane ACL loading, which contributed 62% of the total loading. Frontal plane ACL loading contributed 26% and transverse plane ACL loading contributed 12%. These results suggest that anterior cruciate ligament loading resulted from a multifaceted interaction of the sagittal plane shear forces (i.e., quadriceps, hamstrings, and tibiofemoral), as well as the frontal and transverse plane knee moments. Additionally, the results of this study confirm the hypothesis in the current literature that unanticipated movements such as sidestep cutting increase anterior cruciate ligament loading. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cutting work in thick section cryomicrotomy.

    PubMed

    Saubermann, A J; Riley, W D; Beeuwkes, R

    1977-09-01

    The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing.

  13. Cross-Grain Knife Planing Improves Surface Quality and Utilization of Aspen

    Treesearch

    Harold A. Stewart

    1971-01-01

    Aspen at 6 percent moisture content was planed parallel to the grain and across the grain on a cabinet planer with a 25? rake angle, 1/16- and 1/32-inch depth of cut, and 20 knife marks per inch. Aspen was also cross-grain knife planed with a 45? rake angle, 1/32-, 1/16-, and 1/8-inch depths of cut, and 20, 10, 5, and 2.5 knife marks per inch. Cross-grain knife...

  14. 7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE AND EAST FACE OF CUT STONE TOWER - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  15. Identification of Shearer Cutting Patterns Using Vibration Signals Based on a Least Squares Support Vector Machine with an Improved Fruit Fly Optimization Algorithm

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing

    2016-01-01

    Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615

  16. Fault Identification by Unsupervised Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Mannu, U.

    2012-12-01

    Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault

  17. Document segmentation via oblique cuts

    NASA Astrophysics Data System (ADS)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  18. Linearized motion estimation for articulated planes.

    PubMed

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  19. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  20. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  1. Case-related factors affecting cutting errors of the proximal tibia in total knee arthroplasty assessed by computer navigation.

    PubMed

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko

    2018-05-01

    The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.

  2. Anisotropy in Alpedrete granite cutting (Rift, Grain and Hardway directions) and effect on bush hammered heritage ashlars

    NASA Astrophysics Data System (ADS)

    Freire-Lista, David Martin; Fort, Rafael

    2015-04-01

    Many monuments and cities that are part of humanity's heritage have been built with carved granite ashlars. This dimension stone is one of the most used due to its abundance and durability. Traditional quarrymen have used anisotropic planes to cut granite blocks in the quarry for improved cutting performance. These planes are called Rift, Grain and Hardway (R, G, H) according to the ease of cutting. The aim of this study is to determine the response of each of the three orthogonal cutting planes R, G and H to the craft styling with bush hammer, based on their decay. Alpedrete granite was selected for this research, it is a monzogranite quarried in the Sierra de Guadarrana (Spanish Central System) foothills, in the province of Madrid, Spain. It is one of the most representative of Madrid's heritage granites. Alpedrete granite is also used as building stone in other European cities. From an Alpedrete granite bush hammered ashlar, three thin sections were cut parallel to the H plane; these thin sections cut R and G bush hammered planes. Also three thin sections have been cut parallel to the R plane at a distance of 2 mm, 10 mm and 30 mm from the bush hammered surface. All thin sections have been treated with fluorescein. In each of the thin sections a micrograph mosaic was performed covering the entire area (about 10 cm2, 300 photomicrographs) and printed with 120 increases. The length and spacing of inter-, intra- and trans-crystalline microcracks were quantified and measured. Microcracks were subdivided based on affected minerals in each R, G and H planes. Through these observations it was found that Alpedrete Granite R plane (easier to cut) is determined by exfoliation microcracks orientation. That is, R plane is parallel to the exfoliations microcracks, which are intra-crystalline and straight. The cutting of stones in the R plane is due to the coalescence of straight microcracks in the plane. This plane minimizes the effort and cost of subsequent carving so it

  3. On triangulations of the plane by pencils of conics. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazareva, V B; Shelekhov, A M

    2013-06-30

    The present work continues our previous paper in which all possible triangulations of the plane using three pencils of circles were listed. In the present article we find all projectively distinct triangulations of the plane by pencils of conics that are obtained by projecting regular three-webs, cut out on a nondegenerate cubic surface by three pencils of planes, whose axes lie on this surface. Bibliography: 6 titles.

  4. Cutting process simulation of flat drill

    NASA Astrophysics Data System (ADS)

    Tamura, Shoichi; Matsumura, Takashi

    2018-05-01

    Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.

  5. Flux cutting in high- T c superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.

    We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details ofmore » the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.« less

  6. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  7. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  8. Weighted graph cuts without eigenvectors a multilevel approach.

    PubMed

    Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian

    2007-11-01

    A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

  9. Impact of the number of image planes of real-time three-dimensional echocardiography on the accuracy of left atrial and ventricular volume measurements.

    PubMed

    Li, Fang; Wang, Qian; Yao, Gui Hua; Zhang, Peng Fei; Ge, Zhi Ming; Zhang, Mei; Zhang, Yun

    2008-01-01

    Real-time three-dimensional (3D) echocardiography (RT-3DE) has emerged as a new technique in measuring left atrial and ventricular volume. However, the impact of cutting planes of RT-3DE on the accuracy of volume measurement in patients with a normal or enlarged heart is still unknown. We enrolled 30 normal subjects (control group) and 30 patients with heart failure (patient group). RT-3DE was performed to measure maximal volume of the left atrium (LAVmax) and left ventricular end-diastole volume (LVEDV) with 2-, 4-, 8- and 16-cutting planes, compared with cardiac magnetic resonance imaging (CMRI). In both groups, LAVmax by RT-3DE using 2- and 4-cutting planes was significantly underestimated (mean difference: -10.4 +/- 16.6 mL, p = 0.001 and -8.8 +/- 14.2 mL, p = 0.002 in the control group and -13.4 +/- 19.6 mL, p = 0.001 and -11.2 +/- 17.5 mL, p = 0.001 in the patient group, respectively). These differences became nonsignificant when 8- and 16-cutting planes were adopted (mean difference: -2.1 +/- 7.6 mL and -1.9 +/- 7.4 mL in the control group and -2.7 +/- 8.4 mL and -2.2 +/- 8.3 mL in the patient group, respectively). The agreement for LVEDV was acceptable when 4- or more cutting planes were used in the control group and when 8- or 16-cutting planes were used in the patient group. The time expense for data analysis of LAVmax with 8-image planes was only 7 +/- 4 min in the control group and 6 +/- 5 min in the patient group, almost halving that of the 16-image planes. Similarly, 4- and 8-cutting planes were required for an accurate measurement of LVEDV in the control and patient groups, respectively. In conclusion, RT-3DE with 8-cutting planes is both accurate and timesaving for measurement of LAVmax and LVEDV in patients with normal or enlarged left atria and ventricles.

  10. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  11. An algorithm for solving the system-level problem in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Sobieszczanski-Sobieski, J.

    1994-01-01

    A multilevel optimization approach which is applicable to nonhierarchic coupled systems is presented. The approach includes a general treatment of design (or behavior) constraints and coupling constraints at the discipline level through the use of norms. Three different types of norms are examined: the max norm, the Kreisselmeier-Steinhauser (KS) norm, and the 1(sub p) norm. The max norm is recommended. The approach is demonstrated on a class of hub frame structures which simulate multidisciplinary systems. The max norm is shown to produce system-level constraint functions which are non-smooth. A cutting-plane algorithm is presented which adequately deals with the resulting corners in the constraint functions. The algorithm is tested on hub frames with increasing number of members (which simulate disciplines), and the results are summarized.

  12. Acceleration of planes segmentation using normals from previous frame

    NASA Astrophysics Data System (ADS)

    Gritsenko, Pavel; Gritsenko, Igor; Seidakhmet, Askar; Abduraimov, Azizbek

    2017-12-01

    One of the major problem in integration process of robots is to make them able to function in a human environment. In terms of computer vision, the major feature of human made rooms is the presence of planes [1, 2, 20, 21, 23]. In this article, we will present an algorithm dedicated to increase speed of a plane segmentation. The algorithm uses information about location of a plane and its normal vector to speed up the segmentation process in the next frame. In conjunction with it, we will address such aspects of ICP SLAM as performance and map representation.

  13. Teaching learning algorithm based optimization of kerf deviations in pulsed Nd:YAG laser cutting of Kevlar-29 composite laminates

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Kevlar is the most popular aramid fiber and most commonly used in different technologically advanced industries for various applications. But the precise cutting of Kevlar composite laminates is a difficult task. The conventional cutting methods face various defects such as delamination, burr formation, fiber pullout with poor surface quality and their mechanical performance is greatly affected by these defects. The laser beam machining may be an alternative of the conventional cutting processes due to its non-contact nature, requirement of low specific energy with higher production rate. But this process also faces some problems that may be minimized by operating the machine at optimum parameters levels. This research paper examines the effective utilization of the Nd:YAG laser cutting system on difficult-to-cut Kevlar-29 composite laminates. The objective of the proposed work is to find the optimum process parameters settings for getting the minimum kerf deviations at both sides. The experiments have been conducted on Kevlar-29 composite laminates having thickness 1.25 mm by using Box-Benkhen design with two center points. The experimental data have been used for the optimization by using the proposed methodology. For the optimization, Teaching learning Algorithm based approach has been employed to obtain the minimum kerf deviation at bottom and top sides. A self coded Matlab program has been developed by using the proposed methodology and this program has been used for the optimization. Finally, the confirmation tests have been performed to compare the experimental and optimum results obtained by the proposed methodology. The comparison results show that the machining performance in the laser beam cutting process has been remarkably improved through proposed approach. Finally, the influence of different laser cutting parameters such as lamp current, pulse frequency, pulse width, compressed air pressure and cutting speed on top kerf deviation and bottom kerf

  14. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  15. Plain fundamentals of Fundamental Planes: analytics and algorithms

    NASA Astrophysics Data System (ADS)

    Sheth, Ravi K.; Bernardi, Mariangela

    2012-05-01

    Estimates of the coefficients a and b of the Fundamental Plane relation R∝σa Ib depend on whether one minimizes the scatter in the R direction, or orthogonal to the plane. We provide explicit expressions for a and b (and confidence limits) in terms of the covariances between log R, log σ and log I. Our expressions quantify the origin of the difference between the direct, inverse and orthogonal fit coefficients. They also show how to account for correlated errors, how to quantify the difference between the plane in a magnitude-limited survey and one which is volume limited, how to determine whether a scaling relation will be biased when using an apparent magnitude-limited survey, how to remove this bias and why some forms of the z≈ 0 plane appear to be less affected by selection effects, but that this does not imply that they will remain unaffected at high redshift. Finally, they show why, to a good approximation, the three vectors associated with the plane, one orthogonal to and the other two in it, can all be written as simple combinations of a and b. Essentially, this is a consequence of the fact that the distribution of surface brightness is much broader than that of velocity dispersions, and velocity dispersion and surface brightness are only weakly correlated. Why this should be so for galaxies is a fundamental open question about the physics of early-type galaxy formation. We argue that if luminosity evolution is differential, and sizes and velocity dispersions do not evolve, then this is just an accident: velocity dispersion and surface brightness must have been correlated in the past. On the other hand, if the (lack of) correlation is similar to that at the present time, then differential luminosity evolution must have been accompanied by structural evolution. A model in which the luminosities of low-luminosity galaxies evolve more rapidly than do those of higher luminosity galaxies is able to produce the observed decrease in a (by a factor of 2 at z

  16. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  17. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  18. Cutting Solid Figures by Plane--Analytical Solution and Spreadsheet Implementation

    ERIC Educational Resources Information Center

    Benacka, Jan

    2012-01-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and…

  19. Parallax handling of image stitching using dominant-plane homography

    NASA Astrophysics Data System (ADS)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  20. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  1. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    PubMed Central

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  2. Force-frequency effect of Y-cut langanite and Y-cut langatate.

    PubMed

    Kim, Yoonkee; Ballato, Arthur

    2003-12-01

    Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.

  3. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  4. Parametric optimization of multiple quality characteristics in laser cutting of Inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-06-01

    Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.

  5. Characterization of a defective PbWO4 crystal cut along the a-c crystallographic plane: structural assessment and a novel photoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Montalto, L.; Natali, P. P.; Daví, F.; Mengucci., P.; Paone, N.; Rinaldi, D.

    2017-12-01

    Among scintillators, the PWO is one of the most widely used, for instance in CMS calorimeter at CERN and PANDA project. Crystallographic structure and chemical composition as well as residual stress condition, are indicators of homogeneity and good quality of the crystal. In this paper, structural characterization of a defective PbWO4 (PWO) crystal has been performed by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Photoelasticity in the unusual (a, c) crystallographic plane. XRD and EDS analysis have been used to investigate crystallographic orientation and chemical composition, while stress distribution, which indicates macroscopic inhomogeneities and defects, has been obtained by photoelastic approaches, in Conoscopic and Sphenoscopic configuration. Since the sample is cut along the (a, c) crystallographic plane, a new method is proposed for the interpretation of the fringe pattern. The structural analysis has detected odds from the nominal lattice dimension, which can be attributed to the strong presence of Pb and W. A strong inhomogeneity over the crystal sample has been revealed by the photoelastic inspection. The results give reliability to the proposed procedure which is exploitable in crystals with other structures.

  6. NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation.

    PubMed

    Qian, Xiangfei; Ye, Cang

    2014-12-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera-SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods.

  7. NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation

    PubMed Central

    Qian, Xiangfei; Ye, Cang

    2015-01-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera–SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods. PMID:24771605

  8. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real

  9. Breast mass segmentation in mammography using plane fitting and dynamic programming.

    PubMed

    Song, Enmin; Jiang, Luan; Jin, Renchao; Zhang, Lin; Yuan, Yuan; Li, Qiang

    2009-07-01

    Segmentation is an important and challenging task in a computer-aided diagnosis (CAD) system. Accurate segmentation could improve the accuracy in lesion detection and characterization. The objective of this study is to develop and test a new segmentation method that aims at improving the performance level of breast mass segmentation in mammography, which could be used to provide accurate features for classification. This automated segmentation method consists of two main steps and combines the edge gradient, the pixel intensity, as well as the shape characteristics of the lesions to achieve good segmentation results. First, a plane fitting method was applied to a background-trend corrected region-of-interest (ROI) of a mass to obtain the edge candidate points. Second, dynamic programming technique was used to find the "optimal" contour of the mass from the edge candidate points. Area-based similarity measures based on the radiologist's manually marked annotation and the segmented region were employed as criteria to evaluate the performance level of the segmentation method. With the evaluation criteria, the new method was compared with 1) the dynamic programming method developed by Timp and Karssemeijer, and 2) the normalized cut segmentation method, based on 337 ROIs extracted from a publicly available image database. The experimental results indicate that our segmentation method can achieve a higher performance level than the other two methods, and the improvements in segmentation performance level were statistically significant. For instance, the mean overlap percentage for the new algorithm was 0.71, whereas those for Timp's dynamic programming method and the normalized cut segmentation method were 0.63 (P < .001) and 0.61 (P < .001), respectively. We developed a new segmentation method by use of plane fitting and dynamic programming, which achieved a relatively high performance level. The new segmentation method would be useful for improving the accuracy of

  10. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  11. Counterbalance of cutting force for advanced milling operations

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao

    2010-05-01

    The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.

  12. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  13. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  14. Accuracy in planar cutting of bones: an ISO-based evaluation.

    PubMed

    Cartiaux, Olivier; Paul, Laurent; Docquier, Pierre-Louis; Francq, Bernard G; Raucent, Benoît; Dombre, Etienne; Banse, Xavier

    2009-03-01

    Computer- and robot-assisted technologies are capable of improving the accuracy of planar cutting in orthopaedic surgery. This study is a first step toward formulating and validating a new evaluation methodology for planar bone cutting, based on the standards from the International Organization for Standardization. Our experimental test bed consisted of a purely geometrical model of the cutting process around a simulated bone. Cuts were performed at three levels of surgical assistance: unassisted, computer-assisted and robot-assisted. We measured three parameters of the standard ISO1101:2004: flatness, parallelism and location of the cut plane. The location was the most relevant parameter for assessing cutting errors. The three levels of assistance were easily distinguished using the location parameter. Our ISO methodology employs the location to obtain all information about translational and rotational cutting errors. Location may be used on any osseous structure to compare the performance of existing assistance technologies.

  15. An algorithm developed in Matlab for the automatic selection of cut-off frequencies, in the correction of strong motion data

    NASA Astrophysics Data System (ADS)

    Sakkas, Georgios; Sakellariou, Nikolaos

    2018-05-01

    Strong motion recordings are the key in many earthquake engineering applications and are also fundamental for seismic design. The present study focuses on the automated correction of accelerograms, analog and digital. The main feature of the proposed algorithm is the automatic selection for the cut-off frequencies based on a minimum spectral value in a predefined frequency bandwidth, instead of the typical signal-to-noise approach. The algorithm follows the basic steps of the correction procedure (instrument correction, baseline correction and appropriate filtering). Besides the corrected time histories, Peak Ground Acceleration, Peak Ground Velocity, Peak Ground Displacement values and the corrected Fourier Spectra are also calculated as well as the response spectra. The algorithm is written in Matlab environment, is fast enough and can be used for batch processing or in real-time applications. In addition, the possibility to also perform a signal-to-noise ratio is added as well as to perform causal or acausal filtering. The algorithm has been tested in six significant earthquakes (Kozani-Grevena 1995, Aigio 1995, Athens 1999, Lefkada 2003 and Kefalonia 2014) of the Greek territory with analog and digital accelerograms.

  16. Thermal stresses in the laser disc from a tetragonal c-cut crystal

    NASA Astrophysics Data System (ADS)

    Yumashev, K. V.; Loiko, P. A.

    2014-12-01

    Analytical expressions for thermal stresses and strains, as well as displacements, are obtained for the laser disc from a tetragonal crystal cut along the [0 0 1] axis under plane stress approximation, for the first time, to our knowledge. This study illustrates that, in polar coordinates, the normal stresses, σr and σθ, are angular independent, while the shear one τrθ is zero. The thermal strains, εr and εθ, and displacements, u and υ, depend on both radial and tangential coordinates; this dependence has the shape of a four-leaf rose. For considered crystal cutting with isotropic in-plane thermal expansion, the displacements are not pure radial (υ≠0). The values of stresses, strains and displacements are calculated for the disc from a c-cut yttrium vanadate laser crystal, Nd:YVO4. The thermal fracture issues are analyzed for this crystal.

  17. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    USGS Publications Warehouse

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  18. Mathematical Foundation for Plane Covering Using Hexagons

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    1999-01-01

    This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.

  19. Tool Forces and Chip Types In Orthogonal Cutting Of Southern Hardwoods

    Treesearch

    G.E. Woodson

    1979-01-01

    Specimens (l/8 to l/4 inch thick) from 5 trees of each of 22 hardwood species were cut orthogonally at 5 inches per minute. Average parallel and normal cutting forces for various rake angles (50, 60, and 70 degrees for veneer; 10, 20, and 30 degrees for planing; 20, 30, and 40 degrees for crosscutting) were measured at three moisture contents (10 percent, 20 percent,...

  20. Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.

    PubMed

    García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian

    2009-01-01

    Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.

  1. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    NASA Astrophysics Data System (ADS)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  2. An Integrated Method Based on PSO and EDA for the Max-Cut Problem.

    PubMed

    Lin, Geng; Guan, Jian

    2016-01-01

    The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20,000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality.

  3. Effect of Planning on Trunk Motion and Knee Moments During a Side Step Cut Task

    NASA Astrophysics Data System (ADS)

    Houck, Jeff; Gorniak, Stacey; Nicholson, Kristen

    2004-03-01

    Recent studies suggest that alterations in knee biomechanics associated with unanticipated cutting tasks place athletes at higher risk of knee injuries. Besier et al observed alterations in knee moments during unanticipated cutting tasks that were consistent with in-vitro ACL injury mechanisms. During similar tasks, Patla et al observed lateral trunk lean and decreased foot placement, suggesting that full body center of mass control is perturbed during such tasks. The purpose of this study was to compare the trunk and knee frontal plane moments and evaluate a relationship between the two during unanticipated cutting tasks. The results of this study suggest that there is a relationship between the trunk and knee frontal plane moments during the first 200-400ms of the stance phase of gait.

  4. Modulation transfer function measurement of microbolometer focal plane array by Lloyd's mirror method

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Rommeluere, Sylvain; Viale, Thibault; Guerineau, Nicolas; Ribet-Mohamed, Isabelle; Crastes, Arnaud; Durand, Alain; Taboury, Jean

    2014-05-01

    Today, both military and civilian applications require miniaturized and cheap optical systems. One way to achieve this trend consists in decreasing the pixel pitch of focal plane arrays (FPA). In order to evaluate the performance of the overall optical systems, it is necessary to measure the modulation transfer function (MTF) of these pixels. However, small pixels lead to higher cut-off frequencies and therefore, original MTF measurements that are able to extract frequencies up to these high cut-off frequencies, are needed. In this paper, we will present a way to extract 1D MTF at high frequencies by projecting fringes on the FPA. The device uses a Lloyd mirror placed near and perpendicular to the focal plane array. Consequently, an interference pattern of fringes can be projected on the detector. By varying the angle of incidence of the light beam, we can tune the period of the interference fringes and, thus, explore a wide range of spatial frequencies, and mainly around the cut-off frequency of the pixel which is one of the most interesting area. Illustration of this method will be applied to a 640×480 microbolometer focal plane array with a pixel pitch of 17µm in the LWIR spectral region.

  5. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  6. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening.

    PubMed

    Kwak, Kichang; Yoon, Uicheul; Lee, Dong-Kyun; Kim, Geon Ha; Seo, Sang Won; Na, Duk L; Shim, Hack-Joon; Lee, Jong-Min

    2013-09-01

    The hippocampus has been known to be an important structure as a biomarker for Alzheimer's disease (AD) and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. In this study, an automated hippocampal segmentation method based on a graph-cuts algorithm combined with atlas-based segmentation and morphological opening was proposed. First of all, the atlas-based segmentation was applied to define initial hippocampal region for a priori information on graph-cuts. The definition of initial seeds was further elaborated by incorporating estimation of partial volume probabilities at each voxel. Finally, morphological opening was applied to reduce false positive of the result processed by graph-cuts. In the experiments with twenty-seven healthy normal subjects, the proposed method showed more reliable results (similarity index=0.81±0.03) than the conventional atlas-based segmentation method (0.72±0.04). Also as for segmentation accuracy which is measured in terms of the ratios of false positive and false negative, the proposed method (precision=0.76±0.04, recall=0.86±0.05) produced lower ratios than the conventional methods (0.73±0.05, 0.72±0.06) demonstrating its plausibility for accurate, robust and reliable segmentation of hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Reconfigurable manufacturing execution system for pipe cutting

    NASA Astrophysics Data System (ADS)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  8. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis

    NASA Astrophysics Data System (ADS)

    Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg

    2017-03-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  9. Study of high speed complex number algorithms. [for determining antenna for field radiation patterns

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1981-01-01

    A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.

  10. Operationalizing hippocampal volume as an enrichment biomarker for amnestic mild cognitive impairment trials: effect of algorithm, test-retest variability, and cut point on trial cost, duration, and sample size.

    PubMed

    Yu, Peng; Sun, Jia; Wolz, Robin; Stephenson, Diane; Brewer, James; Fox, Nick C; Cole, Patricia E; Jack, Clifford R; Hill, Derek L G; Schwarz, Adam J

    2014-04-01

    The objective of this study was to evaluate the effect of computational algorithm, measurement variability, and cut point on hippocampal volume (HCV)-based patient selection for clinical trials in mild cognitive impairment (MCI). We used normal control and amnestic MCI subjects from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) as normative reference and screening cohorts. We evaluated the enrichment performance of 4 widely used hippocampal segmentation algorithms (FreeSurfer, Hippocampus Multi-Atlas Propagation and Segmentation (HMAPS), Learning Embeddings Atlas Propagation (LEAP), and NeuroQuant) in terms of 2-year changes in Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and Clinical Dementia Rating Sum of Boxes (CDR-SB). We modeled the implications for sample size, screen fail rates, and trial cost and duration. HCV based patient selection yielded reduced sample sizes (by ∼40%-60%) and lower trial costs (by ∼30%-40%) across a wide range of cut points. These results provide a guide to the choice of HCV cut point for amnestic MCI clinical trials, allowing an informed tradeoff between statistical and practical considerations. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A general algorithm for the construction of contour plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1981-01-01

    An algorithm is described that performs the task of drawing equal level contours on a plane, which requires interpolation in two dimensions based on data prescribed at points distributed irregularly over the plane. The approach is described in detail. The computer program that implements the algorithm is documented and listed.

  12. The computation of all plane/surface intersections for CAD/CAM applications

    NASA Technical Reports Server (NTRS)

    Hoitsma, D. H., Jr.; Roche, M.

    1984-01-01

    The problem of the computation and display of all intersections of a given plane with a rational bicubic surface patch for use on an interactive CAD/CAM system is examined. The general problem of calculating all intersections of a plane and a surface consisting of rational bicubic patches is reduced to the case of a single generic patch by applying a rejection algorithm which excludes all patches that do not intersect the plane. For each pertinent patch the algorithm presented computed the intersection curves by locating an initial point on each curve, and computes successive points on the curve using a tolerance step equation. A single cubic equation solver is used to compute the initial curve points lying on the boundary of a surface patch, and the method of resultants as applied to curve theory is used to determine critical points which, in turn, are used to locate initial points that lie on intersection curves which are in the interior of the patch. Examples are given to illustrate the ability of this algorithm to produce all intersection curves.

  13. Variations in the short wavelength cut-off of the solar UV spectra.

    PubMed

    Parisi, A V; Turner, J

    2006-03-01

    Cloud and solar zenith angle (SZA) are two major factors that influence the magnitude of the biologically damaging UV (UVBD) irradiances for humans. However, the effect on the short wavelength cut-off due to SZA and due to clouds has not been investigated for biologically damaging UV for cataracts. This research aims to investigate the influence of cloud and SZA on the short wavelength cut-off of the spectral UVBD for cataracts. The spectral biologically damaging UV for cataracts on a horizontal plane was calculated by weighting the spectral UV measured with a spectroradiometer with the action spectrum for the induction of cataracts in a porcine lens. The UV spectra were obtained on an unshaded plane at a latitude of 29.5 degrees S. The cut-off wavelength (lambdac) was defined as the wavelength at which the biologically damaging spectral irradiance was 0.1% of the maximum biologically damaging irradiance for that scan. For the all sky conditions, the short wavelength cut-off ranged by 12 nm for the SZA range of 5 to 80 degrees and the maximum in the spectral UVBD ranged by 15 nm. Similarly, for the cloud free cases, the short wavelength cut-off ranged by 9 nm for the same SZA range. Although, cloud has a large influence on the magnitude of the biologically damaging UV for cataracts, the influence of cloud on the short wavelength cut-off for the biologically damaging UV for cataracts is less than the influence of the solar zenith angle.

  14. Two Procedures to Flag Radio Frequency Interference in the UV Plane

    NASA Astrophysics Data System (ADS)

    Sekhar, Srikrishna; Athreya, Ramana

    2018-07-01

    We present two algorithms to identify and flag radio frequency interference (RFI) in radio interferometric imaging data. The first algorithm utilizes the redundancy of visibilities inside a UV cell in the visibility plane to identify corrupted data, while varying the detection threshold in accordance with the observed reduction in noise with radial UV distance. In the second algorithm, we propose a scheme to detect faint RFI in the visibility time-channel (TC) plane of baselines. The efficacy of identifying RFI in the residual visibilities is reduced by the presence of ripples due to inaccurate subtraction of the strongest sources. This can be due to several reasons including primary beam asymmetries and other direction-dependent calibration errors. We eliminated these ripples by clipping the corresponding peaks in the associated Fourier plane. RFI was detected in the ripple-free TC plane but was flagged in the original visibilities. Application of these two algorithms to five different 150 MHz data sets from the GMRT resulted in a reduction in image noise of 20%–50% throughout the field along with a reduction in systematics and a corresponding increase in the number of detected sources. However, in comparing the mean flux densities before and after flagging RFI, we find a differential change with the fainter sources (25σ < S < 100 mJy) showing a change of ‑6% to +1% relative to the stronger sources (S > 100 mJy). We are unable to explain this effect, but it could be related to the CLEAN bias known for interferometers.

  15. Optimal plane search method in blood flow measurements by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz

    2004-07-01

    This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.

  16. Research on NC laser combined cutting optimization model of sheet metal parts

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.

  17. Approximate ground states of the random-field Potts model from graph cuts

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay

    2018-05-01

    While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.

  18. Geometrical analysis of circular-cut spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Huston, R. L.

    1983-01-01

    Geometrical studies of circular cut spiral bevel gears are reported. Tooth profile changes heel to toe are studied in the transverse plane. Pressure angle changes are determined. The radiuses of curvature of the tooth surfaces generated by various cutter profiles are also determined. The consequences of cutter profile changes are explored. Crown gears are emphasized and the implications for conical gears are discussed.

  19. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to

  20. 3D templating and patient-specific cutting guides (Knee-Plan) in total knee arthroplasty: postoperative CT-based assessment of implant positioning.

    PubMed

    Franceschi, J-P; Sbihi, A

    2014-10-01

    The precision of bone cuts and the positioning of components influence the functionality and longevity of total knee arthroplasty (TKA). The objective of this study was to evaluate the results of TKA, performed after 3D preoperative templating, with the prosthesis implanted using custom cutting guides (Knee-Plan system, Symbios Orthopédie SA). This prospective study investigated 107 TKAs. Three-dimensional preoperative templating was carried out on the surface views and CT views to analyze the deformation of the lower limb and plan the implantation. The components were positioned in an individualized manner to realign the lower limb and provide ligament balance based on bone landmarks. Final component positioning was analyzed in the three planes with a postoperative CT scan. The preoperative and 1 year follow-up IKS and WOMAC scores were collected and compared. All the cutting guides were stable and functional. Femoral component planning was reproduced with 0 ± 2 precision in the frontal plane (94%± 3), 2 ± 3 in the sagittal plane, and 0 ± 2 in the transverse plane. The precision of the tibial component was reproduced with 0 ± 2 precision in the frontal plane (93%± 3) and 0 ± 4 in the sagittal plane. The HKA angle increased from 177 ± 7 preoperatively to 180 ± 3 at 1 year of follow-up. The IKS and WOMAC scores were significantly improved at 1 year (P<0.0001). The Knee-Plan system can be a realistic, simple, and reliable alternative to conventional cutting guides and to computer-assisted surgery for TKA implantation. IV; prospective cohort study. Copyright © 2014. Published by Elsevier Masson SAS.

  1. Combinatorial approximation algorithms for MAXCUT using random walks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Kale, Satyen

    We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-approximation for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less

  2. On size-constrained minimum s–t cut problems and size-constrained dense subgraph problems

    DOE PAGES

    Chen, Wenbin; Samatova, Nagiza F.; Stallmann, Matthias F.; ...

    2015-10-30

    In some application cases, the solutions of combinatorial optimization problems on graphs should satisfy an additional vertex size constraint. In this paper, we consider size-constrained minimum s–t cut problems and size-constrained dense subgraph problems. We introduce the minimum s–t cut with at-least-k vertices problem, the minimum s–t cut with at-most-k vertices problem, and the minimum s–t cut with exactly k vertices problem. We prove that they are NP-complete. Thus, they are not polynomially solvable unless P = NP. On the other hand, we also study the densest at-least-k-subgraph problem (DalkS) and the densest at-most-k-subgraph problem (DamkS) introduced by Andersen andmore » Chellapilla [1]. We present a polynomial time algorithm for DalkS when k is bounded by some constant c. We also present two approximation algorithms for DamkS. In conclusion, the first approximation algorithm for DamkS has an approximation ratio of n-1/k-1, where n is the number of vertices in the input graph. The second approximation algorithm for DamkS has an approximation ratio of O (n δ), for some δ < 1/3.« less

  3. Left ventricle segmentation via graph cut distribution matching.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Li, Shuo; Islam, Ali; Chong, Jaron

    2009-01-01

    We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks a region within each frame by optimization of two priors, one geometric (distance-based) and the other photometric, each measuring a distribution similarity between the region and a model learned from the first frame. Based on global rather than pixelwise information, the proposed algorithm does not require complex training and optimization with respect to geometric transformations. Unlike related active contour methods, it does not compute iterative updates of computationally expensive kernel densities. Furthermore, the proposed first-order analysis can be used for other intractable energies and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of graph cuts. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert.

  4. A genetic algorithm used for solving one optimization problem

    NASA Astrophysics Data System (ADS)

    Shipacheva, E. N.; Petunin, A. A.; Berezin, I. M.

    2017-12-01

    A problem of minimizing the length of the blank run for a cutting tool during cutting of sheet materials into shaped blanks is discussed. This problem arises during the preparation of control programs for computerized numerical control (CNC) machines. A discrete model of the problem is analogous in setting to the generalized travelling salesman problem with limitations in the form of precursor conditions determined by the technological features of cutting. A certain variant of a genetic algorithm for solving this problem is described. The effect of the parameters of the developed algorithm on the solution result for the problem with limitations is investigated.

  5. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Lin, Yu; Moret, Bernard M E

    2015-05-01

    Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.

  6. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  7. Gender Differences among Sagittal Plane Knee Kinematic and Ground Reaction Force Characteristics during a Rapid Sprint and Cut Maneuver

    ERIC Educational Resources Information Center

    James, C. Roger; Sizer, Phillip S.; Starch, David W.; Lockhart, Thurmon E.; Slauterbeck, James

    2004-01-01

    Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz).…

  8. Study on observation planning of LAMOST focal plane positioning system and its simulation

    NASA Astrophysics Data System (ADS)

    Zhai, Chao; Jin, Yi; Peng, Xiaobo; Xing, Xiaozheng

    2006-06-01

    Fiber Positioning System of LAMOST focal plane based on subarea thinking, adopts a parallel controllable positioning plan, the structure is designed as a round area and overlapped each other in order to eliminate the un-observation region. But it also makes the observation efficiency of the system become an important problem. In this paper According to the system, the model of LAMOST focal plane Observation Planning including 4000 fiber positioning units is built, Stars are allocated using netflow algorithm and mechanical collisions are diminished through the retreat algorithm, then the simulation of the system's observation efficiency is carried out. The problem of observation efficiency of LAMOST focal plane is analysed systemic and all-sided from the aspect of overlapped region, fiber positioning units, observation radius, collisions and so on. The observation efficiency of the system in theory is describes and the simulation indicates that the system's observation efficiency is acceptable. The analyses play an indicative role on the design of the LAMOST focal plane structure.

  9. Comparison of four methods of surface roughness assessment of corneal stromal bed after lamellar cutting

    PubMed Central

    Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles

    2017-01-01

    Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095

  10. Hydromechanical planer with cutting and breaking heads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goris, H.; Gunther, R.; Ogorek, K.

    1980-12-16

    A hydromatic planer particularly for mining materials in a mining seam is comprised of a planer housing which advantageously has a cutting and breaking head on each end thereof, each of which includes a substantially identical construction. Each cutting head includes a vertically arranged support member which is mounted on the housing of the planer by a parallel linkage so that it may be moved upwardly and downwardly under the control of an adjustment means such as a fluid pressure operated piston and cylinder combination. Each cutting and breaking head also includes a first substantially vertically arranged support member whichmore » is connected by the linkage for upward and downward movement relative to the housing and a second support member which is movable relative to the first and mounted on this first in vertical guides for upward and downward movement. A second fluid pressure operated piston and cylinder combination is connected between first and second support members so that they may be shifted relative to each other. A second support member advantageously carries a cutting and breaking wedge which is oriented to engage the mining seam, for example, on a side thereof, and which may be adjusted relative to a similarly oriented cutting and breaking wedge carried by the first member. In addition, a separate cutting and breaking wedge is carried by the first member and it may be engaged for example against the floor thereof in a plane different from the other two wedges.« less

  11. Effects of Two Football Stud Types on Knee and Ankle Kinetics of Single-Leg Land-Cut and 180° Cut Movements on Infilled Synthetic Turf.

    PubMed

    Bennett, Hunter J; Brock, Elizabeth; Brosnan, James T; Sorochan, John C; Zhang, Songning

    2015-10-01

    Higher ACL injury rates have been recorded in cleats with higher torsional resistance in American football, which warrants better understanding of shoe/stud-dependent joint kinetics. The purpose of this study was to determine differences in knee and ankle kinetics during single-leg land cuts and 180° cuts on synthetic infilled turf while wearing 3 types of shoes. Fourteen recreational football players performed single-leg land cuts and 180° cuts in nonstudded running shoes (RS) and in football shoes with natural (NTS) and synthetic turf studs (STS). Knee and ankle kinetic variables were analyzed with a 3 × 2 (shoe × movement) repeated-measures ANOVA (P < .05). A significant shoe-by-movement interaction was found in loading response peak knee adduction moments, with NTS producing smaller moments compared with both STS and RS only in 180° cuts. Reduced peak negative plantar flexor powers were also found in NTS compared with STS. The single-leg land cut produced greater loading response and push-off peak knee extensor moments, as well as peak negative and positive extensor and plantar flexor powers, but smaller loading peak knee adduction moments and push-off peak ankle eversion moments than 180° cuts. Overall, the STS and 180° cuts resulted in greater frontal plane knee loading and should be monitored for possible increased ACL injury risks.

  12. Learning-based scan plane identification from fetal head ultrasound images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli

    2012-03-01

    Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.

  13. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    NASA Astrophysics Data System (ADS)

    Khidhir, Basim A.; Mohamed, Bashir

    2011-02-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  14. Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin

    2017-09-01

    Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

  15. Generating Fiducial Cuts for CLAS E5

    NASA Astrophysics Data System (ADS)

    Greenholt, Kristen

    2005-04-01

    The Thomas Jefferson National Accelerator Facility, located in Newport News, Virginia, is home to CLAS (CEBAF Large Acceptance Spectrometer) which observes the scattering effects of high-energy collisions of an electron beam and a proton or deuteron target. When data are collected with CLAS, one of the properties measured is the cross-section, which is proportional to the number of events and the efficiency and inversely proportional to the solid angle. The efficiency, or acceptance of the detector, is the ratio between the data one expects to observe in an ideal detector and the data that we actually measure with the real CLAS detector. In outlying azimuthal regions, the efficiency is less clearly understood, which leads to measurements which are reliant on the conditions of the detector itself. In order to analyze data which fall in regions of stable and well-understood efficiency, we generated fiducial cuts on CLAS. Our fiducial cuts fit a function to the edges of regions of stable efficiency. These cuts enable us to focus on the data with good acceptance/efficiency. When examining at the fiducial cuts, we required stable efficiency, or flat regions, a good visual fit, a minimized chi squared, and a reasonable behavior in each in azimuthal versus polar angle plane for each electron-momentum bin. Generating these fiducial cuts enables us to focus on data from CLAS where the efficiency of the detector is well understood.

  16. TransCut: interactive rendering of translucent cutouts.

    PubMed

    Li, Dongping; Sun, Xin; Ren, Zhong; Lin, Stephen; Tong, Yiying; Guo, Baining; Zhou, Kun

    2013-03-01

    We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent interior, as well as edit material properties through painting on cross sections and recombining the broken pieces—all with immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-quality results comparable to the state-of-art finite element method (FEM) of Arbree et al. but at substantially higher speeds. This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multiresolution algorithm to significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The entire multiresolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.

  17. Traffic routing for multicomputer networks with virtual cut-through capability

    NASA Technical Reports Server (NTRS)

    Kandlur, Dilip D.; Shin, Kang G.

    1992-01-01

    Consideration is given to the problem of selecting routes for interprocess communication in a network with virtual cut-through capability, while balancing the network load and minimizing the number of times that a message gets buffered. An approach is proposed that formulates the route selection problem as a minimization problem with a link cost function that depends upon the traffic through the link. The form of this cost function is derived using the probability of establishing a virtual cut-through route. The route selection problem is shown to be NP-hard, and an algorithm is developed to incrementally reduce the cost by rerouting the traffic. The performance of this algorithm is exemplified by two network topologies: the hypercube and the C-wrapped hexagonal mesh.

  18. [Evaluation of three methods for constructing craniofacial mid-sagittal plane based on the cone beam computed tomography].

    PubMed

    Wang, S W; Li, M; Yang, H F; Zhao, Y J; Wang, Y; Liu, Y

    2016-04-18

    To compare the accuracyof interactive closet point (ICP) algorithm, Procrustes analysis (PA) algorithm,and a landmark-independent method to construct the mid-sagittal plane (MSP) of the cone beam computed tomography.To provide theoretical basis for establishing coordinate systemof CBCT images and symmetric analysis. Ten patients were selected and scanned by CBCT before orthodontic treatment.The scan data was imported into Mimics 10.0 to reconstructthree dimensional skulls.And the MSP of each skull was generated by ICP algorithm, PA algorithm and landmark-independent method. MSP extracted by ICP algorithm or PA algorithm involvedthree steps. First, the 3D skull processing was performed by reverse engineering software geomagic studio 2012 to obtain the mirror skull. Then, the original and its mirror skull was registered separately by ICP algorithm in geomagic studio 2012 and PA algorithm in NX Imageware 11.0. Finally, the registered data were united into new data to calculate the MSP of the originaldata in geomagic studio 2012. The mid-sagittal plane was determined by SELLA (S), nasion (N), basion (Ba) as traditional landmark-dependent methodconducted in software InVivoDental 5.0. The distance from 9 pairs of symmetric anatomical marked points to three sagittal plane were measured and calculated to compare the differences of the absolute value. The one-way ANOVA test was used to analyze the variable differences among the 3 MSPs. The pairwise comparison was performed with LSD method. MSPs calculated by the three methods were available for clinic analysis, which could be concluded from the front view.However, there was significant differences among the distances from the 9 pairs of symmetric anatomical marked points to the MSPs (F=10.932,P=0.001).LSD test showed there was no significant difference between the ICP algorithm and landmark-independent method (P=0.11), while there was significant difference between the PA algorithm and landmark-independent methods (P=0

  19. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  20. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  1. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  2. The Autism Diagnostic Observation Schedule, Module 4: Application of the Revised Algorithms in an Independent, Well-Defined, Dutch Sample (n = 93).

    PubMed

    de Bildt, Annelies; Sytema, Sjoerd; Meffert, Harma; Bastiaansen, Jojanneke A C J

    2016-01-01

    This study examined the discriminative ability of the revised Autism Diagnostic Observation Schedule module 4 algorithm (Hus and Lord in J Autism Dev Disord 44(8):1996-2012, 2014) in 93 Dutch males with Autism Spectrum Disorder (ASD), schizophrenia, psychopathy or controls. Discriminative ability of the revised algorithm ASD cut-off resembled the original algorithm ASD cut-off: highly specific for psychopathy and controls, lower sensitivity than Hus and Lord (2014; i.e. ASD .61, AD .53). The revised algorithm AD cut-off improved sensitivity over the original algorithm. Discriminating ASD from schizophrenia was still challenging, but the better-balanced sensitivity (.53) and specificity (.78) of the revised algorithm AD cut-off may aide clinicians' differential diagnosis. Findings support using the revised algorithm, being conceptually conform the other modules, thus improving comparability across the lifespan.

  3. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  4. Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.

  5. Greater Hip Extension but Not Hip Abduction Explosive Strength Is Associated With Lesser Hip Adduction and Knee Valgus Motion During a Single-Leg Jump-Cut

    PubMed Central

    Cronin, Baker; Johnson, Samuel T.; Chang, Eunwook; Pollard, Christine D.; Norcross, Marc F.

    2016-01-01

    Background: The relationships between hip abductor and extensor strength and frontal plane hip and knee motions that are associated with anterior cruciate ligament injury risk are equivocal. However, previous research on these relationships has evaluated relatively low-level movement tasks and peak torque rather than a time-critical strength measure such as the rate of torque development (RTD). Hypothesis: Females with greater hip abduction and extension RTD would exhibit lesser frontal plane hip and knee motion during a single-leg jump-cutting task. Study Design: Descriptive laboratory study. Methods: Forty recreationally active females performed maximal isometric contractions and single-leg jump-cuts. From recorded torque data, hip extension and abduction RTD was calculated from torque onset to 200 ms after onset. Three-dimensional motion analysis was used to quantify frontal plane hip and knee kinematics during the movement task. For each RTD measure, jump-cut biomechanics were compared between participants in the highest (high) and lowest (low) RTD tertiles. Results: No differences in frontal plane hip and knee kinematics were identified between high and low hip abduction RTD groups. However, those in the high hip extension RTD group exhibited lower hip adduction (high, 3.8° ± 3.0°; low, 6.5° ± 3.0°; P = .019) and knee valgus (high, –2.5° ± 2.3°; low, –4.4° ± 3.2°; P = .046) displacements during the jump-cut. Conclusion: In movements such as cutting that are performed with the hip in a relatively abducted and flexed position, the ability of the gluteus medius to control hip adduction may be compromised. However, the gluteus maximus, functioning as a hip abductor, may take on a pivotal role in controlling hip adduction and knee valgus motion during these types of tasks. Clinical Relevance: Training with a specific emphasis on increasing explosive strength of the hip extensors may be a means through which to improve frontal plane hip and knee

  6. Biased normalized cuts for target detection in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewen; Dorado-Munoz, Leidy P.; Messinger, David W.; Cahill, Nathan D.

    2016-05-01

    The Biased Normalized Cuts (BNC) algorithm is a useful technique for detecting targets or objects in RGB imagery. In this paper, we propose modifying BNC for the purpose of target detection in hyperspectral imagery. As opposed to other target detection algorithms that typically encode target information prior to dimensionality reduction, our proposed algorithm encodes target information after dimensionality reduction, enabling a user to detect different targets in interactive mode. To assess the proposed BNC algorithm, we utilize hyperspectral imagery (HSI) from the SHARE 2012 data campaign, and we explore the relationship between the number and the position of expert-provided target labels and the precision/recall of the remaining targets in the scene.

  7. Influence of the Regime of Electropulsing-Assisted Machining on the Plastic Deformation of the Layer Being Cut.

    PubMed

    Hameed, Saqib; González Rojas, Hernán A; Perat Benavides, José I; Nápoles Alberro, Amelia; Sánchez Egea, Antonio J

    2018-05-25

    In this article, the influence of electropulsing on the machinability of steel S235 and aluminium 6060 has been studied during conventional and electropulsing-assisted turning processes. The machinability indices such as chip compression ratio ξ , shear plane angle ϕ and specific cutting energy (SCE) are investigated by using different cutting parameters such as cutting speed, cutting feed and depth of cut during electrically-assisted turning process. The results and analysis of this work indicated that the electrically-assisted turning process improves the machinability of steel S235, whereas the machinability of aluminium 6060 gets worse. Finally, due to electropluses (EPs), the chip compression ratio ξ increases with the increase in cutting speed during turning of aluminium 6060 and the SCE decreases during turning of steel S235.

  8. Simultaneous orthogonal plane imaging.

    PubMed

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    NASA Astrophysics Data System (ADS)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  10. On the Optimization of Aerospace Plane Ascent Trajectory

    NASA Astrophysics Data System (ADS)

    Al-Garni, Ahmed; Kassem, Ayman Hamdy

    A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.

  11. Lower limb kinematics of male and female soccer players during a self-selected cutting maneuver: Effects of prolonged activity.

    PubMed

    McGovern, Andrew; Dude, Christopher; Munkley, Daniel; Martin, Thomas; Wallace, David; Feinn, Richard; Dione, Donald; Garbalosa, Juan C

    2015-12-01

    Despite the recent emphasis on injury prevention, anterior cruciate ligament (ACL) injury rates remain high. This study aimed to ascertain the effects of prolonged activity on lower limb kinematics during a self-selected cutting maneuver. Angular kinematics were recorded during an agility test performed until the completion time was greater than the mean plus one SD of baseline trials. Cut type was identified and the hip and knee angles at 33 ms post heel strike were determined. A linear mixed effects model assessed the effects of cut type, gender, and activity status on the hip and knee angles. Males performed sidestep cuts more frequently than females. Females increased the incidence of sidestep cuts after prolonged activity. At the hip, a gender-cut type interaction existed for the transverse (p=0.001) and sagittal (p=0.11) planes. Females showed more internal rotation during sidestep and more external rotation and less flexion during crossover cuts. For the frontal plane, a gender-activity status interaction (p = 0.032) was due to no change within females but greater hip adduction during prolonged activity within males. With prolonged activity, both genders displayed less hip (p=0.29) and knee (p=0.009) flexion and more knee (p=0.001) adduction. Females displayed less hip and knee flexion than men (p=0.001). Sidestep may be more risky than crossover cuts. Both genders place themselves in at-risk postures with prolonged activity due to less hip and knee flexion. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rapid near-optimal aerospace plane trajectory generation and guidance

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Corban, J. E.; Markopoulos, N.

    1991-01-01

    Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported.

  13. A novel toolpath force prediction algorithm using CAM volumetric data for optimizing robotic arthroplasty.

    PubMed

    Kianmajd, Babak; Carter, David; Soshi, Masakazu

    2016-10-01

    Robotic total hip arthroplasty is a procedure in which milling operations are performed on the femur to remove material for the insertion of a prosthetic implant. The robot performs the milling operation by following a sequential list of tool motions, also known as a toolpath, generated by a computer-aided manufacturing (CAM) software. The purpose of this paper is to explain a new toolpath force prediction algorithm that predicts cutting forces, which results in improving the quality and safety of surgical systems. With a custom macro developed in the CAM system's native application programming interface, cutting contact patch volume was extracted from CAM simulations. A time domain cutting force model was then developed through the use of a cutting force prediction algorithm. The second portion validated the algorithm by machining a hip canal in simulated bone using a CNC machine. Average cutting forces were measured during machining using a dynamometer and compared to the values predicted from CAM simulation data using the proposed method. The results showed the predicted forces matched the measured forces in both magnitude and overall pattern shape. However, due to inconsistent motion control, the time duration of the forces was slightly distorted. Nevertheless, the algorithm effectively predicted the forces throughout an entire hip canal procedure. This method provides a fast and easy technique for predicting cutting forces during orthopedic milling by utilizing data within a CAM software.

  14. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.

  15. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    DOE PAGES

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~ 2700 nodes and ~ 3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polishmore » grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements.« less

  16. Efficient Algorithm for Locating and Sizing Series Compensation Devices in Large Transmission Grids: Solutions and Applications (PART II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, Vladimir; Backhaus, Scott N.; Chertkov, Michael

    2014-01-14

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~2700 nodes and ~3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polish grid ismore » used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements« less

  17. Linear Controller Design: Limits of Performance

    DTIC Science & Technology

    1991-01-01

    where a sensor should be placed eg where an accelerometer is to be positioned on an aircraft or where a strain gauge is placed along a beam The...309 VIII CONTENTS 14 Special Algorithms for Convex Optimization 311 Notation and Problem Denitions...311 On Algorithms for Convex Optimization 312 CuttingPlane Algorithms

  18. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  19. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.

    PubMed

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert

    2016-05-01

    Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.

  20. The Bolocam Galactic Plane Survey: Survey Description and Data Reduction

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; Ginsburg, Adam G.; Dunham, Miranda K.; Drosback, Meredith M.; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Evans, Neal J., II; Glenn, Jason; Harvey, Paul; Rosolowsky, Erik; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan P.

    2011-01-01

    We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33'' effective resolution of 170 deg2 of the Galactic Plane visible from the northern hemisphere. The BGPS is one of the first large area, systematic surveys of the Galactic Plane in the millimeter continuum without pre-selected targets. The survey is contiguous over the range -10.5 <= l <= 90.5, |b| <= 0.5. Toward the Cygnus X spiral arm, the coverage was flared to |b| <= 1.5 for 75.5 <= l <= 87.5. In addition, cross-cuts to |b| <= 1.5 were made at l= 3, 15, 30, and 31. The total area of this section is 133 deg2. With the exception of the increase in latitude, no pre-selection criteria were applied to the coverage in this region. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396 (9 deg2, 97.5 <= l <= 100.5, 2.25 <= b <= 5.25), a region toward the Perseus Arm (4 deg2 centered on l = 111, b = 0 near NGC 7538), W3/4/5 (18 deg2, 132.5 <= l <= 138.5), and Gem OB1 (6 deg2, 187.5 <= l <= 193.5). The survey has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1σ noise level in the range 11-53 mJy beam-1 in the inner Galaxy. The BGPS source catalog is presented in a previously published companion paper. This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data timestream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5farcm9 is nearly completely attenuated (>90%) and the linear scale at which the attenuation reaches 50

  1. Optimization of cutting parameters for machining time in turning process

    NASA Astrophysics Data System (ADS)

    Mavliutov, A. R.; Zlotnikov, E. G.

    2018-03-01

    This paper describes the most effective methods for nonlinear constraint optimization of cutting parameters in the turning process. Among them are Linearization Programming Method with Dual-Simplex algorithm, Interior Point method, and Augmented Lagrangian Genetic Algorithm (ALGA). Every each of them is tested on an actual example – the minimization of production rate in turning process. The computation was conducted in the MATLAB environment. The comparative results obtained from the application of these methods show: The optimal value of the linearized objective and the original function are the same. ALGA gives sufficiently accurate values, however, when the algorithm uses the Hybrid function with Interior Point algorithm, the resulted values have the maximal accuracy.

  2. Robust Notion Vision For A Vehicle Moving On A Plane

    NASA Astrophysics Data System (ADS)

    Moni, Shankar; Weldon, E. J.

    1987-05-01

    A vehicle equipped with a cemputer vision system moves on a plane. We show that subject to certain constraints, the system can determine the motion of the vehicle (one rotational and two translational degrees of freedom) and the depth of the scene in front of the vehicle. The constraints include limits on the speed of the vehicle, presence of texture on the plane and absence of pitch and roll in the vehicular motion. It is possible to decouple the problems of finding the vehicle's motion and the depth of the scene in front of the vehicle by using two rigidly connected cameras. One views a field with known depth (i.e. the ground plane) and estimates the motion parameters and the other determines the depth map knowing the motion parameters. The motion is constrained to be planar to increase robustness. We use a least squares method of fitting the vehicle motion to observer brightness gradients. With this method, no correspondence between image points needs to be established and information fran the entire image is used in calculating notion. The algorithm performs very reliably on real image sequences and these results have been included. The results compare favourably to the performance of the algorithm of Negandaripour and Horn [2] where six degrees of freedom are assumed.

  3. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  4. Graph cuts for curvature based image denoising.

    PubMed

    Bae, Egil; Shi, Juan; Tai, Xue-Cheng

    2011-05-01

    Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.

  5. Superpixel-based graph cuts for accurate stereo matching

    NASA Astrophysics Data System (ADS)

    Feng, Liting; Qin, Kaihuai

    2017-06-01

    Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.

  6. Video-based depression detection using local Curvelet binary patterns in pairwise orthogonal planes.

    PubMed

    Pampouchidou, Anastasia; Marias, Kostas; Tsiknakis, Manolis; Simos, Panagiotis; Fan Yang; Lemaitre, Guillaume; Meriaudeau, Fabrice

    2016-08-01

    Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Orthogonal-Planes. Performance of the algorithms was tested on the benchmark dataset provided by the Audio/Visual Emotion Challenge 2014, with the person-specific system achieving 97.6% classification accuracy, and the person-independed one yielding promising preliminary results of 74.5% accuracy. The paper concludes with open issues, proposed solutions, and future plans.

  7. Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task.

    PubMed

    Meinerz, Carolyn M; Malloy, Philip; Geiser, Christopher F; Kipp, Kristof

    2015-09-01

    Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions. To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task. Controlled laboratory study. University biomechanics laboratory. Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg). Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions. Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles. Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases. Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition.

  8. Cutting

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cutting KidsHealth / For Teens / Cutting What's in this article? ... Getting Help Print en español Cortarse What Is Cutting? Emma's mom first noticed the cuts when Emma ...

  9. What energy functions can be minimized via graph cuts?

    PubMed

    Kolmogorov, Vladimir; Zabih, Ramin

    2004-02-01

    In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.

  10. Orbital Space Plane (OSP) Program at Lockheed Martin

    NASA Technical Reports Server (NTRS)

    Ford, Robert

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  11. Discrimination methods of biological contamination on fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms on fresh-cut lettuce. The optimal wavebands that detect worm on fresh-cut lettuce for each type of HSI were investigated using the one-way...

  12. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    NASA Astrophysics Data System (ADS)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  13. Computer simulation of solutions of polyharmonic equations in plane domain

    NASA Astrophysics Data System (ADS)

    Kazakova, A. O.

    2018-05-01

    A systematic study of plane problems of the theory of polyharmonic functions is presented. A method of reducing boundary problems for polyharmonic functions to the system of integral equations on the boundary of the domain is given and a numerical algorithm for simulation of solutions of this system is suggested. Particular attention is paid to the numerical solution of the main tasks when the values of the function and its derivatives are given. Test examples are considered that confirm the effectiveness and accuracy of the suggested algorithm.

  14. Starbugs: focal plane fiber positioning technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Michael; Heijmans, Jeroen; Saunders, Ian; Brzeski, Jurek; Saunders, Will; Muller, Rolf; Haynes, Roger; Gilbert, James

    2010-07-01

    We report on the technological achievements of our latest Starbug prototypes and their implications for smart focal plane fiber positioning applications for wide-field astronomy. The Starbugs are innovative self-motile miniature robotic devices that can simultaneously and independently position fibers or payloads over a field plate located at the telescope's focal plane. The Starbugs concept overcomes many of the limitations associated with the traditional 'pick and place' positioners where a robot places fixed buttons onto the field plate. The new Starbug prototypes use piezoelectric actuators and have the following features: (i) new 'lift-and-step' method (discrete step) for accurate positioning over different surfaces; and (ii) operate in an inverted hanging position underneath a transparent field plate, removing the need for fibercable retractors. In this paper, we present aspects of the Starbug prototypes, including the theoretical model, mechanical design, experimental setup, algorithms, performance and applications for astronomical instrumentation.

  15. Intra-operative adjustment of standard planes in C-arm CT image data.

    PubMed

    Brehler, Michael; Görres, Joseph; Franke, Jochen; Barth, Karl; Vetter, Sven Y; Grützner, Paul A; Meinzer, Hans-Peter; Wolf, Ivo; Nabers, Diana

    2016-03-01

    With the help of an intra-operative mobile C-arm CT, medical interventions can be verified and corrected, avoiding the need for a post-operative CT and a second intervention. An exact adjustment of standard plane positions is necessary for the best possible assessment of the anatomical regions of interest but the mobility of the C-arm causes the need for a time-consuming manual adjustment. In this article, we present an automatic plane adjustment at the example of calcaneal fractures. We developed two feature detection methods (2D and pseudo-3D) based on SURF key points and also transferred the SURF approach to 3D. Combined with an atlas-based registration, our algorithm adjusts the standard planes of the calcaneal C-arm images automatically. The robustness of the algorithms is evaluated using a clinical data set. Additionally, we tested the algorithm's performance for two registration approaches, two resolutions of C-arm images and two methods for metal artifact reduction. For the feature extraction, the novel 3D-SURF approach performs best. As expected, a higher resolution ([Formula: see text] voxel) leads also to more robust feature points and is therefore slightly better than the [Formula: see text] voxel images (standard setting of device). Our comparison of two different artifact reduction methods and the complete removal of metal in the images shows that our approach is highly robust against artifacts and the number and position of metal implants. By introducing our fast algorithmic processing pipeline, we developed the first steps for a fully automatic assistance system for the assessment of C-arm CT images.

  16. A lateral guidance algorithm to reduce the post-aerobraking burn requirements for a lift-modulated orbital transfer vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Herman, G. C.

    1986-01-01

    A lateral guidance algorithm which controls the location of the line of intersection between the actual and desired orbital planes (the hinge line) is developed for the aerobraking phase of a lift-modulated orbital transfer vehicle. The on-board targeting algorithm associated with this lateral guidance algorithm is simple and concise which is very desirable since computation time and space are limited on an on-board flight computer. A variational equation which describes the movement of the hinge line is derived. Simple relationships between the plane error, the desired hinge line position, the position out-of-plane error, and the velocity out-of-plane error are found. A computer simulation is developed to test the lateral guidance algorithm for a variety of operating conditions. The algorithm does reduce the total burn magnitude needed to achieve the desired orbit by allowing the plane correction and perigee-raising burn to be combined in a single maneuver. The algorithm performs well under vacuum perigee dispersions, pot-hole density disturbance, and thick atmospheres. The results for many different operating conditions are presented.

  17. densityCut: an efficient and versatile topological approach for automatic clustering of biological data

    PubMed Central

    Ding, Jiarui; Shah, Sohrab; Condon, Anne

    2016-01-01

    Motivation: Many biological data processing problems can be formalized as clustering problems to partition data points into sensible and biologically interpretable groups. Results: This article introduces densityCut, a novel density-based clustering algorithm, which is both time- and space-efficient and proceeds as follows: densityCut first roughly estimates the densities of data points from a K-nearest neighbour graph and then refines the densities via a random walk. A cluster consists of points falling into the basin of attraction of an estimated mode of the underlining density function. A post-processing step merges clusters and generates a hierarchical cluster tree. The number of clusters is selected from the most stable clustering in the hierarchical cluster tree. Experimental results on ten synthetic benchmark datasets and two microarray gene expression datasets demonstrate that densityCut performs better than state-of-the-art algorithms for clustering biological datasets. For applications, we focus on the recent cancer mutation clustering and single cell data analyses, namely to cluster variant allele frequencies of somatic mutations to reveal clonal architectures of individual tumours, to cluster single-cell gene expression data to uncover cell population compositions, and to cluster single-cell mass cytometry data to detect communities of cells of the same functional states or types. densityCut performs better than competing algorithms and is scalable to large datasets. Availability and Implementation: Data and the densityCut R package is available from https://bitbucket.org/jerry00/densitycut_dev. Contact: condon@cs.ubc.ca or sshah@bccrc.ca or jiaruid@cs.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153661

  18. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  19. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    NASA Astrophysics Data System (ADS)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative

  20. The effect of workstation and task variables on forces applied during simulated meat cutting.

    PubMed

    McGorry, Raymond W; Dempsey, Patrick G; O'Brien, Niall V

    2004-12-01

    The purpose of the study was to investigate factors related to force and postural exposure during a simulated meat cutting task. The hypothesis was that workstation, tool and task variables would affect the dependent kinetic variables of gripping force, cutting moment and the dependent kinematic variables of elbow elevation and wrist angular displacement in the flexion/extension and radial/ulnar deviation planes. To evaluate this hypothesis a 3 x 3 x 2 x 2 x 2 (surface orientation by surface height by blade angle by cut complexity by work pace) within-subject factorial design was conducted with 12 participants. The results indicated that the variables can act and interact to modify the kinematics and kinetics of a cutting task. Participants used greater grip force and cutting moment when working at a pace based on productivity. The interactions of the work surface height and orientation indicated that the use of an adjustable workstation could minimize wrist deviation from neutral and improve shoulder posture during cutting operations. Angling the knife blade also interacted with workstation variables to improve wrist and upper extremity posture, but this benefit must be weighed against the potential for small increases in force exposure.

  1. Club position relative to the golfer's swing plane meaningfully affects swing dynamics.

    PubMed

    MacKenzie, Sasho J

    2012-06-01

    Previous research indicates that the motion of the golf club is not planar and that the plane traced out by the club is different than that of the golfer's hands. The aim of the present study was to investigate how the position of the club, relative to the golfer's swing plane, influences the motion of the club by using a four-segment (torso, upper arm, forearm, and club), three-dimensional forward dynamics model. A genetic algorithm optimized the coordination of the model's four muscular torque generators to produce the best golf swings possible under six different conditions. The series of simulations were designed to demonstrate the effect of positioning the club above, and below, the golfer's swing plane as well as the effect of changing the steepness of the golfer's swing plane. The simulation results suggest that positioning the club below the golfer's swing plane, early in the downswing, will facilitate the squaring of the clubface for impact, while positioning the club above the plane will have the opposite effect. It was also demonstrated that changing the steepness of the golfer's swing plane by 10 degrees can have little effect on the delivery of the clubhead to the ball.

  2. Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation

    NASA Astrophysics Data System (ADS)

    Bueno Mario, A.; Alvarez-Borrego, Josue; Acho, L.

    2004-10-01

    A new autofocus algorithm based on one-dimensional Fourier transform and Pearson correlation for Z automatized microscope is proposed. Our goal is to determine in fast response time and accuracy, the best focused plane through an algorithm. We capture in bright and dark field several images set at different Z distances from biological organism sample. The algorithm uses the one-dimensional Fourier transform to obtain the image frequency content of a vectors pattern previously defined comparing the Pearson correlation of these frequency vectors versus the reference image frequency vector, the most out of focus image, we find the best focusing. Experimental results showed the algorithm has fast response time and accuracy in getting the best focus plane from captured images. In conclusions, the algorithm can be implemented in real time systems due fast response time, accuracy and robustness. The algorithm can be used to get focused images in bright and dark field and it can be extended to include fusion techniques to construct multifocus final images beyond of this paper.

  3. Description and performance analysis of a generalized optimal algorithm for aerobraking guidance

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Dukeman, Greg A.

    1993-01-01

    A practical real-time guidance algorithm has been developed for aerobraking vehicles which nearly minimizes the maximum heating rate, the maximum structural loads, and the post-aeropass delta V requirement for orbit insertion. The algorithm is general and reusable in the sense that a minimum of assumptions are made, thus greatly reducing the number of parameters that must be determined prior to a given mission. A particularly interesting feature is that in-plane guidance performance is tuned by adjusting one mission-dependent, the bank margin; similarly, the out-of-plane guidance performance is tuned by adjusting a plane controller time constant. Other features of the algorithm are simplicity, efficiency and ease of use. The trimmed vehicle with bank angle modulation as the method of trajectory control. Performance of this guidance algorithm is examined by its use in an aerobraking testbed program. The performance inquiry extends to a wide range of entry speeds covering a number of potential mission applications. Favorable results have been obtained with a minimum of development effort, and directions for improvement of performance are indicated.

  4. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  5. The distance from the extramedullary cutting guide rod to the skin surface as a reference guide for the tibial slope in total knee arthroplasty.

    PubMed

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu

    2016-03-01

    Although sagittal tibial alignment in total knee arthroplasty (TKA) is important, no landmarks exist to achieve a reproducible slope. The purpose of this study was to evaluate the clinical usefulness of the distance from the guide rod to the skin surface for the tibial slope in TKA. Computer simulation studies were performed on 100 consecutive knees scheduled for TKA. The angle between the line connecting the most anterior point of the predicted tibial cut surface and the skin surface 20 cm distal to the predicted cut surface (Line S) and the mechanical axis (MA) of the tibia in the sagittal plane was measured. The mean (±SD) absolute angle difference between the Line S and the MA was 0.9°±0.7°. The Line S was almost parallel to the MA in the sagittal plane (95% and 99% within two degrees and three degrees of deviation from MA, respectively). The guide rod orientation is a surrogate for the tibial cut slope because the targeted posterior slope is usually built into the cutting block and ensuring the rod is parallel to the MA in the sagittal plane is recommended. Therefore the distance between the skin surface and the rod can be a useful guide for the tibial slope. II. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Discovering shared segments on the migration route of the bar-headed goose by time-based plane-sweeping trajectory clustering

    USGS Publications Warehouse

    Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.

    2012-01-01

    We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.

  7. Dynamic graph cuts for efficient inference in Markov Random Fields.

    PubMed

    Kohli, Pushmeet; Torr, Philip H S

    2007-12-01

    Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.

  8. Close coupling of pre- and post-processing vision stations using inexact algorithms

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.

    1996-02-01

    Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.

  9. Phase unwrapping with graph cuts optimization and dual decomposition acceleration for 3D high-resolution MRI data.

    PubMed

    Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi

    2017-03-01

    Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Robust numerical electromagnetic eigenfunction expansion algorithms

    NASA Astrophysics Data System (ADS)

    Sainath, Kamalesh

    This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub

  11. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  12. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo

    2011-01-01

    This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.

  13. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  14. The best of both worlds: automated CMP polishing of channel-cut monochromators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasman, Elina; Erdmann, Mark; Stoupin, Stanislav

    2015-09-03

    The use of a channel-cut monochromator is the most straightforward method to ensure that the two reflection surfaces maintain alignment between crystallographic planes without the need for complicated alignment mechanisms. Three basic characteristics that affect monochromator performance are: subsurface damage which contaminates spectral purity; surface roughness which reduces efficiency due to scattering; and surface figure error which imparts intensity structure and coherence distortion in the beam. Standard chemical-mechanical polishing processes and equipment are used when the diffracting surface is easily accessible, such as for single-bounce monochromators. Due to the inaccessibly of the surfaces inside a channel-cut monochromator for polishing, thesemore » optics are generally wet-etched for their final processing. This results in minimal subsurface damage, but very poor roughness and figure error. A new CMP channel polishing instrument design is presented which allows the internal diffracting surface quality of channel-cut crystals to approach that of conventional single-bounce monochromators« less

  15. A Cartesian cut cell method for rarefied flow simulations around moving obstacles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechristé, G., E-mail: Guillaume.Dechriste@math.u-bordeaux1.fr; CNRS, IMB, UMR 5251, F-33400 Talence; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux1.fr

    2016-06-01

    For accurate simulations of rarefied gas flows around moving obstacles, we propose a cut cell method on Cartesian grids: it allows exact conservation and accurate treatment of boundary conditions. Our approach is designed to treat Cartesian cells and various kinds of cut cells by the same algorithm, with no need to identify the specific shape of each cut cell. This makes the implementation quite simple, and allows a direct extension to 3D problems. Such simulations are also made possible by using an adaptive mesh refinement technique and a hybrid parallel implementation. This is illustrated by several test cases, including amore » 3D unsteady simulation of the Crookes radiometer.« less

  16. [A plane-based hand-eye calibration method for surgical robots].

    PubMed

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Liu, Wenbo; Wu, Di; Wang, Guangzhi

    2017-04-01

    In order to calibrate the hand-eye transformation of the surgical robot and laser range finder (LRF), a calibration algorithm based on a planar template was designed. A mathematical model of the planar template had been given and the approach to address the equations had been derived. Aiming at the problems of the measurement error in a practical system, we proposed a new algorithm for selecting coplanar data. This algorithm can effectively eliminate considerable measurement error data to improve the calibration accuracy. Furthermore, three orthogonal planes were used to improve the calibration accuracy, in which a nonlinear optimization for hand-eye calibration was used. With the purpose of verifying the calibration precision, we used the LRF to measure some fixed points in different directions and a cuboid's surfaces. Experimental results indicated that the precision of a single planar template method was (1.37±0.24) mm, and that of the three orthogonal planes method was (0.37±0.05) mm. Moreover, the mean FRE of three-dimensional (3D) points was 0.24 mm and mean TRE was 0.26 mm. The maximum angle measurement error was 0.4 degree. Experimental results show that the method presented in this paper is effective with high accuracy and can meet the requirements of surgical robot precise location.

  17. Computer-assisted oblique single-cut rotation osteotomy to reduce a multidirectional tibia deformity: case report.

    PubMed

    Dobbe, J G G; du Pré, K J; Blankevoort, L; Streekstra, G J; Kloen, P

    2017-08-01

    The correction of multiplanar deformity is challenging. We describe preoperative 3-D planning and treatment of a complex tibia malunion using an oblique single-cut rotation osteotomy to correct deformity parameters in the sagittal, coronal and transverse plane. At 5 years postoperatively, the patient ambulates without pain with a well-aligned leg.

  18. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  19. Automatic extraction of the mid-sagittal plane using an ICP variant

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus

    2008-03-01

    Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.

  20. Yet one more dwell time algorithm

    NASA Astrophysics Data System (ADS)

    Haberl, Alexander; Rascher, Rolf

    2017-06-01

    The current demand of even more powerful and efficient microprocessors, for e.g. deep learning, has led to an ongoing trend of reducing the feature size of the integrated circuits. These processors are patterned with EUV-lithography which enables 7 nm chips [1]. To produce mirrors which satisfy the needed requirements is a challenging task. Not only increasing requirements on the imaging properties, but also new lens shapes, such as aspheres or lenses with free-form surfaces, require innovative production processes. However, these lenses need new deterministic sub-aperture polishing methods that have been established in the past few years. These polishing methods are characterized, by an empirically determined TIF and local stock removal. Such a deterministic polishing method is ion-beam-figuring (IBF). The beam profile of an ion beam is adjusted to a nearly ideal Gaussian shape by various parameters. With the known removal function, a dwell time profile can be generated for each measured error profile. Such a profile is always generated pixel-accurately to the predetermined error profile, with the aim always of minimizing the existing surface structures up to the cut-off frequency of the tool used [2]. The processing success of a correction-polishing run depends decisively on the accuracy of the previously computed dwell-time profile. So the used algorithm to calculate the dwell time has to accurately reflect the reality. But furthermore the machine operator should have no influence on the dwell-time calculation. Conclusively there mustn't be any parameters which have an influence on the calculation result. And lastly it should take a minimum of machining time to get a minimum of remaining error structures. Unfortunately current dwell time algorithm calculations are divergent, user-dependent, tending to create high processing times and need several parameters to bet set. This paper describes an, realistic, convergent and user independent dwell time algorithm. The

  1. [Validation of cut points of skeletal muscle mass index for identifying sarcopenia in Chilean older people].

    PubMed

    Lera, Lydia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea; Albala, Cecilia

    2014-09-28

    To estimate and validate cut-off points of skeletal muscle mass index (SMI) in Chilean population, for using in an algorithm for a diagnosis of sarcopenia developed by European Working Group on Sarcopenia in Older People (EWGSOP). Secondary analysis of Cross-sectional data in 440 Chilean older subjects to estimate cut-off points of SMI determined by DEXA and predicted by an anthropometric equation. Afterward a cross-sectional validation in a sample of 164 older people was performed. Anthropometric measures, self-reported health status, physical performance tests and DEXA were carried out. Decreased muscle strength was defined as handgrip strength <15 kg in women and <27 kg in male. Cut-off points of SMI were defined as values under 20th percentile for DEXA measures and estimated through ROC curves for the anthropometric model. Biological validity of the algorithm was tested by contrasting the diagnosis with physical performance tests and functionality. Cut-off points of SMI obtained by DEXA were 7.19 kg/m² in men and 5.77 kg/m² in women and 7.45 kg/ m² and 5.88 kg/m², respectively for the predicted by the model. Sensibility and specificity of estimations vs DEXA measures were 80% and 92% in men and 77% and 89% in women. We obtained cut-off points of SMI for DEXA and for a prediction equation for older adults Chilean, with good sensibility and specificity for the measurement by DEXA. It will allow to apply the EWGSOP algorithm to the early diagnosis of sarcopenia and to develop programs for prevention, delay or reversion this syndrome. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Thermal lensing and microchip laser performance of N g-cut Tm3+:KY(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Gaponenko, M. S.; Loiko, P. A.; Gusakova, N. V.; Yumashev, K. V.; Kuleshov, N. V.; Pavlyuk, A. A.

    2012-09-01

    The thermal lensing effect was characterized in the diode-pumped monoclinic N g-cut Tm:KYW crystal under laser operation conditions at the wavelength of 1.94 μm. The thermal lens was found to be slightly astigmatic; its optical power D being positive for rays lying in all meridional planes. Thermal lens sensitivity factors M= dD/ dP abs equal 11.8 m-1/W and 8.8 m-1/W (with respect to the absorbed pump power P abs) for principal meridional planes containing N p and N m axes. Nearly athermal behavior of N g-cut crystal is associated with the mutual compensation of different impacts to the thermal lens optical power that arise from temperature dependence of the refractive index dn/ dT and anisotropic thermal expansion. It was utilized to produce passively cooled diode-pumped 0.65 W cw Tm:KYW microchip laser with slope efficiency of 44 % and low thermo-optic aberrations.

  3. Resolving z ~2 galaxy using adaptive coadded source plane reconstruction

    NASA Astrophysics Data System (ADS)

    Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian

    2018-06-01

    Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.

  4. Testing Of Choiced Ceramics Cutting Tools At Irregular Interrupted Cut

    NASA Astrophysics Data System (ADS)

    Kyncl, Ladislav; Malotová, Šárka; Nováček, Pavel; Nicielnik, Henryk; Šoková, Dagmar; Hemžský, Pavel; Pitela, David; Holubjak, Jozef

    2015-12-01

    This article discusses the test of removable ceramic cutting inserts during machining irregular interrupted cut. Tests were performed on a lathe, with the preparation which simulated us the interrupted cut. By changing the number of plates mounted in a preparation it simulate us a regular or irregular interrupted cut. When with four plates it was regular interrupted cut, the remaining three variants were already irregular cut. It was examined whether it will have the irregular interrupted cutting effect on the insert and possibly how it will change life of inserts during irregular interrupted cut (variable delay between shocks).

  5. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan

    2017-09-01

    The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.

  6. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  7. Experimental test of theory for the stability of partially saturated vertical cut slopes

    USGS Publications Warehouse

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  8. Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.

    PubMed

    Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews

    2015-03-01

    This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.

  9. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng, E-mail: mengwu@stanford.edu; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images thatmore » are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the

  10. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  11. Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.

    2017-01-01

    In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.

  12. Mathematical simulation and optimization of cutting mode in turning of workpieces made of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.

    2018-05-01

    A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.

  13. Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography.

    PubMed

    Hao, Zhenhua; Yue, Shihong; Sun, Benyuan; Wang, Huaxiang

    2017-12-01

    Electrical impedance tomography (EIT) is a visual imaging technique for obtaining the conductivity and permittivity distributions in the domain of interest. As an advanced technique, EIT has the potential to be a valuable tool for continuously bedside monitoring of pulmonary function. The EIT applications in any three-dimensional (3 D) field are very limited to the 3 D effects, i.e. the distribution of electric field spreads far beyond the electrode plane. The 3 D effects can result in measurement errors and image distortion. An important way to overcome the 3 D effect is to use the multiple groups of sensors. The aim of this paper is to find the best space resolution of EIT image over various electrode planes and select an optimal plane spacing in a 3 D EIT sensor, and provide guidance for 3 D EIT electrodes placement in monitoring lung function. In simulation and experiment, several typical conductivity distribution models, such as one rod (central, midway and edge), two rods and three rods, are set at different plane spacings between the two electrode planes. A Tikhonov regularization algorithm is utilized for reconstructing the images; the relative error and the correlation coefficient are utilized for evaluating the image quality. Based on numerical simulation and experimental results, the image performance at different spacing conditions is evaluated. The results demonstrate that there exists an optimal plane spacing between the two electrode planes for 3 D EIT sensor. And then the selection of the optimal plane spacing between the electrode planes is suggested for the electrodes placement of multi-plane EIT sensor.

  14. High performance genetic algorithm for VLSI circuit partitioning

    NASA Astrophysics Data System (ADS)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  15. Effect of planar cuts' orientation on the perceived surface layout and object's shape.

    PubMed

    Bocheva, Nadejda

    2009-07-01

    The effect of the orientation of the cutting planes producing planar curves over the surface of an object on its perceived pose and shape was investigated for line drawings representing three-dimensional objects. The results suggest that the orientational flow produced by the surface curves introduces an apparent object rotation in depth and in the image plane and changes in its perceived elongation. The apparent location of the nearest points is determined by the points of maximal view-dependent unsigned curvature of the surface curves. The data are discussed in relation to the interaction of the shape-from-silhouette system and shape-from-contour system and its effect on the interpretation of the surface contours with respect to the surface geometry.

  16. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    PubMed

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1cut-off frequencies on the other hand. Moreover, the transverse velocity of the material constituting the cylindrical shell is extracted. The computational results show that the proposed approach is very efficient to predict the form function and consequently, for acoustic characterization purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Numerical estimation of the relative entropy of entanglement

    NASA Astrophysics Data System (ADS)

    Zinchenko, Yuriy; Friedland, Shmuel; Gour, Gilad

    2010-11-01

    We propose a practical algorithm for the calculation of the relative entropy of entanglement (REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semidefinite cutting plane approach. In low dimensions the implementation of the algorithm in matlab provides an estimation for the REE with an absolute error smaller than 10-3.

  18. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  19. An Aircraft Separation Algorithm with Feedback and Perturbation

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2010-01-01

    A separation algorithm is a set of rules that tell aircraft how to maneuver in order to maintain a minimum distance between them. This paper investigates demonstrating that separation algorithms satisfy the FAA requirement for the occurrence of incidents by means of simulation. Any demonstration that a separation algorithm, or any other aspect of flight, satisfies the FAA requirement is a challenge because of the stringent nature of the requirement and the complexity of airspace operations. The paper begins with a probability and statistical analysis of both the FAA requirement and demonstrating meeting it by a Monte Carlo approach. It considers the geometry of maintaining separation when one plane must change its flight path. It then develops a simple feedback control law that guides the planes on their paths. The presence of feedback control permits the introduction of perturbations, and the stochastic nature of the chosen perturbation is examined. The simulation program is described. This paper is an early effort in the realistic demonstration of a stringent requirement. Much remains to be done.

  20. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form.

    PubMed

    Torres, Sergio N; Pezoa, Jorge E; Hayat, Majeed M

    2003-10-10

    What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-plane array sensors has been developed. The technique is based on the inverse covariance form of the Kalman filter (KF), which has been reported previously and used in estimating the gain and bias of each detector in the array from scene data. The gain and the bias of each detector in the focal-plane array are assumed constant within a given sequence of frames, corresponding to a certain time and operational conditions, but they are allowed to randomly drift from one sequence to another following a discrete-time Gauss-Markov process. The inverse covariance form filter estimates the gain and the bias of each detector in the focal-plane array and optimally updates them as they drift in time. The estimation is performed with considerably higher computational efficiency than the equivalent KF. The ability of the algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the computational complexity is demonstrated by use of both simulated and real data.

  1. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  2. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  3. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  4. 2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  5. Weight optimization of plane truss using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Neeraja, D.; Kamireddy, Thejesh; Santosh Kumar, Potnuru; Simha Reddy, Vijay

    2017-11-01

    Optimization of structure on basis of weight has many practical benefits in every engineering field. The efficiency is proportionally related to its weight and hence weight optimization gains prime importance. Considering the field of civil engineering, weight optimized structural elements are economical and easier to transport to the site. In this study, genetic optimization algorithm for weight optimization of steel truss considering its shape, size and topology aspects has been developed in MATLAB. Material strength and Buckling stability have been adopted from IS 800-2007 code of construction steel. The constraints considered in the present study are fabrication, basic nodes, displacements, and compatibility. Genetic programming is a natural selection search technique intended to combine good solutions to a problem from many generations to improve the results. All solutions are generated randomly and represented individually by a binary string with similarities of natural chromosomes, and hence it is termed as genetic programming. The outcome of the study is a MATLAB program, which can optimise a steel truss and display the optimised topology along with element shapes, deflections, and stress results.

  6. Analysis of a new phase and height algorithm in phase measurement profilometry

    NASA Astrophysics Data System (ADS)

    Bian, Xintian; Zuo, Fen; Cheng, Ju

    2018-04-01

    Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.

  7. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Feng; Wang, Jun-Ling; Gao, Mei-Guo

    2015-04-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. Project supported by the National Natural Science Foundation of China (Grant No. 61401024), the Shanghai Aerospace Science and Technology Innovation Foundation, China (Grant No. SAST201240), and the Basic Research Foundation of Beijing Institute of Technology (Grant No. 20140542001).

  8. Model of head-neck joint fast movements in the frontal plane.

    PubMed

    Pedrocchi, A; Ferrigno, G

    2004-06-01

    The objective of this work is to develop a model representing the physiological systems driving fast head movements in frontal plane. All the contributions occurring mechanically in the head movement are considered: damping, stiffness, physiological limit of range of motion, gravitational field, and muscular torques due to voluntary activation as well as to stretch reflex depending on fusal afferences. Model parameters are partly derived from the literature, when possible, whereas undetermined block parameters are determined by optimising the model output, fitting to real kinematics data acquired by a motion capture system in specific experimental set-ups. The optimisation for parameter identification is performed by genetic algorithms. Results show that the model represents very well fast head movements in the whole range of inclination in the frontal plane. Such a model could be proposed as a tool for transforming kinematics data on head movements in 'neural equivalent data', especially for assessing head control disease and properly planning the rehabilitation process. In addition, the use of genetic algorithms seems to fit well the problem of parameter identification, allowing for the use of a very simple experimental set-up and granting model robustness.

  9. Unzip instabilities: Straight to oscillatory transitions in the cutting of thin polymer sheets

    NASA Astrophysics Data System (ADS)

    Reis, P. M.; Kumar, A.; Shattuck, M. D.; Roman, B.

    2008-06-01

    We report an experimental investigation of the cutting of a thin brittle polymer sheet with a blunt tool. It was recently shown that the fracture path becomes oscillatory when the tool is much wider than the sheet thickness. Here we uncover two novel transitions from straight to oscillatory fracture by varying either the tilt angle of the tool or the speed of cutting, respectively. We denote these by angle and speed unzip instabilities and analyze them by quantifying both the dynamics of the crack tip and the final shapes of the fracture paths. Moreover, for the speed unzip instability, the straight crack lip obtained at low speeds exhibits out-of-plane buckling undulations (as opposed to being flat above the instability threshold) suggesting a transition from ductile to brittle fracture.

  10. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan

    2017-09-01

    Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    NASA Astrophysics Data System (ADS)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  12. Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.

    PubMed

    Raposo, Carolina; Antunes, Michel; P Barreto, Joao

    2017-08-09

    The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.

  13. Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Rostamsowlat, Iman

    2018-06-01

    The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.

  14. The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View

    NASA Technical Reports Server (NTRS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2017-01-01

    Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  15. Investigation of the Effects of High-Intensity, Intermittent Exercise and Unanticipation on Trunk and Lower Limb Biomechanics During a Side-Cutting Maneuver Using Statistical Parametric Mapping.

    PubMed

    Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A

    2018-06-01

    Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations

  16. Liver vessels segmentation using a hybrid geometrical moments/graph cuts method

    PubMed Central

    Esneault, Simon; Lafon, Cyril; Dillenseger, Jean-Louis

    2010-01-01

    This paper describes a fast and fully-automatic method for liver vessel segmentation on CT scan pre-operative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the min-cut/max-flow energy minimization framework. This method represents an original way to introduce a data term as a constraint into the widely used Boykov’s graph cuts algorithm and hence, to automate the segmentation. The method is evaluated and compared with others on a synthetic dataset. Finally, the relevancy of our method regarding the planning of a -necessarily accurate- percutaneous high intensity focused ultrasound surgical operation is demonstrated with some examples. PMID:19783500

  17. The artificial-free technique along the objective direction for the simplex algorithm

    NASA Astrophysics Data System (ADS)

    Boonperm, Aua-aree; Sinapiromsaran, Krung

    2014-03-01

    The simplex algorithm is a popular algorithm for solving linear programming problems. If the origin point satisfies all constraints then the simplex can be started. Otherwise, artificial variables will be introduced to start the simplex algorithm. If we can start the simplex algorithm without using artificial variables then the simplex iterate will require less time. In this paper, we present the artificial-free technique for the simplex algorithm by mapping the problem into the objective plane and splitting constraints into three groups. In the objective plane, one of variables which has a nonzero coefficient of the objective function is fixed in terms of another variable. Then it can split constraints into three groups: the positive coefficient group, the negative coefficient group and the zero coefficient group. Along the objective direction, some constraints from the positive coefficient group will form the optimal solution. If the positive coefficient group is nonempty, the algorithm starts with relaxing constraints from the negative coefficient group and the zero coefficient group. We guarantee the feasible region obtained from the positive coefficient group to be nonempty. The transformed problem is solved using the simplex algorithm. Additional constraints from the negative coefficient group and the zero coefficient group will be added to the solved problem and use the dual simplex method to determine the new optimal solution. An example shows the effectiveness of our algorithm.

  18. Speedup of minimum discontinuity phase unwrapping algorithm with a reference phase distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yihang; Han, Yu; Li, Fengjiao; Zhang, Qican

    2018-06-01

    In three-dimensional (3D) shape measurement based on phase analysis, the phase analysis process usually produces a wrapped phase map ranging from - π to π with some 2 π discontinuities, and thus a phase unwrapping algorithm is necessary to recover the continuous and nature phase map from which 3D height distribution can be restored. Usually, the minimum discontinuity phase unwrapping algorithm can be used to solve many different kinds of phase unwrapping problems, but its main drawback is that it requires a large amount of computations and has low efficiency in searching for the improving loop within the phase's discontinuity area. To overcome this drawback, an improvement to speedup of the minimum discontinuity phase unwrapping algorithm by using the phase distribution on reference plane is proposed. In this improved algorithm, before the minimum discontinuity phase unwrapping algorithm is carried out to unwrap phase, an integer number K was calculated from the ratio of the wrapped phase to the nature phase on a reference plane. And then the jump counts of the unwrapped phase can be reduced by adding 2K π, so the efficiency of the minimum discontinuity phase unwrapping algorithm is significantly improved. Both simulated and experimental data results verify the feasibility of the proposed improved algorithm, and both of them clearly show that the algorithm works very well and has high efficiency.

  19. Constrained minimization of smooth functions using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  20. Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material

    NASA Astrophysics Data System (ADS)

    Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena

    2011-05-01

    This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.

  1. Short-cut Methods versus Rigorous Methods for Performance-evaluation of Distillation Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo

    Here, this study demonstrates the efficacy of a short-cut method such as the Global Minimization Algorithm (GMA), that uses assumptions of ideal mixtures, constant molar overflow (CMO) and pinched columns, in pruning the search-space of distillation column configurations for zeotropic multicomponent separation, to provide a small subset of attractive configurations with low minimum heat duties. The short-cut method, due to its simplifying assumptions, is computationally efficient, yet reliable in identifying the small subset of useful configurations for further detailed process evaluation. This two-tier approach allows expedient search of the configuration space containing hundreds to thousands of candidate configurations for amore » given application.« less

  2. Short-cut Methods versus Rigorous Methods for Performance-evaluation of Distillation Configurations

    DOE PAGES

    Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo; ...

    2018-05-17

    Here, this study demonstrates the efficacy of a short-cut method such as the Global Minimization Algorithm (GMA), that uses assumptions of ideal mixtures, constant molar overflow (CMO) and pinched columns, in pruning the search-space of distillation column configurations for zeotropic multicomponent separation, to provide a small subset of attractive configurations with low minimum heat duties. The short-cut method, due to its simplifying assumptions, is computationally efficient, yet reliable in identifying the small subset of useful configurations for further detailed process evaluation. This two-tier approach allows expedient search of the configuration space containing hundreds to thousands of candidate configurations for amore » given application.« less

  3. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    PubMed

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.

  4. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  5. Out-of-Focus Projector Calibration Method with Distortion Correction on the Projection Plane in the Structured Light Three-Dimensional Measurement System.

    PubMed

    Zhang, Jiarui; Zhang, Yingjie; Chen, Bo

    2017-12-20

    The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.

  6. Scene-based nonuniformity correction technique for infrared focal-plane arrays.

    PubMed

    Liu, Yong-Jin; Zhu, Hong; Zhao, Yi-Gong

    2009-04-20

    A scene-based nonuniformity correction algorithm is presented to compensate for the gain and bias nonuniformity in infrared focal-plane array sensors, which can be separated into three parts. First, an interframe-prediction method is used to estimate the true scene, since nonuniformity correction is a typical blind-estimation problem and both scene values and detector parameters are unavailable. Second, the estimated scene, along with its corresponding observed data obtained by detectors, is employed to update the gain and the bias by means of a line-fitting technique. Finally, with these nonuniformity parameters, the compensated output of each detector is obtained by computing a very simple formula. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of every module is demonstrated with simulated and real infrared image sequences. Experimental results indicate that the proposed algorithm exhibits a superior correction effect.

  7. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB₂/7050Al MMC.

    PubMed

    Xiong, Yifeng; Wang, Wenhu; Jiang, Ruisong; Lin, Kunyang; Shao, Mingwei

    2018-04-15

    The in-situ TiB₂/7050Al composite is a new kind of Al-based metal matrix composite (MMC) with super properties, such as low density, improved strength, and wear resistance. This paper, for a deep insight into its cutting performance, involves a study of the chip formation process and finite element simulation during orthogonal cutting in-situ TiB₂/7050Al MMC. With chips, material properties, cutting forces, and tool geometry parameters, the Johnson-Cook (J-C) constitutive equation of in-situ TiB₂/7050Al composite was established. Then, the cutting simulation model was established by applying the Abaqus-Explicit method, and the serrated chip, shear plane, strain rate, and temperature were analyzed. The experimental and simulation results showed that the obtained material's constitutive equation was of high reliability, and the saw-tooth chips occurred commonly under either low or high cutting speed and small or large feed rate. From result analysis, it was found that the mechanisms of chip formation included plastic deformation, adiabatic shear, shearing slip, and crack extension. In addition, it was found that the existence of small, hard particles reduced the ductility of the MMC and resulted in segmental chips.

  8. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  9. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting

    NASA Astrophysics Data System (ADS)

    Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-07-01

    A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.

  10. Learning in fully recurrent neural networks by approaching tangent planes to constraint surfaces.

    PubMed

    May, P; Zhou, E; Lee, C W

    2012-10-01

    In this paper we present a new variant of the online real time recurrent learning algorithm proposed by Williams and Zipser (1989). Whilst the original algorithm utilises gradient information to guide the search towards the minimum training error, it is very slow in most applications and often gets stuck in local minima of the search space. It is also sensitive to the choice of learning rate and requires careful tuning. The new variant adjusts weights by moving to the tangent planes to constraint surfaces. It is simple to implement and requires no parameters to be set manually. Experimental results show that this new algorithm gives significantly faster convergence whilst avoiding problems like local minima. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Vision-based algorithms for near-host object detection and multilane sensing

    NASA Astrophysics Data System (ADS)

    Kenue, Surender K.

    1995-01-01

    Vision-based sensing can be used for lane sensing, adaptive cruise control, collision warning, and driver performance monitoring functions of intelligent vehicles. Current computer vision algorithms are not robust for handling multiple vehicles in highway scenarios. Several new algorithms are proposed for multi-lane sensing, near-host object detection, vehicle cut-in situations, and specifying regions of interest for object tracking. These algorithms were tested successfully on more than 6000 images taken from real-highway scenes under different daytime lighting conditions.

  12. Development of a Numerical Model for Orthogonal Cutting. Discussion about the Sensitivity to Friction Problem

    NASA Astrophysics Data System (ADS)

    San Juan, M.; de la Iglesia, J. M.; Martín, O.; Santos, F. J.

    2009-11-01

    In despite of the important progresses achieved in the knowledge of cutting processes, the study of certain aspects has undergone the very limitations of the experimental means: temperature gradients, frictions, contact, etc… Therefore, the development of numerical models is a valid tool as a first approach to study of those problems. In the present work, a calculation model under Abaqus Explicit code is developed to represent the orthogonal cutting of AISI 4140 steel. A bidimensional simulation under plane strain conditions, which is considered as adiabatic due to the high speed of the material flow, is chosen. The chip separation is defined by means of a fracture law that allows complex simulations of tool penetration in the workpiece. The strong influence of friction on cutting is proved, therefore a very good definition of materials behaviour laws could be obtained, but an erroneous value of friction coefficient could notably reduce the reliability. Considering the difficulty of checking the friction models used in the simulation, from the tests carried out habitually, the most efficacious way to characterize the friction would be to combine simulation models with cutting tests.

  13. Using a focal-plane array to estimate antenna pointing errors

    NASA Technical Reports Server (NTRS)

    Zohar, S.; Vilnrotter, V. A.

    1991-01-01

    The use of extra collecting horns in the focal plane of an antenna as a means of determining the Direction of Arrival (DOA) of the signal impinging on it, provided it is within the antenna beam, is considered. Our analysis yields a relatively simple algorithm to extract the DOA from the horns' outputs. An algorithm which, in effect, measures the thermal noise of the horns' signals and determines its effect on the uncertainty of the extracted DOA parameters is developed. Both algorithms were implemented in software and tested in simulated data. Based on these tests, it is concluded that this is a viable approach to the DOA determination. Though the results obtained are of general applicability, the particular motivation for the present work is their application to the pointing of a mechanically deformed antenna. It is anticipated that the pointing algorithm developed for a deformed antenna could be obtained as a small perturbation of the algorithm developed for an undeformed antenna. In this context, it should be pointed out that, with a deformed antenna, the array of horns and its associated circuitry constitute the main part of the deformation-compensation system. In this case, the pointing system proposed may be viewed as an additional task carried out by the deformation-compensation hardware.

  14. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    NASA Astrophysics Data System (ADS)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  15. Shoe collar height effect on athletic performance, ankle joint kinematics and kinetics during unanticipated maximum-effort side-cutting performance.

    PubMed

    Lam, Gilbert Wing Kai; Park, Eun Jung; Lee, Ki-Kwang; Cheung, Jason Tak-Man

    2015-01-01

    Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.

  16. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-01-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  17. Portable cutting apparatus

    DOEpatents

    Gilmore, R.F.

    1984-07-17

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  18. Portable cutting apparatus

    DOEpatents

    Gilmore, Richard F.

    1986-04-01

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engageable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  19. Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

    NASA Astrophysics Data System (ADS)

    Ardentov, Andrei A.; Sachkov, Yuri L.

    2017-12-01

    We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank 2 sub-Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.

  20. Approximate labeling via graph cuts based on linear programming.

    PubMed

    Komodakis, Nikos; Tziritas, Georgios

    2007-08-01

    A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.

  1. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  2. Blind restoration method of three-dimensional microscope image based on RL algorithm

    NASA Astrophysics Data System (ADS)

    Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li

    2013-08-01

    Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.

  3. Testing of the on-board attitude determination and control algorithms for SAMPEX

    NASA Technical Reports Server (NTRS)

    Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-01-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  4. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  5. Ground-plane influences on size estimation in early visual processing.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2010-07-21

    Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  7. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  8. Helicon mysteries: fitting a plane wave into a cylinder

    NASA Astrophysics Data System (ADS)

    Boswell, Rod

    2011-10-01

    Since the first reports in the 1960s, the dispersion of helicon waves in a plasma cylinder has been difficult to describe theoretically for axial wavelengths that are greater than the plasma radius. About 10 years ago, Breizman and Arefiev showed how radial density gradients make the plasma column similar to a coaxial cable, allowing the helicon waves to propagate below the cut-off frequency. The resulting dispersion relation is similar to that of a plane wave propagating parallel to the magnetic field. A few years later, Degeling et. al. presented experimental evidence demonstrating such a plane wave dispersion for a broad range of axial wave numbers. The reason lies in the decoupling of the Hall and electron inertial terms in the dispersion, the former describing the electromagnetic propagation and the latter the electrostatic propagation. Combining the experimental and theoretical results has recently thrown further light on this phenomenon that is applicable to both space and laboratory situations. Radially Localized Helicon Modes in Nonuniform Plasma, Boris N. Breizman and Alexey V. Arefiev, Phys. Rev. Letts. 84, 3863 (2000). Transitions from electrostatic to electromagnetic whistler wave excitation, A. W. Degeling, G. G. Borg and R. W. Boswell, Phys. Plasmas, 11, 2144, (2004).

  9. Phase-unwrapping algorithm by a rounding-least-squares approach

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin

    2014-02-01

    A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.

  10. gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization

    NASA Astrophysics Data System (ADS)

    Nguyen, Thang Viet; Patra, Jagdish Chandra; Emmanuel, Sabu

    2006-12-01

    A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to other algorithms.

  11. Algorithms for extraction of structural attitudes from 3D outcrop models

    NASA Astrophysics Data System (ADS)

    Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos

    2016-05-01

    The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.

  12. Distributed genetic algorithms for the floorplan design problem

    NASA Technical Reports Server (NTRS)

    Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.

    1991-01-01

    Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.

  13. Cutting roller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, G.; Weikert, N.B.

    1984-05-29

    A cutting roller for a mining machine, having a substantially conical closure member arranged to face the workings and a tubular body member which has a larger diameter at the end nearer the face working face than at the discharge end. The tubular member carries at least one cutting blade, and the closure member mounts at least one cutting blade; each blade is provided at its edge region with a plurality of bit holders for the attachment of cutter bits. The outer surface of the body member merges into the substantially conical closure member in a smooth, even curve, somore » that the outside diameter of the body member in the region of the working face is substantially greater than the diameter in the region of the discharge end of the cutting roller. The roller is provided with liquid distribution channels on each cutting blade, which channels are connected to a single liquid distribution ring channel in the region of the substantially conical closure member.« less

  14. Portable propellant cutting assembly, and method of cutting propellant with assembly

    NASA Technical Reports Server (NTRS)

    Sharp, Roger A. (Inventor); Hoskins, Shawn W. (Inventor); Payne, Brett D. (Inventor)

    2002-01-01

    A propellant cutting assembly and method of using the assembly to cut samples of solid propellant in a repeatable and consistent manner is disclosed. The cutting assembly utilizes two parallel extension beams which are shorter than the diameter of a central bore of an annular solid propellant grain and can be loaded into the central bore. The assembly is equipped with retaining heads at its respective ends and an adjustment mechanism to position and wedge the assembly within the central bore. One end of the assembly is equipped with a cutting blade apparatus which can be extended beyond the end of the extension beams to cut into the solid propellant.

  15. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    NASA Astrophysics Data System (ADS)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  16. 3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities

    NASA Astrophysics Data System (ADS)

    Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir

    2016-03-01

    Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.

  17. Multi-element array signal reconstruction with adaptive least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1992-01-01

    Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.

  18. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.

    PubMed

    Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-12-01

    Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.

  19. Research on sparse feature matching of improved RANSAC algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangsi; Zhao, Xian

    2018-04-01

    In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.

  20. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.

  1. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    DOE PAGES

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-24

    We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less

  2. Cutting assembly

    DOEpatents

    Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.

    1984-01-01

    A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.

  3. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms?

    PubMed

    Smale, Kenneth B; Potvin, Brigitte M; Shourijeh, Mohammad S; Benoit, Daniel L

    2017-09-06

    The recent development of a soft tissue artifact (STA) suppression method allows us to re-evaluate the tibiofemoral kinematics currently linked to non-contact knee injuries. The purpose of this study was therefore to evaluate knee joint kinematics and kinetics in six degrees of freedom (DoF) during the loading phases of a jump lunge and side cut using this in silico method. Thirty-five healthy adults completed these movements and their surface marker trajectories were then scaled and processed with OpenSim's inverse kinematics (IK) and inverse dynamics tools. Knee flexion angle-dependent kinematic constraints defined based on previous bone pin (BP) marker trajectories were then applied to the OpenSim model during IK and these constrained results were then processed with the standard inverse dynamics tool. Significant differences for all hip, knee, and ankle DoF were observed after STA suppression for both the jump lunge and side cut. Using clinically relevant effect size estimates, we conclude that STA contamination had led to misclassifications in hip transverse plane angles, knee frontal and transverse plane angles, medial/lateral and distractive/compressive knee translations, and knee frontal plane moments between the NoBP and the BP IK solutions. Our results have substantial clinical implications since past research has used joint kinematics and kinetics contaminated by STA to identify risk factors for musculoskeletal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Improved neural network based scene-adaptive nonuniformity correction method for infrared focal plane arrays.

    PubMed

    Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin

    2008-08-20

    An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.

  5. Recognition of plant parts with problem-specific algorithms

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Brendel, Thorsten; Jensch, Peter F.; Megnet, Roland

    1994-06-01

    Automatic micropropagation is necessary to produce cost-effective high amounts of biomass. Juvenile plants are dissected in clean- room environment on particular points on the stem or the leaves. A vision-system detects possible cutting points and controls a specialized robot. This contribution is directed to the pattern- recognition algorithms to detect structural parts of the plant.

  6. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB2/7050Al MMC

    PubMed Central

    Wang, Wenhu; Jiang, Ruisong; Lin, Kunyang; Shao, Mingwei

    2018-01-01

    The in-situ TiB2/7050Al composite is a new kind of Al-based metal matrix composite (MMC) with super properties, such as low density, improved strength, and wear resistance. This paper, for a deep insight into its cutting performance, involves a study of the chip formation process and finite element simulation during orthogonal cutting in-situ TiB2/7050Al MMC. With chips, material properties, cutting forces, and tool geometry parameters, the Johnson–Cook (J–C) constitutive equation of in-situ TiB2/7050Al composite was established. Then, the cutting simulation model was established by applying the Abaqus–Explicit method, and the serrated chip, shear plane, strain rate, and temperature were analyzed. The experimental and simulation results showed that the obtained material’s constitutive equation was of high reliability, and the saw-tooth chips occurred commonly under either low or high cutting speed and small or large feed rate. From result analysis, it was found that the mechanisms of chip formation included plastic deformation, adiabatic shear, shearing slip, and crack extension. In addition, it was found that the existence of small, hard particles reduced the ductility of the MMC and resulted in segmental chips. PMID:29662047

  7. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  8. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    PubMed

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  9. An improved graph cut segmentation method for cervical lymph nodes on sonograms and its relationship with node's shape assessment.

    PubMed

    Zhang, Junhua; Wang, Yuanyuan; Shi, Xinling

    2009-12-01

    A modified graph cut was proposed under the elliptical shape constraint to segment cervical lymph nodes on sonograms, and its effect on the measurement of short axis to long axis ratio (S/L) was investigated by using the relative ultimate measurement accuracy (RUMA). Under the same user inputs, the proposed algorithm successfully segmented all 60 sonograms tested, while the traditional graph cut failed. The mean RUMA resulted from the developed method was comparable to that resulted from the manual segmentation. Results indicated that utilizing the elliptical shape prior could appreciably improve the graph cut for nodes segmentation, and the proposed method satisfied the accuracy requirement of S/L measurement.

  10. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  11. Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation

    NASA Astrophysics Data System (ADS)

    Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe

    2015-07-01

    Downed dead wood is regarded as an important part of forest ecosystems from an ecological perspective, which drives the need for investigating its spatial distribution. Based on several studies, Airborne Laser Scanning (ALS) has proven to be a valuable remote sensing technique for obtaining such information. This paper describes a unified approach to the detection of fallen trees from ALS point clouds based on merging short segments into whole stems using the Normalized Cut algorithm. We introduce a new method of defining the segment similarity function for the clustering procedure, where the attribute weights are learned from labeled data. Based on a relationship between Normalized Cut's similarity function and a class of regression models, we show how to learn the similarity function by training a classifier. Furthermore, we propose using an appearance-based stopping criterion for the graph cut algorithm as an alternative to the standard Normalized Cut threshold approach. We set up a virtual fallen tree generation scheme to simulate complex forest scenarios with multiple overlapping fallen stems. This simulated data is then used as a basis to learn both the similarity function and the stopping criterion for Normalized Cut. We evaluate our approach on 5 plots from the strictly protected mixed mountain forest within the Bavarian Forest National Park using reference data obtained via a manual field inventory. The experimental results show that our method is able to detect up to 90% of fallen stems in plots having 30-40% overstory cover with a correctness exceeding 80%, even in quite complex forest scenes. Moreover, the performance for feature weights trained on simulated data is competitive with the case when the weights are calculated using a grid search on the test data, which indicates that the learned similarity function and stopping criterion can generalize well on new plots.

  12. Cutting thread at flexible endoscopy.

    PubMed

    Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T

    1996-12-01

    New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.

  13. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.

    PubMed

    Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.

  14. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults

    PubMed Central

    Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839

  15. Self-recovery fragile watermarking algorithm based on SPHIT

    NASA Astrophysics Data System (ADS)

    Xin, Li Ping

    2015-12-01

    A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.

  16. In-plane and out-of-plane motions of the human tympanic membrane

    PubMed Central

    Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009

  17. Direction of Radio Finding via MUSIC (Multiple Signal Classification) Algorithm for Hardware Design System

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2017-10-01

    Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.

  18. A simple and inclusive method to determine the habit plane in transmission electron microscope based on accurate measurement of foil thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Dong, E-mail: d.qiu@uq.edu.au; Zhang, Mingxing

    2014-08-15

    A simple and inclusive method is proposed for accurate determination of the habit plane between bicrystals in transmission electron microscope. Whilst this method can be regarded as a variant of surface trace analysis, the major innovation lies in the improved accuracy and efficiency of foil thickness measurement, which involves a simple tilt of the thin foil about a permanent tilting axis of the specimen holder, rather than cumbersome tilt about the surface trace of the habit plane. Experimental study has been done to validate this proposed method in determining the habit plane between lamellar α{sub 2} plates and γ matrixmore » in a Ti–Al–Nb alloy. Both high accuracy (± 1°) and high precision (± 1°) have been achieved by using the new method. The source of the experimental errors as well as the applicability of this method is discussed. Some tips to minimise the experimental errors are also suggested. - Highlights: • An improved algorithm is formulated to measure the foil thickness. • Habit plane can be determined with a single tilt holder based on the new algorithm. • Better accuracy and precision within ± 1° are achievable using the proposed method. • The data for multi-facet determination can be collected simultaneously.« less

  19. Fundamentals of cutting.

    PubMed

    Williams, J G; Patel, Y

    2016-06-06

    The process of cutting is analysed in fracture mechanics terms with a view to quantifying the various parameters involved. The model used is that of orthogonal cutting with a wedge removing a layer of material or chip. The behaviour of the chip is governed by its thickness and for large radii of curvature the chip is elastic and smooth cutting occurs. For smaller thicknesses, there is a transition, first to plastic bending and then to plastic shear for small thicknesses and smooth chips are formed. The governing parameters are tool geometry, which is principally the wedge angle, and the material properties of elastic modulus, yield stress and fracture toughness. Friction can also be important. It is demonstrated that the cutting process may be quantified via these parameters, which could be useful in the study of cutting in biology.

  20. Adaptive bit plane quadtree-based block truncation coding for image compression

    NASA Astrophysics Data System (ADS)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  1. Combining watershed and graph cuts methods to segment organs at risk in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dolz, Jose; Kirisli, Hortense A.; Viard, Romain; Massoptier, Laurent

    2014-03-01

    Computer-aided segmentation of anatomical structures in medical images is a valuable tool for efficient radiation therapy planning (RTP). As delineation errors highly affect the radiation oncology treatment, it is crucial to delineate geometric structures accurately. In this paper, a semi-automatic segmentation approach for computed tomography (CT) images, based on watershed and graph-cuts methods, is presented. The watershed pre-segmentation groups small areas of similar intensities in homogeneous labels, which are subsequently used as input for the graph-cuts algorithm. This methodology does not require of prior knowledge of the structure to be segmented; even so, it performs well with complex shapes and low intensity. The presented method also allows the user to add foreground and background strokes in any of the three standard orthogonal views - axial, sagittal or coronal - making the interaction with the algorithm easy and fast. Hence, the segmentation information is propagated within the whole volume, providing a spatially coherent result. The proposed algorithm has been evaluated using 9 CT volumes, by comparing its segmentation performance over several organs - lungs, liver, spleen, heart and aorta - to those of manual delineation from experts. A Dicés coefficient higher than 0.89 was achieved in every case. That demonstrates that the proposed approach works well for all the anatomical structures analyzed. Due to the quality of the results, the introduction of the proposed approach in the RTP process will be a helpful tool for organs at risk (OARs) segmentation.

  2. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete

    PubMed Central

    Martynenko, V.; Martínez Krahmer, D.; Benítez, A.; Genovese, G.

    2018-01-01

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade’s matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria. PMID:29425125

  3. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    PubMed

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  4. A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system

    NASA Astrophysics Data System (ADS)

    Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran

    2016-10-01

    Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).

  5. Laser cutting of Kevlar laminates and thermal stress formed at cutting sections

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.

    2012-02-01

    Laser cutting of Kevlar laminates is carried out and thermal stress field developed in the cutting region is predicted using the finite element code. Temperature predictions are validated through the thermocouple data. The morphological changes in the cutting section are examined by incorporating optical and scanning electron microscopes. It is found that temperature predictions agree well with the thermocouple data. High values of von Mises stress are observed at the cutting edges and at the mid-thickness of the Kevlar laminate due to thermal compression formed in this region. The laser cut edges are free from whiskers; however, striation formation and some small sideways burning is observed at the kerf edges.

  6. Design of the OMPS limb sensor correction algorithm

    NASA Astrophysics Data System (ADS)

    Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark

    The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.

  7. Research on the Improved Image Dodging Algorithm Based on Mask Technique

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hu, H.; Wan, Y.

    2012-08-01

    The remote sensing image dodging algorithm based on Mask technique is a good method for removing the uneven lightness within a single image. However, there are some problems with this algorithm, such as how to set an appropriate filter size, for which there is no good solution. In order to solve these problems, an improved algorithm is proposed. In this improved algorithm, the original image is divided into blocks, and then the image blocks with different definitions are smoothed using the low-pass filters with different cut-off frequencies to get the background image; for the image after subtraction, the regions with different lightness are processed using different linear transformation models. The improved algorithm can get a better dodging result than the original one, and can make the contrast of the whole image more consistent.

  8. Three-dimensional imaging using phase retrieval with two focus planes

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2016-03-01

    This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.

  9. Standard plane localization in ultrasound by radial component model and selective search.

    PubMed

    Ni, Dong; Yang, Xin; Chen, Xin; Chin, Chien-Ting; Chen, Siping; Heng, Pheng Ann; Li, Shengli; Qin, Jing; Wang, Tianfu

    2014-11-01

    Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Kalman Filter for Calibrating a Telescope Focal Plane

    NASA Technical Reports Server (NTRS)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  11. Device for cutting protrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz M

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade.more » The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.« less

  12. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses

    PubMed Central

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-01-01

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010

  13. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    PubMed

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  14. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  15. Making planes plain.

    PubMed

    O'Rahilly, R

    1997-01-01

    The major anatomical planes (horizontal, coronal, and sagittal, including the median plane) are discussed from a historical perspective, and their correct usage is clarified. Unofficial and unnecessary terms to be avoided (for reasons explained) include midsagittal, parasagittal, and midline.

  16. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  17. A 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Elias, Isaac; Hartman, Tzvika

    2006-01-01

    Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.

  18. A focal plane detector design for a wide band Laue-lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, E.; Auricchio, N.; Bertuccio, G.; Budtz-Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Frontera, F.; Quadrini, E.; Ubertini, P.; Ventura, G.

    2006-06-01

    The energy range above 50 keV is important for the study of many open problems in high energy astrophysics such as, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. In the framework of the definition of a new mission concept for hard X and soft gamma ray (GRI- Gamma Ray Imager) for the next decade, the use of Laue lenses with broad energy band-passes from 100 to 1000 keV is under study. This kind of instruments will be used for deep study the hard X-ray continuum of celestial sources. This new telescope will require focal plane detectors with high detection efficiency over the entire operative range, an energy resolution of few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration for the focal plane detector based on CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can either operate as a separate position sensitive detector and a polarimeter or together with other layers in order to increase the overall full energy efficiency. We report on the current state of art in high Z spectrometers development and on some activities undergoing. Furthermore we describe the proposed focal plane option with the required resources and an analytical summary of the achievable performance in terms of efficiency and polarimetry.

  19. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  20. The lateral plane delivers higher dose than the frontal plane in biplane cardiac catheterization systems.

    PubMed

    Aldoss, Osamah; Patel, Sonali; Harris, Kyle; Divekar, Abhay

    2015-06-01

    The objective of the study is to compare radiation dose between the frontal and lateral planes in a biplane cardiac catheterization laboratory. Tube angulation progressively increases patient and operator radiation dose in single-plane cardiac catheterization laboratories. This retrospective study captured biplane radiation dose in a pediatric cardiac catheterization laboratory between April 2010 and January 2014. Raw and time-indexed fluoroscopic, cineangiographic and total (fluoroscopic + cineangiographic) air kerma (AK, mGy) and kerma area product (PKA, µGym(2)/Kg) for each plane were compared. Data for 716 patients were analyzed: 408 (56.98 %) were male, the median age was 4.86 years, and the median weight was 17.35 kg. Although median beam-on time (minutes) was 4.2 times greater in the frontal plane, there was no difference in raw median total PKA between the two planes. However, when indexed to beam-on time, the lateral plane had a higher median-indexed fluoroscopic (0.75 vs. 1.70), cineangiographic (16.03 vs. 24.92), and total (1.43 vs. 5.15) PKA (p < 0.0001). The median time-indexed total PKA in the lateral plane is 3.6 times the frontal plane. This is the first report showing that the lateral plane delivers a higher dose than the frontal plane per unit time. Operators should consciously reduce the lateral plane beam-on time and incorporate this practice in radiation reduction protocols.

  1. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  2. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan

    2010-10-01

    Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.

  3. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  4. Simultaneous 3D segmentation of three bone compartments on high resolution knee MR images from osteoarthritis initiative (OAI) using graph cuts

    NASA Astrophysics Data System (ADS)

    Shim, Hackjoon; Kwoh, C. Kent; Yun, Il Dong; Lee, Sang Uk; Bae, Kyongtae

    2009-02-01

    Osteoarthritis (OA) is associated with degradation of cartilage and related changes in the underlying bone. Quantitative measurement of those changes from MR images is an important biomarker to study the progression of OA and it requires a reliable segmentation of knee bone and cartilage. As the most popular method, manual segmentation of knee joint structures by boundary delineation is highly laborious and subject to user-variation. To overcome these difficulties, we have developed a semi-automated method for segmentation of knee bones, which consisted of two steps: placement of seeds and computation of segmentation. In the first step, seeds were placed by the user on a number of slices and then were propagated automatically to neighboring images. The seed placement could be performed on any of sagittal, coronal, and axial planes. The second step, computation of segmentation, was based on a graph-cuts algorithm where the optimal segmentation is the one that minimizes a cost function, which integrated the seeds specified by the user and both the regional and boundary properties of the regions to be segmented. The algorithm also allows simultaneous segmentation of three compartments of the knee bone (femur, tibia, patella). Our method was tested on the knee MR images of six subjects from the osteoarthritis initiative (OAI). The segmentation processing time (mean+/-SD) was (22+/-4)min, which is much shorter than that by the manual boundary delineation method (typically several hours). With this improved efficiency, our segmentation method will facilitate the quantitative morphologic analysis of changes in knee bones associated with osteoarthritis.

  5. Mechanical specific energy versus depth of cut in rock cutting and drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac

    The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less

  6. Mechanical specific energy versus depth of cut in rock cutting and drilling

    DOE PAGES

    Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac; ...

    2017-12-07

    The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less

  7. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    PubMed

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  8. Research on auto-calibration technology of the image plane's center of 360-degree and all round looking camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Xu, Xiping

    2015-10-01

    The 360-degree and all round looking camera, as its characteristics of suitable for automatic analysis and judgment on the ambient environment of the carrier by image recognition algorithm, is usually applied to opto-electronic radar of robots and smart cars. In order to ensure the stability and consistency of image processing results of mass production, it is necessary to make sure the centers of image planes of different cameras are coincident, which requires to calibrate the position of the image plane's center. The traditional mechanical calibration method and electronic adjusting mode of inputting the offsets manually, both exist the problem of relying on human eyes, inefficiency and large range of error distribution. In this paper, an approach of auto- calibration of the image plane of this camera is presented. The imaging of the 360-degree and all round looking camera is a ring-shaped image consisting of two concentric circles, the center of the image is a smaller circle and the outside is a bigger circle. The realization of the technology is just to exploit the above characteristics. Recognizing the two circles through HOUGH TRANSFORM algorithm and calculating the center position, we can get the accurate center of image, that the deviation of the central location of the optic axis and image sensor. The program will set up the image sensor chip through I2C bus automatically, we can adjusting the center of the image plane automatically and accurately. The technique has been applied to practice, promotes productivity and guarantees the consistent quality of products.

  9. Torsion effect of swing frame on the measurement of horizontal two-plane balancing machine

    NASA Astrophysics Data System (ADS)

    Wang, Qiuxiao; Wang, Dequan; He, Bin; Jiang, Pan; Wu, Zhaofu; Fu, Xiaoyan

    2017-03-01

    In this paper, the vibration model of swing frame of two-plane balancing machine is established to calculate the vibration center position of swing frame first. The torsional stiffness formula of spring plate twisting around the vibration center is then deduced by using superposition principle. Finally, the dynamic balancing experiments prove the irrationality of A-B-C algorithm which ignores the torsion effect, and show that the torsional stiffness deduced by experiments is consistent with the torsional stiffness calculated by theory. The experimental datas show the influence of the torsion effect of swing frame on the separation ratio of sided balancing machines, which reveals the sources of measurement error and assesses the application scope of A-B-C algorithm.

  10. Quasi-conformal mapping with genetic algorithms applied to coordinate transformations

    NASA Astrophysics Data System (ADS)

    González-Matesanz, F. J.; Malpica, J. A.

    2006-11-01

    In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.

  11. Improving Pathogen Reduction by Chlorine Wash Prior to Cutting in Fresh-Cut Processing

    USDA-ARS?s Scientific Manuscript database

    Introduction: Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine...

  12. K2: Extending Kepler's Power to the Ecliptic-Ecliptic Plane Input Catalog

    NASA Technical Reports Server (NTRS)

    Huber, Daniel; Bryson, Stephen T.

    2017-01-01

    This document describes the Ecliptic Plane Input Catalog (EPIC) for the K2 mission (Howell et al. 2014). The primary purpose of this catalog is to provide positions and Kepler magnitudes for target management and aperture photometry. The Ecliptic Plane Input Catalog is hosted at MAST (http://archive.stsci.edu/k2/epic/search.php) and should be used for selecting targets when ever possible. The EPIC is updated for future K2 campaigns as their fields of view are finalized and the associated target management is completed. Table 0 summarizes the EPIC updates to date and the ID range for each. The main algorithms used to construct the EPIC are described in Sections 2 through 4. The details for individual campaigns are described in the subsequent sections, with the references listed in the last section. Further details can be found in Huber et al. (2016).

  13. Aircraft target detection algorithm based on high resolution spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing

    2018-03-01

    In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.

  14. Proposed algorithm to improve job shop production scheduling using ant colony optimization method

    NASA Astrophysics Data System (ADS)

    Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari

    2017-12-01

    This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.

  15. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    PubMed

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  16. Single-intensity-recording optical encryption technique based on phase retrieval algorithm and QR code

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi

    2014-12-01

    Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.

  17. A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1989-01-01

    Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.

  18. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  19. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    NASA Astrophysics Data System (ADS)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi

    2017-12-01

    In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  20. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation — A Progress Report

    NASA Astrophysics Data System (ADS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan

    2004-06-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.

  1. UAS Collision Avoidance Algorithm that Minimizes the Impact on Route Surveillance

    DTIC Science & Technology

    2009-03-01

    Appendix A: Collision Avoidance Algorithm/Virtual Cockpit Interface .......................124 Appendix B : Collision Cone Boundary Rates... b ) Split Cone (c) Multiple Intruders, Single and Split Cones [27] ........................................................ 27 3-3: Collision Cone...Approach in the Vertical Plane (a) Single Cone ( b ) Multiple Intruders, Single and Split Cone [27

  2. S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series

    NASA Technical Reports Server (NTRS)

    Bessis, D.; Temkin, A.

    1999-01-01

    We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.

  3. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.

    PubMed

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-11

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  4. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    NASA Astrophysics Data System (ADS)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  5. Algorithms for sorting unsigned linear genomes by the DCJ operations.

    PubMed

    Jiang, Haitao; Zhu, Binhai; Zhu, Daming

    2011-02-01

    The double cut and join operation (abbreviated as DCJ) has been extensively used for genomic rearrangement. Although the DCJ distance between signed genomes with both linear and circular (uni- and multi-) chromosomes is well studied, the only known result for the NP-complete unsigned DCJ distance problem is an approximation algorithm for unsigned linear unichromosomal genomes. In this article, we study the problem of computing the DCJ distance on two unsigned linear multichromosomal genomes (abbreviated as UDCJ). We devise a 1.5-approximation algorithm for UDCJ by exploiting the distance formula for signed genomes. In addition, we show that UDCJ admits a weak kernel of size 2k and hence an FPT algorithm running in O(2(2k)n) time.

  6. The Sierpinski Triangle Plane

    NASA Astrophysics Data System (ADS)

    Ettestad, David; Carbonara, Joaquin

    The Sierpinski Triangle (ST) is a fractal which has Haussdorf dimension log23 ≈ 1.585 that has been studied extensively. In this paper, we introduce the Sierpinski Triangle Plane (STP), an infinite extension of the ST that spans the entire real plane but is not a vector subspace or a tiling of the plane with a finite set of STs. STP is shown to be a radial fractal with many interesting and surprising properties.

  7. Effect of Cutting Velocity / Stem Size on the Efficiency of NRCRI Cassave Stem Cutting Machine

    NASA Astrophysics Data System (ADS)

    Ikejiofor, M. C.

    2012-11-01

    The developed NRCRI (National Root Crops Research Institute) cassava stem cutting machine was evaluated. The cassava stems from the variety TME 419 were used. The sizes of the stem used were 1.8, 2.0, 2.3 and 2.6cm. Also, different cutting velocities of 1.20, 1.23 and 1.32m/s were used. The stakes produced has length of 2.5cm. Analysis of variance in RCBD was used to evaluate the effect of the cutting velocity and the stem size on the efficiency of the cutting machine. The result of the analysis showed that the cutting velocity had very highly significant effect, while the stem size had no significant effect at 5% level on the efficiency of the cutting machine. The data obtained also showed that the highest and least cutting efficiencies of 99.42 and 94.71% were obtained with the machine cutting velocities of 1.2 and 1.32m/s respectively.

  8. Differential and relaxed image foresting transform for graph-cut segmentation of multiple 3D objects.

    PubMed

    Moya, Nikolas; Falcão, Alexandre X; Ciesielski, Krzysztof C; Udupa, Jayaram K

    2014-01-01

    Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods. The user can add/remove markers (seed voxels) along a sequence of executions of the DRIFT algorithm to improve segmentation. Its first execution takes linear time with the image's size, while the subsequent executions for corrections take sublinear time in practice. At each execution, DRIFT first runs the DIFT algorithm, then it applies diffusion filtering to smooth boundaries between objects (and background) and, finally, it corrects possible objects' disconnection occurrences with respect to their seeds. We evaluate DRIFT in 3D CT-images of the thorax for segmenting the arterial system, esophagus, left pleural cavity, right pleural cavity, trachea and bronchi, and the venous system.

  9. SWIR HgCdTe avalanche photiode focal plane array performances evaluation

    NASA Astrophysics Data System (ADS)

    de Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P.

    2017-11-01

    One of the main challenges of modern astronomical instruments like adaptive optics (AO) systems or fringe trackers is to deal with the very low photons flux detection scenarios. The typical timescale of atmospheric turbulences being in the range of some tens of milliseconds, infrared wavefront sensors for AO systems needs frame rates higher than 1 KHz leading to integration times lower than 1 ms. This integration time associated with a low irradiance results in a few number of integrated photons per frame per pixel. To preserve the information coming from this weak signal, the focal plane array (FPA) has to present a low read out noise, a high quantum efficiency and a low dark current. Up to now, the output noise of high speed near infrared sensors is limited by the silicon read out circuit noise. The use of HgCdTe avalanche photodiodes with high gain at moderate reverse bias and low excess noise seems then a logical way to reduce the impact of the read noise on images signal to noise ratio. These low irradiance passive imaging applications with integration times in the millisecond range needs low photodiode dark current and low background current. These requirements lead to the choice of the photodiode cut off wavelength. The short wave infrared (SWIR) around 3 μm is a good compromise between the gain that can be obtain for a given APD bias and the background and dark current. The CEA LETI HgCdTe APD technology, and a fine analysis of the gain curve characteristic are presented in [1] and won't be detailed here. The response time of the APD is also a key factor for a high frame rate FPA. This parameter has been evaluated in [2] and the results shows cut off frequencies in the GHz range. In this communication we report the performances of a SWIR APD FPA designed and fabricated by CEA LETI and SOFRADIR for astrophysical applications. This development was made in the frame of RAPID, a 4 years R&D project funded by the French FUI (Fond Unique Interministériel). This

  10. Fast computation algorithms for speckle pattern simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru

    2013-11-13

    We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes canmore » be tilted each to other and the output domain can be off-axis shifted.« less

  11. Application of morphological bit planes in retinal blood vessel extraction.

    PubMed

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  12. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  13. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  14. Noise reduction in digital holography based on a filtering algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David

    2018-02-01

    Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.

  15. Optimization of the p-xylene oxidation process by a multi-objective differential evolution algorithm with adaptive parameters co-derived with the population-based incremental learning algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Zhan; Yan, Xuefeng

    2018-04-01

    Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.

  16. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    PubMed

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  17. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining

    PubMed Central

    Salehi, Mojtaba

    2010-01-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020

  18. Multi-jagged: A scalable parallel spatial partitioning algorithm

    DOE PAGES

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Devine, Karen D.; ...

    2015-03-18

    Geometric partitioning is fast and effective for load-balancing dynamic applications, particularly those requiring geometric locality of data (particle methods, crash simulations). We present, to our knowledge, the first parallel implementation of a multidimensional-jagged geometric partitioner. In contrast to the traditional recursive coordinate bisection algorithm (RCB), which recursively bisects subdomains perpendicular to their longest dimension until the desired number of parts is obtained, our algorithm does recursive multi-section with a given number of parts in each dimension. By computing multiple cut lines concurrently and intelligently deciding when to migrate data while computing the partition, we minimize data movement compared to efficientmore » implementations of recursive bisection. We demonstrate the algorithm's scalability and quality relative to the RCB implementation in Zoltan on both real and synthetic datasets. Our experiments show that the proposed algorithm performs and scales better than RCB in terms of run-time without degrading the load balance. Lastly, our implementation partitions 24 billion points into 65,536 parts within a few seconds and exhibits near perfect weak scaling up to 6K cores.« less

  19. Laser cutting plastic materials

    NASA Astrophysics Data System (ADS)

    Vancleave, R. A.

    1980-08-01

    A 1000 watt CO2 laser was demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics were laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass reinforced laminates, Kevlar/epoxy composites, fiberglass reinforced phenolics, nylon/epoxy laminates, ceramics, and disposal tooling made from acrylic.

  20. Consumer evaluation of palatability characteristics of a beef value-added cut compared to common retail cuts.

    PubMed

    Lepper-Blilie, A N; Berg, E P; Germolus, A J; Buchanan, D S; Berg, P T

    2014-01-01

    The objectives of this study were to educate consumers about value-added beef cuts and evaluate their palatability responses of a value cut and three traditional cuts. Three hundred and twenty-two individuals participated in the beef value cut education seminar series presented by trained beef industry educators. Seminar participants evaluated tenderness, juiciness, flavor, and overall like of four samples, bottom round, top sirloin, ribeye, and a value cut (Delmonico or Denver), on a 9-point scale. The ribeye and the value cut were found to be similar in all four attributes and differed from the top sirloin and bottom round. Correlations and regression analysis found that flavor was the largest influencing factor for overall like for the ribeye, value cut, and top sirloin. The value cut is comparable to the ribeye and can be a less expensive replacement. © 2013.

  1. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    PubMed

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  2. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  3. Cutting and coagulation during intraoral soft tissue surgery using Er: YAG laser.

    PubMed

    Onisor, I; Pecie, R; Chaskelis, I; Krejci, I

    2013-06-01

    To find the optimal techniques and parameters that enables Er:YAG laser to be used successfully for small intraoral soft tissue interventions, in respect to its cutting and coagulation abilities. In vitro pre-tests: 4 different Er:YAG laser units and one CO2 unit as the control were used for incision and coagulation on porcine lower jaws and optimal parameters were established for each type of intervention and each laser unit: energy, frequency, type, pulse duration and distance. 3 different types of intervention using Er:YAG units are presented: crown lengthening, gingivoplasty and maxillary labial frenectomy with parameters found in the in vitro pre-tests. The results showed a great decrease of the EMG activity of masseter and anterior temporalis muscles. Moreover, the height and width of the chewing cycles in the frontal plane increased after therapy. Er:YAG is able to provide good cutting and coagulation effects on soft tissues. Specific parameters have to be defined for each laser unit in order to obtain the desired effect. Reduced or absent water spray, defocused light beam, local anaesthesia and the most effective use of long pulses are methods to obtain optimal coagulation and bleeding control.

  4. INTERNAL CUTTING DEVICE

    DOEpatents

    Russell, W.H. Jr.

    1959-06-30

    A device is described for removing material from the interior of a hollow workpiece so as to form a true spherical internal surface in a workpiece, or to cut radial slots of an adjustable constant depth in an already established spherical internal surface. This is accomplished by a spring loaded cutting tool adapted to move axially wherein the entire force urging the tool against the workpiece is derived from the spring. Further features of importance involve the provision of a seal between the workpiece and the cutting device and a suction device for carrying away particles of removed material.

  5. An Observation of Repeating Events at local asperities during a Laboratory Stick-slip Experiment of a Saw-cut Cylindrical Lucite Sample

    NASA Astrophysics Data System (ADS)

    Gu, C.; Mighani, S.; Prieto, G. A.; Mok, U.; Evans, J. B.; Hager, B. H.; Toksoz, M. N.

    2017-12-01

    Repeating earthquakes have been found in subduction zones and interpreted as repeated ruptures of small local asperities. Repeating earthquakes have also been found in oil/gas fields, interpreted as the reactivation of pre-existing faults due to fluid injection/extraction. To mimic the fault rupture of a fault with local asperities, we designed a "stick-slip" experiment using a saw-cut cylindrical Lucite sample, which had sharp localized ridges parallel to the strike of the fault plane. The sample was subjected to conventional triaxial loading with a constant confining pressure of 10 MPa. The axial load was then increased to 6 MPa at a constant rate of 0.12 MPa/sec until the sliding occurred along the fault plane. Ultrasonic acoustic emissions (AEs) were monitored with eight PZT sensors. Two cycles of AEs were detected with the occurrence rate that decreased from the beginning to the end of each cycle, while the relative magnitudes increased. Correlation analysis indicated that these AEs were clustered into two groups - those with frequency content between 200-300kHz and a second group with frequency content between 10-50kHz. The locations of the high-frequency events, with almost identical waveforms, show that these events are from the sharp localized ridges on the saw-cut plane. The locations of the low-frequency events show an approaching process to the high-frequency events for each cycle. In this single experiment, there was a correlation of the proximity of the low-frequency events with the subsequent triggering of large high-frequency repeating events.

  6. The Three Planes of Language.

    ERIC Educational Resources Information Center

    Sampson, Gloria

    1999-01-01

    Currently, the language sciences place together four different forms of mental activity on one plane of language, which results in confusion. This paper presents arguments from metaphysics, hermeneutics, and semiotics to demonstrate that there are actually three planes of language (a biologically-based information processing plane, a literal…

  7. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization

  8. A New Scrambling Evaluation Scheme Based on Spatial Distribution Entropy and Centroid Difference of Bit-Plane

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Adhikari, Avishek; Sakurai, Kouichi

    Watermarking is one of the most effective techniques for copyright protection and information hiding. It can be applied in many fields of our society. Nowadays, some image scrambling schemes are used as one part of the watermarking algorithm to enhance the security. Therefore, how to select an image scrambling scheme and what kind of the image scrambling scheme may be used for watermarking are the key problems. Evaluation method of the image scrambling schemes can be seen as a useful test tool for showing the property or flaw of the image scrambling method. In this paper, a new scrambling evaluation system based on spatial distribution entropy and centroid difference of bit-plane is presented to obtain the scrambling degree of image scrambling schemes. Our scheme is illustrated and justified through computer simulations. The experimental results show (in Figs. 6 and 7) that for the general gray-scale image, the evaluation degree of the corresponding cipher image for the first 4 significant bit-planes selection is nearly the same as that for the 8 bit-planes selection. That is why, instead of taking 8 bit-planes of a gray-scale image, it is sufficient to take only the first 4 significant bit-planes for the experiment to find the scrambling degree. This 50% reduction in the computational cost makes our scheme efficient.

  9. Performance Comparison of Superresolution Array Processing Algorithms. Revised

    DTIC Science & Technology

    1998-06-15

    plane waves is finite is the MUSIC algorithm [16]. MUSIC , which denotes Multiple Signal Classification, is an extension of the method of Pisarenko [18... MUSIC Is but one member of a class of methods based upon the decomposition of covariance data into eigenvectors and eigenvalues. Such techniques...techniques relative to the classical methods, however, results for MUSIC are included in this report. All of the techniques reviewed have application to

  10. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture.

    PubMed

    Narayanan, Balaji; Hardie, Russell C; Muse, Robert A

    2005-06-10

    Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

  11. "A Tale of Two Planes": Deep Versus Superficial Serratus Plane Block for Postmastectomy Pain Syndrome.

    PubMed

    Piracha, Mohammad M; Thorp, Stephen L; Puttanniah, Vinay; Gulati, Amitabh

    Postmastectomy pain syndrome (PMPS) is a significant burden for breast cancer survivors. Although multiple therapies have been described, an evolving field of serratus anterior plane blocks has been described in this population. We describe the addition of the deep serratus anterior plane block (DSPB) for PMPS. Four patients with history of PMPS underwent DSPB for anterior chest wall pain. A retrospective review of these patients' outcomes was obtained through postprocedure interviews. Three of the patients previously had a superficial serratus anterior plane block, which was not as efficacious as the DSPB. The fourth patient had a superficial serratus anterior plane that was difficult to separate with hydrodissection but had improved pain control with a DSPB. We illustrate 4 patients who have benefitted from a DSPB and describe indications that this block may be more efficacious than a superficial serratus plane block. Further study is recommended to understand the intercostal nerve branches within the lateral and anterior muscular chest wall planes.

  12. Distributed learning automata-based algorithm for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza

    2016-03-01

    Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.

  13. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  14. RNA Graph Partitioning for the Discovery of RNA Modularity: A Novel Application of Graph Partition Algorithm to Biology

    PubMed Central

    Elmetwaly, Shereef; Schlick, Tamar

    2014-01-01

    Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest

  15. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  16. Planck 2015 results. XII. Full focal plane simulations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

  17. The effect of cutting parameters on the performance of ZTA-MgO cutting tool

    NASA Astrophysics Data System (ADS)

    Ali, A. M.; Hamidon, N. E.; Zaki, N. K. M.; Mokhtar, S.; Azhar, A. Z. A.; Bahar, R.; Ahmad, Z. A.

    2018-01-01

    The effect of cutting parameters on the performances of ZTA-MgO ceramic cutting tool investigated. The aim of this project is to discover the effect of cutting speed and feedrate on the performance of the ZTA-MgO cutting tool via wear and surface roughness measurement. CNC turning machining performed using the cutting speed, Vc range from 354 to 471 m/min and the feed rate, f 0.1, 0.3 and 0.5 mm/rev while the depth of cut, d is kept constant at 0.2 mm. The flank wear, crater wear, and chipping were measured accordingly using optical microscope, Matlab programming and SEM. Surface roughness of machined stainless steel 316L surface were measured using the surface roughness tester (Mitutoyo MTR097-8. The result showing the increment trend of flank wear with increment of cutting speed and feed rate with the lowest value of flank wear, 0.061 mm achieved at Vc = 354 m/min and f = 0.1 mm/rev while the highest flank wear is 0.480 mm at Vc = 471 m/min and f = 0.5 mm/rev. The increasing pattern also observed in the crater wear results. The lowest area of crater wear is 2.2736 mm2 at Vc = 354 m/min and f = 0.1 mm/rev while the highest value is 4.8524 mm2 at Vc = 471 m/min and f = 0.5 mm/rev. As for the surface roughness, the higher the cutting speed, the lower the average roughness (Ra) value. Cutting speed, Vc = 471 m/min with f = 0.1 mm/rev has the lowest value of Ra which is 0.72µm.

  18. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    PubMed

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  19. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of

  20. An information-theoretic approach to designing the plane spacing for multifocal plane microscopy

    PubMed Central

    Tahmasbi, Amir; Ram, Sripad; Chao, Jerry; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

    2015-01-01

    Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An important question in the design of MUM experiments concerns the appropriate number of focal planes and their spacings to achieve the best possible 3D localization accuracy along the z-axis. Ideally, it is desired to obtain a 3D localization accuracy that is uniform over a large depth and has small numerical values, which guarantee that the single molecule is continuously detectable. Here, we address this concern by developing a plane spacing design strategy based on the Fisher information. In particular, we analyze the Fisher information matrix for the 3D localization problem along the z-axis and propose spacing scenarios termed the strong coupling and the weak coupling spacings, which provide appropriate 3D localization accuracies. Using these spacing scenarios, we investigate the detectability of the single molecule along the z-axis and study the effect of changing the number of focal planes on the 3D localization accuracy. We further review a software module we recently introduced, the MUMDesignTool, that helps to design the plane spacings for a MUM setup. PMID:26113764

  1. Detection of LSB+/-1 steganography based on co-occurrence matrix and bit plane clipping

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Aghaeinia, Hassan; Faez, Karim; Mehrabi, Mohammad Ali

    2010-01-01

    Spatial LSB+/-1 steganography changes smooth characteristics between adjoining pixels of the raw image. We present a novel steganalysis method for LSB+/-1 steganography based on feature vectors derived from the co-occurrence matrix in the spatial domain. We investigate how LSB+/-1 steganography affects the bit planes of an image and show that it changes more least significant bit (LSB) planes of it. The co-occurrence matrix is derived from an image in which some of its most significant bit planes are clipped. By this preprocessing, in addition to reducing the dimensions of the feature vector, the effects of embedding were also preserved. We compute the co-occurrence matrix in different directions and with different dependency and use the elements of the resulting co-occurrence matrix as features. This method is sensitive to the data embedding process. We use a Fisher linear discrimination (FLD) classifier and test our algorithm on different databases and embedding rates. We compare our scheme with the current LSB+/-1 steganalysis methods. It is shown that the proposed scheme outperforms the state-of-the-art methods in detecting the LSB+/-1 steganographic method for grayscale images.

  2. Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

    NASA Astrophysics Data System (ADS)

    Choi, Hee-Jong; Chun, Ho-Hwan; Park, Il-Ryong; Kim, Jin

    2011-12-01

    In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.

  3. Laser Cutting of Thin Nickel Bellows

    NASA Technical Reports Server (NTRS)

    Butler, C. L.

    1986-01-01

    Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiochon, Georges A; Shalliker, R. Andrew

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Duemore » to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.« less

  5. Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography.

    PubMed

    Stevenson, Paul G; Mnatsakanyan, Mariam; Guiochon, Georges; Shalliker, R Andrew

    2010-07-01

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.

  6. Wafer plane inspection with soft resist thresholding

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song

    2008-10-01

    Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just

  7. Broadband Gerchberg-Saxton algorithm for freeform diffractive spectral filter design.

    PubMed

    Vorndran, Shelby; Russo, Juan M; Wu, Yuechen; Pelaez, Silvana Ayala; Kostuk, Raymond K

    2015-11-30

    A multi-wavelength expansion of the Gerchberg-Saxton (GS) algorithm is developed to design and optimize a surface relief Diffractive Optical Element (DOE). The DOE simultaneously diffracts distinct wavelength bands into separate target regions. A description of the algorithm is provided, and parameters that affect filter performance are examined. Performance is based on the spectral power collected within specified regions on a receiver plane. The modified GS algorithm is used to design spectrum splitting optics for CdSe and Si photovoltaic (PV) cells. The DOE has average optical efficiency of 87.5% over the spectral bands of interest (400-710 nm and 710-1100 nm). Simulated PV conversion efficiency is 37.7%, which is 29.3% higher than the efficiency of the better performing PV cell without spectrum splitting optics.

  8. A New Selective Area Lateral Epitaxy Approach for Depositing a-Plane GaN over r-Plane Sapphire

    NASA Astrophysics Data System (ADS)

    Chen, Changqing; Zhang, Jianping; Yang, Jinwei; Adivarahan, Vinod; Rai, Shiva; Wu, Shuai; Wang, Hongmei; Sun, Wenhong; Su, Ming; Gong, Zheng; Kuokstis, Edmundas; Gaevski, Mikhail; Khan, Muhammad Asif

    2003-07-01

    We report a new epitaxy procedure for growing extremely low defect density a-plane GaN films over r-plane sapphire. By combining selective area growth through a SiO2 mask opening to produce high height to width aspect ratio a-plane GaN pillars and lateral epitaxy from their c-plane facets, we obtained fully coalesced a-plane GaN films. The excellent structural, optical and electrical characteristics of these selective area lateral epitaxy (SALE) deposited films make them ideal for high efficiency III-N electronic and optoelectronic devices.

  9. Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.

    PubMed

    Ao, Man; Liu, Baofeng; Wang, Li

    2013-01-01

    The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.

  10. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  11. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    PubMed

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  12. Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghazi

    An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new

  13. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured

  14. Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels

    NASA Astrophysics Data System (ADS)

    Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.

    2017-09-01

    The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.

  15. The algorithm for automatic detection of the calibration object

    NASA Astrophysics Data System (ADS)

    Artem, Kruglov; Irina, Ugfeld

    2017-06-01

    The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.

  16. An algorithm of improving speech emotional perception for hearing aid

    NASA Astrophysics Data System (ADS)

    Xi, Ji; Liang, Ruiyu; Fei, Xianju

    2017-07-01

    In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.

  17. In vitro comparison of the cutting efficiency and temperature production of 10 different rotary cutting instruments. Part I: Turbine.

    PubMed

    Ercoli, Carlo; Rotella, Mario; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2009-04-01

    Standards to test the cutting efficiency of dental rotary cutting instruments are either nonexistent or inappropriate, and knowledge of the factors that affect their cutting performance is limited. Therefore, rotary cutting instruments for crown preparation are generally marketed with weak or unsupported claims of superior performance. The purpose of this study was to examine the cutting behavior of a wide selection of rotary cutting instruments under carefully controlled and reproducible conditions with an air-turbine handpiece. Ten groups of rotary cutting instruments (n=30) designed for tooth preparation were selected: 9 diamond rotary cutting instruments (7 multi-use, 2 disposable) and 1 carbide bur. One bur per group was imaged with a scanning electron microscope (SEM) at different magnifications. Macor blocks (n=75) were used as a substrate, and 4 cuts were made on each specimen, using a new rotary cutting instrument each time, for a total of 300 cuts. The cuts were performed with an air-turbine handpiece (Midwest Quiet Air). A computer-controlled, custom-made testing apparatus was used to monitor all sensors and control the cutting action. The data were analyzed to compare the correlation of rotary cutting instrument type, grit, amount of pressure, cutting rate, revolutions per minute (rpm), temperature, and type of handpiece, using 1-way ANOVA and Tukey's Studentized Range test (alpha=.05). Compared to the baseline temperature, all rotary cutting instruments showed a reduction of temperature in the simulated pulp chamber. The Great White Ultra (carbide bur) showed a significantly higher rate of advancement (0.15 mm/s) and lower applied load (106.46 g) and rpm (304,375.97). Tooth preparation with an adequate water flow does not cause harmful temperature changes in the pulp chamber, regardless of rotary cutting instrument type. The tested carbide bur showed greater cutting efficiency than all diamond rotary cutting instruments.

  18. An Adaptive Cross-Correlation Algorithm for Extended-Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    This viewgraph presentation reviews the Adaptive Cross-Correlation (ACC) Algorithm for extended scene-Shack Hartmann wavefront (WF) sensing. A Shack-Hartmann sensor places a lenslet array at a plane conjugate to the WF error source. Each sub-aperture lenslet samples the WF in the corresponding patch of the WF. A description of the ACC algorithm is included. The ACC has several benefits; amongst them are: ACC requires only about 4 image-shifting iterations to achieve 0.01 pixel accuracy and ACC is insensitive to both background light and noise much more robust than centroiding,

  19. Parallel asynchronous systems and image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  20. Plasma Cutting and Carbon-Arc Cutting. Welding Module 8. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching the two units of a module in operating plasma cutting and carbon-arc cutting equipment. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The materials included in the module have been…

  1. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  2. Stereo Image Dense Matching by Integrating Sift and Sgm Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Song, Y.; Lu, J.

    2018-05-01

    Semi-global matching(SGM) performs the dynamic programming by treating the different path directions equally. It does not consider the impact of different path directions on cost aggregation, and with the expansion of the disparity search range, the accuracy and efficiency of the algorithm drastically decrease. This paper presents a dense matching algorithm by integrating SIFT and SGM. It takes the successful matching pairs matched by SIFT as control points to direct the path in dynamic programming with truncating error propagation. Besides, matching accuracy can be improved by using the gradient direction of the detected feature points to modify the weights of the paths in different directions. The experimental results based on Middlebury stereo data sets and CE-3 lunar data sets demonstrate that the proposed algorithm can effectively cut off the error propagation, reduce disparity search range and improve matching accuracy.

  3. Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour

    NASA Astrophysics Data System (ADS)

    Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.

    2012-04-01

    A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.

  4. Fourier plane imaging microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de; Nano Tech Center, Texas Tech University, Lubbock, Texas 79409

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonicmore » crystals.« less

  5. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  6. Planck 2015 results: XII. Full focal plane simulations

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this paper, we present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 10 4 mission realizations reduced to about 10 6 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Finally, generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms,more » FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.« less

  7. Tubing and cable cutting tool

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  8. An Algorithm for Pedestrian Detection in Multispectral Image Sequences

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Fedorenko, V. V.

    2017-05-01

    The growing interest for self-driving cars provides a demand for scene understanding and obstacle detection algorithms. One of the most challenging problems in this field is the problem of pedestrian detection. Main difficulties arise from a diverse appearances of pedestrians. Poor visibility conditions such as fog and low light conditions also significantly decrease the quality of pedestrian detection. This paper presents a new optical flow based algorithm BipedDetet that provides robust pedestrian detection on a single-borad computer. The algorithm is based on the idea of simplified Kalman filtering suitable for realization on modern single-board computers. To detect a pedestrian a synthetic optical flow of the scene without pedestrians is generated using slanted-plane model. The estimate of a real optical flow is generated using a multispectral image sequence. The difference of the synthetic optical flow and the real optical flow provides the optical flow induced by pedestrians. The final detection of pedestrians is done by the segmentation of the difference of optical flows. To evaluate the BipedDetect algorithm a multispectral dataset was collected using a mobile robot.

  9. Material properties and laser cutting of composites

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chieh; Cheng, Wing

    Laser (Light Amplification by Stimulated Emission of Radiation) has been used successfully for many material cutting, drilling, metal welding and heat treating applications. However, laser cutting of polymer composites were attempted with varying degrees of success. Because composites are heterogeneous, the energy applied by laser could result in severe resin degradation before fibers were cut. In this study, cutting of glass, Kevlar, and graphite composites were evaluated based on their material properties and laser cutting parameters. A transient heat transfer analysis was used to determine the relative heat affected zones of these composites. Kevlar composites can be cut very well while graphite composites are difficult to cut. Though the cutting process is much more complicated in reality, the analysis provides a semi-quantitative perspective on the characteristics and limitations of laser cutting of different composites.

  10. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    PubMed

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  11. 36 CFR 910.57 - Curb-cut.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Curb-cut. 910.57 Section 910... DEVELOPMENT AREA Glossary of Terms § 910.57 Curb-cut. Curb-cut means that portion of the curb and sidewalk over which vehicular access is allowed. The number of access lanes for each curb-cut shall be specified...

  12. Cutting Pattern Identification for Coal Mining Shearer through a Swarm Intelligence–Based Variable Translation Wavelet Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Liu, Xinhua

    2018-01-01

    As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method. PMID:29382120

  13. RECENT DEVELOPMENTS IN SURGICAL SKIN PLANING

    PubMed Central

    Ayres, Samuel; Wilson, J. Walter; Luikart, Ralph

    1958-01-01

    In surgical skin planing steel wire brushes have been largely replaced by the less hazardous diamond chip burs or “fraises” and serrated steel wheels. In addition to acne pits and wrinkling, multiple actinic (senile) keratoses are an important indication for planing. Planing provides a nonscarring method for the treatment of existing keratoses, as well as a prophylaxis against skin cancer by replacing the sun-damaged, precancerous epidermis with new epidermal cells derived from the cutaneous adnexa (pilosebaceous and sweat gland units). There are clinical landmarks indicating the depth of planing which can serve as a guide to the operator and can be correlated with microscopic findings. The results of experiments on the comparative effects of refrigerants on animal and human skin indicate that human facial skin can tolerate considerable freezing with ethyl chloride or dichlorotetrafluoroethane (Freon 114) but that mixtures containing large proportions of the much colder dichlorodifluoromethane (Freon 12) may be undesirable. Refreezing an area of the skin in order to perform a more adequate planing is not considered hazardous. The regeneration of the skin following planing has three components: Epidermal, adnexal and dermal. The cells of the epidermis and the adnexa are equipotential. A knowledge of the anatomy of the acne pit enables the operator to decide which pits can be benefited by planing and which should be excised before planing. The successful treatment of acne pits of the face by planing in patients having keloids elsewhere on the body is reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:13500217

  14. Broken chiral symmetry on a null plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, Silas R., E-mail: silas@physics.unh.edu

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-planemore » description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.« less

  15. CUTTING AND WEDGING JACKET REMOVER

    DOEpatents

    Freedman, M.; Raynor, S.

    1959-04-01

    A tool is presented for stripping cladded jackets from fissionable fuel elements. The tool is a tube which fits closely around the jacket and which has two cutting edges at opposite sides of one end. These cutting edges are adjusted to penetrate only the jacket so that by moving the edges downward the jacket is cut into two pieces.

  16. The Autism Diagnostic Observation Schedule, Module 4: Application of the Revised Algorithms in an Independent, Well-Defined, Dutch Sample (N = 93)

    ERIC Educational Resources Information Center

    de Bildt, Annelies; Sytema, Sjoerd; Meffert, Harma; Bastiaansen, Jojanneke A. C. J.

    2016-01-01

    This study examined the discriminative ability of the revised Autism Diagnostic Observation Schedule module 4 algorithm (Hus and Lord in "J Autism Dev Disord" 44(8):1996-2012, 2014) in 93 Dutch males with Autism Spectrum Disorder (ASD), schizophrenia, psychopathy or controls. Discriminative ability of the revised algorithm ASD cut-off…

  17. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon

  18. Generalized algebraic scene-based nonuniformity correction algorithm.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott

    2005-02-01

    A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.

  19. Focal-plane electric field sensing with pupil-plane holograms

    NASA Astrophysics Data System (ADS)

    Por, Emiel H.; Keller, Christoph U.

    2016-07-01

    The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.

  20. Min-cut segmentation of cursive handwriting in tabular documents

    NASA Astrophysics Data System (ADS)

    Davis, Brian L.; Barrett, William A.; Swingle, Scott D.

    2015-01-01

    Handwritten tabular documents, such as census, birth, death and marriage records, contain a wealth of information vital to genealogical and related research. Much work has been done in segmenting freeform handwriting, however, segmentation of cursive handwriting in tabular documents is still an unsolved problem. Tabular documents present unique segmentation challenges caused by handwriting overlapping cell-boundaries and other words, both horizontally and vertically, as "ascenders" and "descenders" overlap into adjacent cells. This paper presents a method for segmenting handwriting in tabular documents using a min-cut/max-flow algorithm on a graph formed from a distance map and connected components of handwriting. Specifically, we focus on line, word and first letter segmentation. Additionally, we include the angles of strokes of the handwriting as a third dimension to our graph to enable the resulting segments to share pixels of overlapping letters. Word segmentation accuracy is 89.5% evaluating lines of the data set used in the ICDAR2013 Handwriting Segmentation Contest. Accuracy is 92.6% for a specific application of segmenting first and last names from noisy census records. Accuracy for segmenting lines of names from noisy census records is 80.7%. The 3D graph cutting shows promise in segmenting overlapping letters, although highly convoluted or overlapping handwriting remains an ongoing challenge.

  1. Real-time slicing algorithm for Stereolithography (STL) CAD model applied in additive manufacturing industry

    NASA Astrophysics Data System (ADS)

    Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.

    2018-04-01

    Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.

  2. Laser Cutting of Multilayered Kevlar Plates

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Al-Sulaiman, F.; Karakas, C.; Ahsan, M.

    2007-12-01

    Laser cutting of Kevlar plates, consisting of multilayered laminates, with different thicknesses are carried out. A mathematical model is developed to predict the kerf width, thermal efficiency, and specific energy requirements during cutting. Optical microscopy and Scanning Electron Microscopy (SEM) are employed to obtain the micrographs of the cutting sections. The kerf width size is measured and compared with the predictions. A factorial analysis is carried out to assess the affecting parameters on the mean kerf width and dimensionless damage sizes. It is found that the kerf width and damage sizes changes sharply when increasing cutting speed from 0.03 to 0.08 m/s. Thermal efficiency of the cutting process increases with increasing thickness and cutting speed while specific energy reduces with increasing thickness. The main effects of cutting parameters are found to be significant on the mean kerf width and dimensionless damage sizes, which is more pronounced for the workpiece bottom surface, where locally distributed char formation and sideways burning are observed.

  3. Intelligent scanning: automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination.

    PubMed

    Zhang, Ling; Chen, Siping; Chin, Chien Ting; Wang, Tianfu; Li, Shengli

    2012-08-01

    To assist radiologists and decrease interobserver variability when using 2D ultrasonography (US) to locate the standardized plane of early gestational sac (SPGS) and to perform gestational sac (GS) biometric measurements. In this paper, the authors report the design of the first automatic solution, called "intelligent scanning" (IS), for selecting SPGS and performing biometric measurements using real-time 2D US. First, the GS is efficiently and precisely located in each ultrasound frame by exploiting a coarse to fine detection scheme based on the training of two cascade AdaBoost classifiers. Next, the SPGS are automatically selected by eliminating false positives. This is accomplished using local context information based on the relative position of anatomies in the image sequence. Finally, a database-guided multiscale normalized cuts algorithm is proposed to generate the initial contour of the GS, based on which the GS is automatically segmented for measurement by a modified snake model. This system was validated on 31 ultrasound videos involving 31 pregnant volunteers. The differences between system performance and radiologist performance with respect to SPGS selection and length and depth (diameter) measurements are 7.5% ± 5.0%, 5.5% ± 5.2%, and 6.5% ± 4.6%, respectively. Additional validations prove that the IS precision is in the range of interobserver variability. Our system can display the SPGS along with biometric measurements in approximately three seconds after the video ends, when using a 1.9 GHz dual-core computer. IS of the GS from 2D real-time US is a practical, reproducible, and reliable approach.

  4. Dynamics in the Fitness-Income plane: Brazilian states vs World countries

    PubMed Central

    Operti, Felipe G.; Pugliese, Emanuele; Andrade, José S.; Pietronero, Luciano

    2018-01-01

    In this paper we introduce a novel algorithm, called Exogenous Fitness, to calculate the Fitness of subnational entities and we apply it to the states of Brazil. In the last decade, several indices were introduced to measure the competitiveness of countries by looking at the complexity of their export basket. Tacchella et al (2012) developed a non-monetary metric called Fitness. In this paper, after an overview about Brazil as a whole and the comparison with the other BRIC countries, we introduce a new methodology based on the Fitness algorithm, called Exogenous Fitness. Combining the results with the Gross Domestic Product per capita (GDPp), we look at the dynamics of the Brazilian states in the Fitness-Income plane. Two regimes are distinguishable: one with high predictability and the other with low predictability, showing a deep analogy with the heterogeneous dynamics of the World countries. Furthermore, we compare the ranking of the Brazilian states according to the Exogenous Fitness with the ranking obtained through two other techniques, namely Endogenous Fitness and Economic Complexity Index. PMID:29874265

  5. Dynamics in the Fitness-Income plane: Brazilian states vs World countries.

    PubMed

    Operti, Felipe G; Pugliese, Emanuele; Andrade, José S; Pietronero, Luciano; Gabrielli, Andrea

    2018-01-01

    In this paper we introduce a novel algorithm, called Exogenous Fitness, to calculate the Fitness of subnational entities and we apply it to the states of Brazil. In the last decade, several indices were introduced to measure the competitiveness of countries by looking at the complexity of their export basket. Tacchella et al (2012) developed a non-monetary metric called Fitness. In this paper, after an overview about Brazil as a whole and the comparison with the other BRIC countries, we introduce a new methodology based on the Fitness algorithm, called Exogenous Fitness. Combining the results with the Gross Domestic Product per capita (GDPp), we look at the dynamics of the Brazilian states in the Fitness-Income plane. Two regimes are distinguishable: one with high predictability and the other with low predictability, showing a deep analogy with the heterogeneous dynamics of the World countries. Furthermore, we compare the ranking of the Brazilian states according to the Exogenous Fitness with the ranking obtained through two other techniques, namely Endogenous Fitness and Economic Complexity Index.

  6. Changes in the cutting efficiency of different types of dental diamond rotary instrument with repeated cuts and disinfection.

    PubMed

    Bae, Jin-Hyuk; Yi, Jaeyoung; Kim, Sungtae; Shim, June-Sung; Lee, Keun-Woo

    2014-01-01

    Cutting efficiency is one of the most important factors to consider when a specific dental diamond rotary instrument is selected. However, the selection of a dental diamond rotary instrument is based on clinical experience rather than any scientific evidence. The purpose of this study was to identify how the cutting efficiency of different types of dental diamond rotary instrument changed with repeated cuts and disinfection. Four types of diamond rotary instrument from 2 dental manufacturers (Shofu, Jin Dental) were investigated with a high-speed air-turbine handpiece. The groups were as follows: S cham group (n=10): chamfer design from Shofu; J cham group (n=10): chamfer design from Jin Dental; S thin group (n=10): thin tapered design from Shofu; J thin group (n=10): thin tapered design from Jin Dental. Changes in the cutting efficiency of diamond rotary instruments on glass ceramic blocks were measured after repeated cuts. Changes in cutting efficiency also were measured for 30 diamond rotary instruments, the same type as those used in group J cham after disinfection with ethylene oxide gas, immersion in solution, or autoclaving. One-way ANOVA, 2-way ANOVA, and repeated-measures ANOVA were used to identify differences in cutting efficiency, in total cutting efficiency, and change trend in cutting efficiency (α=.05). The Tukey honestly significant difference method was used for the post hoc tests. The principal metal components of the diamond rotary instruments were detected with x-ray spectrometry. The mean (standard deviation [SD]) total cutting efficiency after 10 cuts in the 4 groups was in the following order: J cham group (0.210 ± 0.064 g/min) > S cham group (0.170 ± 0.064 g/min) > J thin group (0.130 ± 0.042 g/min) > S thin group (0.010 ± 0.040 g/min) (P<.05).The decrease in the cutting efficiency was greatest after the first cut. The cutting efficiency was not influenced by repeated disinfection. The cutting efficiencies of diamond rotary instruments

  7. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    PubMed

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  8. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  9. Breakthrough in current-in-plane tunneling measurement precision by application of multi-variable fitting algorithm.

    PubMed

    Cagliani, Alberto; Østerberg, Frederik W; Hansen, Ole; Shiv, Lior; Nielsen, Peter F; Petersen, Dirch H

    2017-09-01

    We present a breakthrough in micro-four-point probe (M4PP) metrology to substantially improve precision of transmission line (transfer length) type measurements by application of advanced electrode position correction. In particular, we demonstrate this methodology for the M4PP current-in-plane tunneling (CIPT) technique. The CIPT method has been a crucial tool in the development of magnetic tunnel junction (MTJ) stacks suitable for magnetic random-access memories for more than a decade. On two MTJ stacks, the measurement precision of resistance-area product and tunneling magnetoresistance was improved by up to a factor of 3.5 and the measurement reproducibility by up to a factor of 17, thanks to our improved position correction technique.

  10. ALPS yield optimization cutting program

    Treesearch

    P. Klinkhachorn; J.P. Franklin; Charles W. McMillin; H.A. Huber

    1989-01-01

    This paper reports ongoing work on a series of computer programs developed to automate hardwood lumber processing in a furniture roughmill. The program computes the placement of cuttings on lumber, based on a description of each board in terms of shape and defect location, and a cutting bill. These results are suitable for use with a high-power laser to cut the parts...

  11. CUTSETS - MINIMAL CUT SET CALCULATION FOR DIGRAPH AND FAULT TREE RELIABILITY MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both type of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Fault trees must have a tree structure and do not allow cycles or loops in the graph. Digraphs allow any pattern of interconnection between loops in the graphs. A common operation performed on digraph and fault tree models is the calculation of minimal cut sets. A cut set is a set of basic failures that could cause a given target failure event to occur. A minimal cut set for a target event node in a fault tree or digraph is any cut set for the node with the property that if any one of the failures in the set is removed, the occurrence of the other failures in the set will not cause the target failure event. CUTSETS will identify all the minimal cut sets for a given node. The CUTSETS package contains programs that solve for minimal cut sets of fault trees and digraphs using object-oriented programming techniques. These cut set codes can be used to solve graph models for reliability analysis and identify potential single point failures in a modeled system. The fault tree minimal cut set code reads in a fault tree model input file with each node listed in a text format. In the input file the user specifies a top node of the fault tree and a maximum cut set size to be calculated. CUTSETS will find minimal sets of basic events which would cause the failure at the output of a given fault tree gate. The program can find all the minimal cut sets of a node, or minimal cut sets up to a specified size. The algorithm performs a recursive top down parse of the fault tree, starting at the specified top node, and combines the cut sets of each child node into sets of basic event failures that would cause the failure event at the output of that gate. Minimal cut set solutions can be found for all nodes in the fault tree or just for the top node. The digraph cut set code uses the same

  12. Corner-cutting mining assembly

    DOEpatents

    Bradley, John A.

    1983-01-01

    A mining assembly includes a primary rotary cutter mounted on one end of a support shaft and four secondary rotary cutters carried on the same support shaft and positioned behind the primary cutters for cutting corners in the hole cut by the latter.

  13. The position of the occlusal plane in natural and artificial dentitions as related to other craniofacial planes.

    PubMed

    Al Quran, Firas A M; Hazza'a, Abdalla; Al Nahass, Nabeel

    2010-12-01

    This study aimed at determining the most reliable ala-tragus line as a guide for the orientation of the occlusal plane in complete denture patients by use of cephalometric landmarks on dentate volunteers. Analysis was made for prosthodontically related craniofacial reference lines and angles of lateral cephalometric radiographs taken for 47 dentate adults. Variables were determined and data were analyzed using SPSS (SPSS, Inc., Chicago, IL). Occlusal plane angle formed between the occlusal plane and Camper's plane had the lowest mean value in the angle formed with Camper's I, which represents the measure taken from the superior border of the tragus of the ear with a score of 2.1°. The highest was measured in the angle formed with Camper's III with a score of 6.1°, while the angle formed with Camper's II was 3.2°. The differences between the three planes in relation to the occlusal plane was significant (p < 0.001). The superior border of the tragus with the inferior border of the ala of the nose was most accurate in orienting the occlusal plane. © 2010 by The American College of Prosthodontists.

  14. Laser cutting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Thomas J

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  15. The effects of fatigue and anticipation on the mechanics of the knee during cutting in female athletes.

    PubMed

    Collins, Joseph D; Almonroeder, Thomas G; Ebersole, Kyle T; O'Connor, Kristian M

    2016-06-01

    Unanticipated cutting tasks which do not allow for pre-planning of a movement have been reported to promote knee mechanics which may increase the risk of anterior cruciate ligament injury. Fatigue has also been reported to have similar effects. Athletes must often perform unanticipated tasks when they are fatigued. Previous studies have reported that the effects of anticipation become more prominent as an athlete progresses through a fatigue protocol. However, the protocols previously utilized may not mimic the demands of sports participation. Three-dimensional knee joint kinematics and kinetics were collected from 13 female athletes while they performed a run-and-cut task, before and after completion of an intermittent shuttle run. Trials were further divided (pre-planned, unanticipated) to assess the effects of anticipation. There were no significant interactions between the effects of fatigue and anticipation for the peak knee angles or moments of the knee joint in any plane. Subjects did demonstrate a 68% increase in their peak knee abduction angles following completion of the intermittent shuttle run. Anticipation also had a significant effect on the mechanics of the knee in all planes. Most notably, there was a 23% increase in peak knee abduction angles and a 33% increase in the peak internal knee adduction moments. Both fatigue and anticipation promoted knee mechanics which are associated with an increased risk of knee injury. However, it does not appear that their effects combine when athletes are at a level of fatigue which is thought to reflect sports participation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genome-scale strain designs based on regulatory minimal cut sets.

    PubMed

    Mahadevan, Radhakrishnan; von Kamp, Axel; Klamt, Steffen

    2015-09-01

    Stoichiometric and constraint-based methods of computational strain design have become an important tool for rational metabolic engineering. One of those relies on the concept of constrained minimal cut sets (cMCSs). However, as most other techniques, cMCSs may consider only reaction (or gene) knockouts to achieve a desired phenotype. We generalize the cMCSs approach to constrained regulatory MCSs (cRegMCSs), where up/downregulation of reaction rates can be combined along with reaction deletions. We show that flux up/downregulations can virtually be treated as cuts allowing their direct integration into the algorithmic framework of cMCSs. Because of vastly enlarged search spaces in genome-scale networks, we developed strategies to (optionally) preselect suitable candidates for flux regulation and novel algorithmic techniques to further enhance efficiency and speed of cMCSs calculation. We illustrate the cRegMCSs approach by a simple example network and apply it then by identifying strain designs for ethanol production in a genome-scale metabolic model of Escherichia coli. The results clearly show that cRegMCSs combining reaction deletions and flux regulations provide a much larger number of suitable strain designs, many of which are significantly smaller relative to cMCSs involving only knockouts. Furthermore, with cRegMCSs, one may also enable the fine tuning of desired behaviours in a narrower range. The new cRegMCSs approach may thus accelerate the implementation of model-based strain designs for the bio-based production of fuels and chemicals. MATLAB code and the examples can be downloaded at http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html. krishna.mahadevan@utoronto.ca or klamt@mpi-magdeburg.mpg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Automated Laser Cutting In Three Dimensions

    NASA Technical Reports Server (NTRS)

    Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.

    1995-01-01

    Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.

  18. Human connectome module pattern detection using a new multi-graph MinMax cut model.

    PubMed

    De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng

    2014-01-01

    Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.

  19. In-plane and out-of-plane defectivity in thin films of lamellar block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevapuram, Nikhila; Mitra, Indranil; Bozhchenko, Alona

    2015-10-29

    We investigate the ordering of poly(styrene-b-methyl methacrylate) (PS-PMMA) lamellar copolymers (periodicity L 0 = 46 nm) confined between a free surface and brushed poly(styrene-r-methyl methacrylate) silicon substrate. The processing temperature was selected to eliminate wetting layers at the top and bottom interfaces, producing approximately neutral boundaries that stabilize perpendicular domain orientations. The PS-PMMA film thickness (t = 0.5L 0–2.5L 0) and brush grafting density (Σ = 0.2–0.6 nm –2) were systematically varied to examine their impacts on in-plane and out-of-plane ordering. Samples were characterized with a combination of high-resolution microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering. In-plane order atmore » the top of the film (quantified through calculation of orientational correlation lengths) improved with t n, where the exponent n increased from 0.75 to 1 as Σ decreased from 0.6 to 0.2 nm –2. Out-of-plane defects such as tilted domains were detected in all films, and the distribution of domain tilt angles was nearly independent of t and Σ. These studies demonstrate that defectivity in perpendicular lamellar phases is three-dimensional, comprised of in-plane topological defects and out-of-plane domain tilt, with little or no correlation between these two types of disorder. As a result, strong interactions between the block copolymer and underlying substrate may trap both kinds of thermally generated defects.« less

  20. Starting Trees from Cuttings.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1983-01-01

    Describes a procedure for starting tree cuttings from woody plants, explaining "lag time," recommending materials, and giving step-by-step instructions for rooting and planting. Points out species which are likely candidates for cuttings and provides tips for teachers for developing a unit. (JM)

  1. The plane elasticity problem for a crack near the curved surface

    NASA Astrophysics Data System (ADS)

    Lebedeva, M. V.

    2018-05-01

    The unconventional approach to the plane elasticity problem for a crack near the curved surface is presented. The solution of the problem is considered in the form of the sum of solutions of two auxiliary problems. The first one describes the plane with a crack, whose surfaces are loaded by some unknown self-balanced force p(x). The second problem is dealing with the semi-infinite region with the boundary conditions equal to the difference of boundary conditions of the problem to be sought and the solution of the first problem on the region border. The unknown function p(x) is supposed to be approximated with the sufficient level of accuracy by N order polynomial with complex coefficients. This paper is aimed to determine the critical loads causing the spontaneous growth of cracks. The angles of propagation of the stationary cracks located in the region with a ledge or a cut are found. The influence of length of a crack on the bearing ability of an elastic body with the curved surface is investigated. The effect of a form of the concentrator and orientation of a crack to the fracture load subject to the different combinations of forces acting both on a surface of a crack and at infinity is analysed. The results of this research can be applied for calculation of the durability of thin-walled vessels of pressure, e.g., chemical reactors, in order to ensure their ecological safety.

  2. Root planing with Er:YAG laser X Gracey curette: a study in vitro using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Mello, Fabiano A. S.; Mello, Andrea M. D.; Matson, Edmir; Mattos, Adriana B.; Mello, Guilherme P. S.

    2001-04-01

    The Er:YAG laser has been studied for periodontal therapies, so much for removal of the subgingival calculus and its bactericidal effects. The proposal of this study is to evaluate the effectiveness of the Er:YAG laser in root planning in comparison to the traditional method, not surgical. Six recently extracted due top the disease periodontal, were cut longitudinally tends like this two half of the root. These half were separate in four groups. The first group is the natural tooth, the second group was accomplished to rot planing with Graceycurette. And in the third to Er:YAG laser with a contact tip, using a 45 degree angle in relation to the root; in the fourth group was scraped and planed with Er:YAG laser and complemented rot planing with Graceycurette. The used energy was of 60 to 300mJ and the frequency of 10 Hz accomplished with irrigation. The obtained results were similar in the groups 2 and 3 in comparison to the amount of smear-layer. In group 4 however, better result was obtained, because the image was much more regular and with less amount of smear-layer. The conclusion of the work is that with the association of the Er:YAG laser technique and Graceycurette the results are superior to the conventional treatment.

  3. Comparison of Accuracy between Side-Cutting Instruments and Front-Cutting Instruments in Minimally Invasive Total Knee Arthroplasty.

    PubMed

    Pinsornsak, Piya; Harnroongroj, Thos

    2016-11-01

    The specialized instrument system used in minimally invasive surgery (MIS) has been developed for reducing soft tissue trauma in total knee arthroplasty (TKA). Compared with front-cutting MIS instruments, side-cutting quadriceps sparing MIS instruments have the advantage of creating a smaller incision and causing fewer traumas to the quadriceps tendon. However, the accuracy of side-cutting instruments concerns surgeons in prosthesis malalignment. To compare the accuracy of side-cutting quadriceps sparing instruments versus front-cutting instruments in MIS-TKA. In this prospective randomized controlled study, we compared the accuracy of side-cutting quadriceps sparing instruments versus the front-cutting instruments used in MIS-TKA. Sixty knees were included in the study, with 30 knees in each group. All the operations were performed by single surgeon. Coronal alignment (tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle), and sagittal alignment (femoral component flexion and tibial posterior slope) were measured and compared. Tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle, all of which are considered in the assessment of acceptable coronal radiographic alignment, were not different between groups (p = 0.353, 0.500, and 0.177, respectively). However, side-cutting quadriceps sparing instruments produced less acceptable sagittal radiographic alignment, femoral component flexion (63% vs. 93%, p = 0.005), and tibial posterior slope (73% vs. 93%, p = 0.04). Side-cutting quadriceps sparing MIS-TKA instruments had similar accuracy to front-cutting MIS-TKA instruments for coronal alignment but is less accurate for sagittal alignment.

  4. An improved non-uniformity correction algorithm and its hardware implementation on FPGA

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Wen, Zhigang; Qin, Hanlin; Qian, Kun; Cheng, Kuanhong

    2017-09-01

    The Non-uniformity of Infrared Focal Plane Arrays (IRFPA) severely degrades the infrared image quality. An effective non-uniformity correction (NUC) algorithm is necessary for an IRFPA imaging and application system. However traditional scene-based NUC algorithm suffers the image blurring and artificial ghosting. In addition, few effective hardware platforms have been proposed to implement corresponding NUC algorithms. Thus, this paper proposed an improved neural-network based NUC algorithm by the guided image filter and the projection-based motion detection algorithm. First, the guided image filter is utilized to achieve the accurate desired image to decrease the artificial ghosting. Then a projection-based moving detection algorithm is utilized to determine whether the correction coefficients should be updated or not. In this way the problem of image blurring can be overcome. At last, an FPGA-based hardware design is introduced to realize the proposed NUC algorithm. A real and a simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. Experimental results indicated that the proposed NUC algorithm can effectively eliminate the fix pattern noise with less image blurring and artificial ghosting. The proposed hardware design takes less logic elements in FPGA and spends less clock cycles to process one frame of image.

  5. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  6. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    NASA Astrophysics Data System (ADS)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  7. Handpiece coolant flow rates and dental cutting.

    PubMed

    von Fraunhofer, J A; Siegel, S C; Feldman, S

    2000-01-01

    High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.

  8. Cutting moments and grip forces in meat cutting operations and the effect of knife sharpness.

    PubMed

    McGorry, Raymond W; Dowd, Peter C; Dempsey, Patrick G

    2003-07-01

    The force exposure associated with meat cutting operations and the effect of knife sharpness on performance and productivity have not been well documented. Specialized hardware was used to measure grip force and reactive moments with 15 professional meat cutters performing lamb shoulder boning, beef rib trimming and beef loin trim operations in a field study conducted in two meat packing plants. A system for measuring relative blade sharpness was developed for this study. Mean and peak cutting moments observed for the meat cutting operations, averaged across subjects were 4.7 and 17.2 Nm for the shoulder boning, 3.5 and 12.9 Nm for the rib trim, and 2.3 and 10.6 Nm for the loin trim, respectively. Expressed as percent of MVC, mean grip forces of 28.3% and peak grip forces of 72.6% were observed overall. Blade sharpness was found to effect grip forces, cutting moments and cutting time, with sharper blades requiring statistically significantly lower peak and mean cutting moments, and grip forces than dull knives. Efforts aimed at providing and maintaining sharp blades could have a significant impact on force exposure.

  9. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  10. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    NASA Astrophysics Data System (ADS)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  11. Enclosed Cutting-And-Polishing Apparatus

    NASA Technical Reports Server (NTRS)

    Rossier, R. N.; Bicknell, B.

    1989-01-01

    Proposed apparatus cuts and polishes specimens while preventing contamination of outside environment or of subsequent specimens processed in it. Designed for use in zero gravity but also includes features useful in cutting and polishing of toxic or otherwise hazardous materials on Earth. Includes remote manipulator for handling specimens, cutting and polishing wire, inlets for gas and liquid, and outlets for waste liquid and gas. Replaceable plastic liner surrounds working space.

  12. Economic technology of laser cutting

    NASA Astrophysics Data System (ADS)

    Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.

    2000-02-01

    The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.

  13. The method for homography estimation between two planes based on lines and points

    NASA Astrophysics Data System (ADS)

    Shemiakina, Julia; Zhukovsky, Alexander; Nikolaev, Dmitry

    2018-04-01

    The paper considers the problem of estimating a transform connecting two images of one plane object. The method based on RANSAC is proposed for calculating the parameters of projective transform which uses points and lines correspondences simultaneously. A series of experiments was performed on synthesized data. Presented results show that the algorithm convergence rate is significantly higher when actual lines are used instead of points of lines intersection. When using both lines and feature points it is shown that the convergence rate does not depend on the ratio between lines and feature points in the input dataset.

  14. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  15. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    PubMed

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  16. Quantum Max-flow/Min-cut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less

  17. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  18. Cutting Class Harms Grades

    ERIC Educational Resources Information Center

    Taylor, Lewis A., III

    2012-01-01

    An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…

  19. Sodium-cutting: a new top-down approach to cut open nanostructures on nonplanar surfaces on a large scale.

    PubMed

    Chen, Wei; Deng, Da

    2014-11-11

    We report a new, low-cost and simple top-down approach, "sodium-cutting", to cut and open nanostructures deposited on a nonplanar surface on a large scale. The feasibility of sodium-cutting was demonstrated with the successfully cutting open of ∼100% carbon nanospheres into nanobowls on a large scale from Sn@C nanospheres for the first time.

  20. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Sivaramakrishnan, Anand

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includesmore » different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.« less

  1. Stereo Cloud Height and Wind Determination Using Measurements from a Single Focal Plane

    NASA Astrophysics Data System (ADS)

    Demajistre, R.; Kelly, M. A.

    2014-12-01

    We present here a method for extracting cloud heights and winds from an aircraft or orbital platform using measurements from a single focal plane, exploiting the motion of the platform to provide multiple views of the cloud tops. To illustrate this method we use data acquired during aircraft flight tests of a set of simple stereo imagers that are well suited to this purpose. Each of these imagers has three linear arrays on the focal plane, one looking forward, one looking aft, and one looking down. Push-broom images from each of these arrays are constructed, and then a spatial correlation analysis is used to deduce the delays and displacements required for wind and cloud height determination. We will present the algorithms necessary for the retrievals, as well as the methods used to determine the uncertainties of the derived cloud heights and winds. We will apply the retrievals and uncertainty determination to a number of image sets acquired by the airborne sensors. We then generalize these results to potential space based observations made by similar types of sensors.

  2. Comparison of cutting efficiency with different diamond burs and water flow rates in cutting lithium disilicate glass ceramic.

    PubMed

    Siegel, Sharon C; Patel, Tejas

    2016-10-01

    This study compared different diamond burs and different water flow rates on the cutting efficiency of sectioning through lithium disilicate glass ceramic. The authors used a standardized cutting regimen with 4 brands of diamond burs to section through lithium disilicate glass ceramic blocks. Twelve diamonds of each brand cut through the blocks in randomized order. In the first part of the study, the authors recorded sectioning rates in millimeters per minute for each diamond bur as a measure of cutting efficiency. In the second part of the study, the authors compared sectioning rates using only 1 brand of diamond bur, with 3 different water flow rates. The authors averaged and compared cutting rates of each brand of diamond bur and the cutting rates for each flow rate using an analysis of variance and determined the differences with a Tukey honest significant difference test. One diamond bur cut significantly slower than the other 3, and one diamond bur cut significantly faster than 2 of the others. The diamond bur cutting efficiency through lithium disilicate glass ceramic with a 20 mL/min water flow rate was significantly higher than 15 mL/min. There are differences in cutting efficiency between diamond burs when sectioning lithium disilicate glass ceramic. Use a minimum of 20 mL/min of water coolant flow when sectioning lithium disilicate glass ceramic with dental diamond burs to maximize cutting efficiency. Recommendations for specific diamond burs with a coarse grit and water flow rate of 20 mL/min can be made when removing or adjusting restorations made from lithium disilicate glass ceramic. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  3. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001; Branch, D. W.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5more » μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  4. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGES

    Patel, N.; Branch, D. W.; Schamiloglu, E.; ...

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO 3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses tomore » both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  5. The effectiveness of cut-proof glove liners: cut and puncture resistance, dexterity, and sensibility.

    PubMed

    Salkin, J A; Stuchin, S A; Kummer, F J; Reininger, R

    1995-11-01

    Five types of commercial glove liners (within double latex gloves) were compared to single and double latex gloves for cut and puncture resistance and for relative manual dexterity and degree of sensibility. An apparatus was constructed to test glove-pseudofinger constructs in either a cutting or puncture mode. Cutting forces, cutting speed, and type of blade (serrated or scalpel blade) were varied and the time to cut-through measured by an electrical conductivity circuit. Penetration forces were similarly determined with a scalpel blade and a suture needle using a spring scale loading apparatus. Dexterity was measured with an object placement task among a group of orthopedic surgeons. Sensibility was assessed with Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry using standard techniques and rating scales. A subjective evaluation was performed at the end of testing. Time to cut-through for the liners ranged from 2 to 30 seconds for a rapid oscillating scalpel and 4 to 40 seconds for a rapid oscillating serrated knife under minimal loads. When a 1 kg load was added, times to cut-through ranged from 0.4 to 1.0 second. In most cases, the liners were superior to double latex. On average, 100% more force was required to penetrate the liners with a scalpel and 50% more force was required to penetrate the liners with a suture needle compared to double latex. Object placement task times were not significantly liners compared to double latex gloves. Semmes-Weinstein monofilaments, two-point discrimination, and vibrametry showed no difference in sensibility among the various liners and double latex gloves. Subjects felt that the liners were minimally to moderately impairing. An acclimation period may be required for their effective use.

  6. Bilingual Skills Training Program. Meat Cutting. Module 3.0: Identifying and Cutting Meat and By-Products.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on identifying and cutting of meat and by-products is the third of three (CE 028 291-293) in the meat cutting course of a bilingual skills training program. The course is designed to furnish theoretical and laboratory experience in the cutting of beef, pork, poultry, lamb, and mutton. Module objectives are for students to develop…

  7. Open Cluster Dynamics via Fundamental Plane

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Cheng; Pang, Xiao-Ying

    2018-04-01

    Open clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.

  8. NRGC: a novel referential genome compression algorithm.

    PubMed

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Usefulness of the "grand-piano sign" for determining femoral rotational alignment in total knee arthroplasty.

    PubMed

    Ohmori, Takaaki; Kabata, Tamon; Kajino, Yoshitomo; Taga, Tadashi; Inoue, Daisuke; Yamamoto, Takashi; Takagi, Tomoharu; Yoshitani, Junya; Ueno, Takuro; Tsuchiya, Hiroyuki

    2018-01-01

    The "grand-piano sign" is a well-known indicator of proper rotational femoral alignment. We investigated changes in the shape of the femoral anterior cutting plane by changing the rotational alignment, anterior portion depth, and cutting plane flexion angle. We simulated various cutting planes after cutting the anterior portion of the femur next to the distal femoral osteotomy in 50 patients with varus knee and also a femoral anterior osteotomy with four degree (S group) and seven degree (T group) flexion angles regarding the mechanical axis. We defined the final cutting plane as the farthest position that we could reach without making a notch and the precutting plane as two millimeters anterior from the final cutting plane. The simulated resection plane was rotated to produce external and internal rotation angles of 0°, three degrees, and five degrees relative to the surgical transepicondylar axis (SEA). We investigated medial and lateral portions of the femoral anterior cutting plane length ratio (M/L). When we cut parallel to SEA, M/L was 0.67±0.09 and 0.62±0.12 in the T and S groups, respectively. M/L was approximately 0.8 and 0.5 with five degree internal and external rotations, respectively (P<0.01). On comparing final cutting and precutting planes, there were no significant differences in M/L without five degree external rotation in the T group and no significant difference in any case in the S group (P>0.01). The ideal M/L of the femoral anterior cutting plane was 0.62-0.67. M/L did not change with a precutting plane in almost all rotational patterns. Copyright © 2017. Published by Elsevier B.V.

  10. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

    NASA Astrophysics Data System (ADS)

    Luo, Hongbin; Li, Lemin; Yu, Hongfang

    2006-12-01

    Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

  11. Viewing Saturn from the Plane

    NASA Image and Video Library

    2006-04-19

    This view of the ringed planet shows its tilt relative to the plane of its orbit around the Sun. The planet tilts nearly 27 degrees relative to the ecliptic plane giving rise to seasons in which the rings shadow each hemisphere in its respective winter

  12. Physiology of fresh-cut fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    The idea to pre-process fruits and vegetables in the fresh state started with fresh-cut salads and now has expanded to fresh-cut fruits and other vegetables. The fresh-cut portion of the fresh produce industry includes fruits, vegetables, sprouts, mushrooms and even herbs that are cut, cored, sliced...

  13. 21 CFR 882.4275 - Dowel cutting instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dowel cutting instrument. 882.4275 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4275 Dowel cutting instrument. (a) Identification. A dowel cutting instrument is a device used to cut dowels of bone for bone grafting. (b...

  14. When Students Cut Themselves

    ERIC Educational Resources Information Center

    Malikow, Max

    2006-01-01

    Masochism, the irrational self-infliction of pain, is more easily defined than understood. Once, a teacher used the word "cutting" only reference to a student skipping class. But, in recent years, it has taken on additional meaning. Cutting, or self-injury, is a deliberate self-harming behavior but without conscious suicidal ideation. To define…

  15. 49 CFR 234.269 - Cut-out circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Cut-out circuits. 234.269 Section 234.269..., Inspection, and Testing Inspections and Tests § 234.269 Cut-out circuits. Each cut-out circuit shall be... of this section, a cut-out circuit is any circuit which overrides the operation of automatic warning...

  16. 49 CFR 234.269 - Cut-out circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Cut-out circuits. 234.269 Section 234.269..., Inspection, and Testing Inspections and Tests § 234.269 Cut-out circuits. Each cut-out circuit shall be... of this section, a cut-out circuit is any circuit which overrides the operation of automatic warning...

  17. The influence of cutting speed and cutting initiation location in specimen preparation for the microtensile bond strength test.

    PubMed

    Abreu, Celina Wanderley; Santosb, Jarbas F; Passos, Sheila Pestana; Michida, Silvia Masae; Takahashi, Fernando Eidi; Bottino, Marco Antonio

    2011-06-01

    This study evaluated the effect of cutting initiation location and cutting speed on the bond strength between resin cement and feldspathic ceramic. Thirty-six blocks (6.4 x 6.4 x 4.8 mm) of ceramic (Vita VM7) were produced. The ceramic surfaces were etched with 10% hydrofluoric acid gel for 60 s and then silanized. Each ceramic block was placed in a silicon mold with the treated surface exposed. A resin cement (Variolink II) was injected into the mold over the treated surface and polymerized. The resin cement-ceramic blocks were divided into two groups according to experimental conditions: a) cutting initiation location - resin cement, ceramic and interface; and b) cutting speed - 10,000, 15,000, and 20,000 rpm. The specimens were sectioned to achieve non-trimmed bar specimens. The microtensile test was performed in a universal testing machine (1 mm/min). The failure modes were examined using an optical light microscope and SEM. Bond strength results were analyzed using one-way ANOVA and Tukey's test (α = 0.05). Significant influences of cutting speed and initiation location on bond strength (p < 0.05) were observed. The highest mean was achieved for specimens cut at 15,000 rpm at the interface (15.12 ± 5.36 MPa). The lowest means were obtained for specimens cut at the highest cutting speed in resin cement (8.50 ± 3.27 MPa), and cut at the lowest cutting speed in ceramic (8.60 ± 2.65 MPa). All groups showed mainly mixed failure (75% to 100%). The cutting speed and initiation location are important factors that should be considered during specimen preparation for microtensile bond strength testing, as both may influence the bond strength results.

  18. Southern Pine Beetle Survival In Trees Felled By the Cut and Top-Cut and Leave Method

    Treesearch

    J.D. Hodges; R.C. Thatcher

    1976-01-01

    When the cut & top-cut & leave method was used for control of the southern pine beetle in Central Louisiana, trees were felled into the open or into shade in September, June, July, December, and January. Survival was greatest in September, moderate in July, and relatively low in June, December, and January. The cut and top treatment resulted in lower beetle...

  19. 27 CFR 6.92 - Newspaper cuts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Newspaper cuts. 6.92 Section 6.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.92 Newspaper cuts. Newspaper cuts, mats, or...

  20. 49 CFR 236.52 - Relayed cut-section.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Relayed cut-section. 236.52 Section 236.52...: All Systems Track Circuits § 236.52 Relayed cut-section. Where relayed cut-section is used in... shall be open and the track circuit shunted when the track relay at such cut-section is in deenergized...