Three-Dimensional Profiles Using a Spherical Cutting Bit: Problem Solving in Practice
ERIC Educational Resources Information Center
Ollerton, Richard L.; Iskov, Grant H.; Shannon, Anthony G.
2002-01-01
An engineering problem concerned with relating the coordinates of the centre of a spherical cutting tool to the actual cutting surface leads to a potentially rich example of problem-solving techniques. Basic calculus, Lagrange multipliers and vector calculus techniques are employed to produce solutions that may be compared to better understand…
Urs Buehlmann; D. Earl Kline; Janice K. Wiedenbeck; R., Jr. Noble
2008-01-01
Cutting-bill requirements, among other factors, influence the yield obtained when cutting lumber into parts. The first part of this 2-part series described how different cutting-bill part sizes, when added to an existing cutting-bill, affect lumber yield, and quantified these observations. To accomplish this, the study employed linear least squares estimation technique...
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
Liu, Pou; Kantola, Kalle; Fukuda, Toshio; Arai, Fumihito
2009-05-01
We report that a series of in situ nanofabrication techniques of nanostructures, including cutting, bending and soldering of carbon nanotubes (CNTs), inside a field emission scanning electron microscope (FE-SEM) used for nanoassembly of nanostructures. The CNTs can be cut with electron beam assisted with oxygen gas. The cutting was developed for the bending of CNT, if some conditions of the cutting technique are changed. These include the increase of the acceleration voltage and/or setting the oxygen gas nozzle farther from the sample, and/or reducing the irradiation time. Using the proposed bending method angles larger than 90 degrees can be formed and the location of the kink can be set accurately. It is also shown that tungsten can be deposited on a substrate by the electron-beam-induced deposition, if the oxygen of the proposed cutting technique is replaced by W(CO)6. In this paper, these three nanofabrication methods were employed in the creation of a two dimensional (2D) nanostructure, the letters N and U, and a three dimensional (3D) nanostructure, the letter N. The 2D letters were constructed from 6 CNTs assembled on a substrate while the 3D letter N was bended from a single CNT and fixed to stand on a substrate. Based on the high performance of the proposed techniques, it is suggested that the cutting, bending, and soldering techniques inside SEM will become widely utilized in the fabrication and assembly of nanodevices and in the characterization of nanomaterials.
Zeitouni, Jihad; Clough, Bret; Zeitouni, Suzanne; Saleem, Mohammed; Al Aisami, Kenan; Gregory, Carl
2017-01-01
Background: The use of lasers has become increasingly common in the field of medicine and dentistry, and there is a growing need for a deeper understanding of the procedure and its effects on tissue. The aim of this study was to compare the erbium-doped yttrium aluminium garnet (Er:YAG) laser and conventional drilling techniques, by observing the effects on trabecular bone microarchitecture and the extent of thermal and mechanical damage. Methods: Ovine femoral heads were employed to mimic maxillofacial trabecular bone, and cylindrical osteotomies were generated to mimic implant bed preparation. Various laser parameters were tested, as well as a conventional dental drilling technique. The specimens were then subjected to micro-computed tomographic (μCT) histomorphometic analysis and histology. Results: Herein, we demonstrate that mCT measurements of trabecular porosity provide quantitative evidence that laser-mediated cutting preserves the trabecular architecture and reduces thermal and mechanical damage at the margins of the cut. We confirmed these observations with histological studies. In contrast with laser-mediated cutting, conventional drilling resulted in trabecular collapse, reduction of porosity at the margin of the cut and histological signs of thermal damage. Conclusions: This study has demonstrated, for the first time, that mCT and quantification of porosity at the margin of the cut provides a quantitative insight into damage caused by bone cutting techniques. We further show that with laser-mediated cutting, the marrow remains exposed to the margins of the cut, facilitating cellular infiltration and likely accelerating healing. However, with drilling, trabecular collapse and thermal damage is likely to delay healing by restricting the passage of cells to the site of injury and causing localized cell death. PMID:29416849
Computer numeric control generation of toric surfaces
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Ball, Gary A.; Keller, John R.
1994-05-01
Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.
Hou, Shaoping; Saltos, Tatiana M; Iredia, Idiata W; Tom, Veronica J
2018-01-01
Cellular transplantation to repair a complete spinal cord injury (SCI) is tremendously challenging due to the adverse local milieu for graft survival and growth. Results from cell transplantation studies yield great variability, which may possibly be due to the surgical techniques employed to induce an SCI. In order to delineate the influence of surgery on such inconsistency, we compared lesion morphology and graft survival as well as integration from different lesion methodologies of SCI. Surgical techniques, including a traditional approach cut+microaspiration, and two new approaches, cut alone as well as crush, were employed to produce a complete SCI, respectively. Approximately half of the rats in each group received injury only, whereas the other half received grafts of fetal brainstem cells into the lesion gap. Eight weeks after injury with or without graft, histological analysis showed that the cut+microaspiration surgery resulted in larger lesion cavities and severe fibrotic scars surrounding the cavity, and cellular transplants rarely formed a tissue bridge to penetrate the barrier. In contrast, the majority of cases treated with cut alone or crush exhibited smaller cavities and less scarring; the grafts expanded and blended extensively with the host tissue, which often built continuous tissue bridging the rostral and caudal cords. Scarring and cavitation were significantly reduced when microaspiration was avoided in SCI surgery, facilitating graft/host tissue fusion for signal transmission. The result suggests that microaspiration frequently causes severe scars and cavities, thus impeding graft survival and integration. Copyright © 2017 Elsevier B.V. All rights reserved.
Counterbalance of cutting force for advanced milling operations
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao
2010-05-01
The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.
Brown, M F; Brotzman, H G; Kinden, D A
1976-09-01
A procedure yielding sections of unembedded biological samples for observation by scanning electron microscopy is described. Sections of samples, fixed and hardened in OsO4, were obtained in quantity with a tissue sectioner. Subsequent treatments to osmium-coat cut surfaces were employed prior to critical point drying. The procedure yields cleanly cut surfaces through cells and cytoplasmic organelles which are retained in their normal position. Sections of apple leaf and mouse kidney are illustrated. Sections can be readily cut in a desired plane with less structural damage than is typically encountered by other sectioning or dissection techniques.
Burd, H J; Wilde, G S
2016-04-01
The use of a femtosecond laser to form planes of cavitation bubbles within the ocular lens has been proposed as a potential treatment for presbyopia. The intended purpose of these planes of cavitation bubbles (referred to in this paper as 'cutting planes') is to increase the compliance of the lens, with a consequential increase in the amplitude of accommodation. The current paper describes a computational modelling study, based on three-dimensional finite element analysis, to investigate the relationship between the geometric arrangement of the cutting planes and the resulting improvement in lens accommodation performance. The study is limited to radial cutting planes. The effectiveness of a variety of cutting plane geometries was investigated by means of modelling studies conducted on a 45-year human lens. The results obtained from the analyses depend on the particular modelling procedures that are employed. When the lens substance is modelled as an incompressible material, radial cutting planes are found to be ineffective. However, when a poroelastic model is employed for the lens substance, radial cuts are shown to cause an increase in the computed accommodation performance of the lens. In this case, radial cuts made in the peripheral regions of the lens have a relatively small influence on the accommodation performance of the lens; the lentotomy process is seen to be more effective when cuts are made near to the polar axis. When the lens substance is modelled as a poroelastic material, the computational results suggest that useful improvements in lens accommodation performance can be achieved, provided that the radial cuts are extended to the polar axis. Radial cuts are ineffective when the lens substance is modelled as an incompressible material. Significant challenges remain in developing a safe and effective surgical procedure based on this lentotomy technique.
Round-off errors in cutting plane algorithms based on the revised simplex procedure
NASA Technical Reports Server (NTRS)
Moore, J. E.
1973-01-01
This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.
O’Caoimh, Rónán; Gao, Yang; Svendovski, Anton; Gallagher, Paul; Eustace, Joseph; Molloy, D. William
2017-01-01
Background: Although required to improve the usability of cognitive screening instruments (CSIs), the use of cut-off scores is controversial yet poorly researched. Objective: To explore cut-off scores for two short CSIs: the Standardized Mini-Mental State Examination (SMMSE) and Quick Mild Cognitive Impairment (Qmci) screen, describing adjustments in scores for diagnosis (MCI or dementia), age (≤, >75 years), and education (<, ≥12 years), comparing two methods: the maximal accuracy approach, derived from receiver operating characteristic curves, and Youden’s Index. Methods: Pooled analysis of assessments from patients attending memory clinics in Canada between 1999–2010 : 766 with mild cognitive impairment (MCI) and 1,746 with dementia, and 875 normal controls. Results: The Qmci was more accurate than the SMMSE in differentiating controls from MCI or cognitive impairment (MCI and dementia). Employing the maximal accuracy approach, the optimal SMMSE cut-off for cognitive impairment was <28/30 (AUC 0.86, sensitivity 74%, specificity 88%) versus <63/100 for the Qmci (AUC 0.93, sensitivity 85%, specificity 85%). Using Youden’s Index, the optimal SMMSE cut-off remained <28/30 but fell slightly to <62/100 for the Qmci (sensitivity 83%, specificity 87%). The optimal cut-off for MCI was <29/30 for the SMMSE and <67/100 for the Qmci, irrespective of technique. The maximal accuracy approach generally produced higher Qmci cut-offs than Youden’s Index, both requiring adjustment for age and education. There were no clinically meaningful differences in SMMSE cut-off scores by age and education or method employed. Conclusion: Caution should be exercised selecting cut-offs as these differ by age, education, and method of derivation, with the extent of adjustment varying between CSIs. PMID:28222528
NASA Technical Reports Server (NTRS)
1981-01-01
Jet Propulsion Laboratory developed a new one-step liquid-liquid extraction technique which cuts processing time, reduces costs and eliminates much of the equipment required. Technique employs disposable extraction columns, originally developed as an aid to the Los Angeles Police Department, which allow more rapid detection of drugs as part of the department's drug abuse program. Applications include medical treatment, pharmaceutical preparation and forensic chemistry. NASA waived title to Caltech, and Analytichem International is producing Extubes under Caltech license.
Compressed Speech Technology: Implications for Learning and Instruction.
ERIC Educational Resources Information Center
Sullivan, LeRoy L.
This paper first traces the historical development of speech compression technology, which has made it possible to alter the spoken rate of a pre-recorded message without excessive distortion. Terms used to describe techniques employed as the technology evolved are discussed, including rapid speech, rate altered speech, cut-and-spliced speech, and…
Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.
Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-12
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.
Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting
Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir
2015-01-01
In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976
ERIC Educational Resources Information Center
Lefevre, Fernando; Teixeira, Jorge Juarez Vieira; Lefevre, Ana Maria Cavalcanti; de Castro, Lia Lusitana Cardozo; Spinola, Aracy Witt de Pinho
2004-01-01
Aiming at identifying the relationship between the elderly patient facing drug prescription and health professionals, an exploratory and descriptive study of a qualitative cut was carried out using semi-structured interviews. To this end, the Collective Subject Discourse analysis technique was employed. Thirty elderly patients living in the urban…
Category 3: Sound Generation by Interacting with a Gust
NASA Technical Reports Server (NTRS)
Scott, James R.
2004-01-01
The cascade-gust interaction problem is solved employing a time-domain approach. The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.Nonlinear time dependent Euler equations are solved using higher order spatial differencing and time marching techniques. The solutions indicate the generation and propagation of expected mode orders for the given configuration and flow conditions. The blade passing frequency (BPF) is cut off for this cascade while higher harmonic, 2BPF and 3BPF, modes are cut on.
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Method for Fabricating Composite Structures Using Continuous Press Forming
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Lardeux, Frédéric; Torrico, Gino; Aliaga, Claudia
2016-07-04
In ELISAs, sera of individuals infected by Trypanosoma cruzi show absorbance values above a cut-off value. The cut-off is generally computed by means of formulas that need absorbance readings of negative (and sometimes positive) controls, which are included in the titer plates amongst the unknown samples. When no controls are available, other techniques should be employed such as change-point analysis. The method was applied to Bolivian dog sera processed by ELISA to diagnose T. cruzi infection. In each titer plate, the change-point analysis estimated a step point which correctly discriminated among known positive and known negative sera, unlike some of the six usual cut-off formulas tested. To analyse the ELISAs results, the change-point method was as good as the usual cut-off formula of the form "mean + 3 standard deviation of negative controls". Change-point analysis is therefore an efficient alternative method to analyse ELISA absorbance values when no controls are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn
2014-01-01
The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less
Approximate ground states of the random-field Potts model from graph cuts
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay
2018-05-01
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
NASA Astrophysics Data System (ADS)
Prasad, Balla Srinivasa; Prabha, K. Aruna; Kumar, P. V. S. Ganesh
2017-03-01
In metal cutting machining, major factors that affect the cutting tool life are machine tool vibrations, tool tip/chip temperature and surface roughness along with machining parameters like cutting speed, feed rate, depth of cut, tool geometry, etc., so it becomes important for the manufacturing industry to find the suitable levels of process parameters for obtaining maintaining tool life. Heat generation in cutting was always a main topic to be studied in machining. Recent advancement in signal processing and information technology has resulted in the use of multiple sensors for development of the effective monitoring of tool condition monitoring systems with improved accuracy. From a process improvement point of view, it is definitely more advantageous to proactively monitor quality directly in the process instead of the product, so that the consequences of a defective part can be minimized or even eliminated. In the present work, a real time process monitoring method is explored using multiple sensors. It focuses on the development of a test bed for monitoring the tool condition in turning of AISI 316L steel by using both coated and uncoated carbide inserts. Proposed tool condition monitoring (TCM) is evaluated in the high speed turning using multiple sensors such as Laser Doppler vibrometer and infrared thermography technique. The results indicate the feasibility of using the dominant frequency of the vibration signals for the monitoring of high speed turning operations along with temperatures gradient. A possible correlation is identified in both regular and irregular cutting tool wear. While cutting speed and feed rate proved to be influential parameter on the depicted temperatures and depth of cut to be less influential. Generally, it is observed that lower heat and temperatures are generated when coated inserts are employed. It is found that cutting temperatures are gradually increased as edge wear and deformation developed.
2011-01-01
Here we report the method of anastomosis based on double stapling technique (hereinafter, DST) using a trans-oral anvil delivery system (EEATM OrVilTM) for reconstructing the esophagus and lifted jejunum following laparoscopic total gastrectomy or proximal gastric resection. As a basic technique, laparoscopic total gastrectomy employed Roux-en-Y reconstruction, laparoscopic proximal gastrectomy employed double tract reconstruction, and end-to-side anastomosis was used for the cut-off stump of the esophagus and lifted jejunum. We used EEATM OrVilTM as a device that permitted mechanical purse-string suture similarly to conventional EEA, and endo-Surgitie. After the gastric lymph node dissection, the esophagus was cut off using an automated stapler. EEATM OrVilTM was orally and slowly inserted from the valve tip, and a small hole was created at the tip of the obliquely cut-off stump with scissors to let the valve tip pass through. Yarn was cut to disconnect the anvil from a tube and the anvil head was retained in the esophagus. The end-Surgitie was inserted at the right subcostal margin, and after the looped-shaped thread was wrapped around the esophageal stump opening, assisting Maryland forceps inserted at the left subcostal and left abdomen were used to grasp the left and right esophageal stump. The surgeon inserted anvil grasping forceps into the right abdomen, and after grasping the esophagus with the forceps, tightened the end Surgitie, thereby completing the purse-string suture on the esophageal stump. The main unit of the automated stapler was inserted from the cut-off stump of the lifted jejunum, and a trocar was made to pass through. To prevent dropout of the small intestines from the automated stapler, the automated stapler and the lifted jejunum were fastened with silk thread, the abdomen was again inflated, and the lifted jejunum was led into the abdominal cavity. When it was confirmed that the automated stapler and center rod were made completely linear, the anvil and the main unit were connected with each other and firing was carried out. Then, DST-based anastomosis was completed with no dog-ear. The method may facilitate safe laparoscopic anastomosis between the esophagus and reconstructed intestine. This is also considered to serve as a useful anastomosis technique for upper levels of the esophagus in laparotomy. PMID:21599911
Miranda, Daniel L; Rainbow, Michael J; Crisco, Joseph J; Fleming, Braden C
2012-01-01
Jumping and cutting activities are investigated in many laboratories attempting to better understand the biomechanics associated with non-contact ACL injury. Optical motion capture is widely used; however, it is subject to soft tissue artifact (STA). Biplanar videoradiography offers a unique approach to collecting skeletal motion without STA. The goal of this study was to compare how STA affects the six-degree-of-freedom motion of the femur and tibia during a jump-cut maneuver associated with non-contact ACL injury. Ten volunteers performed a jump-cut maneuver while their landing leg was imaged using optical motion capture (OMC) and biplanar videoradiography. The within-bone motion differences were compared using anatomical coordinate systems for the femur and tibia, respectively. The knee joint kinematic measurements were compared during two periods: before and after ground contact. Over the entire activity, the within-bone motion differences between the two motion capture techniques were significantly lower for the tibia than the femur for two of the rotational axes (flexion/extension, internal/external) and the origin. The OMC and biplanar videoradiography knee joint kinematics were in best agreement before landing. Kinematic deviations between the two techniques increased significantly after contact. This study provides information on the kinematic discrepancies between OMC and biplanar videoradiography that can be used to optimize methods employing both technologies for studying dynamic in vivo knee kinematics and kinetics during a jump-cut maneuver. PMID:23084785
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Implement the medical group revenue function. Create competitive advantage.
Colucci, C
1998-01-01
This article shows medical groups how they can employ new financial management and information technology techniques to safeguard their revenue and income streams. These managerial techniques stem from the application of the medical group revenue function, which is defined herein. This article also describes how the medical group revenue function can be used to create value by employing a database and a decision support system. Finally, the article describes how the decision support system can be used to create competitive advantage. Through the wise use of internally generated information, medical groups can negotiate better contract terms, improve their operations, cut their costs, embark on capital investment programs and improve market share. As medical groups gain market power by improving in these areas, they will be more attractive to potential strategic allies, payers and investment bankers.
NASA Astrophysics Data System (ADS)
Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.
2018-03-01
The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.
Optimum design of space storable gas/liquid coaxial injectors.
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
Review of the results of a program of single-element, cold-flow/hot-fire experiments performed for the purpose of establishing design criteria for a high-performance gas/liquid (FLOX/CH4) coaxial injector. The approach and the techniques employed resulted in the direct design of an injector that met or exceeded the performance and chamber compatibility goals of the program without any need for the traditional 'cut-and-try' development methods.
The effect of technique change on knee loads during sidestep cutting.
Dempsey, Alasdair R; Lloyd, David G; Elliott, Bruce C; Steele, Julie R; Munro, Bridget J; Russo, Kylie A
2007-10-01
To identify the effect of modifying sidestep cutting technique on knee loads and predict what impact such change would have on the risk of noncontact anterior cruciate ligament injury. A force platform and motion-analysis system were used to record ground-reaction forces and track the trajectories of markers on 15 healthy males performing sidestep cutting tasks using their normal technique and nine different imposed techniques. A kinematic and inverse dynamic model was used to calculate the three-dimensional knee postures and moments. The imposed techniques of foot wide and torso leaning in the opposite direction to the cut resulted in increased peak valgus moments experienced in weight acceptance. Higher peak internal rotation moments were found for the foot wide and torso rotation in the opposite direction to the cut techniques. The foot rotated in technique resulted in lower mean flexion/extension moments, whereas the foot wide condition resulted in higher mean flexion/extension moments. The flexed knee, torso rotated in the opposite direction to the cut and torso leaning in the same direction as the cut techniques had significantly more knee flexion at heel strike. Sidestep cutting technique had a significant effect on loads experienced at the knee. The techniques that produced higher valgus and internal rotation moments at the knee, such as foot wide, torso leaning in the opposite direction to the cut and torso rotating in the opposite direction to the cut, may place an athlete at higher risk of injury because these knee loads have been shown to increase the strain on the anterior cruciate ligament. Training athletes to avoid such body positions may result in a reduced risk of noncontact anterior cruciate ligament injures.
Kaffes, Arthur J; Sriram, Parupudi V J; Rao, Guduru V; Santosh, Darisetti; Reddy, D Nageshwar
2005-11-01
Pre-cutting techniques have been used to gain biliary access at the expense of an increased complication rate. This may be because of the multiple attempts to achieve cannulation by using standard methods before pre-cutting and causing excess edema and papillary trauma. There are limited data on the early use of pre-cutting techniques. We performed a prospective study of the early introduction of needle-knife techniques in patients with difficult biliary cannulation. Standard biliary cannulation was attempted with a sphincterotome and a guidewire. If this failed within 10 minutes or if there were more than 5 pancreatic cannulations, the needle-knife technique was used. Either a standard method of pre-cutting (below-upward) from the papillary orifice or the modified technique of pre-cutting (above-downward), stopping short of the papillary orifice, was adopted, as per the discretion of the endoscopist. If pre-cutting failed, the cannulation was reattempted 24 to 48 hours later. A total of 346 therapeutic biliary ERCP procedures were performed between April and August 2003. Of these, 70 patients (20%) (mean age, 54 years; 38 men) underwent needle-knife pre-cut sphincterotomy (16 with the standard technique). In 58 patients (83%), the procedure was successful with the initial pre-cutting, making the total success at initial ERCP 334/346 (96.5%). Nine patients in whom pre-cut failed, returned for a second-attempt ERCP, with 7 completed successfully. The total success rate of pre-cutting was 65/70 (93%). The overall success rate of biliary cannulation, after two ERCP attempts, was 341/346 (98.5%). Six patients had mild bleeding, and one had mild pancreatitis. There was no difference in these complications between the two types of pre-cut techniques. The early use of needle knife for difficult biliary cannulation is safe and effective, irrespective of the technique used.
Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2017-03-01
Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.
Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications
NASA Technical Reports Server (NTRS)
Edwards, David E.; Haimes, Robert
1999-01-01
An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.
NASA Astrophysics Data System (ADS)
Kheloufi, Karim; Amara, El Hachemi
A transient numerical model is developed to study the temperature field and the kerf shape during laser cutting process. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. The VOF method is used to track the evolution of the shape of the kerf. Physical phenomena occurring at the liquid/gas interface, including friction force and pressure force exerted by the gas jet and the heat absorbed by the surface, are incorporated into the governing equations as source terms. Temperature and velocity distribution, and kerf shape are investigated.
Image fidelity improvement in digital holographic microscopy using optical phase conjugation
NASA Astrophysics Data System (ADS)
Chan, Huang-Tian; Chew, Yang-Kun; Shiu, Min-Tzung; Chang, Chi-Ching
2018-01-01
With respect to digital holography, techniques in suppressing noises derived from reference arm are maturely developed. However, techniques for the object counterpart are not being well developed. Optical phase conjugation technique was believed to be a promising method for this interest. A 0°-cut BaTiO3 photorefractive crystal was involved in self-pumped phase conjugation scheme, and was employed to in-line digital holographic microscopy, in both transmission-type and reflection-type configuration. On pure physical compensation basis, results revealed that the image fidelity was improved substantially with 2.9096 times decrease in noise level and 3.5486 times increase in the ability to discriminate noise on average, by suppressing the scattering noise prior to recording stage.
An Evaluation of GuttaFlow2 in Filling Artificial Internal Resorption Cavities: An in vitro Study.
Mohammad, Yara; Alafif, Hisham; Hajeer, Mohammad; Yassin, Oula
2016-06-01
Obturation of root canal with internal resorption represents a major challenge in Endodontics. In spite of that, usual obturation techniques are often employed without considering the best technique to solve this problem. The goal of this study was to investigate the ability of GuttaFlow2 in filling artificial internal resorption cavities. The study sample included 36 human upper central incisors that were prepared using Protaper system (F4). Internal resorption cavities were prepared by cutting each tooth at 7 mm from the apex and preparing hemispherical cavities on both the sides and then re-attaching them. The sample was randomly separated into three groups (n = 12 in each group). In the first group, thermal injection technique (Obtura II) was employed and served as the control group. In the second group, injection of cold free-flow obturation technique with a master cone (GF2-C) was employed, whereas in the third group injection of cold free-flow obturation without a master cone (GF2) was followed. The teeth were re-cut at the same level as before and examined under a stereomicroscope. Subsequently, the captured images were transferred to AutoCAD program to measure the percentage of total filling "TF," gutta-percha "G," sealer "S," and voids "V" out of the total surface of the cross sections. All materials showed high filling properties in terms of "total filling," ranging from 99.17% (for Obtura II) to 99.72% (for GF2-C). Regarding gutta-percha percentages of filling, they ranged from 83.15 to 83.93%, whereas those for the sealer ranged from 5.71 to 15.24%. GuttaFlow2 group with a master cone appeared to give the best results despite the insignificant differences among the three groups. The GuttaFlow2 with a master cone technique seemed to be a promising filling material and gave results similar to those observed with Obtura II. It is recommended for use to obturate internal resorption cavities in clinical practice due to its good adaptability to root canal walls, ease of handling, and application. Internal resorption defects can be successfully filled with GuttaFlow2 material when supplemented with a master cone, and the results are comparable with those obtained with the Obtura II technique.
29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating is...
29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating is...
29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating is...
29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating is...
29 CFR 1915.53 - Welding, cutting and heating in way of preservative coatings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating in way of preservative... SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.53 Welding, cutting and heating in way of... and shipbulding and shall not apply to shipbreaking. (b) Before welding, cutting or heating is...
Old scissors to industrial automation: the impact of technologic evolution on worker's health.
Teodoroski, Rita de Cassia Clark; Koppe, Vanessa Mazzocchi; Merino, Eugênio Andrés Díaz
2012-01-01
To cut a fabric, the professional performs different jobs and among them stands out the cut. The scissors has been the instrument most used for this activity. Over the years, technology has been conquering its space in the textile industry. However, despite the industrial automation able to offer subsidies to answer employment market demands, without appropriate orientation, the worker is exposed to the risks inherent at the job. Ergonomics is a science that search to promote the comfort and well being in consonance with efficacy. Its goals are properly well defined and clearly guide the actions aimed at transforming the working conditions. This study aimed to analyze the activity of cut tissues with a machine by a seamstress and the implications on their body posture. The methodology used was the observation technique and application of the Protocol RULA, where the result obtained was the level 3 and score 5, confirming that "investigations and changes are required soon". Conclude that using the machine to tissue cut should be encouraged, but in conjunction with orientations for improving posture while handling it. It seeks to prevent dysfunction of the musculoskeletal system that prevents employees from performing their work tasks efficiently and productively.
1993-10-15
included an f/2.8 dual port long-distance microscope coupled to a black d•rl white CCD video camera. A long-pass filter (with a cut-off at 530 nm) was...evaporation rates of multicomponent droplets is needed for the calibration of exciplex -based vapor/liquid visualization techniques that are employed today in...Publishing Co., Houston. Texas. Hanlon. T. R.. and Melton. L. A. (1992). Exciplex fluorescence thermometry of falling hexadecane droplets. Journal of Heat
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
ERIC Educational Resources Information Center
Social and Labour Bulletin, 1983
1983-01-01
A series of articles discusses employment issues in various countries: youth employment, reduced working hours and wage cuts, dislocated workers, government employment policies, and job creation. (SK)
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
29 CFR 1915.55 - Gas welding and cutting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Gas welding and cutting. 1915.55 Section 1915.55 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.55 Gas welding and cutting. The provisions of this section shall apply to ship repairing...
29 CFR 1915.56 - Arc welding and cutting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship repairing...
Laser Cutting of Thin Nickel Bellows
NASA Technical Reports Server (NTRS)
Butler, C. L.
1986-01-01
Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.
3D interferometric shape measurement technique using coherent fiber bundles
NASA Astrophysics Data System (ADS)
Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen
2017-06-01
In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken on...
A review of cutting mechanics and modeling techniques for biological materials.
Takabi, Behrouz; Tai, Bruce L
2017-07-01
This paper presents a comprehensive survey on the modeling of tissue cutting, including both soft tissue and bone cutting processes. In order to achieve higher accuracy in tissue cutting, as a critical process in surgical operations, the meticulous modeling of such processes is important in particular for surgical tool development and analysis. This review paper is focused on the mechanical concepts and modeling techniques utilized to simulate tissue cutting such as cutting forces and chip morphology. These models are presented in two major categories, namely soft tissue cutting and bone cutting. Fracture toughness is commonly used to describe tissue cutting while Johnson-Cook material model is often adopted for bone cutting in conjunction with finite element analysis (FEA). In each section, the most recent mathematical and computational models are summarized. The differences and similarities among these models, challenges, novel techniques, and recommendations for future work are discussed along with each section. This review is aimed to provide a broad and in-depth vision of the methods suitable for tissue and bone cutting simulations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Finite pure integer programming algorithms employing only hyperspherically deduced cuts
NASA Technical Reports Server (NTRS)
Young, R. D.
1971-01-01
Three algorithms are developed that may be based exclusively on hyperspherically deduced cuts. The algorithms only apply, therefore, to problems structured so that these cuts are valid. The algorithms are shown to be finite.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
...] Welding, Cutting and Brazing Standard; Extension of the Office of Management and Budget's (OMB) Approval... requirements contained in the Welding, Cutting and Brazing Standard (29 CFR part 1910, subpart Q). The information collected is used by employers and workers whenever welding, cutting and brazing are performed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
...] Standard for Welding, Cutting, and Brazing; Extension of the Office of Management and Budget's (OMB... collection requirements contained in the Standard for Welding, Cutting, and Brazing (29 CFR Part 1910, Subpart Q). The information collected is used by employers and workers whenever welding, cutting, and...
Simple to complex modeling of breathing volume using a motion sensor.
John, Dinesh; Staudenmayer, John; Freedson, Patty
2013-06-01
To compare simple and complex modeling techniques to estimate categories of low, medium, and high ventilation (VE) from ActiGraph™ activity counts. Vertical axis ActiGraph™ GT1M activity counts, oxygen consumption and VE were measured during treadmill walking and running, sports, household chores and labor-intensive employment activities. Categories of low (<19.3 l/min), medium (19.3 to 35.4 l/min) and high (>35.4 l/min) VEs were derived from activity intensity classifications (light <2.9 METs, moderate 3.0 to 5.9 METs and vigorous >6.0 METs). We examined the accuracy of two simple techniques (multiple regression and activity count cut-point analyses) and one complex (random forest technique) modeling technique in predicting VE from activity counts. Prediction accuracy of the complex random forest technique was marginally better than the simple multiple regression method. Both techniques accurately predicted VE categories almost 80% of the time. The multiple regression and random forest techniques were more accurate (85 to 88%) in predicting medium VE. Both techniques predicted the high VE (70 to 73%) with greater accuracy than low VE (57 to 60%). Actigraph™ cut-points for light, medium and high VEs were <1381, 1381 to 3660 and >3660 cpm. There were minor differences in prediction accuracy between the multiple regression and the random forest technique. This study provides methods to objectively estimate VE categories using activity monitors that can easily be deployed in the field. Objective estimates of VE should provide a better understanding of the dose-response relationship between internal exposure to pollutants and disease. Copyright © 2013 Elsevier B.V. All rights reserved.
Foreign Object Damage to Tires Operating in a Wartime Environment
1991-11-01
barriers were successfully overcome and the method of testing employed can now be confidently used for future test needs of this type. Data Analysis ...combined variable effects. Analysis consideration involved cut types, cut depths, number of cuts, cut/hit probabilities, tire failures, and aircraft...November 1988 with data reduction and analysis continuing into October 1989. All of the cutting tests reported in this report were conducted at the
Cost minimizing of cutting process for CNC thermal and water-jet machines
NASA Astrophysics Data System (ADS)
Tavaeva, Anastasia; Kurennov, Dmitry
2015-11-01
This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.
Mechanical pre-cutting, a rediscovered tunneling technique
NASA Astrophysics Data System (ADS)
van Walsum, E.
1991-04-01
In 1950, the exact outlines of some circular tunnels, to be driven through chalk for the Corps of Engineers' Fort Randall Reservoir Project on the Missouri River at Pickstown, South Dakota, U.S.A., were pre-cut mechanically, i. e. prior to blasting the tunnel openings. No further applications of mechanical pre-cutting as a tunneling technique were made until the technique was rediscovered and further developed in France during the seventies. These further developments relate to the pre-cutting of harder rocks and the pre-cutting of cohesive and non-cohesive soils combined with the construction of a concrete pre-lining, i. e. a lining which is in place before the ground under it is excavated. Mechanical pre-cutting, as presently practiced, improves the quality and safety of tunneling and reduces surface settlement, noise and vibration. It is concluded that the technique is likely to be applied in the future in the construction of various types of underground structures whenever conventional tunneling is too risky or when environmental concerns are important.
Kogbara, Reginald B; Ogar, Innocent; Okparanma, Reuben N; Ayotamuno, Josiah M
2016-07-28
This study sought to compare the effectiveness of bioaugmentation and biostimulation, as well as the combination of both techniques, supplemented with phytoremediation, in the decontamination of petroleum drill cuttings. Drill cuttings with relatively low concentration of total petroleum hydrocarbons (TPH) and metals were mixed with soil in the ratio 5:1 and treated with three different combinations of the bioremediation options. Option A entailed bioaugmentation supplemented with phytoremediation. Option B had the combination of biostimulation and bioaugmentation supplemented with phytoremediation. While biostimulation supplemented with phytoremediation was deployed in option C. Option O containing the drill cuttings-soil mixture without treatment served as untreated control. Fertilizer application, tillage and watering were used for biostimulation treatment, while spent mushroom substrate (Pleurotus ostreatus) and elephant grass (Pennisetum purpureum) were employed for bioaugmentation and phytoremediation treatment, respectively. The drill cuttings-soil mixtures were monitored for TPH, organic carbon, total nitrogen, pH, metal concentrations, and fungal counts, over time. After 56 days of treatment, there was a decline in the initial TPH concentration of 4,114 mg kg(-1) by 5.5%, 68.3%, 75.6% and 48% in options O, A, B and C, respectively. Generally, higher TPH loss resulted from the phytoremediation treatment stage. The treated options also showed slight reductions in metal concentrations ranging from 0% to 16% of the initial low concentrations. The results highlight the effectiveness of bioaugmentation supplemented with phytoremediation. The combination of bioaugmentation and biostimulation supplemented with phytoremediation, however, may prove better in decontaminating petroleum drill cuttings to environmentally benign levels.
Status Report on the Impact on New York City of President Reagan's Proposed Budget Cuts.
ERIC Educational Resources Information Center
Community Service Society of New York, NY.
This report describes the effects that President Reaqan's proposed budget cuts will have on New York City. The report lists each affected program, the proposed cuts, Senate action, the House Budget Committee recommendation, and the impact on New York City. Areas covered by the program cuts reviewed include: (1) employment; (2) income security; (3)…
USDA-ARS?s Scientific Manuscript database
Nondestructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed in order to detect worms on fresh-cut lettuce. The optimal wavebands for detecting worms on fresh-cut lettuce were investigated using the one-way ANOVA analysis and correlation analysis. The worm detec...
Masters of defence: biomechanics of stinging nettles
NASA Astrophysics Data System (ADS)
Jensen, Kaare H.; Knoblauch, Jan
2017-11-01
The techniques employed by plants and animals to defend themselves are very varied. Some involve extremely refined armaments. Stinging nettles employ hollow needle-like stinging hairs constructed from silica, the mineral from which we make glass, and they are filled with poison. The hairs are remarkably rigid and rarely break. Yet the tip is so sharp that the slightest touch cuts human skin, and so fragile that it breaks at that touch and releases poison into the wound. How the seemingly antagonist mechanical functions of rigidity and fragility are achieved, however, is unknown. We combine experiments on real and synthetic stingers to elucidate the poison injection mechanism. The design of plant stingers is compared to other natural systems and optimal stinging strategies are discussed. This work was supported by a research Grant (13166) from VILLUM FONDEN.
Material cutting, shaping, and forming: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Information is presented concerning cutting, shaping, and forming of materials, and the equipment and techniques required for utilizing these materials. The use of molds, electrical fields, and mechanical devices are related to forming materials. Material cutting methods by devices including borers and slicers are presented along with chemical techniques. Shaping and fabrication techniques are described for tubing, honeycomb panels, and ceramic structures. The characteristics of the materials are described. Patent information is included.
NASA Astrophysics Data System (ADS)
Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan
2018-07-01
A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid
2003-08-01
This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.
Novel air-injection technique to locate the medial cut end of lacerated canaliculus.
Liu, Bingqian; Li, Yonghao; Long, Chongde; Wang, Zhonghao; Liang, Xuanwei; Ge, Jian; Wang, Zhichong
2013-12-01
Locating the medial cut end of the severed canaliculus is the most difficult aspect of canalicular repair, especially in patients with more medial laceration, severe oedema, persistent errhysis and a narrow canaliculus. Irrigation is a widely used technique to identify the cut end; however, we found that air injected through the intact canaliculus with a straight needle failed to reflux when the common canaliculus or lacrimal sac was not blocked. We describe a simple, safe and efficient air-injection technique to identify the medial cut edge of a lacerated canaliculus. In this method, we initially submersed the medial canthus under normal saline, then injected filtered air through the intact canaliculus using a side port stainless steel probe with a closed round tip. The tip was designed to block the common canaliculus to form a relatively closed system. The efficiency of this novel air-injection technique was equivalent to the traditional technique but does not require the cooperation of the patient to blow air. Using this technique, the medial cut end was successfully identified by locating the air-bubble exit within minutes in 19 cases of mono-canalicular laceration without any complication.
Scale Drift in Equating on a Test That Employs Cut Scores. Research Report. ETS RR-07-34
ERIC Educational Resources Information Center
Puhan, Gautam
2007-01-01
The purpose of this study is to determine the extent of scale drift on a test that employs cut scores. It is essential to examine scale drift in a testing program using new forms that are often put on scale through a series of intermediate equatings (known as equating chains). This may cause equating error to accumulate to a point where scale…
Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi
2014-10-01
In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.
Monosomy 3 by FISH in uveal melanoma: variability in techniques and results.
Aronow, Mary; Sun, Yang; Saunthararajah, Yogen; Biscotti, Charles; Tubbs, Raymond; Triozzi, Pierre; Singh, Arun D
2012-09-01
Tumor monosomy 3 confers a poor prognosis in patients with uveal melanoma. We critically review the techniques used for fluorescence in situ hybridization (FISH) detection of monosomy 3 in order to assess variability in practice patterns and to explain differences in results. Significant variability that has likely affected reported results was found in tissue sampling methods, selection of FISH probes, number of cells counted, and the cut-off point used to determine monosomy 3 status. Clinical parameters and specific techniques employed to report FISH results should be specified so as to allow meta-analysis of published studies. FISH-based detection of monosomy 3 in uveal melanoma has not been performed in a standardized manner, which limits conclusions regarding its clinical utility. FISH is a widely available, versatile technology, and when performed optimally has the potential to be a valuable tool for determining the prognosis of uveal melanoma. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1991-01-01
The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.
Fabrication of composite propfan blades for a cruise missile wind tunnel model
NASA Technical Reports Server (NTRS)
Fite, E. Brian
1993-01-01
This report outlines the procedures that were employed in fabricating prototype graphite-epoxy composite prop fan blades. These blades were used in wind tunnel tests that investigated prop fan propulsion system interactions with a missile airframe in order to study the feasibility of an advanced-technology-propfan-propelled missile. Major phases of the blade fabrication presented include machining of the master blade, mold fabrication, ply cutting and assembly, blade curing, and quality assurance. Specifically, four separate designs were fabricated, 18 blades of each geometry, using the same fabrication technique for each design.
NASA Astrophysics Data System (ADS)
M, Vasu; Shivananda Nayaka, H.
2018-06-01
In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.
A field test of cut-off importance sampling for bole volume
Jeffrey H. Gove; Harry T. Valentine; Michael J. Holmes
2000-01-01
Cut-off importance sampling has recently been introduced as a technique for estimating bole volume to some point below the tree tip, termed the cut-off point. A field test of this technique was conducted on a small population of eastern white pine trees using dendrometry as the standard for volume estimation. Results showed that the differences in volume estimates...
ERIC Educational Resources Information Center
Hafner, Dedra; Moffatt, Courtney; Kisa, Nutullah
2011-01-01
Cutting-Edge provides inclusion in college for students with intellectual disabilities (SWID). Cutting-Edge students attended college by taking undergraduate courses, resided in student housing, and engaged in student-life events as well as pursued community service, internships and employment. Undergraduate students were the best means to teach…
Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.
Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan
2017-09-01
Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Haircutting Guide for Cosmetology Students.
ERIC Educational Resources Information Center
Baker, Linda M.
Intended for use at any point in a beauty culture course, this student manual on haircutting implements and techniques focuses on two basic haircuts--page and short summer cut--to describe and illustrate basic cutting and shaping techniques. There are four major sections in the manual: (1) Hairshaping Implements and Techniques (Implements Used In…
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
NASA Astrophysics Data System (ADS)
Naik, Deepak kumar; Maity, K. P.
2018-03-01
Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.
Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel
NASA Astrophysics Data System (ADS)
Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.
2018-04-01
Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.
Ultrasonically Assisted Cutting of Bio-tissues in Microtomy
NASA Astrophysics Data System (ADS)
Wang, Dong; Roy, Anish; Silberschmidt, Vadim V.
Modern-day histology of bio-tissues for supporting stratified medicine diagnoses requires high-precision cutting to ensure high quality extremely thin specimens used in analysis. Additionally, the cutting quality is significantly affected by a wide variety of soft and hard tissues in the samples. This paper deals with development of a next generation of microtome employing introduction of controlled ultrasonic vibration to realise a hybrid cutting process of bio-tissues. The study is based on a combination of advanced experimental and numerical (finite-element) studies of multi-body dynamics of a cutting system. The quality of cut samples produced with the prototype is compared with the state-of-the-art.
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.; ...
2018-04-04
We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less
An implicit time-marching method for studying unsteady flow with massive separation
NASA Technical Reports Server (NTRS)
Osswald, G. A.; Ghia, K. N.; Chia, U.
1985-01-01
A fully implicit time-marching method is developed such that all spatial derivatives are approximated using central differences, but no use is made of any artificial dissipation. The numerical method solves the discretized equations using Alternating Direction Implicit-Block Gaussian Elimination technique. The method is implemented in the unsteady analysis, which solves the incompressible Navier-Stokes equations in terms of vorticity and stream function in generalized orthogonal coordinates. A clustered conformal C-grid is employed, and every effort is made to resolve the various length scales in the flow problem. The metric discontinuity at the branch-cut is treated appropriately using analytic continuation. Introduction of the BGE reordering permits implicit treatment of the branch cut in the numerical method. The vorticity singularity at the cusped trailing edge is also appropriately treated. This accurate and efficient implicit method is used to study flow at Re = 1000, past a 12-percent thick symmetric Joukowski airfoil at high angle of attack 30 and 53 deg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.
The friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For the welds in lap configuration, an enhancement to this technology is made by introducing a short hard insert, referred to as cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanically coupled computational model employing coupled Eulerian-Lagrangian approach is developed to quantitativelymore » capture the morphology of these interlocks during the FSW process. The simulations using developed model are validated by the experimental observations.The identified interface morphology coupled with the predicted temperature field from this process-structure model can then be used to estimate the post-weld microstructure and joint strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.
We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less
NASA Astrophysics Data System (ADS)
Daneshmend, L. K.; Pak, H. A.
1984-02-01
On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.
Assessment of wear dependence parameters in complex model of cutting tool wear
NASA Astrophysics Data System (ADS)
Antsev, A. V.; Pasko, N. I.; Antseva, N. V.
2018-03-01
This paper addresses wear dependence of the generic efficient life period of cutting tools taken as an aggregate of the law of tool wear rate distribution and dependence of parameters of this law's on the cutting mode, factoring in the random factor as exemplified by the complex model of wear. The complex model of wear takes into account the variance of cutting properties within one batch of tools, variance in machinability within one batch of workpieces, and the stochastic nature of the wear process itself. A technique of assessment of wear dependence parameters in a complex model of cutting tool wear is provided. The technique is supported by a numerical example.
Experimental analysis of Nd-YAG laser cutting of sheet materials - A review
NASA Astrophysics Data System (ADS)
Sharma, Amit; Yadava, Vinod
2018-01-01
Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Redundant via insertion in self-aligned double patterning
NASA Astrophysics Data System (ADS)
Song, Youngsoo; Jung, Jinwook; Shin, Youngsoo
2017-03-01
Redundant via (RV) insertion is employed to enhance via manufacturability, and has been extensively studied. Self-aligned double patterning (SADP) process, brings a new challenge to RV insertion since newly created cut for each RV insertion has to be taken care of. Specifically, when a cut for RV, which we simply call RV-cut, is formed, cut conflict may occur with nearby line-end cuts, which results in a decrease in RV candidates. We introduce cut merging to reduce the number of cut conflicts; merged cuts are processed with stitch using litho-etch-litho-etch (LELE) multi-patterning method. In this paper, we propose a new RV insertion method with cut merging in SADP for the first time. In our experiments, a simple RV insertion yields 55.3% vias to receives RVs; our proposed method that considers cut merging increases that number to 69.6% on average of test circuits.
NASA Astrophysics Data System (ADS)
Dutta, P. K.; Mishra, O. P.
2012-04-01
Satellite imagery for 2011 earthquake off the Pacific coast of Tohoku has provided an opportunity to conduct image transformation analyses by employing multi-temporal images retrieval techniques. In this study, we used a new image segmentation algorithm to image coastline deformation by adopting graph cut energy minimization framework. Comprehensive analysis of available INSAR images using coastline deformation analysis helped extract disaster information of the affected region of the 2011 Tohoku tsunamigenic earthquake source zone. We attempted to correlate fractal analysis of seismic clustering behavior with image processing analogies and our observations suggest that increase in fractal dimension distribution is associated with clustering of events that may determine the level of devastation of the region. The implementation of graph cut based image registration technique helps us to detect the devastation across the coastline of Tohoku through change of intensity of pixels that carries out regional segmentation for the change in coastal boundary after the tsunami. The study applies transformation parameters on remotely sensed images by manually segmenting the image to recovering translation parameter from two images that differ by rotation. Based on the satellite image analysis through image segmentation, it is found that the area of 0.997 sq km for the Honshu region was a maximum damage zone localized in the coastal belt of NE Japan forearc region. The analysis helps infer using matlab that the proposed graph cut algorithm is robust and more accurate than other image registration methods. The analysis shows that the method can give a realistic estimate for recovered deformation fields in pixels corresponding to coastline change which may help formulate the strategy for assessment during post disaster need assessment scenario for the coastal belts associated with damages due to strong shaking and tsunamis in the world under disaster risk mitigation programs.
Film Editing Handbook; Technique of 16mm Film Cutting.
ERIC Educational Resources Information Center
Churchill, Hugh B.
Designed to help the film student with the complexities of 16mm film cutting, this handbook catalogs the mechanical procedures of both picture and sound cutting and supplies step-by-step explanations of these procedures. Because the handbook was organized so that it could be used while working at the cutting bench, common cutting problems and…
Does gang ripping hold the potential for higher clear cutting yields
Hiram Hallock; Pamela Giese
1980-01-01
Cutting yields from gang ripping hardwood lumber graded by the National Hardwood Lumber Association standard grades are determined using the technique of mathematical modeling. The lumber used is the same as that in an earlier mathematically modeled determination of cutting yields from traditional rough mill procedures. Mechanical cutting factors such as kerf, cutting...
NASA Astrophysics Data System (ADS)
Macku, K.; Jatuff, F.; Murphy, M. F.; Joneja, O. P.; Bischofberger, R.; Chawla, R.
2006-06-01
Different foil activation techniques have been used for measuring spatial distributions of the 63Cu(n,γ) 64Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (˜200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63Cu(n,γ) 64Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly.
Employer Child Care Surviving and Thriving: Employer Child Care Trend Report #17
ERIC Educational Resources Information Center
Neugebauer, Roger
2010-01-01
Today employer child care is accepted as standard benefit for employees and nearly all Fortune 500 companies have gotten involved. The current recession threatened to halt the growth of employer child care as companies consolidated, cut back, and folded. However, in reviewing the status of employer child care for this trend report, it appears that…
Genome engineering in ornamental plants: Current status and future prospects.
Kishi-Kaboshi, Mitsuko; Aida, Ryutaro; Sasaki, Katsutomo
2018-03-13
Ornamental plants, like roses, carnations, and chrysanthemums, are economically important and are sold all over the world. In addition, numerous cut and garden flowers add colors to homes and gardens. Various strategies of plant breeding have been employed to improve traits of many ornamental plants. These approaches span from conventional techniques, such as crossbreeding and mutation breeding, to genetically modified plants. Recently, genome editing has become available as an efficient means for modifying traits in plant species. Genome editing technology is useful for genetic analysis and is poised to become a common breeding method for ornamental plants. In this review, we summarize the benefits and limitations of conventional breeding techniques and genome editing methods and discuss their future potential to accelerate the rate breeding programs in ornamental plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Cutting-edge endonasal surgical approaches to thyroid ophthalmopathy.
Tyler, Matthew A; Zhang, Caroline C; Saini, Alok T; Yao, William C
2018-04-01
Thyroid orbitopathy is a poorly understood extrathyroidal manifestation of Graves' disease that can cause disfiguring proptosis and vision loss. Orbital decompression surgery for Graves' orbitopathy (GO) can address both cosmetic and visual sequelae of this autoimmune condition. Endonasal endoscopic orbital decompression provides unmatched visualization and access to inferomedial orbital wall and orbital apex. This review examines the state of the art approaches employed in endonasal endoscopic orbital decompression for GO. Review of literature evaluating novel surgical maneuvers for GO. Studies examining the efficacy of endonasal endoscopic orbital decompression are heterogenous and retrospective in design; however, they reveal this approach to be a safe and effective technique in the management of GO. Subtle variations in endoscopic techniques significantly affect postsurgical outcomes and can be tailored to the specific clinical indication in GO making endonasal endoscopic decompression the most versatile approach available. NA.
Coatings for minimally processed fruits and vegetables
USDA-ARS?s Scientific Manuscript database
Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...
Scheiding, Sebastian; Yi, Allen Y; Gebhardt, Andreas; Li, Lei; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas
2011-11-21
We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described. © 2011 Optical Society of America
García Páez, J M; Jorge Herrero, E; Rocha, A; Martín-Maestro, M; Castillo-Olivares, J L; Millán, I; Carrera Sanmartín, A; Cordón, A
2002-10-01
Ostrich pericardium, sutured using a telescoping or overlapping technique, was studied to determine its mechanical behavior. From each of 12 pericardial sacs, four contiguous strips were cut longitudinally, from root to apex, and another four contiguous strips were cut in transverse direction. One of the strips in each set of four was used as an unsutured control and the remaining three were sutured by overlapping 0.5 cm of the tissue and sewing with Gore-tex, Prolene or Pronova. These 96 samples were then subjected to tensile testing along their major axes until rupture. The tensile stresses recorded in the suture materials at the moment tears appeared in the pericardium ranged between 55.99 MPa and 70.23 MPa for Gore-tex in samples cut in the two directions. Shear stress became ostensible at 56 MPa, with clearly evident tears. However, microfracture of the collagen fibers must be produced at much lower stress levels. The comparison of the resistance in kilograms (machine-imposed), without taking into account the sections in which the load was applied, demonstrated only a slight loss of load when the telescoping suture was employed in ostrich pericardium samples. Ostrich pericardium may continue to be an alternative biological material for the construction of heart valve leaflets.
Variability in the skin exposure of machine operators exposed to cutting fluids.
Wassenius, O; Järvholm, B; Engström, T; Lillienberg, L; Meding, B
1998-04-01
This study describes a new technique for measuring skin exposure to cutting fluids and evaluates the variability of skin exposure among machine operators performing cyclic (repetitive) work. The technique is based on video recording and subsequent analysis of the video tape by means of computer-synchronized video equipment. The time intervals at which the machine operator's hand was exposed to fluid were registered, and the total wet time of the skin was calculated by assuming different evaporation times for the fluid. The exposure of 12 operators with different work methods was analyzed in 6 different workshops, which included a range of machine types, from highly automated metal cutting machines (ie, actual cutting and chip removal machines) requiring operator supervision to conventional metal cutting machines, where the operator was required to maneuver the machine and manually exchange products. The relative wet time varied between 0% and 100%. A significant association between short cycle time and high relative wet time was noted. However, there was no relationship between the degree of automatization of the metal cutting machines and wet time. The study shows that skin exposure to cutting fluids can vary considerably between machine operators involved in manufacturing processes using different types of metal cutting machines. The machine type was not associated with dermal wetness. The technique appears to give objective information about dermal wetness.
NASA Astrophysics Data System (ADS)
Tie, Guipeng; Dai, Yifan; Guan, Chaoliang; Chen, Shaoshan; Song, Bing
2013-03-01
Potassium dihydrogen phosphate (KDP) crystals, which are widely used in high-power laser systems, are required to be free of defects on fabricated subsurfaces. The depth of subsurface defects (SSD) of KDP crystals is significantly influenced by the parameters used in the single point diamond turning technique. In this paper, based on the deliquescent magnetorheological finishing technique, the SSD of KDP crystals is observed and the depths under various cutting parameters are detected and discussed. The results indicate that no SSD is generated under small parameters and with the increase of cutting parameters, SSD appears and the depth rises almost linearly. Although the ascending trends of SSD depths caused by cutting depth and feed rate are much alike, the two parameters make different contributions. Taking the same material removal efficiency as a criterion, a large cutting depth generates shallower SSD depth than a large feed rate. Based on the experiment results, an optimized cutting procedure is obtained to generate defect-free surfaces.
Evolution of treatment of fistula in ano.
Blumetti, J; Abcarian, A; Quinteros, F; Chaudhry, V; Prasad, L; Abcarian, H
2012-05-01
Fistula-in-ano is a common medical problem affecting thousands of patients annually. In the past, the options for treatment of fistula-in-ano were limited to fistulotomy and/or seton placement. Current treatment options also include muscle-sparing techniques such as a dermal island flap, endorectal advancement flap, fibrin sealent injection, anal fistula plug, and most recently ligation of the intersphincteric fistula tract (procedure). This study seeks to evaluate types and time trends for treatment of fistula-in-ano. A retrospective review from 1975 to 2009 was performed. Data were collected and sorted into 5-year increments for type and time trends of treatment. Fistulotomy and partial fistulotomy were grouped as cutting procedures. Seton placement, fibrin sealant, dermal flap, endorectal flap, and fistula plug were grouped as noncutting procedures. Statistical analysis was performed for each time period to determine trends. With institutional review board approval, the records of 2,267 fistula operations available for analysis were included. Most of the patients were men (74 vs. 26%). Cutting procedures comprised 66.6% (n = 1510) of all procedures. Noncutting procedures were utilized in 33.4% (n = 757), including Seton placement alone 370 (16.3%), fibrin sealant 168 (7.4%), dermal or endorectal flap 147 (6.5%), and fistula plug 72 (3.2%). The distribution of operations grouped in 5-year intervals is as follows: 1975-1979, 78 cutting and one noncutting; 1980-1984, 170 cutting and 10 noncutting; 1985-1989, 54 cutting and five noncutting; 1990-1994, 37 cutting and six noncutting; 1995-1999, 367 cutting and 167 noncutting; 2000-2004, 514 cutting and 283 noncutting; 2005-2009, 290 cutting and 285 noncutting. The percentage of cutting and noncutting procedures significantly differed over time, with cutting procedures decreasing and noncutting procedures increasing proportionally (χ(2) linear-by-linear association, p < 0.05). Fistula-in-ano remains a common complex disease process. Its treatment has evolved to include a variety of noncutting techniques in addition to traditional fistulotomy. With the advent of more sphincter-sparing techniques, the number of patients undergoing fistulotomy should continue to decrease over time. Surgeons should become familiar with various surgical techniques so the treatment can be tailored to the patient.
NASA Astrophysics Data System (ADS)
Gladush, G. G.; Rodionov, N. B.
2002-01-01
The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots.
The U.S. employment effects of military and domestic spending priorities.
Pollin, Robert; Garrett-Peltier, Heidi
2009-01-01
This study focuses on the employment effects of military spending versus alternative domestic spending priorities. The authors begin by introducing the basic input-output modeling technique for considering issues such as these in a systematic way. They then present some simple alternative spending scenarios-namely, devoting $1 billion to the military versus the same amount of money spent for five alternatives: tax cuts that produce increased levels of personal consumption; health care; education; mass transit; and construction targeted at home weatherization and infrastructure repair. The first conclusion in assessing such relative employment effects is straightforward: $1 billion spent on personal consumption, health care, education, mass transit, and construction for home weatherization/infrastructure will all create more jobs in the U.S. economy than would the same $1 billion spent on the military. The authors then examine the pay level of jobs created through these alternative spending priorities and assess the overall welfare effects of the alternative employment outcomes. Combining these alternative domestic spending categories in an effective way can also generate a higher level of compensation for working people in the United States and a better average quality ofjobs.
Applications of optical sensing for laser cutting and drilling.
Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C
2002-08-20
Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.
Experiment and simulation study of laser dicing silicon with water-jet
NASA Astrophysics Data System (ADS)
Bao, Jiading; Long, Yuhong; Tong, Youqun; Yang, Xiaoqing; Zhang, Bin; Zhou, Zupeng
2016-11-01
Water-jet laser processing is an internationally advanced technique, which combines the advantages of laser processing with water jet cutting. In the study, the experiment of water-jet laser dicing are conducted with ns pulsed laser of 1064 nm irradiating, and Smooth Particle Hydrodynamic (SPH) technique by AUTODYN software was modeled to research the fluid dynamics of water and melt when water jet impacting molten material. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with nanosecond pulse laser of 1064 nm irradiating. Self-focusing phenomenon was found and its causes are analyzed. Smooth Particle Hydrodynamic (SPH) modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining.
Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.
2016-01-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance
Bittner, G.D.; Sengelaub, D.R.; Trevino, R.C.; Peduzzi, J.D.; Mikesh, M.; Ghergherehchi, C.L.; Schallert, T.; Thayer, W.P.
2016-01-01
Traumatic injuries to PNS and CNS axons are not uncommon. Restoration of lost behaviors following severance of mammalian peripheral nerve axons (PNAs) relies on regeneration by slow outgrowths and is typically poor or nonexistent if after ablation or injuries close to the soma. Behavioral recovery after severing spinal tract axons (STAs) is poor because STAs do not naturally regenerate. Current techniques to enhance PNA and/or STA regeneration have had limited success and do not prevent the onset of Wallerian degeneration of severed distal segments. This review describes the use of a recently-developed polyethylene glycol (PEG)-fusion technology combining concepts in biochemical engineering, cell biology and clinical microsurgery. Within minutes after micro-suturing carefully-trimmed cut ends and applying a well-specified sequence of solutions, PEG-fused axons exhibit morphological continuity (assessed by intra-axonal dye diffusion) and electrophysiological continuity (assessed by conduction of action potentials) across the lesion site. Wallerian degeneration of PEG-fused PNAs is greatly reduced as measured by counts of sensory and/or motor axons, and maintenance of axonal diameters and neuromuscular synapses. After PEG-fusion repair, cut- or crush-severed or ablated PNAs or crush-severed STAs rapidly (within days to weeks), more completely, and permanently restore PNA- or STA-mediated behaviors compared to non-treated or conventionally-treated animals. PEG-fusion success is enhanced or decreased by applying anti-oxidants or oxidants, trimming cut ends or stretching axons, exposure to Ca2+-free or - containing solutions, respectively. PEG-fusion technology employs surgical techniques and chemicals already used by clinicians and has the potential to produce a paradigm-shift in the treatment of traumatic injuries to PNAs and STAs. PMID:26525605
Welding And Cutting A Nickel Alloy By Laser
NASA Technical Reports Server (NTRS)
Banas, C. M.
1990-01-01
Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.
Off-the-job training for VATS employing anatomically correct lung models.
Obuchi, Toshiro; Imakiire, Takayuki; Miyahara, Sou; Nakashima, Hiroyasu; Hamanaka, Wakako; Yanagisawa, Jun; Hamatake, Daisuke; Shiraishi, Takeshi; Moriyama, Shigeharu; Iwasaki, Akinori
2012-02-01
We evaluated our simulated major lung resection employing anatomically correct lung models as "off-the-job training" for video-assisted thoracic surgery trainees. A total of 76 surgeons voluntarily participated in our study. They performed video-assisted thoracic surgical lobectomy employing anatomically correct lung models, which are made of sponges so that vessels and bronchi can be cut using usual surgical techniques with typical forceps. After the simulation surgery, participants answered questionnaires on a visual analogue scale, in terms of their level of interest and the reality of our training method as off-the-job training for trainees. We considered that the closer a score was to 10, the more useful our method would be for training new surgeons. Regarding the appeal or level of interest in this simulation surgery, the mean score was 8.3 of 10, and regarding reality, it was 7.0. The participants could feel some of the real sensations of the surgery and seemed to be satisfied to perform the simulation lobectomy. Our training method is considered to be suitable as an appropriate type of surgical off-the-job training.
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
Accuracy in planar cutting of bones: an ISO-based evaluation.
Cartiaux, Olivier; Paul, Laurent; Docquier, Pierre-Louis; Francq, Bernard G; Raucent, Benoît; Dombre, Etienne; Banse, Xavier
2009-03-01
Computer- and robot-assisted technologies are capable of improving the accuracy of planar cutting in orthopaedic surgery. This study is a first step toward formulating and validating a new evaluation methodology for planar bone cutting, based on the standards from the International Organization for Standardization. Our experimental test bed consisted of a purely geometrical model of the cutting process around a simulated bone. Cuts were performed at three levels of surgical assistance: unassisted, computer-assisted and robot-assisted. We measured three parameters of the standard ISO1101:2004: flatness, parallelism and location of the cut plane. The location was the most relevant parameter for assessing cutting errors. The three levels of assistance were easily distinguished using the location parameter. Our ISO methodology employs the location to obtain all information about translational and rotational cutting errors. Location may be used on any osseous structure to compare the performance of existing assistance technologies.
A review on ductile mode cutting of brittle materials
NASA Astrophysics Data System (ADS)
Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao
2018-06-01
Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.
Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.
Taira, M; Wakasa, K; Yamaki, M; Matsui, A
1990-09-01
Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.
Load balancing for massively-parallel soft-real-time systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hailperin, M.
1988-09-01
Global load balancing, if practical, would allow the effective use of massively-parallel ensemble architectures for large soft-real-problems. The challenge is to replace quick global communications, which is impractical in a massively-parallel system, with statistical techniques. In this vein, the author proposes a novel approach to decentralized load balancing based on statistical time-series analysis. Each site estimates the system-wide average load using information about past loads of individual sites and attempts to equal that average. This estimation process is practical because the soft-real-time systems of interest naturally exhibit loads that are periodic, in a statistical sense akin to seasonality in econometrics.more » It is shown how this load-characterization technique can be the foundation for a load-balancing system in an architecture employing cut-through routing and an efficient multicast protocol.« less
ERIC Educational Resources Information Center
Cutting Edge, 2000
2000-01-01
The Cutting Edge is a bimonthly newsletter of the Regional Center for Applied Technology and Training at Danville Community College (DCC) (Virginia) that provides the latest information on a wide range of issues including technology, business, employment trends, and new legislation. Articles from the first five issues discuss: (1) the July 2000…
Pinto, Nathali Cordeiro; Pomerantzeff, Pablo Maria Alberto; Deana, Alessandro; Zezell, Denise; Benetti, Carolina; Aiello, Vera Demarchi; Lopes, Luciana Almeida; Jatene, Fabio Biscegli; Chavantes, M Cristina
2017-02-01
The most common injury to the heart valve with rheumatic involvement is mitral stenosis, which is the reason for a big number of cardiac operations in Brazil. Commissurotomy is the traditional technique that is still widely used for this condition, although late postoperative restenosis is concerning. This study's purpose was to compare the histological findings of porcine cusp mitral valves treated in vitro with commissurotomy with a scalpel blade to those treated with high-power laser (HPL) cutting, using appropriate staining techniques. Five mitral valves from healthy swine were randomly divided into two groups: Cusp group (G1), cut with a scalpel blade (n = 5), and Cusp group (G2), cut with a laser (n = 5). G2 cusps were treated using a diode laser (λ = 980 nm, power = 9.0 W, time = 12 sec, irradiance = 5625 W/cm 2 , and energy = 108 J). In G1, no histological change was observed in tissue. A hyaline basophilic aspect was focally observed in G2, along with a dark red color on the edges and areas of lower birefringence, when stained with hematoxylin-eosin, Masson's trichrome, and Sirius red. Further, the mean distances from the cutting edge in cusps submitted to laser application and stained with Masson's trichrome and Sirius red were 416.7 and 778.6 μm, respectively, never overcoming 1 mm in length. Thermal changes were unique in the group submitted to HPL and not observed in the cusp group cut with a scalpel blade. The mean distance of the cusps' collagen injury from the cutting edge was less than 1 mm with laser treatment. Additional studies are needed to establish the histological evolution of the laser cutting and to answer whether laser cutting may avoid valvular restenosis better than blade cutting.
Experimental study of various techniques to protect ice-rich cut slopes.
DOT National Transportation Integrated Search
2014-08-01
Cut slopes are usually required to achieve roadway design grades in the ice-rich permafrost areas in Alaska. However, excavation and exposure of a cut slope destroy the existing thermal balance and result in degradation of ice-rich permafrost. Enviro...
Freeman, S.; Rodriguez, R.J.
1993-01-01
A continuous-dip inoculation technique for rapid assessment of pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis was developed. The method, adapted from a similar procedure for determining pathogenicity of Colletotrichum magna (causal agent of anthracnose of cucurbits), involves constant exposure of seedlings and cuttings (seedlings with root systems excised) of watermelon and muskmelon to conidial suspensions contained in small scintillation vials. Disease development in intact seedlings corresponded well to disease responses observed with the standard root-dip inoculation/pot assay. The continuous-dip inoculation technique resulted in rapid disease development, with 50% of watermelon cuttings dying after 4–6 days of exposure to F. o. niveum. A mortality of 30% also was observed in watermelon cuttings exposed to conidia of F. o. melonis, as opposed to only a 0–2.5% mortality in seedlings with intact roots. Disease response was similar with muskmelon seedlings and cuttings continuously dip-inoculated with F. o. melonis isolates. However, no disease symptoms were observed in muskmelon seedlings or cuttings inoculated with F. o. niveum. Four nonpathogenic isolates of F. oxysporum did not cause disease symptoms in either watermelon or muskmelon cuttings and seedlings when assayed by this technique. The proposed method enables a rapid screening of pathogenicity and requires less time, labor, and greenhouse space than the standard root-dip inoculation/pot assay. The reliability of the continuous-dip inoculation technique is limited, however, to exposure of intact seedlings at a concentration of 1 × 106conidia per milliliter; the method is not accurate at this range for excised seedlings.
The development of experimental techniques for the study of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Widnall, S. E.; Harris, W. L.; Lee, Y. C. A.; Drees, H. M.
1974-01-01
The features of existing wind tunnels involved in noise studies are discussed. The acoustic characteristics of the MIT low noise open jet wind tunnel are obtained by employing calibration techniques: one technique is to measure the decay of sound pressure with distance in the far field; the other technique is to utilize a speaker, which was calibrated, as a sound source. The sound pressure level versus frequency was obtained in the wind tunnel chamber and compared with the corresponding calibrated values. Fiberglas board-block units were installed on the chamber interior. The free field was increased significantly after this treatment and the chamber cut-off frequency was reduced to 160 Hz from the original designed 250 Hz. The flow field characteristics of the rotor-tunnel configuration were studied by using flow visualization techniques. The influence of open-jet shear layer on the sound transmission was studied by using an Aeolian tone as the sound source. A dynamometer system was designed to measure the steady and low harmonics of the rotor thrust. A theoretical Mach number scaling formula was developed to scale the rotational noise and blade slap noise data of model rotors to full scale helicopter rotors.
NASA Astrophysics Data System (ADS)
Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.
2018-03-01
Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.
Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie
2016-05-01
We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.
How to Avoid Cast Saw Complications.
Halanski, Matthew A
2016-06-01
As casts are routinely used in pediatric orthopaedics, casts saws are commonly used to remove such casts. Despite being a viewed as the "conservative" and therefore often assumed safest treatment modality, complications associated with the use of casts and cast saws occur. In this manuscript, we review the risk factors associated with cast saw injuries. Cast saw injuries are thermal or abrasive (or both) in nature. Thermal risk factors include: cast saw specifications (including a lack of attached vacuum), use of a dull blade, cutting in a concavity, too thin padding, and overly thick casting materials. Risk factors associated with abrasive injuries include: sharp blades, thin padding, and cutting over boney prominences. Because nearly all clinicians contact the skin with the blade during cast removal, appropriate "in-out technique" is critical. Such technique prevents a hot blade from remaining in contact with the skin for any significant time, diminishing the risk of burn. Similarly, using such technique prevents "dragging the blade" that may pull the skin taught, cutting it. It may be useful to teach proper technique as perforating a cast rather than cutting a cast.
Wang, Hong-De; Li, Tong; Gao, Shi-Jun
2017-10-30
Discoid medial meniscus is an extremely rare abnormality of the knee. During arthroscopic meniscectomy for symptomatic discoid medial meniscus, it is difficult to remove the posterior portion of the meniscus because of the confined working space within the compartment and the obstruction caused by the anterior cruciate ligament and the tibial intercondylar eminence. To overcome these problems, we describe an improved arthroscopic technique for one-piece excision of symptomatic discoid medial meniscus through three unique portals. Three improved portals were made in the injured knee: a standard anteromedial portal, a central transpatellar tendon portal, and a high anterolateral portal. The anterior side of the discoid medial meniscus was cut 7 mm from the periphery of the meniscus. Next, the anterior portion of the free discoid meniscus fragment was pulled in the anterolateral direction with tension. A curve-shaped cut was made along the longitudinal tear to the posterior horn using basket forceps through the standard anteromedial portal. Then, the anterior portion of the free discoid meniscus was pulled in the anteromedial direction. Pulling the fragment under tension made it easier to cut the posterior side of the discoid meniscus. The posterior side of the discoid meniscus was cut 7 mm from the periphery of the meniscus with straight scissors or basket forceps through the central transpatellar tendon portal. This technique resulted in satisfactory results. Excellent visualization of the posterior part of the discoid medial meniscus was gained during the procedure, and it was easy to cut the posterior part of the discoid medial meniscus. No recurrent symptoms were found. This improved arthroscopic one-piece excision technique for the treatment of symptomatic discoid medial meniscus enables the posterior part of the meniscus to be cut satisfactorily. Moreover, compared with previous techniques, this novel technique causes less formation of foreign bodies and less damage to the anterior cruciate ligament, medial collateral ligament, and cartilage and requires a shorter procedural time.
Accurate airway segmentation based on intensity structure analysis and graph-cut
NASA Astrophysics Data System (ADS)
Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku
2016-03-01
This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.
Language study on Spliced Semigraph using Folding techniques
NASA Astrophysics Data System (ADS)
Thiagarajan, K.; Padmashree, J.
2018-04-01
In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.
Why small business is sick over health costs.
Carpenter, Dave
2003-11-01
Overwhelmed by the cost of paying for health coverage, many small employers see their only options as cutting coverage, cutting staff or going out of business--any of which is bad news for communities and hospitals. There are creative alternatives to traditional insurance, and experts advise small businesses to explore those before taking drastic steps.
[Uniform analyzes of drugs in urine needed for rule of law].
Hansson, Therese; Helander, Anders; Beck, Olof; Elmgren, Anders; Kugelberg, Fredrik; Kronstrand, Robert
2015-09-22
Drugs of abuse testing is used in various areas of society for detection and follow-up of drug use. In routine laboratory drug testing, immunoassays are employed for initial screening of specimens to indicate the presence of drugs. To confirm a positive screening test, a secondary analysis by mass spectrometry is performed. The "cut-off" is the pre-defined concentration threshold of a drug or drug metabolite above which the sample is considered positive. A reading below this level implies a negative test result. Swedish drug testing laboratories currently employ varying cut-offs to distinguish between a positive and a negative test result. Because a positive drug test may have serious legal consequences to the individual, it is of importance that testing is performed and judged equally, regardless of where it is performed. A national harmonization of cut-offs is therefore warranted. Based on data from four major Swedish drug testing laboratories, and considering the recommendations in international guidelines, a proposal for national harmonization of urine cut-offs for the most common set of drugs of abuse is presented.
The ‘cut and push’ technique: is it really safe?
Peacock, Oliver; Singh, Rajeev; Cole, Andrew; Speake, William
2012-01-01
Percutaneous endoscopic gastrostomy (PEG) feeding is routinely used as an endoscopic and effective method for providing enteral nutrition in those whose oral access has been diminished or lost. One technique for removal of the PEG is cutting the tube at the skin level and allowing the tube and internal flange to pass spontaneously. This is known as the ‘cut and push’ method. Several studies have concluded that the ‘cut and push’ method is a safe and cost-effective method. This case demonstrates a rare cause of small bowel obstruction following the ‘cut and push’ method for PEG replacement, with only a few other cases been reported. This method of removal should be avoided in patients with previous abdominal surgery. It is important that the PEG flange is retrieved endoscopically or an alternative PEG tube (designed to be completely removed through the skin) is used to prevent this complication occurring in such individuals. PMID:22847571
Quartz crystal resonator g sensitivity measurement methods and recent results
NASA Astrophysics Data System (ADS)
Driscoll, M. M.
1990-09-01
A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5 x 10 to the -10th/g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators.
Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.
García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian
2009-01-01
Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.
Laser Cutting of Multilayered Kevlar Plates
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Al-Sulaiman, F.; Karakas, C.; Ahsan, M.
2007-12-01
Laser cutting of Kevlar plates, consisting of multilayered laminates, with different thicknesses are carried out. A mathematical model is developed to predict the kerf width, thermal efficiency, and specific energy requirements during cutting. Optical microscopy and Scanning Electron Microscopy (SEM) are employed to obtain the micrographs of the cutting sections. The kerf width size is measured and compared with the predictions. A factorial analysis is carried out to assess the affecting parameters on the mean kerf width and dimensionless damage sizes. It is found that the kerf width and damage sizes changes sharply when increasing cutting speed from 0.03 to 0.08 m/s. Thermal efficiency of the cutting process increases with increasing thickness and cutting speed while specific energy reduces with increasing thickness. The main effects of cutting parameters are found to be significant on the mean kerf width and dimensionless damage sizes, which is more pronounced for the workpiece bottom surface, where locally distributed char formation and sideways burning are observed.
Cut-it-out technique for ocular fish-hook injury.
Ahmad, Syed Shoeb; Seng, Chiang Wai; Ghani, Shuaibah Abdul; Lee, Jane F
2013-10-01
An 11-year-old boy was involved in an injury with a fish-hook to his eye. The hook had impaled itself to the cornea and deeper structures. There was associated corneal edema and hyphema, making visualization difficult. In this case, we performed the unusual "cut-it-out" technique to remove the hook from the eye.
Performance of disposable endoscopic forceps according to the manufacturing techniques.
Kwon, Chang-Il; Kim, Gwangil; Moon, Jong Pil; Yun, Ho; Ko, Weon Jin; Cho, Joo Young; Hong, Sung Pyo
2018-03-05
Recently, to lower the production costs and risk of infection, new disposable biopsy forceps made using simple manufacturing techniques have been introduced. However, the effects of the manufacturing techniques are unclear. The aim of this study was to evaluate which types of biopsy forceps could obtain good-quality specimens according to the manufacturing techniques. By using an in vitro nitrile glove popping model, we compared the popping ability among eight different disposable biopsy forceps (one pair of biopsy forceps with cups made by a cutting method [cutting forceps], four pairs of biopsy forceps with cups made by a pressing method [pressing forceps], and three pairs of biopsy forceps with cups made using a injection molding method [molding forceps]). Using an in vivo swine model, we compared the penetration depth and quality of specimen among the biopsy forceps. In the in vitro model, the molding forceps provided a significantly higher popping rate than the other forceps (cutting forceps, 25.0%; pressing forceps, 17.5%; and molding forceps, 41.7%; p = 0.006). In the in vivo model, the cutting and pressing forceps did not provide larger specimens, deeper biopsy specimen, and higher specimen adequacy than those obtained using the molding forceps (p = 0.2631, p = 0.5875, and p = 0.2147, respectively). However, the molding forceps showed significantly more common crush artifact than the others (cutting forceps, 0%; pressing forceps, 5.0%; and molding forceps, 43.3%; p = 0.0007). The molding forceps provided lower performance than the cutting and pressing forceps in terms of crush artifact.
NASA Astrophysics Data System (ADS)
Rodrigues, Gonçalo C.; Duflou, Joost R.
2018-02-01
This paper offers an in-depth look into beam shaping and polarization control as two of the most promising techniques for improving industrial laser cutting of metal sheets. An assessment model is developed for the study of such effects. It is built upon several modifications to models as available in literature in order to evaluate the potential of a wide range of considered concepts. This includes different kinds of beam shaping (achieved by extra-cavity optical elements or asymmetric diode staking) and polarization control techniques (linear, cross, radial, azimuthal). A fully mathematical description and solution procedure are provided. Three case studies for direct diode lasers follow, containing both experimental data and parametric studies. In the first case study, linear polarization is analyzed for any given angle between the cutting direction and the electrical field. In the second case several polarization strategies are compared for similar cut conditions, evaluating, for example, the minimum number of spatial divisions of a segmented polarized laser beam to achieve a target performance. A novel strategy, based on a 12-division linear-to-radial polarization converter with an axis misalignment and capable of improving cutting efficiency with more than 60%, is proposed. The last case study reveals different insights in beam shaping techniques, with an example of a beam shape optimization path for a 30% improvement in cutting efficiency. The proposed techniques are not limited to this type of laser source, neither is the model dedicated to these specific case studies. Limitations of the model and opportunities are further discussed.
Singh, Harpreet; Sharma, Rohit; Gupta, Sachin; Singh, Narinderjit; Singh, Simarpreet
2015-01-01
The advent of locking plates has brought new problems in implant removal. Difficulty in removing screws from a locking plate is well-known. These difficulties include cold welding between the screw head and locking screw hole, stripping of the recess of the screw head for the screwdriver, and cross-threading between threads in the screw head and screw hole. However, there are cases in which removal is difficult. We describe a new technique for removing a round headed, jammed locking screws from a locking plate. 55 years old male patient received a locking distal tibial plate along with distal fibular plate 3years back from UAE. Now patient came with complaint of non-healing ulcer over medial aspect of lower 1/3rd of right leg from past 1 year. Non operative management did not improve the symptoms. The patient consented to implant removal, with the express understanding that implant removal might be impossible because already one failed attempt had been performed at some other hospital six months back. We then decided to proceed with the new technique. The rest of the proximal screws were removed using a technique not previously described. We used stainless steel metal cutting blades that are used to cut door locks or pad locks to cut the remaining stripped headed screws. This technique is very quick, easy to perform and inexpensive because the metal cutting blades which are used to cut the screws are very cheap. Yet it is very effective technique to remove the stripped headed or jammed locking screws. It is also very less destructive because of very less heat production during the procedure there is no problem of thermal necrosis to the bone or the surrounding soft tissue.
Serial Transmission of Plant Viruses by Cutting During Grafting
USDA-ARS?s Scientific Manuscript database
Reciprocal grafts of two tomato (Solanum lycopersicum L.) cultivars were made by hand using commercial grafting techniques. The razor blade used to cut rootstock or scion was first contaminated by making a single cut on tomato plants infected with either tomato spotted wilt virus (TSWV) or tomato m...
Alamri, A; Hyodo, A; Suzuki, K; Tanaka, Y; Uchida, T; Takano, I; Kowata, K; Iwatate, K; Suzuki, R
2012-11-01
To date, the "monorail snare technique" for the retrieval of entombed microcatheter tips during Onyx(TM) (ev3, Irvine, CA) embolisation of brain arteriovenous malformations (BAVM) has not been described. We report our experiences and some technical aspects in using this technique for the retrieval of entombed Marathon(TM) microcatheter (ev3, Plymouth, MN) tips during Onyx embolisation of BAVM treatment. Onyx was used in the embolisation of 11 patients using 25 feeders over 14 sessions. The 'monorail snare technique' was employed for 14 feeders. Each time, an Amplatz 4 mm Gooseneck Microsnare(TM) (ev3, Plymouth, MN) was loaded into an Excelsior 1018(TM) microcatheter (Boston Scientific, Natick, MA). The Marathon microcatheter was cut just distal to the hub, and the Amplatz/Excelsior combination was introduced along the length of the Marathon microcatheter towards its distal end, as far as possible. The embedded catheter was ensnared and both catheters were pulled free. Microcatheter tip removal was successful in all cases, except for one microcatheter tip becoming detached and needing no further intervention. There were no complications as a direct result of the snare technique. The monorail snare technique is a safe and easy technique for retrieving Onyx-encased microcatheter tips in the treatment of BAVM.
Forty-five degree cutting septoplasty.
Hsiao, Yen-Chang; Chang, Chun-Shin; Chuang, Shiow-Shuh; Kolios, Georgios; Abdelrahman, Mohamed
2016-01-01
The crooked nose represents a challenge for rhinoplasty surgeons, and many methods have been proposed for management; however, there is no ideal method for treatment. Accordingly, the 45° cutting septoplasty technique, which involves a 45° cut at the junction of the L-shaped strut and repositioning it to achieve a straight septum is proposed. From October 2010 to September 2014, 43 patients underwent the 45° cutting septoplasty technique. There were 28 men and 15 women, with ages ranging from 20 to 58 years (mean, 33 years). Standardized photographs were obtained at every visit. Established photogrammetric parameters were used to describe the degree of correction: Correction rate = (preoperative total deviation - postoperative residual deviation)/preoperative total deviation × 100% was proposed. The mean follow-up period for all patients was 12.3 months. The mean preoperative deviation was 64.3° and the mean postoperative deviation was 2.7°; the overall correction rate was 95.8%. One patient experienced composite implant deviation two weeks postoperatively and underwent revision rhinoplasty. There were no infections, hematomas or postoperative bleeding. Based on the clinical observation of all patients during the follow-up period, the 45° cutting septoplasty technique was shown to be effective for the treatment of crooked nose.
High precision laser processing of sensitive materials by Microjet
NASA Astrophysics Data System (ADS)
Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold
2003-11-01
Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.
NASA Astrophysics Data System (ADS)
Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan
2017-09-01
The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.
Characterization of absorption and degradation on optical components for high power excimer lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, K.; Eva, E.; Granitza, B.
1996-12-31
At Laser-Laboratorium Goettingen, the performance of UV optical components for high power excimer lasers is characterized, aiming to employ testing procedures that meet industrial conditions, i.e. very high pulse numbers and repetition rates. Measurements include determination of single and multiple pulse damage thresholds, absorption loss and degradation of optical properties under long-term irradiation. Absorption of excimer laser pulses is investigated by a calorimetric technique which provides greatly enhanced sensitivity compared to transmissive measurements. Thus, it allows determining both single and two photon absorption coefficients at intensities of standard excimer lasers. Results of absorption measurements at 248nm are presented for baremore » substrates (CaF{sub 2}, BaF{sub 2}, z-cut quartz and fused silica). UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica. A separation of transient and cumulative effects as a function of intensity is achieved, giving insight into various loss mechanisms.« less
Wi, Jaemin; Seo, Hyejin; Lee, Jong Yeon; Nam, Dong Heun
2016-01-01
To evaluate the efficacy and outcomes of intracameral illuminator-assisted nucleofractis technique in cataract surgery. Since June 2012, this novel technique has been performed in all cataract cases by one surgeon (approximately 300 cases of various densities). Trenching continues until the posterior plate white reflex between an endonucleus and an epinucleus is identified (enhanced depth trench). After trenching, cracking is initiated with minimal separation force, and completion of cracking is confirmed by posterior capsule reflex (one-shot crack). With followability enhanced by an elliptical phaco mode, the divided nucleus is efficiently cut into small fragments by a chisel-shaped illuminator (phaco cut). We have not experienced any capsular bag or zonular complications, and the effective phacoemulsification time seemed to be shorter than that with the conventional technique. This technique simplifies the complete division of the nucleus, which is the most challenging step in safe and efficient phacoemulsification.
Characterisation of debris from laser and mechanical cutting of bone.
Rachmanis, Nikolaos; McGuinness, Garrett B; McGeough, Joseph A
2014-07-01
Laser cutting of bones has been proposed as a technology in orthopaedic surgery. In this short study, the laser-bone interaction was examined using a pulsed erbium-doped yttrium aluminium garnet laser and compared to a conventional cutting technique. Microscopic analysis revealed the nature of waste debris and showed higher proportions of finer particles for conventional sagittal sawing compared to laser cutting. © IMechE 2014.
Bonney, Heather
2014-08-01
Analysis of cut marks in bone is largely limited to two dimensional qualitative description. Development of morphological classification methods using measurements from cut mark cross sections could have multiple uses across palaeoanthropological and archaeological disciplines, where cutting edge types are used to investigate and reconstruct behavioral patterns. An experimental study was undertaken, using porcine bone, to determine the usefulness of discriminant function analysis in classifying cut marks by blade edge type, from a number of measurements taken from their cross-sectional profile. The discriminant analysis correctly classified 86.7% of the experimental cut marks into serrated, non-serrated and bamboo blade types. The technique was then used to investigate a series of cut marks of unknown origin from a collection of trophy skulls from the Torres Strait Islands, to investigate whether they were made by bamboo or metal blades. Nineteen out of twenty of the cut marks investigated were classified as bamboo which supports the non-contemporaneous ethnographic accounts of the knives used for trophy taking and defleshing remains. With further investigation across a variety of blade types, this technique could prove a valuable tool in the interpretation of cut mark evidence from a wide variety of contexts, particularly in forensic anthropology where the requirement for presentation of evidence in a statistical format is becoming increasingly important. © 2014 Wiley Periodicals, Inc.
Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique
Ivanov, Ilia N; Simpson, John T
2012-06-26
A method of making a large area substrate comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes. Each cut drawn tube has a first end and a second end along the longitudinal direction of the respective cut drawn tube. The cut drawn tubes collectively have a predetermined periodicity. The method of making a large area substrate also comprises forming a metal layer on the first ends of the cut drawn tubes to provide a large area substrate.
Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, IN
2012-01-24
A method of making a large area conformable shape structure comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes of a predetermined shape. The cut drawn tubes have a first end and a second end along the longitudinal direction of the cut drawn tubes. The method further comprises conforming the first end of the cut drawn tubes into a predetermined curve to form the large area conformable shape structure, wherein the cut drawn tubes contain a material.
Adopting Cut Scores: Post-Standard-Setting Panel Considerations for Decision Makers
ERIC Educational Resources Information Center
Geisinger, Kurt F.; McCormick, Carina M.
2010-01-01
Standard-setting studies utilizing procedures such as the Bookmark or Angoff methods are just one component of the complete standard-setting process. Decision makers ultimately must determine what they believe to be the most appropriate standard or cut score to use, employing the input of the standard-setting panelists as one piece of information…
2009-11-01
term projects • Nothing Medium term projects(establish co-ops) • Cut hair • Sewing o Embroidery o Clothes • Food production o Preserves...Projects for women Sewing • Embroidery • Clothes Cut hair Food preserves Cultural items (Rory Stewart) • Jewelry • Clothes • Rugs
29 CFR 1910.133 - Eye and face protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...
29 CFR 1910.133 - Eye and face protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...
29 CFR 1910.133 - Eye and face protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...
29 CFR 1910.133 - Eye and face protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...
29 CFR 1910.133 - Eye and face protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... side shields) meeting the pertinent requirements of this section are acceptable. (3) The employer shall...) less than 500 10 Arc cutting (Heavy) 500-1000 11 Plasma arc welding less than 20 6 20-100 8 100-400 10 400-800 11 Plasma arc cutting (light)** less than 300 8 (medium)** 300-400 9 (heavy)** 400-800 10...
Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.
2017-01-01
In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.
Experimental study on internal cooling system in hard turning of HCWCI using CBN tools
NASA Astrophysics Data System (ADS)
Ravi, A. M.; Murigendrappa, S. M.
2018-04-01
In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.
Laser processing of phenolic wood substitutes
NASA Astrophysics Data System (ADS)
Quintero, F.; Riveiro, A.; Lusquiños, F.; Penide, J.; Arias-González, F.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Pou, J.
2013-11-01
Phenolic resin boards (PRB) are wood substitutes that comprises of a thick core exclusively made of phenolic resin covered by a thin sheet of melamine resin imitating the aspect of natural wood. The use of these materials in furniture and in construction industry has proliferated during last years. Boards made of phenolic resins are dense, hard and very difficult to cut using band saws, disc saws, or milling cutters. Nevertheless, these difficulties can be overcome by means of laser cutting, which is one of the most firmly established techniques for separating materials. This is due to the great advantages of this technique over traditional cutting methods, such as its versatility and flexibility that allow effective cutting. Nevertheless, charring of the cut edge surface caused by laser induced thermal degradation degrades the cut quality under non-optimized processing conditions. In this research work the viability and quality of CO2 laser cutting process of phenolic resin boards and wood particleboard panels has been evaluated. The present work validates the cut of phenolic resin boards by CO2 lasers using a high laser power and elevated cutting speeds. Moreover, this process involves a serious health hazard since the combustion and decomposition of wood may produce fumes and vapors, which can be toxic and carcinogenic according to the International Chemical Safety Cards (ICSC). Therefore, this work was complemented by the assessment of the potential toxicity of the condensed residues formed on the cut edges, and assessment of the chemistry of the generated fumes by chromatography.
Clonal propagation on Eucalyptus by cuttings in France
H. Chaperon
1983-01-01
A.FO.CEL has developed a technique for mass propagation by cuttings of Eucalyptus in France. This technique is described from the selection of the ortet to the mass propagation of the clone for afforestation: the first stage is the mobilization of the ortet, the second stage is called pre-propagation which includes rejuvenating and rooting conditioning, the third stage...
CETA Pioneers in the North Country.
ERIC Educational Resources Information Center
Pfeil, Mary Pat
1978-01-01
Describes the Northwest Wisconsin Concentrated Employment Program, the Comprehensive Employment and Training Act (CETA) prime sponsor for ten northern Wisconsin counties. Primary occupations available to program participants are in wood products, paper industry, tool and die manufacturing, welding, meat cutting, and resorts and recreation. (MF)
The Detection of Radiated Modes from Ducted Fan Engines
NASA Technical Reports Server (NTRS)
Farassat, F.; Nark, Douglas M.; Thomas, Russell H.
2001-01-01
The bypass duct of an aircraft engine is a low-pass filter allowing some spinning modes to radiate outside the duct. The knowledge of the radiated modes can help in noise reduction, as well as the diagnosis of noise generation mechanisms inside the duct. We propose a nonintrusive technique using a circular microphone array outside the engine measuring the complex noise spectrum on an arc of a circle. The array is placed at various axial distances from the inlet or the exhaust of the engine. Using a model of noise radiation from the duct, an overdetermined system of linear equations is constructed for the complex amplitudes of the radial modes for a fixed circumferential mode. This system of linear equations is generally singular, indicating that the problem is illposed. Tikhonov regularization is employed to solve this system of equations for the unknown amplitudes of the radiated modes. An application of our mode detection technique using measured acoustic data from a circular microphone array is presented. We show that this technique can reliably detect radiated modes with the possible exception of modes very close to cut-off.
[Improvement of magnetic resonance phase unwrapping method based on Goldstein Branch-cut algorithm].
Guo, Lin; Kang, Lili; Wang, Dandan
2013-02-01
The phase information of magnetic resonance (MR) phase image can be used in many MR imaging techniques, but phase wrapping of the images often results in inaccurate phase information and phase unwrapping is essential for MR imaging techniques. In this paper we analyze the causes of errors in phase unwrapping with the commonly used Goldstein Brunch-cut algorithm and propose an improved algorithm. During the unwrapping process, masking, filtering, dipole- remover preprocessor, and the Prim algorithm of the minimum spanning tree were introduced to optimize the residues essential for the Goldstein Brunch-cut algorithm. Experimental results showed that the residues, branch-cuts and continuous unwrapped phase surface were efficiently reduced and the quality of MR phase images was obviously improved with the proposed method.
USDA-ARS?s Scientific Manuscript database
Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms on fresh-cut lettuce. The optimal wavebands that detect worm on fresh-cut lettuce for each type of HSI were investigated using the one-way...
Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel
NASA Astrophysics Data System (ADS)
Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.
2018-01-01
Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1976-01-01
Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.
Lei, Chao; Fan, Sheng; Li, Ke; Meng, Yuan; Mao, Jiangping; Han, Mingyu; Zhao, Caiping; Bao, Lu; Zhang, Dong
2018-01-01
Adventitious root (AR) formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA)-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment). In total, 3355 differentially expressed proteins (DEPs) were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings. PMID:29495482
Honl, M; Rentzsch, R; Müller, G; Brandt, C; Bluhm, A; Hille, E; Louis, H; Morlock, M
2000-01-01
Water-jet cutting techniques have been used in industrial applications for many different materials. Recently these techniques have been developed into a revolutionary cutting tool for soft tissues in visceral surgery. The present study investigates the usage of this cutting technology for the revision surgery of endoprostheses. In the first part of the study, samples of bovine bone and acrylic bone cement (PMMA) were cut using an industrial jet cutting device with pure water. Below 400 bar, only PMMA was cut; above 400 bar, bone was also cut, but only pressures above 800 bar resulted in clinically useful rates of material removal (cut depth 2. 4 mm at 10 mm/min traverse speed). In the second part of the study, the effect of adding biocompatible abrasives to the water in order to reduce the required pressure was investigated, resulting in a significantly higher removal of material. At 600 bar, PMMA was cut 5. 2 mm deep with plain water and 15.2 mm deep with added abrasives. The quality of the cuts was increased by the abrasive. Though there was no clear selectivity between bone and PMMA any more, the rate of material removal at similar pressures was significantly higher for PMMA than for bone (600 bar: 1.6 mm cut depth for bone samples, 15.2 mm for PMMA). The measured cut depths with either method were not influenced by a change of the cutting direction with respect to the main direction of the osteons in the bone. However, a reduction of the jet surface angle (90 degrees to 23 degrees ) resulted for bone in a significantly lower cut depth at 600 bar (plain water: 0.62 mm vs. 0.06 mm; abrasive: 1.61 mm vs. 0.60 mm). The laboratory experiments indicate that abrasive water jets may be suitable for cutting biomaterials like bone and bone cement. Copyright 2000 John Wiley & Sons, Inc.
Cutting back but not cutting out: small employers respond to premium increases.
Short, Ashley C; Lesser, Cara S
2002-10-01
Rising premiums and a weak economy are generating questions about the potential erosion of health insurance coverage, particularly for the more than 46 million Americans who work for small firms. People working in small firms typically have less access to coverage than those in large firms. In 2000 and early 2001, the Center for Studying Health System Change (HSC) conducted its third round of site visits to 12 nationally representative metropolitan areas and found that while few small employers actually dropped coverage, many increased the employee share of premiums, raised copayments and deductibles, switched products and carriers and/or reduced benefits. With the U.S. economy now in rougher shape, small employers may pare back coverage even more, putting affordable health care further out of the reach of workers and their families.
NASA Astrophysics Data System (ADS)
Nandhini, S.; Murugakoothan, P.
2018-04-01
Zinc Guanidinium Sulfate (ZGuS), a semi-organic single crystal, was synthesized using slow evaporation solution growth technique. It is a non-centrosymmetric crystal with space group I4 ¯2d . The crystalline nature of the crystal and the strain were determined using powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was revealed using HR-XRD analysis. The UV-vis-NIR transmittance spectrum depicts 60% transparency with lower-cut off wavelength of 210 nm. The emission spectrum of the crystal was determined using photoluminescence study. Piezoelectricity was confirmed by determining the piezoelectric charge coefficient (d33). These findings shows that the title compound can be employed for photonic and transducer applications.
"Cooling out the Marks": The Ideology and Politics of Vocational Education in an Age of Austerity
ERIC Educational Resources Information Center
Leach, Tony
2017-01-01
As cuts in public-sector funding continue to affect the lives and careers of public-sector workers in the UK, and in other countries, there are added pressures on educational establishments to equip students with the knowledge and skills for employability, sustainable employment and career development in an employment marketplace characterised by…
Age Discrimination, Social Closure and Employment
ERIC Educational Resources Information Center
Roscigno, Vincent J.; Mong, Sherry; Byron, Reginald; Tester, Griff
2007-01-01
Age discrimination in employment has received mounting attention over the past two decades, and from various cross-cutting social science disciplines. Findings from survey and experimental analyses have revealed the pervasiveness of ageist stereotypes, while aggregate and life course analyses suggest trends toward downward occupational mobility…
Improved Concrete Cutting and Excavation Capabilities for Crater Repair Phase 2
2015-05-01
production rate and ease of execution. The current ADR techniques, tactics, and procedures (TTPs) indicate cutting of pavement around a small crater...demonstrations and evaluations were used to create the techniques, tactics, and procedures (TTPs) manual describing the processes and requirements of...was more difficult when dowels were present. In general, the OUA demonstration validated that the new materials, equipment, and procedures were
Micropunching lithography for generating micro- and submicron-patterns on polymer substrates.
Chakraborty, Anirban; Liu, Xinchuan; Luo, Cheng
2012-07-02
Conducting polymers have attracted great attention since the discovery of high conductivity in doped polyacetylene in 1977(1). They offer the advantages of low weight, easy tailoring of properties and a wide spectrum of applications(2,3). Due to sensitivity of conducting polymers to environmental conditions (e.g., air, oxygen, moisture, high temperature and chemical solutions), lithographic techniques present significant technical challenges when working with these materials(4). For example, current photolithographic methods, such as ultra-violet (UV), are unsuitable for patterning the conducting polymers due to the involvement of wet and/or dry etching processes in these methods. In addition, current micro/nanosystems mainly have a planar form(5,6). One layer of structures is built on the top surfaces of another layer of fabricated features. Multiple layers of these structures are stacked together to form numerous devices on a common substrate. The sidewall surfaces of the microstructures have not been used in constructing devices. On the other hand, sidewall patterns could be used, for example, to build 3-D circuits, modify fluidic channels and direct horizontal growth of nanowires and nanotubes. A macropunching method has been applied in the manufacturing industry to create macropatterns in a sheet metal for over a hundred years. Motivated by this approach, we have developed a micropunching lithography method (MPL) to overcome the obstacles of patterning conducting polymers and generating sidewall patterns. Like the macropunching method, the MPL also includes two operations (Fig. 1): (i) cutting; and (ii) drawing. The "cutting" operation was applied to pattern three conducting polymers(4), polypyrrole (PPy), Poly(3,4-ethylenedioxythiophen)-poly(4-styrenesulphonate) (PEDOT) and polyaniline (PANI). It was also employed to create Al microstructures(7). The fabricated microstructures of conducting polymers have been used as humidity(8), chemical(8), and glucose sensors(9). Combined microstructures of Al and conducting polymers have been employed to fabricate capacitors and various heterojunctions(9,10,11). The "cutting" operation was also applied to generate submicron-patterns, such as 100- and 500-nm-wide PPy lines as well as 100-nm-wide Au wires. The "drawing" operation was employed for two applications: (i) produce Au sidewall patterns on high density polyethylene (HDPE) channels which could be used for building 3D microsystems(12,13,14), and (ii) fabricate polydimethylsiloxane (PDMS) micropillars on HDPE substrates to increase the contact angle of the channel(15).
Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe
2016-04-22
A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug concentration in whole brain tissue and provides continuous monitoring of extracellular concentrations of single chiral drug enantiomers along with its metabolites in specific brain regions at each selected time point for a desired period by using a single animal. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Dongyang; Miao, Jiahang; Yumoto, Emi; Yokota, Takao; Asahina, Masashi; Watahiki, Masaaki
2017-01-01
Abstract Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number. PMID:29016906
NASA Astrophysics Data System (ADS)
Yu, Ning; Shi, Qing; Nakajima, Masahiro; Wang, Huaping; Yang, Zhan; Sun, Lining; Huang, Qiang; Fukuda, Toshio
2017-10-01
Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy.
Emily Carter; Robert B. Rummer; Bryce Stokes
1997-01-01
A study was installed in an upland hardwood forest to evaluate the site impacts associated with three alternative prescriptions --- clearcut, deferment cut, and strip cut. Two methods of site impact assessment were employed: 1) assignment of disturbance classes to selected points within each treatment area; and 2) measurement of soil bulk density, gravimetric water...
Poor Children and American Social Policy: Are We Meeting Our Responsibilities?
ERIC Educational Resources Information Center
Amidei, Nancy
As a result of budget cuts and policy changes, health, nutrition, and social welfare programs have been rendered less able to help children and families, particularly those families hard hit by the recession. It is argued that there is no excuse for these cuts and that if the economy were growing and employment levels were high, the budget cuts…
Moore, Alison
2009-09-03
NHS employers will be looking for savings on staff costs--but room to cut wages is limited. Perks such as cheap staff parking and workplace nurseries could be targeted for cuts. Trusts will be keen to avoid the debacle of 2006 when frontline staff were laid off. As NHS spending is fixed till 2011, trusts have time to prepare--and find new ways of working.
Quartz crystal resonator g sensitivity measurement methods and recent results.
Driscoll, M M
1990-01-01
A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5x10(-10) per g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators. Oscillator sustaining stage vibration sensitivity was characterized by an equivalent open-loop phase modulation of 10(-6) rad/g.
Speeding Up the Bilateral Filter: A Joint Acceleration Way.
Dai, Longquan; Yuan, Mengke; Zhang, Xiaopeng
2016-06-01
Computational complexity of the brute-force implementation of the bilateral filter (BF) depends on its filter kernel size. To achieve the constant-time BF whose complexity is irrelevant to the kernel size, many techniques have been proposed, such as 2D box filtering, dimension promotion, and shiftability property. Although each of the above techniques suffers from accuracy and efficiency problems, previous algorithm designers were used to take only one of them to assemble fast implementations due to the hardness of combining them together. Hence, no joint exploitation of these techniques has been proposed to construct a new cutting edge implementation that solves these problems. Jointly employing five techniques: kernel truncation, best N-term approximation as well as previous 2D box filtering, dimension promotion, and shiftability property, we propose a unified framework to transform BF with arbitrary spatial and range kernels into a set of 3D box filters that can be computed in linear time. To the best of our knowledge, our algorithm is the first method that can integrate all these acceleration techniques and, therefore, can draw upon one another's strong point to overcome deficiencies. The strength of our method has been corroborated by several carefully designed experiments. In particular, the filtering accuracy is significantly improved without sacrificing the efficiency at running time.
Automatic Dissection Of Plantlets
NASA Astrophysics Data System (ADS)
Batchelor, B. G.; Harris, I. P.; Marchant, J. A.; Tillett, R. D.
1989-03-01
Micropropagation is a technique used in horticulture for generating a monoclonal colony of plants. A tiny plantlet is cut into several parts, each of which is then replanted. At the moment, the cutting is performed manually. Automating this task would have significant economic benefits. A robot designed to dissect plants would need to be equipped with intelligent visual sensing. This article is concerned with the image acquisition and processing techniques which such a machine might use. A program, which can calculate where to cut a plant with an "open" structure, is presented. This is expressed in the ProVision language, which is described in another article presented at this conference. (Article 1002-65)
Pattern detection in forensic case data using graph theory: application to heroin cutting agents.
Terrettaz-Zufferey, Anne-Laure; Ratle, Frédéric; Ribaux, Olivier; Esseiva, Pierre; Kanevski, Mikhail
2007-04-11
Pattern recognition techniques can be very useful in forensic sciences to point out to relevant sets of events and potentially encourage an intelligence-led style of policing. In this study, these techniques have been applied to categorical data corresponding to cutting agents found in heroin seizures. An application of graph theoretic methods has been performed, in order to highlight the possible relationships between the location of seizures and co-occurrences of particular heroin cutting agents. An analysis of the co-occurrences to establish several main combinations has been done. Results illustrate the practical potential of mathematical models in forensic data analysis.
Thin edge-defined film-fed growth (EFG) octagons
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1992-03-01
Mobil Solar Energy Corp. investigated manufacturing crystalline silicon wafers using the edge-defined film-fed growth (EFG) technique. This report identifies the following: (1) current capabilities for manufacturing 200-micron-thick crystalline silicon wafers (10 cm x 10 cm) produced by growing octagons using the EFG technique and laser cutting them into wafers; (2) potential manufacturing improvements from decreasing the thickness of the wafers, improving the quality of the laser cut edge, and increasing cutting speed, all of which lead to reduce manufacturing costs, improved performance, and increased production capacities; (3) problems that impede achieving these potentials; and (4) costs and other requirements involved in overcoming the problems.
NASA Astrophysics Data System (ADS)
Mishra, Shubham; Sridhara, N.; Mitra, Avijit; Yougandar, B.; Dash, Sarat Kumar; Agarwal, Sanjay; Dey, Arjun
2017-03-01
Present study reports for the first time laser cutting of multilayered coatings on both side of ultra thin (i.e., 75 μm) glass substrate based rigid optical solar reflector (OSR) for spacecraft thermal control application. The optimization of cutting parameters was carried out as a function of laser power, cutting speed and number of cutting passes and their effect on cutting edge quality. Systematic and in-detail microstructural characterizations were carried out by optical and scanning electron microscopy techniques to study the laser affected zone and cutting edge quality. Sheet resistance and water contact angle experiments were also conducted locally both prior and after laser cut to investigate the changes of electrical and surface properties, if any.
Gibson, Mhairi A; Gurmu, Eshetu; Cobo, Beatriz; Rueda, María M; Scott, Isabel M
2018-01-01
Female genital cutting (FGC) has major implications for women's physical, sexual and psychological health, and eliminating the practice is a key target for public health policy-makers. To date one of the main barriers to achieving this has been an inability to infer privately-held views on FGC within communities where it is prevalent. As a sensitive (and often illegal) topic, people are anticipated to hide their true support for the practice when questioned directly. Here we use an indirect questioning method (unmatched count technique) to identify hidden support for FGC in a rural South Central Ethiopian community where the practice is common, but thought to be in decline. Employing a socio-demographic household survey of 1620 Arsi Oromo adults, which incorporated both direct and indirect direct response (unmatched count) techniques we compare directly-stated versus privately-held views in support of FGC, and individual variation in responses by age, gender and education and target female (daughters versus daughters-in-law). Both genders express low support for FGC when questioned directly, while indirect methods reveal substantially higher acceptance (of cutting both daughters and daughters-in-law). Educated adults (those who have attended school) are privately more supportive of the practice than they are prepared to admit openly to an interviewer, indicating that education may heighten secrecy rather than decrease support for FGC. Older individuals hold the strongest views in favour of FGC (particularly educated older males), but they are also more inclined to conceal their support for FGC when questioned directly. As these elders represent the most influential members of society, their hidden support for FGC may constitute a pivotal barrier to eliminating the practice in this community. Our results demonstrate the great potential for indirect questioning methods to advance knowledge and inform policy on culturally-sensitive topics like FGC; providing more reliable data and improving understanding of the "true" drivers of FGC.
Feasibility of Tactical Air Delivery Resupply Using Gliders
2016-12-01
using modern design and manufacturing techniques including AutoCAD, 3D printing , laser cutting and CorelDraw, and conducting field testing and...Sparrow,” using modern design and manufacturing techniques including AutoCAD, 3D printing , laser cutting and CorelDraw, and conducting field testing and...the desired point(s) of impact due to the atmospheric three-dimensional ( 3D ) wind and density field encountered by the descending load under canopy
IS Staffing during a Recession: Comparing Student and IS Recruiter Perceptions
ERIC Educational Resources Information Center
Pratt, Jean A.; Hauser, Karina; Ross, Steven C.
2010-01-01
The current economic situation in the United States has associated ramifications for IS employment. This study identifies IS recruiters' perceptions vis-a-vis IT budget cuts and layoffs at their organizations. Additionally, it identifies IS student perceptions vis-a-vis employment opportunities and academic preparation. Similar surveys were…
ERIC Educational Resources Information Center
Harper, Eddie; Knapp, John
This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…
Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method
NASA Astrophysics Data System (ADS)
Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong
2007-06-01
This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.
NASA Astrophysics Data System (ADS)
Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio
2012-03-01
Exogenous application of plant growth regulators (PGRs) may be an effective technique for increasing the rooting ability and the growth of vegetative fragments (cuttings) of plants used in dune restoration programs. Various concentrations (0, 50 and 100 mg l-1) of two auxins, alpha-naphtaleneacetic acid (NAA) and indole-3-butyric acid (IBA), and two cytokinins, 6-furfurylaminopurine (Kinetin) and 6-benzylaminopurine (BAP), were applied separately to cuttings of two widely used species for restoration, Ammophila arenaria and Sporobuls virginicus. Root development and production of new buds in cuttings were examined under laboratory conditions one month after application. Cuttings were also examined one year after transplanting into a sandy substratum under natural conditions, to test for possible long term effects of PGRs on plant establishment success and growth. The response of the two study species to PGRs differed substantially. In A. arenaria the auxin NAA at 100 mg l-1 reduced the time for root initiation and increased the rooting capacity of cuttings, while the cytokinin Kinetin at 50 mg l-1 facilitated root growth. No auxin had effect on rooting or growth of S. virginicus cuttings, but treatment with 100 mg l-1 Kinetin resulted in higher rooting success than the control. One year after planting, the cuttings of A. arenaria treated with 100 mg l-1 NAA showed a higher establishment success (90% vs. 55%) and produced more culms and longer roots than the control; those treated with cytokinins did not differ in the establishment success from the control, but had longer roots, more culms and rhizomes. On the other hand, the cuttings of S. virginicus treated with 100 mg l-1 Kinetin showed a higher establishment success (75% vs. 35%) and had more culms than the control. Therefore, in restoration activities that involved A. arenaria, a pre-treatment of cuttings with NAA would be beneficial, as it allows the production of a higher number of well-developed plants with high survival potential and greater area cover. In contrast, a pre-treatment of cuttings of S. virginicus with Kinetin would achieve more acceptable plant survival rates. This easy and low cost-effective technique may be extended to other dune plant species and applied on a large scale to improve the chance of dune restoration success.
Mist Propagation of Juvenile Oak Cuttings
R. E. Farmer
1965-01-01
Greenwood apical cuttings from 1- to 4-month-old cherrybark oak (Quercus falcata var. pagodaefolia Ell.) seedlings have been rooted in 4 weeks under mist, after treatment with indolebutyric acid. The technique is suitable for establishing small clones.
Steep cut slope composting : field trials and evaluation.
DOT National Transportation Integrated Search
2011-04-01
Three different depths of compost and five compost retention techniques were tested to determine : their efficacy and cost effectiveness for increasing the establishment of native grass seedings and decreasing : erosion on steep roadside cut slopes i...
Karnowski, Thomas P [Knoxville, TN; Tobin, Jr., Kenneth W.; Muthusamy Govindasamy, Vijaya Priya [Knoxville, TN; Chaum, Edward [Memphis, TN
2012-07-10
A method for assigning a confidence metric for automated determination of optic disc location that includes analyzing a retinal image and determining at least two sets of coordinates locating an optic disc in the retinal image. The sets of coordinates can be determined using first and second image analysis techniques that are different from one another. An accuracy parameter can be calculated and compared to a primary risk cut-off value. A high confidence level can be assigned to the retinal image if the accuracy parameter is less than the primary risk cut-off value and a low confidence level can be assigned to the retinal image if the accuracy parameter is greater than the primary risk cut-off value. The primary risk cut-off value being selected to represent an acceptable risk of misdiagnosis of a disease having retinal manifestations by the automated technique.
Nomori, Hiroaki; Cong, Yue; Sugimura, Hiroshi
2017-01-01
It is often difficult to expose the pulmonary artery buried in a scar tissue, especially in lung cancer patients that responded well to neoadjuvant chemoradiotherapy. Difficulty to access pulmonary artery branches may lead to potentially unnecessary pneumonectomy. To complete lobectomy in such cases, a technique with preceding bronchial cutting for exposure of the pulmonary artery is presented. After dissecting the pulmonary vein, the lobar bronchus is cut from the opposite side of the pulmonary artery with scissors. The back wall of the lobar bronchus is cut using a surgical knife from the luminal face, which can expose the pulmonary artery behind the bronchial stump and then complete lobectomy. Fourteen patients have been treated using the present technique, enabling complete resection by lobectomy (including sleeve lobectomy in 3 patients) without major bleeding. The present procedure can expose pulmonary artery buried in scar tissue, resulting in making the lobectomy safer.
Cutting thread at flexible endoscopy.
Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T
1996-12-01
New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.
Improving semi-automated segmentation by integrating learning with active sampling
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Brown, Matthew
2012-02-01
Interactive segmentation algorithms such as GrowCut usually require quite a few user interactions to perform well, and have poor repeatability. In this study, we developed a novel technique to boost the performance of the interactive segmentation method GrowCut involving: 1) a novel "focused sampling" approach for supervised learning, as opposed to conventional random sampling; 2) boosting GrowCut using the machine learned results. We applied the proposed technique to the glioblastoma multiforme (GBM) brain tumor segmentation, and evaluated on a dataset of ten cases from a multiple center pharmaceutical drug trial. The results showed that the proposed system has the potential to reduce user interaction while maintaining similar segmentation accuracy.
Theoretical and experimental aspects of laser cutting with a direct diode laser
NASA Astrophysics Data System (ADS)
Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.
2014-10-01
Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.
A new method to measure circular runout of end-milling spindle based on cutting mark
NASA Astrophysics Data System (ADS)
Zhou, Jianlai; Liu, Shuchun
2008-12-01
A practical method is introduced to measure the circular runout of a end-milling spindle system at high speed rotations without the need of a reference sphere. A workpiece is held on a linear slide which moves along the axial direction of the spindle. The spindle is then programmed to run at a specific speed. A very sharp edge cutter must be used and the depth of cut will be very shallow in order to keep the cutting force very small. The workpiece is then fed into the end mill in order to make a cutting mark of teens μm in depth. The cutting marks are circular, and their diameters are related to the circular runout of the spindle system. The cutting mark that is generated at a specific speed is expected to contain information about the spindle circular runout at this speed. In practice the cutting marks are not perfectly circular. Therefore, a best-fit circle of a cutting mark is needed to determine its diameter. A high-resolution edge detector machine is used for this purpose. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. It is demonstrated that this technique for the measurement of spindle circular runout is an effective tool in verifying the actual running accuracy of spindles at their actual operating speeds and can be accomplished without the need for a reference sphere.
Generation of segmental chips in metal cutting modeled with the PFEM
NASA Astrophysics Data System (ADS)
Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.
2018-06-01
The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.
Generation of segmental chips in metal cutting modeled with the PFEM
NASA Astrophysics Data System (ADS)
Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.
2017-09-01
The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md
2011-01-01
Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.
Applying a crop-tree release in small-sawtimber white oak stands
Jeffrey W Stringer; Gary W. Miller; Robert F. Wittwer; Robert F. Wittwer
1988-01-01
Small-sawtimber white oak crop trees in Kentucky were released by a crown-touching technique. In two cutting treatments, 20 and 34 crop trees were released per acre at a total cost of $35 and $42, respectively. Both treatments yielded commercial volumes of cut material. Total mean merchantable volume (> 5.0 inches d.b.h.) in cut trees was 693 cubic feet/acre, with...
Roybal, C Nathaniel; Tsui, Irena; Sanfilippo, Christian; Hubschman, Jean-Pierre
2013-01-01
External drainage of subretinal fluid as part of a scleral buckling procedure rapidly restores the retinal pigment epithelium-neural retina interface in rhegmatogenous retinal detachments but carries the inherent risk of subretinal hemorrhage and retinal incarceration. The authors investigated variations to the technique to reduce the chance of subretinal hemorrhage originating from the choroid. A novel method for needle drainage using electrocautery of the sclerochoroidal layers before puncture was employed. The effect of 0% to 50% scleral electrocautery in a porcine model was investigated. A significant decrease in choroidal vessel diameter and choroidal vessel density at 40% electrocautery was demonstrated. Electrocautery without scleral cut-down before external drainage of subretinal fluid likely decreases the chance of subretinal hemorrhage by decreasing choroidal vascularity. Copyright 2013, SLACK Incorporated.
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less
High pressure water jet cutting and stripping
NASA Technical Reports Server (NTRS)
Hoppe, David T.; Babai, Majid K.
1991-01-01
High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.
NASA Astrophysics Data System (ADS)
Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.
2009-08-01
A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.
NASA Astrophysics Data System (ADS)
Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd
2017-09-01
Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.
School District Employment Reductions Slow. Get the Facts. #1
ERIC Educational Resources Information Center
Tallman, Mark
2012-01-01
Kansas school districts reduced employment by 327 full-time equivalent positions this school year, the smallest reduction in three years of cuts to district operating budgets. Districts reduced positions by 561 in FY 2010 and 1,626 in FY 2011. Districts eliminated nearly 400 "regular" teaching positions this year, but added 114 special…
Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-03-01
Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.
[Occupational exposure to gases emitted in mild and stainless steel welding].
Matczak, W; Gromiec, J
2001-01-01
The objective of this work was to select optimal methods for determination of toxic gases (NOx, NO2, CO, CO2, O3) and to evaluate occupational exposure of welders to those gases. The survey covered workers employed in shipyards, and other metal product fabrication plants engaged in welding mild and stainless steel by different techniques (manual metal are, metal active gas, tungsten inert gas welding; gas, plasma, laser cutting and resistance welding). Personal and stationary air samples were collected to determine time weighted average (TWA) and short-term concentrations of gases. For determination of nitrogen oxides the following analytical techniques were employed: spectrophotometry with collection on liquid and solid sorbents and ion chromatography with collection on solid sorbents. All the gases were determined also by automatic or direct reading methods: flow or diffusion detector tubes and photometric and electrochemical analyzers. The determined TWA concentrations were below respective Maximum Allowable Concentrations (MAC) but exposure limits for short term exposure were exceeded in some cases. The average NO2 i NOx ratio was 1:4. According to Polish regulations regarding the MAC value for nitrogen oxides the analytical method should enable determination of total NOx by either direct or indirect simultaneous determination of both NO and NO2. The applicability of the spectrophotometric method of analysis of atmospheric NOx to determination of low NOx concentrations at welders working posts has been confirmed.
Application of laser spot cutting on spring contact probe for semiconductor package inspection
NASA Astrophysics Data System (ADS)
Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan
2017-12-01
A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.
Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong
2017-04-01
The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.
Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.
Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong
2017-12-01
The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}<001>. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}<001>, {110}<1-10>, and {111}<1-10>, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2016-04-01
The energy reconstruction at KASCADE-Grande is based on a combination of the shower size and the total muon number, which are both estimated for each individual air shower event. We present investigations where we employed a second method to reconstruct the primary energy using S(500), which are the charged particle densities inferred with the KASCADE-Grande detector at a distance of 500 m from the shower axis. We considered the attenuation of inclined showers by applying the "Constant Intensity Cut" method and we employed a simulation-derived calibration to convert the recorded S(500) into primary energy. We observed a systematic shift in the S(500)-derived energy compared with previously reported results obtained using the standard reconstruction technique. However, a comparison of the two methods based on simulated and measured data showed that this shift only appeared in the measured data. Our investigations showed that this shift was caused mainly by the inadequate description of the shape of the lateral density distribution in the simulations.
Characteristics and Machining Performance of TiN and TiAlN Coatings on a Milling Cutter
NASA Astrophysics Data System (ADS)
Sarwar, Mohammed; Haider, Julfikar
2011-01-01
Titanium Nitride (TiN) coating deposited by Physical Vapour Deposition (PVD) or Chemical Vapour Deposition (CVD) techniques on cutting tools (single point or multipoint) has contributed towards the improvement of tool life, productivity and product quality [1]. Addition of Al in TiN coating (e.g., TiAlN or AlTiN) has further improved the coating properties required for machining applications [2, 3]. This work presents a comparative investigation on TiN and TiAlN coatings deposited on to a Powder Metallurgy High Speed Steel (PM HSS) milling cutter used for machining bimetal (M42+D6A) steel strips. PVD (Arc evaporation) technique was used to deposit the coatings after carefully preparing the cutting edges of the milling cutter. Microstructure, chemical composition, hardness and adhesion of the coatings have been characterised using different techniques. The incorporation of Al into TiN coating results in an improvement in hardness, wear resistance and cutting performance. Examination of the worn flank in the coated cutting edges revealed that abrasive and adhesive wear are the predominant failure mechanisms. Tool designers, coating suppliers and manufacturing engineers could benefit from the information provided.
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
Zucuni, C P; Guilardi, L F; Fraga, S; May, L G; Pereira, G K R; Valandro, L F
2017-07-01
This study evaluated the effects of different pre-sintering fabrication processing techniques of Y-TZP ceramic (CAD/CAM Vs. in-lab), considering surface characteristics and mechanical performance outcomes. Pre-sintered discs of Y-TZP ceramic (IPS e.max ZirCAD, Ivoclar Vivadent) were produced using different pre-sintering fabrication processing techniques: Machined- milling with a CAD/CAM system; Polished- fabrication using a cutting device followed by polishing (600 and 1200 SiC papers); Xfine- fabrication using a cutting machine followed by grinding with extra-fine diamond bur (grit size 30 μm); Fine- fabrication using a cutting machine followed by grinding with fine diamond bur (grit size 46 μm); SiC- fabrication using a cutting machine followed by grinding with 220 SiC paper. Afterwards, the discs were sintered and submitted to roughness (n=35), surface topography (n=2), phase transformation (n=2), biaxial flexural strength (n=20), and biaxial flexural fatigue strength (fatigue limit) (n=15) analyses. No monoclinic-phase content was observed in all processing techniques. It can be observed that obtaining a surface with similar characteristics to CAD/CAM milling is essential for the observation of similar mechanical performance. On this sense, grinding with fine diamond bur before sintering (Fine group) was the best mimic protocol in comparison to the CAD/CAM milling. Copyright © 2017 Elsevier Ltd. All rights reserved.
The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
Ogam, Erick; Fellah, Z E A; Baki, Paul
2013-03-01
The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].
Recent Advances in Bioprinting and Applications for Biosensing
Dias, Andrew D.; Kingsley, David M.; Corr, David T.
2014-01-01
Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413
Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results
NASA Astrophysics Data System (ADS)
Coelho, R. T.; Tanikawa, S. T.
2009-11-01
High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.
Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji
2018-09-01
Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.
Toward Robust and Efficient Climate Downscaling for Wind Energy
NASA Astrophysics Data System (ADS)
Vanvyve, E.; Rife, D.; Pinto, J. O.; Monaghan, A. J.; Davis, C. A.
2011-12-01
This presentation describes a more accurate and economical (less time, money and effort) wind resource assessment technique for the renewable energy industry, that incorporates innovative statistical techniques and new global mesoscale reanalyzes. The technique judiciously selects a collection of "case days" that accurately represent the full range of wind conditions observed at a given site over a 10-year period, in order to estimate the long-term energy yield. We will demonstrate that this new technique provides a very accurate and statistically reliable estimate of the 10-year record of the wind resource by intelligently choosing a sample of ±120 case days. This means that the expense of downscaling to quantify the wind resource at a prospective wind farm can be cut by two thirds from the current industry practice of downscaling a randomly chosen 365-day sample to represent winds over a "typical" year. This new estimate of the long-term energy yield at a prospective wind farm also has far less statistical uncertainty than the current industry standard approach. This key finding has the potential to reduce significantly market barriers to both onshore and offshore wind farm development, since insurers and financiers charge prohibitive premiums on investments that are deemed to be high risk. Lower uncertainty directly translates to lower perceived risk, and therefore far more attractive financing terms could be offered to wind farm developers who employ this new technique.
Imura, N; Kato, A S; Novo, N F; Hata, G; Uemura, M; Toda, T
2001-10-01
The purpose of this study was to compare the effects of two engine-driven, nickel-titanium instrument systems with hand files in the final shape of slight and moderately curved canals. A total of 72 mesial roots of extracted human mandibular molars were divided into three groups: ProFile .04 taper, Pow-R rotary systems, and Flex-R hand-filing technique. The roots were mounted and cross-sectioned at two different horizontal levels using a modified Bramante technique. Pre- and postinstrumented cross-sectional roots were imaged, recorded, and computer analyzed. Results showed that, at the middle third, in almost all groups, there was a tendency of cutting more toward the mesial side with only one exception: Pow-R cut more to the distal side (danger zone) (p < 0.02). At the apical third, Flex-R (p < 0.03) and ProFile (0.001) transported to the mesial side (danger zone) when the curvature increased. When the three techniques were compared analyzing each side and considering the two groups of curvature, at the middle third in the moderately curved-canal group, Flex-R cut statistically more than Pow-R toward the lingual side. The other comparisons showed no statistically significant difference. When the techniques were compared in relation with the degree of curvature, in the apical third, ProFile .04 cut statistically more toward the mesial side in the moderately curved canal group than in the slightly curved canal group. The other comparisons showed no statistically significant difference. Canal preparation time was shorter with hand instrumentation (p < .05) in a few instances.
Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol
NASA Astrophysics Data System (ADS)
Zhang, Dongshi; Gökce, Bilal; Sommer, Steffen; Streubel, René; Barcikowski, Stephan
2016-03-01
In this paper, we perform liquid-assisted picosecond laser cutting of 150 μm thin germanium wafers from the rear side. By investigating the cutting efficiency (the ability to allow an one-line cut-through) and quality (characterized by groove morphologies on both sides), the pros and cons of this technique under different conditions are clarified. Specifically, with laser fluence fixed, repetition rate and scanning speed are varied to show quality and efficiency control by means of laser parameter modulation. It is found that low repetition rate ablation in liquid gives rise to a better cut quality on the front side than high repetition rate ablation since it avoids dispersed nanoparticles redeposition resulting from a bubble collapse, unlike the case of 100 kHz which leads to large nanorings near the grooves resulting from a strong interaction of bubbles and the case of 50 kHz which leads to random cutting due to the interaction of the former pulse induced cavitation bubble and the subsequent laser pulse. Furthermore, ethanol is mixed with pure distilled water to assess the liquid's impact on the cutting efficiency and cutting quality. The results show that increasing the ethanol fraction decreases the ablation efficiency but simultaneously, greatly improves the cutting quality. The improvement of cut quality as ethanol ratio increases may be attributed to less laser beam interference by a lower density of bubbles which adhere near the cut kerf during ablation. A higher density of bubbles generated from ethanol vaporization during laser ablation in liquid will cause stronger bubble shielding effect toward the laser beam propagation and therefore result in less laser energy available for the cut, which is the main reason for the decrease of cut efficiency in water-ethanol mixtures. Our findings give an insight into under which condition the rear-side laser cutting of thin solar cells should be performed: high repetition, pure distilled water and high laser power are favorable for high-speed rough cutting but the cut kerf suffers from strong side effects of ripples, nanoredeposition occurrence, while low laser power at low repetition rate (10 kHz), mixed solution (1 wt% ethanol in water) and moderate scanning speed (100 μm/s) are preferable for ultrafine high-quality debris-free cutting. The feasibility of high-quality cut is a good indication of using rear laser ablation in liquid to cut thinner wafers. More importantly, this technique spares any post cleaning steps to reduce the risk to the contamination or crack of the thin wafers.
Vo, Minh N; Brilakis, Emmanouil S; Grantham, J Aaron
2018-01-01
Contemporary chronic total occlusion (CTO) percutaneous coronary interventional (PCI) techniques are increasingly dependent upon dissection and reentry techniques (DARTs) especially for long occluded lesions. DARTs can result in compressive hematomas during CTO interventions and traditional treatment with balloon angioplasty and/or coronary stenting are often suboptimal and may extend the hematoma distally. We describe the novel use of a cutting balloon to "express" these compressive hematomas and restore antegrade coronary blood flow. © 2017 Wiley Periodicals, Inc.
Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2018-03-01
The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.
NASA Astrophysics Data System (ADS)
Giri Prasad, M. J.; Abhishek Raaj, A. S.; Rishi Kumar, R.; Gladson, Frank; M, Gautham
2016-09-01
The present study is concerned with resolving the problems pertaining to the conventional cutting fluids. Two samples of nano cutting fluids were prepared by dispersing 0.01 vol% of MWCNTs and a mixture of 0.01 vol% of MWCNTs and 0.01 vol% of nano ZnO in the soluble oil. The thermophysical properties such as the kinematic viscosity, density, flash point and the tribological properties of the prepared nano cutting fluid samples were experimentally investigated and were compared with those of plain soluble oil. In addition to this, a milling process was carried by varying the process parameters and by application of different samples of cutting fluids and an attempt was made to determine optimal cutting condition using the Taguchi optimization technique.
Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.
Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin
2017-01-01
Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan
2016-07-01
Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.
Systematic review of the evidence for Trails B cut-off scores in assessing fitness-to-drive.
Roy, Mononita; Molnar, Frank
2013-01-01
Fitness-to-drive guidelines recommend employing the Trail Making B Test (a.k.a. Trails B), but do not provide guidance regarding cut-off scores. There is ongoing debate regarding the optimal cut-off score on the Trails B test. The objective of this study was to address this controversy by systematically reviewing the evidence for specific Trails B cut-off scores (e.g., cut-offs in both time to completion and number of errors) with respect to fitness-to-drive. Systematic review of all prospective cohort, retrospective cohort, case-control, correlation, and cross-sectional studies reporting the ability of the Trails B to predict driving safety that were published in English-language, peer-reviewed journals. Forty-seven articles were reviewed. None of the articles justified sample sizes via formal calculations. Cut-off scores reported based on research include: 90 seconds, 133 seconds, 147 seconds, 180 seconds, and < 3 errors. There is support for the previously published Trails B cut-offs of 3 minutes or 3 errors (the '3 or 3 rule'). Major methodological limitations of this body of research were uncovered including (1) lack of justification of sample size leaving studies open to Type II error (i.e., false negative findings), and (2) excessive focus on associations rather than clinically useful cut-off scores.
Dew point measurement technique utilizing fiber cut reflection
NASA Astrophysics Data System (ADS)
Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.
2009-05-01
The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.
Investigations on high speed machining of EN-353 steel alloy under different machining environments
NASA Astrophysics Data System (ADS)
Venkata Vishnu, A.; Jamaleswara Kumar, P.
2018-03-01
The addition of Nano Particles into conventional cutting fluids enhances its cooling capabilities; in the present paper an attempt is made by adding nano sized particles into conventional cutting fluids. Taguchi Robust Design Methodology is employed in order to study the performance characteristics of different turning parameters i.e. cutting speed, feed rate, depth of cut and type of tool under different machining environments i.e. dry machining, machining with lubricant - SAE 40 and machining with mixture of nano sized particles of Boric acid and base fluid SAE 40. A series of turning operations were performed using L27 (3)13 orthogonal array, considering high cutting speeds and the other machining parameters to measure hardness. The results are compared among the different machining environments, and it is concluded that there is considerable improvement in the machining performance using lubricant SAE 40 and mixture of SAE 40 + boric acid compared with dry machining. The ANOVA suggests that the selected parameters and the interactions are significant and cutting speed has most significant effect on hardness.
Religious slaughter: evaluation of current practices in selected countries.
Velarde, A; Rodriguez, P; Dalmau, A; Fuentes, C; Llonch, P; von Holleben, K V; Anil, M H; Lambooij, J B; Pleiter, H; Yesildere, T; Cenci-Goga, B T
2014-01-01
As part of the project "Religious slaughter (DIALREL): improving knowledge and expertise through dialogue and debate on issues of welfare, legislation and socio-economic aspects", this paper discusses an evaluation of current practices during Halal and Shechita slaughter in cattle, sheep, goats and poultry. During religious slaughter, animals are killed with and without stunning by a transverse incision across the neck that is cutting the skin, muscles (brachiocephalic, sternocephalic, sternohyoid, and sternothyroid), trachea, esophagus, carotid arteries, jugular veins and the major, superficial and deep nerves of the cervical plexus. In this report, the restraint methods, stunning, neck cutting, exsanguination, slaughter techniques and postcut handling in the abattoir were assessed for religious slaughter. Information about the procedures used during religious slaughter in Belgium, Germany, Italy, the Netherlands, Spain, the UK, Turkey and Australia was collected by means of spot visits to abattoirs. To standardize the information gathered during the spot visits three guidelines were designed, one for each species, and translated into the national languages of the countries involved. The document included questions on the handling and restraint methods (stunning, neck cutting/exsanguination/slaughter techniques and postcut handling performed under religious practices) and for pain and distress of the animal during the restraint, neck cutting and induction to death in each abattoir. Results showed differences in the time from restraining to stun and to cut in the neck cutting procedures and in the time from cut to death. © 2013.
Computerized technique for recording board defect data
R. Bruce Anderson; R. Edward Thomas; Charles J. Gatchell; Neal D. Bennett; Neal D. Bennett
1993-01-01
A computerized technique for recording board defect data has been developed that is faster and more accurate than manual techniques. The lumber database generated by this technique is a necessary input to computer simulation models that estimate potential cutting yields from various lumber breakdown sequences. The technique allows collection of detailed information...
Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method
NASA Astrophysics Data System (ADS)
Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak
2018-03-01
The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.
Financial Distress Prediction Using Discrete-time Hazard Model and Rating Transition Matrix Approach
NASA Astrophysics Data System (ADS)
Tsai, Bi-Huei; Chang, Chih-Huei
2009-08-01
Previous studies used constant cut-off indicator to distinguish distressed firms from non-distressed ones in the one-stage prediction models. However, distressed cut-off indicator must shift according to economic prosperity, rather than remains fixed all the time. This study focuses on Taiwanese listed firms and develops financial distress prediction models based upon the two-stage method. First, this study employs the firm-specific financial ratio and market factors to measure the probability of financial distress based on the discrete-time hazard models. Second, this paper further focuses on macroeconomic factors and applies rating transition matrix approach to determine the distressed cut-off indicator. The prediction models are developed by using the training sample from 1987 to 2004, and their levels of accuracy are compared with the test sample from 2005 to 2007. As for the one-stage prediction model, the model in incorporation with macroeconomic factors does not perform better than that without macroeconomic factors. This suggests that the accuracy is not improved for one-stage models which pool the firm-specific and macroeconomic factors together. In regards to the two stage models, the negative credit cycle index implies the worse economic status during the test period, so the distressed cut-off point is adjusted to increase based on such negative credit cycle index. After the two-stage models employ such adjusted cut-off point to discriminate the distressed firms from non-distressed ones, their error of misclassification becomes lower than that of one-stage ones. The two-stage models presented in this paper have incremental usefulness in predicting financial distress.
NASA Astrophysics Data System (ADS)
Minz, Preeti D.; Nirala, A. K.
2016-04-01
In the present study, the laser speckle technique has been used for the quality evaluation of chemically treated cut apples. Chemical pre-treatment includes 1% (w/v) solution of citric acid (CA), sodium chloride (SC), and a combination of CA and sodium chloride (CS). The variation in weight loss, respiration rate, total soluble solids (TSS), titratable acidity (TA), and absorbance of chemically treated cut apples stored at 5 °C was monitored for 11 d. The speckle grain size was calculated by an autocovariance method from the speckled images of freshly cut chemically treated apples. The effect of chemicals on TSS and the TA content variation of the cut apples were well correlated to the linear speckle grain size. Circular degree of polarization confirms the presence of a small scatterer and hence Rayleigh diffusion region. For all the treated cut apples, a decrease in the concentration of small particles nearly after the mid-period of storage results in the fast decay of circular degree of polarization. For non-invasive and fast analysis of the chemical constituent of fruits during minimal processing, the laser speckle can be practically used in the food industry.
Study on Circular Complex viewed from Environmental Systems
NASA Astrophysics Data System (ADS)
Takeguchi, Tomoo; Adachi, Katsushige; Yoshikawa, Akira; Hiratsuka, Akira; Tsujino, Ryoji; Iguchi, Manabu
In machining processes, cutting fluids are generally used for cooling and lubricating workpieces at the point cutting. However, these fluids frequently include chlorine, sulfur, phosphorus, or other additives. The chemicals not only become a mist affecting the health of workers engaged in the processing but also make the workshop environment worse. In particular, the chlorine becomes one of the causes of global warming by treating waste oil under high temperature conditions. It is furthermore said that huge cost beyond the purchase cost of oil occurs and dioxins (carcinogen) usually exist in the waste oil. Therefore, an environmentally-friendly cooling-air cutting system is required from the standpoint of green manufacturing. This system has been noted as a technique to solve the issues against the environment mentioned above. In the cooling-air cutting processing, the amount of CO2 emission shows a low value compared with the dry cutting one which uses oil. It is therefore thought that the cooling-air cutting system is a very important processing technique as an environmental countermeasure. At present, in strictly economic and environmental situations, the compatibility of the betterment of production efficiency with the improvement of environment is a subject in the actual spot of a cut processing. This study deals with the test results of cooling-air drilling performance from the viewpoint of taking green manufacturing into account. The workpiece made of die steel SKDll was manufactured by the cooling-air drilling performance at a revolution of 840 rpm and a temperature of -20°C with a high-speed steel drill (SKH56). The results were compared with those for the dry cutting performance. The main results obtained in this study are as follows: 1) The tool life for cooling-air drilling performance was about 6 times as long as that for the dry cutting performance. 2) The chip temperature for cooling-air drilling was 220°C lower than that for the dry cutting performance.
Rizvi, Reza; Anwer, Ali; Fernie, Geoff; Dutta, Tilak; Naguib, Hani
2016-11-02
Fiber debonding and pullout are well-understood processes that occur during damage and failure events in composite materials. In this study, we show how these mechanisms, under controlled conditions, can be used to produce multifunctional textured surfaces. A two-step process consisting of (1) achieving longitudinal fiber alignment followed by (2) cutting, rearranging, and joining is used to produce the textured surfaces. This process employs common composite manufacturing techniques and uses no reactive chemicals or wet handling, making it suitable for scalability. This uniform textured surface is due to the fiber debonding and pullout occurring during the cutting process. Using well-established fracture mechanics principles for composite materials, we demonstrate how different material parameters such as fiber geometry, fiber and matrix stiffness and strength, and interface behavior can be used to achieve multifunctional textured surfaces. The resulting textured surfaces show very high friction coefficients on wet ice (9× improvement), indicating their promising potential as materials for ice traction/tribology. Furthermore, the texturing enhances the surface's hydrophobicity as indicated by an increase in the contact angle of water by 30%. The substantial improvements to surface tribology and hydrophobicity make fiber debonding and pullout an effective, simple, and scalable method of producing multifunctional textured surfaces.
Newell, P.; King, S.
2009-01-01
Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.
Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour
NASA Astrophysics Data System (ADS)
Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.
2012-04-01
A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.
Machines employing a hot gas jet to cut metals and nonmetallic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyaev, V.M.; Aleksandrenkov, V.P.
1995-07-01
The flame-cutting of metals is a basic materials-processing operation performed in the course of machine-building and, in some sectors (shipbuilding, aircraft construction, petrochemicals) it is the most important operation. In addition, this method of cutting remains the main operation performed in the processing of scrap metal. The importance of it has occasioned the development of a wide range of cutting tools within just the last decade. Not surprisingly, VNIIavtogen-mash (the All-Union Scientific Research Institute of Machinery for the Gas Welding and Cutting of Metals) is the leading designer of metal-cutting tools in this country. The problem of efficiently cutting metalsmore » is gaining in importance and will continue to do so in coming years in connection with the conversion of military hardware to other uses, the decommissioning of old and obsolete equipment, and utilization of the enormous reserves of scrap in this country. There will thus be a significant increase in the amounts of existing high-alloy steels, nonferrous metals and their alloys, and composites that require cutting. A wide range of cutters is available for the gas-flame cutting of metals, Liquid fuels based on petroleum products are promising from the viewpoint of energy efficiency and performance. The operation of a new generation of cutters, referred to as thermo-gas jet cutters, is based on the principle of the destructive action of a hot, fast-moving, chemically active jet on the material to be cut.« less
NASA Astrophysics Data System (ADS)
Wierzchowski, W.; Moore, M.; Makepeace, A. P. W.; Yacoot, A.
1991-10-01
A 4 x 4 x 1.5 cu mm cuboctahedral diamond and two 0.7 mm thick slabs cut from a truncated octahedral diamond grown by the reconstitution technique were studied in different double-crystal arrangements with both conventional and synchrotron X-ray sources. The back-reflection double crystal topographs of large polished 001-plane-oriented faces intersecting different growth sectors, together with cathodoluminescence patterns, allowed identification of these sectors. A double-crystal arrangement, employing the -3 2 5 quartz reflection matching the symmetrical 004 diamond reflection in CuK(alpha 1) radiation, was used for measurement of lattice parameter differences with an accuracy of one and a half parts per million. The simultaneous investigation by means of Lang projection and section topography provided complementary information about the crystallographic defects and internal structures of growth sectors. Observation of the cuboctahedral diamond with a filter of peak transmittance at 430 nm revealed a 'Maltese cross' growth feature in the central (001) growth sector, which also affected the birefringence pattern. However, this feature only very slightly affected the double-crystal topographs.
Ambiguity about Preparation for Workforce Clouds Efforts to Equip Students for Future
ERIC Educational Resources Information Center
Olson, Lynn
2006-01-01
Preparing students to succeed in the workforce is increasingly seen as a key to global competitiveness. But employers aren't sending clear-cut answers on what young people need to know and be able to do on the job. In efforts to obtain information about workforce readiness, various agencies sent out surveys to various employers. One such agency is…
Optimization of CO2 laser cutting parameters on Austenitic type Stainless steel sheet
NASA Astrophysics Data System (ADS)
Parthiban, A.; Sathish, S.; Chandrasekaran, M.; Ravikumar, R.
2017-03-01
Thin AISI 316L stainless steel sheet widely used in sheet metal processing industries for specific applications. CO2 laser cutting is one of the most popular sheet metal cutting processes for cutting of sheets in different profile. In present work various cutting parameters such as laser power (2000 watts-4000 watts), cutting speed (3500mm/min - 5500 mm/min) and assist gas pressure (0.7 Mpa-0.9Mpa) for cutting of AISI 316L 2mm thickness stainless sheet. This experimentation was conducted based on Box-Behenken design. The aim of this work is to develop a mathematical model kerf width for straight and curved profile through response surface methodology. The developed mathematical models for straight and curved profile have been compared. The Quadratic models have the best agreement with experimental data, and also the shape of the profile a substantial role in achieving to minimize the kerf width. Finally the numerical optimization technique has been used to find out best optimum laser cutting parameter for both straight and curved profile cut.
Laser cutting apparatus for nuclear core fuel subassembly
Walch, Allan P.; Caruolo, Antonio B.
1982-02-23
The object of the invention is to provide a system and apparatus which employs laser cutting to disassemble a nuclear core fuel subassembly. The apparatus includes a gantry frame (C) which straddles the core fuel subassembly (14), an x-carriage (22) travelling longitudinally above the frame which carries a focus head assembly (D) having a vertically moving carriage (46) and a laterally moving carriage (52), a system of laser beam transferring and focusing mirrors carried by the x-carriage and focusing head assembly, and a shroud follower (F) and longitudinal follower (G) for following the shape of shroud (14) to maintain a beam focal point (44) fixed upon the shroud surface for accurate cutting.
Martin, Aifric Isabel; Devasahayam, Rajnesh; Hodge, Christopher; Cooper, Simon; Sutton, Gerard L
2017-09-01
This study is the first paper to establish a learning curve by a single technician. Preparation of pre-cut corneal endothelial grafts commenced at Lions New South Wales Eye Bank in December 2014. The primary objective of this study was to review the safety and reliability of the preparation method during the first year of production. This is a hospital-based, prospective case series. There were 234 consecutive donor corneal lenticules. Donor lenticules were prepared by a single operator using a linear cutting microkeratome. Immediately prior to cutting, central corneal thickness values were recorded. Measurements of the corneal bed were taken immediately following lenticule preparation. Outcomes were separated by blade sizes, and intended thickness was compared to actual thickness for each setting. Early specimens were compared to later ones to assess for a learning curve within the technique. The main parameter measured is the mean difference from intended lamellar cut thickness. The mean final cut thickness was 122.36 ± 20.35 μm, and the mean difference from intended cut was 30.17 ± 37.45 μm. No significant difference was found between results achieved with early specimens versus those achieved with later specimens (P = 0.425). Thin, reproducible endothelial grafts can routinely be produced by trained technicians at their respective eye banks without significant concerns for an extended learning curve. This service can reduce perioperative surgical complexity, required surgical paraphernalia and theatre times. The consistent preparation of single-pass, ultrathin pre-cut corneas may have additional advantages for surgeons seeking to introduce lamellar techniques. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
A logic-based method for integer programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooker, J.; Natraj, N.R.
1994-12-31
We propose a logic-based approach to integer programming that replaces traditional branch-and-cut techniques with logical analogs. Integer variables are regarded as atomic propositions. The constraints give rise to logical formulas that are analogous to separating cuts. No continuous relaxation is used. Rather, the cuts are selected so that they can be easily solved as a discrete relaxation. (In fact, defining a relaxation and generating cuts are best seen as the same problem.) We experiment with relaxations that have a k-tree structure and can be solved by nonserial dynamic programming. We also present logic-based analogs of facet-defining cuts, Chv{acute a}tal rank,more » etc. We conclude with some preliminary computational results.« less
Laser assisted machining: a state of art review
NASA Astrophysics Data System (ADS)
Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.
A review of technology and safety aspects of erbium lasers in dentistry.
Clarkson, D M
2001-01-01
This article reviews aspects of the probable mechanisms used by erbium dental lasers for cutting dentine and enamel, describes key issues of the risk of temperature elevation and speed of cutting relative to conventional techniques and looks at issues concerned with the safety of lasers.
Path Planning For A Class Of Cutting Operations
NASA Astrophysics Data System (ADS)
Tavora, Jose
1989-03-01
Optimizing processing time in some contour-cutting operations requires solving the so-called no-load path problem. This problem is formulated and an approximate resolution method (based on heuristic search techniques) is described. Results for real-life instances (clothing layouts in the apparel industry) are presented and evaluated.
Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
Malak, Sharif F F; Anderson, Iain A
2008-07-01
Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.
New developments in surface technology and prototyping
NASA Astrophysics Data System (ADS)
Himmer, Thomas; Beyer, Eckhard
2003-03-01
Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.
Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing
NASA Technical Reports Server (NTRS)
Khattak, C. P.; Schmid, F.; Smith, M. B.
1982-01-01
A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.
Membrane technology for treating of waste nanofluids coolant: A review
NASA Astrophysics Data System (ADS)
Mohruni, Amrifan Saladin; Yuliwati, Erna; Sharif, Safian; Ismail, Ahmad Fauzi
2017-09-01
The treatment of cutting fluids wastes concerns a big number of industries, especially from the machining operations to foster environmental sustainability. Discharging cutting fluids, waste through separation technique could protect the environment and also human health in general. Several methods for the separation emulsified oils or oily wastewater have been proposed as three common methods, namely chemical, physicochemical and mechanical and membrane technology application. Membranes are used into separate and concentrate the pollutants in oily wastewater through its perm-selectivity. Meanwhile, the desire to compensate for the shortcomings of the cutting fluid media in a metal cutting operation led to introduce the using of nanofluids (NFs) in the minimum quantity lubricant (MQL) technique. NFs are prepared based on nanofluids technology by dispersing nanoparticles (NPs) in liquids. These fluids have potentially played to enhance the performance of traditional heat transfer fluids. Few researchers have studied investigation of the physical-chemical, thermo-physical and heat transfer characteristics of NFs for heat transfer applications. The use of minimum quantity lubrication (MQL) technique by NFs application is developed in many metal cutting operations. MQL did not only serve as a better alternative to flood cooling during machining operation and also increases better-finished surface, reduces impact loads on the environment and fosters environmental sustainability. Waste coolant filtration from cutting tools using membrane was treated by the pretreated process, coagulation technique and membrane filtration. Nanomaterials are also applied to modify the membrane structure and morphology. Polyvinylidene fluoride (PVDF) is the better choice in coolant wastewater treatment due to its hydrophobicity. Using of polyamide nanofiltration membranes BM-20D and UF-PS-100-100, 000, it resulted in the increase of permeability of waste coolant filtration. Titanium dioxide is nanomaterials additive to modify the Nanopores of the surface membrane. Contact angle and average pore size were used in the investigation of the surface morphology of membranes. An adequate choice in modifying the membrane surface in waste coolant filtration may bring a promised alternative as a solution in waste coolant remediation.
ERIC Educational Resources Information Center
Smith, Lloyd
1979-01-01
Presents some inventive darkroom techniques which can lead students to new interests in designing creative images. These techniques include easel manipulation, image blending, paper negatives, vignette, vaseline smear, cut strip, flop negative, or combinations of these. Each technique is illustrated by a student photograph. (Author/SJL)
A minimal approach to the scattering of physical massless bosons
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Luo, Hui
2018-05-01
Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour quantum numbers of scattering amplitudes with matter, especially efficient in the adjoint and fundamental representations.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
NASA Astrophysics Data System (ADS)
Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.
2006-12-01
Advances in Laser Technology and nonlinear Optical techniques can be effectively utilized for LIDAR applications in space and atmospheric sciences to achieve better flexibility and control of the available optical power. Using such devices, one can achieve highly accurate and resolved, measurement of the distribution for atmospheric scattering layers. In the present investigation a diode double end pumped high repetition rate, multi wavelength Nd:YAG laser is designed, fabricated and various laser beam parameters have been characterized for LIDAR applications. Nonlinear optical techniques have been employed to generate higher harmonics like 532nm, 355nm and 266nm for various spectral studies. The experimental setup mainly consists of two Fiber coupled pump laser diodes (Model FAP- 81-30C-800B, Coherent Inc, USA) with a maximum output power of 30Watt at a wavelength of 807-810nm at 30°C set temperature. A second harmonic LBO crystal cut for critical phase matching placed within the laser resonator is provided for converting a fraction of the fundamental beam to a second harmonic beam. A type II frequency tripling LBO nonlinear crystal (cut for critical phase matching) is also located inside the laser resonator. The third harmonic beam and the unconverted fundamental beam are then directed across a type I fourth harmonic LBO crystal cut for critical phase matching where a portion of the fundamental beam and a portion of the third harmonic beam are converted to a fourth harmonic frequency when both fundamental and third harmonic beams propagate through the frequency quadrupling crystal. The resulting beams which are the fundamental (1064nm), second harmonic (532nm), third harmonic (355nm) and fourth harmonic (266nm) are then directed to a fourth harmonic separator in which the fourth harmonic beam is separated from the fundamental beam. A maximum average power of 12W at 1064nm, 8W at 532nm, 5W at 355nm and 3W at 266nm have been measured at a repetition rate of 10KHz. A minimum pulse width of 25ns have been observed.
Laser cutting: industrial relevance, process optimization, and laser safety
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver
1998-09-01
Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to the angle between the normal of the cutting front and the laser beam axis. Beneath process optimization and control further work is focused on the characterization of particulate and gaseous laser generated air contaminants and adequate safety precautions like exhaust and filter systems.
Imaging, cutting, and collecting instrument and method
Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.
1995-01-01
Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.
Miao, Xinyang; Li, Hao; Bao, Rima; Feng, Chengjing; Wu, Hang; Zhan, Honglei; Li, Yizhang; Zhao, Kun
2017-02-01
Understanding the geological units of a reservoir is essential to the development and management of the resource. In this paper, drill cuttings from several depths from an oilfield were studied using terahertz time domain spectroscopy (THz-TDS). Cluster analysis (CA) and principal component analysis (PCA) were employed to classify and analyze the cuttings. The cuttings were clearly classified based on CA and PCA methods, and the results were in agreement with the lithology. Moreover, calcite and dolomite have stronger absorption of a THz pulse than any other minerals, based on an analysis of the PC1 scores. Quantitative analyses of minor minerals were also realized by building a series of linear and non-linear models between contents and PC2 scores. The results prove THz technology to be a promising means for determining reservoir lithology as well as other properties, which will be a significant supplementary method in oil fields.
NASA Astrophysics Data System (ADS)
El Bouami, Souhail; Habak, Malek; Franz, Gérald; Velasco, Raphaël; Vantomme, Pascal
2016-10-01
Composite materials are increasingly used for structural parts in the aeronautic industries. Carbon Fiber-Reinforced Plastics (CFRP) are often used in combination with metallic materials, mostly aluminium alloys. This raises new problems in aircraft assembly. Delamination is one of these problems. In this study, CFRP/Al-Li stacks is used as experimental material for investigation effect of interaction of cutting parameters (cutting speed and feed rate) and tool geometry on delamination and thrust forces in drilling operation. A plan of experiments, based on Taguchi design method, was employed to investigate the influence of tool geometry and in particular the point angle and cutting parameters on delamination and axial effort. The experimental results demonstrate that the feed rate is the major parameter and the importance of tool point angle in delamination and thrust forces in the stacks were shown.
Systematic review of the evidence for Trails B cut-off scores in assessing fitness-to-drive
Roy, Mononita; Molnar, Frank
2013-01-01
Background Fitness-to-drive guidelines recommend employing the Trail Making B Test (a.k.a. Trails B), but do not provide guidance regarding cut-off scores. There is ongoing debate regarding the optimal cut-off score on the Trails B test. The objective of this study was to address this controversy by systematically reviewing the evidence for specific Trails B cut-off scores (e.g., cut-offs in both time to completion and number of errors) with respect to fitness-to-drive. Methods Systematic review of all prospective cohort, retrospective cohort, case-control, correlation, and cross-sectional studies reporting the ability of the Trails B to predict driving safety that were published in English-language, peer-reviewed journals. Results Forty-seven articles were reviewed. None of the articles justified sample sizes via formal calculations. Cut-off scores reported based on research include: 90 seconds, 133 seconds, 147 seconds, 180 seconds, and < 3 errors. Conclusions There is support for the previously published Trails B cut-offs of 3 minutes or 3 errors (the ‘3 or 3 rule’). Major methodological limitations of this body of research were uncovered including (1) lack of justification of sample size leaving studies open to Type II error (i.e., false negative findings), and (2) excessive focus on associations rather than clinically useful cut-off scores. PMID:23983828
Study on fibre laser machining quality of plain woven CFRP laminates
NASA Astrophysics Data System (ADS)
Li, Maojun; Li, Shuo; Yang, Xujing; Zhang, Yi; Liang, Zhichao
2018-03-01
Laser cutting is suitable for large-scale and high-efficiency production with relatively high cutting speed, while machining of CFRP composite using lasers is challenging with severe thermal damage due to different material properties and sensitivity to heat. In this paper, surface morphology of cutting plain woven carbon fibre-reinforced plastics (CFRP) by fibre laser and the influence of cutting parameters on machined quality were investigated. A full factorial experimental design was employed involving three variable factors, which included laser pulse frequency at three levels together with laser power and cutting speed at two levels. Heat-affected zone (HAZ), kerf depth and kerf angle were quantified to understand the interactions with cutting parameters. Observations of machined surface were analysed relating to various damages using optical microscope and scanning electron microscopy (SEM), which included HAZ, matrix recession, fibre protruding, striations, fibre-end swelling, collapses, cavities and delamination. Based on ANOVA analysis, it was found that both cutting speed and laser power were significant factors for HAZ and kerf depth, while laser power was the only significant factor for kerf angle. Besides, HAZ and the kerf depth showed similar sensitivity to the pulse energy and energy per unit length, which was opposite for kerf angle. This paper presented the feasibility and experimental results of cutting CFRP laminates using fibre laser, which is possibly the efficient and high-quality process to promote the development of CFRPs.
Reviews on laser cutting technology for industrial applications
NASA Astrophysics Data System (ADS)
Muangpool, T.; Pullteap, S.
2018-03-01
In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.
NASA Astrophysics Data System (ADS)
Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei
2018-05-01
Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.
Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal
2016-01-01
Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919
NASA Astrophysics Data System (ADS)
Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan
2004-06-01
This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.
Gender Difference in Internet Use and Internet Problems among Quebec High School Students.
Dufour, Magali; Brunelle, Natacha; Tremblay, Joel; Leclerc, Danielle; Cousineau, Marie-Marthe; Khazaal, Yasser; Légaré, Andrée-Anne; Rousseau, Michel; Berbiche, Djamal
2016-10-01
There are presently no data available concerning Internet addiction (IA) problems among adolescents in Canada and the province of Quebec. The goal of this study is thus to document and compare the influence of gender on Internet use and addiction. The study data were collected from a larger research project on gambling among adolescents. Activities conducted online (applications used and time spent) as well as answers to the Internet Addiction Test (IAT) were collected from 3938 adolescents from grades 9 to 11. The two most often employed cut-off points for the IAT in the literature were documented: (40-69 and 70+) and (50+). Boys spent significantly more time on the Internet than did girls. A greater proportion of the girls made intense use of social networks, whereas a greater proportion of the boys made intense use of massively multiplayer online role-playing games, online games, and adult sites. The proportion of adolescents with a potential IA problem varied according to the cut-off employed. When the cut-off was set at 70+, 1.3% of the adolescents were considered to have an IA, while 41.7% were seen to be at risk. At a 50+ cut-off, 18% of the adolescents were considered to have a problem. There was no significant difference between the genders concerning the proportion of adolescents considered to be at risk or presenting IA problems. Finally, analysis of the percentile ranks would seem to show that a cut-off of 50+ better describes the category of young people at risk. The results of this study make it possible to document Internet use and IA in a large number of Quebec adolescents. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.
2018-05-01
We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.
Machining process influence on the chip form and surface roughness by neuro-fuzzy technique
NASA Astrophysics Data System (ADS)
Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan
2017-04-01
The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.
NASA Astrophysics Data System (ADS)
Zhang, F. H.; Wang, S. F.; An, C. H.; Wang, J.; Xu, Q.
2017-06-01
Large-aperture potassium dihydrogen phosphate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machining errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China.
NASA Astrophysics Data System (ADS)
Abdel-Aal, H. A.; Mansori, M. El
2012-12-01
Cutting tools are subject to extreme thermal and mechanical loads during operation. The state of loading is intensified in dry cutting environment especially when cutting the so called hard-to-cut-materials. Although, the effect of mechanical loads on tool failure have been extensively studied, detailed studies on the effect of thermal dissipation on the deterioration of the cutting tool are rather scarce. In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.
Diameter-limit cutting in Appalachian hardwoods: boon or bane?
G.R., Jr. Trimble; G.R. Trimble
1971-01-01
Diameter-limit cutting is widespread and is applied in a great many ways, often without appreciation of its advantages and disadvantages and withoutan understanding of its effects on subsequent stand development. Although the technique has advantages, unless applied carefully, it can have longlasting adverse effects on sawtimber production. The latest results of...
Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.
Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert
2012-12-01
Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.
Pérez-Fernández, Virginia; Castro-Puyana, María; González, María José; Marina, María Luisa; García, María Ángeles; Gómara, Belén
2012-07-01
The potential of three capillary columns based on β-cyclodextrin (i.e., Chirasil-Dex, BGB-172, and BGB-176SE) has been studied for the simultaneous enantiomeric separation of polychlorinated biphenyls (PCBs) and methylsulfonyl metabolites of PCBs (MeSO(2)-PCBs) employing a heart-cut multidimensional gas chromatographic system (heart-cut MDGC). Among the columns studied, the BGB-176SE capillary column provided the best results, allowing the simultaneous enantioselective resolution of six MeSO(2)-PCBs and six chiral PCBs; the Chirasil-Dex column did not resolve any of the studied MeSO(2)-PCBs; and a poor resolution was obtained for three MeSO(2)-PCBs when the BGB-172 column was employed. The developed method was successfully applied to two fish oil and one cow liver samples commercially available, which showed different enantioselective pattern. PCBs 91 and 176 presented a clear enrichment of the second eluted atropisomer in codfish oil, whereas in fish oil sample, slight enrichment of the first eluted atropisomer of CB45 and the second eluted atropisomer of CB136 were observed. © 2012 Wiley Periodicals, Inc.
Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.
Zhu, Zhiwei; To, Suet; Zhang, Shaojian
2015-08-10
Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.
Key improvements in machining of Ti6al4v alloy: A review
NASA Astrophysics Data System (ADS)
Katta, Sivakoteswararao; Chaitanya, G.
2017-07-01
Now a days the use of ti-6al-4v alloy is high in demand in many industries like aero space, bio medical automobile, space, military etc. the production rates in the industries are not sufficient because the machiniability of ti-6al-4v is the main problem, there are several cutting tools available for metal cutting operations still there is a gap in finding the proper cutting tool material for machining of ti-6al-4v. because the properties of titanium like high heat resistant, low thermal conductivity, low weight ratio, less corrosiveness, and more many properties attracting the industrialists to use titanium as their material for their products, many researchers done the research on machininbility of ti-6al-4v by using different tool materials. but as for my literature survey there is still lot of scope is available, to find better cutting tool with techniques for machining ti-6al-4v. in this paper iam discussing the work done by various researchers on ti-6al-4v alloy with different techniques.
RESEARCH: Shrub Propagation Techniques for Biological Control ofInvading Tree Species
Meilleur; Veronneau; Bouchard
1997-05-01
/ The use of relatively stable shrub communities to control invasionby trees could be an efficient way of reducing herbicide applications, andthus represents an environmental gain, in areas such as rights-of-way. Thequestion is how to favor the expansion of these relatively stable shrubcommunities using different propagation techniques. Three experimentaltreatments, cutting back, layering, and cutting back-layering were performedon Cornus stolonifera, Salix petiolaris, and Spiraea albaclones already located within the corridor of an electrical power line. Toestablish the efficiency of treatments, we examined the statisticaldifferences of growth traits between species and treatments.An analysis of the effects of layering shows, after the first growth season,differences for all growth traits in only one species, Spiraea alba.After the second growth season, we observed the development of new aerialstems. Layering favors horizontal expansion of shrubs over heightdevelopment. The third year after treatment, the effect of layering isreduced except for Cornus stolonifera, which continuously increases,as shown by the significant progression of the clone issued from the layereven five years after treatments. With the cutting back technique, weexpected a distinct vertical growth of the shrubs at the expense ofincreasing the crown diameter. This technique would be best associated withthe rejuvenation of clones, followed by a layering of new shoots to allow ahorizontal expansion of the shrubs. Therefore, the formation of a dense shrubcommunity by layering should be considered a valuable approach for thebiological control of undesirable trees in powerline rights-of-way.KEY WORDS: Layering; Cutting back; Right-of-way; Cornus stolonifera;Salix petiolaris; Spiraea alba; Quebec
Automated Cell-Cutting for Cell Cloning
NASA Astrophysics Data System (ADS)
Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro
We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.
Mechanical specific energy versus depth of cut in rock cutting and drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Mechanical specific energy versus depth of cut in rock cutting and drilling
Zhou, Yaneng; Zhang, Wu; Gamwo, Isaac; ...
2017-12-07
The relationship between Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP), or equivalently the depth of cut per revolution, provides an important measure for strategizing a drilling operation. This study explores how MSE evolves with depth of cut, and presents a concerted effort that encompasses analytical, computational and experimental approaches. A simple model for the relationship between MSE and cutting depth is first derived with consideration of the wear progression of a circular cutter. This is an extension of Detournay and Defourny's phenomenological cutting model. Wear is modeled as a flat contact area at the bottom of amore » cutter referred to as a wear flat, and that wear flat in the past is often considered to be fixed during cutting. But during a drilling operation by a full bit that consists of multiple circular cutters, the wear flat length may increase because of various wear mechanisms involved. The wear progression of cutters generally results in reduced efficiency with either increased MSE or decreased ROP. Also, an accurate estimate of removed rock volume is found important for the evaluation of MSE. The derived model is compared with experiment results from a single circular cutter, for cutting soft rock under ambient pressure with actual depth measured through a micrometer, and for cutting high strength rock under high pressure with actual cutting area measured by a confocal microscope. Lastly, the model is employed to interpret the evolution of MSE with depth of cut for a full drilling bit under confining pressure. The general form of equation of the developed model is found to describe well the experiment data and can be applied to interpret the drilling data for a full bit.« less
Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne
2010-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.
Technique for predicting ground-water discharge to surface coal mines and resulting changes in head
Weiss, L.S.; Galloway, D.L.; Ishii, Audrey L.
1986-01-01
Changes in seepage flux and head (groundwater level) from groundwater drainage into a surface coal mine can be predicted by a technique that considers drainage from the unsaturated zone. The user applies site-specific data to precalculated head and seepage-flux profiles. Groundwater flow through hypothetical aquifer cross sections was simulated using the U.S. Geological Survey finite-difference model, VS2D, which considers variably saturated two-dimensional flow. Conceptual models considered were (1) drainage to a first cut, and (2) drainage to multiple cuts, which includes drainage effects of an area surface mine. Dimensionless head and seepage flux profiles from 246 simulations are presented. Step-by-step instructions and examples are presented. Users are required to know aquifer characteristics and to estimate size and timing of the mine operation at a proposed site. Calculated groundwater drainage to the mine is from one excavated face only. First cut considers confined and unconfined aquifers of a wide range of permeabilities; multiple cuts considers unconfined aquifers of higher permeabilities only. The technique, developed for Illinois coal-mining regions that use area surface mining and evaluated with an actual field example, will be useful in assessing potential hydrologic impacts of mining. Application is limited to hydrogeologic settings and mine operations similar to those considered. Fracture flow, recharge, and leakage are nor considered. (USGS)
Comparison of nerve trimming with the Er:YAG laser and steel knife
NASA Astrophysics Data System (ADS)
Josephson, G. D.; Bass, Lawrence S.; Kasabian, A. K.
1995-05-01
Best outcome in nerve repair requires precise alignment and minimization of scar at the repair interface. Surgeons attempt to create the sharpest cut surface at the nerve edge prior to approximation. Pulsed laser modalities are being investigated in several medical applications which require precise atraumatic cutting. We compared nerve trimming with the Er:YAG laser (1375 J/cm2) to conventional steel knife trimming prior to neurorrhaphy. Sprague- Dawley rats were anesthetized with ketamine and xylazine. Under operating microscope magnification the sciatic nerve was dissected and transected using one of the test techniques. In the laser group, the pulses were directed axially across the nerve using a stage which fixed laser fiber/nerve distance and orientation. Specimens were sent for scanning electron microscopy (SEM) at time zero. Epineurial repairs were performed with 10 - 0 nylon simple interrupted sutures. At intervals to 90 days, specimens were harvested and sectioned longitudinally and axially for histologic examination. Time zero SEM revealed clean cuts in both groups but individual axons were clearly visible in all laser specimens. Small pits were also visible on the cut surface of laser treated nerves. No significant differences in nerve morphology were seen during healing. Further studies to quantify axon counts, and functional outcome will be needed to assess this technique of nerve trimming. Delivery system improvements will also be required, to make the technique clinically practical.
Piezoelectric osteotomy in hand surgery: first experiences with a new technique
Hoigne, Dominik J; Stübinger, Stefan; Kaenel, Oliver Von; Shamdasani, Sonia; Hasenboehler, Paula
2006-01-01
Background In hand and spinal surgery nerve lesions are feared complications with the use of standard oscillating saws. Oral surgeons have started using a newly developed ultrasound bone scalpel when performing precise osteotomies. By using a frequency of 25–29 kHz only mineralized tissue is cut, sparing the soft tissue. This reduces the risk of nerve lesions. As there is a lack of experience with this technique in the field of orthopaedic bone surgery, we performed the first ultrasound osteotomy in hand surgery. Method While performing a correctional osteotomy of the 5th metacarpal bone we used the Piezosurgery® Device from Mectron [Italy] instead of the usual oscillating saw. We will report on our experience with one case, with a follow up time of one year. Results The cut was highly precise and there were no vibrations of the bone. The time needed for the operation was slightly longer than the time needed while using the usual saw. Bone healing was good and at no point were there any neurovascular disturbances. Conclusion The Piezosurgery® Device is useful for small long bone osteotomies. Using the fine tip enables curved cutting and provides an opportunity for new osteotomy techniques. As the device selectively cuts bone we feel that this device has great potential in the field of hand- and spinal surgery. PMID:16611362
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.
Evaluation of laser cutting process with auxiliary gas pressure by soft computing approach
NASA Astrophysics Data System (ADS)
Lazov, Lyubomir; Nikolić, Vlastimir; Jovic, Srdjan; Milovančević, Miloš; Deneva, Heristina; Teirumenieka, Erika; Arsic, Nebojsa
2018-06-01
Evaluation of the optimal laser cutting parameters is very important for the high cut quality. This is highly nonlinear process with different parameters which is the main challenge in the optimization process. Data mining methodology is one of most versatile method which can be used laser cutting process optimization. Support vector regression (SVR) procedure is implemented since it is a versatile and robust technique for very nonlinear data regression. The goal in this study was to determine the optimal laser cutting parameters to ensure robust condition for minimization of average surface roughness. Three cutting parameters, the cutting speed, the laser power, and the assist gas pressure, were used in the investigation. As a laser type TruLaser 1030 technological system was used. Nitrogen as an assisted gas was used in the laser cutting process. As the data mining method, support vector regression procedure was used. Data mining prediction accuracy was very high according the coefficient (R2) of determination and root mean square error (RMSE): R2 = 0.9975 and RMSE = 0.0337. Therefore the data mining approach could be used effectively for determination of the optimal conditions of the laser cutting process.
Baù, Marco; Ferrari, Marco; Ferrari, Vittorio
2017-01-01
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors. PMID:28574459
Baù, Marco; Ferrari, Marco; Ferrari, Vittorio
2017-06-02
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors.
ESDA®-Lite collection of DNA from latent fingerprints on documents.
Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P
2015-05-01
The ability to detect and non-destructively collect biological samples for DNA processing would benefit the forensic community by preserving the physical integrity of evidentiary items for more thorough evaluations by other forensic disciplines. The Electrostatic Detection Apparatus (ESDA®) was systemically evaluated for its ability to non-destructively collect DNA from latent fingerprints deposited on various paper substrates for short tandem repeat (STR) DNA profiling. Fingerprints were deposited on a variety of paper substrates that included resume paper, cotton paper, magazine paper, currency, copy paper, and newspaper. Three DNA collection techniques were performed: ESDA collection, dry swabbing, and substrate cutting. Efficacy of each collection technique was evaluated by the quantity of DNA present in each sample and the percent profile generated by each sample. Both the ESDA and dry swabbing non-destructive sampling techniques outperformed the destructive methodology of substrate cutting. A greater number of full profiles were generated from samples collected with the non-destructive dry swabbing collection technique than were generated from samples collected with the ESDA; however, the ESDA also allowed the user to visualize the area of interest while non-destructively collecting the biological material. The ability to visualize the biological material made sampling straightforward and eliminated the need for numerous, random swabbings/cuttings. Based on these results, the evaluated non-destructive ESDA collection technique has great potential for real-world forensic implementation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Big-Bubble Full Femtosecond Laser-Assisted Technique in Deep Anterior Lamellar Keratoplasty.
Buzzonetti, Luca; Petrocelli, Gianni; Valente, Paola; Iarossi, Giancarlo; Ardia, Roberta; Petroni, Sergio; Parrilla, Rosa
2015-12-01
To describe the big-bubble full femtosecond laser-assisted (BBFF) technique, which could be helpful in standardizing the big-bubble technique in deep anterior lamellar keratoplasty (DALK). Ten eyes of 10 consecutive patients affected by keratoconus underwent the BBFF technique using the 150-kHz IntraLase femtosecond laser (Intra-Lase FS Laser; Abbott Medical Optics, Inc., Santa Ana, CA). A 9-mm diameter metal mask with a single fissure 0.7 mm wide oriented at the 12-o'clock position was positioned into the cone, over the laser glass. The laser performed a ring lamellar cut (internal diameter = 3 mm; external diameter = 8 mm) 100 µm above the thinnest point, with the photodisruption effectively occurring only in the corneal stroma corresponding to the fissure to create a deep stromal channel; subsequently, an anterior side cut created an arcuate incision, from the corneal surface to the deep stromal channel on the mask's opening site. The mask was removed and the laser performed a full lamellar cut 200 µm above the thinnest point to create a lamella. After the removal of the lamella, the air needle was inserted into the stromal channel and air was injected to achieve a big bubble. The big bubble was achieved in 9 eyes (all type 1 bubbles) and all procedures were completed as DALK. Preliminary results suggest that the BBFF technique could help in standardizing the big-bubble technique in DALK, reducing the "learning curve" for surgeons who approach this technique and the risks of intraoperative complications. Copyright 2015, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Adesta, Erry Yulian T.; Riza, Muhammad; Avicena
2018-03-01
Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.
Far infrared filters for the Galileo-Jupiter and other missions
NASA Technical Reports Server (NTRS)
Seeley, J. S.; Hunneman, R.; Whatley, A.
1981-01-01
Progress in the development of FIR multilayer interference filters for the net flux radiometer and photopolarizing radiometer to be carried on board the Galileo mission to Jupiter is reported. The multilayer interference technique has been extended to the region above 40 microns by the use of PbTe/II-VI materials in hard-coated combination, with the thickest layers composed of CdSe QWOT at 74 microns and PbTe QWOT. Improvements have also been obtained in filters below 20 microns on the basis of the Chebyshev stack design. A composite filter cutting on steeply at 40 microns has been designed which employs a thin crystal quartz substrate, shorter wavelength absorption in ZnS and As2S3 thin films, and supplementary multilayer interference. Finally, absorptive filters have been developed based on II-VI compounds in multilayer combination with KRS-5 (or 6) on a KRS-5 (or 6) substrate
Structural Bus and Release Mechanisms on the ST5 Satellites: Summary and Status
NASA Technical Reports Server (NTRS)
Rossoni, Peter
2007-01-01
The Space Technology 5 Mechanical System met the challenge of packaging a fully functional science and technology satellite system with its Deployer mechanism into a compact 0.07cu m volume. Three 25 kg satellites were orbited in constellation in March, 2006. The ST5 mechanical system is composed of 1) The Structural Bus; 2) Magnetometer Instrument Boom 3) Spacecraft Deployer Release Mechanism This system includes a highly integrated electronics enclosure as a multifunctional structure; a lightweight, magnetically clean Magnetometer Boom; the first use of Nitinol Shape-Memory Alloy trigger devices for deploying multiple spacecraft; an innovative compliant mount for the umbilical connector and a Deployer mechanism that imparts both separation velocity and mission spin rate to three constellation flying satellites These elements employed cutting-edge design and analysis tools, state-of-the-art testing facilities and proven engineering techniques to meet stringent performance criteria, enabling the mission s success.
Lasers in oral surgery and implantology
NASA Astrophysics Data System (ADS)
Vescovi, Paolo
2016-03-01
The usefulness of laser for oral hard tissue procedure such as caries treatment, impacted teeth extraction, periodontal therapy, peri-implantitis management, sinus lifting is reported by several Authors [1]. Conventionally, mechanical rotary instruments and hand instruments are employed for bone surgery. Rotary instruments have better accessibility and cutting efficiency, but there is a risk of excessive heating of bone tissue and caution must be exercised to avoid the bur becoming entangled with surrounding soft tissues and the reflected flap. The main clinical advantages of the lasers are represented by minimal patient discomfort, good recovery with decreased or absent post-operative pain. In the last ten years are described in the international literature great advantages of Laser Surgery and Low Level Laser Therapy (LLLT) performed with different wavelength in addition to traditional surgical techniques to improve bone and soft tissue healing and for pain and infection control.
Shock response of 7068 aluminium alloy
NASA Astrophysics Data System (ADS)
Chapman, David; Eakins, Daniel; Proud, William
2013-06-01
Aluminium alloys are widely employed throughout the aerospace and defence industries due to their high specific strength. Aluminium alloy 7068, often described as the ultimate aluminium alloy was developed by Kasier Aluminium in the mid-1990s and is the strongest aluminium commercially produced. There remains little published data on the response of this micro-structurally anisotropic alloy to dynamic loading. As part of an investigation of the high-rate mechanical properties of Al 7068, a series of plate-impact experiments using a novel meso-scale planar impact facility and a more conventional large bore gas gun were undertaken. The evolution of the elastic-plastic shock wave and spall strength as a function of sample thickness and specimen orientation were investigated using optical velocimetry (line-VISAR, PDV) techniques. Planar shock wave experiments were conducted on specimens several 100 microns to several millimetres thick cut from either parallel or perpendicular to the extrusion direction.
Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto
2009-07-01
Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.
Numerical simulation of heat transfer and fluid flow in laser drilling of metals
NASA Astrophysics Data System (ADS)
Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian
2015-05-01
Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.
Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S.; Cho, Hyunjeong; Cho, Byoung-Kwan
2015-01-01
Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce. PMID:26610510
Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan
2015-11-20
Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.
A Cartesian cut cell method for rarefied flow simulations around moving obstacles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechristé, G., E-mail: Guillaume.Dechriste@math.u-bordeaux1.fr; CNRS, IMB, UMR 5251, F-33400 Talence; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux1.fr
2016-06-01
For accurate simulations of rarefied gas flows around moving obstacles, we propose a cut cell method on Cartesian grids: it allows exact conservation and accurate treatment of boundary conditions. Our approach is designed to treat Cartesian cells and various kinds of cut cells by the same algorithm, with no need to identify the specific shape of each cut cell. This makes the implementation quite simple, and allows a direct extension to 3D problems. Such simulations are also made possible by using an adaptive mesh refinement technique and a hybrid parallel implementation. This is illustrated by several test cases, including amore » 3D unsteady simulation of the Crookes radiometer.« less
Imaging, cutting, and collecting instrument and method
Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.
1995-10-31
Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.
Kawase-Koga, Yoko; Mori, Yoshiyuki; Kanno, Yuki; Hoshi, Kazuto; Takato, Tsuyoshi
2015-10-01
Short lingual osteotomy is a useful method for the performance of sagittal split ramus osteotomy involving interference between the proximal and distal bone fragments when lateral differences exist in the setback distance. However, this procedure occasionally results in abnormal fracture and nerve injury; expert surgical skill is thus required. We herein describe a novel technique involving the use of an ultrasonic bone-cutting device (Piezosurgery; Mectron Medical Technology, Carasco, Italy) for vertical osteotomy posterior to the mandibular foramen. Successful short lingual osteotomy was performed using this technique with avoidance of abnormal fracture and neurovascular bundle damage.
Volume reduction of hot cell plastic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, F W; Henscheid, J P; Lewis, L C
1989-09-19
The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.
Use of Piezosurgery for removal of retrovertebral body osteophytes in anterior cervical discectomy.
Grauvogel, Juergen; Scheiwe, Christian; Kaminsky, Jan
2014-04-01
The relatively new technique of Piezosurgery is based on microvibrations, generated by the piezoelectrical effect, which results in selective bone cutting with preservation of adjacent soft tissue. To study the applicability of Piezosurgery in anterior cervical discectomy with fusion (ACDF) surgery. Prospective clinical study at the neurosurgical department of the University of Freiburg, Germany. Nine patients with cervical disc herniation and retrovertebral osteophytes who underwent ACDF surgery. Piezosurgery was evaluated with respect to practicability, safety, preciseness of bone cutting, and preservation of adjacent neurovascular tissue. Pre- and postoperative clinical and radiological data were assessed. Piezosurgery was supportively used in ACDF in nine patients with either radiculopathy or myelopathy from disc herniation or ventral osteophytes. After discectomy, osteophytes were removed with Piezosurgery to decompress the spinal canal and the foramina. Angled inserts were used, allowing for cutting even retrovertebral osteophytes. In all nine cases, Piezosurgery cut bone selectively with no damage to nerve roots, dura, or posterior longitudinal ligament. None of the patients experienced any new neurological deficit after the operation. The handling of the instrument was safe and the cut precise. Osteophytic spurs, even retrovertebral ones that generally only can be approached via corpectomies, could be safely removed because of the angled inserts through the disc space. Currently, a slightly prolonged operation time was observed for Piezosurgery. Furthermore, the design of the handpiece could be further improved to facilitate the intraoperative handling in ACDF. Piezosurgery proved to be a useful and safe technique for selective bone cutting and removal of osteophytes with preservation of neuronal and soft tissue in ACDF. In particular, the angled inserts were effective in cutting bone spurs behind the adjacent vertebra which cannot be reached with conventional rotating burs. Copyright © 2014 Elsevier Inc. All rights reserved.
Improved transformer-winding method
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1978-01-01
Proposed technique using special bobbin and fixture to wind copper wire directly on core eliminates need core cut prior to assembly. Application of technique could result in production of quieter core with increased permeability and no localized heating.
Cut set-based risk and reliability analysis for arbitrarily interconnected networks
Wyss, Gregory D.
2000-01-01
Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.
Daniel J. Hocking; Kimberly J. Babbitt; Mariko Yamasaki
2013-01-01
In forested ecosystems timber harvesting has the potential to emulate natural disturbances, thereby maintaining the natural communities adapted to particular disturbances. We compared the effects of even-aged (clearcut and patch cut) and uneven-aged (group cut, single-tree selection) timber management techniques with natural ice-storm damage and unmanipulated reference...
Laser Cutting Eliminates Nucleic Acid Cross-Contamination in Dried-Blood-Spot Processing
Daza, Glenda; Chang, Ming; Coombs, Robert
2012-01-01
Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing. PMID:23052309
Damage Detection in Concrete Elements with Surface Wave Measurements
1992-01-01
Structures, identified the need for "Better techniques for detection of flaws or defects inside structural members". At the same conference, the...1 6 12 1 7 13 19 13 7 18 12 6 17 11 5 14 8 2 10 8 2 83 Saw cut Sawm cu Saw cut Sawcu SSaw cut Figre4. -I ltie ocaio o Dmae ndSoc- RcieAra 84 4.2...cracking and defects . Some methods used in the past to determine the size and location of cracks are the P-wave arrival time, imaging systems, time
NASA Astrophysics Data System (ADS)
Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi
2018-02-01
Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.
Metal drilling with portable hand drills
NASA Technical Reports Server (NTRS)
Edmiston, W. B.; Harrison, H. W.; Morris, H. E.
1970-01-01
Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling.
Stress wave techniques for determining quality of dimensional lumber from switch ties
K. C. Schad; D. E. Kretschmann; K. A. McDonald; R. J. Ross; D. W. Green
1995-01-01
Researchers at the Forest Products Laboratory, USDA Forest Service, have been studying nondestructive techniques for evaluating the strength of wood. This report describes the results of a pilot study on using these techniques to determine the quality of large dimensional lumber cut from switch ties. First, pulse echo and dynamic (transverse vibration) techniques were...
Effects of an Er, Cr:YSGG laser on canine oral hard tissues
NASA Astrophysics Data System (ADS)
Rizoiu, Ioana-Mihaela; Kimmel, Andrew I.; Eversole, Lewis R.
1996-12-01
Beagle dogs were utilized to assess the biologic effects of an Er, Cr:YSGG hard tissue cutting laser and results were compared with conventional mechanical preparations of enamel and dentin. Intraoperative pulpal temperature fluctuations were recorded with thermocouples. The laser cuts failed to induce inflammation in the pulps except in teeth with intentional pulp exposures for both methods. No increase in temperature was detected with the laser. It is concluded that this laser system may be safely employed for tooth preparations without causing adverse pulpal effects.
Method and device for stand-off laser drilling and cutting
Copley, John A.; Kwok, Hoi S.; Domankevitz, Yacov
1989-09-26
A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.
NASA Astrophysics Data System (ADS)
Tozsin, Gulsen
2016-01-01
Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.
2017-01-01
Introduction. Female genital cutting (FGC) is a harmful traditional practice that violates women's rights and threatens their health. Although much work has been done to tackle this practice in Ethiopia, the prevalence remains very high in Somali and Harari regions. This study aims to investigate the attitude towards FGC of young people (boys and girls) in Somali and Harari regions of Eastern Ethiopia. Methods. A cross-sectional quantitative study was carried out in Somali and Harari regions from October to December 2015. Two districts were purposely selected from the two regions, and a stratified random sampling technique was employed to select 480 subjects from the randomly selected schools. Results. Out of 480 questionnaires distributed, 478 (99.6%) respondents filled the questionnaires and returned them. The finding of the study reveals that 86% of study participants condemn the practice of FGC. Almost 59% of male participants from both study areas preferred to marry uncircumcised girls. Being a female and being a Muslim are significantly associated with the support toward the continuation of the FGC (P < 0.05). Conclusion. Although the study demonstrates a positive attitude towards the abandonment of FGC, there is a need to increase the knowledge about the position of Islam in FGC and to educate women about the harmful effect of FGC. PMID:28386281
Biomolecular recognition and detection using gold-based nanoprobes
NASA Astrophysics Data System (ADS)
Crew, Elizabeth
The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.
The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone.
Norman, D G; Watson, D G; Burnett, B; Fenne, P M; Williams, M A
2018-02-01
Toolmark analysis involves examining marks created on an object to identify the likely tool responsible for creating those marks (e.g., a knife). Although a potentially powerful forensic tool, knife mark analysis is still in its infancy and the validation of imaging techniques as well as quantitative approaches is ongoing. This study builds on previous work by simulating real-world stabbings experimentally and statistically exploring quantitative toolmark properties, such as cut mark angle captured by micro-CT imaging, to predict the knife responsible. In Experiment 1 a mechanical stab rig and two knives were used to create 14 knife cut marks on dry pig ribs. The toolmarks were laser and micro-CT scanned to allow for quantitative measurements of numerous toolmark properties. The findings from Experiment 1 demonstrated that both knives produced statistically different cut mark widths, wall angle and shapes. Experiment 2 examined knife marks created on fleshed pig torsos with conditions designed to better simulate real-world stabbings. Eight knives were used to generate 64 incision cut marks that were also micro-CT scanned. Statistical exploration of these cut marks suggested that knife type, serrated or plain, can be predicted from cut mark width and wall angle. Preliminary results suggest that knives type can be predicted from cut mark width, and that knife edge thickness correlates with cut mark width. An additional 16 cut marks walls were imaged for striation marks using scanning electron microscopy with results suggesting that this approach might not be useful for knife mark analysis. Results also indicated that observer judgements of cut mark shape were more consistent when rated from micro-CT images than light microscopy images. The potential to combine micro-CT data, medical grade CT data and photographs to develop highly realistic virtual models for visualisation and 3D printing is also demonstrated. This is the first study to statistically explore simulated real-world knife marks imaged by micro-CT to demonstrate the potential of quantitative approaches in knife mark analysis. Findings and methods presented in this study are relevant to both forensic toolmark researchers as well as practitioners. Limitations of the experimental methodologies and imaging techniques are discussed, and further work is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
Jacob, Soosan; Agarwal, Amar; Mazzotta, Cosimo; Agarwal, Athiya; Raj, John Michael
2017-04-01
Small-incision lenticule extraction may be associated with complications such as partial lenticular dissection, torn lenticule, lenticular adherence to cap, torn cap, and sub-cap epithelial ingrowth, some of which are more likely to occur during low-myopia corrections. We describe sequential segmental terminal lenticular side-cut dissection to facilitate minimally traumatic and smooth lenticular extraction. Anterior lamellar dissection is followed by central posterior lamellar dissection, leaving a thin peripheral rim and avoiding the lenticular side cut. This is followed by sequential segmental dissection of the lenticular side cut in a manner that fixates the lenticule and provides sufficient resistance for smooth and complete dissection of the posterior lamellar cut without undesired movements of the lenticule. The technique is advantageous in thin lenticules, where the risk for complications is high, but can also be used in thick lenticular dissection using wider sweeps to separate the lenticular side cut sequentially. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Norcahyo, Rachmadi; Soepangkat, Bobby O. P.
2017-06-01
A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.
Exploring JLA supernova data with improved flux-averaging technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuang; Wen, Sixiang; Li, Miao, E-mail: wangshuang@mail.sysu.edu.cn, E-mail: wensx@mail2.sysu.edu.cn, E-mail: limiao9@mail.sysu.edu.cn
2017-03-01
In this work, we explore the cosmological consequences of the ''Joint Light-curve Analysis'' (JLA) supernova (SN) data by using an improved flux-averaging (FA) technique, in which only the type Ia supernovae (SNe Ia) at high redshift are flux-averaged. Adopting the criterion of figure of Merit (FoM) and considering six dark energy (DE) parameterizations, we search the best FA recipe that gives the tightest DE constraints in the ( z {sub cut}, Δ z ) plane, where z {sub cut} and Δ z are redshift cut-off and redshift interval of FA, respectively. Then, based on the best FA recipe obtained, wemore » discuss the impacts of varying z {sub cut} and varying Δ z , revisit the evolution of SN color luminosity parameter β, and study the effects of adopting different FA recipe on parameter estimation. We find that: (1) The best FA recipe is ( z {sub cut} = 0.6, Δ z =0.06), which is insensitive to a specific DE parameterization. (2) Flux-averaging JLA samples at z {sub cut} ≥ 0.4 will yield tighter DE constraints than the case without using FA. (3) Using FA can significantly reduce the redshift-evolution of β. (4) The best FA recipe favors a larger fractional matter density Ω {sub m} . In summary, we present an alternative method of dealing with JLA data, which can reduce the systematic uncertainties of SNe Ia and give the tighter DE constraints at the same time. Our method will be useful in the use of SNe Ia data for precision cosmology.« less
The male beard hair and facial skin - challenges for shaving.
Maurer, M; Rietzler, M; Burghardt, R; Siebenhaar, F
2016-06-01
The challenge of shaving is to cut the beard hair as closely as possible to the skin without unwanted effects on the skin. To achieve this requires the understanding of beard hair and male facial skin biology as both, the beard hair and the male facial skin, contribute to the difficulties in obtaining an effective shave without shaving-induced skin irritation. Little information is available on the biology of beard hairs and beard hair follicles. We know that, in beard hairs, the density, thickness, stiffness, as well as the rates of elliptical shape and low emerging angle, are high and highly heterogeneous. All of this makes it challenging to cut it, and shaving techniques commonly employed to overcome these challenges include shaving with increased pressure and multiple stroke shaving, which increase the probability and extent of shaving-induced skin irritation. Several features of male facial skin pose problems to a perfect shave. The male facial skin is heterogeneous in morphology and roughness, and male skin has a tendency to heal slower and to develop hyperinflammatory pigmentation. In addition, many males exhibit sensitive skin, with the face most often affected. Finally, the hair follicle is a sensory organ, and the perifollicular skin is highly responsive to external signals including mechanical and thermal stimulation. Perifollicular skin is rich in vasculature, innervation and cells of the innate and adaptive immune system. This makes perifollicular skin a highly responsive and inflammatory system, especially in individuals with sensitive skin. Activation of this system, by shaving, can result in shaving-induced skin irritation. Techniques commonly employed to avoid shaving-induced skin irritation include shaving with less pressure, pre- and post-shave skin treatment and to stop shaving altogether. Recent advances in shaving technology have addressed some but not all of these issues. A better understanding of beard hairs, beard hair follicles and male facial skin is needed to develop novel and better approaches to overcome the challenge of shaving. This article covers what is known about the physical properties of beard hairs and skin and why those present a challenge for blade and electric shaving, respectively. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Kanavi, Mozhgan Rezaei; Javadi, Mohammad Ali; Javadi, Fatemeh; Chamani, Tahereh
2014-09-01
To describe the technique and the results of the preparation of pre-cut corneas for Descemet's stripping automated endothelial keratoplasty (DSAEK) during a 3-year period at the Central Eye Bank of Iran (CEBI). The method of preparation of pre-cut corneas from donated whole globes at the CEBI is described and the frequency and percentage of pre-cut corneas prepared for DSAEK, between April 2009 and March 2012, are specified. Moreover, post-operative reports are reviewed for any complaints about using pre-cut tissues for DSAEK. Out of the 1,518 donated whole globes appropriate for DSAEK, 1,478 (97.4 %) pre-cut corneas were successfully prepared. The method of preparation failed in 40 (2.6 %) cases. Based on the eye bank post-operative reports, thickness of pre-cut tissues for DSAEK was deemed unacceptable in only 6 (0.4 %) cases prior to surgery; five of these were too thick and one was too thin. Preparation of pre-cut corneas, for DSAEK from donated whole globes, in the CEBI is a safe and easy method, with very good preservation of endothelial cells after the preparation of the pre-cut corneas and reduced risks from corneal manipulation.
NASA Astrophysics Data System (ADS)
Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.
2016-09-01
Cutting fluid application plays a significant role in the manufacturing industries that acts as a coolant as well as a lubricant. The conventional flood cooling application of cutting fluids not only increases the production cost on account of the expenses involved in procurement, storage and disposal but also creates serious environmental and health hazards. In order to overcome these negative effects, techniques like Minimum quantity lubrication (MQL) and Minimal Cutting fluid application (MCFA) have increasingly found their way into the area of metal cutting and have already been established as an alternative to conventional wet machining. This paper investigates the effect of minimal Cutting fluid application (MCFA) which involves application of high velocity pulsing jet of proprietary cutting fluids at the contact zones using a special fluid application system. During hard turning of oil hardened non shrinkable steel (OHNS) on cutting temperature and tool wear and to compare the performance with Minimum quantity lubrication (MQL) assisted hard turning in which cutting fluid is carried in a high velocity stream of air. An attempt was also made to compare the performance during Turning with MCFA and MQL application with conventional wet and dry turning by analysing the tool wear pattern using SEM images.
Long gap esophageal atresia: lengthening technique and primary anastomosis.
Hadidi, Ahmed T; Hosie, Stuart; Waag, Karl-Ludwig
2007-10-01
The treatment of long gap esophageal atresia remains a major surgical challenge. The authors describe a modification of a lengthening technique based on tissue expansion to avoid sutures cutting through the esophagus. Between January 2004 and August 2006, 4 patients did not respond to stretching, and underwent this modified esophageal lengthening technique using silastic tubes. RESULTS AND FOLLOW-UP: All infants recovered and have an intact esophagus. All infants developed gastroesophageal reflux. Thal antireflux procedure was performed in the first infant. The other 3 patients were managed conservatively. Follow-up ranged between 6 and 34 months. The tissue expansion principle can be successfully applied in the esophagus through external traction. Silastic tube fixation at esophageal ends may help to apply even traction and avoid sutures cutting through the esophageal tissue.
Fluid intake rates in ants correlate with their feeding habits.
Paul, J; Roces, F
2003-04-01
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.
Wang, Dongyao; He, Xiaodong; Xu, Zhonghai; Jiao, Weicheng; Yang, Fan; Jiang, Long; Li, Linlin; Liu, Wenbo; Wang, Rongguo
2017-02-20
Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP) has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM) was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin's criteria a numerical model was further proposed in terms of the finite element method (FEM). A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.
Wang, Dongyao; He, Xiaodong; Xu, Zhonghai; Jiao, Weicheng; Yang, Fan; Jiang, Long; Li, Linlin; Liu, Wenbo; Wang, Rongguo
2017-01-01
Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP) has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM) was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin’s criteria a numerical model was further proposed in terms of the finite element method (FEM). A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP. PMID:28772565
ERIC Educational Resources Information Center
Upjohn (W.E.) Inst. for Employment Research, Kalamazoo, MI.
This volume contains four papers presented at a 1982 conference sponsored by the National Council on Employment Policy. It begins with a brief policy statement warning that labor force and productivity data systems face deterioration because of budget cuts that have forced a decline in the quality and quantity of the published information and…
Nanofluid as coolant for grinding process: An overview
NASA Astrophysics Data System (ADS)
Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.
2018-04-01
This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.
Li, Chen; Habler, Gerlinde; Baldwin, Lisa C; Abart, Rainer
2018-01-01
Focused ion beam (FIB) sample preparation technique in plan-view geometry allows direct correlations of the atomic structure study via transmission electron microscopy with micrometer-scale property measurements. However, one main technical difficulty is that a large amount of material must be removed underneath the specimen. Furthermore, directly monitoring the milling process is difficult unless very large material volumes surrounding the TEM specimen site are removed. In this paper, a new cutting geometry is introduced for FIB lift-out sample preparation with plan-view geometry. Firstly, an "isolated" cuboid shaped specimen is cut out, leaving a "bridge" connecting it with the bulk material. Subsequently the two long sides of the "isolated" cuboid are wedged, forming a triangular prism shape. A micromanipulator needle is used for in-situ transfer of the specimen to a FIB TEM grid, which has been mounted parallel with the specimen surface using a simple custom-made sample slit. Finally, the grid is transferred to the standard FIB grid holder for final thinning with standard procedures. This new cutting geometry provides clear viewing angles for monitoring the milling process, which solves the difficulty of judging whether the specimen has been entirely detached from the bulk material, with the least possible damage to the surrounding materials. With an improved success rate and efficiency, this plan-view FIB lift-out specimen preparation technique should have a wide application for material science. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Evaluating the effects of pinyon thinning treatments at a wildland urban interface
J. R. Matchett; Matthew Brooks; Anne Halford; Dale Johnson; Helen Smith
2010-01-01
This study evaluated the short-term effects of thinning methods for pinyon pine woodlands at two sites in the southwestern Great Basin. Both cut/pile/burn and mastication treatments were equally effective at reducing the target fuels which were mature, live pinyon trees. Application costs though differed substantially, with the cut/pile/burn technique being less...
Robert R. Alexander; Carleton B. Edminster
1977-01-01
Topics discussed include: (1) cutting methods, (2) stand structure goals, which involve choosing a residual stocking level, selecting a maximum tree size, and establishing a diameter distribution using the "q" technique, and (3) harvesting and removal of trees. Examples illustrate how to determine realistic stand structures for the initial entry for...
Sampling tree tops by helicopter...special pole pruner cuts branchlets
John F. Wear; Robert G. Winterfeld
1966-01-01
A new technique for sampling tops of tall Douglas-fir trees by using a special pole pruner from a helicopter has been developed and field-tested. Thee pole pruner cuts and holds a branchlet. Foliage samples collected will be compared by spectral analysis to show the type of aerial imagery that best differentiates healthy trees from those attacked by root rot.
Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh
NASA Astrophysics Data System (ADS)
Wenhua, Wang; Yanying, Wang
2010-05-01
This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-07-13
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boing, L.E.; Henley, D.R.; Manion, W.J.
1989-12-01
Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document inmore » their evaluation process. 73 refs., 26 figs., 69 tabs.« less
NASA Technical Reports Server (NTRS)
Aharonyan, P.
1980-01-01
Modifications to a 16 inch STC automated saw included: a programmable feed system; a crystal rotating system; and a STC dynatrack blade boring and control system. By controlling the plating operation and by grinding the cutting edge, 16 inch I.D. blades were produced with a cutting edge thickness of .22 mm. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge I.D. slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.
NASA Technical Reports Server (NTRS)
Feagans, P. L.
1972-01-01
Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.
Paraffin tissue microarrays constructed with a cutting board and cutting board arrayer.
Vogel, Ulrich Felix
2010-05-01
Paraffin tissue microarrays (PTMAs) are blocks of paraffin containing up to 1300 paraffin tissue core biopsies (PTCBs). Normally, these PTCBs are punched from routine paraffin tissue blocks, which contain tissues of differing thicknesses. Therefore, the PTCBs are of different lengths. In consequence, the sections of the deeper portions of the PTMA do not contain all of the desired PTCBs. To overcome this drawback, cutting boards were constructed from panels of plastic with a thickness of 4 mm. Holes were drilled into the plastic and filled completely with at least one PTCB per hole. After being trimmed to a uniform length of 4 mm, these PTCBs were pushed from the cutting board into corresponding holes in a recipient block by means of a plate with steel pins. Up to 1000 sections per PTMA were cut without any significant loss of PTCBs, thereby increasing the efficacy of the PTMA technique.
Using cognitive task analysis to identify critical decisions in the laparoscopic environment.
Craig, Curtis; Klein, Martina I; Griswold, John; Gaitonde, Krishnanath; McGill, Thomas; Halldorsson, Ari
2012-12-01
The aim of this study was to identify the critical decisions surgeons need to make regarding laparoscopic surgery, the information these decisions are based on, the strategies employed by surgeons to reach their objectives, and the difficulties experienced by novices. Laparoscopic training focuses on the development of technical skills. However, successful surgical outcomes are also dependent on appropriate decisions made during surgery, which are influenced by critical cues and the use of appropriate strategies. Novices might not be as adept at cue detection and strategy use. Participants were eight attending surgeons. The authors employed task-analytic techniques to identify critical decisions inherent in laparoscopy and the cues, strategies, and novice traps associated with these decisions. The authors used decision requirements tables to organize the data into the key decisions made during the preoperative, operative, and postoperative phases as well as the cues, strategies, and novice traps associated with these decisions. Key decisions identified for the preoperative phase included but were not limited to the decision of performing a laparoscopic versus open surgery, necessity to review the literature, practicing the procedure, and trocar placement. Some key decisions identified for the operative phase included converting to open surgery, performing angiograms, cutting tissue or organs, and reevaluation of the approach. Only one key decision was identified for the postoperative phrase: whether the surgeon's technique needs to be evaluated and revised. The laparoscopic environment requires complex decision making, and novices are prone to errors in their decisions. The information elicited in this study is applicable to laparoscopic training.
The Constant Intensity Cut Method applied to the KASCADE-Grande muon data
NASA Astrophysics Data System (ADS)
Arteaga-Velázquez, J. C.; Apel, W. D.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2009-12-01
The constant intensity cut method is a very useful tool to reconstruct the cosmic ray energy spectrum in order to combine or compare extensive air shower data measured for different attenuation depths independently of the MC model. In this contribution the method is used to explore the muon data of the KASCADE-Grande experiment. In particular, with this technique, the measured muon number spectra for different zenith angle ranges are compared and summed up to obtain a single muon spectrum for the measured showers. Preliminary results are presented, along with estimations of the systematic uncertainties associated with the analysis technique.
Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza
2017-01-01
In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.
Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis
2008-01-01
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.
Ortiz-Flores, Andrés E; Santacruz, Elisa; Jiménez-Mendiguchia, Lucía; García-Cano, Ana; Nattero-Chávez, Lia; Escobar-Morreale, Héctor F; Luque-Ramírez, Manuel
2018-05-05
Aiming to validate the use of a single poststimulus sampling protocol for cosyntropin test short standard high-dose test (SST) in our institution, our primary objectives were (1) to determine the concordance between 30 and 60 min serum cortisol (SC) measurements during SST; and (2) to evaluate the diagnostic agreement between both sampling times when using classic or assay-specific and sex-specific SC cut-off values. The secondary objectives included (1) estimating the specificity and positive predictive value of 30 and 60 min sampling times while considering the suspected origin of adrenal insufficiency (AI); and (2) obtaining assay-specific cut-off values for SC after SST in a group of subjects with normal hypothalamic-pituitary-adrenal (HPA) axis. This is a retrospective chart review study conducted at a Spanish academic hospital from 2011 to 2015. Two groups were evaluated: (1) a main study group including 370 patients in whom SC was measured at 30 and 60 min during SST; and (2) a confirmative group that included 150 women presenting with a normal HPA axis in whom SST was conducted to rule out late-onset congenital adrenal hyperplasia. Diagnostic agreement between both sampling times was assessed by considering both classic (500 nmol/L) and assay-specific SC cut-off concentrations. Diagnostic agreement between both sampling times was greater when applying sex-specific and assay-specific cut-off values instead of the classic cut-off values. For suspected primary AI, 30 min SC determination was enough to establish a diagnosis in over 95% of cases, without missing any necessary treatment. When central AI is suspected, 60 min SC measurement was more specific, establishing a diagnosis in over 97% of cases. Sex-specific and assay-specific SC cut-off values improve the diagnostic accuracy of SST. For primary disease, a subnormal SC response at 30 min is a reliable marker of adrenal dysfunction. On the contrary, when central AI is suspected, 60 min SC measurement improves the diagnostic accuracy of the test. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.
2018-01-01
A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.
Lathe-cut hydrophilic contact lenses: report of 100 clinical cases.
Espy, J W
1978-10-01
In a review of the literature, it became apparent that there were very few articles describing the advantages, as well as the fitting techniques, of lathe-cut hydrophilic contact lenses. Few practitioners, including those who fit other types of hydrophilic lenses and hard lenses, have had any experience with this lens, and considerable interest has been generated by fragmentary reports of good results. This paper describes in detail the geometry of the first lathe-cut hydrophilic lens approved by the Federal Drug Administration, the fitting methods utilizing trial lenses, and the results of 100 patients successfully fitted.
NASA Astrophysics Data System (ADS)
Dolipski, Marian; Cheluszka, Piotr; Sobota, Piotr; Remiorz, Eryk
2017-03-01
The key working process carried out by roadheaders is rock mining. For this reason, the mathematical modelling of the mining process is underlying the prediction of a dynamic load on the main components of a roadheader, the prediction of power demand for rock cutting with given properties or the prediction of energy consumption of this process. The theoretical and experimental investigations conducted point out - especially in relation to the technical parameters of roadheaders used these days in underground mining and their operating conditions - that the mathematical models of the process employed to date have many limitations, and in many cases the results obtained using such models deviate largely from the reality. This is due to the fact that certain factors strongly influencing cutting process progress have not been considered at the modelling stage, or have been approached in an oversimplified fashion. The article presents a new model of a rock cutting process using conical picks of cutting heads of boom-type roadheaders. An important novelty with respect to the models applied to date is, firstly, that the actual shape of cuts has been modelled with such shape resulting from the geometry of the currently used conical picks, and, secondly, variations in the depth of cuts in the cutting path of individual picks have been considered with such variations resulting from the picks' kinematics during the advancement of transverse cutting heads parallel to the floor surface. The work presents examples of simulation results for mining with a roadheader's transverse head equipped with 80 conical picks and compares them with the outcomes obtained using the existing model.
Richardson, Claire; Rutherford, Shannon; Agranovski, Igor
2018-06-01
Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM 2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.
Cunnane, E M; Barrett, H E; Kavanagh, E G; Mongrain, R; Walsh, M T
2016-02-01
The toughness of femoral atherosclerotic tissue is of pivotal importance to understanding the mechanism of luminal expansion during cutting balloon angioplasty (CBA) in the peripheral vessels. Furthermore, the ability to relate this parameter to plaque composition, pathological inclusions and location within the femoral vessels would allow for the improvement of existing CBA technology and for the stratification of patient treatment based on the predicted fracture response of the plaque tissue to CBA. Such information may lead to a reduction in clinically observed complications, an improvement in trial results and an increased adoption of the CBA technique to reduce vessel trauma and further endovascular treatment uptake. This study characterises the toughness of atherosclerotic plaque extracted from the femoral arteries of ten patients using a lubricated guillotine cutting test to determine the critical energy release rate. This information is related to the location that the plaque section was removed from within the femoral vessels and the composition of the plaque tissue, determined using Fourier Transform InfraRed spectroscopy, to establish the influence of location and composition on the toughness of the plaque tissue. Scanning electron microscopy (SEM) is employed to examine the fracture surfaces of the sections to determine the contribution of tissue morphology to toughness. Toughness results exhibit large inter and intra patient and location variance with values ranging far above and below the toughness of healthy porcine arterial tissue (Range: 1330-3035 for location and 140-4560J/m(2) for patients). No significant difference in mean toughness is observed between patients or location. However, the composition parameter representing the calcified tissue content of the plaque correlates significantly with sample toughness (r=0.949, p<0.001). SEM reveals the presence of large calcified regions in the toughest sections that are absent from the least tough sections. Regression analysis highlights the potential of employing the calcified tissue content of the plaque as a preoperative tool for predicting the fracture response of a target lesion to CBA (R(2)=0.885, p<0.001). This study addresses a gap in current knowledge regarding the influence of plaque location, composition and morphology on the toughness of human femoral plaque tissue. Such information is of great importance to the continued improvement of endovascular treatments, particularly cutting balloon angioplasty (CBA), which require experimentally derived data as a framework for assessing clinical cases and advancing medical devices. This study identifies that femoral plaque tissue exhibits large inter and intra patient and location variance regarding tissue toughness. Increasing calcified plaque content is demonstrated to correlate significantly with increasing toughness. This highlights the potential for predicting target lesion toughness which may lead to an increased adoption of the CBA technique and also further the uptake of endovascular treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Side Flow Effect on Surface Generation in Nano Cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-05-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
The Relationship Between Female Genital Cutting and Obstetric Fistulas
Browning, Andrew; Allsworth, Jenifer E.; Wall, L. Lewis
2013-01-01
Objective To evaluate any association between female genital cutting and vesicovaginal fistula formation during obstructed labor. Methods A comparison was made between 255 fistula patients who had undergone Type I or Type II female genital cutting and 237 patients who had not undergone such cutting. Women were operated on at the Barhirdar Hamlin Fistula Centre in Ethiopia. Data points used in the analysis included age, parity, length of labor, labor outcome (stillbirth or not), type of fistula, site, size and scarring of fistula, outcomes of surgery (fistula closed, persistent incontinence with closed fistula, urinary retention with overflow, site, size, and scarring of any rectovaginal fistula and operation outcomes, as well as specific methods employed during the operation (utilization of a graft or not, application of a pubococcygeal or similar autologous sling, vaginoplasty, catheterization of ureters, and flap reconstruction of vagina). Primary outcomes were site of genitourinary fistula and persistent incontinence despite successful fistula closure. Results The only statistically significant differences between the two groups (p = 0.05) was a slightly greater need to place ureteral catheters at the time of surgery in women who had not undergone a genital cutting operation, and slightly higher use of a pubococcygeal sling at the time of fistula repair and a slightly longer length of labor (by 0.3 of a day) in women who had undergone genital cutting. Conclusion Type I and Type II female genital cutting are not independent causative factors in the development of obstetric fistulas from obstructed labor. PMID:20177289
Hybrid approach for robust diagnostics of cutting tools
NASA Astrophysics Data System (ADS)
Ramamurthi, K.; Hough, C. L., Jr.
1994-03-01
A new multisensor based hybrid technique has been developed for robust diagnosis of cutting tools. The technique combines the concepts of pattern classification and real-time knowledge based systems (RTKBS) and draws upon their strengths; learning facility in the case of pattern classification and a higher level of reasoning in the case of RTKBS. It eliminates some of their major drawbacks: false alarms or delayed/lack of diagnosis in case of pattern classification and tedious knowledge base generation in case of RTKBS. It utilizes a dynamic distance classifier, developed upon a new separability criterion and a new definition of robust diagnosis for achieving these benefits. The promise of this technique has been proven concretely through an on-line diagnosis of drill wear. Its suitability for practical implementation is substantiated by the use of practical, inexpensive, machine-mounted sensors and low-cost delivery systems.
Drill hole logging with infrared spectroscopy
Calvin, W.M.; Solum, J.G.
2005-01-01
Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.
NASA Astrophysics Data System (ADS)
Yngvesson, Sigfrid K.; St. Peter, Benjamin; Siqueira, Paul; Kelly, Patrick; Glick, Stephen; Karellas, Andrew; Khan, Ashraf
2012-03-01
In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm x 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.
NASA Astrophysics Data System (ADS)
Sun, Huafei; Darmofal, David L.
2014-12-01
In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.
Mecke, H; Schünke, M; Schnaidt, S; Freys, I; Semm, K
1991-01-01
At the University Women's Clinic in Kiel, the YAG contact laser has been used as a cutting instrument in pelviscopic operations since 1987. When the laser cuts, it produces only a scant amount of mechanical trauma. The determining factor is the amount of thermal damage produced along the wound margins and in direct neighboring tissue. The extent of the tissue change seen in the uterus and liver parenchyma of rats and the striated muscle of rabbits after application of the YAG contact laser was demonstrated using various staining techniques and stains. Liver parenchyma proved to be the most sensitive to thermal damage. In the uterine horn, enzyme-histochemical ATPase and alkaline phosphatase demonstrations showed a significantly wider zone of thermal damage after laser incision than did hematoxylin-eosin and Goldner staining techniques. A good understanding of the extent of thermal damage is essential for atraumatic pelviscopic operations using the YAG contact laser and also for the preventing of complications.
Endoscopic-assisted resection of peripheral osteoma using piezosurgery.
Ochiai, Shigeki; Kuroyanagi, Norio; Sakuma, Hidenori; Sakuma, Hidenobu; Miyachi, Hitoshi; Shimozato, Kazuo
2013-01-01
Endoscopic-assisted surgery has gained widespread popularity as a minimally invasive procedure, particularly in the field of maxillofacial surgery. Because the surgical field around the mandibular angle is extremely narrow, the surrounding tissues may get caught in sharp rotary cutting instruments. In piezosurgery, bone tissues are selectively cut. This technique has various applications because minimal damage is caused by the rotary cutting instruments when they briefly come in contact with soft tissues. We report the case of a 33-year-old man who underwent resection of an osteoma in the region of the mandibular angle region via an intraoral approach. During surgery, the complete surgical field was within the view of the endoscope, thereby enabling the surgeon to easily resection the osteoma with the piezosurgery device. Considering that piezosurgery limits the extent of surgical invasion, this is an excellent low-risk technique that can be used in the field of maxillofacial surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect
NASA Astrophysics Data System (ADS)
Chen, Jian; Wu, Zhouling
2013-07-01
Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico
2016-10-01
The Additive Manufacturing (AM) techniques are particularly appealing especially for titanium aerospace and biomedical components because they permit to achieve a strong reduction of the buy-to-fly ratio. However, finishing machining operations are often necessary to reduce the uneven surface roughness and geometrics because of local missing accuracy. This work shows the influence of the cutting parameters, cutting speed and feed rate, on the cutting forces as well as on the thermal field observed in the cutting zone, during a turning operation carried out on bars made of Ti6Al4V obtained by the AM process called Direct Metal Laser Sintering (DMLS). Moreover, the sub-surface microstructure alterations due to the process are also showed and commented.
The use of piezosurgery in cranial surgery in children.
Ramieri, Valerio; Saponaro, Gianmarco; Lenzi, Jacopo; Caporlingua, Federico; Polimeni, Antonella; Silvestri, Alessandro; Pizzuti, Antonio; Roggini, Mario; Tarani, Luigi; Papoff, Paola; Giancotti, Antonella; Castori, Marco; Manganaro, Lucia; Cascone, Piero; Piero, Cascone
2015-05-01
Piezosurgery is an alternative surgical technique, now widely tested, that uses ultrasounds for bone cutting. This device uses ultrasounds to section hard tissues without harming surrounding soft tissues. The authors analyzed their experience in craniomaxillofacial procedures with piezosurgery. A comparison between operation timing and complication rates between piezosurgery and traditional cutting instruments has been performed. A total of 27 patients were examined (15 females and 12 males; average age, of 5.5 months) affected by craniosynostosis. The aim of this study was to analyze the advantages and disadvantages of piezosurgery in pediatric craniofacial procedures. Piezoelectric device in this study has shown being a valid instrument for bone cutting in accurate procedures, because it allows performing a more precise and safer cutting, without the risk of harming surrounding tissues.
Pappas, Evangelos; Nightingale, Elizabeth J; Simic, Milena; Ford, Kevin R; Hewett, Timothy E; Myer, Gregory D
2015-05-01
Some injury prevention programmes aim to reduce the risk of ACL rupture. Although the most common athletic task leading to ACL rupture is cutting, there is currently no consensus on how injury prevention programmes influence cutting task biomechanics. To systematically review and synthesise the scientific literature regarding the influence of injury prevention programme exercises on cutting task biomechanics. The three largest databases (Medline, EMBASE and CINAHL) were searched for studies that investigated the effect of injury prevention programmes on cutting task biomechanics. When possible meta-analyses were performed. Seven studies met the inclusion criteria. Across all studies, a total of 100 participants received exercises that are part of ACL injury prevention programmes and 76 participants served in control groups. Most studies evaluated variables associated with the quadriceps dominance theory. The meta-analysis revealed decreased lateral hamstrings electromyography activity (p ≤ 0.05) while single studies revealed decreased quadriceps and increased medial hamstrings activity and decreased peak knee flexion moment. Findings from single studies reported that ACL injury prevention exercises reduce neuromuscular deficits (knee valgus moment, lateral trunk leaning) associated with the ligament and trunk dominance theories, respectively. The programmes we analysed appear most effective when they emphasise individualised biomechanical technique correction and target postpubertal women. The exercises used in injury prevention programmes have the potential to improve cutting task biomechanics by ameliorating neuromuscular deficits linked to ACL rupture, especially when they emphasise individualised biomechanical technique correction and target postpubertal female athletes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.
2018-01-01
Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.
Root dentine and endodontic instrumentation: cutting edge microscopic imaging
2016-01-01
Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation—by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments. PMID:27274802
Root dentine and endodontic instrumentation: cutting edge microscopic imaging.
Atmeh, Amre R; Watson, Timothy F
2016-06-06
Cutting of the dental hard tissues is an integral part of restorative dentistry. Cutting of the root dentine is also needed in preparation prior to endodontic treatment, with significant commercial investment for the development of flexible cutting instruments based around nickel titanium (NiTi) alloys. This paper describes the evolution of endodontic cutting instruments, both in materials used, e.g. the transition from stainless steel to NiTi, and the design of the actual instruments themselves and their method of activation-by hand or motor driven. We have been examining tooth-cutting interactions microscopically for over 25 years using a variety of microscopic techniques; in particular, video-rate confocal microscopy. This has given a unique insight into how many of the procedures that we take for granted are achieved in clinical practice, by showing microscopic video images of the cutting as it occurs within the tooth. This technology has now been extended to allow imaging of the endodontic instrument and the root canal wall for the first time. We are able to image dentine distortion and crack propagation during endodontic filing of the root canal space. We are also able to visualize the often claimed, but seldom seen action of contemporary endodontic instruments.
High speed machinability of the aerospace alloy AA7075 T6 under different cooling conditions
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Rinaldi, Sergio; Suarez, Asier Gurruchaga; Arrazola, Pedro J.; Umbrello, Domenico
2018-05-01
This paper describes the results of an experimental investigation aimed to st udy the machinability of AA7075 T6 (160 HV) for aerospace industry at high cutting speeds. The paper investigates the effects of different lubri-cooling strategies (cryogenic, M QL and dry) during high speed turning process on cutting forces, tool wear, chip morphology and cutting temperatures. The cutting speeds selected were 1000m/min, 1250m/min and 1500 m/min, while the feed rate values used were 0.1mm/rev and 0.3 mm/rev. The results of cryogenic and M QL application is compared with dry application. It was found that the cryogenic and M QL lubri-cooling techniques could represent a functional alternative to the common dry cutting application in order to implement a more effect ive high speed turning process. Higher cuttingparameters would be able to increase the productivity and reduce the production costs. The effects of the cutting parameters and on the variables object of study were investigated and the role of the different lubri-cooling conditions was assessed.
Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia
2012-01-01
The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980
Flow Visualization in Supersonic Turbulent Boundary Layers.
NASA Astrophysics Data System (ADS)
Smith, Michael Wayne
This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high-speed movies were made of the fog under general illumination, thus providing information about the streamwise evolution of the structures seen in the planar stills. Rayleigh scattering from a laser sheet was used to create instantaneous density cross-sections in the M = 2.5 boundary layer. The Rayleigh scattering experiment represents the first measurement of the instantaneous 2-D field of an intrinsic fluid property in any boundary layer. Imaged by an intensified UV camera, scattering from the Argon-Fluoride laser (193 nm) revealed density structures with sharp interfaces between high and low-density fluid. These pictures were also used to generated quantitative turbulence information. Density pdf profiles, intermittency values, density correlations, and structure shape data were derived with standard digital image-processing techniques.
Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Zaunbracher, K.
2011-07-01
Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finishedmore » cell performance.« less
NASA Astrophysics Data System (ADS)
Gautam, Girish Dutt; Pandey, Arun Kumar
2018-03-01
Kevlar is the most popular aramid fiber and most commonly used in different technologically advanced industries for various applications. But the precise cutting of Kevlar composite laminates is a difficult task. The conventional cutting methods face various defects such as delamination, burr formation, fiber pullout with poor surface quality and their mechanical performance is greatly affected by these defects. The laser beam machining may be an alternative of the conventional cutting processes due to its non-contact nature, requirement of low specific energy with higher production rate. But this process also faces some problems that may be minimized by operating the machine at optimum parameters levels. This research paper examines the effective utilization of the Nd:YAG laser cutting system on difficult-to-cut Kevlar-29 composite laminates. The objective of the proposed work is to find the optimum process parameters settings for getting the minimum kerf deviations at both sides. The experiments have been conducted on Kevlar-29 composite laminates having thickness 1.25 mm by using Box-Benkhen design with two center points. The experimental data have been used for the optimization by using the proposed methodology. For the optimization, Teaching learning Algorithm based approach has been employed to obtain the minimum kerf deviation at bottom and top sides. A self coded Matlab program has been developed by using the proposed methodology and this program has been used for the optimization. Finally, the confirmation tests have been performed to compare the experimental and optimum results obtained by the proposed methodology. The comparison results show that the machining performance in the laser beam cutting process has been remarkably improved through proposed approach. Finally, the influence of different laser cutting parameters such as lamp current, pulse frequency, pulse width, compressed air pressure and cutting speed on top kerf deviation and bottom kerf deviation during the Nd:YAG laser cutting of Kevlar-29 laminates have been discussed.
Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda
2014-01-01
In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467
Interaction Structures for Narrow-Band Millimeter-Wave Communications TWTs.
1981-04-01
comb would be cut from a single piece of copper, probably by a reliable but inexpensive technique such as electroerosion or "chemical milling". All...dimensional. These features would facilitate fabrication by chemical (photo-lithographic) or laser milling as well as by electroerosion with traveling...c, d) has also been implemented since this design should be more robust as well as compatible with electroerosion cutting using a traveling-wire
Koszowski, Rafał; Morawiec, Tadeusz; Bubiłek-Bogacz, Anna
2013-01-01
Autotransplantation is a well-known method used in oral surgery. However, risk of failure, most commonly resulting from root resorption of the transplanted tooth or ankylosis, is quite high. Piezosurgery with specific device tip vibration frequencies enables selective tissue cutting, and therefore, tooth buds or teeth can easily be removed from bones with little injury to periodontal fibers or bud follicles.
Grading technologies for the manufacture of innovative cutting blades
NASA Astrophysics Data System (ADS)
Rostek, Tim; Homberg, Werner
2018-05-01
Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.
Factors affecting microcuttings of Stevia using a mist-chamber propagation box.
Osman, Mohamad; Samsudin, Nur Syamimi; Faruq, Golam; Nezhadahmadi, Arash
2013-01-01
Stevia rebaudiana Bertoni is a member of Compositae family. Stevia plant has zero calorie content and its leaves are estimated to be 300 times sweeter than sugar. This plant is believed to be the most ideal substitute for sugar and important to assist in medicinal value especially for diabetic patients. In this study, microcutting techniques using a mist-chamber propagation box were used as it was beneficial for propagation of Stevia and gave genetic uniformity to the plant. The effects of different treatments on root stimulation of Stevia in microcuttings technique were evaluated. Treatments studied were different sizes of shoot cuttings, plant growth regulators, lights, and shades. Data logger was used to record the mean value of humidity (>90% RH), light intensity (673-2045 lx), and temperature (28.6-30.1°C) inside the mist-chamber propagation box. From analysis of variance, there were significant differences between varieties and treatments in parameters studied (P < 0.05). For the size of shoot cuttings treatment, 6 nodes cuttings were observed to increase root number. As compared to control, shoot cuttings treated with indole butyric acid (IBA) had better performance regarding root length. Yellow light and 50% shade treatments showed higher root and leaf number and these conditions can be considered as crucial for potential propagation of Stevia.
Petit, Yvan; Cloutier, Luc P; Duke, Kajsa; Laflamme, G Yves
2012-04-01
Greater trochanter (GT) stabilization techniques following a fracture or an osteotomy are still showing high levels of postoperative complications. Understanding the effect of femoral neck cut placement, cable tension and muscles forces on GT fragment displacements could help surgeons optimize their techniques. A 3D finite element model has been developed to evaluate, through a statistical experimental design, the impact of the above variables on the GT fragment gap and sliding displacements. Muscles forces were simulating typical daily activities. Stresses were also investigated. The femoral neck cut placement had the most significant effect on the fragment displacement. Lowering it by 5 mm increased the gap and sliding fragment displacements by 288 and 128 %, respectively. Excessive cable tightening provided no significant reduction in fragment displacement. Muscle activities increased the gap and the sliding displacements for all muscle configurations. The maximum total displacement of 0.41 mm was present with a 10 mm femoral neck cut, a cable tension of 178 N, and stair climbing. Caution must be used not to over tighten the cables as the potential damage caused by the increased stress is more significant than any reduction in fragment displacement. Furthermore, preservation of the contact area is important for GT stabilization.
Cheng, Chin-Chi; Yang, Sen-Yeu; Lee, Dasheng
2014-01-01
This paper presents an integrated high temperature ultrasonic transducer (HTUT) on a sensor insert and its application for real-time diagnostics of the conventional hot embossing process to fabricate V-cut patterns. The sensor was directly deposited onto the sensor insert of the hot embossing mold by using a sol-gel spray technique. It could operate at temperatures higher than 400 °C and uses an ultrasonic pulse-echo technique. The ultrasonic velocity could indicate the three statuses of the hot embossing process and also evaluate the replication of V-cut patterns on a plastic plate under various processing conditions. The progression of the process, including mold closure, plastic plate softening, cooling and plate detachment inside the mold, was clearly observed using ultrasound. For an ultrasonic velocity range from 2197.4 to 2435.9 m/s, the height of the V-cut pattern decreased from 23.0 to 3.2 μm linearly, with a ratio of −0.078 μm/(m/s). The incompleteness of the replication of the V-cut patterns could be indirectly observed by the ultrasonic signals. This study demonstrates the effectiveness of the ultrasonic sensors and technology for diagnosing the replicating condition of microstructures during the conventional hot embossing process. PMID:25330051
An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming
Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia
2016-01-01
This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination. PMID:28773692
Legal Remedies for Contingent Faculty
ERIC Educational Resources Information Center
Manicone, Nicolas
2008-01-01
Almost thirty years ago, Justice William Brennan saw clearly that American higher education was coming under the same pressures to "cut costs and increase efficiencies" to which market forces were subjecting businesses. Since Justice Brennan's observation, employers generally have sought to maximize their "flexibility' by creating a…
Defoliation effects on pasture photosynthesis and respiration
USDA-ARS?s Scientific Manuscript database
Ecosystem C gain or loss from managed grasslands can depend on the type and intensity of management practices that are employed. However, limited information is available at the field scale on how the type of defoliation, specifically grazing vs. cutting, affects gross primary productivity (GPP) an...
Should We Limit the Number of Astronomy Students?
ERIC Educational Resources Information Center
Bachmann, Kurt T.; Boyce, Peter B.
1994-01-01
Presents two views about the future of astronomy. Explains that government budget cuts and an oversupply of young scientists have decimated the employment prospects. Encourages students to train for a wide variety of careers and to become entrepreneurs who bring technologies to the consumer. (DDR)
Positional reference system for ultraprecision machining
Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.
1982-01-01
A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.
Positional reference system for ultraprecision machining
Arnold, J.B.; Burleson, R.R.; Pardue, R.M.
1980-09-12
A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.
Wire electric-discharge machining and other fabrication techniques
NASA Technical Reports Server (NTRS)
Morgan, W. H.
1983-01-01
Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
This document is a transcript of an oversight hearing on the Job Training Partnership Act (JTPA). It is the first in a series designed by the House Subcommittee on Employment Opportunities, Committee on Education and Labor, to evaluate the program. In his introduction, the subcommittee chairman voiced his concern about proposed budget cuts in…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
This report of a hearing before the House Subcommittee on Employment concerns the implementation of the Job Training Partnership Act (JTPA). Witnesses addressed concerns about the program's allegedly unspent funds and the proposed funding cuts. Testimony was heard from William E. Brock, Secretary of Labor, and Raymond Flynn, Mayor of Boston,…
Luo, W; Chen, M; Chen, A; Dong, W; Hou, X; Pu, B
2015-04-01
To isolate lactic acid bacteria (LAB) from pao cai, a Chinese traditional fermented vegetable, with outstanding inhibitory activity against Salmonella inoculated on fresh-cut apple, using a modelling method. Four kinds of pao cai were selected. A total of 122 isolates exhibited typical LAB characteristics: Gram-positive and catalase negative, among which 104 (85·24%) colonies showed antibacterial activity against Salmonella by the well diffusion assay. Four colonies showing maximum antibacterial radius against Salmonella were selected to co-inoculate with Salmonella on fresh-cut apple and stored at 10°C, further identified as three strains of Lactobacillus plantarum and one strain of Lactobacillus brevis by 16s rRNA gene sequence analysis. The modified Gompertz model was employed to analyse the growth of the micro-organisms on apple wedges. Two of the four selected strains showed antagonistic activity against Salmonella on fresh-cut apple, one of which, RD1, exhibited best inhibitory activity (Salmonella were greatly inhibited when co-inoculated with RD1 at 10°C at 168 h). No deterioration in odour or appearance of the apple piece was observed by the triangle test when fresh-cut apple was inoculated with RD1. The mathematical modelling method is essential to select LAB with outstanding inhibitory activity against Salmonella associated with fresh-cut apple. LAB RD1 holds promise for the preservation of fresh-cut apple. This study provided a new method on fresh-cut product preservation. Besides, to make the LAB isolating procedure a more correct one, this study first added the mathematical modelling method to the isolating procedure. © 2014 The Society for Applied Microbiology.
Strategies for single-point diamond machining a large format germanium blazed immersion grating
NASA Astrophysics Data System (ADS)
Montesanti, R. C.; Little, S. L.; Kuzmenko, P. J.; Bixler, J. V.; Jackson, J. L.; Lown, J. G.; Priest, R. E.; Yoxall, B. E.
2016-07-01
A large format germanium immersion grating was flycut with a single-point diamond tool on the Precision Engineering Research Lathe (PERL) at the Lawrence Livermore National Laboratory (LLNL) in November - December 2015. The grating, referred to as 002u, has an area of 59 mm x 67 mm (along-groove and cross-groove directions), line pitch of 88 line/mm, and blaze angle of 32 degree. Based on total groove length, the 002u grating is five times larger than the previous largest grating (ZnSe) cut on PERL, and forty-five times larger than the previous largest germanium grating cut on PERL. The key risks associated with cutting the 002u grating were tool wear and keeping the PERL machine running uninterrupted in a stable machining environment. This paper presents the strategies employed to mitigate these risks, introduces pre-machining of the as-etched grating substrate to produce a smooth, flat, damage-free surface into which the grooves are cut, and reports on trade-offs that drove decisions and experimental results.
Acoustic emission analysis for the detection of appropriate cutting operations in honing processes
NASA Astrophysics Data System (ADS)
Buj-Corral, Irene; Álvarez-Flórez, Jesús; Domínguez-Fernández, Alejandro
2018-01-01
In the present paper, acoustic emission was studied in honing experiments obtained with different abrasive densities, 15, 30, 45 and 60. In addition, 2D and 3D roughness, material removal rate and tool wear were determined. In order to treat the sound signal emitted during the machining process, two methods of analysis were compared: Fast Fourier Transform (FFT) and Hilbert Huang Transform (HHT). When density 15 is used, the number of cutting grains is insufficient to provide correct cutting, while clogging appears with densities 45 and 60. The results were confirmed by means of treatment of the sound signal. In addition, a new parameter S was defined as the relationship between energy in low and high frequencies contained within the emitted sound. The selected density of 30 corresponds to S values between 0.1 and 1. Correct cutting operations in honing processes are dependent on the density of the abrasive employed. The density value to be used can be selected by means of measurement and analysis of acoustic emissions during the honing operation. Thus, honing processes can be monitored without needing to stop the process.
Optical+NIR Quasar Selection with the SDSS and UKIDSS
NASA Astrophysics Data System (ADS)
Mehta, Sajjan S.; Mahon, R. G.; Richards, G. T.; Hewett, P. C.
2010-01-01
We present the details of an optical+near-IR quasar selection technique, which utilizes near-IR data from the UKIDSS Large Area Survey and the optical data from the Sloan Digital Sky Survey in the SDSS's deep "Stripe 82" region, which covers over 200 deg2. Our selection methods primarily consist of isolating potential candidates in giK and gJK color space, in which there exists a significant separation of the stellar locus from the quasar locus. Additionally, we discuss secondary techniques such as comparison of catalog magnitudes with aperture photometry, analysis of SDSS and UKIDSS morphological type classifications, and flag cuts. Our primary color-cut selections include most quasars with redshifts below 3.4, significantly increasing the completeness both to dust reddened quasars and quasars with redshifts z 2.7 in the SDSS footprint. A simple color cut in the UKIDSS LAS Stripe 82 regions reveals 4200 quasar candidates down to K=18. These NIR selections have been used to contribute to the Baryon Oscillation Spectroscopic Survey (BOSS), which is one of the four surveys of the SDSS-III collaboration. We additionally intend to use our NIR techniques to perform an 8-dimensional optical+NIR Bayesian selection of quasars for the AAOmege UKIDSS SDSS (AUS) survey.
Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick
2009-01-01
Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters
Resection with laser and high frequency cutting loop in tracheo-bronchial diseases.
Illum, P
1989-04-01
A total of 23 patients have been treated endoscopically during the last three and a half years for a variety of diseases in the tracheo-bronchial tree; nine had a tracheal stenosis. Thirteen patients have been treated by resection with a high frequency cutting loop, eleven with a CO2-laser and one with an argon laser. A total of 44 treatments have been performed. Half of the treatments were given because of various malignant diseases. The results of the treatment of this very mixed group of patients were, as a whole, satisfactory with both CO2-laser and cutting loop. A more precise technique can be applied with the CO2-laser than the cutting loop, though the latter is the more efficient and easy to work with. Care must be taken with the loop because of its greater cutting depth. The argon laser has only limited use in the treatment of diseases in the trachea.
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
Kraff, M C; Sanders, D R; Lieberman, H L
1983-01-01
We compared endothelial cell loss of patients implanted with lathe-cut posterior chamber lenses and those implanted with injection-molded lenses over a three-year postoperative period. Results were based on more than 2,500 measurements of corneal endothelial density. Although the technique of cataract extraction (anterior chamber phacoemulsification, posterior chamber phacoemulsification, or planned extracapsular extraction) significantly affected cell loss (P less than .01), the type of implant (lathe-cut or injection-molded) did not. Significant continuing endothelial cell loss did not occur during the first three postoperative years with injection-molded lenses. There was, however, a statistically significant 7% to 15% additional cell loss after surgery over the first two to three postoperative years with lathe-cut implants. There have been no cases of corneal endothelial decompensation developing after implantation of injection-molded or lathe-cut lenses. Because a standard field clinical specular microscope was used in this study, cell counting errors cannot be ruled out as a cause of these findings.
NASA Astrophysics Data System (ADS)
Vasu, M.; Shivananda, Nayaka H.
2018-04-01
EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.
Postoperative alar base symmetry in complete unilateral cleft lip and palate:A prospective study.
Vyloppilli, Suresh; Krishnakumar, K S; Sayd, Shermil; Latheef, Sameer; Narayanan, Saju V; Pati, Ajit
2017-11-01
In the evolution of cleft lip repair, there have been continuous attempts to minimize local trauma and to improve lip and nasal appearances. In order to obtain an aesthetically balanced development of midface, the primary surgical correction of the nasolabial area is of paramount importance. In this study, the importance of a back-cut extending cephalically above the inferior turbinate at the mucocutaneous junction which elevates the nostril floor on the cleft side for the purpose of achieving symmetry of the alar bases are analyzed by pre and postoperative photographic anthropometry. This study comprised of fifty cases of the unilateral complete cleft lip. At the time of surgery, the patient age ranged from 3-9 months. The surgeries, performed by a single surgeon, employed the standard Millard technique, incorporating Mohler modifications of lip repair. Anthropometric analysis revealed that the preoperative mean difference between the normal side and the cleft side was 0.2056 with a standard deviation of 0.133. In the postoperative analysis, the mean difference was reduced to 0.0174 with a standard deviation of 0.141. The paired t-test showed that the p-value is <0.001, indicating high statistical significance. To conclude, in complete unilateral cleft lip and palate, the geometrically placed nasal back-cut incision has a definite role in the correction of the alar base symmetry during primary surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
A Parallel Cartesian Approach for External Aerodynamics of Vehicles with Complex Geometry
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.
2001-01-01
This workshop paper presents the current status in the development of a new approach for the solution of the Euler equations on Cartesian meshes with embedded boundaries in three dimensions on distributed and shared memory architectures. The approach uses adaptively refined Cartesian hexahedra to fill the computational domain. Where these cells intersect the geometry, they are cut by the boundary into arbitrarily shaped polyhedra which receive special treatment by the solver. The presentation documents a newly developed multilevel upwind solver based on a flexible domain-decomposition strategy. One novel aspect of the work is its use of space-filling curves (SFC) for memory efficient on-the-fly parallelization, dynamic re-partitioning and automatic coarse mesh generation. Within each subdomain the approach employs a variety reordering techniques so that relevant data are on the same page in memory permitting high-performance on cache-based processors. Details of the on-the-fly SFC based partitioning are presented as are construction rules for the automatic coarse mesh generation. After describing the approach, the paper uses model problems and 3- D configurations to both verify and validate the solver. The model problems demonstrate that second-order accuracy is maintained despite the presence of the irregular cut-cells in the mesh. In addition, it examines both parallel efficiency and convergence behavior. These investigations demonstrate a parallel speed-up in excess of 28 on 32 processors of an SGI Origin 2000 system and confirm that mesh partitioning has no effect on convergence behavior.
Ahmad Khan, Hayat; Kamal, Younis; Lone, Ansar Ul Haq
2014-04-01
Fishing is a leisure activity for some people around the world. Accidently the fish hook can get hooked in the hand. If the hook is barbed, removal becomes difficult. We report a case of such a injury in the hand and discuss the technique for its removal with a brief review of the literature. A thirty-two year old male accidently suffered a fishhook injury to his hand. He came to the orthopaedic ward two hours after the incident with pain; the fish hook was hanging from the hand. Unsuccessful attempts to remove it were made by his relatives. A push-through and cut-off technique was used for removal of barbed hook. Barbed hooks are to be removed atraumatically with controlled incision over properly anaesthetised skin. Proper wound management and prophylactic antibiotics suitable for treatment of Aeromonas species should be initiated to prevent complications.
Retrograde endopyelotomy: a comparison between laser and Acucise balloon cutting catheter.
el-Nahas, Ahmed R
2007-03-01
Endopyelotomy and laparoscopic pyeloplasty are the preferred modalities for treatment of ureteropelvic junction obstruction because of their minimally invasive nature. There are continuous efforts for improving endopyelotomy techniques and outcome. Retrograde access represents the natural evolution of endopyelotomy. The Acucise cutting balloon catheter (Applied Medical Resources Corp., Laguna Hills, CA) and ureteroscopic endopyelotomy using holmium laser are the most widely accepted techniques. The Acucise catheter was developed to simplify retrograde endopyelotomy and made it possible for all urologists, regardless of their endourologic skills. The Acucise catheter depends on incision and dilatation of the ureteropelvic junction under fluoroscopic guidance, whereas ureteroscopy allows visual control of the site, depth, and extent of the incision; the holmium laser is a perfect method for a clean precise incision. Review of the English literature showed that the Acucise technique was more widely performed, though laser had better (but not statistically significant) safety and efficacy profiles.
A review of the physiological and histological effects of laser osteotomy.
Rajitha Gunaratne, G D; Khan, Riaz; Fick, Daniel; Robertson, Brett; Dahotre, Narendra; Ironside, Charlie
2017-01-01
Osteotomy is the surgical cutting of bone. Some obstacles to laser osteotomy have been melting, carbonisation and subsequent delayed healing. New cooled scanning techniques have resulted in effective bone cuts without the strong thermal side effects, which were observed by inappropriate irradiation techniques with continuous wave and long pulsed lasers. With these new techniques, osteotomy gaps histologically healed with new bone formation without any noticeable or minimum thermal damage. No significant cellular differences in bone healing between laser and mechanical osteotomies were noticed. Some studies even suggest that the healing rate may be enhanced following laser osteotomy compared to conventional mechanical osteotomy. Additional research is necessary to evaluate different laser types with appropriate laser setting variables to increase ablation rates, with control of depth, change in bone type and damage to adjacent soft tissue. Laser osteotomy has the potential to become incorporated into the armamentarium of bone surgery.
MIRAP, microcomputer reliability analysis program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jehee, J.N.T.
1989-01-01
A program for a microcomputer is outlined that can determine minimal cut sets from a specified fault tree logic. The speed and memory limitations of the microcomputers on which the program is implemented (Atari ST and IBM) are addressed by reducing the fault tree's size and by storing the cut set data on disk. Extensive well proven fault tree restructuring techniques, such as the identification of sibling events and of independent gate events, reduces the fault tree's size but does not alter its logic. New methods are used for the Boolean reduction of the fault tree logic. Special criteria formore » combining events in the 'AND' and 'OR' logic avoid the creation of many subsuming cut sets which all would cancel out due to existing cut sets. Figures and tables illustrates these methods. 4 refs., 5 tabs.« less
Atkinson, Matthew; Chukwumah, Chike; Marks, Jeffrey; Chak, Amitabh
2014-01-01
Background: Flat and depressed lesions are becoming increasingly recognized in the esophagus, stomach, and colon. Various techniques have been described for endoscopic mucosal resection (EMR) of these lesions. Aims: To evaluate the efficacy of lift-grasp-cut EMR using a prototype dual-channel forward-viewing endoscope with an instrument elevator in one accessory channel (dual-channel elevator scope) as compared to standard dual-channel endoscopes. Methods: EMR was performed using a lift-grasp-cut technique on normal flat rectosigmoid or gastric mucosa in live porcine models after submucosal injection of 4 mL of saline using a dual-channel elevator scope or a standard dual-channel endoscope. With the dual-channel elevator scope, the elevator was used to attain further lifting of the mucosa. The primary endpoint was size of the EMR specimen and the secondary endpoint was number of complications. Results: Twelve experiments were performed (six gastric and six colonic). Mean specimen diameter was 2.27 cm with the dual-channel elevator scope and 1.34 cm with the dual-channel endoscope (P = 0.018). Two colonic perforations occurred with the dual-channel endoscope, vs no complications with the dual-channel elevator scope. Conclusions: The increased lift of the mucosal epithelium, through use of the dual-channel elevator scope, allows for larger EMR when using a lift-grasp-cut technique. Noting the thin nature of the porcine colonic wall, use of the elevator may also make this technique safer. PMID:24760237
Zhang, Huafeng
2013-09-01
To investigate the effectiveness of the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique for congenital buried penis. Between March 2010 and June 2012, 68 boys with congenital buried penis were treated by the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique, with a median age of 4 years and 10 months (range, 3 months-13 years). Of 68 cases, 14 were classified as phimosis type, 14 as rope belt type, 20 as moderate type, and 20 as severe type. The body of penis developed well and had no deformity. After operation, complications were observed, and the effectiveness was evaluated by the designed questionnaire. Early postoperative complications occurred in 11 cases, including obvious adhesion of the outside wrapping mouth in 4 cases, scrotal skin bloat in 5 cases, and distal foreskin necrosis in 2 cases; long-term complications occurred in 9 cases, including abdominal incision scar formation in 4 cases, wrapping mouth scar stricture in 3 cases, and short penis in 2 cases. Primary healing of incision was obtained in the other boys. Fifty-four cases were followed up 6-12 months (mean, 8 months). According to the designed questionnaire, satisfaction rate with the overall view in parents was 77.78% (42/54); the clinical improvement rate was 85.19% (46/54); exposure of the penis was satisfactory in parents of 50 cases; and the parents had no psychological burden of penis exposure in 46 cases, which were significantly improved when compared with preoperative ones (P < 0.05). The boys had no psychological burden of penis exposure in 29 cases (53.70%) after operation, showing no significant difference when compared with preoperative one (18 cases, 33.33%) (chi2 = 1.22, P = 0.31). Application of the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique can effectively correct congenital buried penis.
Schaufeli, W B; Van Dierendonck, D
1995-06-01
In the present study, burnout scores of three samples, as measured with the Maslach Burnout Inventory, were compared: (1) the normative American sample from the test-manual (N = 10,067), (2) the normative Dutch sample (N = 3,892), and (3) a Dutch outpatient sample (N = 142). Generally, the highest burnout scores were found for the outpatient sample, followed by the American and Dutch normative samples, respectively. Slightly different patterns were noted for each of the three components. Probably sampling bias, i.e., the healthy worker effect, or cultural value patterns, i.e., femininity versus masculinity, might be responsible for the results. It is concluded that extreme caution is required when cut-off points are used to classify individuals by burnout scores; only nation-specific and clinically derived cut-off points should be employed.
Computation of two-dimensional flows past ram-air parachutes
NASA Astrophysics Data System (ADS)
Mittal, S.; Saxena, P.; Singh, A.
2001-03-01
Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright
A Shared Responsibility for Skills
ERIC Educational Resources Information Center
Clough, Bert
2011-01-01
Co-investment between the state, employer, and employee is an intrinsic feature of most vocational and education training systems. The government's strategy is to "profoundly" shift responsibility for funding learning and skills from the state to individuals and businesses. At a time of stringent cuts in publicly-funded further education…
Training and Communication Needed to Reduce Injuries and Illnesses.
ERIC Educational Resources Information Center
Rensink, Melanie S.; And Others
1987-01-01
Reports on a survey of health and safety programming needs in small high-hazard industries in the metropolitan Denver (Colorado) area. Responding employers tended to be most interested in programs which related to occupational injuries, especially cuts and bruises, back injuries, and eye injuries. (TW)
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng
2016-02-01
This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan
2010-10-01
Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.
Biomechanical factors associated with time to complete a change of direction cutting maneuver.
Marshall, Brendan M; Franklyn-Miller, Andrew D; King, Enda A; Moran, Kieran A; Strike, Siobhán C; Falvey, Éanna C
2014-10-01
Cutting ability is an important aspect of many team sports, however, the biomechanical determinants of cutting performance are not well understood. This study aimed to address this issue by identifying the kinetic and kinematic factors correlated with the time to complete a cutting maneuver. In addition, an analysis of the test-retest reliability of all biomechanical measures was performed. Fifteen (n = 15) elite multidirectional sports players (Gaelic hurling) were recruited, and a 3-dimensional motion capture analysis of a 75° cut was undertaken. The factors associated with cutting time were determined using bivariate Pearson's correlations. Intraclass correlation coefficients (ICCs) were used to examine the test-retest reliability of biomechanical measures. Five biomechanical factors were associated with cutting time (2.28 ± 0.11 seconds): peak ankle power (r = 0.77), peak ankle plantar flexor moment (r = 0.65), range of pelvis lateral tilt (r = -0.54), maximum thorax lateral rotation angle (r = 0.51), and total ground contact time (r = -0.48). Intraclass correlation coefficient scores for these 5 factors, and indeed for the majority of the other biomechanical measures, ranged from good to excellent (ICC >0.60). Explosive force production about the ankle, pelvic control during single-limb support, and torso rotation toward the desired direction of travel were all key factors associated with cutting time. These findings should assist in the development of more effective training programs aimed at improving similar cutting performances. In addition, test-retest reliability scores were generally strong, therefore, motion capture techniques seem well placed to further investigate the determinants of cutting ability.
What energy functions can be minimized via graph cuts?
Kolmogorov, Vladimir; Zabih, Ramin
2004-02-01
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method
Parida, Arun Kumar; Routara, Bharat Chandra
2014-01-01
Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (R a). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v 3-f 2-d 3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v 1-f 1-d 3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503
Advances in laser and tissue interactions: laser microbeams and optical trapping (Invited Paper)
NASA Astrophysics Data System (ADS)
Serafetinides, Alexander A.; Makropoulou, Mersini; Papadopoulos, Dimitris; Papagiakoumou, Eirini; Pietreanu, D.
2005-04-01
The increasing use of lasers in biomedical research and clinical praxis leads to the development and application of new, non-invasive, therapeutic, surgical and diagnostic techniques. In laser surgery, the theory of ablation dictates that pulsed mid-infrared laser beams exhibit strong absorption by soft and hard tissues, restricting residual thermal damage to a minimum zone. Therefore, the development of high quality 3 μm lasers is considered to be an alternative for precise laser ablation of tissue. Among them are the high quality oscillator-two stages amplifier lasers developed, which will be described in this article. The beam quality delivered by these lasers to the biological tissue is of great importance in cutting and ablating operations. As the precision of the ablation is increased, the cutting laser interventions could well move to the microsurgery field. Recently, the combination of a laser scalpel with an optical trapping device, under microscopy control, is becoming increasingly important. Optical manipulation of microscopic particles by focused laser beams, is now widely used as a powerful tool for 'non-contact' micromanipulation of cells and organelles. Several laser sources are employed for trapping and varying laser powers are used in a broad range of applications of optical tweezers. For most of the lasers used, the focal spot of the trapping beam is of the order of a micron. As the trapped objects can vary in size from hundreds of nanometres to hundreds of microns, the technique has recently invaded in to the nanocosomos of genes and molecules. However, the use of optical trapping for quantitative research into biophysical processes requires accurate calculation of the optical forces and torques acting within the trap. The research and development efforts towards a mid-IR microbeam laser system, the design and realization efforts towards a visible laser trapping system and the first results obtained using a relatively new calibration method to calculate the forces experienced in the optical trap are discussed in detail in the following.
Fabrication of TiN nanorods by electrospinning and their electrochemical properties
NASA Astrophysics Data System (ADS)
Sun, Dongfei; Lang, Junwei; Yan, Xingbin; Hu, Litian; Xue, Qunji
2011-05-01
TiN nanorods were synthesized using electrospinning technique followed by thermolysis in different atmospheres. A dimethyl formamide-ethanol solution of poly-(vinyl pyrrolidone) and Ti (IV)-isopropoxide was used as the electrospinning precursor solution and as-spun nanofibers were calcined at 500 °C in air to generate TiO 2 nanofibers. Subsequently, a conversion from TiO 2 nanofibers to TiN nanorods was employed by the nitridation treatment at 600˜1400 °C in ammonia atmosphere. A typical characteristic of the final products was that the pristine nanofibers were cut into nanorods. The conversion from TiO 2 to TiN was realized when the nitridation temperature was above 800 °C. As-prepared nanorods were composed of TiN nano-crystallites and the average crystallite size gradually increased with the increase of the nitridation temperature. Electrochemical properties of TiN nanorods showed strong dependence on the nitridation temperature. The maximum value of the specific capacitance was obtained from the TiN nanorods prepared at 800 °C.
NASA Astrophysics Data System (ADS)
Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.
2015-06-01
The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.
High-power thulium-doped fiber laser in an all-fiber configuration
NASA Astrophysics Data System (ADS)
Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel
2016-12-01
High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.
Technique for in-place welding of aluminum backed up by a combustible material
NASA Technical Reports Server (NTRS)
Spagnuolo, A. C.
1971-01-01
Welding external aluminum jacket, tightly wrapped around inner layer of wood composition fiberboard, in oxygen free environment prevents combustion and subsequent damage to underlying fiberboard. Technique also applies to metal cutting in similar assemblies without disassembly to remove combustible materials from welding heat proximity.
Design of catalysts by different substituent groups to the ;cut g-C3N4; single layer
NASA Astrophysics Data System (ADS)
Xu, Weiwei; Tang, Chao; Chen, Chongyang; Li, Youyong; Xu, Lai
2017-09-01
Graphitic carbon nitride has been wildly studied as a kind of promising photocatalysts for hydrogen evolution. However, it has a low intrinsic activity. Herein, we designed new periodic structures "cut g-C3N4", and adding the new substituent groups. We employed density functional theory to calculate the charge distribution and catalytic properties of hydrogen evolution on the structures. We got a theoretical view that introducing conjugate substituents can enhance the catalytic performance for hydrogen evolution. Furthermore, it provided a theoretical guidance for the reasonable design of two dimensional non-metallic photocatalysts, with lower activation barrier of the catalytic reaction.
Testing the Technicolor Interpretation of CDF's Dijet Excess at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichten, Estia; Lane, Kenneth; Martin, Adam
2012-01-01
Under the assumption that the dijet excess seen by the CDF Collaboration near 150 Gev in Wjj production is due to the lightest technipion of the low-scale technicolor processmore » $$\\rho_T \\rightarrow W \\pi_T$$, we study its observability in LHC detectors with 1--20 inverse femtobarns of data. We describe interesting new kinematic tests that can provide independent confirmation of this LSTC hypothesis. We find that cuts similar to those employed by CDF, and recently by ATLAS, cannot confirm the dijet signal. We propose cuts tailored to the LSTC hypothesis and its backgrounds at the LHC that may reveal $$\\rho_T \\rightarrow \\ell\
Convex decomposition techniques applied to handlebodies
NASA Astrophysics Data System (ADS)
Ortiz, Marcos A.
Contact structures on 3-manifolds are 2-plane fields satisfying a set of conditions. The study of contact structures can be traced back for over two-hundred years, and has been of interest to mathematicians such as Hamilton, Jacobi, Cartan, and Darboux. In the late 1900's, the study of these structures gained momentum as the work of Eliashberg and Bennequin described subtleties in these structures that could be used to find new invariants. In particular, it was discovered that contact structures fell into two classes: tight and overtwisted. While overtwisted contact structures are relatively well understood, tight contact structures remain an area of active research. One area of active study, in particular, is the classification of tight contact structures on 3-manifolds. This began with Eliashberg, who showed that the standard contact structure in real three-dimensional space is unique, and it has been expanded on since. Some major advancements and new techniques were introduced by Kanda, Honda, Etnyre, Kazez, Matic, and others. Convex decomposition theory was one product of these explorations. This technique involves cutting a manifold along convex surfaces (i.e. surfaces arranged in a particular way in relation to the contact structure) and investigating a particular set on these cutting surfaces to say something about the original contact structure. In the cases where the cutting surfaces are fairly nice, in some sense, Honda established a correspondence between information on the cutting surfaces and the tight contact structures supported by the original manifold. In this thesis, convex surface theory is applied to the case of handlebodies with a restricted class of dividing sets. For some cases, classification is achieved, and for others, some interesting patterns arise and are investigated.
Creating a Vision Channel for Observing Deep-Seated Anatomy in Medical Augmented Reality
NASA Astrophysics Data System (ADS)
Wimmer, Felix; Bichlmeier, Christoph; Heining, Sandro M.; Navab, Nassir
The intent of medical Augmented Reality (AR) is to augment the surgeon's real view on the patient with the patient's interior anatomy resulting from a suitable visualization of medical imaging data. This paper presents a fast and user-defined clipping technique for medical AR allowing for cutting away any parts of the virtual anatomy and images of the real part of the AR scene hindering the surgeon's view onto the deepseated region of interest. Modeled on cut-away techniques from scientific illustrations and computer graphics, the method creates a fixed vision channel to the inside of the patient. It enables a clear view on the focussed virtual anatomy and moreover improves the perception of spatial depth.
Step Cut Lengthening: A Technique for Treatment of Flexor Pollicis Longus Tendon Rupture.
Chong, Chew-Wei; Chen, Shih-Heng
2018-04-01
Reconstruction of a tendon defect is a challenging task in hand surgery. Delayed repair of a ruptured flexor pollicis longus (FPL) tendon is often associated with tendon defect. Primary repair of the tendon is often not possible, particularly after debridement of the unhealthy segment of the tendon. As such, various surgical treatments have been described in the literature, including single-stage tendon grafting, 2-stage tendon grafting, flexor digitorum superficialis tendon transfer from ring finger, and interphalangeal joint arthrodesis. We describe step cut lengthening of FPL tendon for the reconstruction of FPL rupture. This is a single-stage reconstruction without the need for tendon grafting or tendon transfer. To our knowledge, no such technique has been previously described.
Williams, Des; Thomas, Steve
2017-09-11
The global economic crisis saw recessionary conditions in most EU countries. Ireland's severe recession produced pro-cyclical health spending cuts. Yet, human resources for health (HRH) are the most critical of inputs into a health system and an important economic driver. The aim of this article is to evaluate how the Irish health system coped with austerity in relation to HRH and whether austerity allowed and/or facilitated the implementation of HRH policy. The authors employed a quantitative longitudinal trend analysis over the period 2008 to 2014 with Health Service Executive (HSE) staff database as the principal source. For the purpose of this study, heath service employment is defined as directly employed whole-time equivalent public service staffing in the HSE and other government agencies. The authors also examined the heath sector pay bill and sought to establish linkages between the main staff database and pay expenditure, as given in the HSE Annual Accounts and Financial Statements (AFS), and key HRH policies. The actual cut in total whole-time equivalent (WTE) of directly employed health services human resources over the period 2008 to 2014 was 8027 WTE, a reduction of 7.2% but substantially less than government claims. There was a degree of relative protection for frontline staffing decreasing by 2.9% between 2008 and 2014 and far less than the 18.5% reduction in other staff. Staff exempted from the general moratorium also increased by a combined 12.6%. Counter to stated policy, the decline in staffing of non-acute care was over double than in acute care. Further, the reduction in directly employed staff was to a great extent matched by a marked increase in agency spending. The cuts forced substantial HRH reductions and yet there was some success in pursuing policy goals, such as increasing the frontline workforce while reducing support staff and protection of some cadres. Nevertheless, other policies failed such as moving staff away from acute settings and the claimed financial savings were substantially offset by overtime payments and the need to hire more expensive agency workers. There was also substantial demotivation of staff as a consequence of the changes.
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
Advertising down, but marketing spending climbs; survey says focus is on targeting, not overviews.
Burns, J
1992-02-03
Hard economic times forced hospitals nationwide to cut their advertising budgets in 1991. But marketing expenditures hit an all-time high, as hospitals shifted the emphasis to high-technology marketing efforts that employ computer data bases and market research to seek and find potential business.
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
Eleven Ways to Stamp Out the Potential for Sexual Harassment.
ERIC Educational Resources Information Center
Decker, Robert H.
1988-01-01
Reviews the 1980 Equal Employment Opportunity Commission guidelines defining sexual harassment as a form of sex discrimination. Advises 11 steps, including creating clear-cut policies and guidelines to help school officials deal with the problem. Insets offer policy "pointers" and several recommendations for staff members desiring to counter…
Technology, Skills, and Education in the Apparel Industry. Revised.
ERIC Educational Resources Information Center
Bailey, Thomas
Although more than 1 million people in the United States are employed in the apparel manufacturing industry, the industry has been increasingly threatened by international competition, changes in consumer tastes, and demands that many domestic firms are ill-prepared to meet. The traditional apparel production system emphasized cutting costs,…
Arnau, Antonio
2008-01-01
From the first applications of AT-cut quartz crystals as sensors in solutions more than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor is becoming into a good alternative analytical method in a great deal of applications such as biosensors, analysis of biomolecular interactions, study of bacterial adhesion at specific interfaces, pathogen and microorganism detection, study of polymer film-biomolecule or cell-substrate interactions, immunosensors and an extensive use in fluids and polymer characterization and electrochemical applications among others. The appropriate evaluation of this analytical method requires recognizing the different steps involved and to be conscious of their importance and limitations. The first step involved in a QCM system is the accurate and appropriate characterization of the sensor in relation to the specific application. The use of the piezoelectric sensor in contact with solutions strongly affects its behavior and appropriate electronic interfaces must be used for an adequate sensor characterization. Systems based on different principles and techniques have been implemented during the last 25 years. The interface selection for the specific application is important and its limitations must be known to be conscious of its suitability, and for avoiding the possible error propagation in the interpretation of results. This article presents a comprehensive overview of the different techniques used for AT-cut quartz crystal microbalance in in-solution applications, which are based on the following principles: network or impedance analyzers, decay methods, oscillators and lock-in techniques. The electronic interfaces based on oscillators and phase-locked techniques are treated in detail, with the description of different configurations, since these techniques are the most used in applications for detection of analytes in solutions, and in those where a fast sensor response is necessary. PMID:27879713
Messas, Emmanuel; Bel, Alain; Szymanski, Catherine; Cohen, Iris; Touchot, Bernard; Handschumacher, Mark D; Desnos, Michel; Carpentier, Alain; Menasché, Philippe; Hagège, Albert A; Levine, Robert A
2010-11-01
one of the key targets in treating mitral regurgitation (MR) is reducing the otherwise progressive left ventricular (LV) remodeling that exacerbates MR and conveys adverse prognosis. We have previously demonstrated that severing 2 second-order chordae to the anterior mitral leaflet relieves tethering and ischemic MR acutely. The purpose of this study was to test whether this technique reduces the progression of LV remodeling in the chronic ischemic MR setting. a posterolateral MI was created in 18 sheep by obtuse marginal branch ligation. After chronic remodeling and MR development at 3 months, 6 sheep were randomized to sham surgery (control group) and 12 to second-order chordal cutting (6 each to anterior leaflet [AntL] and bileaflet [BiL] chordal cutting, techniques that are in clinical application). At baseline, chronic infarction (3 months), and follow-up at a mean of 6.6 months post-myocardial infarction (MI) (euthanasia), we measured LV end-diastolic (EDV) and end-systolic volume (ESV), ejection fraction, wall motion score index, and posterior leaflet (PL) restriction angle relative to the annulus by 2D and 3D echocardiography. All measurements were comparable among groups at baseline and chronic MI. At euthanasia, AntL and BiL chordal cutting limited the progressive remodeling seen in controls. LVESV increased relative to chronic MI by 109±8.7% in controls versus 30.5±6.1% with chordal cutting (P<0.01) (LVESV in controls, 82.5±2.6 mL; in AntL, 60.6±5.1 mL; in BiL, 61.8±4.1 mL). LVEDV increased by 63±2.0% in controls versus 26±5.5% and 22±3.4% with chordal cutting (P<0.01). LV ejection fraction and wall motion score index were not significantly different at follow-up among the chordal cutting and control groups. MR progressively increased to moderate in controls but decreased to trace-mild with AntL and BiL chordal cutting (MR vena contracta in controls, 5.9±1.1 mm; in AntL, 2.6±0.1 mm; in BiL, 1.7±0.1 mm; P<0.01). BiL chordal cutting provided greater PL mobility (decreased PL restriction angle to 54.2±5.0° versus 83±3.2° with AntL chordal cutting; P<0.01). reduced leaflet tethering by chordal cutting in the chronic post-MI setting substantially decreases the progression of LV remodeling with sustained reduction of MR over a chronic follow-up. These benefits have the potential to improve clinical outcomes.
NASA Astrophysics Data System (ADS)
Ortega Mercado, Camilo Ernesto
Horizontal drilling and hydraulic fracturing techniques have become almost mandatory technologies for economic exploitation of unconventional gas reservoirs. Key to commercial success is minimizing the risk while drilling and hydraulic fracturing these wells. Data collection is expensive and as a result this is one of the first casualties during budget cuts. As a result complete data sets in horizontal wells are nearly always scarce. In order to minimize the data scarcity problem, the research addressed throughout this thesis concentrates on using drill cuttings, an inexpensive direct source of information, for developing: 1) A new methodology for multi-stage hydraulic fracturing optimization of horizontal wells without any significant increases in operational costs. 2) A new method for petrophysical evaluation in those wells with limited amount of log information. The methods are explained using drill cuttings from the Nikanassin Group collected in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). Drill cuttings are the main source of information for the proposed methodology in Item 1, which involves the creation of three 'log tracks' containing the following parameters for improving design of hydraulic fracturing jobs: (a) Brittleness Index, (b) Measured Permeability and (c) An Indicator of Natural Fractures. The brittleness index is primarily a function of Poisson's ratio and Young Modulus, parameters that are obtained from drill cuttings and sonic logs formulations. Permeability is measured on drill cuttings in the laboratory. The indication of natural fractures is obtained from direct observations on drill cuttings under the microscope. Drill cuttings are also the main source of information for the new petrophysical evaluation method mentioned above in Item 2 when well logs are not available. This is important particularly in horizontal wells where the amount of log data is almost non-existent in the vast majority of the wells. By combining data from drill cuttings and previously available empirical relationships developed from cores it is possible to estimate water saturations, pore throat apertures, capillary pressures, flow units, porosity (or cementation) exponent m, true formation resistivity Rt, distance to a water table (if present), and to distinguish the contributions of viscous and diffusion-like flow in the tight gas formation. The method further allows the construction of Pickett plots using porosity and permeability obtained from drill cuttings, without previous availability of well logs. The method assumes the existence of intervals at irreducible water saturation, which is the case of the Nikanassin Group throughout the gas column. The new methods mentioned above are not meant to replace the use of detailed and sophisticated evaluation techniques. But the proposed methods provide a valuable and practical aid in those cases where geomechanical and petrophysical information are scarce.
Oriented microtexturing on the surface of high-speed steel cutting tool
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2016-11-01
Microtexturing the metal cutting tool surfaces is a novel technique intended for enhancing the workability of these tools. The microtexturing is used in machining the titanium alloys for air-space applications for reducing the adhesion wear of metal cutting blades. This paper is focused on forming the microtextured dotted, banded and overlapped areas on the surfaces of high-speed steel samples. The treated areas have been examined using laser scanning microscopy for the microtexture pattern and roughness. It has been shown that the microtextured surfaces obtained on the high-speed steel samples were free of cracks. Surface pattern and roughness of all three microtextured areas have been examined and analyzed.
NASA Astrophysics Data System (ADS)
Ramulu, M.; Rogers, E.
1994-04-01
The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
NASA Astrophysics Data System (ADS)
Pan, Z.; Sekar, G.; Akrobetu, R.; Mu, R.; Morgan, S. H.
2011-10-01
Tb, Yb, and Ag co-doped glass nano-composites were synthesized in a lithium-lanthanum-aluminosilicate glass matrix (LLAS) by a melt-quench technique. Ag nanoparticles (NPs) were formed in the glass matrix and confirmed by optical absorption and transmission electron microscopy (TEM). Plasmon enhanced luminescence was observed. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting were studied for samples with different thermal annealing times. Because the Yb3+ emission at 940 - 1020 nm is matched well with the band gap of crystalline Si, the quantum cutting effect may have its potential application in silicon-based solar cells.
TransCut: interactive rendering of translucent cutouts.
Li, Dongping; Sun, Xin; Ren, Zhong; Lin, Stephen; Tong, Yiying; Guo, Baining; Zhou, Kun
2013-03-01
We present TransCut, a technique for interactive rendering of translucent objects undergoing fracturing and cutting operations. As the object is fractured or cut open, the user can directly examine and intuitively understand the complex translucent interior, as well as edit material properties through painting on cross sections and recombining the broken pieces—all with immediate and realistic visual feedback. This new mode of interaction with translucent volumes is made possible with two technical contributions. The first is a novel solver for the diffusion equation (DE) over a tetrahedral mesh that produces high-quality results comparable to the state-of-art finite element method (FEM) of Arbree et al. but at substantially higher speeds. This accuracy and efficiency is obtained by computing the discrete divergences of the diffusion equation and constructing the DE matrix using analytic formulas derived for linear finite elements. The second contribution is a multiresolution algorithm to significantly accelerate our DE solver while adapting to the frequent changes in topological structure of dynamic objects. The entire multiresolution DE solver is highly parallel and easily implemented on the GPU. We believe TransCut provides a novel visual effect for heterogeneous translucent objects undergoing fracturing and cutting operations.
Gallina, G; Cumbo, E; Gallo, P; Pizzo, G; D'Angelo, M
2002-01-01
A fundamental requirement to obtain a correct endodontic preparation depends on the respect, during cleaning and shaping, of the original morphology of the apical foramen, (AF), so that the filling material will form a complete seal. In our previous studies, in order to verify if this presumption was respected using rotary NiTi instruments with cutting tip, we instrumented extracted teeth characterised by a different degree of root curvatures. Using a standardized system to replace the sample, the original shape of the apical foramen of each tooth was recorded using a computerised technique and then compared to the shape after instrumentation. The data showed differences on AF shapes depending on the degree of root canal curvatures. In fact, the teeth with straight canals showed the least alterations on the original AF shape; on the contrary, the teeth with curved canals showed apical foramen enlargement or transportation. Therefore, in the current study we aimed to compare the in vitro effects of stainless steel, (Flexofile, Dentsply Maillefer, Baillaigues, Switzerland), vs NiTi safe cutting tip (Quantec SC, (Tycom Dental, Irvine CA, U:S.A.), vs NiTi non cutting tip, (Quantec LX, Tycom Dental, Irvine CA, U:S.A.), instrumentation on original apical foramen shape. We used NiTi instruments according to standard technique suggested by Tycom, and hand steel files, to instrument the apical third, according to the Crown-Down technique. Working length was fixed at -0.5 from AF. Our results suggested that in the presence of accentuated canal curves rotary Niti, with cutting tip, cause significantly more enlargement of the AF area. At the same time, we also observed that NiTi rotary files, with both cutting and non-cutting tip, cause eccentric enlargement of AF in curved canals. Therefore, NiTi engine-driven instruments should be used carefully in the presence of accentuated canal curves to avoid enlargement or transportation of AF, probably because rotary NiTi files may slip out of operative control, leaving a mark on the foramen shape. In the presence of severe curves, we suggest modifying the operative sequences by alternating rotary NiTi with hand NiTi or stainless steel instruments, especially in the preparation of apical third.
Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing
2017-04-01
Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.
Interaction of Vortex Ring with Cutting Plate
NASA Astrophysics Data System (ADS)
Musta, Mustafa
2015-11-01
The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.
Trepanation in South-Central Peru during the early late intermediate period (ca. AD 1000-1250).
Kurin, Danielle S
2013-12-01
This study evaluates trepanations from five well-contextualized prehistoric sites in the south-central highlands of Andahuaylas, Peru. The emergence of trepanation in this region coincides with the collapse of the Wari Empire, ca. ad 1000. Thirty-two individuals from Andahuaylas, AMS radiocarbon dated to the early Late Intermediate Period (ca. ad 1000-1250), were found to have 45 total trepanations. Various surgical techniques were being employed concurrently throughout the region. Scraping trepanations evinced the highest survival rate; circular grooving, drilling and boring, and linear cutting were far less successful. Evidence of perioperative procedures like hair shaving, poultice application, and possible cranioplasty use aimed to ensure the survival of a trepanation recipient. Postmortem trepanations, also present in Andahuaylas, were likely executed on corpses as a means of better understanding cranial anatomy and improving techniques. Similarities in trepanation patterns throughout the region attest to common motivations to engage in surgery. Although moderate physical head trauma seems to be the impetus for intervention in many cases of trepanation, other motivations included physiological and possibly psychosomatic factors. Nevertheless, treatment was not for everyone. In Andahuaylas, trepanations were withheld from subadults, females, and those individuals who practiced cranial modification. Copyright © 2013 Wiley Periodicals, Inc.
Wave guide impedance matching method and apparatus
Kronberg, James W.
1990-01-01
A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.
Moura, Elaine Cristina Carvalho; Moreira, Maria de Fátima Santana; da Fonseca, Soraia Martins
2009-01-01
This study aimed to analyze the knowledge of nursing auxiliaries and technicians in handling and disposing of piercing-cutting material and describe their performance. This qualitative-descriptive research was carried out with three nursing auxiliaries and 12 technicians at a medium-size hospital, totaling 15 participants interviewed through a semi-structured script. Discourse was analyzed through the content analysis technique. Results appoint that, even though the participants have theoretical knowledge on the management of piercing-cutting material, they do not totally follow their knowledge, which exposes them to several biological risks, revealing reproductive knowledge and performance. Thus, we propose the implementation of continuing education programs based on constructivist methodological approach aiming at effective practices in the management and disposal of piercing-cutting material. In this perspective, research clarifying how adults apprehend knowledge can deepen the results described in the study.
Analysis of the temperature of the hot tool in the cut of woven fabric using infrared images
NASA Astrophysics Data System (ADS)
Borelli, Joao E.; Verderio, Leonardo A.; Gonzaga, Adilson; Ruffino, Rosalvo T.
2001-03-01
Textile manufacture occupies a prominence place in the national economy. By virtue of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed within the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. The work presents a technique for the measurement of the temperature based on the processing of infrared images. For this a system was developed composed of an infrared camera, a framegrabber PC board and software that analyzes the punctual temperature in the cut area enabling the operator to achieve the necessary control of the other variables involved in the process.
Gradual cut detection using low-level vision for digital video
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyun; Choi, Yeun-Sung; Jang, Ok-bae
1996-09-01
Digital video computing and organization is one of the important issues in multimedia system, signal compression, or database. Video should be segmented into shots to be used for identification and indexing. This approach requires a suitable method to automatically locate cut points in order to separate shot in a video. Automatic cut detection to isolate shots in a video has received considerable attention due to many practical applications; our video database, browsing, authoring system, retrieval and movie. Previous studies are based on a set of difference mechanisms and they measured the content changes between video frames. But they could not detect more special effects which include dissolve, wipe, fade-in, fade-out, and structured flashing. In this paper, a new cut detection method for gradual transition based on computer vision techniques is proposed. And then, experimental results applied to commercial video are presented and evaluated.
Lathe tool bit and holder for machining fiberglass materials
NASA Technical Reports Server (NTRS)
Winn, L. E. (Inventor)
1972-01-01
A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.
Advances in the Study of the Middle Cranial Fossa through Cutting Edge Neuroimaging Techniques.
Juanes Méndez, Juan A; Ruisoto, Pablo; Paniagua, Juan C; Prats, Alberto
2018-01-16
The objective of this paper is to present a morphometric study of the middle cranial fossa from the study of 87 patients using cutting edge multislice computed tomography scans (32 detectors) and Magnetic Resonance Imaging. The study presents a detailed anatomical-radiological and morphometric analysis of the middle cranial fossa as well as its neurovascular elements in normal conditions. The implications of this investigation in training and clinical contexts are discussed.
Factors Affecting Microcuttings of Stevia Using a Mist-Chamber Propagation Box
Osman, Mohamad; Samsudin, Nur Syamimi; Faruq, Golam
2013-01-01
Stevia rebaudiana Bertoni is a member of Compositae family. Stevia plant has zero calorie content and its leaves are estimated to be 300 times sweeter than sugar. This plant is believed to be the most ideal substitute for sugar and important to assist in medicinal value especially for diabetic patients. In this study, microcutting techniques using a mist-chamber propagation box were used as it was beneficial for propagation of Stevia and gave genetic uniformity to the plant. The effects of different treatments on root stimulation of Stevia in microcuttings technique were evaluated. Treatments studied were different sizes of shoot cuttings, plant growth regulators, lights, and shades. Data logger was used to record the mean value of humidity (>90% RH), light intensity (673–2045 lx), and temperature (28.6–30.1°C) inside the mist-chamber propagation box. From analysis of variance, there were significant differences between varieties and treatments in parameters studied (P < 0.05). For the size of shoot cuttings treatment, 6 nodes cuttings were observed to increase root number. As compared to control, shoot cuttings treated with indole butyric acid (IBA) had better performance regarding root length. Yellow light and 50% shade treatments showed higher root and leaf number and these conditions can be considered as crucial for potential propagation of Stevia. PMID:24470797
Frailty, prefrailty and employment outcomes in Health and Employment After Fifty (HEAF) Study.
Palmer, Keith T; D'Angelo, Stefania; Harris, E Clare; Linaker, Cathy; Gale, Catharine R; Evandrou, Maria; Syddall, Holly; van Staa, Tjeerd; Cooper, Cyrus; Aihie Sayer, Avan; Coggon, David; Walker-Bone, Karen
2017-07-01
Demographic changes are requiring people to work longer. No previous studies, however, have focused on whether the 'frailty' phenotype (which predicts adverse events in the elderly) is associated with employment difficulties. To provide information, we assessed associations in the Health and Employment After Fifty Study, a population-based cohort of 50-65-year olds. Subjects, who were recruited from 24 English general practices, completed a baseline questionnaire on 'prefrailty' and 'frailty' (adapted Fried criteria) and several work outcomes, including health-related job loss (HRJL), prolonged sickness absence (>20 days vs less, past 12 months), having to cut down substantially at work and difficulty coping with work's demands. Associations were assessed using logistic regression and population attributable fractions (PAFs) were calculated. In all, 3.9% of 8095 respondents were classed as 'frail' and 31.6% as 'prefrail'. Three-quarters of the former were not in work, while 60% had left their last job on health grounds (OR for HRJL vs non-frail subjects, 30.0 (95% CI 23.0 to 39.2)). Among those in work, ORs for prolonged sickness absence, cutting down substantially at work and struggling with work's physical demands ranged from 10.7 to 17.2. The PAF for HRJL when any frailty marker was present was 51.8% and that for prolonged sickness absence was 32.5%. Associations were strongest with slow reported walking speed. Several associations were stronger in manual workers than in managers. Fried frailty symptoms are not uncommon in mid-life and are strongly linked with economically important adverse employment outcomes. Frailty could represent an important target for prevention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Model-based chatter stability prediction and detection for the turning of a flexible workpiece
NASA Astrophysics Data System (ADS)
Lu, Kaibo; Lian, Zisheng; Gu, Fengshou; Liu, Hunju
2018-02-01
Machining long slender workpieces still presents a technical challenge on the shop floor due to their low stiffness and damping. Regenerative chatter is a major hindrance in machining processes, reducing the geometric accuracies and dynamic stability of the cutting system. This study has been motivated by the fact that chatter occurrence is generally in relation to the cutting position in straight turning of slender workpieces, which has seldom been investigated comprehensively in literature. In the present paper, a predictive chatter model of turning a tailstock supported slender workpiece considering the cutting position change during machining is explored. Based on linear stability analysis and stiffness distribution at different cutting positions along the workpiece, the effect of the cutting tool movement along the length of the workpiece on chatter stability is studied. As a result, an entire stability chart for a single cutting pass is constructed. Through this stability chart the critical cutting condition and the chatter onset location along the workpiece in a turning operation can be estimated. The difference between the predicted tool locations and the experimental results was within 9% at high speed cutting. Also, on the basis of the predictive model the dynamic behavior during chatter that when chatter arises at some cutting location it will continue for a period of time until another specified location is arrived at, can be inferred. The experimental observation is in good agreement with the theoretical inference. In chatter detection respect, besides the delay strategy and overlap processing technique, a relative threshold algorithm is proposed to detect chatter by comparing the spectrum and variance of the acquired acceleration signals with the reference saved during stable cutting. The chatter monitoring method has shown reliability for various machining conditions.
Satellite-based assessment of grassland yields
NASA Astrophysics Data System (ADS)
Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.
2015-04-01
Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.
Recycling stabilised/solidified drill cuttings for forage production in acidic soils.
Kogbara, Reginald B; Dumkhana, Bernard B; Ayotamuno, Josiah M; Okparanma, Reuben N
2017-10-01
Stabilisation/solidification (S/S), which involves fixation and immobilisation of contaminants using cementitious materials, is one method of treating drill cuttings before final fate. This work considers reuse of stabilised/solidified drill cuttings for forage production in acidic soils. It sought to improve the sustainability of S/S technique through supplementation with the phytoremediation potential of plants, eliminate the need for landfill disposal and reduce soil acidity for better plant growth. Drill cuttings with an initial total petroleum hydrocarbon (TPH) concentration of 17,125 mg kg -1 and low concentrations of metals were treated with 5%, 10%, and 20% cement dosages. The treated drill cuttings were reused in granular form for growing a forage, elephant grass (Pennisetum purpureum), after mixing with uncontaminated soil. The grasses were also grown in uncontaminated soil. The phytoremediation and growth potential of the plants was assessed over a 12-week period. A mix ratio of one part drill cuttings to three parts uncontaminated soil was required for active plant growth. The phytoremediation ability of elephant grass (alongside abiotic losses) reduced the TPH level (up to 8795 mg kg -1 ) in the soil-treated-drill cuttings mixtures below regulatory (1000 mg kg -1 ) levels. There were also decreased concentrations of metals. The grass showed better heights and leaf lengths in soil containing drill cuttings treated with 5% cement dosage than in uncontaminated soil. The results suggest that recycling S/S treated drill cuttings for forage production may be a potential end use of the treated waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cinematography; A Guide for Film Makers and Film Teachers.
ERIC Educational Resources Information Center
Malkiewicz, J. Kris
Concentrating on the work of the cinematographer--the man behind the camera or in charge of the shooting--this book also touches on techniques of sound recording, cutting, and production logistics. Technical discussions designed to provide the basic principles and techniques of cinematography are presented about cameras, films and sensitometry,…
NASA Astrophysics Data System (ADS)
Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi
2016-06-01
In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.
Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey
NASA Astrophysics Data System (ADS)
Medezinski, Elinor; Oguri, Masamune; Nishizawa, Atsushi J.; Speagle, Joshua S.; Miyatake, Hironao; Umetsu, Keiichi; Leauthaud, Alexie; Murata, Ryoma; Mandelbaum, Rachel; Sifón, Cristóbal; Strauss, Michael A.; Huang, Song; Simet, Melanie; Okabe, Nobuhiro; Tanaka, Masayuki; Komiyama, Yutaka
2018-03-01
We present optimized source galaxy selection schemes for measuring cluster weak lensing (WL) mass profiles unaffected by cluster member dilution from the Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing HSC-SSP survey will uncover thousands of galaxy clusters to z ≲ 1.5. In deriving cluster masses via WL, a critical source of systematics is contamination and dilution of the lensing signal by cluster members, and by foreground galaxies whose photometric redshifts are biased. Using the first-year CAMIRA catalog of ˜900 clusters with richness larger than 20 found in ˜140 deg2 of HSC-SSP data, we devise and compare several source selection methods, including selection in color-color space (CC-cut), and selection of robust photometric redshifts by applying constraints on their cumulative probability distribution function (P-cut). We examine the dependence of the contamination on the chosen limits adopted for each method. Using the proper limits, these methods give mass profiles with minimal dilution in agreement with one another. We find that not adopting either the CC-cut or P-cut methods results in an underestimation of the total cluster mass (13% ± 4%) and the concentration of the profile (24% ± 11%). The level of cluster contamination can reach as high as ˜10% at R ≈ 0.24 Mpc/h for low-z clusters without cuts, while employing either the P-cut or CC-cut results in cluster contamination consistent with zero to within the 0.5% uncertainties. Our robust methods yield a ˜60 σ detection of the stacked CAMIRA surface mass density profile, with a mean mass of M200c = [1.67 ± 0.05(stat)] × 1014 M⊙/h.
Dai, Boyi; Garrett, William E; Gross, Michael T; Padua, Darin A; Queen, Robin M; Yu, Bing
2015-02-01
Anterior cruciate ligament injuries (ACL) commonly occur during jump landing and cutting tasks. Attempts to land softly and land with greater knee flexion are associated with decreased ACL loading. However, their effects on performance are unclear. Attempts to land softly will decrease peak posterior ground-reaction force (PPGRF) and knee extension moment at PPGRF compared with a natural landing during stop-jump and side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact will increase knee flexion at PPGRF compared with a natural landing during both tasks. In addition, both landing techniques will increase stance time and lower extremity mechanical work as well as decrease jump height and movement speed compared with a natural landing during both tasks. Controlled laboratory study. A total of 18 male and 18 female recreational athletes participated in the study. Three-dimensional kinematic and kinetic data were collected during stop-jump and side-cutting tasks under 3 conditions: natural landing, soft landing, and landing with greater knee flexion at initial ground contact. Attempts to land softly decreased PPGRF and knee extension moment at PPGRF compared with a natural landing during stop-jump tasks. Attempts to land softly decreased PPGRF compared with a natural landing during side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact increased knee flexion angle at PPGRF compared with a natural landing during both stop-jump and side-cutting tasks. Attempts to land softly and land with greater knee flexion at initial ground contact increased stance time and lower extremity mechanical work, as well as decreased jump height and movement speed during both stop-jump and side-cutting tasks. Although landing softly and landing with greater knee flexion at initial ground contact may reduce ACL loading during stop-jump and side-cutting tasks, the performance of these tasks decreased, as indicated by increased stance time and mechanical work as well as decreased jump height and movement speed. Training effects tested in laboratory environments with the focus on reducing ACL loading may be reduced in actual competition environments when the focus is on athlete performance. The effects of training programs for ACL injury prevention on lower extremity biomechanics in athletic tasks may need to be evaluated in laboratories as well as in actual competitions. © 2014 The Author(s).
Van der Linden, Inge; Avalos Llano, Karina R; Eriksson, Markus; De Vos, Winnok H; Van Damme, Els J M; Uyttendaele, Mieke; Devlieghere, Frank
2016-12-05
The influence of a selection of minimal processing techniques (sanitizing wash prior to packaging, modified atmosphere, storage conditions under light or in the dark) was investigated in relation to the survival of, attachment to and internalization of enteric pathogens in fresh produce. Cut Iceberg lettuce was chosen as a model for fresh produce, Escherichia coli O157:H7 (E. coli O157) and Salmonella enterica were chosen as pathogen models. Care was taken to simulate industrial post-harvest processing. A total of 50±0.1g of fresh-cut Iceberg lettuce was packed in bags under near ambient atmospheric air with approximately 21% O 2 (NAA) conditions or equilibrium modified atmosphere with 3% O 2 (EMAP). Two lettuce pieces inoculated with E. coli O157 BRMSID 188 or Salmonella Typhimurium labeled with green fluorescent protein (GFP) were added to each package. The bags with cut lettuce were stored under either dark or light conditions for 2days at 7°C. The pathogens' capacity to attach to the lettuce surface and cut edge was evaluated 2days after inoculation using conventional plating technique and the internalization of the bacteria was investigated and quantified using confocal microscopy. The effect of a sanitizing wash step (40mg/L NaClO or 40mg/L peracetic acid+1143mg/L lactic acid) of the cut lettuce prior to packaging was evaluated as well. Our results indicate that both pathogens behaved similarly under the investigated conditions. Pathogen growth was not observed, nor was there any substantial influence of the investigated atmospheric conditions or light/dark storage conditions on their attachment/internalization. The pathogens attached to and internalized via cut edges and wounds, from which they were able to penetrate into the parenchyma. Internalization through the stomata into the parenchyma was not observed, although some bacteria were found in the substomatal cavity. Washing the cut edges with sanitizing agents to reduce enteric pathogen numbers was not more effective than a rinse with precooled tap water prior to packaging. Our results confirm that cut surfaces are the main risk for postharvest attachment and internalization of E. coli O157 and Salmonella during minimal processing and that storage and packaging conditions have no important effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Barreto, M P; Veillette, R; L'Espérance, G
1995-07-01
The formability of galvanneal steel sheets used in the automotive industry is influenced by the presence and distribution of brittle and difficult to distinguish Zn-Fe intermetallics in the coating. Characterization of these intermetallics requires a high spatial resolution technique such as analytical transmission electron microscopy (ATEM). Sample preparation by ion milling is impossible due to iron redeposition, and traditional ultramicrotomy using water affects the coating chemistry. A technique based on dry ultramicrotomy has therefore been developed. To optimize the technique, different parameters (knife angle, cutting medium, thickness setting on the ultramicrotome, cutting speed) have been investigated for the preparation of galvanneal coatings and pure A1 sections. Results show that dry cutting does not affect the coating chemistry but shortens the life of the knife. Knife quality (cleanliness, sharpness and absence of defects) is a major factor to obtain good dry sections. The best results for the more ductile pure A1 are obtained with a 35 degrees knife whilst for the harder galvanneal coating it is recommended to use a 55 degrees knife. These results suggest that the sectioning mechanism for the harder material involves more a cleavage-fracture mechanism whilst a greater amount of shear is involved when sectioning relatively ductile A1. The optimum parameters for sectioning galvanneal coatings are established and results obtained by parallel electron energy loss spectrum imaging and energy dispersive X-ray spectrometry in the TEM are given. This study shows that with a good control of all the sectioning parameters it is possible to obtain good sections repeatedly and rapidly.
ERIC Educational Resources Information Center
Hampton, Carolyn H.; Hampton, Carol D.
1981-01-01
Techniques are described for using living plants in the elementary science classroom including the germination and planting of seeds, transplanting seedlings, vegetative propagation, stem and leaf cuttings, and other plant studies. (DS)
Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting
NASA Astrophysics Data System (ADS)
Sharma, Deepak; Barakat, Nada
2018-02-01
An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.
Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun
2014-04-21
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
NASA Astrophysics Data System (ADS)
Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.
2018-05-01
A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.
Combined tool approach is 100% successful for emergency football face mask removal.
Copeland, Aaron J; Decoster, Laura C; Swartz, Erik E; Gattie, Eric R; Gale, Stephanie D
2007-11-01
To compare effectiveness of two techniques for removing football face masks: cutting loop straps [cutting tool: FMXtractor (FMX)] or removing screws with a cordless screwdriver and using the FMXtractor as needed for failed removals [combined tool (CT)]. Null hypotheses: no differences in face mask removal success, removal time or difficulty between techniques or helmet characteristics. Retrospective, cross-sectional. NOCSAE-certified helmet reconditioning plants. 600 used high school helmets. Face mask removal attempted with two techniques. Success, removal time, rating of perceived exertion (RPE). Both techniques were effective [CT 100% (300/300); FMX 99.4% (298/300)]. Use of the backup FMXtractor in CT trials was required in 19% of trials. There was significantly (P<0.001) less call for the backup tool in helmets with silver screws (6%) than in helmets with other screws (31%). Mean removal time was 44.51+/-18.79s (CT: 37.84+/-15.37s, FMX: 51.21+/-19.54s; P<0.001). RPE was different between techniques (CT: 1.83+/-1.20, FMX: 3.11+/-1.27; P<0.001). Removal from helmets with silver screws was faster (Silver=33.38+/-11.03, Others=42.18+/-17.64; P<0.001) and easier (Silver=1.42+/-0.89, Other=2.23+/-1.33; P<0.001). CT was faster and easier than FMX. Most CT trials were completed with the screwdriver alone; helmets with silver screws had 94% screwdriver success. Clinically, these findings are important because this and other research shows that compared to removal with cutting tools, screwdriver removal decreases time, difficulty and helmet movement (reducing potential for iatrogenic injury). The combined-tool approach captures benefits of the screwdriver while offering a contingency for screw removal failure. Teams should use degradation-resistant screws. Sports medicine professionals must be prepared with appropriate tools and techniques to efficiently remove the face mask from an injured football player's helmet.
NASA Astrophysics Data System (ADS)
Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto
2012-02-01
Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.
Angular analysis of the cyclic impacting oscillations in a robotic grinding process
NASA Astrophysics Data System (ADS)
Rafieian, Farzad; Girardin, François; Liu, Zhaoheng; Thomas, Marc; Hazel, Bruce
2014-02-01
In a robotic machining process, a light-weight cutter or grinder is usually held by an articulated robot arm. Material removal is achieved by the rotating cutting tool while the robot end effector ensures that the tool follows a programmed trajectory in order to work on complex curved surfaces or to access hard-to-reach areas. One typical application of such process is maintenance and repair work on hydropower equipment. This paper presents an experimental study of the dynamic characteristics of material removal in robotic grinding, which is unlike conventional grinding due to the lower structural stiffness of the tool-holder robot. The objective of the study is to explore the cyclic nature of this mechanical operation to provide the basis for future development of better process control strategies. Grinding tasks that minimize the number of iterations to converge to the target surface can be better planned based on a good understanding and modeling of the cyclic material removal mechanism. A single degree of freedom dynamic analysis of the process suggests that material removal is performed through high-frequency impacts that mainly last for only a small fraction of the grinding disk rotation period. To detect these discrete cutting events in practice, a grinder is equipped with a rotary encoder. The encoder's signal is acquired through the angular sampling technique. A running cyclic synchronous average is applied to the speed signal to remove its non-cyclic events. The measured instantaneous rotational frequency clearly indicates the impacting nature of the process and captures the transient response excited by these cyclic impacts. The technique also locates the angular positions of cutting impacts in revolution cycles. It is thus possible to draw conclusions about the cyclic nature of dynamic changes in impact-cutting behavior when grinding with a flexible robot. The dynamics of the impacting regime and transient responses to impact-cutting excitations captured synchronously using the angular sampling technique provide feedback that can be used to regulate the material removal process. The experimental results also make it possible to correlate the energy required to remove a chip of metal through impacting with the measured drop in angular speed during grinding.
Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study
NASA Astrophysics Data System (ADS)
Guerra, Antonio J.; Farjas, Jordi; Ciurana, Joaquim
2017-10-01
The role of the stent is temporary and it is limited to the intervention and shortly thereafter. Bioresorbable polymer stents were introduced to overcome this problem, making the stent manufacturing process rather difficult considering the complexity of the material. The stent forecast sale makes constant technology development necessary on this field. The adaptation of the laser manufacturing industry to these new materials is costly, thus further studies employing different sorts of lasers are necessary. This paper aims to explore the feasibility of 1.08 μm wavelength fibre laser to cut polycaprolactone sheet, which is especially interesting for long-term implantable devices, such as stents. The laser cut samples were analysed by Differential Scanning Calorimetry (DSC), Tensile Stress Test, and Optical Microscopy in order to study the effects of the laser process over the workpiece. The parameters measured were: taper angle, dimensional precision, material structure changes and mechanical properties changes. Results showed a dimensional precision above 95.75% with a taper angle lower than 0.033°. The laser ablation process has exhibited a minor influence upon material properties. Results exhibit the feasibility of fibre laser to cut polycaprolactone, making the fibre laser an alternative to manufacture stents.
Peixoto, Cristina; Roederstein, Susanne; Schleuss, Tobias; Alves, Paula M.; Mota, José P. B.; Carrondo, Manuel J. T.
2014-01-01
The purification of virus particles and viral vectors for vaccine and gene therapy applications is gaining increasing importance in order to deliver a fast, efficient, and reliable production process. Ultrafiltration (UF) is a widely employed unit operation in bioprocessing and its use is present in several steps of the downstream purification train of biopharmaceuticals. However, to date few studies have thoroughly investigated the performance of several membrane materials and cut-offs for virus concentration/diafiltration. The present study aimed at developing a novel class of UF cassettes for virus concentration/diafiltration. A detailed study was conducted to evaluate the effects of (i) membrane materials, namely polyethersulfone (PES), regenerated cellulose (RC), and highly cross-linked RC (xRC), (ii) nominal cut-off, and (iii) UF device geometry at different production scales. The results indicate that the xRC cassettes with a cut-off of approximately 500 kDa are able to achieve a 10-fold concentration factor with 100% recovery of particles with a process time twice as fast as that of a commercially available hollow fiber. DNA and host cell protein clearances, as well as hydraulic permeability and fouling behavior, were also assessed. PMID:25546428
NASA Astrophysics Data System (ADS)
Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš
2016-07-01
Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.
[How to make your own custom cutting guides for both mandibular and fibular stair step osteotomies?
Rem, K; Bosc, R; De Kermadec, H; Hersant, B; Meningaud, J-P
2017-12-01
Using tailored cutting guides for osteocutaneous free fibula flap in complex mandibular reconstruction after cancer resection surgery constitutes a substantial improvement. Autonomously conceiving and manufacturing the cutting guides within a plastic surgery department with computer-aided design (CAD) and three-dimensional (3D) printing allows planning more complex osteotomies, such as stair-step osteotomies, in order to achieve more stable internal fixations. For the past three years, we have been producing by ourselves patient-tailored cutting guides using CAD and 3D printing. Osteotomies were virtually planned, making the cutting lines more complex in order to optimize the internal fixation stability. We also printed reconstructed mandible templates and shaped the reconstruction plates on them. We recorded data including manufacturing techniques and surgical outcomes. Eleven consecutive patients were operated on for an oral cavity cancer. For each patient, we planned the fibular and mandibular stair-step osteotomies and we produced tailored cutting guides. In all patients, we achieved to get immediately stable internal fixations and in 10 patients, a complete bone consolidation after 6 months. Autonomously manufacturing surgical cutting guides for mandibular reconstruction by free fibula flap is a significant improvement, regarding ergonomics and precision. Planning stair-step osteotomies to perform complementary internal fixation increases contact surface and congruence between the bone segments, thus improving the reconstructed mandible stability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Muhammad, Noorhafiza; Li, Lin
2012-06-01
Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel-titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800 nm, pulse duration of 100 fs, repetition rate of 1 kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.
Kraaij, Gert; Tuijthof, Gabrielle J M; Dankelman, Jenny; Nelissen, Rob G H H; Valstar, Edward R
2015-02-01
Waterjet cutting technology is considered a promising technology to be used for minimally invasive removal of interface tissue surrounding aseptically loose hip prostheses. The goal of this study was to investigate the feasibility of waterjet cutting of interface tissue membrane. Waterjets with 0.2 mm and 0.6 mm diameter, a stand-off distance of 5 mm, and a traverse speed of 0.5 mm/s were used to cut interface tissue samples in half. The water flow through the nozzle was controlled by means of a valve. By changing the flow, the resulting waterjet pressure was regulated. Tissue sample thickness and the required waterjet pressures were measured. Mean thickness of the samples tested within the 0.2 mm nozzle group was 2.3 mm (SD 0.7 mm) and within the 0.6 mm nozzle group 2.6 mm (SD 0.9 mm). The required waterjet pressure to cut samples was between 10 and 12 MPa for the 0.2 mm nozzle and between 5 and 10 MPa for the 0.6 mm nozzle. Cutting bone or bone cement requires about 3 times higher waterjet pressure (30-50 MPa, depending on used nozzle diameter) and therefore we consider waterjet cutting as a safe technique to be used for minimally invasive interface tissue removal. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Island custom blocking technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carabetta, R.J.
The technique of Island blocking is being used more frequently since the advent of our new head and neck blocking techniques and the implementation of a newly devised lung protocol. The system presented affords the mould room personnel a quick and accurate means of island block fabrication without the constant remeasuring or subtle shifting to approximate correct placement. The cookie cutter is easily implemented into any department's existing block cutting techniques. The device is easily and inexpensively made either in a machine shop or acquired by contacting the author.
ERIC Educational Resources Information Center
El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.
2013-01-01
We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…
Large area comparisons of forest management practices in West Virginia (1951-present)
Thomas M. Schuler; W. Mark Ford; Mary Beth Adams; James N. Kochenderfer; Pamela J. Edwards
2006-01-01
Changes in species composition and possible associated changes in forest productivity after timber harvesting have important implications with respect to forest management options for landowners and for regional wood using industries. To better understand partial harvesting and its impacts, a study employing three different partial cutting practices, with monitoring of...
Practice-Oriented Model of Professional Education in Russia
ERIC Educational Resources Information Center
Svirin, Yury A.; Titor, Svetlana E.; Petrov, Alexander A.; Smirnov, Evgenii N.; Morozova, Ekaterina A.; Scherbakova, Olga Y.
2016-01-01
The relevance of the chosen problem is caused by the necessity of finding a model of qualitative growth of specialists training in conditions when cuts in expenditure of the state budget allocated to education occurs annually. Besides, the development of technology inevitably leads to the expansion of the list of subspecialties employers need. The…
Laser materials processing facility
NASA Technical Reports Server (NTRS)
Haggerty, J. S.
1982-01-01
The laser materials processing facility and its capabilities are described. A CO2 laser with continuous wave, repetitive pulse, and shaped power-time cycles is employed. The laser heated crystal growth station was used to produce metal and metal oxide single crystals and for cutting and shaping experiments using Si3N4 to displace diamond shaping processes.
Introduction to Welding. Instructor Edition. Introduction to Construction Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains the materials necessary to teach four instructional units on welding that are designed to prepare learners for entry-level employment. The following instructional units are presented: (1) welding materials; (2) welding tools; (3) welding layout and basic skills; and (4) oxyacetylene cutting. The document begins with a copy…
9 CFR 313.16 - Mechanical; gunshot.
Code of Federal Regulations, 2010 CFR
2010-01-01
... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...
9 CFR 313.16 - Mechanical; gunshot.
Code of Federal Regulations, 2013 CFR
2013-01-01
... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...
9 CFR 313.16 - Mechanical; gunshot.
Code of Federal Regulations, 2014 CFR
2014-01-01
... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...
9 CFR 313.16 - Mechanical; gunshot.
Code of Federal Regulations, 2012 CFR
2012-01-01
... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...
9 CFR 313.16 - Mechanical; gunshot.
Code of Federal Regulations, 2011 CFR
2011-01-01
... unconsciousness in the animal by a single shot before it is shackled, hoisted, thrown, cast, or cut. The animal shall be shot in such a manner that they will be rendered unconscious with a minimum of excitement and... firearms are employed, it is necessary to use one of the following type projectiles: Hollow pointed bullets...
The economic importance of Vermont's sawtimber
Joseph A. Michaels; M. Brian Stone; Paul E. Sendak; Paul E. Sendak
1986-01-01
This paper concentrates on the potential economic importance of Vermont's sawtimber. The timber industry employed over 9,000 workers in 1980, and the value of stumpage cut that year was worth approximately $459 million to the State's economy. Preliminary resurvey data indicate that sawtimber inventory now exceeds 14 billion board feet. Yet, sawtimber removals...
403(b) Plans Help Schools Save Costs and Payroll Taxes
ERIC Educational Resources Information Center
Mitchell, Bernadette
2012-01-01
There's not a school business official in the country who isn't dealing with budget cuts and trying to do more with less. This article shares some proven strategies to help school districts reduce spending and address personnel issues associated with retirement plans. Because public education employers are exempt from the Employee Retirement…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... cut metal, including assembled equipment, component parts of equipment, and spare parts. The negative...