Antoniolli, Andrea; Fontana, Ariel R; Piccoli, Patricia; Bottini, Rubén
2015-07-01
Low molecular weight polyphenols (LMW-PPs) and anthocyanins, along with the antioxidant capacity, were assessed in grape pomace extract (GPE) of red grape (Vitis vinifera L.) cv. Malbec. Twenty-six phenolics (13 LMW-PPs and 13 anthocyanins) were characterized and quantified by HPLC-MWD and UPLC-ESI-MS. The maximum concentrations of LMW-PPs corresponded to the flavanols (+)-catechin and (-)-epicatechin, whereas malvidin-3-glucoside was the most abundant anthocyanin. Piceatannol, a stilbene analogue to resveratrol with higher antioxidant activity, was firstly identified and quantified in GPE of the cv. Malbec. The antioxidant activity for Malbec GPE determined by oxygen radical absorbance capacity (ORAC) assay was 2,756 μmol TEg(-1) GPE. Therefore, the data reported sustain the use of winemaking by-products as a cheap source of phenolic compounds suitable for biotechnological applications, as a strategy for sustainable oenology. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...
Boccalandro, Hernán E; González, Carina V; Wunderlin, Daniel A; Silva, María F
2011-09-01
The identification of melatonin in plants has inspired new investigations to understand its biological function and which endogenous and external factors control its levels in these organisms. Owing to the therapeutical and nutraceutical properties of melatonin, it should be important to develop reliable analytical methods for its quantification in vegetal matrices containing this indoleamine, such as grape and wine. The main objectives of the present study were to test whether melatonin levels fluctuate during the day in berry skins of Vitis vinifera L. cv Malbec, thereby possibly relating its abundance to its putative antioxidant function, to determine whether daylight reaching clusters negatively controls melatonin levels, and to evaluate whether total polyphenols and anthocyanins also change through a 24-hr period. Grapes were harvested throughout the day/night to determine the moment when high levels of these components are present in grapes. The presence of melatonin in grapes was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. It is shown for the first time that melatonin levels fluctuate during the day/night cycle in plants grown under field conditions in a fruit organ of the species Vitis vinifera. We also determined that the diurnal decay of melatonin in berry skins is induced by sunlight, because covered bunches retained higher melatonin levels than exposed ones, thus explaining at least part of the basis of its daily fluctuation. Evidence of melatonin's antioxidant role in grapes is also suggested by monitoring malondialdehyde levels during the day. © 2011 John Wiley & Sons A/S.
MALBEC: a new CUDA-C ray-tracer in general relativity
NASA Astrophysics Data System (ADS)
Quiroga, G. D.
2018-06-01
A new CUDA-C code for tracing orbits around non-charged black holes is presented. This code, named MALBEC, take advantage of the graphic processing units and the CUDA platform for tracking null and timelike test particles in Schwarzschild and Kerr. Also, a new general set of equations that describe the closed circular orbits of any timelike test particle in the equatorial plane is derived. These equations are extremely important in order to compare the analytical behavior of the orbits with the numerical results and verify the correct implementation of the Runge-Kutta algorithm in MALBEC. Finally, other numerical tests are performed, demonstrating that MALBEC is able to reproduce some well-known results in these metrics in a faster and more efficient way than a conventional CPU implementation.
Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén
2016-12-01
High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Cavagnaro, Juan B; Ponce, María T; Guzmán, Javier; Cirrincione, Miguel A
2006-04-01
Argentinean Vitis vinifera cultivars although originated from Europe, have clear ampelographic and genotypic differences as compared with the European cultivars currently used in wine making. In vitro evaluation of salt tolerance has been used in many species. Our hypothesis was that Argentinean cultivars are more tolerant to salinity than European ones. Three European cultivars, Malbec, Cabernet Sauvignon and Chardonnay and four Argentincan cultivars, Cereza, Criolla Chica, Pedro Gimcnez and Torrontes Riojano were tested by in vitro culture. Treatments included: 1) Control, 2) 60 mEq/L of a mixture of three parts of NaCl and one part of CaCl2 and 3) 90 mEq/L of the salt mixture. Results from two experiments (I and II) are reported. No differences were found in plant survival, expressed as % of the respective control, among cultivars. Leaf area, leaf, stem and total dry matter (DM) in Experiment I and leaf area, leaf number and leaf, stem, root and total DM in Experiment II, were higher in Argentinean cultivars than in European ones. We conclude that Argentinean cultivars show better performance in growing under salinity, especially in the highest salt concentration. Differences among cultivars, inside each group, were found for most of the measured variables.
USDA-ARS?s Scientific Manuscript database
The influence of irrigation event frequency on water productivity, yield components, and berry maturity under two severities of sustained deficit irrigation was evaluated in field grown Malbec grapevines (Vitis vinifera L.) over three growing seasons. Above ground drip was used to supply vines with ...
USDA-ARS?s Scientific Manuscript database
The relationships between indicators of water status, yield and berry attributes at harvest were evaluated over four seasons in field-grown Cabernet Sauvignon and Malbec grapevines under sustained levels of water deficit to identify options for optimizing irrigation strategies under arid conditions....
Fanzone, Martín; González-Manzano, Susana; Pérez-Alonso, Joaquín; Escribano-Bailón, María Teresa; Jofré, Viviana; Assof, Mariela; Santos-Buelga, Celestino
2015-05-15
Malbec is a wine grape variety of great phenolic potential characterized for its high levels of anthocyanins and dihydroflavonols. To evaluate the possible implication of dihydroflavonols in the expression of red wine color through reactions of copigmentation or condensation, assays were carried out in wine model systems with different malvidin-3-O-glucoside:dihydroquercetin-3-O-glucoside molar ratios. The addition of increasing levels of dihydroquercetin-3-O-glucoside to a constant malvidin-3-O-glucoside concentration resulted in a hyperchromic effect associated with a darkening of the anthocyanin solutions, greater quantity of color and visual saturation, perceptible to the human eye. Copigmentation and thermodynamic measurements showed that dihydroquercetin-3-O-glucoside can act as an anthocyanin copigment, similar to other usual wine components like flavanols or phenolic acids, although apparently less efficient than flavonols. The high levels of dihydroflavonols existing in Malbec wines in relation to other non-anthocyanin phenolics should make this family of compounds particularly important to explain the color expression in Malbec young red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Murcia, Germán; Fontana, Ariel; Pontin, Mariela; Baraldi, Rita; Bertazza, Gianpaolo; Piccoli, Patricia N
2017-03-01
Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA 3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA 3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA 3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA 3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA 3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA 3 applications to grapevine plants cv. Malbec influenced the synthesis of primary and secondary metabolites known to be essential for coping with biotic and abiotic stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization.
Sánchez-Palomo, E; Trujillo, M; García Ruiz, A; González Viñas, M A
2017-10-01
The aroma of La Mancha Malbec red wines over four consecutive vintages was characterized by chemical and sensory analysis. Solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) were used to isolate and analyze free volatile compounds. Quantitative Descriptive Sensory Analysis (QDA) was carried out to characterize the sensory aroma profile. A total of 79 free volatile compounds were identified and quantified in the wines over these four vintages. Volatile aroma compounds were classified into seven aromatic series and their odour activity values were calculated in order to determine the aroma impact compounds in these wines. The aroma sensory profile of these wines was characterized by red fruit, fresh, prune, liquorice, clove, caramel, leather, tobacco and coffee aromas. This study provides a complete aroma characterization of La Mancha Malbec red wines and it is proposed that these wines can be considered as an alternative to wines from traditional grape varieties of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mitra, R; Cuesta-Alonso, E; Wayadande, A; Talley, J; Gilliland, S; Fletcher, J
2009-07-01
Human pathogens can contaminate leafy produce in the field by various routes. We hypothesized that interactions between Escherichia coli O157:H7 and spinach are influenced by the route of introduction and the leaf microenvironment. E. coli O157:H7 labeled with green fluorescent protein was dropped onto spinach leaf surfaces, simulating bacteria-laden raindrops or sprinkler irrigation, and survived on the phylloplane for at least 14 days, with increasing titers and areas of colonization over time. The same strains placed into the rhizosphere by soil infiltration remained detectable on very few plants and in low numbers (10(2) to 10(6) CFU/g fresh tissue) that decreased over time. Stem puncture inoculations, simulating natural wounding, rarely resulted in colonization or multiplication. Bacteria forced into the leaf interior survived for at least 14 days in intercellular spaces but did not translocate or multiply. Three spinach cultivars with different leaf surface morphologies were compared for colonization by E. coli O157:H7 introduced by leaf drop or soil drench. After 2 weeks, cv. Bordeaux hosted very few bacteria. More bacteria were seen on cv. Space and were dispersed over an area of up to 0.3 mm2. The highest bacterial numbers were observed on cv. Tyee but were dispersed only up to 0.15 mm2, suggesting that cv. Tyee may provide protected niches or more nutrients or may promote stronger bacterial adherence. These findings suggest that the spinach phylloplane is a supportive niche for E. coli O157:H7, but no conclusive evidence was found for natural entry into the plant interior. The results are relevant for interventions aimed at minimizing produce contamination by human pathogens.
Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen
2013-05-01
The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.
NASA Astrophysics Data System (ADS)
Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.
2017-06-01
Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects paleoenvironmental and vegetation changes. Average chain length (ACL) values of n-alkanes were of intermediate heritability (H2 = 0.30), suggesting that ACL values are more strongly influenced by genetic cues.
Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.
Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga
2016-09-01
Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wang, Y; Li, N; Zhao, X; Hu, J; He, Y; Hu, T; Wang, S; Wang, Y; Cao, K
Apple chlorotic leaf spot virus (ACLSV) movement protein (P50) is involved in cell-to-cell transport and influences the long-distance spread of silencing activity. Previously, we obtained 69 P50-interacting proteins from Malus sylvestris cv. R12740-7A and using bioinformatics analyzed their biological functions. In this study, we used the GAL4-based two-hybrid yeast system and His pull-down assays to confirm an interaction between PR-10 of M. sylvestris cv. R12740-7A and ACLSV P50. Our results provide a theoretical basis for further research on the biological function of PR-10 in ACLSV infection and the interacting mechanism between host and virus.
USDA-ARS?s Scientific Manuscript database
An efficient protocol for Agrobacterium-mediated transformation of Serbian potato cultivars Dragacevka and Jelica, enabling the introduction of oryzacystatin genes OCI and OCII, was established. Starting with leaf explants a two-stage transformation protocol combining procedures of Webb and Wenzler...
Yu, Runze; Cook, Michael G; Yacco, Ralph S; Watrelot, Aude A; Gambetta, Gregory; Kennedy, James A; Kurtural, S Kaan
2016-11-02
The relationships between variations in grapevine (Vitis vinifera L. cv. Merlot) fruit zone light exposure and water deficits and the resulting berry flavonoid composition were investigated in a hot climate. The experimental design involved application of mechanical leaf removal (control, pre-bloom, post-fruit set) and differing water deficits (sustained deficit irrigation and regulated deficit irrigation). Flavonol and anthocyanin concentrations were measured by C18 reversed-phased HPLC and increased with pre-bloom leaf removal in 2013, but with post-fruit set leaf removal in 2014. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Post-fruit set leaf removal increased total proanthocyanidin concentration in both years, whereas no effect was observed with applied water amounts. Mean degree of polymerization of skin proanthocyanidins increased with post-fruit set leaf removal compared to pre-bloom, whereas water deficit had no effect. Conversion yield was greater with post-fruit set leaf removal. Seed proanthocyanidin concentration was rarely affected by applied treatments. The application of post-fruit set leaf removal, regardless of water deficit. increased the proportion of proanthocyanidins derived from the skin, whereas no leaf removal or pre-bloom leaf removal regardless of water deficit increased the proportion of seed-derived proanthocyanidins. The study provides fundamental information to viticulturists and winemakers on how to manage red wine grape low molecular weight phenolics and polymeric proanthocyanidin composition in a hot climate.
Ehlenfeldt, M K; Prior, R L
2001-05-01
Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.
USDA-ARS?s Scientific Manuscript database
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a leaf rust resistant gene present in the durum wheat cv. Creso and its derivative Colosseo is one of the best characterized leaf rust resistance sources presently deployed in durum wheat breed...
Jiménez, Paula; García, Paula; Bustamante, Andrés; Barriga, Andrés; Robert, Paz
2017-04-15
Effect of the addition of avocado (Persea americana cv. Hass) or olive (Olea europaea cv. Arbequina) hydroalcoholic leaf extracts (AHE and OHE, respectively) on thermal stability of canola oil (CO) and high oleic sunflower oil (HOSO) during French potatoes frying at 180°C was studied. The extracts were characterized by the total phenolic content, phenol chromatographic profiles and antioxidant activity. B-type trimer procyanidins were the major phenolic compounds identified in AHE. OHE showed higher phenol content, antioxidant activity regarding AHE. CO+OHE and HOSO+OHE decreased the formation of polar compounds and showed an anti-polymeric effect with respect to oils without extracts, whereas AHE extract showed a prooxidant effect on HOSO. Therefore, OHE showed an antioxidant effect on HOSO and CO under the studied conditions. In addition, all systems (CO+AHE, HOSO+AHE, CO+OHE and HOSO+OHE) increased the retention of tocopherols. These results demonstrate the potential utility of OHE as natural antioxidant for oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
27 CFR 4.91 - List of approved prime names.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Madeline Angevine Magnolia Magoon Malbec Malvasia bianca Maréchal Foch Marsanne Melody Melon de Bourgogne (Melon) Merlot Meunier (Pinot Meunier) Mish Mission Missouri Riesling Mondeuse (Refosco) Montefiore Moore...
Bürling, K; Hunsche, M; Noga, G
2010-01-01
In modern agriculture there is a great demand for a rapid and objective screening method for stress resistance, because so far, the resistance of new cultivars is tested in time- and money consuming field experiments. Based on fluorescence ratios, and lifetime of fluorophores measured by fluorescence spectroscopy, we have postulated that an early discrimination of susceptible and resistant wheat cultivars to the leaf rust pathogen Puccinia triticina can be accomplished. As representative for leaf rust resistant and leaf rust susceptible wheat genotypes the cultivars Esket and Skalmeje, respectively, were chosen. Plants were grown under controlled environment conditions and inoculated with the leaf rust pathogen at the second-leaf-stage by single-droplet application. Fluorescence measurements were carried out from two to four days after inoculation (dai) by using a compact fibre-optic fluorescence spectrometer with nanosecond time-resolution. Experimental results indicated that UV laser-induced spectral characteristics as well as determination of fluorescence lifetime are suited to detect leaf rust two dai. For this purpose several ratios and wavelength can be considered. In general, the tested cultivars showed distinct responses to the pathogen development. In this context the ratio F451/F687 measured three dai and mean lifetimes at 500 nm and 530 nm are suited to differentiate the resistant Esket from the susceptible Skalmeje genotypes.
Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice.
Feldman, Aryo B; Murchie, Erik H; Leung, Hei; Baraoidan, Marietta; Coe, Robert; Yu, Su-May; Lo, Shuen-Fang; Quick, William P
2014-01-01
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
Borowiak, Klaudia; Wujeska, Agnieszka
2012-03-01
The cumulative ozone effect on morphological parameters (visible leaf injury, plant height and leaf growth, number of bean pods, petunia flowers and stalks) was examined in this study. Well-known ozonesensitive (Bel W3) and ozone-resistant (Bel B) tobacco cultivars as well as bean cv. Nerina and petunia cv. White cascade, both recognized as ozone sensitive, were used in the experiment. Investigations were carried out at two exposure sites varying in tropospheric ozone levels. Ozone negatively affected the leaf growth of both tobacco cultivars and bean. A negative relation was also found for ozone concentration and tobacco plant height. Number of petunia flowers and stalks and bean pods was positively correlated with ozone concentration. This could have been connected with earlier plant maturation due to faster generative development of plants in ozone-stress conditions.
Tomimatsu, Hajime; Tang, Yanhong
2012-08-01
To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.
Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun
2013-07-01
In theory, plants can alter the distribution of leaves along the lengths of their twigs (i.e., within-twig leaf distribution patterns) to optimize light interception in the context of the architectures of their leaves, branches and canopies. We hypothesized that (i) among canopy tree species sharing similar light environments, deciduous trees will have more evenly spaced within-twig leaf distribution patterns compared with evergreen trees (because deciduous species tend to higher metabolic demands than evergreen species and hence require more light), and that (ii) shade-adapted evergreen species will have more evenly spaced patterns compared with sun-adapted evergreen ones (because shade-adapted species are generally light-limited). We tested these hypotheses by measuring morphological traits (i.e., internode length, leaf area, lamina mass per area, LMA; and leaf and twig inclination angles to the horizontal) and physiological traits (i.e., light-saturated net photosynthetic rates, Amax; light saturation points, LSP; and light compensation points, LCP), and calculated the 'evenness' of within-twig leaf distribution patterns as the coefficient of variation (CV; the higher the CV, the less evenly spaced leaves) of within-twig internode length for 9 deciduous canopy tree species, 15 evergreen canopy tree species, 8 shade-adapted evergreen shrub species and 12 sun-adapted evergreen shrub species in a subtropical broad-leaved rainforest in eastern China. Coefficient of variation was positively correlated with large LMA and large leaf and twig inclination angles, which collectively specify a typical trait combination adaptive to low light interception, as indicated by both ordinary regression and phylogenetic generalized least squares analyses. These relationships were also valid within the evergreen tree species group (which had the largest sample size). Consistent with our hypothesis, in the canopy layer, deciduous species (which were characterized by high LCP, LSP and Amax) had more even leaf distribution patterns than evergreen species (which had low LCP, LSP and Amax); shade-adapted evergreen species had more even leaf distribution patterns than sun-adapted evergreen species. We propose that the leaf distribution pattern (i.e., 'evenness' CV, which is an easily measured functional trait) can be used to distinguish among life-forms in communities similar to the one examined in this study.
First report of Persimmon cryptic virus and Persimmon virus A in Korea
USDA-ARS?s Scientific Manuscript database
In 2014, a total of 77 persimmon (Diospyros kaki Thunb.) trees from Korean commercial persimmon orchards were surveyed for Persimmon cryptic virus (PeCV) and Persimmon virus A (PeVA). Leaf samples were collected from symptomatic trees with necrosis (two), or mosaic and leaf malformations (one) and 7...
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
USDA-ARS?s Scientific Manuscript database
Research on sapodilla has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition and scion/rootstock compatibility of cultivar ‘Prolific’ grafted onto 16 sapodilla rootstocks. For this purpose cultivars ‘Adelaide’, ‘Arcilago’...
Rodríguez-Hernandez, Ludwi; Nájera-Gomez, Humberto; Luján-Hidalgo, Maria Celína; Ruiz-Lau, Nancy; Lecona-Guzmán, Carlos Alberto; Abud-Archila, Miguel; Ruíz-Valdiviezo, Víctor Manuel; Gutiérrez-Miceli, Federico Antonio
2018-05-01
Olive trees are one of the most important oil crops in the world due to the sensorial and nutritional characteristics of olive oil, such as lipid composition and antioxidant content, and the medicinal properties of its leaves. In this paper, callus formation was induced using nodal segments of olive tree (Olea europaea cv. cornicabra) as explants. Fatty acid profile, total phenolic compounds and total flavonoid compounds were determined in callus culture after 15 weeks and compared with leaf and nodal segments tissues. There was no statistical difference in phenolic compounds among leaf, nodal segments and callus culture, whereas flavonoid compounds were higher in leaf. Fatty acid profile was similar in leaf, nodal segments and callus culture and was constituted by hexadecanoic acid, octadecanoic acid, cis-9-octadecenoic acid, cis-9,12-octadecadienoic acid, cis-9,12,15-octadecatrienoic acid. Hexadecanoic acid was the main fatty acid in callus, leaf and nodal segments with 35.0, 39.0 and 40.0% (w/w), of the lipid composition, respectively. With this paper, it is being reported for the first time the capacity of callus culture to accumulate fatty acids. Our results could serve to continue studying the production of fatty acids in callus cultivation as a biotechnological tool to improve different olive cultivars.
Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara
2014-09-01
Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.
Radice, Silvia
2010-01-01
Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.
Niu, Kaimin; Kuk, Min; Jung, Haein; Chan, Kokgan; Kim, Sooki
2017-09-01
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 ( Acer palmatum ), K9 ( Acer pseudosieboldianum ) and K13 ( Cercis chinensis ) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.
Atkins, Craig A; Emery, R J Neil; Smith, Penelope M C
2011-12-01
Phenotypes of five transgenic lines of narrow-leafed lupin (Lupinus angustifolius [L] cv Merrit) stably transformed with the isopentenyl pyrophosphate transferase (ipt) gene from Agrobacterium tumefaciens coupled to a flower-specific promoter (TP12) from Nicotiana tabacum [L.] are described. Expression of the transgene was detected in floral tissues and in shoot apical meristems on all orders of inflorescence. In each transgenic line there was significant axillary bud outgrowth at all nodes on the main stem with pronounced branch development from the more basal nodes in three of the lines. The lowest basal branches developed in a manner similar to the upper stem axillary branches on cv Merrit and bore fruits, which, in two lines, contained a significant yield of filled seeds at maturity. Senescence of the cotyledons was delayed in all lines with green cotyledons persisting beyond anthesis in one case. IPT expression increased cytokinin (CK) levels in flowers, meristem tissues and phloem exudates in a form specific manner, which was suggestive of localized flower and meristem production with significant long-distance re-distribution in phloem. The total number of fruits formed (pod set) on some transgenic lines was increased compared to cv Merrit. Grain size compared to cv Merrit was not significantly altered in transgenic lines.
NASA Technical Reports Server (NTRS)
Britz, S. J.; Sager, J. C.; Knott, W. M. (Principal Investigator)
1990-01-01
The role of blue light in plant growth and development was investigated in soybean (Glycine max [L.] Merr. cv Williams) and sorghum (Sorghum bicolor [L.] Moench. cv Rio) grown under equal photosynthetic photon fluxes (approximately 500 micromoles per square meter per second) from broad spectrum daylight fluorescent or blue-deficient, narrow-band (589 nanometers) low pressure sodium (LPS) lamps. Between 14 and 18 days after sowing, it was possible to relate adaptations in photosynthesis and leaf growth to dry matter accumulation. Soybean development under LPS light was similar in several respects to that of shaded plants, consistent with an important role for blue light photoreceptors in regulation of growth response to irradiance. Thus, soybeans from LPS conditions partitioned relatively more growth to leaves and maintained higher average leaf area ratios (mean LAR) that compensated lower net assimilation rates (mean NAR). Relative growth rates were therefore comparable to plants from daylight fluorescent lamps. Reductions in mean NAR were matched by lower rates of net photosynthesis (A) on an area basis in the major photosynthetic source (first trifoliolate) leaf. Lower A in soybean resulted from reduced leaf dry matter per unit leaf area, but lower A under LPS conditions in sorghum correlated with leaf chlorosis and reduced total nitrogen (not observed in soybean). In spite of a lower A, mean NAR was larger in sorghum from LPS conditions, resulting in significantly greater relative growth rates (mean LAR was approximately equal for both light conditions). Leaf starch accumulation rate was higher for both species and starch content at the end of the dark period was elevated two- and three-fold for sorghum and soybean, respectively, under LPS conditions. Possible relations between starch accumulation, leaf export, and plant growth in response to spectral quality were considered.
Soybeans (Glycine max (L.) Merr. cv Essex) were grown in a green house, and the first trifoliate leaf was either allowed to expand under a high photosynthetic photon flux density (PPFD) (1.4 millimoled per square meter per second) or a low PPFD (0.8 Millimoles per square meter pe...
Beriault, Jennifer N.; Horsman, Geoff P.; Devine, Malcolm D.
1999-01-01
Phloem transport of d,l-[14C]glufosinate, d-[14C]glufosinate, and acetyl-l-[14C]glufosinate was examined in the susceptible Brassica napus cv Excel and a glufosinate-resistant genotype (HCN27) derived by transformation of cv Excel with the phosphinothricin-N-acetyltransferase (pat) gene. Considerably more 14C was exported from an expanded leaf in HCN27 than in cv Excel following application of d,l-[14C]glufosinate (25% versus 6.3% of applied, respectively, 72 h after treatment). The inactive isomer, d-glufosinate, was much more phloem mobile in cv Excel than racemic d,l-glufosinate. Foliar or root supplementation with 1 mm glutamine increased d,l-[14C]glufosinate translocation in cv Excel but only transiently, suggesting that glutamine depletion is not the major cause of the limited phloem transport. Acetyl-l-[14C]glufosinate (applied as such or derived from l-glufosinate in pat transformants) was translocated extensively in the phloem of both genotypes. Acetyl-l-[14C]glufosinate was readily transported into the floral buds and flowers, and accumulated in the anthers in both genotypes. These results suggest that phloem transport of d,l-glufosinate is limited by rapid physiological effects of the l-isomer in source leaf tissue. The accumulation of acetyl-l-glufosinate in the anthers indicates that it is sufficiently phloem mobile to act as a foliar-applied chemical inducer of male sterility in plants expressing a deacetylase gene in the tapetum, generating toxic concentrations of l-glufosinate in pollen-producing tissues. PMID:10517854
Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik
2012-04-01
In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Dormancy is a survival strategy for withstanding exposure to adverse environmental conditions. Grapevines (Vitis vinifera L.) are often exposed to water deficits during the growing season and freezing temperatures during winter, yet the influence of water stress on dormancy has received little resea...
Regulated deficit irrigation on Malbec and Syrah grape and wine volatiles
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that water deficit influenced physiological parameters of the vine, changed berry composition and improved sensory attribute of wines by increasing fruity aroma and decreasing vegetal aromas. The objective of this study is to determine the influence of water stress on gra...
Chloroplast Response to Low Leaf Water Potentials
Boyer, J. S.; Potter, J. R.
1973-01-01
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves. PMID:16658486
Chloroplast response to low leaf water potentials: I. Role of turgor.
Boyer, J S; Potter, J R
1973-06-01
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of -10 bars. Since most of the loss in photochemical activity occurred at water potentials below -10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.
Increased Ethylene Production during Clinostat Experiments May Cause Leaf Epinasty
Leather, G. R.; Forrence, L. E.; Abeles, F. B.
1972-01-01
Ethylene production from tomato (Lycopersicum esculentum L. cv. Rutgers) plants based on a clinostat doubled during the first 2 hours of rotation. Carbon dioxide blocked the appearance of leaf epinasty normally associated with plants rotated on a clinostat. These results support the idea that epinasty of clinostated plants was due to increased ethylene production and not to the cancellation of the gravitational pull on auxin transport in the petiole. Images PMID:16657920
NASA Astrophysics Data System (ADS)
Ayyoub, Abdellatif; Er-Raki, Salah; Khabba, Saïd; Merlin, Olivier; César Rodriguez, Julio; Ezzahar, Jamal; Bahlaoui, Ahmed; Chehbouni, Abdelghani
2016-04-01
The present work aims to develop a simple approach relating normalized daily sap flow (per unit of leaf area) and daily ET0 (mm/day) calculated by two methods: FAO-Penman-Monteith (FAO-PM) and Hargreaves-Samani (HARG). The data sets used for developing this approach are taken from three experimental sites (olive trees, cv. "Oleaeuropaea L.", olive trees, cv. "Arbequino" and citrus trees cv. "Clementine Afourar") conducted in the Tensift region around Marrakech, Morocco and one experimental site (pecan orchard, cv. "Caryaillinoinensis, Wangenh. K. Koch") conducted in the Yaqui Valley, northwest of Mexico). The results showed that the normalized daily sap flow (volume of transpired water per unit of leaf area) was linearly correlated with ET0 (mm per day) calculated by FAO-PM method. The coefficient of determination (R2) and the slope of this linear regression varied between 0.71 and 0.97 and between 0.30 and 0.35, respectively, depending on the type of orchards. For HARG method, the relationship between both terms is also linear but with less accuracy (R2 =0.7) as expected due to the underestimation of ET0 by this method. Afterward, the validation of the developed linear relationship was performed over an olive orchard ("Oleaeuropaea L.") where the measurements of sap flow were available for another (2004) cropping season. The scatter plot between the normalized measured and estimated sap flow based on FAO-PM method reveals a very good agreement (slope = 1, with R2 = 0.83 and RMSE=0.14 L/m2 leaf area). However, for the estimation of normalized sap flow based on HARG method, the correlation is more scattered with some underestimation (5%). A further validation wasperformed using the measurements of evapotranspiration (ET) by eddy correlation system and the results showed that the correlation between normalized measured ET and estimated normalized sap flow is best when using FAO-PM method (RMSE=0.33 L/m2 leaf area) for estimating ET0 than when using HARG method (RMSE= 0.51 L/m2 leaf area). Finally, the performance of the developed approach was compared to the traditional dual crop coefficient scheme for estimating plant transpiration. Cross-comparison of these two approaches with the measurements data gave satisfactory results with an average value of RMSE equal to about 0.37 mm/day for both approaches.
Ganjewala, Deepak; Luthra, Rajesh
2009-01-01
Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.
NASA Astrophysics Data System (ADS)
Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das
2012-06-01
Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves
Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri
2017-01-01
Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550
Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...
Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea
NASA Astrophysics Data System (ADS)
Kross, Angela; McNairn, Heather; Lapen, David; Sunohara, Mark; Champagne, Catherine
2015-02-01
Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV ≤ 20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling.
Pereira-Carvalho, Rita C.; Díaz-Pendón, Juan A.; Fonseca, Maria Esther N.; Boiteux, Leonardo S.; Fernández-Muñoz, Rafael; Moriones, Enrique; Resende, Renato O.
2015-01-01
The tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato (Solanum lycopersicum L.) crops throughout tropical and subtropical regions of the world. TYLCD is associated with a complex of single-stranded circular DNA plant viruses of the genus Begomovirus (family Geminiviridae) transmitted by the whitefy Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). The tomato inbred line TX 468-RG is a source of monogenic recessive resistance to begomoviruses derived from the hybrid cv. Tyking F1. A detailed analysis of this germplasm source against tomato yellow leaf curl virus-Israel (TYLCV-IL), a widespread TYLCD-associated virus, showed a significant restriction to systemic virus accumulation even under continuous virus supply. The resistance was effective in limiting the onset of TYLCV-IL in tomato, as significantly lower primary spread of the virus occurred in resistant plants. Also, even if a limited number of resistant plants could result infected, they were less efficient virus sources for secondary spread owing to the impaired TYLCV-IL accumulation. Therefore, the incorporation of this resistance into breeding programs might help TYLCD management by drastically limiting TYLCV-IL spread. PMID:26008699
USDA-ARS?s Scientific Manuscript database
The objective of this study was to test the hypothesis that vine water stress during the growing season can lengthen the dormancy cycle by inducing earlier transition into endodormancy. A bud forcing assay was used to compare the dormancy transitions of field-grown ‘Malbec’ grapevines that had been ...
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...
2016-06-09
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
Grosser, J W; Gmitter, F G; Chandler, J L
1988-01-01
Intergeneric somatic hybrid plants between 'Hamlin' sweet orange [Citrus sinensis (L.) Osbeck] and 'Flying Dragon' trifoliate orange (Poncirus trifoliata Raf.) were regenerated following protoplast fusion. 'Hamlin' protoplasts, isolated from an habituated embryogenic suspension culture, were fused chemically with 'Flying Dragon' protoplasts isolated from juvenile leaf tissue. The hybrid selection scheme was based on complementation of the regenerative ability of the 'Hamlin' protoplasts with the subsequent expression of the trifoliate leaf character of 'Flying Dragon.' Hybrid plants were regenerated via somatic embryogenesis and multiplied organogenically. Hybrid morphology was intermediate to that of the parents. Chromosome counts indicated that the hybrids were allotetraploids (2n=4x=36). Malate dehydrogenase (MDH) isozyme patterns confirmed the hybrid nature of the regenerated plants. These genetically unique somatic hybrid plants will be evaluated for citrus rootstock potential. The cell fusion, selection, and regeneration scheme developed herein should provide a general means to expand the germplasm base of cultivated Citrus by intergeneric hybridization with related sexually incompatible genera.
Diurnal Variations in Photosynthetic Products and Nitrogen Metabolism in Expanding Leaves
Steer, Barrie T.
1973-01-01
Expanding leaves of Capsicum frutescens L. cv. California Wonder, Cucumis melo L. cv. Hales Best, and Citrus sinensis L. Osbeck cv. Washington Navel showed a marked diurnal periodicity in the incorporation of 14C from photosynthetically fixed 14CO2 into amino acids. Incorporation was virtually nil at the beginning of the photoperiod, reached a maximum in the 6th to 7th hour and decreased during the latter part of the photoperiod. In Capsicum frutescens this was apparently a reflection of the availability of reduced nitrogen controlled by the activity of nitrate reductase in the leaves. This also controlled the periodicity of the incorporation of 14C into fraction I protein. Possible control mechanisms and the relation of nitrogen metabolism to the periodicity of leaf expansion growth are discussed. PMID:16658402
Luo, Ming-Hua; Hu, Jin-Yao; Wu, Qing-Gui; Yang, Jing-Tian; Su, Zhi-Xian
2010-03-01
Taking the seedlings of Salvia miltiorrhiza cv. Sativa (SA) and S. miltiorrhiza cv. Silcestris (SI) as test materials, this paper studied the effects of drought stress on their leaf gas exchange and chlorophyll fluorescence parameters. After 15 days of drought stress, the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PS II (F(v)/F(m)) of SA were decreased by 66.42% and 10.98%, whereas those of SI were decreased by 29.32% and 5.47%, respectively, compared with the control, suggesting that drought stress had more obvious effects on the P(n) and F(v)/F(m) of SA than of SI. For SI, the reduction of P, under drought stress was mainly due to stomatal limitation; while for SA, it was mainly due to non-stomatal limitation. Drought led to a decrease of leaf stomatal conductance (G(s)), but induced the increase of water use efficiency (WUE), non-photochemical quenching coefficient (q(N)), and the ratio of photorespiration rate to net photosynthetic rate (P(r)/P(n)), resulting in the enhancement of drought resistance. The increment of WUE, q(N), and P(r)/P(n) was larger for SI than for SA, indicating that SI had a higher drought resistance capacity than SA.
Fanzone, Martín; Zamora, Fernando; Jofré, Viviana; Assof, Mariela; Gómez-Cordovés, Carmen; Peña-Neira, Álvaro
2012-02-01
Knowledge of the chemical composition of wine and its association with the grape variety/cultivar is of paramount importance in oenology and a necessary tool for marketing. Phenolic compounds are very important quality parameters of wines because of their impact on colour, taste and health properties. The aim of the present work was to study and describe the non-flavonoid and flavonoid composition of wines from the principal red grape varieties cultivated in Mendoza (Argentina). Sixty phenolic compounds, including phenolic acids/derivatives, stilbenes, anthocyanins, flavanols, flavonols and dihydroflavonols, were identified and quantified using high-performance liquid chromatography with diode array detection coupled with electrospray ionisation mass spectrometry (HPLC-DAD/ESI-MS). Marked quantitative differences could be seen in the phenolic profile among varieties, especially in stilbenes, acylated anthocyanins and other flavonoids. The polyphenolic content of Malbec wines was higher compared with the other red varieties. Dihydroflavonols represent a significant finding from the chemotaxonomic point of view, especially for Malbec variety. This is the first report on the individual phenolic composition of red wines from Mendoza (Argentina) and suggests that anthocyanins, flavanols and phenolic acids exert a great influence on cultivar-based differentiation. Copyright © 2011 Society of Chemical Industry.
Singh, Kamal Krishna; Ghosh, Shilpi
2013-02-01
KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.
Ashraf, Muhammad Arslan; Ashraf, Muhammad
2016-04-01
Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios decreased markedly due to salt stress in both wheat cultivars at different growth stages, and this salt-induced reduction was more prominent in cv. MH-97. Moreover, higher K(+)/Na(+) and Ca(2+)/Na(+) ratios were recorded at early growth stages in both wheat cultivars. It can be inferred from the results that wheat plants are more prone to adverse effects of salinity stress at early growth stages than that at the reproductive stage.
Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B
2015-01-01
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816
Electronic leaf wetness duration sensor: why it should be painted.
Sentelhas, P C; Monteiro, J E B A; Gillespie, T J
2004-05-01
The purpose of this study was to compare and evaluate the performance of electronic leaf wetness duration (LWD) sensors in measuring LWD in a cotton crop canopy when unpainted and painted sensors were used. LWD was measured with flat, printed-circuit wetness sensors, and the data were divided into two periods of 24 days: from 18 December 2001 to 10 January 2002, when the sensors were unpainted, and from 20 January to 13 February 2002, when the sensors were painted with white latex paint (two coats of paint). The data analysis included evaluating the coefficient of variation (CV%) among the six sensors for each day, and the relationship between the measured LWD (mean for the six sensors) and the number of hours with dew point depression under 2 degrees C, used as an indicator of dew presence. The results showed that the painting markedly reduced the CV% values. For the unpainted sensors the CV% was on average 67% against 9% for painted sensors. For the days without rainfall this reduction was greater. Comparing the sensor measurements to another estimator of LWD, in this case the number of hours with dew point depression under 2 degrees C, it was also observed that painting improved not only the precision of the sensors but also their sensitivity, because it increases the ability of the sensor to detect and measure the wetness promoted by small water droplets.
First report of Tomato chlorosis virus infecting sweet pepper in Costa Rica
USDA-ARS?s Scientific Manuscript database
In September 2008, a survey of whiteflies and whitefly-borne viruses was performed in greenhouses in the province of Cartago, Costa Rica. During this survey, sweet pepper (Capsicum annuum cv. Nataly) plants showing interveinal chlorosis, enations, necrosis, and mild upward leaf curling were observed...
Virulence Phenotypes and Molecular Genotypes of Puccinia triticina Isolates from Italy
USDA-ARS?s Scientific Manuscript database
Twenty-four isolates of Puccinia triticina from Italy were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each with a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci. The isolates were compared with a set of ...
Ellenson, James L.; Raba, Richard M.
1983-01-01
This report examines the capabilities of a new approach to the study of gas exchange and electron transport properties of single, intact leaves. The method combines conventional aspects of analysis with an image intensification system that records the spatial distribution of delayed light emission (DLE) over single leaf surfaces. The combined system was used to investigate physiological perturbations induced by exposure of single leaves of Phaseolus vulgaris cv `California Light Red' to a combination of SO2 (0.5 microliters per liter) and ozone (0.1 microliters per liter). Exposure of one-half of a leaf to this combination induced DLE and stomatal oscillations, but only in the half of the leaf exposed to the combined gases. Examination of phytoluminographs taken during these oscillations revealed distinct leaf patches where the greatest changes in DLE intensity occurred. This phenomenon is interpreted to be evidence that control of stomatal activity of intact plant leaves occurs within discrete leaf areas defined within the vascular network. Images Fig. 6 PMID:16662989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blatt, C.R.
1982-01-01
Preplant applications of Borate -65 at 0.56, 1.12 and 2.24 kg B/ha were reflected in significant increases in soil and leaf B levels up to one year following boron application. After 2 cropping seasons soil B level did not reflect rate of applied B and Solubor was applied broadcast at 1.12, 2.24 and 4.48 kg B/ha in the spring of the 3rd cropping season. Soil and leaf B levels and leaf marginal necrosis increased compared with control plots at all rates of applied B at full bloom in the 3rd cropping season. Rate of applied B was reflected in significantmore » soil and leaf B increases one year following application. Fruit yields through four cropping seasons were not affected by any source of rate of applied B. A soil B range of 0.15-0.25 ppM and a leaf B range of 20-30 ppm will give optimum crop response from the Midway strawberry.« less
Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps
NASA Technical Reports Server (NTRS)
Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele
2016-01-01
Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.
Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar.
Yuan, Xiangyang; Calatayud, Vicent; Gao, Feng; Fares, Silvano; Paoletti, Elena; Tian, Yuan; Feng, Zhaozhong
2016-10-01
The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turgeon, R.; Wimmers, L.E.
1988-05-01
Vein loading of exogenous ({sup 14}C)sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on ({sup 14}C)sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images didmore » not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on ({sup 14}C)sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.« less
RESPONSE OF BUSH BEAN EXPOSED TO ACID MIST
Bush bean plants (Phaseolus vulgaris L. cv. Contender) were treated once a week for six weeks with simulated acid mist at five pH ranging from 5.5 to 2.0. Leaf injury developed on plants exposed to acid concentrations below pH 3 and many leaves developed a flecking symptom simila...
[Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5 ].
Liang, Dan; Wang, Bin; Wang, Yun-qi; Zhang, Hui-lan; Yang, Song-nan; Li, Ang
2014-09-01
Four typical types of green shrubs of Beijing (Euonymus japonicus, Buxus microphylla, Berberis thunbergii cv. atropurpurea, Taxus cuspidate cv. nana) were selected to study their capacities in adsorbing and arresting PM2.5 using both field observations and air chamber simulations. Concurrently, in order to analyze the pollution characteristics of Beijing in winter and spring, the PM2.5 concentrations of December 2012 to May 2013 were collected. Experimental results showed that: From the gas chamber experiments, the ability to adsorb and arrest PM2.5 was in the order of Berberis thunbergii cv. atropurpurea > Buxus microphylla > Taxus cuspidate cv. nana > Euonymus japonicus, mainly due to the differences in leaf characteristics; Outside measurement results showed that the ability to adsorb and arrest PM2.5 was ranked as Buxus microphylla > Berberis thunbergii cv. atropurpurea > Taxus cuspidate cv. nana > Euonymus japonicus. Chamber simulation and outdoor observation showed that Buxus microphylla and Berberis thunbergii cv. atropurpurea had strong ability to adsorb and arrest PM2.5; Meanwhile, the slight differences between the chamber simulation and outdoor observation results might be related to plant structure. Compared to tree species, the planting condition of shrub species was loose, and it greened quickly; By analyzing the Beijing PM2.5 concentration values in winter and spring, it was found that the PM2.5 concentration was particularly high in the winter of Beijing, and evergreen shrubs maintained the ability to adsorb and arrest PM2.5.
Mercado, L; Dalcero, A; Masuelli, R; Combina, M
2007-06-01
Spontaneous fermentations are still conducted by several wineries in different regions of Argentina as a common practice. Native Saccharomyces strains associated with winery equipment, grape and spontaneous fermentations of Malbec musts from "Zona Alta del Río Mendoza" region (Argentina) were investigated during 2001 and 2002 in the same cellar. Low occurrence of Saccharomyces on grapes and their limited participation during fermentation were confirmed. Strain sequential substitution during fermentation was observed. Between 30% and 60% of yeast population at the end of fermentation was coming from yeasts already present in the winery. A stable and resident Saccharomyces micro-flora in the winery was confirmed. It exhibited a dynamic behaviour during season and between years. Commercial strains were found during fermentation in different percentages, but their presence on winery equipment was low. The present work represents a first approach to winery yeast and spontaneous fermentation Saccharomyces population dynamics in an important viticultural region from Argentina that has never been characterized before. The results obtained have an important significance for the local industry, showing for the first time the real situation of the microbial ecology of alcoholic fermentation in an industrial winery from Mendoza, Argentina.
Environmental modification of yield and nutrient composition of 'Waldmann's Green' leaf lettuce
NASA Technical Reports Server (NTRS)
Mitchell, C. A.; Chun, C.; Brandt, W. E.; Nielsen, S. S.
1997-01-01
Leaf number, dry weight, and nutrient composition of Lactuca sativa L. cv. Waldmann's Green leaves were compared following 9 days of treatment in a controlled environment room under various combinations of photosynthetic photon flux (PPF:350 vs 800 micromoles m-2 s-1), atmospheric CO2 level (ambient vs 1500 micromoles mol-1), and single-strength (1X:15 mM) vs double-strength (2X:30 mM) nitrogen (N) as NO3- alone or as NH4(+) + NO3- (1:5 molar ratio). CO2 enrichment greatly enhanced leaf number under all PPF and N conditions, but increased leaf dry weight only at high PPF. Conditions favoring high photosynthesis enhanced leaf starch content 3-fold, and protein content increased as much as 64% with 2X NH4(+)+NO3-. Free sugar content was 6 to 9% of leaf dry weight for all treatment combinations, while fat was 1.5 to 3.5%. Ash content varied from 15 to 20% of leaf dry weight. Modified controlled environments can be used to enhance the nutritional content as well as the yield of crops to be used for life support in space-deployed, self-sustaining human habitats. Leaf lettuce is a useful model crop for demonstrating the potential of nutritional value added by environmental manipulation.
Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua
2015-01-01
A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS–PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. PMID:25468933
Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua
2015-03-01
A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha
2017-01-01
Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula . Broad-sense heritability ( H 2 ) and coefficient of genotypic variation ( CV G ) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H 2 and CV G for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.
USDA-ARS?s Scientific Manuscript database
The aim of this work was to detect plant infections caused by Tomato chlorosis virus (ToCV) and begomoviruses in tomato plantlets, as well as in weeds growing around nursery greenhouses. During one year, starting in April 2008, 168 leaf tissue samples were collected, 90 tomato plantlets and 78 weed...
USDA-ARS?s Scientific Manuscript database
The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...
Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.
Hoori, F; Ehsanpour, A A; Mostajeran, A
2007-02-01
In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.
Low potassium enhances sodium uptake in red-beet under moderate saline conditions
NASA Technical Reports Server (NTRS)
Subbarao, G. V.; Wheeler, R. M.; Stutte, G. W.; Levine, L. H.; Sager, J. C. (Principal Investigator)
2000-01-01
Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio-regenerative life support systems, being considered for long-term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red-beet (Beta vulgaris L. ssp. vulgaris) under moderate Na-saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re-circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half-strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached -20 g kg-1 dwt. Lamina K levels decreased from -60 g kg-1 dwt at 5.0 mM K to -4.0 g kg-1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low-K treatments. Leaf chlorophyll levels were significantly decreased at low-K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or growth. Our results also suggest that cv. Ruby Queen can tolerate a much higher Na tissue concentration than cv. Klein Bol before there is any growth reduction. Grant numbers: 12180.
Effects of cadmium and zinc on ozone-induced phytotoxicity in cress and lettuce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czuba, M.; Ormrod, D.P.
1973-01-01
Cadmium or zinc solutions were applied to the foliage or roots of lettuce (Lactuca sativa L. cv. Grand Rapids) and cress (Lepidium sativum L. cv. Fine Curled) at concentrations of 100 parts per million (ppm) every four days for several weeks. Four weeks after sowing, plants were fumigated with 35 parts per hundred million (pphm) ozone, for 6 hours. Cress plants which had received root application of cadmium showed markedly increased ozone-induced phytotoxicity in terms of visible leaf damage and pigment degradation; in lettuce only pigment degradation was evident. There was less effect of zinc or foliar-applied cadmium on ozonemore » phytotoxicity.« less
Seedborne fungal contamination: consequences in space-grown wheat
NASA Technical Reports Server (NTRS)
Bishop, D. L.; Levine, H. G.; Kropp, B. R.; Anderson, A. J.; Hood, E. E. (Principal Investigator)
1997-01-01
Plants grown in microgravity are subject to many environmental stresses that may promote microbial growth and result in disease symptoms. Wheat (cv. Super Dwarf) recovered from an 8-day mission aboard a NASA (National Aeronautics and Space Administration) space shuttle showed disease symptoms, including girdling of leaf sheaths and chlorosis and necrosis of leaf and root tissues. A Neotyphodium species was isolated from the seed and leaf sheaths of symptomatic wheat used in the spaceflight mission. Certain isozymes of a peroxidase unique to extracts from the microgravity-grown plants were observed in extracts from earth-grown Neotyphodium-infected plants but were not present in noninfected wheat. The endophytic fungus was eliminated from the wheat seed by prolonged heat treatment at 50 degrees C followed by washes with water at 50 degrees C. Plants from wheat seed infected with the Neotyphodium endophyte were symptomless when grown under greenhouse conditions, whereas symptoms appeared after only 4 days of growth in closed containers. Disease spread from an infected plant to noninfected plants in closed containers. Dispersion via spores was found on asymptomatic plants at distances of 7 to 18 cm from infected plants. The size and shape of the conidia, mycelia, and phialide-bearing structures and the ability to grow rapidly on carbohydrates, especially xylose, resembled the characteristics of N. chilense, which is pathogenic on orchard grass, Doctylis glomerati. The Neotyphodium wheat isolate caused disease symptoms on other cereals (wheat cv. Malcolm, orchard grass, barley, and maize) grown in closed containers.
Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela
2018-01-01
Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529
Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun
2018-01-01
Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.
USDA-ARS?s Scientific Manuscript database
In Northern California, surveys of several vineyards planted to Vitis vinifera cv. Pinot noir (PN) clones 02A, 667, 777, and UCD 04 grafted onto the rootstock V. berlandieri x V. rupestris 110 Richter (110R) revealed 2 to 45% of vines showing solid red leaf canopies and two distinct disease stages, ...
USDA-ARS?s Scientific Manuscript database
Potato plants (Solanum tuberosum L. cv Kennebec) were grown in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers. Drought treatments were imposed at post-tuber initiation stage to assess water stress effects on leaf metabolites, and interactions with enriched CO2 concentrati...
The chrysanthemum leaf and root transcript profiling in response to salinity stress.
Cheng, Peilei; Gao, Jiaojiao; Feng, Yitong; Zhang, Zixin; Liu, Yanan; Fang, Weimin; Chen, Sumei; Chen, Fadi; Jiang, Jiafu
2018-06-23
RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (>132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport and homeostasis, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate ABA signaling. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed. Copyright © 2018. Published by Elsevier B.V.
Non-invasive absolute measurement of leaf water content using terahertz quantum cascade lasers.
Baldacci, Lorenzo; Pagano, Mario; Masini, Luca; Toncelli, Alessandra; Carelli, Giorgio; Storchi, Paolo; Tredicucci, Alessandro
2017-01-01
Plant water resource management is one of the main future challenges to fight recent climatic changes. The knowledge of the plant water content could be indispensable for water saving strategies. Terahertz spectroscopic techniques are particularly promising as a non-invasive tool for measuring leaf water content, thanks to the high predominance of the water contribution to the total leaf absorption. Terahertz quantum cascade lasers (THz QCL) are one of the most successful sources of THz radiation. Here we present a new method which improves the precision of THz techniques by combining a transmission measurement performed using a THz QCL source, with simple pictures of leaves taken by an optical camera. As a proof of principle, we performed transmission measurements on six plants of Vitis vinifera L. (cv "Colorino"). We found a linear law which relates the leaf water mass to the product between the leaf optical depth in the THz and the projected area. Results are in optimal agreement with the proposed law, which reproduces the experimental data with 95% accuracy. This method may overcome the issues related to intra-variety heterogeneities and retrieve the leaf water mass in a fast, simple, and non-invasive way. In the future this technique could highlight different behaviours in preserving the water status during drought stress.
Costs of measuring leaf area index of corn
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Hollinger, S. E.
1984-01-01
The magnitude of plant-to-plant variability of leaf area of corn plants selected from uniform plots was examined and four representative methods for measuring leaf area index (LAI) were evaluated. The number of plants required and the relative costs for each sampling method were calculated to detect 10, 20, and 50% differences in LAI using 0.05 and 0.01 tests of significance and a 90% probability of success (beta = 0.1). The natural variability of leaf area per corn plant was nearly 10%. Additional variability or experimental error may be introduced by the measurement technique employed and by nonuniformity within the plot. Direct measurement of leaf area with an electronic area meter had the lowest CV, required that the fewest plants be sampled, but required approximately the same amount of time as the leaf area/weight ratio method to detect comparable differences. Indirect methods based on measurements of length and width of leaves required more plants but less total time than the direct method. Unless the coefficients for converting length and width to area are verified frequently, the indirect methods may be biased. When true differences in LAI among treatments exceed 50% of mean, all four methods are equal. The method of choice depends on the resources available, the differences to be detected, and what additional information, such as leaf weight or stalk weight, is also desired.
Critical period of weed control in winter canola (Brassica napus L.) in a semi-arid region.
Aghaalikhani, M; Yaghoobi, S R
2008-03-01
In order to determine the critical period of weed control in winter canola (Brassica napus L. cv. Okapi) an experiment was carried out at research field of Tarbiat Modarres University, Tehran, Iran on 2004-2005 growing season. Fourteen experimental treatments which divided into two sets were arranged in Randomized complete blocks design with four replications. In the first set, the crop was kept weed-free from emergence time to two-leaf stage (V2), four-leaf stage (V4), six-leaf stage (V6), eight-leaf stage (V8), early flowering (IF), 50% of silique set (50% SS) and final harvest (H). In the second set, weeds where permitted to grow with the crop until above mentioned stages. In this study critical period of weed control was determined according to evaluate seed bank emerged weed biomass effect on canola grain yield loss using Gompertz and logistic equations. Result showed a critical time of weed control about 25 days after emergence (between four to six-leaf stages) with 5% accepted yield loss. Therefore, weed control in this time could provide the best result and avoid yield loss and damage to agroecosystem.
Sheep fed with banana leaf hay reduce ruminal protozoa population.
Freitas, Cláudio Eduardo Silva; Duarte, Eduardo Robson; Alves, Dorismar David; Martinele, Isabel; D'Agosto, Marta; Cedrola, Franciane; de Moura Freitas, Angélica Alves; Dos Santos Soares, Franklin Delano; Beltran, Makenzi
2017-04-01
A ciliate protozoa suppression can reduce methane production increasing the energy efficiency utilization by ruminants. The physicochemical characteristics of rumen fluid and the profile of the rumen protozoa populations were evaluated for sheep fed banana leaf hay in replacement of the Cynodon dactylon cv. vaqueiro hay. A total of 30 male sheep were raised in intensive system during 15 days of adaptation and 63 days of experimental period. The animals were distributed in a completely randomized design that included six replicates of five treatments with replacement levels (0, 25, 50, 75, and 100%) of the grass vaquero for the banana leaf hay. Samples of fluid were collected directly from the rumen with sterile catheters. Color, odor, viscosity, and the methylene blue reduction potential (MBRP) were evaluated and pH estimated using a digital potentiometer. After decimal dilutions, counts of genus protozoa were performed in Sedgewick Rafter chambers. The averages of pH, MBRP, color, odor, and viscosity were not influenced by the inclusion of the banana leaf hay. However, the total number of protozoa and Entodinium spp. population significantly decreased at 75 and 100% inclusions of banana leaf hay as roughage.
Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singal, H.R.; Sheoran, I.S.; Singh, R.
1987-04-01
Activities of key enzymes of the Calvin cycle and C/sub 4/ metabolism, rates of CO/sub 2/ fixation, and the initial products of photosynthetic /sup 14/CO/sub 2/ fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C/sub 4/ metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwallmore » and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of /sup 14/CO/sub 2/ assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO/sub 2/ during light. However, respiratory losses were very high during the dark period.« less
Salt Induced and Salt Suppressed Proteins in Tomato Leaves
USDA-ARS?s Scientific Manuscript database
Tomato (Solanum lycopersicum cv. Money Maker) seedlings at the two-leaf stage were grown in one-half strength Hoagland solution supplemented with 50 mM NaCl for 4 days, with 100 mM NaCl for 4 days, with 150 mM NaCl for 4 days, and with a final concentration 200 mM NaCl for 2 days. Solutions were ref...
NASA Astrophysics Data System (ADS)
Zhang, Pangzhen; Wu, Xiwen; Needs, Sonja; Liu, Di; Fuentes, Sigfredo; Howell, Kate
2017-07-01
Defoliation is a commonly used viticultural technique to balance the ratio between grapevine vegetation and fruit. Defoliation is conducted around the fruit zone to reduce the leaf photosynthetic area, and to increase sunlight exposure of grape bunches. Apical leaf removal is not commonly practiced, and therefore its influence on canopy structure and resultant wine aroma is not well studied. This study quantified the influences of apical and basal defoliation on canopy structure parameters using canopy cover photography and computer vision algorithms. The influence of canopy structure changes on the chemical compositions of grapes and wines was investigated over two vintages (2010-11 and 2015-16) in Yarra Valley, Australia. The Shiraz grapevines were subjected to five different treatments: no leaf removal (Ctrl); basal (TB) and apical (TD) leaf removal at veraison and intermediate ripeness, respectively. Basal leaf removal significantly reduced the leaf area index and foliage cover and increased canopy porosity, while apical leaf removal had limited influences on canopy parameters. However, the latter tended to result in lower alcohol level in the finished wine. Statistically significant increases in pH and decreases in TA was observed in shaded grapes, while no significant changes in the color profile and volatile compounds of the resultant wine were found. These results suggest that apical leaf removal is an effective method to reduce wine alcohol concentration with minimal influences on wine composition.
Mechanisms of resistance to sulfur dioxide in the Cucurbitaceae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bressan, R.A.; Wilson, L.G.; Filner, P.
1978-05-01
The relative resistance of four cultivars of the Cucurbitaceae (Cucumis sativus L. cv. National Pickling, and inbred line SC 25; Cucurbita pepo L. cv. Prolific Straightneck Squash, and cv. Small Sugar Pumpkin) to SO/sub 2/ was determined. According to plots of the degree of exposure to SO/sub 2/ (which depends on the SO/sub 2/ concentration and the duration of the exposure), there is an 8-fold difference in resistance to this toxic gas among these cultivars. However, if the degree of injury is plotted as a function of the amount of SO/sub 2/ absorbed, all four cultivars appear similarly sensitive tomore » the gas. We conclude that the principal reason for special and varietal differences in resistance among these cultivars is the relative rate of absorption of the gas. The densities of stomata on the upper and lower surfaces of leaves did not differ sufficiently between cultivars to account for the differences in absorption rates. It remains to be determined whether the differences in rate of SO/sub 2/ absorption reflect differences in stomatal activity. Resistance of individual leaves changes with position on the plant axis (age of the leaf). There exists a gradient of decreasing resistance from the apex downward. This resistance gradient cannot be accounted for by differences in rates of SO/sub 2/ absorption. We infer the existence of a biochemically based, developmentally controlled resistance mechanism which functions after SO/sub 2/ has entered the leaf. Biochemical comparisons of old and young leaves with such differences in resistance should be helpful in determining the biochemistry of SO/sub 2/ toxicity.« less
Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela
2016-03-01
Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.
Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali
2012-12-30
Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.
Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia
2014-08-01
Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. © 2013 Scandinavian Plant Physiology Society.
Murcia, Germán; Pontin, Mariela; Reinoso, Herminda; Baraldi, Rita; Bertazza, Gianpaolo; Gómez-Talquenca, Sebastián; Bottini, Rubén; Piccoli, Patricia N
2016-03-01
Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters. © 2015 Scandinavian Plant Physiology Society.
Prezelj, Nina; Covington, Elizabeth; Roitsch, Thomas; Gruden, Kristina; Fragner, Lena; Weckwerth, Wolfram; Chersicola, Marko; Vodopivec, Maja; Dermastia, Marina
2016-01-01
Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp–grapevine interaction in infected grapevines of cv. “Modra frankinja” under natural conditions in the vineyard. In FDp-infected leaf vein-enriched tissues, the seasonal transcriptional profiles of 14 genes selected from various metabolic pathways showed an FDp-specific plant response compared to other grapevine yellows and uncovered a new association of the SWEET17a vacuolar transporter of fructose with pathogens. Non-targeted metabolome analysis from leaf vein-enriched tissues identified 22 significantly changed compounds with increased levels during infection. Several metabolites corroborated the gene expression study. Detailed investigation of the dynamics of carbohydrate metabolism revealed significant accumulation of sucrose and starch in the mesophyll of FDp-infected leaves, as well as significant up-regulation of genes involved in their biosynthesis. In addition, infected leaves had high activities of ADP-glucose pyrophosphorylase and, more significantly, sucrose synthase. The data support the conclusion that FDp infection inhibits phloem transport, resulting in accumulation of carbohydrates and secondary metabolites that provoke a source-sink transition and defense response status. PMID:27242887
Rescic, Jan; Mikulic-Petkovsek, Maja; Rusjan, Denis
2016-11-01
The interest in producing wines preferred by consumers increases the need for improving practices to modify grape and wine composition. The aim of this study was to assess the impacts of three different canopy management measures, (1) early leaf removal in the cluster zone, (2) removal of young leaves above the second pair of wires and (3) Double Maturation Raisonnée, on the yield and chemical composition of 'Istrian Malvasia' grape and wine. Double Maturation Raisonnée had a significantly greater impact on phenolic compounds, while the highest soluble solids (24.3 and 23.5 °Brix) and titratable acidity (7.0 and 7.1 g L -1 ) were measured at early leaf removal. Leaf removal at véraison caused an unexpected augmentation of flavonols in the berry skin. Early leaf removal resulted in significantly lower extracts of wine. Nevertheless, they reached the highest mark (16.5 out of 20.0 points) in sensory evaluation compared with leaf removal at véraison and Double Maturation Raisonnée (15.0 points) and control (16.0 points). Leaf removal at véraison and Double Maturation Raisonnée improved the phenolic composition of wine, producing a full-bodied wine. On the other hand, early leaf removal significantly augmented the yield and titratable acidity, hydroxycinnamic acids and flavanols of wine, which might have led to a fresher but less-bodied wine. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins
Widana Gamage, Shirani M. K.; Dietzgen, Ralf G.
2017-01-01
Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans-complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D155 residue in the 30K-like movement protein-specific LxD/N50-70G motif of NSm was critical for plasmodesmata localization and movement activity. Compared to other tospoviruses, CaCV proteins have both conserved and unique properties in terms of in planta localization, interactions and protein functions which will effect viral multiplication and movement in host plants. PMID:28443083
Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins.
Widana Gamage, Shirani M K; Dietzgen, Ralf G
2017-01-01
Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans -complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D 155 residue in the 30K-like movement protein-specific LxD/N 50-70 G motif of NSm was critical for plasmodesmata localization and movement activity. Compared to other tospoviruses, CaCV proteins have both conserved and unique properties in terms of in planta localization, interactions and protein functions which will effect viral multiplication and movement in host plants.
Sajeevan, R. S.; Nataraja, Karaba N.; Shivashankara, K. S.; Pallavi, N.; Gurumurthy, D. S.; Shivanna, M. B.
2017-01-01
Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph–mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry. PMID:28421085
Water Stress Enhances Expression of an α-Amylase Gene in Barley Leaves
Jacobsen, John V.; Hanson, Andrew D.; Chandler, Peter C.
1986-01-01
The amylases of the second leaves of barley seedlings (Hordeum vulgare L. cv Betzes) were resolved into eight isozymes by isoelectric focusing, seven of which were β-amylase and the other, α-amylase. The α-amylase had the same isoelectric point as one of the gibberellin-induced α-amylase isozymes in the aleurone layer. This and other enzyme characteristics indicated that the leaf isozyme corresponded to the type A aleurone α-amylase (low pI group). Crossing experiments indicated that leaf and type A aleurone isozymes resulted from expression of the same genes. In unwatered seedlings, leaf α-amylase increased as leaf water potential decreased and ABA increased. Water stress had no effect on β-amylase. α-Amylase occurred uniformly along the length of the leaf but β-amylase was concentrated in the basal half of the leaf. Cell fractionation studies indicated that none of the leaf α-amylase occurred inside chloroplasts. Leaf radiolabeling experiments followed by extraction of α-amylase by affinity chromatography and immunoprecipitation showed that increase of α-amylase activity involved synthesis of the enzyme. However, water stress caused no major change in total protein synthesis. Hybridization of a radiolabeled α-amylase-related cDNA clone to size fractionated RNA showed that water-stressed leaves contained much more α-amylase mRNA than unstressed plants. The results of these and other studies indicate that regulation of gene expression may be a component in water-stress induced metabolic changes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:16664625
NASA Technical Reports Server (NTRS)
Yorio, N. C.; Goins, G. D.; Kagie, H. R.; Wheeler, R. M.; Sager, J. C.
2001-01-01
Radish (Raphanus sativus L. cv. Cherriette), lettuce (Lactuca sativa L. cv. Waldmann's Green), and spinach (Spinacea oleracea L. cv. Nordic IV) plants were grown under 660-nm red light-emitting diodes (LEDs) and were compared at equal photosynthetic photon flux (PPF) with either plants grown under cool-white fluorescent lamps (CWF) or red LEDs supplemented with 10% (30 micromoles m-2 s-1) blue light (400-500 nm) from blue fluorescent (BF) lamps. At 21 days after planting (DAP), leaf photosynthetic rates and stomatal conductance were greater for plants grown under CWF light than for those grown under red LEDs, with or without supplemental blue light. At harvest (21 DAP), total dry-weight accumulation was significantly lower for all species tested when grown under red LEDs alone than when grown under CWF light or red LEDs + 10% BF light. Moreover, total dry weight for radish and spinach was significantly lower under red LEDs + 10% BF than under CWF light, suggesting that addition of blue light to the red LEDs was still insufficient for achieving maximal growth for these crops.
The geometry of proliferating dicot cells.
Korn, R W
2001-02-01
The distributions of cell size and cell cycle duration were studied in two-dimensional expanding plant tissues. Plastic imprints of the leaf epidermis of three dicot plants, jade (Crassula argentae), impatiens (Impatiens wallerana), and the common begonia (Begonia semperflorens) were made and cell outlines analysed. The average, standard deviation and coefficient of variance (CV = 100 x standard deviation/average) of cell size were determined with the CV of mother cells less than the CV for daughter cells and both are less than that for all cells. An equation was devised as a simple description of the probability distribution of sizes for all cells of a tissue. Cell cycle durations as measured in arbitrary time units were determined by reconstructing the initial and final sizes of cells and they collectively give the expected asymmetric bell-shaped probability distribution. Given the features of unequal cell division (an average of 11.6% difference in size of daughter cells) and the size variation of dividing cells, it appears that the range of cell size is more critically regulated than the size of a cell at any particular time.
Abe, K; Takahashi, H; Suge, H
1998-12-01
We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.
Xue, Wei; Nay-Htoon, Bhone; Lindner, Steve; Dubbert, Maren; Otieno, Dennis; Ko, Jonghan; Werner, Christiane; Tenhunen, John
2016-04-01
Leaf intrinsic water use efficiency (WUEi) coupling maximum assimilation rate (Amax) and transpirable water lost via stomatal conductance (gsc) has been gaining increasing concern in sustainable crop production. Factors that influence leaf Amax and WUEi in rice (Oryza sativa L. cv Unkang) at flooding and rainfed conditions were evaluated. Positive correlations for leaf nitrogen content (Nm) and maximum carboxylation rate (Vcmax), for nitrogen allocation in Rubisco enzymes and mesophyll conductance (gm) were evident independent of cropping cultures. Rainfed rice exhibited enriched canopy leaf average Nm resulting in higher Amax, partially supporting improved leaf WUEi. Maximum WUEi (up to 0.14 μmol mmol(-1)) recorded in rainfed rice under drought conditions resulted from increasing gm/gsc ratio while at cost of significant decline in Amax due to hydraulically constrained gsc. Amax sensitivity related to gsc which was regulated by plant hydraulic conductance. WUEi was tightly correlated to Vcmax/gsc and gm/gsc ratios across the paddy and rainfed not to light environment, morphological and physiological traits, highlighting enhance capacity of Nm accumulation in rainfed rice with gsc at moderately high level similar to paddy rice facilitate optimization in Amax and WUEi while, is challenged by drought-vulnerable plant hydraulic conductance. Copyright © 2016 Elsevier GmbH. All rights reserved.
Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Ramonell, K. M.; Kuang, A.; Porterfield, D. M.; Crispi, M. L.; Xiao, Y.; McClure, G.; Musgrave, M. E.
2001-01-01
Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.
Atkinson, Ross G.; Schröder, Roswitha; Hallett, Ian C.; Cohen, Daniel; MacRae, Elspeth A.
2002-01-01
Polygalacturonases (PGs) cleave runs of unesterified GalUA that form homogalacturonan regions along the backbone of pectin. Homogalacturonan-rich pectin is commonly found in the middle lamella region of the wall where two adjacent cells abut and its integrity is important for cell adhesion. Transgenic apple (Malus domestica Borkh. cv Royal Gala) trees were produced that contained additional copies of a fruit-specific apple PG gene under a constitutive promoter. In contrast to previous studies in transgenic tobacco (Nicotiana tabacum) where PG overexpression had no effect on the plant (K.W. Osteryoung, K. Toenjes, B. Hall, V. Winkler, A.B. Bennett [1990] Plant Cell 2: 1239–1248), PG overexpression in transgenic apple led to a range of novel phenotypes. These phenotypes included silvery colored leaves and premature leaf shedding due to reduced cell adhesion in leaf abscission zones. Mature leaves had malformed and malfunctioning stomata that perturbed water relations and contributed to a brittle leaf phenotype. Chemical and ultrastructural analyses were used to relate the phenotypic changes to pectin changes in the leaf cell walls. The modification of apple trees by a single PG gene has offered a new and unexpected perspective on the role of pectin and cell wall adhesion in leaf morphology and stomatal development. PMID:12011344
Doncheva, Snezhana; Moustakas, Michael; Ananieva, Kalina; Chavdarova, Martina; Gesheva, Emiliya; Vassilevska, Rumyana; Mateev, Plamen
2013-02-01
The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus × Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus × H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the interspecific hybridization. The ability of EDTA to prevent Pb absorption by the plants could underly the mechanism of limiting of the negative impact of Pb ions. Hence, EDTA cannot be used to enhance Pb absorption from nutrient solution by sunflower plants for phytoremediation purposes.
Isaac, Marney E.; Martin, Adam R.; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel
2017-01-01
Hypotheses on the existence of a universal “Root Economics Spectrum” (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world’s most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another. PMID:28747919
Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel
2017-01-01
Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.
Chen, M H; Wang, P J; Maeda, E
1987-10-01
The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.
Ludlow, M M; Björkman, O
1984-11-01
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.
NASA Astrophysics Data System (ADS)
Motai, Akira; Nakaba, Satoshi; Lenggoro, I. Wuled; Watanabe, Makoto; Wada, Yoshiharu; Izuta, Takeshi
2017-11-01
The aim of this study was to determine the effects of submicron ammonium sulfate (AS) particles on komatsuna (Brassica rapa L. cv. Hakkei) plants. First, we optimized a leaf-washing method to measure the amount of AS particles deposited on the leaf surface of the plants. Then, we used this method to determine the retention time of particles deposited on the leaf surface of the plants. We also investigated the effects of AS particles on the growth and yield of the plants. Almost all the AS particles deposited on the leaf surface were removed within 1 min washing time with ultrapure water, and ion leaching from the leaf was relatively slow but continuous during the leaf-washing procedure. On the basis of these results, we determined that 1 min was a suitable washing time to remove most of the AS particles while minimizing the influence of ion leaching from the leaf. The amount of particulate SO42- deposited on the leaf surface decreased over time, probably because AS particles deposited on the leaf surface deliquesced, allowing ions such as SO42- in the deliquescence solution to be absorbed into the leaf. The plants were grown and exposed to AS particles for 16 days in naturally lit phytotrons. The daily mean increase in the concentration of SO42- in PM2.5 by the exposure to AS particles was 22.5 μg m-3 in the phytotrons. The growth and yield of the plants were significantly reduced by the exposure to AS particles. The exposure to AS particles did not affect the leaf concentrations of nitrogen and chlorophyll, but significantly reduced stomatal conductance. Therefore, stomatal closure is one of the reasons for the AS particle-induced reductions in the growth and yield of komatsuna plants.
Li, Yong; Ren, Binbin; Yang, Xiuxia; Xu, Guohua; Shen, Qirong; Guo, Shiwei
2012-05-01
The phenomenon whereby ammonium enhances the tolerance of rice seedlings (Oryza sativa L., cv. 'Shanyou 63' hybrid indica China) to water stress has been reported in previous studies. To study the intrinsic mechanism of biomass synthesis related to photosynthesis, hydroponic experiments supplying different nitrogen (N) forms were conducted; water stress was simulated by the addition of polyethylene glycol. Water stress decreased leaf water potential (Ψ(leaf)) under nitrate nutrition, while it had no negative effect under ammonium nutrition. The decreased Ψ(leaf) under nitrate nutrition resulted in chloroplast downsizing and subsequently decreased mesophyll conductance to CO(2) (g(m)). The decreased g(m) and stomatal conductance (g(s)) under nitrate nutrition with water stress restrained the CO(2) supply to the chloroplast and Rubisco. The relatively higher distribution of leaf N to Rubisco under ammonium nutrition might also be of benefit for photosynthesis under water stress. In conclusion, chloroplast downsizing induced a decline in g(m), a relatively higher decrease in g(s) under nitrate nutrition with water stress, restrained the CO(2) supply to Rubisco and finally decreased the photosynthetic rate.
NASA Technical Reports Server (NTRS)
Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)
1984-01-01
The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.
Poschenrieder, Charlotte; Gunsé, Benet; Barceló, Juan
1989-01-01
Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed. PMID:16666937
Grosser, J W; Gmitter, F G; Tusa, N; Chandler, J L
1990-04-01
Allotetraploid intergeneric somatic hybrid plants between Citrus reticulata Blanco cv. Cleopatra mandarin and Citropsis gilletiana Swing. & M. Kell. (common name Gillet's cherry orange) were regenerated following protoplast fusion. Cleopatra protoplasts were isolated from an ovule-derived embryogenic suspension culture and fused chemically with leaf-derived protoplasts of Citropsis gilletiana. Cleopatra mandarin and somatic hybrid plants were regenerated via somatic embryogenesis. Hybrid plant identification was based on differential leaf morphology, root-tip cell chromosome number, and electrophoretic analyses of phosphoglucose mutase (PGM) and phosphohexose isomerase (PHI) isozyme banding patterns. This is the first somatic hybrid within the Rutaceae reported that does not have Citrus sinensis (sweet orange) as a parent, and the first produced with a commercially important citrus rootstock and a complementary but sexually incompatible, related species.
Pasković, Igor; Ćustić, Mirjana Herak; Pecina, Marija; Bronić, Josip; Ban, Dean; Radić, Tomislav; Pošćić, Filip; Jukić Špika, Maja; Soldo, Barbara; Palčić, Igor; Goreta Ban, Smiljana
2018-06-08
The aim of this study was to examine the effect of foliar (Mn_fol) and soil Zeolite-Mn (Mn_ZA) application on leaf mineral, total phenolic and oleuropein content, and mycorrhizae colonization of self-rooted cv. Leccino plantlets grown on calcareous soil. The dissolution of zeolite was 97% when citric acid was applied at 0.05 mM dm -3 , suggesting that organic acids excreted by roots can dissolve modified zeolite (Mn_ZA) making Mn available for plant uptake. The leaf Mn concentration was the highest for Mn_fol treatment at 90 DAT (172 mg kg -1 ) and 150 DAT (70 mg kg -1 ) compared to other treatments. Mn_ZA soil application increased leaf Mn concentration at 150 DAT compared to control and NPK treatment. The oleuropein leaf content was highest for Mn_fol compared to other treatments at 90 DAT and lowest at 150 DAT. Arbuscular mycorrhizal colonization was higher for Mn_fol treatment at 150 DAT compared to all other treatments. Changes in the arbuscular colonization percentage and oleuropein content may be connected to stress conditions provoked by high leaf Mn concentration in Mn_fol treatment at 90 DAT. Mn_ZA application increased leaf Mn concentration at 150 DAT compared to control and NPK treatments. It can be assumed that the dominant mechanism in Mn uptake from modified zeolite is Mn_ZA dissolution through root exudates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fajardo, Alex; Piper, Frida I
2011-01-01
• The focus of the trait-based approach to study community ecology has mostly been on trait comparisons at the interspecific level. Here we quantified intraspecific variation and covariation of leaf mass per area (LMA) and wood density (WD) in monospecific forests of the widespread tree species Nothofagus pumilio to determine its magnitude and whether it is related to environmental conditions and ontogeny. We also discuss probable mechanisms controlling the trait variation found. • We collected leaf and stem woody tissues from 30-50 trees of different ages (ontogeny) from each of four populations at differing elevations (i.e. temperatures) and placed at each of three locations differing in soil moisture. • The total variation in LMA (coefficient of variation (CV) = 21.14%) was twice that of WD (CV = 10.52%). The total variation in traits was never less than 23% when compared with interspecific studies. Differences in elevation (temperature) for the most part explained variation in LMA, while differences in soil moisture and ontogeny explained the variation in WD. Traits covaried similarly in the altitudinal gradient only. • Functional traits of N. pumilio exhibited nonnegligible variation; LMA varied for the most part with temperature, while WD mostly varied with moisture and ontogeny. We demonstrate that environmental variation can cause important trait variation without species turnover. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Tausz-Posch, Sabine; Norton, Robert M; Seneweera, Saman; Fitzgerald, Glenn J; Tausz, Michael
2013-06-01
This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi-arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (A(net)), stomatal conductance (g(s)) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol⁻¹ or ambient CO₂ concentrations (approximately 390 µmol mol⁻¹). Mean A(net) (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO₂] than previously found in FACE-grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry-land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO₂] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO₂], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO₂] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates. Copyright © Physiologia Plantarum 2012.
Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat.
Singla, Jyoti; Lüthi, Linda; Wicker, Thomas; Bansal, Urmil; Krattinger, Simon G; Keller, Beat
2017-01-01
Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75. Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar 'Forno' continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two 'Forno' QTLs into the leaf rust-susceptible Swiss winter wheat cultivar 'Arina'. The resulting backcross line 'ArinaLrFor' showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. 'Chinese Spring' and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.
Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian
2012-01-01
Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721
Gatti, Matteo; Pirez, Facundo J.; Chiari, Giorgio; Tombesi, Sergio; Palliotti, Alberto; Merli, Maria C.; Poni, Stefano
2016-01-01
Manipulating or shifting annual grapevine growing cycle to offset limitations imposed by global warming is a must today, and delayed winter pruning is a tool to achieve it. However, no information is available about its physiological background, especially in relation to modifications in canopy phenology, demography and seasonal carbon budget. Mechanistic hypothesis underlying this work was that very late winter pruning (LWP) can achieve significant postponement of phenological stages so that ripening might occur in a cooler period and, concurrently, ripening potential can be improved due to higher efficiency and prolonged longevity of the canopy. Variability in the dynamics of the annual cycle was created in mature potted cv. Sangiovese grapevines subjected to either standard winter pruning (SWP) or late and very late winter pruning (LWP, VLWP) performed when apical shoots on the unpruned canes were at the stage of 2 and 7 unfolded leaves. Vegetative growth, phenology and canopy net CO2 exchange (NCER) were followed throughout the season. Despite LWP and VLWP induced a bud-burst delay of 17 and 31 days vs. SWP, the delay was fully offset at harvest for LWP and was reduced to 6 days in VLWP. LWP showed notably higher canopy efficiency as shorter time needed to reach maximum NCER/leaf area (22 days vs. 34 in SWP), highest maximum NCER/leaf area (+37% as compared to SWP) and higher NCER/leaf area rates from veraison to end of season. As a result, seasonal cumulated carbon in LWP was 17% higher than SWP. A negative functional relationship was also established between amount of leaf area removed at winter pruning and yield per vine and berry number per cluster. Although retarded winter pruning was not able to postpone late-season phenological stages under the warm conditions of this study, it showed a remarkable potential to limit yield while improving grape quality, thereby fostering the hypothesis that it could be used to replace time-consuming and costly cluster thinning. This preliminary study indicates that proper winter pruning date should be timed so as not to exceed the stage of two unfolded leaves. PMID:27242860
Ezzine, Monia; Ghorbel, Mohamed Habib
2006-10-01
The sensitivity of hydroponically cultivated tomato (Lycopersicon esculentum Mill. cv. Ibiza F1) submitted to nitrite treatments (0.25-10mM KNO(2)) for 7d was studied. Increasing nitrite levels in the culture medium led to several disruptions of tomato plants, reflected by reductions of both dry matter per plant, chlorophyll concentrations and the appearance of chlorosis symptoms at the leaf surface. This behaviour was accompanied by stimulation of nitrite, nitrate and ammonia ion accumulation, mainly in roots and old leaves. Higher proteolytic and gaiacol peroxidase (GPX, EC. 1.11.1.7) activities and malonyldialdehyde content were also noted. Protein content of the different plant organs was decreased by nitrite treatment. These physiological and biochemical parameters were chosen as they are stress indicators. Taken together, our data partly explain the harmful effects of nitrite ions, when excessive in the culture medium.
Gautum, K K; Raj, R; Kumar, S; Raj, S K; Roy, R K; Katiyar, R
2014-01-01
The complete RNA3 genome of Cucumber mosaic virus (CMV) was amplified by RT-PCR from three infected gerbera (Gerbera jamesonii) leaf samples exhibiting severe chlorotic mosaic and flower deformation symptoms. The amplicons obtained were cloned sequenced and deposited in GenBank under the accessions JN692495, JX913531 (from cv. Zingaro) and JX888093 (from cv. Silvester). These sequences shared 98-99 % identities to each other and with a strain of CMV-Banana reported from India, and 90-95 % identities with various strains of CMV reported worldwide. Phylogenetic analysis revealed their closest affinity with CMV-Banana strain, and close relationships with several other strains of CMV of subgroup IB. This study provides evidence of subgroup IB CMV causing severe chlorosis and flower deformation in two cultivars (Zingaro and Silvester) of G. jamesonii in India.
Kongjaimun, Alisa; Kaga, Akito; Tomooka, Norihiko; Somta, Prakit; Vaughan, Duncan A.; Srinives, Peerasak
2012-01-01
Background and Aims The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna. Methods Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf. Key Results Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions. Conclusions This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna. PMID:22419763
Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles
NASA Astrophysics Data System (ADS)
Smitha, S. L.; Gopchandran, K. G.
2013-02-01
Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.
Estrada-Luna, Andrés A; Davies, Fred T
2003-09-01
Little is known about the role of arbuscular mycorrhiza fungi (AMF) on physiological changes of micropropagated plantlets during acclimatization and post-acclimatization. Using chile ancho pepper (Capsicum annuum L. cv. San Luis), measurements were made of water relations, gas exchange, abscisic acid (ABA), plantlet growth and AMF development. Plantlets had low photosynthetic rates (A) and poor initial growth during acclimatization. Relative water content (RWC) decreased during the first days after transfer from tissue culture containers to ex vitro conditions. Consequently, transpiration rates (E) and stomatal conductance (gs) declined, confirming that in vitro formed stomata were functional and able to respond ex vitro to partial desiccation--thus avoiding excessive leaf dehydration and plant death. Colonization by AMF occurred within 3 days after inoculation. Colonized plantlets had lower leaf ABA and higher RWC than noncolonized (NonAMF) plantlets during peak plant dehydration (6 days after plant transfer)--and a higher A and gs as early as days 5 and 7. During post-acclimatization [after day 8, when RWC increased and stabilized], A increased in all plantlets; however, more dramatic changes occurred with AMF plantlets. Within 48 days, 45% of the roots sampled of inoculated plantlets were colonized and had extensive arbuscule development. At this time, AMF plantlets also had greater E, A, leaf chlorophyll, leaf elemental N, P and K, leaf dry biomass and leaf area, fruit production and differences in carbon partitioning [lower root/shoot ratio and higher leaf area ratio] compared with NonAMF plantlets. Rapid AMF colonization enhanced physiological adjustments, which helped plantlets recover rapidly during acclimatization and obtain greater growth during post-acclimatization.
Effects of atmospheric CO2 on photosynthetic characteristics of soybean leaves
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.
1990-01-01
Soybean (Glycine max. cv. McCall) plants were grown at 500, 1000, and 2000 umol mol (exp -1) CO2 for 35 days with a photosynthetic photon flux of 300 umol m (exp -2) s (-1). Individual leaves were exposed to step changes of photosynthetic photon flux to study CO2 assimilation rates (CAR), i.e., leaf net photosynthesis. In general, CAR increased when CO2 increased from 500 to 1000 umol mol (exp -1), but not from 1000 to 2000 umol mol (exp -1). Regardless of the CO2 level, all leaves showed similar CAR at similar CO2 and PPF. This observation contrasts with reports that plants tend to become 'lazy' at elevated CO2 levels over time. Although leaf stomatal conductance (to water vapor) showed diurnal rhythms entrained to the photoperiod, leaf CAR did not show these rhythms and remained constant across the light period, indicating that stomatal conductance had little effect on CAR. Such measurements suggest that short-term changes in CO2 exchange dynamics for a controlled ecological life support system can be closely predicted for an actively growing soybean crop.
Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes.
Monneveux, Philippe; Pastenes, Claudio; Reynolds, Matthew P
2003-06-01
Three high-yielding wheat genotypes (T. aestivum L., c.v. Siete Cerros, Seri and Bacanora, released in 1966, 1982 and 1988, respectively) were grown under irrigation in two high radiation, low relative humidity environments (Tlaltizapan and Ciudad Obregon CIMMYT experimental stations, Mexico). Gas exchange and fluorescence parameters were assessed on the flag leaf during the day. Carbon isotope discrimination (delta) was analysed in flag leaf at anthesis and in grain at maturity. In both environments, gas exchange and fluorescence parameters varied markedly with irradiance and temperature. Analysis of their respective variation indicated the occurrence of photo-respiration and photo-inhibition, particularly in Tlaltizapan, the warmest environment, and in Siete Cerros. In Ciudad Obregon (high-yielding environment) lower Ci (internal CO2 concentration) and delta La (carbon isotope discrimination of the leaf) suggested a higher intrinsic photosynthetic capacity in the variety Bacanora. Higher yield of this genotype was also associated with higher Fv'/Fo' (ratio of photochemical and non photochemical rate constants in the light) and Fm'/Fm (ratio of the non photochemical rate constants in the dark and light adapted state).
Effects of cadmium concentration on ozone-induced phytotoxicity in cress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czuba, M.; Ormrod, D.P.
1974-01-01
Cadmium solutions at concentrations of 0, 10, 40, 100, 500 or 1000 ppm were applied to the soil around cress (Lepidium sativum L. cv. Fine Curled) every 4th day for several weeks. Four week old plants were fumigated once at ozone levels of 0, 5, 10, 20, 25 or 30-35 pphm for 6 hours. Plants that had received higher concentrations of cadmium showed markedly increased sensitivity to ozone in terms of visible leaf damage after ozone treatment. Plants receiving cadmium solution alone or those receiving ozone treatment alone either did not show leaf damage or as much leaf damage asmore » plants which had received both treatments. Mineral analyses of plant tissues showed the relationship between tissue content of both essential and toxic cations and the sensitivity of the plant to various ozone levels. Pigment analyses showed changes in chlorophyll amounts and ratios between treatments. Statistical analyses of data for morphological parameters showed that there is an interaction between Cd and ozone treatments over a range of concentrations.« less
Cao, Chun-Xin; Zhou, Qin; Han, Liang-Liang; Zhang, Pei; Jiang, Hai-Dong
2010-08-01
A pot experiment was conducted to study the effects of different acidity simulated acid rain on the physiological characteristics at flowering stage and yield of oilseed rape (B. napus cv. Qinyou 9). Comparing with the control (pH 6.0), weak acidity (pH = 4.0-5.0) simulated acid rain stimulated the rape growth to some extent, but had less effects on the plant biomass, leaf chlorophyll content, photosynthetic characteristics, and yield. With the further increase of acid rain acidity, the plant biomass, leaf chlorophyll content, photosynthetic rate, antioxidative enzyme activities, and non-enzyme antioxidant contents all decreased gradually, while the leaf malonyldialdehyde (MDA) content and relative conductivity increased significantly. As the results, the pod number per plant, seed number per pod, seed weight, and actual yield decreased. However, different yield components showed different sensitivity to simulated acid rain. With the increasing acidity of simulated acid rain, the pod number per plant and the seed number per pod decreased significantly, while the seed weight was less affected.
Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs. [Pisum sativum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimmers, L.E.; Turgeon, R.
1987-04-01
Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 ..mu..mol photons m/sup -2/ sec/sup -1/) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (10 mM). There is a positive correlation betweenmore » uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged.« less
Interaction of Water Supply and N in Wheat 1
Morgan, Jack A.
1984-01-01
The purpose of this study was to investigate effects of N nutrition and water stress on stomatal behavior and CO2 exchange rate in wheat (Triticum aestivum L. cv Olaf). Wheat plants were grown hydroponically with high (100 milligrams per liter) and low (10 milligrams per liter) N. When plants were 38 days old, a 24-day water stress cycle was begun. A gradual increase in nutrient solution osmotic pressure from 0.03 to 1.95 mega Pascals was achieved by incremental additions of PEG-6,000. Plants in both N treatments adjusted osmotically, although leaf water potential was consistently lower and relative water content greater for low N plants in the first half of the stress cycle. Leaf conductance of high N plants appeared greater than that of low N plants at high water potentials, but showed greater sensitivity to reductions in water potential as indicated by earlier stomatal closure during the stress cycle. The apparent greater stomatal sensitivity of high N plants was associated with a curvilinear relationship between leaf conductance and leaf water potential; low N plants exhibited more of a threshold response. Trends in [CO2]INT throughout the stress cycle indicated nonstomatal effects of water stress on CO2 exchange rate were greater in high N plants. Although estimates of [CO2]INT were generally lower in high N plants, they were relatively insensitive to leaf water potential-induced changes in leaf conductance. In contrast, [CO2]INT of low N plants dropped concomitantly with leaf conductance at low leaf water potentials. Oxygen response of CO2 exchange rate for both treatments was affected less by reductions in water potential than was CO2 exchange rate at 2.5% O2, suggesting that CO2 assimilation capacity of the leaves was affected more by reductions in leaf water potential than were processes related to photorespiration. PMID:16663780
Response of Solanum tuberosum to Myzus persicae infestation at different stages of foliage maturity.
Alvarez, Adriana E; Alberti D'Amato, Anahí M; Tjallingii, W Fred; Dicke, Marcel; Vosman, Ben
2014-12-01
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling of M. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney
1998-01-01
Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865
Benelli, Giovanni; Pavela, Roman; Lupidi, Giulio; Nabissi, Massimo; Petrelli, Riccardo; Ngahang Kamte, Stephane L; Cappellacci, Loredana; Fiorini, Dennis; Sut, Stefania; Dall'Acqua, Stefano; Maggi, Filippo
2018-04-01
In the attempt to exploit the potential of the monoecious fiber hemp cv. Futura 75 in new fields besides textile, cosmetics and food industry, its crop-residue given by leaves and inflorescences was subjected to hydrodistillation to obtain the essential oils. These are niche products representing an ideal candidate for the development of natural insecticides for the control and management of mosquito vectors, houseflies and moth pests. After GC-MS analysis highlighting a safe and legal chemical profile (THC in the range 0.004-0.012% dw), the leaf and inflorescence essential oils were investigated for the insecticidal potential against three insect targets: the larvae of Culex quinquefasciatus and Spodoptera littoralis and the adults of Musca domestica. The essential oil from inflorescences, showing (E)-caryophyllene (21.4%), myrcene (11.3%), cannabidiol (CBD, 11.1%), α-pinene (7.8%), terpinolene (7.6%), and α-humulene (7.1%) as the main components, was more effective than leaf oil against these insects, with LD 50 values of 65.8 μg/larva on S. littoralis, 122.1 μg/adult on M. domestica, and LC 50 of 124.5 μl/l on C. quinquefasciatus larvae. The hemp essential oil moderately inhibited the acetylcholinesterase (AChE), which is a target enzyme in pesticide science. Overall, these results shed light on the future application of fiber hemp crop-residue for the development of effective, eco-friendly and sustainable insecticides.
NASA Astrophysics Data System (ADS)
Del Pozo, Alejandro; Garnier, Eric; Aronson, James
2000-01-01
Although it is well known that legumes have unusually high levels of nitrogen in both reproductive and vegetative organs, the physiological implications of this pattern have been poorly assessed. We conducted a literature survey and used data from two (unpublished) experiments on annual legumes and C 3 grasses in order to test whether these high nitrogen concentrations in legumes are correlated to high rates of carbon gain. Three different temporal/spatial scales were considered: full growing season/stand, days to month/whole plant and seconds/leaf. At the stand level, and for plants grown under both extratropical and tropical settings, biomass per unit organic-nitrogen was lower in legume than in grass crops. At a shorter time scale, the relative growth rate per unit plant nitrogen (`nitrogen productivity') was lower in faba bean ( Vicia faba var. minor cv. Tina) than in wheat ( Triticum aestivum cv. Alexandria), and this was confirmed in a comparison of two wild, circum-Mediterranean annuals - Medicago minima, a legume, and Bromus madritensis, a grass. Finally, at the leaf level, a synthesis of published data comparing soybean ( Glycine max) and rice ( Oryza sativa) on the one hand, and our own data on faba bean and wheat on the other hand, demonstrates that the photosynthetic rate per unit leaf nitrogen (the photosynthetic nitrogen use efficiency) is consistently lower in legumes than in grasses. These results demonstrate that, regardless of the scale considered and although the organic-nitrogen concentration in vegetative organs of legumes is higher than in grasses, this does not lead to higher rates of carbon gain in the former. Various physiological factors affecting the efficiency of nitrogen utilization at the three time scales considered are discussed. The suggestion is made that the ecological significance of the high nitrogen concentration in legumes may be related to a high nitrogen demand for high quality seed production at a time when nitrogen fixation is shut off rather than to a high production potential.
De Marino, Simona; Festa, Carmen; Zollo, Franco; Nini, Antonella; Antenucci, Lina; Raimo, Gennaro; Iorizzi, Maria
2014-01-01
Epidemiological studies have shown that a reduced risk of chronic diseases such as cancer and cardiovascular diseases is correlated with a regular consumption of fruits and vegetable, many of which are rich in polyphenols. The additive and synergistic effect of phytochemicals in fruits and vegetables may reduce chronic diseases related to oxidative stress in human body. Olea europaea L. leaf are rich in phenolic components, which have been proposed to play a role in cancer prevention. The purpose of this study was to identify the main components in the Olea europaea L. leaf (cv. Leccino) preserved during the decoction preparation, in order to delineate the antioxidant activities of the crude extracts and its isolated compounds by using different in vitro assays including DPPH radicalscavenging capacity, total antioxidant capacity (TAC), xanthine oxidase (XO) inhibitory effect and the ability to delay the linoleic acid peroxidation process (ALP). The aqueous decoction was partitioned obtaining four extracts and the n-butanol extract showed the highest antioxidant activity and the highest total phenolic content. Phytochemical investigation leads to the isolation of thirteen secondary metabolites including simple phenolics, flavonoids, secoiridoids whose structures were elucidated by spectroscopic data (1D and 2D NMR) and spectrometric techniques. A significant free radical scavenging effect against DPPH has been evidenced in fraxamoside (1) (EC50 62.6 µM) and taxifolin (5) (EC50 50.0 µM), isolated for the first time from the water decoction. The most active compound in the TAC evaluation, was the 3,4 dihydro-phenyl glycol (8) (0.90 caffeic acid equiv.) while taxifolin and fraxamoside resulted as the most efficient inhibitors of XO activity (IC50 2.7 and 5.2 µM, respectively). Secoxyloganin (4), oleuropein (2) and tyrosol (6) showed the highest ALP activity. This study adds to the growing body of data supporting the bioactivities of phytochemicals and their potential impact on human health.
Jiang, G.M.
2013-01-01
The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d–1) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure. PMID:23378379
Kang, Sin Ae; Han, Jae Woo; Kim, Beom Seok
2016-12-01
Endophytic bacteria may act individually or in consortia in controlling certain plant diseases. In this study, pepper plants (Capsicum annuum L. cv. Nokkwang) were cultivated in glasshouse conditions using field soils collected from two different geographic locations, Deokso (DS) and Gwangyang (GY) in Korea. Community structure and antifungal activity of pepper endophytic bacteria were analyzed using culture-independent (PCR-DGGE) and culture-dependent (plating) methods, respectively. Dissimilarities were observed between DGGE profiles of DS and GY samples at all plant tissues. However, sequencing of the major DGGE bands revealed an enrichment of Firmicutes in the leaves of plants propagated in either soil. Similar results were observed with the culturable assays. Firmicutes dominated the isolates from both leaf samples, DS leaf (100 %) and GY leaf (83.3 %), although the genus compositions of DS leaf and GY leaf isolates were different. We assessed the antifungal activity of each isolate recovered to better understand the potential role that these endophytic bacteria may play. Of the 27 representative isolates from DS plant samples, 17 isolates (63.0 %) had antagonistic activity against at least one of the fungi tested. Seventeen isolates from GY plant samples (58.6 %) displayed antagonistic properties. The results show that the endophytic communities differ in the same plant species when propagated in different soils. Exploring the internal tissues of plants growing in diverse soil environments could be a way to find potential candidates for biocontrol agents.
Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform
Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui
2016-01-01
Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474
El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2014-01-01
Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782
El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín
2014-01-01
Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.
Ashrafzadeh, Seyedardalan; Leung, David W M
2017-01-01
It is of interest to apply plant tissue culture to generate plants resistant to toxic effects of cadmium (Cd) on plant growth. Callus cultures were initiated from leaf explants of micropropagated potato plantlets (Solanum tuberosum L., cv. Iwa) for in vitro selection comprising 18 different Cd treatments varying in Cd exposure timing and duration. Plantlets regenerated from two different lines of Cd-selected calli, L9 and L11, were found to exhibit enhanced resistance to 218 μM Cd compared to control (source plantlets for leaf explants used to initiate callus cultures for Cd resistance). In response to 218 μM Cd, L11 plantlets had lower levels of lipid peroxidation and hydrogen peroxide than control and L9 plantlets. In addition, antioxidative enzyme activities in L11 were generally higher than control. L11 also had a higher level of proline than control.
Satter, R L; Wetherell, D F
1968-06-01
The morphological development of Sinningia speciosa plants that were exposed to supplementary far red light was very different from that of plants receiving dark nights. After several nights of such irradiation, stems and petioles were elongated, petioles were angulated, leaf blade expansion was inhibited, plants were chlorotic and the accumulation of shoot dry weight was retarded.Red reversibility of the morphological changes potentiated by far red light indicated control by the phytochrome system. A high P(FR) level during the last half of the night inhibited stem elongation and promoted leaf blade expansion, but both of these processes were hardly affected by the P(FR) level during the first half of the night. Thus sensitivity to P(FR) was cyclic.The interpretation of our experiments was complicated by quantitative morphological differences resulting from long, as compared to short, far red irradiations.
Collins, Nicholas C.; Consonni, Gabriella; Stanca, Antonio M.; Schulze-Lefert, Paul; Valè, Giampiero
2010-01-01
Background Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. Principal Findings We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. Conclusions This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death. PMID:20844752
Mathematical Modeling of Allelopathy. III. A Model for Curve-Fitting Allelochemical Dose Responses
Liu, De Li; An, Min; Johnson, Ian R.; Lovett, John V.
2003-01-01
Bioassay techniques are often used to study the effects of allelochemicals on plant processes, and it is generally observed that the processes are stimulated at low allelochemical concentrations and inhibited as the concentrations increase. A simple empirical model is presented to analyze this type of response. The stimulation-inhibition properties of allelochemical-dose responses can be described by the parameters in the model. The indices, p% reductions, are calculated to assess the allelochemical effects. The model is compared with experimental data for the response of lettuce seedling growth to Centaurepensin, the olfactory response of weevil larvae to α-terpineol, and the responses of annual ryegrass (Lolium multiflorum Lam.), creeping red fescue (Festuca rubra L., cv. Ensylva), Kentucky bluegrass (Poa pratensis L., cv. Kenblue), perennial ryegrass (L. perenne L., cv. Manhattan), and Rebel tall fescue (F. arundinacea Schreb) seedling growth to leachates of Rebel and Kentucky 31 tall fescue. The results show that the model gives a good description to observations and can be used to fit a wide range of dose responses. Assessments of the effects of leachates of Rebel and Kentucky 31 tall fescue clearly differentiate the properties of the allelopathic sources and the relative sensitivities of indicators such as the length of root and leaf. PMID:19330111
García-Estévez, Ignacio; Andrés-García, Paula; Alcalde-Eon, Cristina; Giacosa, Simone; Rolle, Luca; Rivas-Gonzalo, Julián C; Quijada-Morín, Natalia; Escribano-Bailón, M Teresa
2015-09-09
The relationship between the agronomic parameters of grapevine and the phenolic composition of skin of Vitis vinifera L. cv. Tempranillo grapes was assessed. The physical and mechanical properties of berries and their skins were also determined and correlated to the chemical composition. Results showed a significant negative correlation between grapevine vigor-related parameters (such as leaf area and bunch weight) and anthocyanin composition, whereas the percentage (w/w) of seeds was negatively correlated with the amount of flavanols of grape skins. Texture properties of grape skins also showed an important relationship with chemical composition. Berry hardness showed a negative correlation with the coumaroyl-anthocyanin derivatives, but it was positively correlated to skin flavanic composition. Moreover, significant regressions with high coefficients of determination were found between phenolic composition and grapevine vigor-related and texture variables, thus pointing out that these parameters might be useful for estimating the phenolic composition of grape skins.
Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.
Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi
2006-04-01
Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paparozzi, E.T.; Tukey, H.B. Jr.
Leaves of Betula alleghaniensis Britt. (yellow birch) and Phaseolus vulgaris L cv. Red Kidney (bean) were examined microscopically during development and after exposure to simulated rain of pH 5.5, 4.3, 3.2, and 2.8. Yellow birch leaves attained maximal leaf area, midvein length, and cuticle thickness at 21 days. Trichomes were either long, unicellular, or multicellular with caplike head and stalk. Epicuticular wax was a bumpy and amorphous layer. The 2nd trifoliolate leaf of red kidney bean attained maximal leaf area, midvein length, and cuticle thickness when the 3rd trifoliolate leaf was expanding. Trichomes present were long, with a unicellular headmore » and a multicellular base; long, unicellular, and terminally hooked; and small and multicellular. Epicuticular wax was present as small irregular flakes. After 2 days of pH 2.8 and 4 days of pH 3.2 simulated acid rain, round yellow and small tan lesions appeared on birch and bean leaves, respectively. Most injury occurred on or between small veins. Most trichome types were uninjured. Lesions formed as a result of collapsed epidermal and highly plasmolyzed palisade cells. The cuticle was still present over injured epidermal cells and epicuticular waxes were unchanged. There was not statistical difference in mean cuticle thickness due to pH of simulated rain. 25 references, 10 figures, 4 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassman, J.H.; Dickmann, D.I.
Patterns of UC-photosynthate distribution in growth chamber-grown Populus xeuramericana cv. Negrito de Granada were determined 24 h, 3 weeks, and 5 weeks after defoliation in the developing leaf zone. Translocation patterns were determined by exposing leaves below, within, or above the defoliated zone to UCO2 and determining UC distribution within the plant after 48 h. Translocation patterns were altered within 24 h after defoliation. When leaves below or remaining tissue of leaves within the zone of defoliation were exposed to UCO2, a greater percentage of UC-photosynthate was transported to the expanding shoot and lateral branches and less to the rootsmore » in defoliated plants compared to controls. Little difference between defoliated and control plants and UC distribution occurred when new leaves produced subsequent to defoliation were exposed to UCO2. By 5 weeks after defoliation there was little difference in patterns of UC distribution between defoliated and control plants. These results substantiate biomass partitioning data which showed that a single defoliation of young poplar plants did not affect diameter or height growth, whereas leaf growth was stimulated and root growth reduced.« less
Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong
2014-01-01
Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually.
NASA Astrophysics Data System (ADS)
Bidhari, L. A.; Purwanto, E.; Yunus, A.
2018-03-01
The good quality banana seeds are still difficult to obtain. There are two ways to provide seeds, namely conventional and tissue culture (in vitro). Tomato extract contains natural ZPT or phytohormone which can be utilized in modification of banana tissue culture media. The aim of this study was to determine the influence of media types and tomato extracts in various concentrations for multiplication of banana cv. Ambon in vitro. The study was conducted from October - December 2016 at the Tissue Culture Laboratory of Horticulture Seed Center, Salaman, Magelang. The experimental design used was completely randomized design with two treatment factors. The firs factor was media type with the addition of foliar fertilizer, the second factor was modification of tomato extract with 4 levels. The results showed that the different of the treated media treatment did not affect the emerge of leaf and leaf length, the number of roots and root length. The emerge of the leaves of all treatments occurred at 6 days after planting with the highest average length was obtained in MS treatment with a combination of tomato extract 50 ml/l (10.3 cm). The use of MS medium with a combination of tomato extract 50 ml/l generated the average root number 15.5 with a root lengths 7.5 cm. Substitution of MS medium with tomato extract and foliar fertilizer did not show better results compared to the use of MS media in the multiplication of banana shoots in tissue culture.
Diel rhythms in the volatile emission of apple and grape foliage.
Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio
2017-06-01
This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.
Pasqualini, Stefania; Piccioni, Claudia; Reale, Lara; Ederli, Luisa; Della Torre, Guido; Ferranti, Francesco
2003-01-01
Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L–1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The “classical” ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3. PMID:14612586
Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds.
Ibrahim, Mohamed A; Nissinen, Anne; Holopainen, Jarmo K
2005-09-01
The effects of limonene, a mixture of limonene + carvone (1:1, v/v), and methyl jasmonate (MeJA) on diamondback moth (DBM) (Plutella xylostella L.) oviposition, larval feeding, and the behavior of its larval parasitoid Cotesia plutellae (Kurdjumov) with cabbage (Brassica oleracea L. ssp. capitata, cvs. Rinda and Lennox) and broccoli (B. oleracea subsp. Italica cv Lucky) were tested. Limonene showed no deterrent effect on DBM when plants were sprayed with or exposed to limonene, although there was a cultivar difference. A mixture of limonene and carvone released from vermiculite showed a significant repellent effect, reducing the number of eggs laid on the cabbages. MeJA treatment reduced the relative growth rate (RGR) of larvae on cv Lennox leaves. In Y-tube olfactometer tests, C. plutellae preferred the odors of limonene and MeJA to filtered air. In cv Lennox, the parasitoid preferred DBM-damaged plants with limonene to such plants without limonene. C. plutellae females were repelled by the mixture of limonene + carvone. In both cultivars, exogenous MeJA induced the emission of the sesquiterpene (E,E)-alpha-farnesene, the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and green leaf volatile (Z)-3-hexenyl acetate + octanal. The attractive effect of limonene and MeJA predicts that these two compounds can be used in sustainable plant protection strategies in organic farming.
Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves.
Lukatkin, Alexander S; Gar'kova, Albina N; Bochkarjova, Anna S; Nushtaeva, Olga V; Teixeira da Silva, Jaime A
2013-01-01
Leaf disks as well as intact 7-day-old plants of winter wheat (Triticum aestivum L., cv. Mironovskaya 808), winter rye (Secale cereale L., cv. Estafeta Tatarstana), and maize (Zea mays L., cv. Kollektivnyi 172MV), were treated with the aryloxyphenoxypropionate class herbicide TOPIK, concentrate-emulsion (active ingredient is clodinafop-propargyl (CP), 8-800μg/L), and the effects of short-term action (up to 3h) and long-term aftereffect (up to 3days) on physiological and biochemical indices related to oxidative stress development were studied. The herbicide induced changes, predominantly increases in lipid peroxidation (LPO) intensity, superoxide anion O2(-) generation, total antioxidant activity (AOA), and catalase (CAT) and ascorbate peroxidase (APOX) activity, although the response by plants was nonlinear and depended on the herbicide concentration and duration of treatment. The highest level of generation of O2(-) was observed in the leaves of maize and winter wheat treated by 800μg/L CP, both in the short- and long-term. As TOPIK concentration increased, so too did LPO and AOA in leaves, confirming the presence of oxidative stress in the cells of all three cereals. Antioxidant enzymes were most active in winter rye and wheat, and least active in maize indicating a protective antioxidant mechanism in the first two cereals. Copyright © 2012 Elsevier Inc. All rights reserved.
Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva
2017-11-01
A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.
Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep
2015-01-01
The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves. PMID:26451896
Endeshaw, Solomon T; Murolo, Sergio; Romanazz, Gianfranco; Neri, Davide
2012-06-01
Bois noir (BN) is one of the main phytoplasma diseases of grapevine (Vitis vinifera). It is widespread, and can cause severe losses in European vineyards. The infective agent colonizes phloem elements and induces visible symptoms of leaf yellowing or reddening after a relatively long incubation period. As the most sensitive cultivars to BN, Chardonnay plants were grouped as healthy or symptomatic in spring, based on the records from the previous year. Leaf gas exchange and chlorophyll a fluorescence were measured weekly from July to September in healthy plants, and in symptomatic and asymptomatic leaves from symptomatic plants. The midday relative water content (mRWC) was measured once per month. The detection of phytoplasma DNA by nested-polymerase chain reaction revealed BN infection in symptomatic leaf samples at the end of September. A significant decrease in pigment content and maximum quantum efficiency of photosystem II (Fv/Fm) of these symptomatic leaves was detected from July to September, although in the asymptomatic leaves of the symptomatic plants the net photosynthesis (Pn) decrease was not significant. In the leaves from the healthy plants, Pn and transpiration were relatively stable. Of note, in July, an initially healthy plant showed a strong Pn reduction that was followed by visible leaf yellowing symptoms only in August. The phytoplasma infection also stimulated significant reductions in mRWC of the symptomatic leaves, with a final large decrease in yield.
Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso
2014-03-05
The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards. Copyright © 2014 Elsevier B.V. All rights reserved.
Saunders, J W; Hosfield, G L; Levi, A
1987-02-01
Roots, callus and/or globular structures were produced on primary leaf and distal cotyledon explants of pinto bean (Phaseolus vulgaris L. cv. UI 114) cultured on semisolid MS medium with a wide range of 2,4-D concentrations (0.01 to 80 mg/L) with either 0 or 1.0 mg/L kinetin. Explants rooted at lower 2,4-D concentrations than at those favoring globule formation on callus, although roots, callus and globules often developed from the same explant. Isolated opaque green globular structures developed when callus initiated on media with 3 or more mg/L 2,4-D was subcultured in liquid MS + 30 mg/L 2,4-D. These structures multiplied with a fresh weight doubling time of 8-9 days in MS + 30 mg/L 2,4-D. Although this multiplicative behavior and opaque color were reminiscent of embryoids reported for other species, no cotyledons or roots were seen.
Growth and photosynthetic responses of wheat plants grown in space
NASA Technical Reports Server (NTRS)
Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.
1996-01-01
Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.
Remote sensing of drought and salinity stressed turfgrass
NASA Astrophysics Data System (ADS)
Ikemura, Yoshiaki
The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as drought stress increased, there was no increase in hue values at the onset of salinity stress. Thus, changes in hue could be a key to distinguish drought and salinity stress. Both digital image analysis and spectroradiometry effectively detected drought and salinity stress and may have applications in turfgrass management as rapid and quantitative methods to determine drought and salinity stress in turf.
Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro
2014-02-01
The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].
Malladi, Anish; Burns, Jacqueline K
2008-01-01
Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. 'Valencia'. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDalpha1 and CsPLDgamma1, were isolated and their role was examined. CsPLDalpha1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDgamma1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDalpha1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDgamma1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDalpha1 expression appeared to be light-entrained in leaves, CsPLDgamma1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDgamma1. The results indicate differential regulation of CsPLDalpha1 and CsPLDgamma1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus.
Volder, Astrid; Gifford, Roger M.; Evans, John R.
2015-01-01
Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874
Wilkinson, Sally; Davies, William J
2008-01-01
The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.
Chen, Charles P.; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro
2014-01-01
The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol−1 above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety ‘Koshihikari’. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2]. PMID:24443497
Creelman, Robert A.; Zeevaart, Jan A. D.
1985-01-01
Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage). PMID:16664022
Creelman, R A; Zeevaart, J A
1985-01-01
Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO(3), 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).
NASA Astrophysics Data System (ADS)
Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei
2005-08-01
Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.
Ismail, Hammad; Mirza, Bushra
2015-06-27
Lactuca sativa (lettuce) has been traditionally used for relieving pain, inflammation, stomach problems including indigestion and lack of appetite. Moreover, the therapeutic significance of L. sativa includes its anticonvulsant, sedative-hypnotic and antioxidant properties. In the present study, the MC (methanol and chloroform; 1:1) and aqueous extracts of seed and leaf along with cell suspension exudate were prepared. These extracts were explored for their analgesic, anti-inflammatory, antidepressant and anticoagulant effects by hot plate analgesic assay; carrageenan induced hind paw edema test, forced swimming test and capillary method for blood clotting respectively in a rat model. The results were analyzed using one-way Analysis of Variance (ANOVA) followed by Turkey multiple comparison test. Interestingly, the extracts and the cell suspension exudate showed dual inhibition by reducing pain and inflammation. The results indicated that the aqueous extracts of leaf exhibited highest analgesic and anti-inflammatory activities followed by leaf MC, cell suspension exudate, seed aqueous and seed MC extracts. The current findings show that aqueous and MC extracts of seed have the least immobility time in the forced swimming test, which could act as an anti-depressant on the central nervous system. The leaf extracts and cell suspension exudate also expressed moderate anti-depressant activities. In anticoagulant assay, the coagulation time of aspirin (positive control) and MC extract of leaf was comparable, suggesting strong anti-coagulant effect. Additionally, no abnormal behavior or lethality was observed in any animal tested. Taken together, L. sativa can potentially act as a strong herbal drug due to its multiple pharmaceutical effects and is therefore of interest in drug discovery and development of formulations.
Malladi, Anish; Burns, Jacqueline K.
2008-01-01
Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. ‘Valencia’. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDα1 and CsPLDγ1, were isolated and their role was examined. CsPLDα1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDγ1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDα1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDγ1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDα1 expression appeared to be light-entrained in leaves, CsPLDγ1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDγ1. The results indicate differential regulation of CsPLDα1 and CsPLDγ1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus. PMID:18799715
Haigler, Candace H; Singh, Bir; Zhang, Deshui; Hwang, Sangjoon; Wu, Chunfa; Cai, Wendy X; Hozain, Mohamed; Kang, Wonhee; Kiedaisch, Brett; Strauss, Richard E; Hequet, Eric F; Wyatt, Bobby G; Jividen, Gay M; Holaday, A Scott
2007-04-01
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V (max) SPS activity in leaf and fiber. Lines with the highest V (max) SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of (14)C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO(2) concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.
Modeling infection of spring onion by Puccinia allii in response to temperature and leaf wetness.
Furuya, Hiromitsu; Takanashi, Hiroyuki; Fuji, Shin-Ichi; Nagai, Yoshio; Naito, Hideki
2009-08-01
The influence of temperature and leaf wetness duration on infection of spring onion (Japanese bunching onion) leaves by Puccinia allii was examined in controlled-environment experiments. Leaves of potted spring onion plants (Allium fistulosum cv. Yoshikura) were inoculated with urediniospores and exposed to 6.5, 10, 15, 22, or 27 h of wetness at 5, 10, 15, 20, or 25 degrees C. The lesion that developed increased in density with increasing wetness duration. Relative infection was modeled as a function of both temperature and wetness duration using the modified version of Weibull's cumulative distribution function (R(2) = 0.9369). Infection occurred between 6.5 and 27 h of leaf wetness duration at 10, 15, 20, and 25 degrees C and between 10 and 27 h at 5 degrees C, and increased rapidly between 6.5 and 15 h of wetness at 10, 15, and 20 degrees C. At 25 degrees C, few uredinia developed regardless of the wetness duration. Parameter H, one of eight parameters used in the equation and which controls the asymmetry in the response curve, varied markedly according to the temperature, so that the model could be improved by representing H as a function of wetness duration (R(2) = 0.9501).
Augé, R M; Schekel, K A; Wample, R L
1986-11-01
Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.
Khatoon, Sameena; Kumar, Abhinav; Sarin, Neera B; Khan, Jawaid A
2016-08-01
Cotton leaf curl disease (CLCuD) is caused by several distinct begomovirus species in association with disease-specific betasatellite essential for induction of disease symptoms. CLCuD is a serious threat for the cultivation of cotton (Gossypium sp.) and several species in the family Malvaceae. In this study, RNAi-based approach was applied to generate transgenic cotton (Gossypium hirsutum) plants resistant to Cotton leaf curl Rajasthan virus (CLCuRV). An intron hairpin (ihp) RNAi construct capable of expressing dsRNA homologous to the intergenic region (IR) of CLCuRV was designed and developed. Following Agrobacterium tumefaciens-mediated transformation of cotton (G. hirsutum cv. Narasimha) plants with the designed ihpRNAi construct, a total of 9 independent lines of transformed cotton were obtained. The presence of the potential stretch of IR in the transformed cotton was confirmed by PCR coupled with Southern hybridization. Upon inoculation with viruliferous whiteflies, the transgenic plants showed high degree of resistance. None of them displayed any CLCuD symptoms even after 90 days post inoculation. The transformed cotton plants showed the presence of siRNAs. The present study demonstrated that ihp dsRNA-mediated resistance strategy of RNAi is an effective means to combat the CLCuD infection in cotton.
Diagnosis of ambient air pollution injury to red maple leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, C.R.
1981-01-01
Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less
Shapira, Or; Khadka, Sudha; Israeli, Yair; Shani, Uri; Schwartz, Amnon
2009-05-01
Typical salt stress symptoms appear in banana (Musa sp., cv. 'Grand Nain' AAA) only along the leaf margins. Mineral analysis of the dry matter of plants treated with increasing concentrations of KCl or NaCl revealed significant accumulation of Na+, but not of K+ or Cl(-), in the affected leaf margins. The differential distribution of the three ions suggests that water and ion movement out of the xylem is mostly symplastic and, in contrast to K+ and Cl(-), there exists considerable resistance to the flow of Na+ from the xylem to the adjacent mesophyll and epidermis. The parallel veins of the lamina are enclosed by several layers of bundle sheath parenchyma; in contrast, the large vascular bundle that encircles the entire lamina, and into which the parallel veins merge, lacks a complete bundle sheath. Xylem sap containing a high concentration of Na+ is 'pulled' by water tension from the marginal vein back into the adjacent mesophyll without having to cross a layer of parenchyma tissue. When the marginal vein was dissected from the lamina, the pattern of Na+ distribution in the margins changed markedly. The distinct anatomy of the marginal vein plays a major role in the accumulation of Na+ in the margins, with the latter serving as a 'dumping site' for toxic molecules.
Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong
2014-01-01
Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H2O2 and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually. PMID:24816730
Assessing diversity of prairie plants using remote sensing
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.
Langer, Kelly M; Jones, Correy R; Jaworski, Elizabeth A; Rushing, Gabrielle V; Kim, Joo Young; Clark, David G; Colquhoun, Thomas A
2014-07-01
Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis consists of numerous enzymatic and regulatory processes. The initial enzymatic step bridging primary metabolism to secondary metabolism is the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) carried out via 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE (DAHP) synthase. Here, identified, cloned, localized, and functionally characterized were two DAHP synthases from the model plant species Petunia × hybrida cv 'Mitchell Diploid' (MD). Full-length transcript sequences for PhDAHP1 and PhDAHP2 were identified and cloned using cDNA SMART libraries constructed from pooled MD corolla and leaf total RNA. Predicted amino acid sequence of PhDAHP1 and PhDAHP2 proteins were 76% and 80% identical to AtDAHP1 and AtDAHP2 from Arabidopsis, respectively. PhDAHP1 transcript accumulated to relatively highest levels in petal limb and tube tissues, while PhDAHP2 accumulated to highest levels in leaf and stem tissues. Through floral development, PhDAHP1 transcript accumulated to highest levels during open flower stages, and PhDAHP2 transcript remained constitutive throughout. Radiolabeled PhDAHP1 and PhDAHP2 proteins localized to plastids, however, PhDAHP2 localization appeared less efficient. PhDAHP1 RNAi knockdown petunia lines were reduced in total FVBP emission compared to MD, while PhDAHP2 RNAi lines emitted 'wildtype' FVBP levels. These results demonstrate that PhDAHP1 is the principal DAHP synthase protein responsible for the coupling of metabolites from primary metabolism to secondary metabolism, and the ultimate biosynthesis of FVBPs in the MD flower. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitholt, J.J.
Soybeans (Glycine max (L.) Merr.) were grown in the field in 1982 and 1983 (cv. Kent) and greenhouse (cv. McCall) to characterize the effects of timing and source-sink alterations on flower and immature pod abortion and to study the causes of abortion. Flowers and immature pods were marked during early flowering (R1 to R2) and late flowering (R3 to R4). Nineteen percent of the early flowers aborted in the greenhouse and 31 to 48% aborted in the field. Seventy-six to 92% and 77 to 90% of the late flowers aborted in the greenhouse and field, respectively. Defoliation increased early flowermore » abortion and depodding decreased late flower abortion. Fifteen and 19% of the early immature pods and the late immature pods from depodded plants aborted, respectively. Fifty-seven percent of the late immature pods aborted. Across both years there was not a consistent relationship between the concentrations of ethanol soluble carbohydrates, starch, ethanol soluble nitrogen, ethanol insoluble nitrogen, nitrate, and cations in the flowers or immature pods and abortion. During both early and late flowering, a single leaf located in the middle of the main stem that subtended flowers at anthesis, or immature pods was labeled with 3.7 x 10/sup 5/ Bq /sup 14/CO/sub 2/ for 1 h. After 24 h the entire plant was harvested, divided into flowers, pods, labeled leaf, and the remainder of the plant and the radioactivity was determined. The low aborting flowers and immature pods contained a greater percentage of the total /sup 14/C recovered than the high aborting flowers and immature pods. The results indirectly support the hypothesis that a signal compound produced by another plant part, perhaps the established pods, inhibits the development of aborting flowers and immature pods.« less
A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1
Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael
2015-01-01
A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952
Gu, Junfei; Yin, Xinyou; Struik, Paul C.; Stomph, Tjeerd Jan; Wang, Huaqi
2012-01-01
Photosynthesis is fundamental to biomass production, but sensitive to drought. To understand the genetics of leaf photosynthesis, especially under drought, upland rice cv. Haogelao, lowland rice cv. Shennong265, and 94 of their introgression lines (ILs) were studied at flowering and grain filling under drought and well-watered field conditions. Gas exchange and chlorophyll fluorescence measurements were conducted to evaluate eight photosynthetic traits. Since these traits are very sensitive to fluctuations in microclimate during measurements under field conditions, observations were adjusted for microclimatic differences through both a statistical covariant model and a physiological approach. Both approaches identified leaf-to-air vapour pressure difference as the variable influencing the traits most. Using the simple sequence repeat (SSR) linkage map for the IL population, 1–3 quantitative trait loci (QTLs) were detected per trait–stage–treatment combination, which explained between 7.0% and 30.4% of the phenotypic variance of each trait. The clustered QTLs near marker RM410 (the interval from 57.3 cM to 68.4 cM on chromosome 9) were consistent over both development stages and both drought and well-watered conditions. This QTL consistency was verified by a greenhouse experiment under a controlled environment. The alleles from the upland rice at this interval had positive effects on net photosynthetic rate, stomatal conductance, transpiration rate, quantum yield of photosystem II (PSII), and the maximum efficiency of light-adapted open PSII. However, the allele of another main QTL from upland rice was associated with increased drought sensitivity of photosynthesis. These results could potentially be used in breeding programmes through marker-assisted selection to improve drought tolerance and photosynthesis simultaneously. PMID:21984650
Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice.
Fukayama, H; Tsuchida, H; Agarie, S; Nomura, M; Onodera, H; Ono, K; Lee, B H; Hirose, S; Toki, S; Ku, M S; Makino, A; Matsuoka, M; Miyao, M
2001-11-01
The C(4)-Pdk gene encoding the C(4) enzyme pyruvate, orthophosphate dikinase (PPDK) of maize (Zea mays cv Golden Cross Bantam) was introduced into the C(3) plant, rice (Oryza sativa cv Kitaake). When the intact maize C(4)-Pdk gene, containing its own promoter and terminator sequences and exon/intron structure, was introduced, the PPDK activity in the leaves of some transgenic lines was greatly increased, in one line reaching 40-fold over that of wild-type plants. In a homozygous line, the PPDK protein accounted for 35% of total leaf-soluble protein or 16% of total leaf nitrogen. In contrast, introduction of a chimeric gene containing the full-length cDNA of the maize PPDK fused to the maize C(4)-Pdk promoter or the rice Cab promoter only increased PPDK activity and protein level slightly. These observations suggest that the intron(s) or the terminator sequence of the maize gene, or a combination of both, is necessary for high-level expression. In maize and transgenic rice plants carrying the intact maize gene, the level of transcript in the leaves per copy of the maize C(4)-Pdk gene was comparable, and the maize gene was expressed in a similar organ-specific manner. These results suggest that the maize C(4)-Pdk gene behaves in a quantitatively and qualitatively similar way in maize and transgenic rice plants. The activity of the maize PPDK protein expressed in rice leaves was light/dark regulated as it is in maize. This is the first reported evidence for the presence of an endogenous PPDK regulatory protein in a C(3) plant.
Photosynthetic carbon metabolism in leaflets, stipules and tendrils of Pisum sativum L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cote, R.; Grodzinski, B.
1990-05-01
Gas exchange and photosynthetic carbon metabolism have been investigated for each of the dominant parts of the pea leaf (P. sativum) in a normal and a semi-leafless phenotype (cv. Improved Laxton's Progress, and cv. Curly, respectively). On a fresh weight basis, net photosynthesis of leaflets and stipules have similar rates, while in tendrils the rte is 40% lower. However, on a surface area basis, tendrils are only 5-10% less efficient photosynthetically when the area is corrected by a factor {pi}/2. Transpiration rates are similar for leaflets and stipules, but double for tendrils even though stomatal frequency on tendrils is reducedmore » by 50%. Dark respiration is higher in tendrils than leaflets and stipules. Gas exchange is comparable in both cultivars. The early {sup 14}C-labelled products of stipules, leaflets and tendrils are similar in both phenotypes, however the tendrils clearly partition about 2-3 times more of the newly fixed {sup 14}CO{sub 2} into the amino acid fraction. These data will be discussed in relation to the anatomy and function of pea tendrils.« less
Nucleases activities during French bean leaf aging and dark-induced senescence.
Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro
2017-11-01
During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Utilization of fluidized bed material as a calcium and sulfur source for apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korcak, R.F.
1984-01-01
Fluidized bed material (FBM), a dry, high Ca, alkaline waste product which results from combining coal and limestone, was used as a Ca or S source or lime substitute in an established apple orchard (Malus domestica Borkh., cv. York Imperial) over a four year period. Treatment comparisons were made between FBM was applied at one or two times (1x or 2x) the soil lime requirement and CaCO/sub 3/ applied at the lime requirement (1x). Additionally, FBM 1x was compared to a combination treatment consisting of CaCO/sub 3/ plus gypsum to apply similar amounts of Ca and S. All treatments weremore » also compared to an untreated control. No significant treatment comparisons were noted on leaf Ca levels, however, leaf Mg significantly decreased when FBM applied at the 1x or 2x level compared to CaCO/sub 3/ 1x. When FBM was compared with CaCO/sub 3/ plus gypsum there was a significant decrease in leaf Ca with FBM but no difference in leaf Mg. These effects were probably due to either a solubility difference between nutrients or to actual amount of Mg applied by the different sources. Leaf S levels were unaffected by treatments. Yields, fresh fruit weight and the incidence of cork spot were little affected by treatments. Soil extractable Mg, 1N NH/sub 4/Ac, was not a good prediction of leaf Mg content or Mg added to the soil. Only soil Al was significantly reduced, compared to the control, by the treatments among the metals studied (Zn, Mn, Cu, Cd, Pb and Al). FBM applied at twice the lime requirement (wt. basis) resulted in similar soil pH to CaCO/sub 3/ applied at the lime requirement. 14 references, 6 figures, 1 table.« less
Romero, Pascual; Navarro, Josefa Maria; García, Francisco; Botía Ordaz, Pablo
2004-03-01
We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.
Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania
2017-01-01
The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in photosynthetic traits of soybean plants even in hydroponics (i.e., NFT), with positive effects on growth and seed production, prefiguring potential application of beneficial microorganisms in plant cultivation in hydroponics.
Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania
2017-01-01
The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in photosynthetic traits of soybean plants even in hydroponics (i.e., NFT), with positive effects on growth and seed production, prefiguring potential application of beneficial microorganisms in plant cultivation in hydroponics. PMID:28529515
Lima, Marta R M; Felgueiras, Mafalda L; Cunha, Ana; Chicau, Gisela; Ferreres, Federico; Dias, Alberto C P
2017-03-01
Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
James, Euan K; Gyaneshwar, Prasad; Mathan, Natarajan; Barraquio, Wilfredo L; Reddy, Pallavolu M; Iannetta, Pietro P M; Olivares, Fabio L; Ladha, Jagdish K
2002-09-01
A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian
2013-04-01
The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194
Alarcón, Alejandro; Davies, Frederick T; Egilla, Johnatan N; Fox, Theodore C; Estrada-Luna, Arturo A; Ferrera-Cerrato, Ronald
2002-01-01
Arbuscular mycorrhizal fungi (AMF) are able to increase root enzymatic activity of acid and alkaline phosphatases. However, the role of AMF on phosphatase activity has not been reported in papaya (Carica papaya L.), which is frequently established at places with soil phosphorus (P) deficiencies. The goals of this research were to determine the effect of Glomus claroideum (Gc), and plant growth promoting rhizobacterium Azospirillum brasilense strain VS7 [Ab]) on root phosphatase activity and seedling growth of Carica papaya L. cv. Red Maradol under low P conditions. There were four treatments-colonization with: 1) Gc, 2) Ab, 3) Gc+Ab, and 4) non-inoculated seedlings. Plants were established in a coarse sand:sandy loam substrate under P-limitation (11 microg P ml(-1)), supplied with a modified Long Ashton Nutrient Solution. Seedling growth was severely reduced by low P. Gc+Ab inoculated plants had greater total dry matter and leaf area than non-colonized plants. Gc-inoculated plants had greater leaf area than non-colonized plants. Treatments did not differ in leaf area ratio, specific leaf area and, total chlorophyll content. There was a non-significant effect on stem relative growth rate with Gc and Gc+Ab plants. Mycorrhizal colonization enhanced the bacterial population 3.4-fold in the Gc+Ab treatment compared with the population quantified in Ab treatment. Soluble and extractable root acid phosphatase activity (RAPA) was higher in Gc inoculated plants. We discussed on the possible relation among both inoculated microorganisms and also with the P-limitation which plants were established.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.
2010-12-01
Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.
Huang, Ni; Wang, Li; Hu, Yongsen; Tian, Haifeng; Niu, Zheng
2016-01-01
Spatial variation of soil respiration (Rs) in cropland ecosystems must be assessed to evaluate the global terrestrial carbon budget. This study aims to explore the spatial characteristics and controlling factors of Rs in a cropland under winter wheat and summer maize rotation in the North China Plain. We collected Rs data from 23 sample plots in the cropland. At the late jointing stage, the daily mean Rs of summer maize (4.74 μmol CO2 m-2 s-1) was significantly higher than that of winter wheat (3.77μmol CO2 m-2 s-1). However, the spatial variation of Rs in summer maize (coefficient of variation, CV = 12.2%) was lower than that in winter wheat (CV = 18.5%). A similar trend in CV was also observed for environmental factors but not for biotic factors, such as leaf area index, aboveground biomass, and canopy chlorophyll content. Pearson's correlation analyses based on the sampling data revealed that the spatial variation of Rs was poorly explained by the spatial variations of biotic factors, environmental factors, or soil properties alone for winter wheat and summer maize. The similarly non-significant relationship was observed between Rs and the enhanced vegetation index (EVI), which was used as surrogate for plant photosynthesis. EVI was better correlated with field-measured leaf area index than the normalized difference vegetation index and red edge chlorophyll index. All the data from the 23 sample plots were categorized into three clusters based on the cluster analysis of soil carbon/nitrogen and soil organic carbon content. An apparent improvement was observed in the relationship between Rs and EVI in each cluster for both winter wheat and summer maize. The spatial variation of Rs in the cropland under winter wheat and summer maize rotation could be attributed to the differences in spatial variations of soil properties and biotic factors. The results indicate that applying cluster analysis to minimize differences in soil properties among different clusters can improve the role of remote sensing data as a proxy of plant photosynthesis in semi-empirical Rs models and benefit the acquisition of Rs in cropland ecosystems at large scales.
Vu, Joseph C V; Allen, Leon H
2009-07-15
Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.
Davis, Jayne L; Armengaud, Patrick; Larson, Tony R; Graham, Ian A; White, Philip J; Newton, Adrian C; Amtmann, Anna
2018-05-31
Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonate (JA) and increased the plant's resistance to herbivorous insects. Here we addressed the question how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to base K-concentrations gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA-response in the plant and was sensitive to methyl-JA treatment while R. commune initiated no JA-response and was JA-insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA-sensitivity of pathogens could be an important factor determining the exact K-disease relationship. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.
1995-01-01
We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.
Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J
2015-05-01
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.
Marra, Francesco P; Barone, Ettore; La Mantia, Michele; Caruso, Tiziano
2009-09-01
This study, as a preliminary step toward the definition of a carbon budget model for pistachio trees (Pistacia vera L.), aimed at estimating and evaluating the dynamics of respiration of vegetative and reproductive organs of pistachio tree. Trials were performed in 2005 in a commercial orchard located in Sicily (370 m a.s.l.) on five bearing 20-year-old pistachio trees of cv. Bianca grafted onto Pistachio terebinthus L. Growth analyses and respiration measurements were done on vegetative (leaf) and reproductive (infructescence) organs during the entire growing season (April-September) at biweekly intervals. Results suggested that the respiration rates of pistachio reproductive and vegetative organs were related to their developmental stage. Both for leaf and for infructescence, the highest values were observed during the earlier stages of growth corresponding to the phases of most intense organ growth. The sensitivity of respiration activity to temperature changes, measured by Q(10), showed an increase throughout the transition from immature to mature leaves, as well as during fruit development. The data collected were also used to estimate the seasonal carbon loss by respiration activity for a single leaf and a single infructescence. The amount of carbon lost by respiration was affected by short-term temperature patterns, organ developmental stage and tissue function.
Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto
2016-01-01
The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia
2013-04-01
The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.
Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja
2017-02-01
UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.
1995-03-15
Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients weremore » diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.« less
Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr
1989-01-01
When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.
NASA Technical Reports Server (NTRS)
Pressman, E.; Huberman, M.; Aloni, B.; Jaffe, M. J.
1984-01-01
Mechanical perturbation (MP) applied to celery (Appium graveolens L. cv. Florida 683) leaf petioles or ethephon application to the plant did not induce thigmomorphogenesis (inhibition of elongation and increase in thickness of the petiole). However, the two treatments did cause the parenchyma breakdown which leads to pithiness or increased natural pithiness, mainly at the base of the petiole. Nevertheless, MP (but not ethephon) decreased the severity of drought-stress or GA3-induced pithiness. Although MP stimulates ethylene production, mainly at the middle part of the petiole, it seems that the protection by MP of the petiole may not be directly mediated by ethylene production. The exposure of the plant to drought stress brought about an increase in ethylene evolution. Upon reirrigating the plants, the first steps of pithiness were accompanied by a sharp decline in ethylene production. This decrease might be due to membrane disruption. The increase in ethylene production during drought stress may be one of the events which stimulate pithiness of the celery leaf petiole.
Song, Jianqiang; Smart, Richard; Wang, Hua; Dambergs, Bob; Sparrow, Angela; Qian, Michael C
2015-04-15
The effect of canopy leaf removal and ultraviolet (UV) on Pinot noir grape and wine composition was investigated in this study. Limited basal leaf removal in the fruit zone was conducted, compared to shaded bunches. The UV exposure was controlled using polycarbonate screens to block UV radiation, and acrylic screens to pass the UV. The results showed that bunch sunlight and UV exposure significantly increased the Brix and pH in the grape juice, and increased substantially wine colour density, anthocyanins, total pigment, total phenolics and tannin content. Bunch sunlight and UV exposure affected terpene alcohols, C13-norisprenoids and other volatile composition of the wine differently. Sunlight exposure and UV resulted in increase of nerol, geraniol and citronellol but not linalool. Sunlight exposure slightly increased the concentration of β-ionone, but the increase was not statistically significant for UV treatment. Neither sunlight nor UV treatment showed any impact on the concentration of β-damascenone. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse
2013-10-01
The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. © 2013 Elsevier B.V. All rights reserved.
Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse
2013-01-01
Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.
Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless
Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G.; Meneses, Claudio
2018-01-01
Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening. PMID:29320527
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
NASA Astrophysics Data System (ADS)
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-03-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.
Nováková, Slavomíra; Flores-Ramírez, Gabriela; Glasa, Miroslav; Danchenko, Maksym; Fiala, Roderik; Skultety, Ludovit
2015-01-01
Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6–7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis. PMID:25972878
Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.
Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G; Meneses, Claudio; Campos-Vargas, Reinaldo
2018-01-01
Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.
Morelli, M; Chiumenti, M; De Stradis, A; La Notte, P; Minafra, A
2015-02-01
Through the application of next generation sequencing, in synergy with conventional cloning of DOP-PCR fragments, two double-stranded RNA (dsRNA) molecules of about 1.5 kbp in size were isolated from leaf tissue of a Japanese persimmon (accession SSPI) from Apulia (southern Italy) showing veinlets necrosis. High-throughput sequencing allowed whole genome sequence assembly, yielding a 1,577 and a 1,491 bp contigs identified as dsRNA-1 and dsRNA-2 of a previously undescribed virus, provisionally named as Persimmon cryptic virus (PeCV). In silico analysis showed that both dsRNA fragments were monocistronic and comprised the RNA-dependent RNA polymerase (RdRp) and the capsid protein (CP) genes, respectively. Phylogenetic reconstruction revealed a close relationship of these dsRNAs with those of cryptoviruses described in woody and herbaceous hosts, recently gathered in genus Deltapartitivirus. Virus-specific primers for RT-PCR, designed in the CP cistron, detected viral RNAs also in symptomless persimmon trees sampled from the same geographical area of SSPI, thus proving that PeCV infection may be fairly common and presumably latent.
Delgado, Esteban; Azcón-Bieto, Joaquim; Aranda, Xavier; Palazón, Javier; Medrano, Hipólito
1992-01-01
Four self-pollinated, doubled-haploid tobacco, (Nicotiana tabacum L.) lines (SP422, SP432, SP435, and SP451), selected as haploids by survival in a low CO2 atmosphere, and the parental cv Wisconsin-38 were grown from seed in a growth room kept at high CO2 levels (600-700 parts per million). The selected plants were much larger (especially SP422, SP432, and SP451) than Wisconsin-38 nine weeks after planting. The specific leaf dry weight and the carbon (but not nitrogen and sulfur) content per unit area were also higher in the selected plants. However, the chlorophyll, carotenoid, and alkaloid contents and the chlorophyll a/b ratio varied little. The net CO2 assimilation rate per unit area measured in the growth room at high CO2 was not higher in the selected plants. The CO2 assimilation rate versus intercellular CO2 curve and the CO2 compensation point showed no substantial differences among the different lines, even though these plants were selected for survival under CO2 compensation point conditions. Adult leaf respiration rates were similar when expressed per unit area but were lower in the selected lines when expressed per unit dry weight. Leaf respiration rates were negatively correlated with specific leaf dry weight and with the carbon content per unit area and were positively correlated with nitrogen and sulfur content of the dry matter. The alternative pathway was not involved in respiration in the dark in these leaves. The better carbon economy of tobacco lines selected for low CO2 survival was not apparently related to an improvement of photosynthesis rate but could be related, at least partially, to a significantly reduced respiration (mainly cytochrome pathway) rate per unit carbon. ImagesFigure 1 PMID:16668769
Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco
2008-01-01
Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.
Kumar, Pankaj; Srivastava, D K
2015-04-01
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.
Haque, Mohammad S.; de Sousa, Alexandra; Soares, Cristiano; Kjaer, Katrine H.; Fidalgo, Fernanda; Rosenqvist, Eva; Ottosen, Carl-Otto
2017-01-01
The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms. PMID:28979273
Toor, Puneet Inder; Kaur, Satinder; Bansal, Mitaly; Yadav, Bharat; Chhuneja, Parveen
2016-12-01
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.
Greer, Dennis H.
2012-01-01
Background and aims Grapevines growing in Australia are often exposed to very high temperatures and the question of how the gas exchange processes adjust to these conditions is not well understood. The aim was to develop a model of photosynthesis and transpiration in relation to temperature to quantify the impact of the growing conditions on vine performance. Methodology Leaf gas exchange was measured along the grapevine shoots in accordance with their growth and development over several growing seasons. Using a general linear statistical modelling approach, photosynthesis and transpiration were modelled against leaf temperature separated into bands and the model parameters and coefficients applied to independent datasets to validate the model. Principal results Photosynthesis, transpiration and stomatal conductance varied along the shoot, with early emerging leaves having the highest rates, but these declined as later emerging leaves increased their gas exchange capacities in accordance with development. The general linear modelling approach applied to these data revealed that photosynthesis at each temperature was additively dependent on stomatal conductance, internal CO2 concentration and photon flux density. The temperature-dependent coefficients for these parameters applied to other datasets gave a predicted rate of photosynthesis that was linearly related to the measured rates, with a 1 : 1 slope. Temperature-dependent transpiration was multiplicatively related to stomatal conductance and the leaf to air vapour pressure deficit and applying the coefficients also showed a highly linear relationship, with a 1 : 1 slope between measured and modelled rates, when applied to independent datasets. Conclusions The models developed for the grapevines were relatively simple but accounted for much of the seasonal variation in photosynthesis and transpiration. The goodness of fit in each case demonstrated that explicitly selecting leaf temperature as a model parameter, rather than including temperature intrinsically as is usually done in more complex models, was warranted. PMID:22567220
NMR-Metabolic Methodology in the Study of GM Foods
Sobolev, Anatoly P.; Capitani, Donatella; Giannino, Donato; Nicolodi, Chiara; Testone, Giulio; Santoro, Flavio; Frugis, Giovanna; Iannelli, Maria A.; Mattoo, Autar K.; Brosio, Elvino; Gianferri, Raffaella; D’Amico, Irene; Mannina, Luisa
2010-01-01
The 1H-NMR methodology used in the study of genetically modified (GM) foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the ArabidopsisKNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars) present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism. PMID:22253988
NASA Astrophysics Data System (ADS)
Terwilliger, Valery J.; Deniro, Michael J.
1995-12-01
Climatic reconstructions from the δD values of wood cellulose nitrate have been compromised because it is unclear whether the isotopic ratios are affected only by temperature or by temperature and humidity. To quantify the effect of humidity on the δD values of leaf and wood cellulose nitrate, we grew avocados (Persea americana Mill. cv. Mexican) from seed at high and low humidities until they set wood. The source water for seed production was isotopically the same as the source water for seedling propagation. The δD values of leaf cellulose nitrate were related to those of leaf water, which were, in turn, influenced by humidity ( P < 0.01). The δD values of wood cellulose nitrate were unrelated to those of leaf water or any other indicator of humidity, but were related to the δD values of water in wood ( P ⩽ 0.05). The δD values of wood cellulose nitrate were identical in three out of five pairs of low and high humidity treatments. These results suggest humidity cannot be reliably inferred from δD values in wood cellulose nitrate. The δD values of cellulose nitrate in both leaves and wood appear to have been influenced by the incorporation of stored metabolites into cellulose. Trees, like avocado seedlings, have considerable post-photosynthetic organic reserves that can be tapped for growth. Conditions that stimulate use of post-photosynthetic carbon reserves are varied for trees. Significant contributions from these reserves could lead to erroneous temperature inferences from δD values of wood cellulose nitrate.
Leitao, Louis; Maoret, Jean-José; Biolley, Jean-Philippe
2007-01-01
We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR. Foliar pigment content, PEPc and Rubisco protein amounts were simultaneously determined. Two experiments were performed to study the ozone response of the 5th and the 10th leaf. For each experiment, three ozone concentrations were tested in open-top chambers: non-filtered air (NF, control) and non-filtered air containing 40 (+40) and 80 nL L-1 (+80) ozone. Regarding the 5th leaf, +40 atmosphere induced a loss in pigmentation, PEPc and Rubisco activase mRNAs. However, it was unable to notably depress carboxylase protein amounts and mRNAs encoding Rubisco. Except for Rubisco mRNAs, all other measured parameters from 5th leaf were depressed by +80 atmosphere. Regarding the 10th leaf, +40 atmosphere increased photosynthetic pigments and transcripts encoding Rubisco and Rubisco activase. Rubisco and PEPc protein amounts were not drastically changed, even if they tended to be increased. Level of C4-PEPc mRNA remained almost stable. In response to +80 atmosphere, pigments and transcripts encoding PEPc were notably decreased. Rubisco and PEPc protein amounts also declined to a lesser extent. Conversely, the level of transcripts encoding both Rubisco subunits and Rubisco activase that were not consistently disturbed tended to be slightly augmented. So, the present study suggests that maize leaves can respond differentially to a similar ozone stress.
Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian
2013-01-01
The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8’-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0–2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions. PMID:23630325
Liu, Xiao; Guo, Ling-Xia; Jin, Long-Fei; Liu, Yong-Zhong; Liu, Tao; Fan, Yu-Hua; Peng, Shu-Ang
2016-10-01
Growth-regulating factor (GRF) is an important protein in GA-mediated response, with key roles in plant growth and development. However, it is not known whether or how the GRF proteins in citrus to regulate organ size. In this study, nine citrus GRF genes (CsGRF1-9) were validated from the 'Anliu' sweet orange (AL, Citrus sinensis cv. Anliu) by PCR amplification. They all contain two conserved motifs (QLQ and WRC) and have 3-4 exons. The transcript levels of genes were detected by qRT-PCR. Transcript analysis showed that (1) CsGRF 1, 2, 5, 6, 7, and 9 expressed predominantly in young leaf, CsGRF 3 and 4 expressed predominantly in fruit immature juice sacs and CsGRF 8 expressed predominantly in root; (2) all citrus GRF genes had significantly higher expression in young leaves than mature leaf; (3) in juice sacs, the transcript levels of CsGRF1, 4, 5, 6, and 8 increased significantly while the transcript levels of CsGRF2, 3, 7, and 9 had no significant change from 80 DAF to 100 DAF. Besides, GA3 treatment did not affect the transcript levels of CsGRF5 and CsGRF6 but significantly increased the transcript levels of the other seven CsGRF genes in young leaves. These results suggested that all CsGRF genes involve in the leaf development, CsGRF1, 4, 5, 6, and 8 act developmentally whilst CsGRF2, 3, 7, and 9 play fundamental roles in fruit cell enlargement, which may be through GA pathway or GA-independent pathway.
Soil Temperature Determines the Reaction of Olive Cultivars to Verticillium dahliae Pathotypes
Calderón, Rocío; Lucena, Carlos; Trapero-Casas, José L.; Zarco-Tejada, Pablo J.; Navas-Cortés, Juan A.
2014-01-01
Background Development of Verticillium wilt in olive, caused by the soil-borne fungus Verticillium dahliae, can be influenced by biotic and environmental factors. In this study we modeled i) the combined effects of biotic factors (i.e., pathotype virulence and cultivar susceptibility) and abiotic factors (i.e., soil temperature) on disease development and ii) the relationship between disease severity and several remote sensing parameters and plant stress indicators. Methodology Plants of Arbequina and Picual olive cultivars inoculated with isolates of defoliating and non-defoliating V. dahliae pathotypes were grown in soil tanks with a range of soil temperatures from 16 to 32°C. Disease progression was correlated with plant stress parameters (i.e., leaf temperature, steady-state chlorophyll fluorescence, photochemical reflectance index, chlorophyll content, and ethylene production) and plant growth-related parameters (i.e., canopy length and dry weight). Findings Disease development in plants infected with the defoliating pathotype was faster and more severe in Picual. Models estimated that infection with the defoliating pathotype was promoted by soil temperatures in a range of 16 to 24°C in cv. Picual and of 20 to 24°C in cv. Arbequina. In the non-defoliating pathotype, soil temperatures ranging from 16 to 20°C were estimated to be most favorable for infection. The relationship between stress-related parameters and disease severity determined by multinomial logistic regression and classification trees was able to detect the effects of V. dahliae infection and colonization on water flow that eventually cause water stress. Conclusions Chlorophyll content, steady-state chlorophyll fluorescence, and leaf temperature were the best indicators for Verticillium wilt detection at early stages of disease development, while ethylene production and photochemical reflectance index were indicators for disease detection at advanced stages. These results provide a better understanding of the differential geographic distribution of V. dahliae pathotypes and to assess the potential effect of climate change on Verticillium wilt development. PMID:25330093
Nazeer, Wajad; Tipu, Abdul Latif; Ahmad, Saghir; Mahmood, Khalid; Mahmood, Abid; Zhou, Baoliang
2014-01-01
Cotton leaf curl virus disease (CLCuD) is an important constraint to cotton production. The resistance of G. arboreum to this devastating disease is well documented. In the present investigation, we explored the possibility of transferring genes for resistance to CLCuD from G. arboreum (2n = 26) cv 15-Mollisoni into G. hirsutum (2n = 52) cv CRSM-38 through conventional breeding. We investigated the cytology of the BC1 to BC3 progenies of direct and reciprocal crosses of G. arboreum and G. hirsutum and evaluated their resistance to CLCuD. The F1 progenies were completely resistant to this disease, while a decrease in resistance was observed in all backcross generations. As backcrossing progressed, the disease incidence increased in BC1 (1.7-2.0%), BC2 (1.8-4.0%), and BC3 (4.2-7.0%). However, the disease incidence was much lower than that of the check variety CIM-496, with a CLCuD incidence of 96%. Additionally, the disease incidence percentage was lower in the direct cross 2(G. arboreum)×G. hirsutum than in that of G. hirsutum×G. arboreum. Phenotypic resemblance of BC1 ∼BC3 progenies to G. arboreum confirmed the success of cross between the two species. Cytological studies of CLCuD-resistant plants revealed that the frequency of univalents and multivalents was high in BC1, with sterile or partially fertile plants, but low in BC2 (in both combinations), with shy bearing plants. In BC3, most of the plants exhibited normal bearing ability due to the high frequency of chromosome associations (bivalents). The assessment of CLCuD through grafting showed that the BC1 to BC3 progenies were highly resistant to this disease. Thus, this study successfully demonstrates the possibility of introgressing CLCuD resistance genes from G. arboreum to G. hirsutum.
Terracciano, Irma; Maccaferri, Marco; Bassi, Filippo; Mantovani, Paola; Sanguineti, Maria C; Salvi, Silvio; Simková, Hana; Doležel, Jaroslav; Massi, Andrea; Ammar, Karim; Kolmer, James; Tuberosa, Roberto
2013-04-01
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauser, H.D.; Walters, K.D.; Berg, V.S.
Plants in the field are frequently exposed to anthropogenic acid precipitation with pH values of 4 and below. For the acid to directly affect leaf tissues, it must pass through the leaf cuticle, but little is known about the permeability of cuticles to protons, of about the effect of different anions on this permeability. We investigated the movement of protons through isolated astomatous leaf cuticles of grapefruit (Citrus x paradisi Macfady.), rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa), and pear (Pyrus communis L.) using hydrochloric, sulfuric, and nitric acids. Cuticles were enzymically isolated from leaves and placed inmore » a diffusion apparatus with pH 4 acid on the morphological outer surface of the cuticle and degassed distilled water on the inner surface. Changes in pH of the solution on the inner surface were used to determine rates of effective permeability of the cuticles to the protons of these acids. Most cuticles exhibited an initial low permeability, lasting hours to days, then after a short transition displayed a significant higher permeability, which persisted until equilibrium was approached. The change in effective permeability appears to be reversible. Effective permeabilities were higher for sulfuric acid than for the others. A model of the movement of protons through the cuticle is presented, proposing that dissociated acid groups in channels within the cutin are first protonated by the acid, accounting for the low initial effective permeability; then protons pass freely through the channels, resulting in a higher effective permeability. 26 refs., 6 figs., 2 tabs.« less
Exploring the importance of within-canopy spatial temperature variation on transpiration predictions
Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.
2009-01-01
Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047
Zheng, Liang; Van Labeke, Marie-Christine
2017-06-01
The effect of light quality on leaf morphology, photosynthetic efficiency and antioxidant capacity of leaves that fully developed under a specific spectrum was investigated in Chrysanthemum cv. Four light treatments were applied at 100μmolm -2 s -1 and a photoperiod of 14h using light-emitting diodes, which were 100% red (R), 100% blue (B), 75% red with 25% blue (RB) and white (W), respectively. Intraspecific variation was investigated by studying the response of eight cultivars. Overall, red light significantly decreased the leaf area while the thinnest leaves were observed for W. Chlorophyll content and Chl a/b ratio was highest for W and lowest under R. B and RB resulted in the highest maximum quantum yield (F v /F m ) and quantum efficiency (Φ PSII ). A negative correlation between heat dissipation (NPQ) and Φ PSII was found. Blue light induced the highest hydrogen peroxide content, which is a proxy for total ROS generation, followed by W and RB while low contents were found under R. The antioxidative response was not always correlated with hydrogen content and differed depending on the light quality treatment. Blue light enhanced the proline levels, while carotenoids, total flavonoid and phenolic compounds were higher under W. Intraspecific variation in the responses were observed for most parameters with exception of leaf thickness; this intraspecific variation was most pronounced for total phenolic and flavonoid compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.
Seasonal changes of whole root system conductance by a drought-tolerant grape root system.
Alsina, Maria Mar; Smart, David R; Bauerle, Taryn; de Herralde, Felicidad; Biel, Carme; Stockert, Christine; Negron, Claudia; Save, Robert
2011-01-01
The role of root systems in drought tolerance is a subject of very limited information compared with above-ground responses. Adjustments to the ability of roots to supply water relative to shoot transpiration demand is proposed as a major means for woody perennial plants to tolerate drought, and is often expressed as changes in the ratios of leaf to root area (A(L):A(R)). Seasonal root proliferation in a directed manner could increase the water supply function of roots independent of total root area (A(R)) and represents a mechanism whereby water supply to demand could be increased. To address this issue, seasonal root proliferation, stomatal conductance (g(s)) and whole root system hydraulic conductance (k(r)) were investigated for a drought-tolerant grape root system (Vitis berlandieri×V. rupestris cv. 1103P) and a non-drought-tolerant root system (Vitis riparia×V. rupestris cv. 101-14Mgt), upon which had been grafted the same drought-sensitive clone of Vitis vinifera cv. Merlot. Leaf water potentials (ψ(L)) for Merlot grafted onto the 1103P root system (-0.91±0.02 MPa) were +0.15 MPa higher than Merlot on 101-14Mgt (-1.06±0.03 MPa) during spring, but dropped by approximately -0.4 MPa from spring to autumn, and were significantly lower by -0.15 MPa (-1.43±0.02 MPa) than for Merlot on 101-14Mgt (at -1.28±0.02 MPa). Surprisingly, g(s) of Merlot on the drought-tolerant root system (1103P) was less down-regulated and canopies maintained evaporative fluxes ranging from 35-20 mmol vine(-1) s(-1) during the diurnal peak from spring to autumn, respectively, three times greater than those measured for Merlot on the drought-sensitive rootstock 101-14Mgt. The drought-tolerant root system grew more roots at depth during the warm summer dry period, and the whole root system conductance (k(r)) increased from 0.004 to 0.009 kg MPa(-1) s(-1) during that same time period. The changes in k(r) could not be explained by xylem anatomy or conductivity changes of individual root segments. Thus, the manner in which drought tolerance was conveyed to the drought-sensitive clone appeared to arise from deep root proliferation during the hottest and driest part of the season, rather than through changes in xylem structure, xylem density or stomatal regulation. This information can be useful to growers on a site-specific basis in selecting rootstocks for grape clonal material (scions) grafted to them.
Influence of Changes in Daylength and Carbon Dioxide on the Growth of Potato
NASA Technical Reports Server (NTRS)
Wheeler, Raymond; Tibbitts, Theodore W.
1997-01-01
Potatoes (Solanum tuberosum L.) are highly productive in mid- to high-latitude areas where photoperiods change significantly throughout the growing season. To study the effects of changes in photoperiod on growth and tuber development of potato cv. Denali, plants were grown for 112 d with 400 micromol/sq m/s photosynthetic photon flux (PPF) under a 12-h photoperiod (short days, SD), a 24-h photoperiod (long days, LD), and combinations where plants were moved between the two photoperiods 28, 56, or 84 d after planting. Plants given LD throughout growth received the greatest total daily PPF and produced the greatest tuber yields. At similar levels of total PPF, plants given SD followed by LD yielded greater tuber dry mass (DM) than plants given LD followed by SD. Stem DM per plant, leaf DM, and total plant DM all increased with an increasing proportion of LD and increasing daily PPF, regardless of the daylength sequence. When studies were repeated, but at an enriched (1000micromol/mol) CO2 concentration, overall growth trends were similar, with high CO2 resulting in greater stem length, stem DM, leaf DM, and total plant DM; but high CO2 did not increase tuber DM.
Hatami, Ashkan; Khoshgoftarmanesh, Amir Hossein
2016-12-01
Uniform 2-year old seedlings of a commercial olive cultivar (Olea europaea L., cv. Mahzam) were exposed or unexposed to the air pollution from the controlled burning of waste tires. The plants were supplied with zinc sulfate (ZnSO 4 ) or synthesized Zn(Glycine) 2 (Zn-Gly) or unsupplied with Zn. Exposure to air pollution resulted in oxidative damage to the olive, as indicated by the higher production of malondialdehyde (MDA). Supplement with Zn partly alleviated oxidative damage induced by the air emissions on the olive. Leaf concentration of MDA was higher at the active period of tire burning than that of the inactive one. Exposure to the emissions from tire burning significantly increased leaf ascorbate peroxidase (APX) activity. Supplement with Zn increased APX activity in plants exposed to the air pollution. According to the results, Zn nutrition was effective in alleviating oxidative stress induced by air pollution on the olive. APX seemed to play a significant role in alleviating oxidative damages induced by air emissions from tire burning on the olive; however, the role of other antioxidant enzymes should be addressed in future studies.
Zeng, Zhengming; Xiong, Fangjie; Yu, Xiaohong; Gong, Xiaoping; Luo, Juntao; Jiang, Yudong; Kuang, Haochi; Gao, Bijun; Niu, Xiangli; Liu, Yongsheng
2016-12-01
Glyoxalase I (Gly I) is a component of the glyoxalase system which is involved in the detoxification of methylglyoxal, a byproduct of glycolysis. In the present study, a gene of rice (Oryza sativa L., cv. Nipponbare) encoding Gly I was cloned and characterized. The quantitative real-time PCR analysis indicated that rice Gly I (OsGly I) was ubiquitously expressed in root, stem, leaf, leaf sheath and spikelet with varying abundance. OsGly I was markedly upregulated in response to NaCl, ZnCl 2 and mannitol in rice seedlings. For further functional investigation, OsGly I was overexpressed in rice using Agrobacterium-mediated transformation. Transgenic rice lines exhibited increased glyoxalase enzyme activity, decreased methylglyoxal level and improved tolerance to NaCl, ZnCl 2 and mannitol compared to wild-type plants. Enhancement of stress tolerance in transgenic lines was associated with reduction of malondialdehyde content which was derived from cellular lipid peroxidation. In addition, the OsGly I-overexpression transgenic plants performed higher seed setting rate and yield. Collectively, these results indicate the potential of bioengineering the Gly I gene in crops. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, N.C.; Biswas, P.K.; Hileman, D.R.
During the Summer of 1985, studies were conducted on sweet potato plants in open top chambers and open field plots with CO/sub 2/ concentrations of +0, +75, +150 and +300 ..mu..l l/sup -1/ above ambient level. Sweet potato seedlings (cv. Georgia Jet) were planted singly in pots containing 23 kg of Norfolk sandy loam soil (Typic Paleudult). A group of five plants at each CO/sub 2/ concentrations were subjected to water stress for 10 and 15 days during the growth period of 40 and 75 days after planting. A comparison between stress and well watered plants showed an increase inmore » leaf area and tuber yield with CO/sub 2/ enrichment up to +150 ..mu..l l/sup -1/ CO/sub 2/ in stress plants, and +75 ..mu..l l/sup -1/ in well watered plants at 90 day harvest. However, leaf area as well as dry weights of shoots and tubers were greater in well watered than in stress plants. The root to shoot ratio was found to be higher in stress plants than in well watered plants in each CO/sub 2/ concentrations and it was most pronounced in +75 ..mu..l l/sup -1/ CO/sub 2/ in stressed plants.« less
Restivo, Francesco Maria; Laccone, Maria Concetta; Buschini, Annamaria; Rossi, Carlo; Poli, Paola
2002-03-01
Environmental pollution assessment and control are priority issues for both developed and developing countries of the world. The use of plant material for a more complete picture of environmental health appears to be particularly appealing. Here we validate a previous plant-adapted Comet assay on leaf tissues of Nicotiana tabacum cultivars Bel B and Bel W3. The effects of H(2)O(2) on DNA damage in Bel B and Bel W3 agree with the hypothesis that some component of the machinery that protects DNA integrity from oxidative stress may be impaired in cv. Bel W3. Exposure in the field on sunny summer days (peak ozone concentration >80 p.p.b.) showed significantly higher DNA damage in cv. Bel W3 if plants were collected and subjected to the Comet assay when the air ozone concentration was reaching its peak value, but not when plants were sampled early in the morning and hence after a period of low ozone concentration. The different results suggest that Bel W3 possesses a less efficient recovery apparatus that requires a longer period of activity to be effective and/or is less protected against reactive oxygen species production during exposure to ozone. However, it cannot be excluded that the increase in mean DNA damage is the result of the presence of a genotoxic agent(s) other than ozone. Interestingly, Bel W3 also appears to be more responsive, compared with Bel B, when exposed to ambient indoor pollutants. The use of cv. Bel W3 increases the sensitivity of the assay under both indoor and field conditions. However, different classes of mutagens should be tested to define the range of profitable utilization of this tobacco cultivar for environmental genotoxicity detection.
Shang, Bo; Feng, Zhaozhong; Li, Pin; Calatayud, Vicent
2018-03-01
The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60 ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper > middle > lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yafizham; Herwibawa, B.
2018-01-01
This study was aimed to determine the effects of sodium azide on the performance of chili pepper. Dry seeds from pure lines of chili pepper cv. Landung were used in this experiment. Each set containing 50 seeds was placed in nylon fishner bags, washed in flowing water and soaked in distilled water for four hours. After soaking, four sets of seeds were dabbed dry with tissue paper and were treated for two hours at 30 0C in appropriate solution of 0, 0.10, 0.20, 0.40, 0.80, 1.60 mM sodium azide with phosphate buffer at pH 3. After treatment, the seeds were germinated in plastic boxes containing sterilized sand and kept under laboratory condition by supplied with water everyday. The seeds for M1 germination percentage, seedling height, plant height and number of leaves were recorded 30 days and 60 days after treatment, respectively. Seeds which radicle emerged were considered germinated, the seedling and plant height were measured from the tip of primary root to the base of the first leaf pair, and the number of leaves were counted for only fully expanded leaves. A completely randomized block design in four replicates was used throughout the experiment. Data obtained were analysed for range, mean, standard of deviation, and percent of control using Microsoft Office Excel 2007 software. It was concluded that different doses of sodium azide influenced the performances of chili pepper cv. Landung. Very low doses of sodium azide (0-1.60 mM) might be used to study the improvement of chili pepper diversity.
Ganapathi, Thumballi R.
2015-01-01
Micro RNAs (miRNAs) are a class of non-coding, short RNAs having important roles in regulation of gene expression. Although plant miRNAs have been studied in detail in some model plants, less is known about these miRNAs in important fruit plants like banana. miRNAs have pivotal roles in plant growth and development, and in responses to diverse biotic and abiotic stress stimuli. Here, we have analyzed the small RNA expression profiles of two different economically significant banana cultivars by using high-throughput sequencing technology. We identified a total of 170 and 244 miRNAs in the two libraries respectively derived from cv. Grand Naine and cv. Rasthali leaves. In addition, several cultivar specific microRNAs along with their putative target transcripts were also detected in our studies. To validate our findings regarding the small RNA profiles, we also undertook overexpression of a common microRNA, MusamiRNA156 in transgenic banana plants. The transgenic plants overexpressing the stem-loop sequence derived from MusamiRNA156 gene were stunted in their growth together with peculiar changes in leaf anatomy. These results provide a foundation for further investigations into important physiological and metabolic pathways operational in banana in general and cultivar specific traits in particular. PMID:25962076
NASA Astrophysics Data System (ADS)
Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.
2013-07-01
Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).
Zouari, Mohamed; Ben Ahmed, Chedlia; Elloumi, Nada; Bellassoued, Khaled; Delmail, David; Labrousse, Pascal; Ben Abdallah, Ferjani; Ben Rouina, Bechir
2016-06-01
Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20 mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30 mg CdCl2 kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-01-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611
Malheiro, Ricardo; Casal, Susana; Rodrigues, Nuno; Renard, Catherine M G C; Pereira, José Alberto
2018-04-01
This study focused on the volatile changes in cv. Verdeal Transmontana throughout the entire olive oil processing chain, from the drupe to olive oil storage up to 12 months, while correlating it with quality parameters and sensory quality. During crushing and malaxation, the volatiles formed were mainly "green-leaf volatiles" (GLVs), namely (E)-2-hexenal, hexanal, and 1-hexanol. Centrifugation and clarification steps increased the total volatile amounts to 130 mg kg -1 . However, clarification also increased nonanal and (E)-2-decenal contents, two markers of oxidation, with a noticeable loss of phenolic compounds and oxidative stability. During storage, the total volatile amounts reduced drastically (94% at 12 months after extraction), together with the positive sensory attributes fruity, green, bitter, and pungent. Despite being classified as extra-virgin after one year of storage, peroxides and conjugated dienes were significantly higher while there was a reduction in antioxidant capacity as well as in phenolic compounds (less 50%) and oxidative stability (57%). The present work allowed concluding that the extraction process modulates the volatile composition of olive oil, with a concentration of volatiles at the clarification step. During storage, volatiles are lost, mainly eight months after extraction, leading to the loss of important sensory attributes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydroponically cultivated radish fed L-galactono-1,4-lactone exhibit increased tolerance to ozone.
Maddison, Joanna; Lyons, Tom; Plöchl, Matthias; Barnes, Jeremy
2002-01-01
Leaf L-ascorbate content of an ozone (O3)-sensitive radish genotype (Raphanus sativus L. cv. Cherry Belle) was increased 2-fold by feeding hydroponically cultivated plants L-galactono- 1,4-lactone (GalL). Plants were grown in controlled-environment chambers ventilated with charcoal/Purafil-filtered air, and administered one of two O3 fumigation regimes: chronic exposure (75 nmol O3 mol(-1) for 7 h day(-1) for 21 days) and acute exposure (180 nmol O3 mol(-1) for 9 h). Chronic O3 exposure decreased root growth by 11% in plants maintained in pure nutrient solution (-GalL), but resulted in no change in root growth in GalL-fed plants (+GalL). Similarly, GalL-feeding counteracted the negative effects of O3 on CO2 assimilation rate observed in control plants (-GalL). Under acute O3 exposure, GalL-fed plants showed none of the visible symptoms of injury, which were extensive in plants not fed GalL. Leaf CO2 assimilation rate was decreased by acute 03 exposure in both GalL treatments, but the extent of the decline was less marked in GalL-fed plants. No significant changes in stomatal conductance resulted from GalL treatment, so O3 Uptake into leaves was equivalent in + GalL and -GalL plants. Feeding GalL, on the other hand, enhanced the level of ascorbate, and resulted in the maintenance of the redox state of ascorbate under acute O3 fumigation, in both the leaf apoplast and symplast. The effect of GalL treatment on ascorbate pools was consistent with the reduction in O3 damage observed in GalL-fed plants. Attempts to model O3 interception by the ascorbate pool in the leaf apoplast suggested a greater capacity for O3 detoxification in GalL-fed plants, which corresponded with the increase in O3 tolerance observed. However, modelled data for GalL-fed plants suggested that additional constituents of the leaf apoplast may play an important role in the attenuation of environmentally-relevant O3 fluxes.
Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.
Fiebig, Antje; Dodd, Ian C
2016-01-01
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.
Piñero, María Carmen; Houdusse, Fabrice; Garcia-Mina, Jose M; Garnica, María; Del Amor, Francisco M
2014-08-01
This study examines the extent to which the predicted CO2 -protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol(-1)) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt-stressed plants, elevated [CO2 ] increased leaf NO3(-) concentration and reduced Cl(-) concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non-stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt-stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels. © 2013 Scandinavian Plant Physiology Society.
Nodule activity and allocation of photosynthate of soybean during recovery from water stress
NASA Technical Reports Server (NTRS)
Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)
1987-01-01
Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.
Stutte, G W; Monje, O; Hatfield, R D; Paul, A-L; Ferl, R J; Simone, C G
2006-10-01
The use of higher plants as the basis for a biological life support system that regenerates the atmosphere, purifies water, and produces food has been proposed for long duration space missions. The objective of these experiments was to determine what effects microgravity (microg) had on chloroplast development, carbohydrate metabolism and gene expression in developing leaves of Triticum aestivum L. cv. USU Apogee. Gravity naive wheat plants were sampled from a series of seven 21-day experiments conducted during Increment IV of the International Space Station. These samples were fixed in either 3% glutaraldehyde or RNAlater or frozen at -25 degrees C for subsequent analysis. In addition, leaf samples were collected from 24- and 14-day-old plants during the mission that were returned to Earth for analysis. Plants grown under identical light, temperature, relative humidity, photoperiod, CO(2), and planting density were used as ground controls. At the morphological level, there was little difference in the development of cells of wheat under microg conditions. Leaves developed in mug have thinner cross-sectional area than the 1g grown plants. Ultrastructurally, the chloroplasts of microg grown plants were more ovoid than those developed at 1g, and the thylakoid membranes had a trend to greater packing density. No differences were observed in the starch, soluble sugar, or lignin content of the leaves grown in microg or 1g conditions. Furthermore, no differences in gene expression were detected leaf samples collected at microg from 24-day-old leaves, suggesting that the spaceflight environment had minimal impact on wheat metabolism.
Pruvost, Olivier; Savelon, Caroline; Boyer, Claudine; Chiroleu, Frédéric; Gagnevin, Lionel; Jacques, Marie-Agnès
2009-07-01
Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.
Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki
2015-01-01
Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought tolerance. PMID:26134121
Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.
2016-01-01
Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729
Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1989-01-01
Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.
Ammara, Um e; Mansoor, Shahid; Saeed, Muhammad; Amin, Imran; Briddon, Rob W; Al-Sadi, Abdullah Mohammed
2015-03-04
Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.
Zhang, Yanqun; Oren, Ram; Kang, Shaozhong
2012-03-01
Vineyards were planted in the arid region of northwest China to meet the local economic strategy while reducing agricultural water use. Sap flow, environmental variables, a plant characteristic (sapwood-to-leaf area ratio, A(s)/A(l)) and a canopy characteristic (leaf area index, L) were measured in a vineyard in the region during the growing season of 2009, and hourly canopy stomatal conductance (G(si)) was estimated for individual vines to quantify the relationships between G(si) and these variables. After accounting for the effects of vapor pressure deficit (D) and solar radiation (R(s)) on G(si), much of the remaining variation of reference G(si) (G(siR)) was driven by that of leaf-specific hydraulic conductivity, which in turn was driven by that of A(s)/A(l). After accounting for that effect on G(siR), appreciable temporal variation remained in the decline rate of G(siR) with decreasing vineyard-averaged relative extractable soil water (θ(E)). This variation was related to the differential decline ofθ(E) near each monitored vine, decreasing faster between irrigation events near vines where L was greater, thus adding to the spatiotemporal variation of G(siR) observed in the vineyard. We also found that the vines showed isohydric-like behavior whenθ(E) was low, but switched to anisohydric-like behavior with increasingθ(E). Modeledθ(E) and associated G(s) of a canopy with even L (1.9 m(2) m(-2)) were greater than that of the same average L but split between the lowest and highest L observed along sections of rows in the vineyard (1.2 and 2.6 m(2) m(-2)) by 6 and 12%, respectively. Our results suggest that managing sectional L near the average, rather than allowing a wide variation, can reduce soil water depletion, maintaining G(s) higher, thus potentially enhancing yield.
The Antiozonant Ethylenediurea Does Not Act via Superoxide Dismutase Induction in Bean 1
Pitcher, Lynne H.; Brennan, Eileen; Zilinskas, Barbara A.
1992-01-01
It has been proposed that the mode of action of ethylenediurea, a very effective antiozonant, is via an increase in the antioxidant enzyme superoxide dismutase (EH Lee, JH Bennett [1982] Plant Physiol 69: 1444-1449). Data presented here refute that hypothesis. No ethylenediurea-associated increases in Cu/Zn-superoxide dismutase or Mn-superoxide dismutase activity, nor in steady-state Cu/Zn-superoxide dismutase protein levels, were found in soluble extracts of bean (Phaseolus vulgaris L. cv Bush Blue Lake 290) leaves. However, the cytosolic Cu/Zn-superoxide dismutase increased as a result of ozone fumigation and subsequent injury. Also noted was a developmentally related difference between chloroplastic and cytosolic Cu/Zn-superoxide dismutase, the latter declining during maturation of the leaf. ImagesFigure 1Figure 3 PMID:16669049
Shahabivand, Saleh; Parvaneh, Azar; Aliloo, Ali Asghar
2017-11-01
Cadmium (Cd) pollution in the soil threatens the quality of environmental health, and deleteriously affects physiological activities of crops. Symbiosis of endophytic fungi with various plants is a promising manner to improving numerous plant characteristics and remediating heavy metal-polluted soils. In this pot experiment, the influence of root endophyte fungus Piriformospora indica on growth, physiological parameters and organs Cd accumulation in sunflower cv. Zaria plants under the toxic levels of Cd (0, 40, 80 and 120mg/kg soil) were studied. Increasing Cd concentration in the soil reduced growth parameters, chlorophyll (Chl) a and Chl b contents, and Fv/Fm and ETR (electron transport rate) values, but increased root, stem and leaf Cd accumulation, and proline content. The presence of P. indica significantly enhanced growth, Chl a, Chl b and proline contents, and Fv/Fm and ETR values. Compared to non-inoculated ones, P. indica-inoculated plants had higher Cd accumulation in root, whereas lower Cd accumulation in stem and leaf. The present study strongly supports the established ability of P. indica to alleviate Cd toxicity by improving the physiological status in sunflower. Furthermore, this endophyte fungus can be useful for Cd phyto-stabilization in sunflower roots in contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Jeong Do; Jeon, Byeong Jun; Han, Jae Woo; Park, Min Young; Kang, Sin Ae; Kim, Beom Seok
2016-08-01
Endophytic bacteria are viewed as a potential new source of biofungicides because they have beneficial characteristics as control agents for plant disease. This study was performed to examine the endophytic feature and disease control efficacy of Bacillus amyloliquefaciens strain GYL4 and to identify the antifungal compounds produced by this strain. B. amyloliquefaciens strain GYL4 was isolated from leaf tissue of pepper plants (Capsicum annuum L.). Anthracnose symptoms were markedly reduced in the leaves of pepper plants colonised by GYL4. An egfp-expressing strain of GYL4 (GYL4-egfp) was constructed and reintroduced into pepper plants, which confirmed its ability to colonise the internal tissues of pepper plants. GYL4-egfp was observed in the root and stem tissues 4 days after treatment and abundantly found in the internal leaf tissue 9 days after treatment. Bacillomycin derivatives purified from the culture extract of GYL4 displayed control efficacy on anthracnose development in cucumber (Cucumis sativus L. cv. Chunsim). The present study is the first report on evaluation of the endophytic and systemic nature of B. amyloliquefaciens strain GYL4 and its potential as a biocontrol agent for anthracnose management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Agrawal, Ganesh K; Rakwal, Randeep; Jwa, N-S; Agrawal, Vishwanath P
2002-09-01
In our search to identify gene(s) involved in the rice self-defense responses, we cloned a novel rice (Oryza sativa L. cv. Nipponbare) gene, OsATX, a single copy gene, from the JA treated rice seedling leaves cDNA library. This gene encodes a 69 amino acid polypeptide with a predicted molecular mass of 7649.7 and a pI of 5.6. OsATX was responsive to cutting (wounding by cutting the excised leaf), over its weak constitutive expression in the healthy leaves. The critical signalling molecules, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and hydrogen peroxide, together with protein phosphatase inhibitors, effectively up-regulated the OsATX expression with time, over the excised leaf cut control, whereas ethylene had no affect. Furthermore, copper, a heavy metal, also up-regulated OsATX expression. Moreover, induced expression of OsATX mRNA was influenced by light signal(s), and showed a requirement for de novo synthesized protein factors. Additionally, co-application of either JA or ABA with SA drastically suppressed the induced OsATX mRNA level. Finally, the blast pathogen, Magnaporthe grisea, triggered OsATX mRNA accumulation. These results strongly suggest a function/role(s) for OsATX in defense/stress responses in rice.
Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce1
McCabe, Matthew S.; Garratt, Lee C.; Schepers, Frank; Jordi, Wilco J.R.M.; Stoopen, Geert M.; Davelaar, Evert; van Rhijn, J. Hans A.; Power, J. Brian; Davey, Michael R.
2001-01-01
An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (PSAG12-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested PSAG12-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous PSAG12-IPT lettuce plants showed a slight delay in bolting (4–6 d), a severe delay in flowering (4–8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence. PMID:11598225
Mapping Quantitative Field Resistance Against Apple Scab in a 'Fiesta' x 'Discovery' Progeny.
Liebhard, R; Koller, B; Patocchi, A; Kellerhals, M; Pfammatter, W; Jermini, M; Gessler, C
2003-04-01
ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to the resistance of a genotype. Such a genetic linkage map was constructed, based on a segregating population of the cross between apple cvs. Fiesta (syn. Red Pippin) and Discovery. The progeny was observed for 3 years at three different sites in Switzerland and field resistance against apple scab (Venturia inaequalis) was assessed. Only a weak correlation was detected between leaf scab and fruit scab. A QTL analysis was performed, based on the genetic linkage map consisting of 804 molecular markers and covering all 17 chromosomes of apple. With the maximum likelihood-based interval mapping method, eight genomic regions were identified, six conferring resistance against leaf scab and two conferring fruit scab resistance. Although cv. Discovery showed a much stronger resistance against scab in the field, most QTL identified were attributed to the more susceptible parent 'Fiesta'. This indicated a high degree of homozygosity at the scab resistance loci in 'Discovery', preventing their detection in the progeny due to the lack of segregation.
Three RNases in Senescent and Nonsenescent Wheat Leaves 1
Blank, A.; McKeon, Thomas A.
1991-01-01
We have described three RNases in wheat leaves (Triticum aestivum L. cv Chinese Spring) and developed assays for measuring each RNase individually in crude leaf extracts. We initially used activity staining in sodium dodecyl sulfate-polyacrylamide gels to characterize RNases in extracts of primary and flag leaves. We thus identified acid RNase (EC 3.1.27.1, here designated RNase WLA), and two apparently novel enzymes, designated RNases WLB and WLC. RNase WLB activity displays a distinctive isozyme pattern, a molecular mass of 26 kilodaltons (major species), a broad pH range with an optimum near neutrality, insensitivity to EDTA, and stimulation by moderate concentrations of KCl and by MgCl2. RNase WLC activity exhibits a molecular mass of 27 kilodaltons, a neutral pH optimum, insensitivity to EDTA, and inhibition by KCl, MgCl2, and tri-(hydroxymethyl)aminomethane. Based on distinctive catalytic properties established in gels, we designed conventional solution assays for selective quantitation of each RNase activity. We used the assays to monitor the individual RNases after gel filtration chromatography and native gel electrophoresis of extracts. In accompanying work, we used the assays to monitor RNases WLA, WLB, and WLC, which are present in senescent and nonsenescent leaves, during the course of leaf senescence. ImagesFigure 1Figure 3Figure 4 PMID:16668563
NASA Astrophysics Data System (ADS)
Pacumbaba, R. O.; Beyl, C. A.
2011-07-01
The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland's nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.
The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia
NASA Astrophysics Data System (ADS)
Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang
2015-07-01
The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.
Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio
2014-01-01
The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.
Rodrigues, Ana P.; Lidon, Fernando C.; Marques, Luís M. C.; Leitão, A. Eduardo; Fortunato, Ana S.; Pais, Isabel P.; Silva, Maria J.; Scotti-Campos, Paula; Lopes, António; Reboredo, F. H.; Ribeiro-Barros, Ana I.
2018-01-01
The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided. PMID:29870563
Ramalho, José C; Rodrigues, Ana P; Lidon, Fernando C; Marques, Luís M C; Leitão, A Eduardo; Fortunato, Ana S; Pais, Isabel P; Silva, Maria J; Scotti-Campos, Paula; Lopes, António; Reboredo, F H; Ribeiro-Barros, Ana I
2018-01-01
The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, T.; Skidmore, A. K.; Heurich, M.
2016-12-01
The plant area index (PAI) profile is a quantitative description of how plants (including leaves and woody materials) are distributed vertically, as a function of height. PAI profiles can be used for many applications including biomass estimation, radiative transfer modelling, fire fuel modelling and wildlife habitat assessment. With airborne laser scanning (ALS), forest structure underneath the canopy surface can be detected. PAI profiles can be calculated through estimates of the vertically resolved gap fraction from ALS data. In this process, a gridding or aggregation step is often involved. Most current research neglects local topographic change, and utilizes a height normalization algorithm to achieve a local or relative height, implying a flat local terrain assumption inside the grid or aggregation area. However, in mountainous forest, this assumption is often not valid. Therefore, in this research, the local topographic effect on the PAI profile calculation was studied. Small footprint discrete multi-return ALS data was acquired over the Bavarian Forest National Park under leaf-off and leaf-on conditions. Ground truth data, including tree height, canopy cover, DBH as well as digital hemispherical photos, were collected in 30 plots. These plots covered a wide range of forest structure, plant species, local topography condition and understory coverage. PAI profiles were calculated both with and without height normalization. The difference between height normalized and non-normalized profiles were evaluated with the coefficient of variation of root mean squared difference (CV-RMSD). The derived metric PAI values from PAI profiles were also evaluated with ground truth PAI from the hemispherical photos. Results showed that change in local topography had significant effects on the PAI profile. The CV-RMSD between PAI profile results calculated with or without height normalization ranged from 24.5% to 163.9%. Height normalization (neglecting topography change) can lead to offsets in the height of plant material that could potentially cause large errors and uncertainty when used in applications utilizing absolute height such as radiative transfer modeling and fire fuel modelling. This research demonstrates that when calculating the PAI profile from ALS, local topography has to be taken into account.
2011-01-01
Background Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. Results We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Conclusion Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process. PMID:22192855
Chandra Rai, Avinash; Singh, Major; Shah, Kavita
2012-12-01
Water stress often leads to the accumulation of reactive oxygen species (ROS) and their excessive production alters the activities of enzymes involved in their removal. ZAT12 is a member of stress-responsive C(2)H(2) type Zinc Finger Protein (ZFP) reported to control the expression of several stress-activated genes in plants through ROS signaling. The ZAT12-transformed tomato lines (cv. H-86 variety Kashi Vishesh) when subjected to water withdrawal for 7, 14 and 21 days revealed significant and consistent changes in activities of enzymes SOD, CAT, APX, GR and POD paralleled with an increased proline levels. Unlike that in wild-type tomato, the leaf superoxide anion and hydrogen peroxide concentrations in the transformed tomato plants did not alter much, suggesting a well regulated formation of free radicals suppressing oxidative stress in the latter. Results suggest BcZAT12-transformed tomato lines ZT1, ZT2 and ZT6 to be better adapted to drought stress tolerance by accumulation of osmolyte proline and increased antioxidant response triggered by the ZAT12 gene. Therefore, the ZAT12-transformed tomato cv. H-86 lines will prove useful for higher yield of tomato crop in regions affected with severe drought stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouchi, Isamu; Toyama, Susumu
To compare the effects of ozone and peroxyacetyl nitrate (PAN) on leaf lipids, fatty acids and malondialdehyde (MDA), morning glory (Pharbitis nil Choisy cv Scarlet O'Hara) and kidney bean (Phaseolus vulgaris L. cv Gintebo) plants were exposed to either ozone (0.15 microliter per liter for 8 hours) or PAN (0.10 microliter per liter for up to 8 hours). Ozone increased phospholipids in morning glory and decreased in kidney bean at the initial stage (2-4 hours) of exposure, while it scarcely changed glycolipids, the unsaturated fatty acids, and MDA in both plants. A large reduction of glycolipids occurred 1 day aftermore » ozone exposure in both plants. PAN caused marked drops in phospholipids and glycolipids in kidney bean at relatively late stage (6-8 hours) of exposure, while it increased phosphatidic acid and decreased the unsaturated fatty acids, an increase which was accompanied by a large increase in MDA. These results suggest that ozone may not directly oxidize unsaturated fatty acids at the initial stage of exposure, but may alter polar lipid metabolism, particularly phospholipids. On the other hand, PAN may abruptly and considerably degrade phospholipids and glycolipids by peroxidation or hydrolysis at the late stage of exposure. The present study shows that ozone and PAN affect polar lipids in different manners.« less
Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1
Plaut, Zvi; Federman, Evelyn
1991-01-01
Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429
Rothwell, Shane A.; Elphinstone, E. David; Dodd, Ian C.
2015-01-01
To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6–6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3–6.7, reduced stomatal conductance (g s) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16–24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g s: both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g s of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925
[Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].
Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin
2011-06-01
Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.
Berghuijs, Herman N. C.; Yin, Xinyou; Ho, Q. Tri; Verboven, Pieter; Nicolaï, Bart M.
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters. PMID:28880924
Meir, S; Philosoph-Hadas, S; Epstein, E; Aharoni, N
1985-05-01
Various naturally occurring carbohydrates, applied at a concentration range of 1 to 100 mm, stimulated ethylene production for several days in indoleacetic acid (IAA)-treated or untreated tobacco (Nicotiana tabacum L. cv ;Xanthi') leaf discs. The lag period for this sugar-stimulated ethylene production was 8 to 12 hours after excision in the untreated leaf discs, but less than 2 hours in the IAA-treated ones. Among the tested carbohydrates, 12 were found to increase synergistically ethylene production, with d-galactose, sucrose, and lactose being the most active; mannitol and l-glucose had no effect. The extent and duration of the increased ethylene production was dependent upon the type of sugar applied, the tissue's age, and the existence of both exogenous IAA and sugar in the medium. Sucrose appeared to elicit a continuous IAA effect for 48 hours, as expressed by increased ethylene production, even when IAA was removed from the medium after a 4-hour pulse. Sucrose stimulated both the uptake and decarboxylation of [1-(14)C]IAA, as well as the hydrolysis of the esteric and amide IAA conjugates formed in the tissue after application of free IAA. This gradual hydrolysis was accompanied by a further accumulation of a third IAA metabolite. Moreover, synthetic indole-3-acetyl-l-alanine increased ethylene production mainly with sucrose, and this effect was accompanied by its increased decarboxylation and turnover pattern suggesting that release of free IAA was involved. An esteric IAA conjugate, tentatively identified by GC retention time was found to be the major component (84%) of the naturally occurring IAA conjugates in tobacco leaves. Accordingly the sucrose-stimulated ethylene production in tobacco leaves can be ascribed mainly to the sucrose-stimulated hydrolysis of the esteric IAA conjugate.
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Retta, Moges A; Verboven, Pieter; Nicolaï, Bart M; Struik, Paul C
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters.
Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce
NASA Astrophysics Data System (ADS)
Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan
2010-09-01
The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.
Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata.
Cipollini, Don; Gruner, Bill
2007-01-01
Cyanide production has been reported from over 2500 plant species, including some members of the Brassicaceae. We report that the important invasive plant, Alliaria petiolata, produces levels of cyanide in its tissues that can reach 100 ppm fresh weight (FW), a level considered toxic to many vertebrates. In a comparative study, levels of cyanide in leaves of young first-year plants were 25 times higher than in leaves of young Arabidopsis thaliana plants and over 150 times higher than in leaves of young Brassica kaber, B. rapa, and B. napus. In first-year plants, cyanide levels were highest in young leaves of seedlings and declined with leaf age on individual plants. Leaves of young plants infested with green peach aphids (Myzus persicae) produced just over half as much cyanide as leaves of healthy plants, suggesting that aphid feeding led to loss of cyanide from intact tissues before analysis, or that aphid feeding inhibited cyanide precursor production. In a developmental study, levels of cyanide in the youngest and oldest leaf of young garlic mustard plants were four times lower than in the youngest and oldest leaf of young Sorghum sudanense (cv. Cadan 97) plants, but cyanide levels did not decline in these leaves with plant age as in S. sudanense. Different populations of garlic mustard varied moderately in the constitutive and inducible expression of cyanide in leaves, but no populations studied were acyanogenic. Although cyanide production could result from breakdown products of glucosinolates, no cyanide was detected in vitro from decomposition of sinigrin, the major glucosinolate of garlic mustard. These studies indicate that cyanide produced from an as yet unidentified cyanogenic compound is a part of the battery of chemical defenses expressed by garlic mustard.
Bernstein, Nirit; Sela, Shlomo; Neder-Lavon, Sarit
2007-07-01
The capacity of Salmonella enterica serovar Newport to contaminate Romaine lettuce (Lactuca sativa L. cv. Nogal) via the root system was evaluated in 17-, 20-, and 33-day-old plants. Apparent internalization of Salmonella via the root to the above-ground parts was identified in 33- but not 17- or 20-day-old plants and was stimulated by root decapitation. Leaves of lettuce plants with intact and damaged roots harbored Salmonella at 500 +/- 120 and 5,130 +/- 440 CFU/g of leaf, respectively, at 2 days postinoculation but not 5 days later. These findings are first to suggest that Salmonella Newport can translocate from contaminated roots to the aerial parts of lettuce seedlings and propose that the process is dependent on the developmental stage of the plant.
NASA Technical Reports Server (NTRS)
Lim, J. T.; Raper, C. D. Jr; Gold, H. J.; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)
1989-01-01
A simple mathematical model for calculating the concentration of mobile carbon skeletons in the shoot of soya bean plants [Glycine max (L.) Merrill cv. Ransom] was built to examine the suitability of measured net photosynthetic rates (PN) for calculation of saccharide flux into the plant. The results suggest that either measurement of instantaneous PN overestimated saccharide influx or respiration rates utilized in the model were underestimated. If neither of these is the case, end-product inhibition of photosynthesis or waste respiration through the alternative pathway should be included in modelling of CH2O influx or efflux; and even if either of these is the case, the model output at a low coefficient of leaf activity indicates that PN still may be controlled by either end-product inhibition or alternative respiration.
Guiderdoni, E; Chaïr, H
1992-11-01
More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.
Identification of chilling and heat requirements of cherry trees--a statistical approach.
Luedeling, Eike; Kunz, Achim; Blanke, Michael M
2013-09-01
Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. 'Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. 'Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package ('chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. 'Payne') at Davis, California.
Identification of chilling and heat requirements of cherry trees—a statistical approach
NASA Astrophysics Data System (ADS)
Luedeling, Eike; Kunz, Achim; Blanke, Michael M.
2013-09-01
Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. `Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. `Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (`chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. `Payne') at Davis, California.
Shen, Cimin; Xu, Jinsen; Zheng, Shuxia; Lin, Lijiao; Yang, Xiaomei; Liu, Chunlan
2016-02-01
To observe the effect of electroacupuncture(EA) at Zhongwan(CV 12) on the energy metabolism along the conception vessel(CV) in volunteers with yang-deficiency constitution,and to explore the relationship of electroacupuncture regulation and body constitution. Eighteen volunteers with mild constitution and 18 volunteers with yang-deficiency constitution were collected out of 200 students of Fujian University of TCM by body constitution questionnaire. Skin microcirculatory blood perfusion units (MBPU) at Danzhong (CV 17), Xiawan(CV 10) and Qihai(CV 6) of CV were measured by a laser Doppler flowmetry in the normal condition and after EA stimulation at Zhongwan(CV 12) for 20 min. (1)Before treatment, (1)MBPU values at Danzhong(CV 17), Xiawan(CV 10) and Qihai(CV 6) in the yang-deficiency constitution group were lower than those in the mild constitution group,but there was no statistical significance (both P>0. 05) except Danzhong(CV 17) (P<0. 01). (Z)As for the three acupoints in the mild constitution group, MBPU level of Danzhong(CV 17) was higher than that of Xiawan(CV 10) without statistical significance(P->0. 05),and MBPU values of Danzhong(CV 17) and Xiawan(CV 10) were higher than that of Qihai(CV 6) (both P<0. 01). (3About the three acupoints in the yang-deficiency constitution group, MBPU result of Danzhong(CV 17) was lower than the value of Xiawan(CV 10), but higher compared with Qihai(CV 6)(P<0. 05, P<0. 01). MBPU of Xiawan(CV 10) was higher than Qihai (CV 6) as well(P<0. 01). (2) MBPU values of Danzhong(CV 17), Xiawan(CV 10) and Qihai(CV 6) were increased apparently compared with those before treatment after EA stimulation at Zhongwan(CV 12) for 20 min in the two groups(all P<0. 01). (3) The rise rates of MBPU level about Danzhong(CV 17) and Qihai(CV 6) in the yang-deficiency constitution group were higher than those in the mild constitution group without statistical significance after EA at Zhongwan(CV 12) for 20 min(both P>0. 05). The energy metabolism in CV of volunteers with yang-deficiency constitution is declined, especially Danzhong(CV 17). EA can rise energy metabolism in CV of mild or yang-deficiency constitution volunteers through regulating MBPU along meridian.
Physico-chemical characteristics of shallot New-Superior Varieties (NSV) from Indonesia
NASA Astrophysics Data System (ADS)
Sukasih, E.; Setyadjit; Musadad, D.
2018-01-01
Shallot is one of the priority agricultural commodities to be developed in Indonesia to reduce import and to stabilize domestic supply. The efforts include the selection of varieties, seed technology, agronomy, handling and processing to extend the supply and added value. Indonesian Agency for Agricultural Research and Development (IAARD) has purified, cross-pollinated, selected and released new varieties called New Superior Varieties (NSV) to farmers. The purpose of this research was to investigate the characteristic of fresh shallot NSV by understanding its potential for raw material of processed product. A completely randomized design (CRD) of single factor of ten local varieties of shallot such as Cv. Sembrani, Cv. Kuning, Cv. Pancasona, Cv. Bima, Cv. Trisula, Cv. Pikatan, Cv. Katumi, Cv. Kramat-2, Cv. Mentes and Cv. Majalok of three replication was used to arrange the experiment. The results showed that shallot New Superior Varieties (NSV) were significant by effect the physico-chemical parameters, such as diameter, length, weight of both in main bulb and tiller bulb, fat total, carbohydrate, crude fiber, starch content, antioxidant capacity and quercetin. Of the ten varieties of shallot characterized, the largest bulbs are Cv. Sembrani i.e 5.30 ± 0.3g per bulb, the best red color for shallot peeled was Cv. Kuning. Furthermore Cv. Pancasona have the highest protein content of 4.23 ± 0.2%, Cv. Mentes have the highest functional properties of quercetin 1766.4 ± 134 ppm. Shallot varieties such as Cv. Sembrani, Cv. Bima, Cv. Kuning and Cv. Trisula suitable for use as fresh product. Shallot varieties such as Cv. Pikatan, Cv. Pancasona, Cv. Katumi and Cv. Kramat-2 are suitable as raw materials for processed products. Cv. Mentes and Cv. Majalok were potential for raw materials of functional food and pharmaceutical industries.
Chemical, chromatic, and sensory attributes of 6 red wines produced with prefermentative cold soak.
Casassa, L Federico; Bolcato, Esteban A; Sari, Santiago E
2015-05-01
Six red grape cultivars, Barbera D'Asti, Cabernet Sauvignon, Malbec, Merlot, Pinot Noir and Syrah, were produced with or without prefermentative cold soak (CS). Cold soak had no effect on the basic chemical composition of the wines. At pressing, CS wines were more saturated and with a higher red component than control wines. After 1 year of bottle aging, CS wines retained 22% more anthocyanins than control wines, but tannins and total phenolics remained unaffected. Both saturation and the red component of colour were slightly higher in CS wines. From a sensory standpoint, CS only enhanced colour intensity in Barbera D'Asti and Cabernet Sauvignon wines, whereas it diminished colour intensity in Pinot Noir. Cold soak had no effect on perceived aroma, bitterness, astringency, and body of the wines. Principal Component Analysis suggested that the outcome of CS is contingent upon the specific cultivar to which the CS technique is applied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghosh, Prithwi; Sen, Senjuti; Chakraborty, Joydeep; Das, Sampa
2016-03-01
Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.
Soil fluoride spiking effects on olive trees (Olea europaea L. cv. Chemlali).
Zouari, M; Ben Ahmed, C; Fourati, R; Delmail, D; Ben Rouina, B; Labrousse, P; Ben Abdallah, F
2014-10-01
A pot experiment under open air conditions was carried out to investigate the uptake, accumulation and toxicity effects of fluoride in olive trees (Olea europaea L.) grown in a soil spiked with inorganic sodium fluoride (NaF). Six different levels (0, 20, 40, 60, 80 and 100mM NaF) of soil spiking were applied through NaF to irrigation water. At the end of the experiment, total fluoride content in soil was 20 and 1770mgFkg(-1) soil in control and 100mM NaF treatments, respectively. The comparative distribution of fluoride partitioning among the different olive tree parts showed that the roots accumulated the most fluoride and olive fruits were minimally affected by soil NaF spiking as they had the lowest fluoride content. In fact, total fluoride concentration varied between 12 and 1070µgFg(-1) in roots, between 9 and 570µgFg(-1) in shoots, between 12 and 290µgFg(-1) in leaves, and between 10 and 29µgFg(-1) in fruits, respectively for control and 100mM NaF treatments. Indeed, the fluoride accumulation pattern showed the following distribution: roots>shoots>leaves>fruits. On the other hand, fluoride toxicity symptoms such as leaf necrosis and leaf drop appeared only in highly spiked soils (60, 80 and 100mM NaF). Copyright © 2014 Elsevier Inc. All rights reserved.
Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K
2009-09-01
Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.
Champoiseau, P; Daugrois, J-H; Pieretti, I; Cociancich, S; Royer, M; Rott, P
2006-10-01
ABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical. Similarly, no genomic variation was found among strains by pulsed-field gel electrophoresis. Some variation among strains was found by amplified fragment length polymorphism, but no relationship between this genetic variation and variation in pathogenicity was found. Only 3 (pilB, rpfA, and xpsE) of 40 genes involved in pathogenicity of bacterial species closely related to X. albilineans could be amplified by polymerase chain reaction from total genomic DNA of all nine strains tested of X. albilineans differing in pathogenicity in Guadeloupe. Nucleotide sequences of these genes were 100% identical among strains, and a phylogenetic study with these genes and housekeeping genes efp and ihfA suggested that X. albilineans is on an evolutionary road between the X. campestris group and Xylella fastidiosa, another vascular plant pathogen. Sequencing of the complete genome of Xanthomonas albilineans could be the next step in deciphering molecular mechanisms involved in pathogenicity of X. albilineans.
Martínez-Lüscher, J; Morales, F; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Gomès, E; Pascual, I
2015-07-01
The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre
2016-01-01
Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation. PMID:27446150
Wierstra, Inken; Kloppstech, Klaus
2000-01-01
The effects of methyl jasmonate (JA-Me) on early light-inducible protein (ELIP) expression in barley (Hordeum vulgare L. cv Apex) have been studied. Treatment of leaf segments with JA-Me induces the same symptoms as those exhibited by norflurazon bleaching, including a loss of pigments and enhanced light stress that results in increased ELIP expression under both high- and low-light conditions. The expression of both low- and high-molecular-mass ELIP families is considerably down-regulated by JA-Me at the transcript and protein levels. This repression occurs despite increased photoinhibition measurable as a massive degradation of D1 protein and a delayed recovery of photosystem II activity. In JA-Me-treated leaf segments, the decrease of the photochemical efficiency of photosystem II under high light is substantially more pronounced as compared to controls in water. The repression of ELIP expression by JA-Me is superimposed on the effect of the increased light stress that leads to enhanced ELIP expression. The fact that the reduction of ELIP transcript levels is less pronounced than those of light-harvesting complex II and small subunit of Rubisco transcripts indicates that light stress is still affecting gene expression in the presence of JA-Me. The jasmonate-induced protein transcript levels that are induced by JA-Me decline under light stress conditions. PMID:11027731
Ederli, Luisa; Morettini, Roberta; Borgogni, Andrea; Wasternack, Claus; Miersch, Otto; Reale, Lara; Ferranti, Francesco; Tosti, Nicola; Pasqualini, Stefania
2006-01-01
The higher plant mitochondrial electron transport chain contains, in addition to the cytochrome chain, an alternative pathway that terminates with a single homodimeric protein, the alternative oxidase (AOX). We recorded temporary inhibition of cytochrome capacity respiration and activation of AOX pathway capacity in tobacco plants (Nicotiana tabacum L. cv BelW3) fumigated with ozone (O3). The AOX1a gene was used as a molecular probe to investigate its regulation by signal molecules such as hydrogen peroxide, nitric oxide (NO), ethylene (ET), salicylic acid, and jasmonic acid (JA), all of them reported to be involved in the O3 response. Fumigation leads to accumulation of hydrogen peroxide in mitochondria and early accumulation of NO in leaf tissues. Although ET accumulation was high in leaf tissues 5 h after the start of O3 fumigation, it declined during the recovery period. There were no differences in the JA and 12-oxo-phytodienoic acid levels of treated and untreated plants. NO, JA, and ET induced AOX1a mRNA accumulation. Using pharmacological inhibition of ET and NO, we demonstrate that both NO- and ET-dependent pathways are required for O3-induced up-regulation of AOX1a. However, only NO is indispensable for the activation of AOX1a gene expression. PMID:16935990
Gholampour, Abdollah; Hashemabadi, Davood; Sedaghathoor, Shahram; Kaviani, Behzad
2015-01-01
The effect of concentration and application method of chlormequat (cycocel), a plant growth retardant, on plant height and some other traits in Brassica oleracea cultivars 'Kamome White' and 'Nagoya Red' was assessed. Plant growth retardants are commonly applied to limit stem elongation and produce a more compact plant. The experiment was done as a factorial in randomized completely blocks design (RCBD) with four replications. Plants (40 days after transplanting) were sprayed and drenched with 500, 1000 and 1500 mg l(-1) cycocel. In each experiment, control untreated plants. Data were recorded the 60 and 90 days after transplanting. Based on analysis of variance (ANOVA), the effect of different treatments and their interaction on all traits was significant at 0.05 or 0.01 level of probability. Treatment of 1500 mg I(-1) cycocel resulted in about 50 and 20% shorter plants than control plants, 60 and 90 days after transplant. The growth of Brassica oleracea cultivar 'Kamome White' and 'Nagoya Red' decreased with increased cycocel concentration. Foliar sprays of cycocel controlled plant height of both cultivars. Results indicated that the shortest plants (9.94 and 11.59 cm) were those sprayed with 1500 mg l(-1) cycocel in cultivar 'Kamome White' after 60 and 90 days, respectively. The largest number of leaves (33.94) and highest leaf diameter (9.39 cm) occurred in cv. 'Nagoya Red', when drench was used. Maximum dry matter (14.31%) accumulated in cv. 'Nagoya Red', treated with spray.
Green leaf allowance and dairy ewe performance grazing on tropical pasture.
De Souza, J; Batistel, F; Ticiani, E; Sandri, E C; Pedreira, C G S; Oliveira, D E
2014-06-01
The objective of this study was to explain the influence of green leaf allowance levels on the performance of dairy ewes grazing a tropical grass. Seventy-two lactating ewes grazed Aruana guineagrass (Panicum maximum Jacq. cv. Aruana) for 80 d. The treatments were 4 daily levels of green leaf allowance (GLA) on a DM basis corresponding to 4, 7, 10, and 13 kg DM/100 kg BW, which were named low, medium-low, medium-high, and high level, respectively. The experimental design was completely randomized with 3 replications. During the experimental period, 4 grazing cycles were evaluated in a rotational stocking grazing method (4 d of grazing and 16 d of rest). There was a linear effect of GLA on forage mass, and increasing GLA resulted in increased total leaf mass, reaching an asymptotic plateau around the medium-high GLA level. The stem mass increased with increased GLA, and a pronounced increase was observed between medium-high and high GLAs. Increasing GLA increased both forage disappearance rate and postgrazing forage mass. Leaf proportion increased with GLA, peaking at the medium-high level, and the opposite occurred for stem proportions, which reduced until medium-high GLA level, followed by an increase on high GLA. Forage CP decreased linearly with GLA, and increasing GLA from low to high reduced CP content by 31%. On the other hand, NDF increased 14% and ADF increased 26%, both linearly in response to greater GLA levels. Total digestible nutrients decreased linearly by 8% when GLA increased from low to high level. Milk yield increased, peaking at medium-high GLA (1.75 kg ewe(-1) d(-1)) and decreased at high GLA level (1.40 kg ewe(-1) d(-1)). Milk composition was not affected by the GLA levels. There was a reduction in stocking rate from 72 to 43 ewes/ha when GLA increased from low to high level. Productivity (milk yield kg ha(-1) d(-1)) increased as GLA increased, peaking at medium-low level (115 kg ha(-1) d(-1)). Although this tropical grass showed the same pattern in responses to GLA levels as reported in the literature with temperate pastures, the magnitude of the process changed and the maximum response in milk yield from lactating dairy ewes grazing a tropical pasture would be achieved with higher forage allowances than in temperate pastures. Overall, Aruana guineagrass grazed by lactating dairy ewes should be managed to provide 7 to 10 GLA in kg DM/100 kg BW according to the production goals.
Bernacchi, Carl J.; Portis, Archie R.; Nakano, Hiromi; von Caemmerer, Susanne; Long, Stephen P.
2002-01-01
CO2 transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (gm), is finite. Therefore, it will limit photosynthesis when CO2 is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of gm. The process dominating gm is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO2 in water have all been suggested. The response of gm to temperature (10°C–40°C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q10) of approximately 2.2 for gm, suggesting control by a protein-facilitated process because the Q10 for diffusion of CO2 in water is about 1.25. Further, gm values are maximal at 35°C to 37.5°C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of gm to calculate CO2 at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10°C to 40°C. Using these parameters, we determined the limitation imposed on photosynthesis by gm. Despite an exponential rise with temperature, gm does not keep pace with increased capacity for CO2 uptake at the site of Rubisco. The fraction of the total limitations to CO2 uptake within the leaf attributable to gm rose from 0.10 at 10°C to 0.22 at 40°C. This shows that transfer of CO2 from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature. PMID:12481082
NASA Astrophysics Data System (ADS)
Rai, Richa; Agrawal, Madhoolika; Agrawal, S. B.
2010-11-01
A higher ozone concentration in rural agricultural region poses threat to food production in developing countries. The present study was conducted to evaluate the growth, biomass accumulation and allocation pattern, quantitative and qualitative characteristics of grains for two tropical rice cultivars ( Oryza sativa L. cv NDR 97 and Saurabh 950) at ambient O 3 concentrations at a rural site in the Indo Gangetic plains of India. Percent inhibition in number of leaves was higher for NDR 97, but in leaf area for Saurabh 950 grown in non filtered chambers (NFCs) compared to filtered chambers (FCs). Higher inhibition in root biomass was recorded in Saurabh 950 and in leaf and standing dead biomass for NDR 97. During vegetative phase, relative growth rate showed more percent inhibition in Saurabh 950, but at reproductive phase in NDR 97. Net assimilation rate showed higher values for Saurabh 950 than NDR 97 in NFCs but percent inhibition in leaf area ratio was higher for former than latter cultivar in NFCs. The ozone resistance was higher in NDR 97 during vegetative phase, but in Saurabh 950 at reproductive phase. Number of grains was higher in NDR 97 than Saurabh 950, but test weight and weight of grains m -2 showed reverse trends. Concentrations of starch, protein, P, N, Ca, Mg and K decreased, while reducing and total soluble sugar increased in grains of both the cultivars in NFCs compared to FCs. The study concluded that under ambient condition of O 3 exposure, the two cultivars responded differently. Saurabh 950 favoured biomass translocation priority towards ear in reproductive phase and hence showed higher resistivity due to maintenance of higher test weight. NDR 97, however, showed better growth during vegetative period, but could not allocate efficiently to developing ears, hence higher number of unfilled grains in NFCs led lower test weight.
Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano
2009-09-01
The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to the evolution of O. europaea in sunny environments, suggest that under partial shading, the antioxidant defence system may be ineffective to counter salt-induced oxidative damage.
Wang, Yong; Wang, Meiling; Sun, Yulin; Hegebarth, Daniela; Li, Tingting; Jetter, Reinhard; Wang, Zhonghua
2015-10-01
Cuticular waxes are complex mixtures of very long chain (VLC) fatty acids and their derivatives in which primary alcohols are the most abundant components in the leaf surface of common wheat (Triticum aestivum L.). However, the genes involved in primary alcohol biosynthesis in wheat are still largely unknown. Here we identified, via a homology-based approach, the TaFAR1 gene belonging to the fatty acyl-CoA reductases (FARs) from wheat. Heterologous expression of TaFAR1 in yeast (Saccharomyces cerevisiae) and in the Arabidopsis (Arabidopsis thaliana) cer4-3 mutant afforded production of C22 primary alcohol and C22-C24 primary alcohols, respectively, and transgenic expression of TaFAR1 in tomato (Solanum lycopersicum) cv MicroTom leaves and fruits resulted in the accumulation of C26-C30 primary alcohols and C30-C34 primary alcohols, respectively. The TaFAR1 protein was localized to the endoplasmic reticulum (ER) in rice (Oryza sativa L.) leaf protoplasts. Moreover, the TaFAR1 expression pattern across various organs correlated with the levels of primary alcohols accumulating in corresponding waxes, and with the presence of platelet-shaped epicuticular wax crystals formed by primary alcohols. A nullisomic-tetrasomic wheat line lacking TaFAR1 had significantly reduced levels of primary alcohols in its leaf blade and anther wax. TaFAR1 was located on chromosome 4AL and appeared to be highly conserved, with only one haplotype among 32 wheat cultivars. Finally, TaFAR1 expression was induced by drought and cold stress in an ABA-dependent manner. Taken together, our results show that TaFAR1 is an active enzyme forming primary alcohols destined for the wheat cuticle. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Dark Septate Endophytic Fungi Help Tomato to Acquire Nutrients from Ground Plant Material
Vergara, Carlos; Araujo, Karla E. C.; Urquiaga, Segundo; Schultz, Nivaldo; Balieiro, Fabiano de Carvalho; Medeiros, Peter S.; Santos, Leandro A.; Xavier, Gustavo R.; Zilli, Jerri E.
2017-01-01
Dark septate endophytic (DSE) fungi are facultative biotrophs that associate with hundreds of plant species, contributing to their growth. These fungi may therefore aid in the search for sustainable agricultural practices. However, several ecological functions of DSE fungi need further clarification. The present study investigated the effects of DSE fungi inoculation on nutrient recovery efficiency, nutrient accumulation, and growth of tomato plants fertilized with organic and inorganic N sources. Two experiments were carried out under greenhouse conditions in a randomized blocks design, with five replicates of tomato seedlings grown in pots filled with non-sterile sandy soil. Tomato seedlings (cv. Santa Clara I-5300) inoculated with DSE fungi (isolates A101, A104, and A105) and without DSE fungi (control) were transplanted to pots filled with 12 kg of soil which had previously received finely ground plant material [Canavalia ensiformis (L.)] that was shoot enriched with 0.7 atom % 15N (organic N source experiment) or ammonium sulfate-15N enriched with 1 atom % 15N (mineral N source experiment). Growth indicators, nutrient content, amount of nitrogen (N) in the plant derived from ammonium sulfate-15N or C. ensiformis-15N, and recovery efficiency of 15N, P, and K by plants were quantified 50 days after transplanting. The treatment inoculated with DSE fungi and supplied with an organic N source showed significantly higher recovery efficiency of 15N, P, and K. In addition, the 15N, N, P, K, Ca, Mg, Fe, Mn, and Zn content, plant height, leaf number, leaf area (only for the A104 inoculation), and shoot dry matter increased. In contrast, the only positive effects observed in the presence of an inorganic N source were fertilizer-K recovery efficiency, content of K, and leaf area when inoculated with the fungus A104. Inoculation with A101, A104, and A105 promoted the growth of tomato using organic N source (finely ground C. ensiformis-15N plant material). PMID:29312163
Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan
2018-05-01
Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.
Ahmed, Imrul Mosaddek; Cao, Fangbin; Zhang, Mian; Chen, Xianhong; Zhang, Guoping; Wu, Feibo
2013-01-01
Soil salinity and drought are the two most common and frequently co-occurring abiotic stresses constraining crop growth and productivity. Greenhouse pot experiments were conducted to investigate the tolerance potential and mechanisms of Tibetan wild barley genotypes (XZ5, drought-tolerant; XZ16, salinity/aluminum tolerant) during anthesis compared with salinity-tolerant cv CM72 in response to separate and combined stresses (D+S) of drought (4% soil moisture, D) and salinity (S). Under salinity stress alone, plants had higher Na+ concentrations in leaves than in roots and stems. Importantly, XZ5 and XZ16 had substantially increased leaf K+ concentrations; XZ16 was more efficient in restricting Na+ loading in leaf and maintained a lower leaf Na+/K+ ratio. Moreover, a significant decrease in cell membrane stability index (CMSI) and an increase in malondialdehyde (MDA) were accompanied by a dramatic decrease in total biomass under D+S treatment. We demonstrated that glycine-betaine and soluble sugars increased significantly in XZ5 and XZ16 under all stress conditions, along with increases in protease activity and soluble protein contents. Significant increases were seen in reduced ascorbate (ASA) and reduced glutathione (GSH) contents, and in activities of H+K+-, Na+K+-, Ca++Mg++-, total- ATPase, and antioxidant enzymes under D+S treatment in XZ5 and XZ16 compared to CM72. Compared with control, all stress treatments significantly reduced grain yield and 1000-grain weight; however, XZ5 and XZ16 were less affected than CM72. Our results suggest that high tolerance to D+S stress in XZ5 and XZ16 is closely related to the lower Na+/K+ ratio, and enhanced glycine-betaine and soluble protein and sugar contents, improved protease, ATPase activities and antioxidative capacity for scavenging reactive oxygen species during anthesis. These results may provide novel insight into the potential responses associated with increasing D+S stress in wild barley genotypes. PMID:24205003
NASA Technical Reports Server (NTRS)
Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.
1997-01-01
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger
2017-09-01
This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Schuerger, A C; Brown, C S; Stryjewski, E C
1997-03-01
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.
Ozone dose-response relationships for spring oilseed rape and broccoli
NASA Astrophysics Data System (ADS)
De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine
2011-03-01
Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.
2011-01-01
Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species. PMID:22014081
Khan, Zainul A.; Abdin, Malik Z.; Khan, Jawaid A.
2015-01-01
Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells. PMID:25799504
Khan, Zainul A; Abdin, Malik Z; Khan, Jawaid A
2015-01-01
Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.
Kung, Yi-Jung; Bau, Huey-Jiunn; Wu, Yi-Ling; Huang, Chiung-Huei; Chen, Tsui-Miao; Yeh, Shyi-Dong
2009-11-01
During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3' untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.
Competency for graviresponse in the leaf-sheath pulvinus of Avena sativa: onset to loss
NASA Technical Reports Server (NTRS)
Brock, T. G.; Kaufman, P. B.
1988-01-01
The development of the leaf-sheath pulvinus of oat (Avena sativa L. cv. Victory) was studied in terms of its competency to respond to gravistimulation. Stages of onset of competency, maximum competency and loss of competency were identified, using the length of the supertending internode as a developmental marker. During the early phases in the onset of competency, the latency period between stimulus and graviresponse decreased and the steady state response rate increased significantly. When fully competent, the latency period remained constant as the plant continued to develop, suggesting that the latency period is relatively insensitive to quantitative changes (e.g., in carbohydrate or nutrient availability) at the cell level within the plant. In contrast, the response rate was found to increase with plant development, indicating that graviresponse rate is more strongly influenced by quantitative cellular changes. The total possible graviresponse of a single oat pulvinus was confirmed to be significantly less than the original presentation angle. This was shown to not result from a loss of competency, since the graviresponse could be reinitiated by increasing the presentation angle. As a result of the low overall graviresponse of individual pulvini, two or more pulvini are required to bring the plant apex to the vertical. This was determined to occur though the sequential, rather than simultaneous, action of successive pulvini, since a given pulvinus lost competency to gravirespond shortly after the next pulvinus became fully competent.
NASA Technical Reports Server (NTRS)
Smart, D. R.; Ritchie, K.; Bloom, A. J.; Bugbee, B. B.
1998-01-01
We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.
Wang, Wei; Tang, Ke; Yang, Hao-Ru; Wen, Peng-Fei; Zhang, Ping; Wang, Hui-Ling; Huang, Wei-Dong
2010-01-01
Current research indicated that the resveratrol was mainly accumulated in the skin of grape berry, however, little is yet known about the distribution of resveratrol, as well as the regulation mechanism at protein level and the localization of stilbene synthase (malonyl-CoA:4-coumaroyl-CoA malonyltransferase; EC 2.3.1.95; STS), a key enzyme of resveratrol biosynthesis, in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon). Resveratrol, whose constitutive level ranged from 0.2 mg kg(-1) FW to 16.5 mg kg(-1) FW, could be detected in stem, axillary bud, shoot tip, petiole, root and leaf of grape plants. Among them, stem phloems presented the most abundant of resveratrol, and the leaves presented the lowest. Interestingly, the level of STS mRNA and protein were highest in grape leaves. And the analysis of immunohistochemical showed the tissue-specific distribution of STS in different organs, presenting the similar results compared with the amount of protein. And the subcellular localization revealed that the cell wall in different tissues processed the most golden particles representing STS. Subjecting to UV-C irradiation, resveratrol and STS were both intensely stimulated in grape leaves, with the similar response pattern. Results above indicated that distribution of resveratrol and STS in grape was organ-specific and tissue-specific. And the accumulation of resveratrol induced by UV-C was regulated by transcriptional and translational level of STS. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S
2016-08-16
Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozlar, Ugur; Edmunds, J. Stewart; Turba, Ulku C.
The objective of this study was to explore the role of three-dimensional (3-D) rotational angiography (RA) of the inferior vena cava (IVC; 3-D CV) before filter retrieval and its impact on treatment planning compared with standard anteroposterior cavography (sCV). Thirty patients underwent sCV and 3-D CV before IVC filter retrieval. Parameters assessed were: projection of filter arms or legs beyond the caval lumen, thrombus burden within the filter and IVC, and orientation of the filter within IVC. Skin and effective radiation doses were calculated. Statistical analysis was performed using paired Student t test and nonparametric McNemar's test. Standard anteroposterior cavographymore » detected 49 filter arms or legs projecting beyond the caval lumen in 25 patients. Three-dimensional CV demonstrated 89 filter arms or legs projecting beyond the caval lumen in 28 patients. Twenty-two patients had additional filter arms or legs projecting beyond the caval lumen detected on 3-D CV that were not detected on sCV (p < 0.001). Filter apex tilt detection differed significantly (p < 0.001) between sCV and 3-D CV, with 3-D CV being more accurate. The filter apex abutted the IVC wall in 10 patients (33%) on 3-D CV, but this was diagnosed in only 3 patients (10%) with sCV. Thrombus was detected in 8 patients (27%), 1 thrombus of which was seen only on 3-D CV, and treatment was changed in this patient because of thrombus size. Mean effective radiation doses for 3-D CV were approximately two times higher than for sCV (1.68 vs. 0.86 mSv), whereas skin doses were three times lower (12.87 vs. 35.86 mGy). Compared with sCV, performing 3-D CV before optional IVC filter retrieval has the potential to improve assessment of filter arms or legs projecting beyond the caval lumen, filter orientation, and thrombus burden.« less
Longitudinal safety evaluation of connected vehicles' platooning on expressways.
Rahman, Md Sharikur; Abdel-Aty, Mohamed
2018-08-01
Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kao, Amy H.; Lertratanakul, Apinya; Elliott, Jennifer R.; Sattar, Abdus; Santelices, Linda; Shaw, Penny; Birru, Mehret; Avram, Zheni; Thompson, Trina; Sutton-Tyrrell, Kim; Ramsey-Goldman, Rosalind; Manzi, Susan
2013-01-01
Patients with systemic lupus erythematosus (SLE) are at increased risk for cardiovascular (CV) disease. The aim of this study was to investigate the association between subclinical CV disease as measured by carotid intima-media thickness (IMT) and plaque using B-mode carotid ultrasound and incident CV events in a combined cohort of female patients with SLE. This was a prospective, 2-center observational study of 392 adult women with SLE and no previous CV events with a mean 8 years of follow-up. Incident CV events confirmed by clinicians were defined as angina, myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery bypass graft, fatal cardiac arrest, transient ischemic attack, and cerebrovascular accident. Incident hard CV events excluded angina and transient ischemic attack. The mean age was 43.5 years, and most patients were Caucasian (77.3%). During follow-up, 38 patients had incident CV events, and 17 had incident hard CV events. Patients with incident hard CV events had higher mean carotid IMT (0.80 vs 0.64 mm, p <0.01) and presence of carotid plaque (76.5% vs 30.4%, p <0.01) compared with those without incident hard CV events. Baseline carotid IMT and presence of plaque were predictive of any incident hard CV event (hazard ratio 1.35, 95% confidence interval 1.12 to 1.64, and hazard ratio 4.26, 95% confidence interval 1.23 to 14.83, respectively), independent of traditional CV risk factors and medication use. In conclusion, in women with SLE without previous CV events, carotid IMT and plaque are predictive of future CV events. This suggests that carotid ultrasound may provide an additional tool for CV risk stratification in patients with SLE. PMID:23827400
Kao, Amy H; Lertratanakul, Apinya; Elliott, Jennifer R; Sattar, Abdus; Santelices, Linda; Shaw, Penny; Birru, Mehret; Avram, Zheni; Thompson, Trina; Sutton-Tyrrell, Kim; Ramsey-Goldman, Rosalind; Manzi, Susan
2013-10-01
Patients with systemic lupus erythematosus (SLE) are at increased risk for cardiovascular (CV) disease. The aim of this study was to investigate the association between subclinical CV disease as measured by carotid intima-media thickness (IMT) and plaque using B-mode carotid ultrasound and incident CV events in a combined cohort of female patients with SLE. This was a prospective, 2-center observational study of 392 adult women with SLE and no previous CV events with a mean 8 years of follow-up. Incident CV events confirmed by clinicians were defined as angina, myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery bypass graft, fatal cardiac arrest, transient ischemic attack, and cerebrovascular accident. Incident hard CV events excluded angina and transient ischemic attack. The mean age was 43.5 years, and most patients were Caucasian (77.3%). During follow-up, 38 patients had incident CV events, and 17 had incident hard CV events. Patients with incident hard CV events had higher mean carotid IMT (0.80 vs 0.64 mm, p <0.01) and presence of carotid plaque (76.5% vs 30.4%, p <0.01) compared with those without incident hard CV events. Baseline carotid IMT and presence of plaque were predictive of any incident hard CV event (hazard ratio 1.35, 95% confidence interval 1.12 to 1.64, and hazard ratio 4.26, 95% confidence interval 1.23 to 14.83, respectively), independent of traditional CV risk factors and medication use. In conclusion, in women with SLE without previous CV events, carotid IMT and plaque are predictive of future CV events. This suggests that carotid ultrasound may provide an additional tool for CV risk stratification in patients with SLE. Copyright © 2013 Elsevier Inc. All rights reserved.
Cardiovascular Safety of Biologics and JAK Inhibitors in Patients with Rheumatoid Arthritis.
Kang, Eun Ha; Liao, Katherine P; Kim, Seoyoung C
2018-05-30
Increased cardiovascular (CV) risk and associated mortality in rheumatoid arthritis (RA) are not fully explained by traditional CV risk factors. This review discusses the epidemiology and mechanisms of increased CV risk in RA and treatment effects on CV risk focusing on biologic disease-modifying anti-rheumatic drugs (DMARDs) and JAK inhibitors. Intermediary metabolic changes by inflammatory cytokines are observed in body composition, lipid profile, and insulin sensitivity of RA patients, leading to accelerated atherosclerosis and increased CV risk. Successful treatment with DMARDs has shown beneficial effects on these metabolic changes and ultimately CV outcomes, in proportion to the treatment efficacy in general but also with drug-specific mechanisms. Recent data provide further information on comparative CV safety between biologic DMARDs or JAK inhibitors as well as their safety signals for non-atherosclerotic CV events. CV benefits or safety signals associated with DMARD treatments can differ despite similar drug efficacy against RA, suggesting that both anti-inflammatory and drug-specific mechanisms are involved in altering CV risk.
78 FR 66990 - Additional Designations, Foreign Narcotics Kingpin Designation Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
...) [SDNTK] (Linked To: ARRENDADORA TURIN, S.A.; Linked To: DESARROLLOS BIO GAS, S.A. DE C.V.; Linked To: ECA...] (Linked To: BLUE POINT SALT, S.A. DE C.V.; Linked To: DESARROLLOS BIO GAS, S.A. DE C.V.; Linked To: ECA ENERGETICOS, S.A. DE C.V.; Linked To: ORGANIC SALT, S.A. DE C.V.; Linked To: PETRO BIO, S. DE R.L. DE C.V...
Ikinci, Ali; Bolat, Ibrahim; Ercisli, Sezai; Kodad, Ossama
2014-12-16
Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communis and Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal) and Pyrus rootstocks (seedling or clonal) have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC) and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg) and micro element (Fe, Zn, Cu, Mn and B) content of 'Santa Maria' pear (Pyrus communis L.) were investigated. Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree(-1)), largest trunk cross-sectional area (TCSA), lowest yield efficiency and lowest cumulative yield (ton ha(-1)) in the 10(th) year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B) was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season. The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of 'Santa Maria' pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for 'Santa Maria' pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant), K, Ca, Mg, Fe and Cu mineral element concentrations on the pear seedling and BA 29 rootstocks. According to the results, we recommend the seedling rootstock for normal density plantings (400 trees ha(-1)) and BA 29 rootstock for high-density plantings (800 trees ha(-1)) for 'Santa Maria' pear cultivar in semi-arid conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
...: Conduit S.A. de C.V. (Conduit); Ternium Mexico, S.A. de C.V. (Ternium); Tuberia Nacional, S.A. de C. V. (TUNA); Lamina y Placa Comercial, S.A. de C.V. (Lamina); Mueller Comercial de Mexico, S. de R.L. de C.V. (Mueller); Regiomontana de Perfiles y Tubos, S.A. de C.V. (Regiopytsa); PYTCO, S.A. de C.V. (PYTCO); and...
Feroldi, Emmanuel; Capeding, Maria Rosario; Boaz, Mark; Gailhardou, Sophia; Meric, Claude; Bouckenooghe, Alain
2013-01-01
Japanese encephalitis chimeric virus vaccine (JE-CV) is a licensed vaccine indicated in a single dose administration for primary immunization. This controlled phase III comparative trial enrolled children aged 36–42 mo in the Philippines. 345 children who had received one dose of JE-CV in a study two years earlier, received a JE-CV booster dose. 105 JE-vaccine-naïve children in general good health were randomized to receive JE-CV (JE-vaccine naïve group; 46 children) or varicella vaccine (safety control group; 59 children). JE neutralizing antibody titers were assessed using PRNT50. Immunological memory was observed in children who had received the primary dose of JE-CV before. Seven days after the JE-CV booster dose administration, 96.2% and 66.8% of children were seroprotected and had seroconverted, respectively, and the geometric mean titer (GMT) was 231 1/dil. Twenty-eight days after the JE-CV booster dose seroprotection and seroconversion were achieved in 100% and 95.3% of children, respectively, and the GMT was 2,242 1/dil. In contrast, only 15.4% of JE-CV-vaccine naïve children who had not received any prior JE vaccine were seroprotected seven days after they received JE-CV. One year after receiving the JE-CV booster dose, 99.4% of children remained seroprotected. We conclude that JE-CV is effective and safe, both as a single dose and when administrated as a booster dose. A booster dose increases the peak GMT above the peak level reached after primary immunization and the antibody persistence is maintained at least one year after the JE-CV booster dose administration. Five year follow up is ongoing. PMID:23442823
Feroldi, Emmanuel; Capeding, Maria Rosario; Boaz, Mark; Gailhardou, Sophia; Meric, Claude; Bouckenooghe, Alain
2013-04-01
Japanese encephalitis chimeric virus vaccine (JE-CV) is a licensed vaccine indicated in a single dose administration for primary immunization. This controlled phase III comparative trial enrolled children aged 36-42 mo in the Philippines. 345 children who had received one dose of JE-CV in a study two years earlier, received a JE-CV booster dose. 105 JE-vaccine-naïve children in general good health were randomized to receive JE-CV (JE-vaccine naïve group; 46 children) or varicella vaccine (safety control group; 59 children). JE neutralizing antibody titers were assessed using PRNT50. Immunological memory was observed in children who had received the primary dose of JE-CV before. Seven days after the JE-CV booster dose administration, 96.2% and 66.8% of children were seroprotected and had seroconverted, respectively, and the geometric mean titer (GMT) was 231 1/dil. Twenty-eight days after the JE-CV booster dose seroprotection and seroconversion were achieved in 100% and 95.3% of children, respectively, and the GMT was 2,242 1/dil. In contrast, only 15.4% of JE-CV-vaccine naïve children who had not received any prior JE vaccine were seroprotected seven days after they received JE-CV. One year after receiving the JE-CV booster dose, 99.4% of children remained seroprotected. We conclude that JE-CV is effective and safe, both as a single dose and when administrated as a booster dose. A booster dose increases the peak GMT above the peak level reached after primary immunization and the antibody persistence is maintained at least one year after the JE-CV booster dose administration. Five year follow up is ongoing.
Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong
2017-10-01
Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick
2017-01-01
Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.
Widana Gamage, Shirani M K; McGrath, Desmond J; Persley, Denis M; Dietzgen, Ralf G
2016-01-01
Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.
Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.
2016-01-01
Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596
Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide
NASA Technical Reports Server (NTRS)
Fleisher, D. H.; Cavazzoni, J.; Giacomelli, G. A.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2003-01-01
The SUBSTOR crop growth model was adapted for controlled-environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients, and adjustment of crop parameters including radiation use efficiency. Source code modifications were also performed to account for the absorption of light reflected from the surface below the crop canopy, an increased leaf senescence rate, a carbon (mass) balance to the model, and to modify the response of crop growth rate to elevated atmospheric carbon dioxide concentration. Adaptations were primarily based on growth and phenological data obtained from growth chamber experiments at Rutgers University (New Brunswick, N.J.) and from the modeling literature. Modified-SUBSTOR predictions were compared with data from Kennedy Space Center's Biomass Production Chamber for verification. Results show that, with further development, modified-SUBSTOR will be a useful tool for analysis and optimization of potato growth in controlled environments.
Vishnevetsky, Jane; White, Thomas L; Palmateer, Aaron J; Flaishman, Moshe; Cohen, Yuval; Elad, Yigal; Velcheva, Margarita; Hanania, Uri; Sahar, Nachman; Dgani, Oded; Perl, Avihai
2011-02-01
The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.
2005-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.
Unger, Sabine; Büche, Claudia; Boso, Susana; Kassemeyer, Hanns-Heinz
2007-07-01
ABSTRACT The course of colonization of leaf mesophyll by the causal agent of grapevine downy mildew, Plasmopara viticola, in a susceptible and a resistant grapevine genotype was examined in order to characterize the development of the pathogen in compatible and incompatible host-pathogen interactions. Within a few hours after inoculation, the pathogen was established in the susceptible Vitis vinifera cv. Müller-Thurgau and formed primary hyphae with a first haustorium. No further development occurred in the following 10 to 18 h. The next step, in which the hyphae grew and branched to colonize the intercellular space of the host tissue, was observed 1.5 days after inoculation. After 3 days, the intercostal fields were entirely filled with mycelium and sporulation was abundant under favorable environmental conditions. The first infection steps were essentially the same in the resistant V. rupestris. However, the invasive growth of P. viticola was delayed, and further development ceased before the intercostal fields were filled with mycelium.
Lateral Movement of Water and Sugar Across Xylem in Sugarcane Stalks
Bull, T. A.; Gayler, K. R.; Glasziou, K. T.
1972-01-01
Laterally connected vascular bundles in the nodes of sugarcane (Saccharum species cv. Pindar) stalks allow a rapid redistribution of water across the stalk should the vascular continuity be partly disrupted. Tritiated water supplied to the roots exchanged rapidly between the xylem and storage tissue so that net movement up the stalk was slow. The half-time for exchange in a labeled stalk was about 4 hours so that the entire water content of a sugarcane stalk can turn over at least once in a single day. No rapid flux of sugar between xylem and phloem or xylem and storage tissue was detected. Functional xylem contained only low sugar concentrations: less than 0.3% w/v in the stalk and less than 0.02% w/v in the leaf. Previous reports of high sugar levels (9% w/v) in sugarcane stalk xylem reflect some degree of xylem blockage followed by a slow equilibration with free space sugars in the storage tissue. PMID:16658067
Breeding population density and habitat use of Swainson's warblers in a Georgia floodplain forest
Wright, E.A.
2002-01-01
I examined density and habitat use of a Swainson's Warbler (Limnothlypis swainsonii) breeding population in Georgia. This songbird species is inadequately monitored, and may be declining due to anthropogenic alteration of floodplain forest breeding habitats. I used distance sampling methods to estimate density, finding 9.4 singing males/ha (CV = 0.298). Individuals were encountered too infrequently to produce a Iow-variance estimate, and distance sampling thus may be impracticable for monitoring this relatively rare species. I developed a set of multivariate habitat models using binary logistic regression techniques, based on measurement of 22 variables in 56 plots occupied by Swainson's Warblers and 110 unoccupied plots. Occupied areas were characterized by high stem density of cane (Arundinaria gigantea) and other shrub layer vegetation, and presence of abundant and accessible leaf litter. I recommend two habitat models, which correctly classified 87-89% of plots in cross-validation runs, for potential use in habitat assessment at other locations.
Activity and Accumulation of Cell Division-Promoting Phenolics in Tobacco Tissue Cultures 1
Teutonico, Rita A.; Dudley, Matthew W.; Orr, John D.; Lynn, David G.; Binns, Andrew N.
1991-01-01
Dehydrodiconiferyl alcohol glucosides (DCGs) are derivatives of the phenylpropanoid pathway that have been isolated from Catharansus roseus L. (Vinca rosea) crown gall tumors. Fractions containing purified DCGs have been shown previously to promote the growth of cytokinin-requiring tissues of tobacco in the absence of exogenous cytokinins. In this study, we utilized synthetic DCG isomers to confirm the cell division-promoting activity of DCG isomers A and B and show that they neither promote shoot meristem initiation on Nicotiana tabacum L., cv Havana 425, leaf explants nor induce betacyanin synthesis in amaranth seedlings. Analysis of cultured tobacco pith tissue demonstrated that DCG accumulation was stimulated by cytokinin treatment and correlated with cytokinin-induced cell division. Thus, the accumulation of metabolites that could replace cytokinin in cell division bioassays is stimulated by cytokinins. These data support the model that DCGs are a component of a cytokinin-mediated regulatory circuit controlling cell division. ImagesFigure 2 PMID:16668384
Klaver-Król, Ewa G; Zwarts, Machiel J; Ten Klooster, Peter M; Rasker, Johannes J
2012-01-01
Fibromyalgia (FM) is a disorder characterised by chronic widespread pain in soft tissues, especially in muscles. Previous research has demonstrated a higher muscle fibre conduction velocity (CV) in painful muscles of FM patients. The primary goal of this study was to investigate whether there is also a difference in CV in non-painful, non-tender point (TP) related muscles between FM patients and controls. The secondary goal was to explore associations between the CV, the number of TPs and the complaints in FM. Surface electromyography (sEMG) was performed on the biceps brachii muscle of female FM patients (13) and matched healthy controls (13). Short static contractions were applied with the arm unloaded and loaded at 5% and 10% of maximum voluntary force. The CV was derived by cross-correlation method (CV-cc) and inter-peak latency method (CV-ipl). TP score and Fibromyalgia Impact Questionnaire (FIQ) were performed in all participants. Correlations were calculated between the CVs, TP score and items of the FIQ. In FM patients, the CV was higher than in the controls (CV-cc p=0.005; CV-ipl p=0.022). The CV was correlated with the number of TPs in FM patients (r=0.642 and 0.672 for CV-cc and CV-ipl, respectively). No correlations were found between the CV and any aspect of health status on the FIQ. The results demonstrate abnormally high muscle membrane conduction velocity in FM, even in non-TP muscles. In addition, a relationship has been found between the high membrane velocity and the number of TPs.
Panaite, Vanessa; Salomon, Kristen; Jin, Alvin; Rottenberg, Jonathan
2015-01-01
Objective Exaggerated cardiovascular (CV) reactivity to laboratory challenge has been shown to predict future CV morbidity and mortality. CV recovery, has been less studied, and has yielded inconsistent findings, possibly due to presence of moderators. Reviews on the relationship between CV recovery and CV outcomes have been limited to cross-sectional studies and have not considered methodological factors. We performed a comprehensive meta-analytic review of the prospective literature investigating CV recovery to physical and psychological challenge and adverse cardiovascular outcomes. Methods We searched PsycINFO and PubMed for prospective studies investigating the relationship between CV recovery and adverse CV outcomes. Studies were coded for variables of interest and for effect sizes (ES). We conducted a random effects weighted meta-analysis. Moderators were examined with ANOVA-analog and meta-regression analyses. Results Thirty seven studies met inclusion criteria (N=125386). Impaired recovery from challenge predicted adverse cardiovascular outcomes (summary effect, r = .17, p < .001). Physical challenge was associated with larger predictive effects than psychological challenge. Moderator analyses revealed that recovery measured at 1 minute post-exercise, passive recovery, use of mortality as an outcome measure, and older sample age were associated with larger effects. Conclusions Poor recovery from laboratory challenges predicts adverse CV outcomes, with recovery from exercise serving as a particularly strong predictor of CV outcomes. The overall ES for recovery and CV outcomes is similar to that observed for CV reactivity and suggests that the study of recovery may have incremental value for understanding adverse CV outcomes. PMID:25829236
[On academic thought and clinical application of LI Yan-Fang's middle-warmer energy method].
Li, Li-Jun
2010-10-01
The present paper introduces LI Yan-Fang's middle-warmer energy method from acupoint selection, needling methods, treatment principle and his clinical experiences in treatment of stroke and insomnia etc. The acupuncture prescription of this method consist of Shangwan (CV 13), Zhongwan (CV 12), Jianli (CV 11), Xiawan (CV 10), Shuifen (CV 9), Huangshu (KI 16) and Qihai (CV 6) etc as the main acupoints combined with strict manipulation and depth of needling to treat clinical diseases.
Role of canine circovirus in dogs with acute haemorrhagic diarrhoea.
Anderson, A; Hartmann, K; Leutenegger, C M; Proksch, A L; Mueller, R S; Unterer, S
2017-06-03
Canine circovirus (CanineCV) has been detected in some dogs with severe haemorrhagic diarrhoea, but its pathogenic role is unclear. This study evaluated a suspected association between the presence of CanineCV and acute haemorrhagic diarrhoea syndrome (AHDS) in dogs. The prevalence of CanineCV in dogs with AHDS was compared with that in healthy dogs and those infected with canine parvovirus (CPV). Additionally, time to recovery and mortality rate were compared between CanineCV-positive and CanineCV-negative dogs. Faecal samples of dogs with AHDS (n=55), healthy dogs (n=66) and dogs infected with CPV (n=54) were examined by two real-time TaqMan PCR assays targeting the replicase and capsid genes of CanineCV. CanineCV was detected in faecal samples of two dogs with AHDS, three healthy controls and seven dogs infected with CPV. Among the three groups, there was no significant difference in prevalence of CanineCV. CPV-infected animals that were coinfected with CanineCV had a significantly higher mortality rate compared with those negative for CanineCV. CanineCV does not appear to be the primary causative agent of AHDS in dogs, but might play a role as a negative co-factor in disease outcome in dogs with CPV infection. British Veterinary Association.
Solomon, Daniel H.; Kremer, Joel; Curtis, Jeffrey R; Hochberg, Marc C.; Reed, George; Tsao, Peter; Farkouh, Michael E.; Setoguchi, Soko; Greenberg, Jeffrey D.
2010-01-01
Background Cardiovascular (CV) disease has a major impact on patients with rheumatoid arthritis (RA), however, the relative contributions of traditional CV risk factors and markers of RA severity are unclear. We examined the relative importance of traditional CV risk factors and RA markers in predicting CV events. Methods A prospective longitudinal cohort study was conducted in the setting of the CORRONA registry in the United States. Baseline data from subjects with RA enrolled in the CORRONA registry were examined to determine predictors of CV outcomes, including myocardial infarction (MI), stroke or transient ischemic attack (TIA). Possible predictors were of two types: traditional CV risk factors and markers of RA severity. The discriminatory value of these variables was assessed by calculating the area under the receiver operating characteristic curve (c-statistic) in logistic regression. We then assessed the incidence rate for CV events among subjects with an increasing number of traditional CV risk factors and/or RA severity markers. Results The cohort consisted of 10,156 patients with RA followed for a median of 22 months. We observed 76 primary CV events during follow-up for a composite event rate of 3.98 (95% CI 3.08 – 4.88) per 1,000 patient-years. The c-statistic improved from 0.57 for models with only CV risk factors to 0.67 for models with CV risk factors plus age and gender. The c-statistic improved further to 0.71 when markers of RA severity were also added. The incidence rate for CV events was 0 (95% CI 0 – 5.98) for persons without any CV risk factors or markers of RA severity, while in the group with two or more CV risk factors and 3 or more markers of RA severity the incidence was 7.47 (95% CI 4.21–10.73) per 1,000 person-years. Conclusions Traditional CV risk factors and markers of RA severity both contribute to models predicting CV events. Increasing numbers of both types of factors are associated with greater risk. PMID:20444756
Nishihara, E; Shimmen, T; Sonobe, S
2007-01-01
The contractile vacuole (CV) cycle of Amoeba proteus has been studied by phase contrast and electron microscopy. However, the understanding of membrane dynamics in this cycle is still poor. In this study, we used live imaging by fluorescence microscopy to obtain new insights. We succeeded in staining the CV with a styryl dye, FM 4-64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide), and obtained the following results. (1) The CV membrane was directly stained with the dye in the external medium when the CV pore opened upon contraction. This indicates that transfer of plasma membrane to the CV does not occur. (2) The membrane dynamics during the CV cycle were elucidated. In particular, the fluorescent CV membrane was maintained as an aggregate just after contraction and the vacuole re-formed from the aggregate. Staining was maintained during continued contraction cycles. We conclude that the CV membrane is maintained during the CV cycle.
Sato, Junya; Kumagai, Masumi; Kato, Kenichi; Akahane, Akio; Suzuki, Michiko; Kashiwaba, Masahiro; Sone, Miyuki; Kudo, Kenzo
2014-08-01
Subcutaneous implantation type central venous ports(CV ports)are used in chemotherapy. Here, we prospectively examined the frequency of CV port-related infections when the disinfectant was changed from 10% povidone iodine to 1% chlorhexidine ethanol or 70% ethanol. The subjects were patients with malignant tumors, who had newly been implanted with CV ports. We examined CV port-related infections at 1 week after CV port implantation and every 2 weeks thereafter, following sterilization upon insertion of a Huber needle to the CV port. CV port evulsion due to CV port-related infection was noted in 3 patients(4.8%)in whom 15%chlorhexidine ethanol was used(n=62)and in 2 patients(3.3%)in whom 70% ethanol was used(n=60). Infection rates per 1,000 days of CV port use were 1.48% and 1.01%, respectively. Thus, the outcomes of sterilization using 1% chlorhexidine ethanol and 70% ethanol did not differ significantly from those on using 10% povidone iodine for sterilization, based on preliminary results at our institution(3 of 59 patients[5.1%]had port evulsion due to CV port-related infection and the infection rate per 1,000 days of CV port use was 1.47%, Akahane et al, 2012). Chlorhexidine ethanol and ethanol are very convenient to use because they dry quickly and do not need discoloration. Accordingly, chlorhexidine ethanol and ethanol might be useful in CV port management.
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Juhaimi, Fahad Al; Ghafoor, Kashif; Özcan, Mehmet Musa
2012-02-01
The physical and chemical properties of the date (Phoenix dactylifera L.) fruit seeds from seven date samples (Soukari, Soulag, Barhi, Khulas, Rozaiz, Soughi and Monaif) were evaluated. Energy values of dried and ground seeds were found between 4340 kcal/kg (Barhi cv) and 4795 kcal/kg (Rozaiz cv). Also, while crude oil content of seeds were established between 4.68% (Khulas cv) and 7.96% (Monaif cv), crude protein contents were found at the levels between 3.71% (Soulag cv) and 5.47% (Barhi cv). The antioxidant activity of seeds obtained from different date fruits changed between 78.03 (mg/ml) (Monaif cv) and 79.94 (mg/ml) (Barhi cv). In addition, the total phenol contents of seeds were found between 1.98 mg gallic acid equivalents (GAE)/100 g (Barhi cv) and 4.65 mg GAE/100 g (Soughi cv). The most abundant fatty acids of the date seed oils were oleic, lauric, myristic, palmitic and stearic acids. Ca, Mg, K and P contents of date seeds were found at the high concentrations.
Liang, Ji-Yuan; Yuann, Jeu-Ming P; Hsie, Zong-Jhe; Huang, Shiuh-Tsuen; Chen, Chiing-Chang
2017-09-01
Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B 2 , is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm 2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Yunhuang; Ramelot, Theresa A; Cort, John R; Garcia, Maite; Yee, Adelinda; Arrowsmith, Cheryl H; Kennedy, Michael A
2012-01-01
CV_2116 is a small hypothetical protein of 82 amino acids from the Gram-negative coccobacillus Chromobacterium violaceum. A PSI-BLAST search using the CV_2116 sequence as a query identified only one hit (E = 2e(-07)) corresponding to a hypothetical protein OR16_04617 from Cupriavidus basilensis OR16, which failed to provide insight into the function of CV_2116. The CV_2116 gene was cloned into the p15TvLic expression plasmid, transformed into E. coli, and (13)C- and (15)N-labeled NMR samples of CV_2116 were overexpressed in E. coli and purified for structure determination using NMR spectroscopy. The resulting high-quality solution NMR structure of CV_2116 revealed a novel α + β fold containing two anti-parallel β-sheets in the N-terminal two-thirds of the protein and one α-helix in the C-terminal third of the protein. CV_2116 does not belong to any known protein sequence family and a Dali search indicated that no similar structures exist in the protein data bank. Although no function of CV_2116 could be derived from either sequence or structural similarity searches, the neighboring genes of CV_2116 encode various proteins annotated as similar to bacteriophage tail assembly proteins. Interestingly, C. violaceum exhibits an extensive network of bacteriophage tail-like structures that likely result from lateral gene transfer by incorporation of viral DNA into its genome (prophages) due to bacteriophage infection. Indeed, C. violaceum has been shown to contain four prophage elements and CV_2116 resides in the fourth of these elements. Analysis of the putative operon in which CV_2116 resides indicates that CV_2116 might be a component of the bacteriophage tail-like assembly that occurs in C. violaceum.
Ndindjock, Roger; Gedeon, Jude; Mendis, Shanthi; Paccaud, Fred; Bovet, Pascal
2011-04-01
To assess the prevalence of cardiovascular (CV) risk factors in Seychelles, a middle-income African country, and compare the cost-effectiveness of single-risk-factor management (treating individuals with arterial blood pressure ≥ 140/90 mmHg and/or total serum cholesterol ≥ 6.2 mmol/l) with that of management based on total CV risk (treating individuals with a total CV risk ≥ 10% or ≥ 20%). CV risk factor prevalence and a CV risk prediction chart for Africa were used to estimate the 10-year risk of suffering a fatal or non-fatal CV event among individuals aged 40-64 years. These figures were used to compare single-risk-factor management with total risk management in terms of the number of people requiring treatment to avert one CV event and the number of events potentially averted over 10 years. Treatment for patients with high total CV risk (≥ 20%) was assumed to consist of a fixed-dose combination of several drugs (polypill). Cost analyses were limited to medication. A total CV risk of ≥ 10% and ≥ 20% was found among 10.8% and 5.1% of individuals, respectively. With single-risk-factor management, 60% of adults would need to be treated and 157 cardiovascular events per 100000 population would be averted per year, as opposed to 5% of adults and 92 events with total CV risk management. Management based on high total CV risk optimizes the balance between the number requiring treatment and the number of CV events averted. Total CV risk management is much more cost-effective than single-risk-factor management. These findings are relevant for all countries, but especially for those economically and demographically similar to Seychelles.
Deng, Mei-Jun; Liu, Chun-Yan; Xie, Yu; Zhu, Jie-Bin; Xu, Zhen-Hua
2018-03-25
To summarize the regularity of application of Lianquan (CV 23) in clinical practice in Chinese ancient times through analysis of ancient traditional Chinese medical (TCM) literature. A total of 60 books involving CV 23 from the 1 156 ancient TCM books listed in the fifth edition of Encyclopedia of Traditional Chinese Medicine were collected by using CV 23 as the main keyword and "Sheben" "Benchi", and "Jieben" (the other names of CV 23 in TCM)as the supplementary keywords and analyzed systematically. A database was then constructed from the collected data, including the related types of disorders or symptoms, acupoint recipes, and methods of needling and moxibustion, contraindications, etc. A total of 196 articles related to the application of CV 23 from 60 ancient classical books were collected in accordance with the inclusive criteria. Among them, 155 articles are referred to the indications of CV 23, 35 to types of disorders such as asthma, cough, tongue swelling with difficulty in speaking, protracted tongue, acute contraction of tongue root, vomiting, spasm syndrome, stroke, aphtha, problems of mouth and teeth, throat problems, etc. of the internal medicine, surgery, pediatrics, and five-sense organs; 64 items are referred to the application of single CV 23, 91 to CV 23-included recipes containing 111 adjunct acupoints, and 78 to stimulation of CV 23 with acupuncture needle, moxibustion, pricking blood, and fire needle. Moreover, of the 111 adjunct acupoints, the most commonly used are Shaoshang (LU 11), Tiantu (CV 22), Hegu (LI 4), Yuye (EX-HN 13), Zhongchong (PC 9), etc. Lianquan (CV 23) is mainly used for glossopharyngeal problems chiefly by syndrome-meridian differentiation. The supplement of complementary acupoints or five-shu points in combination with CV 23 has a synergistic effect. Moxibustion (3 moxa- cones in general) is often employed, and the needling depth is usually about 7.5 mm. The common contraindication of CV 23 is severe tongue swelling.
IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine.
Domínguez, César; Heras, Jónathan; Pascual, Vico
2017-05-01
The effective processing of biomedical images usually requires the interoperability of diverse software tools that have different aims but are complementary. The goal of this work is to develop a bridge to connect two of those tools: ImageJ, a program for image analysis in life sciences, and OpenCV, a computer vision and machine learning library. Based on a thorough analysis of ImageJ and OpenCV, we detected the features of these systems that could be enhanced, and developed a library to combine both tools, taking advantage of the strengths of each system. The library was implemented on top of the SciJava converter framework. We also provide a methodology to use this library. We have developed the publicly available library IJ-OpenCV that can be employed to create applications combining features from both ImageJ and OpenCV. From the perspective of ImageJ developers, they can use IJ-OpenCV to easily create plugins that use any functionality provided by the OpenCV library and explore different alternatives. From the perspective of OpenCV developers, this library provides a link to the ImageJ graphical user interface and all its features to handle regions of interest. The IJ-OpenCV library bridges the gap between ImageJ and OpenCV, allowing the connection and the cooperation of these two systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cataphoretic assembly of cationic dyes and deposition of carbon nanotube and graphene films.
Su, Y; Zhitomirsky, I
2013-06-01
Cathodic electrophoretic deposition (EPD) method has been developed for the fabrication of thin films from aqueous solutions of crystal violet (CV) dyes. The films contained rod-like particles with a long axis oriented perpendicular to the substrate surface. The proposed deposition mechanism involved cataphoresis of cationic CV(+) species, base generation in the cathodic reactions, and charge neutralization at the electrode surface. The assembly of rod-like particles was governed by π-π interactions of polyaromatic CV molecules. The deposition kinetics was studied by quartz crystal microbalance. CV dyes allowed efficient dispersion of multiwalled carbon nanotubes (MWCNTs) and graphene in water at relatively low CV concentrations. The feasibility of cathodic EPD of MWCNT and graphene from aqueous suspensions, containing CV, has been demonstrated. The deposition yield was investigated at different CV concentrations and deposition voltages. The relatively high deposition yield of MWCNT and graphene indicated that CV is an efficient dispersing, charging, and film forming agent for EPD. Electron microscopy data showed that at low CV concentrations in MWCNT or graphene suspensions and low deposition voltages, the films contained mainly MWCNT or graphene. The increase in the CV concentration and/or deposition voltage resulted in enhanced co-deposition of CV. The EPD method developed in this investigation paves the way for the fabrication of advanced nanocomposites by cathodic electrodeposition. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, LiPing; Jiang, JingJing; Wang, YanFen; Hong, Ni; Zhang, Fangpeng
2014-01-01
ABSTRACT Botryosphaeria dothidea is an important pathogenic fungus causing fruit rot, leaf and stem ring spots and dieback, stem canker, stem death or stool mortality, and decline of pear trees. Seven double-stranded RNAs (dsRNAs; dsRNAs 1 to 7 with sizes of 3,654, 2,773, 2,597, 2,574, 1,823, 1,623, and 511 bp, respectively) were identified in an isolate of B. dothidea exhibiting attenuated growth and virulence and a sectoring phenotype. Characterization of the dsRNAs revealed that they belong to two dsRNA mycoviruses. The four largest dsRNAs (dsRNAs 1 to 4) are the genomic components of a novel member of the family Chrysoviridae (tentatively designated Botryosphaeria dothidea chrysovirus 1 [BdCV1]), a view supported by the morphology of the virions and phylogenetic analysis of the putative RNA-dependent RNA polymerases (RdRps). Two other dsRNAs (dsRNAs 5 and 6) are the genomic components of a novel member of the family Partitiviridae (tentatively designated Botryosphaeria dothidea partitivirus 1 [BdPV1]), which is placed in a clade distinct from other established partitivirus genera on the basis of the phylogenetic analysis of its RdRp. The smallest dsRNA, dsRNA7, seems to be a noncoding satellite RNA of BdPV1 on the basis of the conservation of its terminal sequences in BdPV1 genomic segments and its cosegregation with BdPV1 after horizontal transmission. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. IMPORTANCE Our studies identified and characterized two novel mycoviruses, Botryosphaeria dothidea chrysovirus 1 (BdCV1) and Botryosphaeria dothidea partitivirus 1 (BdPV1), associated with the hypovirulence of an important fungus pathogenic to fruit trees. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. BdCV1 appears to be a good candidate for the biological control of the serious disease induced by B. dothidea. Additionally, BdPV1 is placed in a clade distinct from the established genera. The BdCV1 capsid has two major structural proteins, and the capsid is distinct from that made up by a single polypeptide of the typical chrysoviruses. BdPV1 is the second partitivirus in which the putative capsid protein shares no significant identity with any mycovirus protein. A small accompanying dsRNA that is presumed to be a noncoding satellite RNA of BdPV1 is the first of its kind reported for a partitivirus. PMID:24760881
Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Treutter, D; Valcke, R
2013-11-01
Flavonoids, which are synthesized by the phenylpropanoid-flavonoid pathway, not only contribute to fruit colour and photoprotection, they also may provide antimicrobial and structural components during interaction with micro-organisms. A possible response of this pathway was assessed in both mature and immature leaves of shoots of 2-year-old pear trees cv. Conférence, which were inoculated with the gram-negative bacterium Erwinia amylovora strain SGB 225/12, were mock-inoculated or were left untreated. The phenylpropanoid-flavonoid pathway was analysed by histological studies, by gene expression using RT-qPCR and by HPLC analyses of the metabolites at different time intervals after infection. Transcription patterns of two key genes anthocyanidin reductase (ANR) and chalcone synthase (CHS) related to the phenylpropanoid-flavonoid pathway showed differences between control, mock-inoculated and E. amylovora-inoculated mature leaves, with the strongest reaction 48 h after inoculation. The impact of E. amylovora was also visualised in histological sections, and confirmed by HPLC, as epicatechin -which is produced via ANR- augmented 72 h after inoculation in infected leaf tissue. Besides the effect of treatments, ontogenesis-related differences were found as well. The increase of certain key genes, the rise in epicatechin and the visualisation in several histological sections in this study suggest a non-negligible impact on the phenylpropanoid-flavonoid pathway in Pyrus communis due to inoculation with E. amylovora. In this study, we propose a potential role of this pathway in defence mechanisms, providing a detailed analysis of the response of this system attributable to inoculation with E. amylovora. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Muthusamy, Senthilkumar K; Lenka, Sangram K; Katiyar, Amit; Chinnusamy, Viswanathan; Singh, Ashok K; Bansal, Kailash C
2018-06-19
Photosynthetic fixation of CO 2 is more efficient in C 4 than in C 3 plants. Rice is a C 3 plant and a potential target for genetic engineering of the C 4 pathway. It is known that genes encoding C 4 enzymes are present in C 3 plants. However, no systematic analysis has been conducted to determine if these C 4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C 4 gene families in rice genome through BLAST search using known maize C 4 photosynthetic pathway genes. Phylogenetic relationship of rice C 4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C 4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C 4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C 4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C 4 pathway engineering via CRISPR-mediated breeding.
Characterization of Geraniol Synthase from the Peltate Glands of Sweet Basil1
Iijima, Yoko; Gang, David R.; Fridman, Eyal; Lewinsohn, Efraim; Pichersky, Eran
2004-01-01
The monoterpene fraction of the lemon-scented sweet basil (Ocimum basilicum) cv Sweet Dani consists mostly of citral (a mixture of geranial and neral), with lower levels of geraniol and nerol. These compounds are stored in the peltate glands found on the leaf epidermis. Younger leaves, which have a higher density of such glands, also have a higher content of monoterpenes than older leaves. Geraniol synthase (GES) activity, generating geraniol from geranyl diphosphate, was shown to be localized exclusively or almost exclusively to glands. GES activity resides in a homodimeric protein that was purified to near homogeneity. Basil GES requires Mn2+ as a divalent metal cofactor for activity and produces only geraniol from geranyl diphosphate. Km values of 21 and 51 μm were obtained for geranyl diphosphate and Mn2+, respectively. In the presence of 18O-labeled water, GES catalyzed the formation of 18O-geraniol from geranyl diphosphate, indicating that the reaction mechanism of GES is similar to that of other monoterpene synthases and is different from the action of phosphatases. A GES cDNA was isolated based on analysis of a glandular trichome expressed sequence tag database, and the sequence of the protein encoded by this cDNA shows some similarity to sequences of other terpene synthases. The expression of the GES cDNA in Escherichia coli resulted in a protein with enzymatic activity essentially identical to that of plant-purified GES. RNA gel-blot analysis indicated that GES is expressed in glands but not in leaves of basil cv Sweet Dani, whose glands contain geraniol and citral, and not in glands or leaves of another basil variety that makes other monoterpenes but not geraniol or citral. PMID:14657409
Tardaguila, Javier; Fernández-Novales, Juan; Gutiérrez, Salvador; Diago, Maria Paz
2017-08-01
Until now, the majority of methods employed to assess grapevine water status have been destructive, time-intensive, costly and provide information of a limited number of samples, thus the ability of revealing within-field water status variability is reduced. The goal of this work was to evaluate the capability of non-invasive, portable near infrared (NIR) spectroscopy acquired in the field, to assess the grapevine water status in diverse varieties, grown under different environmental conditions, in a fast and reliable way. The research was conducted 2 weeks before harvest in 2012, in two commercial vineyards, planted with eight different varieties. Spectral measurements were acquired in the field on the adaxial and abaxial sides of 160 individual leaves (20 leaves per variety) using a commercially available handheld spectrophotometer (1600-2400 nm). Principal component analysis (PCA) and modified partial least squares (MPLS) were used to interpret the spectra and to develop reliable prediction models for stem water potential (Ψ s ) (cross-validation correlation coefficient (r cv ) ranged from 0.77 to 0.93, and standard error of cross validation (SECV) ranged from 0.10 to 0.23), and leaf relative water content (RWC) (r cv ranged from 0.66 to 0.81, and SECV between 1.93 and 3.20). The performance differences between models built from abaxial and adaxial-acquired spectra is also discussed. The capability of non-invasive NIR spectroscopy to reliably assess the grapevine water status under field conditions was proved. This technique can be a suitable and promising tool to appraise within-field variability of plant water status, helpful to define optimised irrigation strategies in the wine industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Kumar, Manoj; Bauddh, Kuldeep; Kumar, Sanjeev; Sainger, Manish; Sainger, Poonam A; Singh, Rana P
2013-01-01
Field experiments were conducted during two consequent years in semi-arid, subtropical climate of Rohtak district situated in North-West Indian state Haryana to evaluate the effects of eco-friendly organic matrix entrapped urea (OMEU) on wheat (Triticum aestivum L. cv. WH-711). The OMEU prepared in granular form contained cow dung, rice bran (grain cover of Oryza sativa), neem (Azadirachta indica) leaves and clay soil (diameter of particles < 0.002 mm) in 1:1:1:1 ratios and saresh (plant gum of Acacia sp.) as binder entrapping half of the recommended dose of urea. A basal application of organic matrix entrapped urea showed increase in plant growth in terms of fresh and dry weights, root length, root number, leaf number, tillers, plant height earlet number, earlet length and productivity in terms of grain yield and straw yield over free form of urea (FU) and no fertilizer (NF) application. The OMEU increased total soluble proteins, organic N and free ammonium content in the leaves at 45 and 60 days. The nutritional status of wheat grains in OMEU applied plants was almost similar to that observed for FU applied plants. An increase in organic carbon and available phosphorus (P) was observed in OMEU applied plots on harvest whereas pH was slightly decreased over FU applied plots. The microbial population and activity in terms of fungal and bacterial colony count and activities soil dehydrogenase and alkaline phosphatase were significantly higher in OMEU applied plots as compared to the FU applied plots. Our data indicate that OMEU which are low cost, biodegradable and non-toxic can be used to replace the expensive chemical fertilizers for wheat cultivation in semi-arid, subtropical climate.
Shimazu, T; Yuda, T; Miyamoto, K; Yamashita, M; Ueda, J
2001-01-01
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.
Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta
2018-05-17
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.
NASA Technical Reports Server (NTRS)
Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)
1997-01-01
Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.
Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha
2013-08-01
The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.
Increase in the Quantum Yield of Photoinhibition Contributes to Copper Toxicity in Vivo1
Pätsikkä, Eija; Aro, Eva-Mari; Tyystjärvi, Esa
1998-01-01
The effect of copper on photoinhibition of photosystem II in vivo was studied in bean (Phaseolus vulgaris L. cv Dufrix). The plants were grown hydroponically in the presence of various concentrations of Cu2+ ranging from the optimum 0.3 μm (control) to 15 μm. The copper concentration of leaves varied according to the nutrient medium from a control value of 13 mg kg−1 dry weight to 76 mg kg−1 dry weight. Leaf samples were illuminated in the presence and absence of lincomycin at different light intensities (500–1500 μmol photons m−2 s−1). Lincomycin prevents the concurrent repair of photoinhibitory damage by blocking chloroplast protein synthesis. The photoinhibitory decrease in the light-saturated rate of O2 evolution measured from thylakoids isolated from treated leaves correlated well with the decrease in the ratio of variable to maximum fluorescence measured from the leaf discs; therefore, the fluorescence ratio was used as a routine measurement of photoinhibition in vivo. Excess copper was found to affect the equilibrium between photoinhibition and repair, resulting in a decrease in the steady-state concentration of active photosystem II centers of illuminated leaves. This shift in equilibrium apparently resulted from an increase in the quantum yield of photoinhibition (ΦPI) induced by excess copper. The kinetic pattern of photoinhibition and the independence of ΦPI on photon flux density were not affected by excess copper. An increase in ΦPI may contribute substantially to Cu2+ toxicity in certain plant species. PMID:9625715
Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.
Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia
2016-09-01
Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Miniussi, Matilda; Del Terra, Lorenzo; Savi, Tadeja; Pallavicini, Alberto; Nardini, Andrea
2015-10-01
Plant aquaporins (AQPs) are involved in the transport of water and other small solutes across cell membranes, and thus play major roles in the regulation of plant water balance, as well as in growth regulation and response to abiotic stress factors. Limited information is currently available about the presence and role of AQPs in Coffea arabica L., despite the economic importance of the species and its vulnerability to drought stress. We identified candidate AQP genes by screening a proprietary C. arabica transcriptome database, resulting in the identification of nine putative aquaporins. A phylogenetic analysis based on previously characterized AQPs from Arabidopsis thaliana and Solanum tuberosum allowed to assign the putative coffee AQP sequences to the Tonoplast (TIP) and Plasma membrane (PIP) subfamilies. The possible functional role of coffee AQPs was explored by measuring hydraulic conductance and aquaporin gene expression on leaf and root tissues of two-year-old plants (C. arabica cv. Pacamara) subjected to different experimental conditions. In a first experiment, we tested plants for root and leaf hydraulic conductance both before dawn and at mid-day, to check the eventual impact of light on AQP activity and plant hydraulics. In a second experiment, we measured plant hydraulic responses to different water stress levels as eventually affected by changes in AQPs expression levels. Our results shed light on the possible roles of AQPs in the regulation of C. arabica hydraulics and water balance, opening promising research lines to improve the sustainability of coffee cultivation under global climate change scenarios. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Saha, Prasenjit; Majumder, Pralay; Dutta, Indrajit; Ray, Tui; Roy, S C; Das, Sampa
2006-05-01
Mannose binding Allium sativum leaf agglutinin (ASAL) has been shown to be antifeedant and insecticidal against sap-sucking insects. In the present investigation, ASAL coding sequence was expressed under the control of CaMV35S promoter in a chimeric gene cassette containing plant selection marker, hpt and gusA reporter gene of pCAMBIA1301 binary vector in an elite indica rice cv. IR64. Many fertile transgenic plants were generated using scutellar calli as initial explants through Agrobacterium-mediated transformation technology. GUS activity was observed in selected calli and in mature plants. Transformation frequency was calculated to be approximately 12.1%+/-0.351 (mean +/- SE). Southern blot analyses revealed the integration of ASAL gene into rice genome with a predominant single copy insertion. Transgene localization was detected on chromosomes of transformed plants using PRINS and C-PRINS techniques. Northern and western blot analyses determined the expression of transgene in transformed lines. ELISA analyses estimated ASAL expression up to 0.72 and 0.67% of total soluble protein in T0 and T1 plants, respectively. Survival and fecundity of brown planthopper and green leafhopper were reduced to 36% (P < 0.01), 32% (P < 0.05) and 40.5, 29.5% (P < 0.001), respectively, when tested on selected plants in comparison to control plants. Specific binding of expressed ASAL to receptor proteins of insect gut was analysed. Analysis of T1 progenies confirmed the inheritance of the transgenes. Thus, ASAL promises to be a potential component in insect resistance rice breeding programme.
El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H
2013-11-01
The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.
Calvo-Bonacho, Eva; Ruilope, Luis Miguel; Sánchez-Chaparro, Miguel Angel; Cerezo, Cesar; Catalina-Romero, Carlos; Martínez-Muñoz, Paloma; Banegas, José R; Waeber, Bernard; Gonzalez-Quintela, Arturo; Zanchetti, Alberto
2014-02-01
We investigated the potential influence of a moderate-to-high cardiovascular (CV) risk (CVR) (defined as a Systematic COronary Risk Evaluation model, or SCORE ≥ 4%), in the absence of an established CV disease, on the duration and cost of CV and non-CV sick leave (SL) resulting from common and occupational accidents or diseases. We conducted a prospective cohort study on 690 135 workers with a 1-year follow-up and examined CV- and non-CV-related SL episodes. To obtain baseline values, CVR factors were initially assessed at the beginning of the year during routine medical examination. The CVR was calculated with the SCORE charts for all subjects. Moderate-to-high CVR was defined as SCORE ≥ 4%. A baseline SCORE ≥ 4% was associated with a higher risk for long-term CV and non-CV SL, as revealed by follow-up assessment. This translated into an increased cost, estimated at €5 801 464.18 per year. Furthermore, pharmacological treatment for hypertension or hyperlipidaemia was significantly associated with longer SL duration. Moderate-to-high CVR in asymptomatic subjects was significantly associated with the duration and cost of CV and non-CV SL. These results constitute the first body of evidence that the SCORE charts can be used to identify people with a non-established CV disease, which might ultimately translate into more lost workdays and therefore increased cost for society.
Sharma, Abhinav; Green, Jennifer B; Dunning, Allison; Lokhnygina, Yuliya; Al-Khatib, Sana M; Lopes, Renato D; Buse, John B; Lachin, John M; Van de Werf, Frans; Armstrong, Paul W; Kaufman, Keith D; Standl, Eberhard; Chan, Juliana C N; Distiller, Larry A; Scott, Russell; Peterson, Eric D; Holman, Rury R
2017-12-01
We evaluated the specific causes of death and their associated risk factors in a contemporary cohort of patients with type 2 diabetes and atherosclerotic cardiovascular disease (ASCVD). We used data from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) study ( n = 14,671), a cardiovascular (CV) safety trial adding sitagliptin versus placebo to usual care in patients with type 2 diabetes and ASCVD (median follow-up 3 years). An independent committee blinded to treatment assignment adjudicated each cause of death. Cox proportional hazards models were used to identify risk factors associated with each outcome. A total of 1,084 deaths were adjudicated as the following: 530 CV (1.2/100 patient-years [PY], 49% of deaths), 338 non-CV (0.77/100 PY, 31% of deaths), and 216 unknown (0.49/100 PY, 20% of deaths). The most common CV death was sudden death ( n = 145, 27% of CV death) followed by acute myocardial infarction (MI)/stroke ( n = 113 [MI n = 48, stroke n = 65], 21% of CV death) and heart failure (HF) ( n = 63, 12% of CV death). The most common non-CV death was malignancy ( n = 154, 46% of non-CV death). The risk of specific CV death subcategories was lower among patients with no baseline history of HF, including sudden death (hazard ratio [HR] 0.4; P = 0.0036), MI/stroke death (HR 0.47; P = 0.049), and HF death (HR 0.29; P = 0.0057). In this analysis of a contemporary cohort of patients with diabetes and ASCVD, sudden death was the most common subcategory of CV death. HF prevention may represent an avenue to reduce the risk of specific CV death subcategories. © 2017 by the American Diabetes Association.
Willems, Philippe; Weekx, Steven; Meskal, Anissa; Schouwers, Sofie
2017-04-01
The measurement of chloride and sodium concentrations in sweat is an important test for the diagnosis of cystic fibrosis (CF). The aim of this study was to assess the analytical variation (CV A ) and within-subject (CV I ) and between-subject (CV G ) biological variation of chloride and sodium concentrations in sweat, collected by pilocarpine iontophoresis and to determine their effect on the clinical interpretation of sweat test results. Twelve Caucasian adults (six male and six female) without symptoms suggestive for CF and with a mean age of 41 years (range 28-59) were included in the study. At least eight samples of sweat were collected from each individual by pilocarpine iontophoresis. Chloride and sodium concentrations were measured in duplicate for each sample using ion selective electrodes. After the removal of outliers, the CV A , CV I , and CV G of chloride and sodium were determined, and their impact on measurement uncertainty and reference change value were calculated. The CV A , CV I , and CV G of chloride in sweat samples were 6.5, 17.7, and 47.2%, respectively. The CV A , CV I , and CV G of sodium sweat samples were 6.0, 17.5, and 42.6%, respectively. Our study indicates that sweat chloride and sodium concentration results must be interpreted with great care. Different components of variation, particularly the biological variations, have a considerable impact on the interpretation of these results. If no pre-analytical, analytical, or post-analytical errors are suspected, repeated sweat testing to confirm first-measurement results might not be desirable.
Hafer, Jocelyn F; Boyer, Katherine A
2017-01-01
Coordination variability (CV) quantifies the variety of movement patterns an individual uses during a task and may provide a measure of the flexibility of that individual's motor system. While there is growing popularity of segment CV as a marker of motor system health or adaptability, it is not known how many strides of data are needed to reliably calculate CV. This study aimed to determine the number of strides needed to reliably calculate CV in treadmill walking and running, and to compare CV between walking and running in a healthy population. Ten healthy young adults walked and ran at preferred speeds on a treadmill and a modified vector coding technique was used to calculate CV for the following segment couples: pelvis frontal plane vs. thigh frontal plane, thigh sagittal plane vs. shank sagittal plane, thigh sagittal plane vs. shank transverse plane, and shank transverse plane vs. rearfoot frontal plane. CV for each coupling of interest was calculated for 2-15 strides for each participant and gait type. Mean CV was calculated across the entire gait cycle and, separately, for 4 phases of the gait cycle. For running and walking 8 and 10 strides, respectively, were sufficient to obtain a reliable CV estimate. CV was significantly different between walking and running for the thigh vs. shank couple comparisons. These results suggest that 10 strides of treadmill data are needed to reliably calculate CV for walking and running. Additionally, the differences in CV between walking and running suggest that the role of knee (i.e., inter-thigh- shank) control may differ between these forms of locomotion. Copyright © 2016 Elsevier B.V. All rights reserved.
Ndindjock, Roger; Gedeon, Jude; Mendis, Shanthi; Paccaud, Fred
2011-01-01
Abstract Objective To assess the prevalence of cardiovascular (CV) risk factors in Seychelles, a middle-income African country, and compare the cost-effectiveness of single-risk-factor management (treating individuals with arterial blood pressure ≥ 140/90 mmHg and/or total serum cholesterol ≥ 6.2 mmol/l) with that of management based on total CV risk (treating individuals with a total CV risk ≥ 10% or ≥ 20%). Methods CV risk factor prevalence and a CV risk prediction chart for Africa were used to estimate the 10-year risk of suffering a fatal or non-fatal CV event among individuals aged 40–64 years. These figures were used to compare single-risk-factor management with total risk management in terms of the number of people requiring treatment to avert one CV event and the number of events potentially averted over 10 years. Treatment for patients with high total CV risk (≥ 20%) was assumed to consist of a fixed-dose combination of several drugs (polypill). Cost analyses were limited to medication. Findings A total CV risk of ≥ 10% and ≥ 20% was found among 10.8% and 5.1% of individuals, respectively. With single-risk-factor management, 60% of adults would need to be treated and 157 cardiovascular events per 100 000 population would be averted per year, as opposed to 5% of adults and 92 events with total CV risk management. Management based on high total CV risk optimizes the balance between the number requiring treatment and the number of CV events averted. Conclusion Total CV risk management is much more cost-effective than single-risk-factor management. These findings are relevant for all countries, but especially for those economically and demographically similar to Seychelles. PMID:21479093
Molecular identification of enteroviruses associated with aseptic meningitis in children from India.
Kumar, Arvind; Shukla, Deepti; Kumar, Rashmi; Idris, Mohammad Z; Jauhari, Prashant; Srivastava, Shalini; Dhole, Tapan N
2013-01-01
We identified and characterized enteroviruses associated with aseptic meningitis in children between April 2009 and March 2010. Enterovirus RNA was detected in 51 (45.5 %) of 112 CSF samples. Molecular typing by RT-PCR and sequencing of a partial VP1 region revealed the predominance of echovirus (ECV) 32 (n = 20), followed by ECV 11 (n = 10), ECV 13 and ECV 14 (n = 5 each), coxsackievirus (CV) B3 and CV B6 (n = 3 each), CV A2, CV A10 and ECV 30 (n = 1 each). Phylogenetic analysis of ECV 32 showed 0 to 4 % sequence divergence among strains of the present study and 20-23 % from the prototype Puerto Rico strain at the nucleotide level. This is the first report of ECV 32 associated with an aseptic meningitis epidemic and identification of seven different enterovirus serotypes (CV A2, CV A10, CV B3, CV B6, ECV 13, ECV 14 and ECV 32) in meningitis cases from India.
Prevalence of duck circovirus infection of subclinical pekin ducks in South Korea.
Cha, Se-Yeoun; Song, Eu-Tteum; Kang, Min; Wei, Bai; Seo, Hye-Suk; Roh, Jae-Hee; Yoon, Ran-Hee; Moon, Oun-Kyoung; Jang, Hyung-Kwan
2014-04-01
An investigation was carried out to determine the prevalence and infection pattern of duck circovirus (DuCV) in subclinical Pekin ducks on South Korean duck farms. A total of 147 samples collected from 92 duck farms in five provinces were examined from 2011 to 2012. The overall prevalence of DuCV PCR-positive pooled bursa of Fabricius and liver samples was 21.8% (32/147). The prevalence of DuCV PCR-positive samples increased significantly in 3-week-old ducks compared with that in 1-week-old ducks (P<0.05). DuCV in association with Riemerella and Salmonella infections (10.9%; 16/147) occurred at the same level as infection with DuCV alone (10.9%; 16/147). In comparison of the relationship between bacterial diseases (salmonellosis, Riemerella infection) and morbidity in farms with and without DuCV, morbidity was higher in circovirus-positive farms (50%; 16/32) than in circovirus-negative farms (26.1%; 30/115). Our findings provide baseline information on the degree of DuCV infection and distribution and pattern of DuCV in ducks, and it is evident that DuCV can be associated with subclinical diseases and that subclinical infection could be economically important.
Physiological responses at five estimates of critical velocity.
Bull, Anthony J; Housh, Terry J; Johnson, Glen O; Rana, Sharon R
2008-04-01
The purpose of this study was to compare critical velocity (CV) estimates from five mathematical models, and to examine the oxygen uptake (VO(2)) and heart rate (HR) responses during treadmill runs at the five estimates of CV. Ten subjects (six males and four females) performed one incremental test to determine maximal oxygen consumption (VO(2max)) and four or five randomly ordered constant-velocity trials on a treadmill for the estimation of CV. Five mathematical models were used to estimate CV for each subject including two linear, two nonlinear, and an exponential model. Up to five randomly ordered runs to exhaustion were performed by each subject at treadmill velocities that corresponded to the five CV estimates, and VO(2) and HR responses were monitored throughout each trial. The 3-parameter, nonlinear (Non-3) model produced CV estimates that were significantly (P < 0.05) less than the other four models. During runs at CV estimates, five subjects did not complete 60 min at the their estimate from the Non-3 model, nine did not complete 60 min at their estimate from the Non-2 model, and no subjects completed 60 min at any estimate from the other three models. The mean HR value (179 +/- 18 beats min(-1), HR(peak)) at the end of runs at CV using the Non-3 model was significantly less than the maximal HR (195 +/- 7 beats min(-1), HR(max)) achieved during the incremental trial to exhaustion. However, mean HR(peak) values from runs at all other CV estimates were not significantly different from HR(max). Furthermore, data indicated that mean HR(peak) values increased during runs at CV estimates from the third minute to the end of exercise for all models, and that these increases in VO(2) (range = 367-458 ml min(-1)) were significantly greater than that typically associated with O(2) drift ( approximately 200 ml min(-1)) for all but the exponential model, indicating a VO(2) slow component associated with CV estimates from four of the five models. However, the mean VO(2) values at the end of exercise during the runs at CV estimates for all five mathematical models were significantly less than the mean VO(2max) value. These results suggest that, in most cases, CV estimated from the five models does not represent a fatigueless task. In addition, the mean CV estimates from the five models varied by 18%, and four of the five mean CV estimates were within the heavy exercise domain. Therefore, CV would not represent the demarcation point between heavy and severe exercise domains.
Koffeman, Aafke R; Valkhoff, Vera E; Jong, Geert W'T; Warlé-van Herwaarden, Margreet F; Bindels, Patrick J E; Sturkenboom, Miriam C J M; Luijsterburg, Pim A J; Bierma-Zeinstra, Sita M A
2014-06-01
To determine the influence of ischaemic cardiovascular (CV) risk on prescription of non-steroidal anti-inflammatory drugs (NSAIDs) by general practitioners (GPs) in patients with musculoskeletal complaints. Cohort study. A healthcare database containing the electronic GP medical records of over one million patients throughout the Netherlands. A total of 474 201 adults consulting their GP with a new musculoskeletal complaint between 2000 and 2010. Patients were considered at high CV risk if they had a history of myocardial infarction, angina pectoris, stroke, transient ischaemic attack, or peripheral arterial disease, and at low CV risk if they had no CV risk factors. Frequency of prescription of non-selective (ns)NSAIDs and selective cyclooxygenase-2 inhibitors (coxibs). Overall, 24.4% of patients were prescribed an nsNSAID and 1.4% a coxib. Of the 41,483 patients with a high CV risk, 19.9% received an nsNSAID and 2.2% a coxib. These patients were more likely to be prescribed a coxib than patients with a low CV risk (OR 1.9, 95% CI 1.8-2.0). Prescription of nsNSAIDs decreased over time in all risk groups and was lower in patients with a high CV risk than in patients with a low CV risk (OR 0.8, 95% CI 0.7-0.8). Overall, patients with a high CV risk were less likely to be prescribed an NSAID for musculoskeletal complaints than patients with a low CV risk. Nevertheless, one in five high CV risk patients received an NSAID, indicating that there is still room for improvement.
Pathogenesis of duck circovirus genotype 1 in experimentally infected Pekin ducks.
Hong, Y-T; Kang, M; Jang, H-K
2018-05-17
Ducks infected with duck circovirus (DuCV) exhibit feathering disorder, growth retardation, and low body weight. The virus can induce immunosuppression and increase rates of infection caused by other pathogens. The purpose of the present study was to investigate the pathogenesis of DuCV in experimentally infected Pekin ducks. At postmortem examination, gross lesions were observed in the immune organs including bursa of Fabricius (BF), thymus, and spleen. Hemorrhage, lymphocytic depletion, necrosis, and degeneration were observed in the bursal tissues by histological examination. The TUNEL assay was performed with bursal tissue. There was a significant difference of the apoptosis rate between the negative and DuCV-infected ducks. The earliest time point for detection of DuCV DNA in sera, cloacal swabs, and organs was 1 wk post-infection (WPI). Viral shedding was persistent and detectable at the end of the experiment (10 WPI). The findings provide evidence that horizontal transmission and persistent infection are the characteristics of DuCV. The organ with the highest mean viral load was the spleen, followed by BF, cecal tonsil, lung, thymus, liver, and kidney. We successfully established an experimental DuCV genotype 1 (DuCV-1) infection in Pekin ducks and demonstrated the pathogenicity and persistence of DuCV-1. In conclusion, DuCV-1 caused extensive damage to the immune organs that may have resulted in immunosuppression. Pathobiological characteristics of DuCV-1 include systemic infection, persistent infection, and horizontal transmission. These features allow DuCV-1 to circulate more easily in farms and increase the susceptibility of ducks to other diseases.
Maggi, Mario; Wu, Frederick C W; Jones, Thomas H; Jackson, Graham; Behre, Hermann M; Hackett, Geoffrey; Martin-Morales, Antonio; Balercia, Giancarlo; Dobs, Adrian S; Arver, Stefan T E; Maggio, Marcello; Cunningham, Glenn R; Isidori, Andrea M; Quinton, Richard; Wheaton, Olivia A; Siami, Flora S; Rosen, Raymond C
2016-10-01
The aim of this study was to assess cardiovascular (CV) safety of testosterone replacement therapy (TRT) in a large, diverse cohort of European men with hypogonadism (HG). The Registry of Hypogonadism in Men (RHYME) was designed as a multi-national, longitudinal disease registry of men diagnosed with hypogonadism (HG) at 25 clinical sites in six European countries. Data collection included a complete medical history, physical examination, blood sampling and patient questionnaires at multiple study visits over 2-3 years. Independent adjudication was performed on all mortalities and CV outcomes. Of 999 patients enrolled with clinically diagnosed HG, 750 (75%) initiated some form of TRT. Registry participants, including both treated and untreated patients, contributed 23 900 person-months (99.6% of the targeted) follow-up time. A total of 55 reported CV events occurred in 41 patients. Overall, five patients died of CV-related causes (3 on TRT, 2 untreated) and none of the deaths were adjudicated as treatment-related. The overall CV incidence rate was 1522 per 100 000 person-years. CV event rates for men receiving TRT were not statistically different from untreated men (P=.70). Regardless of treatment assignment, CV event rates were higher in older men and in those with increased CV risk factors or a prior history of CV events. Age and prior CV history, not TRT use, were predictors of new-onset CV events in this multi-national, prospective hypogonadism registry. © 2016 John Wiley & Sons Ltd.
Ozone effects on yield quality of spring oilseed rape and broccoli
NASA Astrophysics Data System (ADS)
Vandermeiren, Karine; De Bock, Maarten; Horemans, Nele; Guisez, Yves; Ceulemans, Reinhart; De Temmerman, Ludwig
2012-02-01
The impact of elevated tropospheric ozone (O 3) on the quality of spring oilseed rape ( Brassica napus cv Ability) and broccoli ( Brassica oleracea L. cv Italic cv Monaco) was assessed during a three year Open - Top Chamber (OTC) experiment. Current ambient O 3 levels were compared to an increase of 20 and 40 ppb during 8 h per day over the entire growing season. The qualitative responses were expressed as a function of the accumulated hourly O 3 concentrations over a threshold of 40 ppb (AOT40) and the phytotoxic O 3 dose above a threshold of 6 nmol s -1 m -2 projected leaf area (POD 6). Our results provide clear evidence that O 3 has an influence on the qualitative attributes of the harvested products of these Brassica species. The responses were comparable whether they were expressed as a function of the accumulated O 3 concentrations or of the modelled O 3 uptake. The protein concentration of oilseed rape seeds and broccoli heads was significantly increased in response to O 3. There was also a shift in the fatty acid composition of the vegetable oil derived from seeds of oilseed rape. Oleic acid (18:1) declined significantly ( p < 0.05) in favour of linoleic acid (18:2) ( p < 0.01). There was no change in the relative proportion of linolenic acid (18:3). The suppression of monounsaturated fatty acids ( p < 0.05) coincided with a positive response of the % saturated fatty acids ( p < 0.05). In rapeseed oil the observed decrease in vitamin E content was due to a reduction of γ-tocopherol (TOC, p < 0.001). α-TOC, the most active form of vitamin E in humans, was not influenced by O 3. There was no change in the glucosinolate (GSL) content of oilseed rape seeds. In broccoli an important shift occurred from indolic to aliphatic GSLs although the total GSL concentration was not changed. The increase in the aliphatic/indolic GSL ratio ( p < 0.001) may be important in relation to the anticarcinogenic properties of these vegetables. The vitamin C (ascorbate - ASC) and α-TOC concentrations of broccoli were not influenced by O 3; glutathione (GSH) was slightly increased in response to a higher O 3 uptake ( p < 0.05). The consequences of these changes with regard to food and feed quality and human health are discussed.
How to Practice Sports Cardiology: A Cardiology Perspective.
Lawless, Christine E
2015-07-01
The rigorous cardiovascular (CV) demands of sport, combined with training-related cardiac adaptations, render the athlete a truly unique CV patient and sports cardiology a truly unique discipline. Cardiologists are advised to adopt a systematic approach to the CV evaluation of athletes, taking into consideration the individual sports culture, sports-specific CV demands, CV adaptations and their appearance on cardiac testing, any existing or potential interaction of the heart with the internal and external sports environment, short- and long-term CV risks, and potential effect of performance-enhancing agents and antidoping regulations. This article outlines the systematic approach, provides a detailed example, and outlines contemporary sports cardiology core competencies. Copyright © 2015 Elsevier Inc. All rights reserved.
Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.).
Brat, Pierre; Hoang, Lan Nguyen Thi; Soler, Alain; Reynes, Max; Brillouet, Jean-Marc
2004-10-06
The physicochemical characteristics (pH, total and soluble solids, and titratable acidity), sugars, organic acids, carotenoids, anthocyanins, volatile compounds, and cell wall polysaccharides of a new pineapple hybrid (FLHORAN41 cultivar) were measured throughout maturation and compared with the Smooth Cayenne cv. At full maturity, the FLHORAN41 cv. has a higher titratable acidity and soluble solids content than the Smooth Cayenne cv. The golden yellow flesh and red-orange to scarlet shell of ripe FLHORAN41 cv. fruits are due to carotenoid and anthocyanin levels that are, respectively, 2.5 and 1.5 times higher than those of the flesh and shell of the ripe Smooth Cayenne cv., respectively. During maturation of the FLHORAN41 cv., there was an increase in all classes of aroma compounds (mainly terpene hydrocarbons and esters), although their relative proportions were similar in both cultivars at full maturity. Cell wall polysaccharides undergo little change during maturation.
Potato growth in a porous tube water and nutrient delivery system
NASA Technical Reports Server (NTRS)
Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.
1996-01-01
Potato (Solanum tuberosum L.) cv. 'Norland', vegetative growth and tuber productivity grown in the porous water and nutrient delivery system (PTNDS) developed by the Wisconsin Center for Space Automation and Robotics were compared with the vegetative growth and tuber productivity of plants grown in a peat:vermiculite potting mixture (PT/VR). The plants were grown at 12, 16, and 24-h light periods, 18 degrees C constant temperature, 70% relative humidity, and 300 micromol m-2 s-1 photosynthetic photon flux. Canopy height of plants grown in the PT/VR system was taller than that of plants grown in the PTNDS system. Canopy height differences were greatest when the plants were grown under a 24-h photoperiod. Leaf and stem dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24-h photoperiod, leaf and stem dry masses of plants grown in the PT/VR system were more than 3 times those of plants grown in the PTNDS system. Tuber dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24 h-photoperiod, tuber dry weights of plants grown in the PT/VR system were more than twice those of plants grown in the PTNDS system. A slightly higher harvest index (ratio of tuber weight to leaf plus stem weight) was noted for the plants grown in the PTNDS than for the plants grown in the PT/VR system. Plants grown in the PTNDS system at the 24-h photoperiod matured earlier than plants grown at this photoperiod in the PT/VR system. Vegetative growth and tuber productivity of plants grown under the 16-h photoperiod generally were intermediate to those noted for plants grown under the 12 and 24-h photoperiods. These results indicate that potato plants grown in a PTNDS system may require less plant growing volume, mature in a shorter time, and likely produce more tubers per unit area compared with plants grown in the PT/VR system. These plant characteristics are a distinct advantage for a plant growing unit of a CELSS.
Fernández-Baldo, Martín A; Bertolino, Franco A; Messina, Germán A; Sanz, Maria I; Raba, Julio
2010-12-15
This work described the development and characterization of an electrochemical method using square wave voltammetry (SWV) combined with the use of modified magnetic nanoparticles (MNPs), which had shown a rapid and sensitive determination of ochratoxin A (OTA) in wine grapes (Cabernet Sauvignon, Malbec and Syrah) post-harvest tissues. The wine grapes were inoculated with Aspergillus ochraceus to obtain OTA in artificially infected samples. The OTA was directly determined using square-wave voltammetry. The current obtained is directly proportional to the concentration of OTA present in the samples. This method has been used for OTA determination in wine grapes and it was validated against a commercial ELISA test kit. The limits of detection calculated for electrochemical detection and the ELISA were 0.02 and 1.9 μg kg(-1), respectively and the coefficients of variation for accuracy and precision dates were below 5.5%. This method promises to be suitable for the detection and quantification of OTA in apparently healthy fruits post-harvest for assuring safety and quality of food as well as consumer's health. Copyright © 2010 Elsevier B.V. All rights reserved.
Alcohol's Effects on the Cardiovascular System.
Piano, Mariann R
2017-01-01
Alcohol use has complex effects on cardiovascular (CV) health. The associations between drinking and CV diseases such as hypertension, coronary heart disease, stroke, peripheral arterial disease, and cardiomyopathy have been studied extensively and are outlined in this review. Although many behavioral, genetic, and biologic variants influence the interconnection between alcohol use and CV disease, dose and pattern of alcohol consumption seem to modulate this most. Low-to-moderate alcohol use may mitigate certain mechanisms such as risk and hemostatic factors affecting atherosclerosis and inflammation, pathophysiologic processes integral to most CV disease. But any positive aspects of drinking must be weighed against serious physiological effects, including mitochondrial dysfunction and changes in circulation, inflammatory response, oxidative stress, and programmed cell death, as well as anatomical damage to the CV system, especially the heart itself. Both the negative and positive effects of alcohol use on particular CV conditions are presented here. The review concludes by suggesting several promising avenues for future research related to alcohol use and CV disease. These include using direct biomarkers of alcohol to confirm self-report of alcohol consumption levels; studying potential mediation of various genetic, socioeconomic, and racial and ethnic factors that may affect alcohol use and CV disease; reviewing alcohol-medication interactions in cardiac patients; and examining CV effects of alcohol use in young adults and in older adults.
Alcohol’s Effects on the Cardiovascular System
Piano, Mariann R.
2017-01-01
Alcohol use has complex effects on cardiovascular (CV) health. The associations between drinking and CV diseases such as hypertension, coronary heart disease, stroke, peripheral arterial disease, and cardiomyopathy have been studied extensively and are outlined in this review. Although many behavioral, genetic, and biologic variants influence the interconnection between alcohol use and CV disease, dose and pattern of alcohol consumption seem to modulate this most. Low-to-moderate alcohol use may mitigate certain mechanisms such as risk and hemostatic factors affecting atherosclerosis and inflammation, pathophysiologic processes integral to most CV disease. But any positive aspects of drinking must be weighed against serious physiological effects, including mitochondrial dysfunction and changes in circulation, inflammatory response, oxidative stress, and programmed cell death, as well as anatomical damage to the CV system, especially the heart itself. Both the negative and positive effects of alcohol use on particular CV conditions are presented here. The review concludes by suggesting several promising avenues for future research related to alcohol use and CV disease. These include using direct biomarkers of alcohol to confirm self-report of alcohol consumption levels; studying potential mediation of various genetic, socioeconomic, and racial and ethnic factors that may affect alcohol use and CV disease; reviewing alcohol–medication interactions in cardiac patients; and examining CV effects of alcohol use in young adults and in older adults. PMID:28988575
Association of Ideal Cardiovascular Health and Long-term Healthcare Costs.
Willis, Benjamin L; DeFina, Laura F; Bachmann, Justin M; Franzini, Luisa; Shay, Christina M; Gao, Ang; Leonard, David; Berry, Jarett D
2015-11-01
The American Heart Association's (AHA's) 2020 Strategic Impact Goals introduced the concept of ideal cardiovascular (CV) health based on seven health factors and behaviors associated with lower CV disease (CVD) risk. The association between CV health and healthcare costs has not been reported; therefore, we evaluated the association between CV health profile and later-life healthcare costs. Cooper Center Longitudinal Study participants (N=4,906; mean age, 56 years) receiving Medicare coverage from 1999 to 2009 were included. CV health behaviors (diet, physical activity, BMI, smoking) and CV health factors (blood pressure, total cholesterol, blood glucose) were categorized as unfavorable (zero to two ideal components); intermediate (two to four); and favorable (five to seven). Healthcare costs were cumulated from Medicare claims data, adjusted for inflation. Associations between midlife CV health status and non-CVD and CVD-related costs were estimated using multivariable quantile regression. Analyses were conducted in 2013 and 2014. Favorable CV health was prevalent in 14.8% of men and 30.1% of women, with <1% having ideal levels of all health metrics. After 31,945 person-years of Medicare follow-up, individuals with favorable CV health exhibited 24.9% (95% CI=11.7%, 36.0%) lower median annual non-CVD costs and 74.5% (57.5%, 84.7%) lower median CVD costs than those with unfavorable CV health. Annualized differences were greater for non-CVD costs than for CVD costs ($1,175 vs $566). Having more ideal CV health components in middle age, as outlined by the AHA 2020 Goals, is associated with lower non-CVD and CVD healthcare costs in later life. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Feng, Chiguang; Ghosh, Anita; Amin, Mohammed N.; Giomarelli, Barbara; Shridhar, Surekha; Banerjee, Aditi; Fernández-Robledo, José A.; Bianchet, Mario A.; Wang, Lai-Xi; Wilson, Iain B. H.; Vasta, Gerardo R.
2013-01-01
The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is “hijacked” by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288,) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 “self”-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection. PMID:23824193
Du, Wenjing; Li, Xue; Chi, Ying; Ma, Fengxia; Li, Zongjin; Yang, Shaoguang; Song, Baoquan; Cui, Junjie; Ma, Tao; Li, Juanjuan; Tian, Jianjian; Yang, Zhouxin; Feng, Xiaoming; Chen, Fang; Lu, Shihong; Liang, Lu; Han, Zhi-Bo; Han, Zhong-Chao
2016-04-04
Mesenchymal stem cells (MSCs) represent a heterogeneous cell population that is promising for regenerative medicine. The present study was designed to assess whether VCAM-1 can be used as a marker of MSC subpopulation with superior angiogenic potential. MSCs were isolated from placenta chorionic villi (CV). The VCAM-1(+/-) CV-MSCs population were separated by Flow Cytometry and subjected to a comparative analysis for their angiogenic properties including angiogenic genes expression, vasculo-angiogenic abilities on Matrigel in vitro and in vivo, angiogenic paracrine activities, cytokine array, and therapeutic angiogenesis in vascular ischemic diseases. Angiogenic genes, including HGF, ANG, IL8, IL6, VEGF-A, TGFβ, MMP2 and bFGF, were up-regulated in VCAM-1(+)CV-MSCs. Consistently, angiogenic cytokines especially HGF, IL8, angiogenin, angiopoitin-2, μPAR, CXCL1, IL-1β, IL-1α, CSF2, CSF3, MCP-3, CTACK, and OPG were found to be significantly increased in VCAM-1(+) CV-MSCs. Moreover, VCAM-1(+)CV-MSCs showed remarkable vasculo-angiogenic abilities by angiogenesis analysis with Matrigel in vitro and in vivo and the conditioned medium of VCAM-1(+) CV-MSCs exerted markedly pro-proliferative and pro-migratory effects on endothelial cells compared to VCAM-1(-)CV-MSCs. Finally, transplantation of VCAM-1(+)CV-MSCs into the ischemic hind limb of BALB/c nude mice resulted in a significantly functional improvement in comparison with VCAM-1(-)CV-MSCs transplantation. VCAM-1(+)CV-MSCs possessed a favorable angiogenic paracrine activity and displayed therapeutic efficacy on hindlimb ischemia. Our results suggested that VCAM-1(+)CV-MSCs may represent an important subpopulation of MSC for efficient therapeutic angiogenesis.
Lopez-Reyes, Jorge Giovanny; Spadaro, Davide; Prelle, Ambra; Garibaldi, Angelo; Gullino, Maria Lodovica
2013-04-01
The antifungal activity of plant essential oils was evaluated as postharvest treatment on stone fruit against brown rot and grey mold rot of stone fruit caused by Monilinia laxa and Botrytis cinerea, respectively. The essential oils from basil (Ocimum basilicum), fennel (Foeniculum sativum), lavender (Lavandula officinalis), marjoram (Origanum majorana), oregano (Origanum vulgare), peppermint (Mentha piperita), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), savory (Satureja montana), thyme (Thymus vulgaris), and wild mint (Mentha arvensis) were tested at two different concentrations on apricots (cv. Kyoto and cv. Tonda di Costigliole), nectarines (cv. Big Top and cv. Nectaross) and plums (cv. Italia and cv. TC Sun). The volatile composition of the essential oils tested was determined by gas chromatography-mass spectrometry analysis. The treatments containing essential oils from oregano, savory, and thyme at 1% (vol/vol) controlled both B. cinerea and M. laxa growing on apricots cv. Tonda di Costigliole and plums cv. Italia and cv. TC Sun; however, the same treatments were phytotoxic for the carposphere of nectarines cv. Big Top and cv. Nectaross. Treatments with 10% (vol/vol) essential oils were highly phytotoxic, notwithstanding their efficacy against the pathogens tested. The essential oils containing as major components α-pinene, p-cymene, carvacrol, and thymol showed similar results on stone fruit, so their antimicrobial activity and the phytotoxicity produced could be based on the concentration of their principal compounds and their synergistic activity. The efficacy of the essential oil treatments on control of fungal pathogens in postharvest depended on the fruit cultivar, the composition and concentration of the essential oil applied, and the length of storage.
Chen, Hung-Yuan; Tsai, Wan-Chuan; Chiu, Yen-Ling; Hsu, Shih-Ping; Pai, Mei-Fen; Yang, Ju-Yeh; Peng, Yu-Sen
2015-03-01
Triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, an indicator of atherogenic dyslipidemia, is a predictor of cardiovascular (CV) outcomes in the general population and has been correlated with atherosclerotic events. Whether the TG/HDL-C ratio can predict CV outcomes and survival in dialysis patients is unknown. We performed this prospective, observational cohort study and enrolled 602 dialysis patients (539 hemodialysis and 63 peritoneal dialysis) from a single center in Taiwan followed up for a median of 3.9 years. The outcomes were the occurrence of CV events, CV death, and all-cause mortality during follow-up. The association of baseline TG/HDL-C ratio with outcomes was explored with Cox regression models, which were adjusted for demographic parameters and inflammatory/nutritional markers. Overall, 203 of the patients experienced CV events and 169 patients died, of whom 104 died due to CV events. Two hundred fifty-four patients reached the composite CV outcome. Patients with higher TG/HDL-C levels (quintile 5) had a higher incidence of CV events (adjusted hazard ratio [HR] 2.03, 95% confidence interval [CI] 1.19-3.47), CV mortality (adjusted HR 1.91, 95% CI 1.07-3.99), composite CV outcome (adjusted HR 2.2, 95% CI 1.37-3.55), and all-cause mortality (adjusted HR 1.94, 95% CI 1.1-3.39) compared with the patients in quintile 1. However, in diabetic dialysis patients, the TG/HDL-C ratio did not predict the outcomes. The TG/HDL-C ratio is a reliable and easily accessible predictor to evaluate CV outcomes and survival in prevalent nondiabetic dialysis patients. ClinicalTrials.gov: NCT01457625.
Chen, Hung-Yuan; Tsai, Wan-Chuan; Chiu, Yen-Ling; Hsu, Shih-Ping; Pai, Mei-Fen; Yang, Ju-Yeh; Peng, Yu-Sen
2015-01-01
Abstract Triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, an indicator of atherogenic dyslipidemia, is a predictor of cardiovascular (CV) outcomes in the general population and has been correlated with atherosclerotic events. Whether the TG/HDL-C ratio can predict CV outcomes and survival in dialysis patients is unknown. We performed this prospective, observational cohort study and enrolled 602 dialysis patients (539 hemodialysis and 63 peritoneal dialysis) from a single center in Taiwan followed up for a median of 3.9 years. The outcomes were the occurrence of CV events, CV death, and all-cause mortality during follow-up. The association of baseline TG/HDL-C ratio with outcomes was explored with Cox regression models, which were adjusted for demographic parameters and inflammatory/nutritional markers. Overall, 203 of the patients experienced CV events and 169 patients died, of whom 104 died due to CV events. Two hundred fifty-four patients reached the composite CV outcome. Patients with higher TG/HDL-C levels (quintile 5) had a higher incidence of CV events (adjusted hazard ratio [HR] 2.03, 95% confidence interval [CI] 1.19–3.47), CV mortality (adjusted HR 1.91, 95% CI 1.07–3.99), composite CV outcome (adjusted HR 2.2, 95% CI 1.37–3.55), and all-cause mortality (adjusted HR 1.94, 95% CI 1.1–3.39) compared with the patients in quintile 1. However, in diabetic dialysis patients, the TG/HDL-C ratio did not predict the outcomes. The TG/HDL-C ratio is a reliable and easily accessible predictor to evaluate CV outcomes and survival in prevalent nondiabetic dialysis patients. ClinicalTrials.gov: NCT01457625 PMID:25761189
Use of cardiovascular polypills for the secondary prevention of cerebrovascular disease.
Masjuan, J; Gállego, J; Aguilera, J M; Arenillas, J F; Castellanos, M; Díaz, F; Portilla, J C; Purroy, F
2018-01-08
There is little control of cardiovascular (CV) risk factors in secondary prevention after an ischaemic stroke, in part due to a lack of adherence to treatment. The CV polypill may contribute to proper treatment adherence, which is necessary for CV disease prevention. This study aimed to establish how and in what cases the CV polypill should be administered. A group of 8 neurologists drafted consensus recommendations using structured brainstorming and based on their experience and a literature review. These recommendations are based on the opinion of the participating experts. The use of the CV polypill is beneficial for patients, healthcare professionals, and the health system. Its use is most appropriate for atherothrombotic stroke, lacunar stroke, stroke associated with cognitive impairment, cryptogenic stroke with CV risk factors, and silent cerebrovascular disease. It is the preferred treatment in cases of suspected poor adherence, polymedicated patients, elderly people, patients with polyvascular disease or severe atherothrombosis, young patients in active work, and patients who express a preference for the CV polypill. Administration options include switching from individual drugs to the CV polypill, starting treatment with the CV polypill in the acute phase in particular cases, use in patients receiving another statin or an angiotensin ii receptor antagonist, or de novo use if there is suspicion of poor adherence. Nevertheless, use of the CV polypill requires follow-up on the achievement of the therapeutic objectives to make dose adjustments. This document is the first to establish recommendations for the use of the CV polypill in cerebrovascular disease, beyond its advantages in terms of treatment adherence. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Homans, James; Christensen, Shawna; Stiller, Tracey; Wang, Chia-Hao; Mack, Wendy; Anastos, Kathryn; Minkoff, Howard; Young, Mary; Greenblatt, Ruth; Cohen, Mardge; Strickler, Howard; Karim, Roksana; Spencer, Lashonda Yvette; Operskalski, Eva; Frederick, Toinette; Kovacs, Andrea
2012-05-01
Cervicovaginal HIV level (CV-VL) influences HIV transmission. Plasma viral load (PVL) correlates with CV-VL, but discordance is frequent. We evaluated how PVL, behavioral, immunological, and local factors/conditions individually and collectively correlate with CV-VL. CV-VL was measured in the cervicovaginal lavage fluid (CVL) of 481 HIV-infected women over 976 person-visits in a longitudinal cohort study. We correlated identified factors with CV-VL at individual person-visits and detectable/undetectable PVL strata by univariate and multivariate linear regression and with shedding pattern (never, intermittent, persistent ≥3 shedding visits) in 136 women with ≥3 visits by ordinal logistic regression. Of 959 person-visits, 450 (46.9%) with available PVL were discordant, 435 (45.3%) had detectable PVL with undetectable CV-VL, and 15 (1.6%) had undetectable PVL with detectable CV-VL. Lower CV-VL correlated with highly active antiretroviral therapy (HAART) usage (P = 0.01). Higher CV-VL correlated with higher PVL (P < 0.001), inflammation-associated cellular changes (P = 0.03), cervical ectopy (P = 0.009), exudate (P = 0.005), and trichomoniasis (P = 0.03). In multivariate analysis of the PVL-detectable stratum, increased CV-VL correlated with the same factors and friability (P = 0.05), while with undetectable PVL, decreased CV-VL correlated with HAART use (P = 0.04). In longitudinal analysis, never (40.4%) and intermittent (44.9%) shedding were most frequent. Higher frequency shedders were more likely to have higher initial PVL [odds ratio (OR) = 2.47/log10 increase], herpes simplex virus type 2 seropositivity (OR = 3.21), and alcohol use (OR = 2.20). Although PVL correlates strongly with CV-VL, discordance is frequent. When PVL is detectable, cervicovaginal inflammatory conditions correlate with increased shedding. However, genital shedding is sporadic and not reliably predicted by associated factors. HAART, by reducing PVL, is the most reliable means of reducing cervicovaginal shedding.
Liakos, Charalampos I; Karpanou, Eva A; Markou, Maria I; Grassos, Charalampos A; Vyssoulis, Gregory P
2015-12-01
Intrarenal hemodynamics depend on blood pressure (BP), heart rate (HR), and smoking. Although BP levels have been associated with kidney function, the effect of HR levels, BP, and HR variability on renal function are less well clarified. This cross-sectional study sought to determine the association of 24-hour BP and HR variability with kidney function in hypertensive patients, stratified by smoking. The study comprised 9600 nondiabetic, never-treated hypertensive individuals without evident renal impairment examined from 1985 to 2014 (aged 53.3±13.4 years, 55.3% males). The 24-hour systolic BP (SBP) and HR variability were estimated via their coefficient of variation (CV =standard deviation×100/mean value) derived from ambulatory recording. The CV SBP-to-CV HR ratio (CV R) was used as a marker of the interplay between 24-hour SBP and HR variability. Renal function was estimated via 24-hour urine creatinine clearance (CrCl), estimated glomerular filtration rate (eGFR), albumin-to-creatinine ratio (ACR), and 24-hour urine α1 -microglobulin. After adjustment for age, sex, and smoking, CV SBP was found to be weakly correlated to eGFR (r=-0.017, P=.1) and somewhat more strongly to CrCl, ACR, and α1 -microglobulin (r=-0.032, 0.072, and 0.065; P=.002, <.001 and <.001, respectively). CV HR was much better related to renal function, with stronger adjusted correlations to CrCl, eGFR, ACR, and α1 -microglobulin (r=0.185, 0.134, -0.306, -0.247; all P<.001, respectively). CV R also showed equally good adjusted correlations (r=-0.175, -0.125, 0.336, 0.262; all P<.001, respectively). Most adjusted correlations for CV HR and CV R were even better in smokers (r=0.213, 0.158, -0.332, -0.272 and -0.183, -0.118, 0.351, 0.275, respectively; all P<.001). CV HR and CV R emerge as better related to kidney function than CV SBP, especially in smokers. The correlation of CV HR and CV SBP to renal function is inverse to each other. ACR and α1 -microglobulin are better related to variability indices than CrCl and eGFR. However, causal relations cannot be proved. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Friday, Nancy A.; Zerbini, Alexandre N.; Waite, Janice M.; Moore, Sue E.; Clapham, Phillip J.
2013-10-01
As part of the Bering Sea Project, cetacean surveys were conducted to describe distribution and estimate abundance on the eastern Bering Sea shelf. Three marine mammal observers conducted visual surveys along transect lines sampled during the Alaska Fisheries Science Center walleye pollock assessment survey in June and July of 2008 and 2010. Distribution and abundance in 2008 and 2010 (cold years) are compared with results from a similar survey conducted in 2002 (a warm year), as the only three years that the entire survey area was sampled; patterns largely match those previously observed. Abundance estimates for comparable areas in 2002, 2008 and 2010 were as follows: humpback whales (Megaptera novaeangliae): 231 (CV=0.63), 436 (CV=0.45), and 675 (CV=0.80); fin whales (Balaenoptera physalus): 419 (CV=0.33), 1368 (CV=0.34), and 1061 (CV=0.38); minke whales (Balaenoptera acutorostrata): 389 (CV=0.52), 517 (CV=0.69), and 2020 (CV=0.73); Dall's porpoise (Phocoenoides dalli): 35,303 (CV=0.53), 14,543 (CV=0.32), and 11,143 (CV=0.32); and harbor porpoise (Phocoena phocoena): 1971 (CV=0.46), 4056 (CV=0.40), and 833 (CV=0.66). It should be noted that these abundance estimates are not corrected for biases due to perception, availability, or responsive movement. Estimates for humpback, fin and minke whales increased from 2002 to 2010, while those for harbor and Dall's porpoise decreased; trends were significant for fin whales. It is likely that changes in estimated abundance are due at least in part to shifts in distribution and not just changes in overall population size. Annual abundance estimates were examined by oceanographic domain. Humpback whales were consistently concentrated in coastal waters north of Unimak Pass. Fin whales were broadly distributed in the outer domain and slope in 2008 and 2010, but sightings were sparse in 2002. Minke whales were distributed throughout the study area in 2002 and 2008, but in 2010 they were concentrated in the outer domain and slope. In 2002, Dall's porpoise were sighted on the western edge of the middle domain and in the outer domain and slope, but shifted west out of the middle domain in 2008 and 2010. In 2002 and 2008, harbor porpoise were consistently found in the middle domain with scattered sightings in the outer domain and slope. In 2010, there was a multi-species aggregation between Navarin and Pervenets canyons.
Shengxin, Chang; Chunxia, Li; Xuyang, Yao; Song, Chen; Xuelei, Jiao; Xiaoying, Liu; Zhigang, Xu; Rongzhan, Guan
2016-01-01
Rapeseed (Brassica napus L.) is sensitive to light quality. The factory production of rapeseed seedlings for vegetable use and for transplanting in the field requires an investigation of the responses of rapeseed to light quality. This study evaluated the responses of the leaf of rapeseed (cv. “Zhongshuang 11”) to different ratios of red-photonflux (RPF) and blue-photonflux (BPF) from light emitting diodes (LEDs). The treatments were set as monochromatic lights, including 100R:0B% and 0R:100B%, and compound lights (CLs), including 75R:25B%, 50R:50B%, and 25R:75B%. The total photonflux in all of the treatments was set as 550 μmolm−2s−1. With an increase of BPF, the rapeseed leaves changed from wrinkled blades and down-rolled margins to flat blades and slightly up-rolled margins, and the compact degree of palisade tissue increased. One layer of the cells of palisade tissue was present under 100R:0B%, whereas two layers were present under the other treatments. Compared to 100R:0B%, 0R:100B% enhanced the indexes of leaf thickness, leaf mass per area (LMA), stomatal density, chlorophyll (Chl) content per weight and photosynthetic capacity (Pmax), and the CLs with high BPF ratios enhanced these indexes. However, the 100R:0B% and CLs with high RPF ratios enhanced the net photosynthetic rate (Pn). The leaves under the CLs showed growth vigor, whereas the leaves under 100R:0B% or 0R:100B% were stressed with a low Fv/Fm (photosynthetic maximum quantum yield) and a high content of O2.- and H2O2. The top second leaves under 100R:0B% or 0R:100B% showed stress resistance responses with a high activity of antioxidase, but the top third leaves showed irreversible damage and inactivity of antioxidase. Our results showed that the rapeseed leaves grown under 0R:100B% or CLs with a high BPF ratio showed higher ability to utilize high photonflux, while the leaves grown under 100R:0B% or CLs with a low BPF ratio showed higher efficiency in utilizing low photonflux. Under different R:B photonflux ratios, red and blue lights may play mutual roles in Pn. When the blue light dominated, the Pn showed a B-preference. When the red light dominated, the Pn showed an R-preference. Furthermore, CLs were suitable for the Pn of rapeseed seedlings. PMID:27536307
1991-02-01
their Caribbean coasts to guard against possible infiltration. The patrol force included one CVA ( Shangri - La ), one CVS (Wasp), and eight surface ships. 61...38 Shangri - La CVA-39 Lake Champlain CVA-40 Tarawa CV-41 Midway CVB-42 FD Roosevelt CV-43 Coral Sea CV-59 Forrestal CV-60 Saratoga CV-61 Ranger CV-62...N N 189 La Belle Disco, Libya 4/10/86 6 A6 Y 2 Y Y Y Y N 190 Pakistan Hijacking Sep-86 1 A6 Y 1 N N N N 191 Persian Gulf Ops Jan-87 579 A7 Y 2 Y Y N Y
NASA Astrophysics Data System (ADS)
Dunn, Tasha L.; Gross, Juliane
2017-11-01
The single parent body model for the CV and CK chondrites (Greenwood et al.) was challenged by Dunn et al., who argued that magnetite compositions could not be reconciled by a single metamorphic sequence (i.e., CV3 → CK3 → CK4-6). Cr isotopic compositions, which are distinguishable between the CV and CK chondrites, also support two different parent bodies (Yin et al.). Despite this, there are many petrographic and mineralogical similarities between the unequilibrated (petrologic type 3) CK chondrites and the CV chondrites (also type 3), which may result in misclassification of samples. Hart and Northwest Africa 6047 (NWA 6047) are an excellent example of this. In this study, we revisit the classification of Hart and NWA 6047 using magnetite compositions, petrography, and compositions of olivine, the most ubiquitous mineral in both CV and CK chondrites. Not only do our results suggest that NWA 6047 and Hart were misclassified, but our assessment of CV and CK3 chondrites has also led to the development of criteria that can be used to distinguish between CV and CK3 chondrites. These criteria include: abundances of Cr2O3, TiO2, NiO, and Al2O3 in magnetite; Fa content and NiO abundance of matrix olivine; FeO content of chondrules; and the chondrule:matrix ratio. Classification as a CV chondrite is also supported by the presence of igneous chondrule rims, calcium-aluminum-rich inclusions, and an elongated petrofabric. However, none of these petrographic characteristics can be used conclusively to distinguish between CV and CK3 chondrites.
NASA Astrophysics Data System (ADS)
Confortin, Daria; Neevel, Han; Brustolon, Marina; Franco, Lorenzo; Kettelarij, Albert J.; Williams, Renè M.; van Bommel, Maarten R.
2010-06-01
The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.
NASA Astrophysics Data System (ADS)
Malof, Jordan M.; Reichman, Daniël.; Collins, Leslie M.
2018-04-01
A great deal of research has been focused on the development of computer algorithms for buried threat detection (BTD) in ground penetrating radar (GPR) data. Most recently proposed BTD algorithms are supervised, and therefore they employ machine learning models that infer their parameters using training data. Cross-validation (CV) is a popular method for evaluating the performance of such algorithms, in which the available data is systematically split into ܰ disjoint subsets, and an algorithm is repeatedly trained on ܰ-1 subsets and tested on the excluded subset. There are several common types of CV in BTD, which vary principally upon the spatial criterion used to partition the data: site-based, lane-based, region-based, etc. The performance metrics obtained via CV are often used to suggest the superiority of one model over others, however, most studies utilize just one type of CV, and the impact of this choice is unclear. Here we employ several types of CV to evaluate algorithms from a recent large-scale BTD study. The results indicate that the rank-order of the performance of the algorithms varies substantially depending upon which type of CV is used. For example, the rank-1 algorithm for region-based CV is the lowest ranked algorithm for site-based CV. This suggests that any algorithm results should be interpreted carefully with respect to the type of CV employed. We discuss some potential interpretations of performance, given a particular type of CV.
Mild cognitive impairment in symptomatic and asymptomatic cerebrovascular disease.
Popović, Irena Martinić; Serić, Vesna; Demarin, Vida
2007-06-15
We tried to evaluate and to compare usefulness of two brief cognitive tests in early detection of cognitive decline in subjects with increased cerebrovascular (CV) risk. As CV risk factors are recognised as important in etiology of dementia, we also aimed to determine the possible associations of specific CV risk factors and cognitive results. Patients (PGs) with first-ever stroke or TIA (N=110) and CV symptoms-free controls (CGs) with CV risk factors present (N=45) matched for age, gender and education level were tested using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) on admission, at three- and six-month points. In all subjects, detailed CV risk factors profile was assessed. We observed the decrement in cognitive performance during the six-month study period in both groups, more evident if MoCA (p<0.001) than if MMSE was used (p=0.022). Six months after first stroke/TIA 83.6% PGs scored below normal range on MoCA. In PGs, positive associations for cognitive decrement and multiple CV risk factors (>2) were found (p=0.034 for MMSE; p=0.002 for MoCA). In CGs, positive associations were found for cognitive decrement and arterial hypertension with increased IMT values (p<0.001 for MMSE) and for multiple CV risk factors and arterial hypertension (p=0.003 for MoCA). The use of MoCA could aid to early recognition of cognitive deficits in persons with increased CV risk. Individuals with multiple CV risk factors seem to have increased risk of cognitive decline.
Winter, Randolph L; Saunders, Ashley B; Gordon, Sonya G; Buch, Jesse S; Miller, Matthew W
2017-04-01
To determine the biologic variability of N-terminal pro-brain natriuretic peptide (NTproBNP) in healthy dogs and dogs with various stages of myxomatous mitral valve disease (MMVD). Thirty-eight privately owned dogs: 28 with MMVD and 10 healthy controls. Prospective clinical study with comprehensive evaluation used to group dogs as healthy or into three stages of MMVD based on current guidelines. NTproBNP was measured hourly, daily, and weekly. For each group, analytical (CV A ), within-subject (CV I ), and between-subject (CV G ) coefficients of variability were calculated in addition to percent critical change value (CCV) and index of individuality (IoI). For healthy dogs, calculated NTproBNP values were: CV A = 4.2%; CV I = 25.2%; CV G = 49.3%; IoI = 0.52, and CCV = 70.8%. For dogs with MMVD, calculated NTproBNP values were: CV A = 6.2%; CV I = 20.0%; CV G = 61.3%; IoI = 0.34, and CCV = 58.2%. Biologic variability affects NTproBNP concentrations in healthy dogs and dogs with MMVD. Monitoring serial individual changes in NTproBNP may be clinically relevant in addition to using population-based reference ranges to determine changes in disease status. Copyright © 2016 Elsevier B.V. All rights reserved.
Image analysis of representative food structures: application of the bootstrap method.
Ramírez, Cristian; Germain, Juan C; Aguilera, José M
2009-08-01
Images (for example, photomicrographs) are routinely used as qualitative evidence of the microstructure of foods. In quantitative image analysis it is important to estimate the area (or volume) to be sampled, the field of view, and the resolution. The bootstrap method is proposed to estimate the size of the sampling area as a function of the coefficient of variation (CV(Bn)) and standard error (SE(Bn)) of the bootstrap taking sub-areas of different sizes. The bootstrap method was applied to simulated and real structures (apple tissue). For simulated structures, 10 computer-generated images were constructed containing 225 black circles (elements) and different coefficient of variation (CV(image)). For apple tissue, 8 images of apple tissue containing cellular cavities with different CV(image) were analyzed. Results confirmed that for simulated and real structures, increasing the size of the sampling area decreased the CV(Bn) and SE(Bn). Furthermore, there was a linear relationship between the CV(image) and CV(Bn) (.) For example, to obtain a CV(Bn) = 0.10 in an image with CV(image) = 0.60, a sampling area of 400 x 400 pixels (11% of whole image) was required, whereas if CV(image) = 1.46, a sampling area of 1000 x 100 pixels (69% of whole image) became necessary. This suggests that a large-size dispersion of element sizes in an image requires increasingly larger sampling areas or a larger number of images.
Projector-Camera Systems for Immersive Training
2006-01-01
average to a sequence of 100 captured distortion corrected images. The OpenCV library [ OpenCV ] was used for camera calibration. To correct for...rendering application [Treskunov, Pair, and Swartout, 2004]. It was transposed to take into account different matrix conventions between OpenCV and...Screen Imperfections. Proc. Workshop on Projector-Camera Systems (PROCAMS), Nice, France, IEEE. OpenCV : Open Source Computer Vision. [Available
Prevalence of cavum vergae in psychosis and mood spectrum disorders.
Landin-Romero, Ramón; Sarró, Salvador; Fernández-Corcuera, Paloma; Moro, Noemí; Manuel Goikolea, Jose; Isabel Carrión, María; Pomarol-Clotet, Edith; Amann, Benedikt L; Radua, Joaquim
2015-11-01
Midline brain abnormalities might increase susceptibility to both first-episode and chronic mental disorder. Evidence of cavum vergae (CV) abnormality in mental disorders is scarce. The presence of CV was assessed by a researcher blind to clinical information in a cross-disorder sample of 639 patients with mood and psychotic disorders and in 223 healthy controls. Homogeneous magnetic resonance imaging methods of acquisition and assessment were applied. Seven out of 639 patients with mood or psychotic disorders were detected with CV which corresponds to a prevalence of 1.1%. There were no concurrent cases of CV in the healthy control group. Identified cases which are briefly described were diagnosed from bipolar I disorder (n=2), delusional disorder (n=1), brief psychotic disorder (n=1) and schizoaffective disorder (n=3). Patients with CV had descriptively lower current IQ, executive functioning and memory scores in relation to patients without CV but this was not statistically significant. Effects of medication and lack of statistical power of the CV patient group. Midline brain abnormalities, such as CV, might represent an unspecific risk factor for the development of severe mental disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
High detection rate of dog circovirus in diarrheal dogs.
Hsu, Han-Siang; Lin, Ting-Han; Wu, Hung-Yi; Lin, Lee-Shuan; Chung, Cheng-Shu; Chiou, Ming-Tang; Lin, Chao-Nan
2016-06-17
Diarrhea is one of the most common clinical symptoms reported in companion animal clinics. Dog circovirus (DogCV) is a new mammalian circovirus that is considered to be a cause of alimentary syndromes such as diarrhea, vomiting and hemorrhagic enteritis. DogCV has previously only been identified in the United States, Italy, Germany (GeneBank accession number: KF887949) and China (GeneBank accession number: KT946839). Therefore, the aims of this study were to determine the prevalence of DogCV in Taiwan and to explore the correlation between diarrhea and DogCV infection. Clinical specimens were collected between 2012 and 2014 from 207 dogs suffering from diarrhea and 160 healthy dogs. In this study, we developed a sensitive and specific SYBR Green-based real-time PCR assays to detected DogCV in naturally infected animals. Of the analyzed fecal samples from diarrheal dogs and health dogs, 58 (28.0 %) and 19 (11.9 %), respectively, were DogCV positive. The difference in DogCV prevalence was highly significant (P = 0.0002755) in diarrheal dogs. This is the first study to reveal that DogCV is currently circulating in domestic dogs in Taiwan and to demonstrate its high detection rate in dogs with diarrhea.
Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won
2015-01-01
Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252
USDA-ARS?s Scientific Manuscript database
‘CP 06-2425’ (Reg. No. CV-172; PI 678574), ‘CP 06-2495’ (Reg. No. CV-173; PI 678575), ‘CP 06-2964’ (Reg. No. CV-174; PI 678576), ‘CP 06-3103’ (Reg. No. CV-175; PI 678577), and ‘CP 07-1313’ (Reg. No. CV-176; PI 678578) sugarcane (a complex hybrid of Saccharum spp.) were released in June 2015 to be cu...
Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu
2017-01-01
The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143
Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra
2015-01-01
This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473
Flermoso-Gallardo, L; Menóndez-Yuffá, A
2000-01-01
Cell suspensions offer several advantages as a system for massive propagation because of the high rates of multiplication, the higher homogeneity in the culture conditions and the possibility of automatization. In this study, different experimental conditions were analyzed to establish embryogenic cell suspension cultures of coffee. The best conditions to establish the embryogenic cell suspension cultures of coffee were as follows: coffee leaf sections were cultivated during 12 weeks (Stage I) in a solid medium with the Murashige and Skoog salts, 2 mg/l kinetin and 0.5 mg/l 2,4-dichlorophenoxiacetic acid (medium 1). Under these conditions the explants formed a callus tissue that was transferred to a liquid medium containing 5 mg/l of 6-benzylamlno-purine (medium 2). After 12 days in a shaking liquid medium (Stage II), the cultures were sieved and were maintained In the same media, which was renewed every eight days (Stage III). This method yielded 1884 embryos in 50 ml; placing the embryos under conditions for germination yielded plantlets of normal appearance.
NASA Technical Reports Server (NTRS)
Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.
1993-01-01
The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.
Assimilate partitioning in avocado, Persea americana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finazzo, S.; Davenport, T.L.
1986-04-01
Assimilate partitioning is being studied in avocado, Persea americana cv. Millborrow in relation to fruit set. Single leaves on girdled branches of 10 year old trees were radiolabeled for 1 hr with 13..mu..Ci of /sup 14/CO/sub 2/. The source leaves were sampled during the experiment to measure translocation rates. At harvest the sink tissues were dissected and the incorporated radioactivity was measured. The translocation of /sup 14/C-labelled compounds to other leaves was minimal. Incorporation of label into fruitlets varied with the tissue and the stage of development. Sink (fruitlets) nearest to the labelled leaf and sharing the same phyllotaxy incorporatedmore » the most /sup 14/C. Source leaves for single non-abscising fruitlets retained 3X more /sup 14/C-labelled compounds than did source leaves for 2 or more fruitlets at 31 hrs. post-labelling. Export of label decreased appreciably when fruitlets abscised. If fruitlets abscised within 4 days of labeling then the translocation pattern was similar to the pattern for single fruitlets. If the fruitlet abscised later, the translocation pattern was intermediate between the single and double fruitlet pattern.« less
Effect of Water Stress on Cotton Leaves 1
Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.
1982-01-01
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae. Images Fig. 1 PMID:16662453
Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L
1982-07-01
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.
Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply.
Larbat, R; Adamowicz, S; Robin, C; Han, P; Desneux, N; Le Bot, J
2016-05-01
Plant-insect interactions are strongly modified by environmental factors. This study evaluates the influence of nitrogen fertilisation on the tomato (Solanum lycopersicum L.) cv. Santa clara and the leafminer (Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae). Greenhouse-grown tomato plants were fed hydroponically on a complete nutrient solution containing either a high nitrogen concentration (HN) sustaining maximum growth or a low nitrogen concentration (LN) limiting plant growth. Insect-free plants were compared with plants attacked by T. absoluta. Seven and 14 days after artificial oviposition leading to efficacious hatching and larvae development, we measured total carbon, nitrogen and soluble protein as well as defence compounds (phenolics, glycoalkaloids, polyphenol oxidase activity) in the HN versus LN plants. Only in the HN treatment did T. absoluta infestation slightly impair leaf growth and induce polyphenol oxidase (PPO) activity in the foliage. Neither the concentration of phenolic compounds and proteins nor the distribution of nitrogen within the plant was affected by T. absoluta infestation. In contrast, LN nutrition impaired T. absoluta-induced PPO activity. It decreased protein and total nitrogen concentration of plant organs and enhanced the accumulation of constitutive phenolics and tomatine. Moreover, LN nutrition impaired T. absoluta development by notably decreasing pupal weight and lengthening the development period from egg to adult. Adjusting the level of nitrogen nutrition may thus be a means of altering the life cycle of T. absoluta. This study provides a comprehensive dataset concerning interrelated responses of tomato plants and T. absoluta to nitrogen nutrition. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
El Aou-Ouad, Hanan; Montero, Rafael; Medrano, Hipólito; Bota, Josefina
2016-06-01
Among several biotic and abiotic stress combinations, interaction between drought and pathogen is one of the most studied combinations in some crops but still not in grapevine. In the present work, we focused on the interaction effects of biotic (GLRaV-3) and abiotic (drought) stresses on grapevine photosynthetic metabolism on two cultivars (cvs. 'Malvasia de Banyalbufar and Giro-Ros'). Non-infected and GLRaV-3 infected potted plants were compared under water stress conditions (WS) and well-watered (WW) conditions. Under WW condition, the results showed that photosynthesis (AN) in both cultivars was decreased by the presence of GLRaV-3. The stomatal conductance (gs) was the main factor for decreasing AN in Malvasia, meanwhile reductions in Giro-Ros were closely related to decreases in gm. The observed differences in gm between both cultivars might result from variation in their leaf anatomical, Giro-Ros having higher values of gm and leaf porosity (in all treatments). Moderate water deficit resulted in a closure of stomata and a decrease in gm accompanied by a decrease in AN in both cultivars. The maximum velocity of carboxylation (Vcmax) and electron transport rate (Jmax) were also reduced under water stress. Moreover, the combined stress resulted in a reduction of most physiological parameters compared to healthy irrigated plants. However, no considerable differences were found between non-infected and virus infected (GLRaV-3) plants under water stress. Most of the results could be explained by the difference of virus concentration between cultivars and treatments. Copyright © 2016 Elsevier GmbH. All rights reserved.
Jørgensen, Kirsten; Bak, Søren; Busk, Peter Kamp; Sørensen, Charlotte; Olsen, Carl Erik; Puonti-Kaerlas, Johanna; Møller, Birger Lindberg
2005-01-01
Transgenic cassava (Manihot esculenta Crantz, cv MCol22) plants with a 92% reduction in cyanogenic glucoside content in tubers and acyanogenic (<1% of wild type) leaves were obtained by RNA interference to block expression of CYP79D1 and CYP79D2, the two paralogous genes encoding the first committed enzymes in linamarin and lotaustralin synthesis. About 180 independent lines with acyanogenic (<1% of wild type) leaves were obtained. Only a few of these were depleted with respect to cyanogenic glucoside content in tubers. In agreement with this observation, girdling experiments demonstrated that cyanogenic glucosides are synthesized in the shoot apex and transported to the root, resulting in a negative concentration gradient basipetal in the plant with the concentration of cyanogenic glucosides being highest in the shoot apex and the petiole of the first unfolded leaf. Supply of nitrogen increased the cyanogenic glucoside concentration in the shoot apex. In situ polymerase chain reaction studies demonstrated that CYP79D1 and CYP79D2 were preferentially expressed in leaf mesophyll cells positioned adjacent to the epidermis. In young petioles, preferential expression was observed in the epidermis, in the two first cortex cell layers, and in the endodermis together with pericycle cells and specific parenchymatic cells around the laticifers. These data demonstrate that it is possible to drastically reduce the linamarin and lotaustralin content in cassava tubers by blockage of cyanogenic glucoside synthesis in leaves and petioles. The reduced flux to the roots of reduced nitrogen in the form of cyanogenic glucosides did not prevent tuber formation. PMID:16126856
Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)
NASA Technical Reports Server (NTRS)
Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)
1998-01-01
Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.
Influence of near null magnetic field on in vitro growth of potato and wild Solanum species.
Rakosy-Tican, Lenuta; Aurori, C M; Morariu, V V
2005-10-01
The influence of near null magnetic field on in vitro growth of different cultures of potato and related Solanum species was investigated for various exposure times and dates. Potato (Solanum tuberosum L. cv. Désirée) in vitro cultures of shoot tips or nodal segments were used. Three different exposure periods revealed either stimulation or inhibition of root, stem, or leaf in vitro growth after 14 or 28 days of exposure. In one experiment the significant stimulation of leaf growth was also demonstrated at biochemical level, the quantity of chlorophyll a and b and carotenoids increasing more than two-fold. For the wild species Solanum chacoense, S. microdontum, and S. verrucosum, standardized in vitro cultures of nodal stem segments were used. Root and stem growth was either stimulated or slightly inhibited after 9 days exposure to near null magnetic field. Callus cultures obtained from potato dihaploid line 120/19 were maintained in near null magnetic field in 2 different months. For these experiments as well as for Solanum verrucosum, callus cultures recorded either slight inhibition or no effect on fresh weight. For all experiments significant growth variation was brought about only when geomagnetic activity (AP index) showed variations at the beginning of in vitro growth and when the explant had at least one meristematic tissue. Moreover longer maintenance in near null magnetic field, 28 days as compared to 14 days or the controls, can also make a difference in plant growth in response to geomagnetic field variations when static component was reduced to zero value. These results of in vitro plant growth stimulation by variable component of geomagnetic field also sustain the so-called seasonal "window" effect. (c) 2005 Wiley-Liss, Inc.
Mesophyll cell ultrastructure of wheat leaves etiolated by lead and selenium.
Semenova, Galina A; Fomina, Irina R; Kosobryukhov, Anatoly A; Lyubimov, Valery Yu; Nadezhkina, Ekaterina S; Balakhnina, Tamara I
2017-12-01
The ultrastructure of mesophyll cells was studied in leaves of the Triticum aestivum L. cv. "Trizo" seedlings after two weeks of growth on soil contaminated by Pb and/or Se. The soil treatments: control; (Pb1) 50mgkg -1 ; (Pb2) 100mgkg -1 ; (Se1) 0.4mgkg -1 ; (Se2) 0.8mgkg -1 ; (Pb1+Se1); (Pb1+Se2); (P2+Se1); and (Pb2+Se2) were used. Light and other conditions were optimal for plant growth. The (Se1)-plants showed enhanced growth and biomass production; (Pb1+Se1)-plants did not lag behind the controls, though O 2 evolution decreased; chlorophyll content did not differ statistically in these treatments. Other treatments led to statistically significant growth suppression, chlorophyll content reduction, inhibition of photosynthesis, stress development tested by H 2 O 2 and leaf etiolation at the end of 14-days experiment. The tops of etiolated leaves remained green, while the main leaf parts were visually white. Plastids in mesophyll cells of etiolated parts of leaves were mainly represented by etioplasts and an insignificant amount of degraded chloroplasts. Other cellular organelles remained intact in most mesophyll cells of the plants, except (Pb2+Se2)-plants. Ruptured tonoplast and etioplast envelope, swelled cytoplasm and mitochondria, and electron transparent matrix of gialoplasm were observed in the mesophyll cells at (Pb2+Se2)-treatment, that caused maximal inhibition of plant growth. The results indicate that Pb and Se effects on growth of wheat leaves are likely to target meristem in which the development of proplastids to chloroplasts under the light is determined by chlorophyll biosynthesis. Antagonistic effect of low concentration of Se and Pb in combination may retard etiolation process. Copyright © 2017 Elsevier GmbH. All rights reserved.
Bonnet, M; Camares, O; Veisseire, P
2000-05-01
The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.
Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P
2017-01-01
Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.
Mhatre, Minal; Srinivas, Lingam; Ganapathi, Thumballi R
2011-12-01
Pineapple (Ananas comosus L. Merr., cv. "Queen") leaf bases were transformed with Agrobacterium tumefaciens strain EHA 105 harboring the pSF and pEFESF plasmids with soybean ferritin cDNA. Four to eight percent of the co-cultivated leaf bases produced multiple shoots 6 weeks after transfer to Murashige and Skoog's medium supplemented with α-naphthalene acetic acid 1.8 mg/l, indole-3-butyric acid 2.0 mg/l, kinetin 2.0 mg/l, cefotaxime 400 mg/l, and kanamycin 50 mg/l. Putatively transformed shoots (1-2 cm) were selected and multiplied on medium of the same composition and elongated shoots (5 cm) were rooted on liquid rooting medium supplemented with cefotaxime 400 mg/l and kanamycin 100 mg/l. The rooted plants were analyzed through PCR, genomic Southern analysis, and reverse transcription PCR. The results clearly confirmed the integration and expression of soybean ferritin gene in the transformed plants. Atomic absorption spectroscopic analysis carried out with six independently transformed lines of pSF and pEFE-SF revealed a maximum of 5.03-fold increase in iron and 2.44-fold increase in zinc accumulation in the leaves of pSF-transformed plants. In pEFE-SF-transformed plants, a 3.65-fold increase in iron and 2.05-fold increase in zinc levels was observed. Few of the transgenic plants were hardened in the greenhouse and are being grown to maturity to determine the enhanced iron and zinc accumulation in the fruits. To the best of our knowledge this is the first report on the transformation of pineapple with soybean ferritin for enhanced accumulation of iron and zinc content in the transgenic plants.
Management practices impact vine carbohydrate status to a greater extent than vine productivity
Pellegrino, Anne; Clingeleffer, Peter; Cooley, Nicola; Walker, Rob
2014-01-01
Light pruning and deficit irrigation regimes are practices which are widely used in high yielding commercial vineyards in the warm climate regions of Australia. Little information is available on their impacts on carbohydrate dynamics in vegetative organs within and between seasons, and on the resulting plant capacity to maintain productivity and ripen fruits. This study was conducted to address this gap in knowledge over five vintages on Vitis vinifera L. cv. Cabernet Franc, Shiraz, and Cabernet Sauvignon in the Sunraysia region of Victoria, Australia. Lighter pruning did not change the total carbohydrates concentration and composition in wood and roots within seasons in Cabernet Franc and Shiraz. However, the total carbohydrate pool (starch and soluble sugars) at the end of dormancy increased under lighter pruning, due to higher vine size, associated with retention and growth of old-wood (trunk and cordons). Water deficit negatively impacted trunk and leaf starch concentrations, over the day and within seasons in Cabernet Sauvignon. Soluble sugars concentrations in these tissues tended to be higher under limited water supply, possibly due to higher sugar mobilization as photosynthesis decreased. Trunk carbohydrate concentrations markedly varied within and between seasons, highlighting the importance of interactive factors such as crop load and climate on carbon status. The period between fruit-set and véraison was shown to be critical for its impact on the balance between carbon accretion and depletion, especially under water deficit. The lower leaf and trunk starch concentration under water deficit resulted in a decrease of yield components at harvest, while similar yields were reached for all pruning systems. The sugar allocated to berries at harvest remained remarkably stable for all practices and seasons, irrespective of vine yield and carbohydrate status in vegetative organs in Shiraz and Cabernet Sauvignon. PMID:25018758
Effects of organic fertilisation on sweet orange bearing trees
NASA Astrophysics Data System (ADS)
Roccuzzo, Giancarlo; Torrisi, Biagio; Canali, Stefano; Intrigliolo, Francesco
2010-05-01
In a study realised over a five year period (2001-2006) on orange bearing trees [Citrus sinensis (L.) Osbeck] cv. ‘Valencia late', grafted on sour orange (C. aurantium L.), four fertiliser treatments were applied: citrus by-products compost (CB), poultry manure (PM), livestock waste compost (LW) and mineral fertiliser (MF), as control. The trees, with the exception of MF treatment, were organically grown since 1994 in the experimental farm of CRA-ACM in Lentini, Sicily, and received the same N input every year. The research objectives were to evaluate the effect of long term repeated organic fertilisers application on i) soil fertility; ii) citrus bearing trees nutritional status by means of leaf analysis and iii) yield and fruit quality, determining parameters currently utilized to evaluate sweet orange production either for fresh consumption and processing. The CB treatment showed significantly higher values of Corg in soil than MF treatment (about 30%). Corg in PM and LW treatments was higher than MF treatment (13% and 20%, respectively), but these differences were not statistically significant either from the control treatment nor from the soil fertilised with CB. Similar trend was showed by the humic and fulvic C being the values of the CB treatment significantly higher than the control. PM and LW treatments had intermediate values, without statistical significance. The long term addition to soil of a quality compost (CB) with high C/N ratio increased the level of nutrients wich usually show low availability for citrus plants (P, Fe, Zn, Mn), as demonstrated by leaf analysis. No significant difference was noticed as far as yield was concerned, whereas CB treatment enhanced some fruit quality parameters.
Chiu, Hsien-Tsai; Li, Tsai-Chung; Li, Chia-Ing; Liu, Chiu-Shong; Lin, Wen-Yuan; Lin, Cheng-Chieh
2017-01-01
This study aims to examine the association between visit-to-visit glucose variability, which was measured by coefficient of variation (CV) of fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c), and risk of chronic obstructive pulmonary disease (COPD) in a large number of patients with type 2 diabetes with an average follow-up of 7.58 years. We conducted a retrospective cohort study on 27,257 patients with type 2 diabetes who participated in the National Diabetes Case Management Program in Taiwan. Visit-to-visit variability in HbA1c and FPG at baseline and the incidence of COPD were analyzed using a modified Cox proportional hazards model considering competing risks. A total of 2,346 incident cases of COPD. Patients were grouped into tertiles of FPG-CV and HbA1c-CV. The incidence rates in the first, second, and third tertiles were 9.87, 11.06, and 13.19, respectively, for FPG-CV and 10.2, 11.81, and 12.07, for HbA1c-CV per 1000 person-years. After adjusting for age, gender, diabetes duration, treatment type, smoking, hypertension, hyperlipidemia, baseline FPG and HbA1c levels, and complications, both FPG-CV and HbA1c-CV were independently associated with COPD. The hazard ratios of COPD for the third terile compared with the first tertile of FPG-CV were 1.26 (95% confidence interval [CI]: 1.13-1.40). Moreover, the hazard ratios of COPD for the third and second tertiles compared with the first tertile of HbA1c-CV were 1.13 (1.02-1.25) and 1.13 (1.02-1.26), respectively. Patients with FPG-CV higher than 34.6% or HbA1c-CV higher than 8.4% exhibited an increased risk of COPD. This finding confirmed the linear relationship of FPG-CV and HbA1c-CV to COPD. Visit-to-visit variability in FPG and HbA1c levels are strong predictors of COPD in patients with type 2 diabetes. Future studies should focus on lung dysfunction in diabetes, and adequate glucose control strategy in regular clinical practices must be established for COPD prevention.
Chaplais, Elodie; Greene, David; Hood, Anita; Telfer, Scott; du Toit, Verona; Singh-Grewal, Davinder; Burns, Joshua; Rome, Keith; Schiferl, Daniel J; Hendry, Gordon J
2014-07-19
Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec(-1). The reference line was positioned at the most distal portion of the 2(nd) metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI - mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI - mid shaft (ICC 0.99; CV% 3.2). The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2(nd) metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures.
2014-01-01
Background Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI – mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI – mid shaft (ICC 0.99; CV% 3.2). Conclusions The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures. PMID:25037451
Sugiyama, Y; Fujita, T; Matsumoto, M; Okamoto, K; Imada, I
1985-12-01
The effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in isolated brain mitochondria from rats and dogs were studied. CV-2619 was easily reduced by canine brain mitochondria in the presence of respiratory substrates. Reduced CV-2619 (2H-CV-2619) was rapidly oxidized through the cytochrome b chain, indicating that the compound functioned simply as an electron carrier of mitochondrial respiratory system. Both nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-dependent lipid peroxidations were examined in canine brain mitochondria in the presence of adenosine diphosphate (ADP) and Fe3+. NADH-cytochrome c reductase activity was sensitive to NADPH-dependent lipid peroxidation. CV-2619 (10(-5)M) strongly inhibited both types of the lipid peroxidation reactions and protected the resultant inactivation of the NADH-cytochrome c reductase activity. Activities of succinate oxidase in rat and canine brain mitochondria were virtually unaffected by CV-2619 and its metabolites (10(-5)-10(-6) M). On the other hand, CV-2619 markedly suppressed the state 3 respiration in glutamate oxidation in a dose dependent manner without any effect on the state 4 respiration and the ADP/O ratio in intact rat brain mitochondria. The inhibitory effect of CV-2619 was also observed in NADH-cytochrome c reductase, but not in NADH-2,6-dichlorophenolindophenol (DCIP) and NADH-ubiquinone reductases in canine brain mitochondria. These facts and results of inhibitor analysis suggest that the action site of CV-2619 is NADH-linked complex I in the mitochondrial respiratory chain and is different from that of inhibitors of oxidative phosphorylation such as rotenone, oligomycin and 2,4-dinitrophenol. Finally, the above findings suggest that CV-2619 acts as an electron carrier in respiratory chains and functions as an antioxidant against membrane damage caused by lipid peroxidation in brain mitochondria. It appears likely that the inhibition of oxygen consumption caused by CV-2619 is related to the effect on non-respiratory systems such as lipid peroxidation which also consumes oxygen.
Arce, Cristina M.; Rhee, Jinnie J.; Cheung, Katharine L.; Hedlin, Haley; Kapphahn, Kristopher; Franceschini, Nora; Kalil, Roberto S.; Martin, Lisa W.; Qi, Lihong; Shara, Nawar M.; Desai, Manisha; Stefanick, Marcia L.; Winkelmayer, Wolfgang C.
2015-01-01
Background Kidney disease disproportionately affects minority populations including African Americans and Hispanics; therefore, understanding the relationship of kidney function to cardiovascular (CV) outcomes within different racial/ethnic groups is of considerable interest. We investigated the relationship between kidney function and CV events and assessed effect modification by race/ethnicity in the Women’s Health Initiative. Study Design Prospective cohort study Setting & Participants Baseline serum creatinine concentrations (assay traceable to isotope-dilution mass spectrometry standard) of 19,411 postmenopausal women aged 50–79 years who self-identified as either non-Hispanic white (n=8921), African American (n=7436), or Hispanic (n=3054) were used to calculate estimated glomerular filtration rates (eGFRs). Predictors Categories of eGFR (exposure); race/ethnicity (effect modifier). Outcomes The primary outcome was the composite of three physician-adjudicated CV events: myocardial infarction (MI), stroke, or CV-related death. Measurements We evaluated the multivariable-adjusted associations between categories of eGFR and CV events using proportional hazards regression and formally tested for effect modification by race/ethnicity. Results Over a mean follow-up of 7.6 years, 1424 CV events (653 MI, 627 strokes, 297 CV-related deaths) were observed. The association between eGFR and CV events was curvilinear; however, the association of eGFR with CV outcomes differed by race (P=0.006). In stratified analyses, we observed that the U-shaped association was present in non-Hispanic whites, whereas African American participants had a rather curvilinear relationship with lower eGFR being associated with higher CV risk and higher eGFR with reduced CV risk. Analyses among Hispanic women were inconclusive owing to few Hispanic women having very low or high eGFR and very few events occurring in these categories. Limitations Lack of urinary albumin measurements; residual confounding by unmeasured or imprecisely measured characteristics. Conclusions In postmenopausal women, the patterns of association between eGFR and CV risk differed between non-Hispanic whites and African American women. PMID:26337132
2018-01-01
This study tested the hypothesis that object-based attention modulates the discrimination of level increments in stop-consonant noise bursts. With consonant-vowel-consonant (CvC) words consisting of an ≈80-dB vowel (v), a pre-vocalic (Cv) and a post-vocalic (vC) stop-consonant noise burst (≈60-dB SPL), we measured discrimination thresholds (LDTs) for level increments (ΔL) in the noise bursts presented either in CvC context or in isolation. In the 2-interval 2-alternative forced-choice task, each observation interval presented a CvC word (e.g., /pæk/ /pæk/), and normal-hearing participants had to discern ΔL in the Cv or vC burst. Based on the linguistic word labels, the auditory events of each trial were perceived as two auditory objects (Cv-v-vC and Cv-v-vC) that group together the bursts and vowels, hindering selective attention to ΔL. To discern ΔL in Cv or vC, the events must be reorganized into three auditory objects: the to-be-attended pre-vocalic (Cv–Cv) or post-vocalic burst pair (vC–vC), and the to-be-ignored vowel pair (v–v). Our results suggest that instead of being automatic this reorganization requires training, in spite of using familiar CvC words. Relative to bursts in isolation, bursts in context always produced inferior ΔL discrimination accuracy (a context effect), which depended strongly on the acoustic separation between the bursts and the vowel, being much keener for the object apart from (post-vocalic) than for the object adjoining (pre-vocalic) the vowel (a temporal-position effect). Variability in CvC dimensions that did not alter the noise-burst perceptual grouping had minor effects on discrimination accuracy. In addition to being robust and persistent, these effects are relatively general, evincing in forced-choice tasks with one or two observation intervals, with or without variability in the temporal position of ΔL, and with either fixed or roving CvC standards. The results lend support to the hypothesis. PMID:29364931
López-Mejías, Raquel; Corrales, Alfonso; Genre, Fernanda; Hernández, José L; Ochoa, Rodrigo; Blanco, Ricardo; González-Juanatey, Carlos; Martín, Javier; Llorca, Javier; González-Gay, Miguel A
2013-01-01
Rheumatoid arthritis (RA) is an inflammatory disease associated with accelerated atherosclerosis and high risk of cardiovascular (CV) disease. Angiopoietin-2 (Angpt-2), a marker of endothelial cell activation, has been proposed as a mediator of angiogenesis, which might play an important role in the regulation of endothelial integrity and inflammation. Therefore, the aim of this study was to determine whether Angpt-2 is related to severity and CV disease in RA patients. Angpt-2 serum levels were measured by enzyme linked immunosorbent assay (ELISA) in 290 patients with RA. A control group of 100 individuals frequency matched by age and sex and classic CV risk factors and CV disease was also assessed. Eighty-four patients with RA (28.9%) had experienced CV events. Also, extra-articular manifestations were present in 41 (14%) of these patients. Although there were not significant differences between patients and controls, a correlation between age at the time of disease onset and Angpt-2 was observed in RA patients (r=-0.31; p=0.02). Angpt-2 serum levels also correlated positively with extra-articular disease (mean±standard deviation in RA patients with and without extra-articular manifestations were 2476±1716 pg/ml and 1897±1228 pg/ml, respectively; p=0.01). Moreover, after adjustment for sex, age at RA diagnosis and CV risk factors, Angpt-2 levels were higher in RA patients with CV disease than in RA patients without CV complications (2472±1826 pg/ml vs. 1875±1101 pg/ml; p=0.05). Angpt-2 serum levels remained significantly higher in RA patients with CV disease compared to those without CV disease after additional adjustment for extra-articular manifestations (p=0.04). Our results show that Angpt-2 serum levels correlate with disease severity, early onset and CV disease in RA patients.
McGrath, Emer R; Glynn, Liam G; Murphy, Andrew W; O Conghaile, Aengus; Canavan, Michelle; Reid, Claire; Moloney, Brian; O'Donnell, Martin J
2012-04-01
Heartwatch, a structured risk factor modification program for secondary prevention of cardiovascular (CV) disease (CVD) in primary care, is associated with improvements in CV risk factors in participating patients. However, it is not known whether Heartwatch translates into reductions in clinically important CV events. The aim of the study was to determine the association between participation in Heartwatch and future risk of CV events in patients with CVD. The study consisted of a prospective cohort of 1,609 patients with CVD in primary care practices. Of these, 97.5% had data available on Heartwatch participation status, of whom 15.2% were Heartwatch participants. Cox proportional hazards models were used to determine the association between Heartwatch participation and risk of the CV composite (CV death, nonfatal myocardial infarction, heart failure, and nonfatal stroke). All-cause mortality and CV mortality were secondary outcome measures. During follow-up, the CV composite occurred in 208 patients (13.6%). Of Heartwatch participants, 8.4% experienced the CV composite compared with 14.5% of nonparticipants (P = .003). Participation in Heartwatch was associated with a significantly reduced risk of the CV composite (hazard ratio [HR] 0.52, 95% CI, 0.31-0.87), CV mortality (HR 0.31, 95% CI, 0.11-0.89), and all-cause mortality (HR 0.32, 95% CI, 0.15-0.68). Heartwatch participation was also associated with greater reductions in mean systolic blood pressure (P = .047), mean diastolic blood pressure (P < .001), and greater use of secondary preventative therapies for CVD, such as lipid-lowering agents (P < .001), β-blockers (P < .001), and angiotensin-converting enzyme inhibitors (P < .001). Heartwatch is associated with a reduced risk of major vascular events and improved risk factor modification, supporting its potential as a nationwide program for secondary prevention of CVD. Copyright © 2012 Mosby, Inc. All rights reserved.
Statistical power analysis of cardiovascular safety pharmacology studies in conscious rats.
Bhatt, Siddhartha; Li, Dingzhou; Flynn, Declan; Wisialowski, Todd; Hemkens, Michelle; Steidl-Nichols, Jill
2016-01-01
Cardiovascular (CV) toxicity and related attrition are a major challenge for novel therapeutic entities and identifying CV liability early is critical for effective derisking. CV safety pharmacology studies in rats are a valuable tool for early investigation of CV risk. Thorough understanding of data analysis techniques and statistical power of these studies is currently lacking and is imperative for enabling sound decision-making. Data from 24 crossover and 12 parallel design CV telemetry rat studies were used for statistical power calculations. Average values of telemetry parameters (heart rate, blood pressure, body temperature, and activity) were logged every 60s (from 1h predose to 24h post-dose) and reduced to 15min mean values. These data were subsequently binned into super intervals for statistical analysis. A repeated measure analysis of variance was used for statistical analysis of crossover studies and a repeated measure analysis of covariance was used for parallel studies. Statistical power analysis was performed to generate power curves and establish relationships between detectable CV (blood pressure and heart rate) changes and statistical power. Additionally, data from a crossover CV study with phentolamine at 4, 20 and 100mg/kg are reported as a representative example of data analysis methods. Phentolamine produced a CV profile characteristic of alpha adrenergic receptor antagonism, evidenced by a dose-dependent decrease in blood pressure and reflex tachycardia. Detectable blood pressure changes at 80% statistical power for crossover studies (n=8) were 4-5mmHg. For parallel studies (n=8), detectable changes at 80% power were 6-7mmHg. Detectable heart rate changes for both study designs were 20-22bpm. Based on our results, the conscious rat CV model is a sensitive tool to detect and mitigate CV risk in early safety studies. Furthermore, these results will enable informed selection of appropriate models and study design for early stage CV studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San
2014-01-01
Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.
[Investigation of a Patient with Pre-vaccine-derived Poliovirus in Shandong Province, China].
Lin, Xiaojuan; Liu, Yao; Wang, Suting; Zhang Xiao; Song, Lizhi; Tao, Zexin; Ji, Feng; Xiong, Ping; Xu, Aiqiang
2015-09-01
To analyze the genetic characteristics of a polio-I highly variant vaccine recombinant virus in Shandong Province (China) in 2011 and to identify isolates from healthy contacts, two stool specimens from one patient with acute flaccid paralysis (AFP) and 40 stool specimens from his contacts were collected for virus isolation. The complete genome of poliovirus and VP1 coding region of the non-polio enterovirus were sequenced. Homologous comparison and phylogenetic analyses based on VP1 sequences were undertaken among coxsackievirus (CV) B1, CV-B3 isolates, and those in GenBank. One poliovirus (P1/11186), CV-A4 and CV-A8 were isolated from the AFP patient; one CV-A2, Echovirus 3 (E-3), E-12 and E-14, ten CV-B1, and five CV-B3 strains were isolated from his contacts. These results led us to believe that there may be a human enterovirus epidemic in this area, and that surveillance must be enhanced. P1/11186 was a type-1 vaccine-related poliovirus; it combined with type-2 and type-3 polioviruses in 2A and 3A regions, respectively. There were 25 nucleotide mutations with 9 amino-acid alterations in the entire genome. There were 8 nucleotide mutations with 5 amino-acid alterations in the VP1 region compared with the corresponding Sabin strains. Homology analyses suggested that the ten CV-B1 isolates had 97.0%-100% nucleotide and 98.9%-100% amino-acid identities with each other, as well as 92.6%-100% nucleotide and 99.2%-100% amino-acid identities among the five CV-B3 isolates. Phylogenetic analyses on the complete sequences of VP1 among CV-B1 and CV-B3 isolates showed that Shandong strains, together with strains from other provinces in China, had a close relationship and belonged to the same group.
Kim, Dong Soo; Houillon, Guy; Jang, Gwang Cheon; Cha, Sung-Ho; Choi, Soo-Han; Lee, Jin; Kim, Hwang Min; Kim, Ji Hong; Kang, Jin Han; Kim, Jong-Hyun; Kim, Ki Hwan; Kim, Hee Soo; Bang, Joon; Naimi, Zulaikha; Bosch-Castells, Valérie; Boaz, Mark; Bouckenooghe, Alain
2014-01-01
A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12-24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14-14-2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14-14-2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14-14-2 was 0.9 percentage points (95% confidence interval [CI]: -2.35; 4.68), which was above the required -10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14-14-2; all children except one (Group SA14-14-2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14-14-2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14-14-2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12-24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers.
Swimming Training Assessment: The Critical Velocity and the 400-m Test for Age-Group Swimmers.
Zacca, Rodrigo; Fernandes, Ricardo Jorge P; Pyne, David B; Castro, Flávio Antônio de S
2016-05-01
To verify the metabolic responses of oxygen consumption (V[Combining Dot Above]O2), heart rate (HR), blood lactate concentrations [La], and rate of perceived exertion (RPE) when swimming at an intensity corresponding to the critical velocity (CV) assessed by a 4-parameter model (CV4par), and to check the reliability when using only a single 400-m maximal front crawl bout (T400) for CV4par assessment in age-group swimmers. Ten age-group swimmers (14-16 years old) performed 50-, 100-, 200-, 400- (T400), 800-, and 1,500-m maximal front crawl bouts to calculate CV4par. V[Combining Dot Above]O2, HR, [La], and RPE were measured immediately after bouts. Swimmers then performed 3 × 10-minute front crawl (45 seconds rest) at CV4par. V[Combining Dot Above]O2, HR, [La], and RPE were measured after 10 minutes of rest (Rest), warm-up (Pre), each 10-minute repetition, and at the end of the test (Post). CV4par was 1.33 ± 0.08 m·s. V[Combining Dot Above]O2, HR, [La], and RPE were similar between first 10-minute and Post time points in the 3 × 10-minute protocol. CV4par was equivalent to 92 ± 2% of the mean swimming speed of T400 (v400) for these swimmers. CV4par calculated through a single T400 (92%v400) showed excellent agreement (r = 0.30; 95% CI: -0.04 to 0.05 m·s, p = 0.39), low coefficient of variation (2%), and root mean square error of 0.02 ± 0.01 m·s when plotted against CV4par assessed through a 4-parameter model. These results generated the equation CV4par = 0.92 × v400. A single T400 can be used reliably to estimate the CV4par typically derived with 6 efforts in age-group swimmers.
Usefulness of Maintaining a Normal Electrocardiogram Over Time for Predicting Cardiovascular Health.
Soliman, Elsayed Z; Zhang, Zhu-Ming; Chen, Lin Y; Tereshchenko, Larisa G; Arking, Dan; Alonso, Alvaro
2017-01-15
We hypothesized that maintaining a normal electrocardiogram (ECG) status over time is associated with low cardiovascular (CV) disease in a dose-response fashion and subsequently could be used to monitor programs aimed at promoting CV health. This analysis included 4,856 CV disease-free participants from the Atherosclerosis Risk in Communities study who had a normal ECG at baseline (1987 to 1989) and complete electrocardiographic data in subsequent 3 visits (1990 to 1992, 1993 to 1995, and 1996 to 1998). Participants were classified based on maintaining their normal ECG status during these 4 visits into "maintained," "not maintained," or "inconsistent" normal ECG status as defined by the Minnesota ECG classification. CV disease events (coronary heart disease, heart failure, and stroke) were adjudicated from Atherosclerosis Risk in Communities visit-4 through 2010. Over a median follow-up of 13.2 years, 885 CV disease events occurred. The incidence rate of CV disease events was lowest among study participants who maintained a normal ECG status, followed by those with an inconsistent pattern, and then those who did not maintain their normal ECG status (trend p value <0.001). Similarly, the greater the number of visits with a normal ECG status, the lower was the incidence rate of CV disease events (trend p value <0.001). Maintaining (vs not maintaining) a normal ECG status was associated with a lower risk of CV disease, which was lower than that observed in those with inconsistent normal ECG pattern (trend p value <0.01). In conclusion, maintaining a normal ECG status over time is associated with low risk of CV disease in a dose-response fashion, suggesting its potential use as a monitoring tool for programs promoting CV health. Copyright © 2016 Elsevier Inc. All rights reserved.
Itoh, Taihei; Kimura, Masaomi; Sasaki, Shingo; Owada, Shingen; Horiuchi, Daisuke; Sasaki, Kenichi; Ishida, Yuji; Takahiko, Kinjo; Okumura, Ken
2014-04-01
Low conduction velocity (CV) in the area showing low electrogram amplitude (EA) is characteristic of reentry circuit of atypical atrial flutter (AFL). The quantitative relationship between CV and EA remains unclear. We characterized AFL reentry circuit in the right atrium (RA), focusing on the relationship between local CV and bipolar EA on the circuit. We investigated 26 RA AFL (10 with typical AFL; 10 atypical incisional AFL; 6 atypical nonincisional AFL) using CARTO system. By referring to isochronal and propagation maps delineated during AFL, points activated faster on the circuit were selected (median, 7 per circuit). At the 196 selected points obtained from all patients, local CV measured between the adjacent points and bipolar EA were analyzed. There was a highly significant correlation between local CV and natural logarithm of EA (lnEA) (R(2) = 0.809, P < 0.001). Among 26 AFL, linear regression analysis of mean CV, calculated by dividing circuit length (152.3 ± 41.7 mm) by tachycardia cycle length (TCL) (median 246 msec), and mean lnEA, calculated by dividing area under curve of lnEA during one tachycardia cycle by TCL, showed y = 0.695 + 0.191x (where: y = mean CV, x = lnEA; R(2) = 0.993, P < 0.001). Local CV estimated from EA with the use of this formula showed a highly significant linear correlation with that measured by the map (R(2) = 0.809, P < 0.001). The lnEA and estimated local CV show a highly positive linear correlation. CV is possibly estimated by EA measured by CARTO mapping. © 2013 Wiley Periodicals, Inc.
Gao, Lidong; Zou, Gang; Liao, Qiaohong; Zhou, Yonghong; Liu, Fengfeng; Dai, Bingbing; Liu, Jia; Chen, Zhiyong; Xing, Weijia; Yang, Le; Liang, Hong; Zhang, Yi; Chen, Zhenhua; Luo, Li; Li, Qing; Luo, Kaiwei; Wu, Peng; Mo, Xiaowei; Wang, Lili; Lan, Ke; Horby, Peter W; Cowling, Benjamin J; Simmonds, Peter; Altmeyer, Ralf; van Doorn, H Rogier; Yu, Hongjie
2018-04-24
Hand, foot, and mouth disease (HFMD) represents a substantial disease burden in the Western Pacific region. We investigated the spectrum of causative enteroviruses of HFMD, and evaluated different clinical samples' diagnostic yield for enteroviruses. We enrolled pediatric patients hospitalized for HFMD among six hospitals in Anhua County, Hunan Province, China between October 2013 and September 2016. Throat swabs and stool samples (or rectal swabs) were collected to detect the enterovirus serotypes by real time RT-PCR or nested PCR. Among the 2,836 patients only one developed severe illness. Seventeen serotypes were identified in 2,401 patients (85%), with the most frequently detected being CV-A16 (29%, 814), CV-A6 (28%, 784), EV-A71 (17%, 491), CV-A10 (4%, 114), and CV-A4 (2%, 53). Children were younger in CV-A6, CV-A10, and CV-A4 infections (median 12 months, IQR 12-24 months) than EV-A71 and CV-A16 infections (median 24 months, IQR 12-36 months, p<0.05). Annual peaks of HFMD hospitalization occurred during April-June. The predominant enterovirus serotype shifted between CV-A16 and CV-A6 during the three years. Stool had a higher diagnostic yield (89%) than rectal (79%) and throat swabs (74%). Detection rates reached 93% when testing stools followed by throat swabs if stools were negative, and 89% when testing rectal swabs followed by throat swabs if rectal swabs were negative. Our results provide a virological benchmark for future surveillance and diagnostics. Continuous comprehensive virological surveillance is essential, especially after implementation of the EV-A71 vaccine in China, to monitor serotype replacement and the impact of EV-A71 vaccine.
McGill, Kevin C; Lateva, Zoia C
2011-09-01
The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about -0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane.
Cardiovascular calcifications in chronic kidney disease: Potential therapeutic implications.
Bover, Jordi; Ureña-Torres, Pablo; Górriz, José Luis; Lloret, María Jesús; da Silva, Iara; Ruiz-García, César; Chang, Pamela; Rodríguez, Mariano; Ballarín, José
Cardiovascular (CV) calcification is a highly prevalent condition at all stages of chronic kidney disease (CKD) and is directly associated with increased CV and global morbidity and mortality. In the first part of this review, we have shown that CV calcifications represent an important part of the CKD-MBD complex and are a superior predictor of clinical outcomes in our patients. However, it is also necessary to demonstrate that CV calcification is a modifiable risk factor including the possibility of decreasing (or at least not aggravating) its progression with iatrogenic manoeuvres. Although, strictly speaking, only circumstantial evidence is available, it is known that certain drugs may modify the progression of CV calcifications, even though a direct causal link with improved survival has not been demonstrated. For example, non-calcium-based phosphate binders demonstrated the ability to attenuate the progression of CV calcification compared with the liberal use of calcium-based phosphate binders in several randomised clinical trials. Moreover, although only in experimental conditions, selective activators of the vitamin D receptor seem to have a wider therapeutic margin against CV calcification. Finally, calcimimetics seem to attenuate the progression of CV calcification in dialysis patients. While new therapeutic strategies are being developed (i.e. vitamin K, SNF472, etc.), we suggest that the evaluation of CV calcifications could be a diagnostic tool used by nephrologists to personalise their therapeutic decisions. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions
Lateva, Zoia C.
2011-01-01
The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about −0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane. PMID:21565985
Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo
2017-06-01
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Xian, Hui-Min; Che, Hui; Qin, Ying; Yang, Fan; Meng, Song-Yan; Li, Xiao-Guang; Bai, Yun-Long; Wang, Li-Hong
2018-03-01
Patients with type 2 diabetes mellitus (T2DM) are usually with poor immunity and easier to suffer from cancer and microbial infections. Herein, we report an efficient anti-diabetic medicinal mushroom, Coriolus versicolor (CV). This study aimed to investigate the anti-diabetic and anti-insulin-resistance effects of CV aqueous extract in myoblasts (L6 cells) and skeletal muscle of T2DM rat. Our results showed that CV extract treatment significantly reduced blood glucose levels of T2DM rats, whereas CV extract increased glucose consumption in insulin resistant L6 cells. Besides, the translocation and expression of glucose transporter 4 were enhanced by CV extract, which indicated that CV extract was effective in diabetic skeletal muscle. Moreover, CV extract treatments resulted in remarkable anti-insulin-resistance effects, which was reflected by the change of gene and protein expression levels in PI3K/Akt and p38 MAPK pathways. PI3K inhibitor, LY29004, and p38 MAPK inhibitor, SB203580 confirmed it further. In conclusion, our results demonstrated that the CV extract exhibited anti-diabetic and anti-insulin-resistance effects in diabetic skeletal muscle, and the effects were mediated by PI3K/Akt and p38 MAPK pathways. These findings are remarkable when considering the use of commercially available CV by diabetic patients who also suffer from cancer or microbial infections. Copyright © 2017 John Wiley & Sons, Ltd.
Software for Real-Time Analysis of Subsonic Test Shot Accuracy
2014-03-01
used the C++ programming language, the Open Source Computer Vision ( OpenCV ®) software library, and Microsoft Windows® Application Programming...video for comparison through OpenCV image analysis tools. Based on the comparison, the software then computed the coordinates of each shot relative to...DWB researchers wanted to use the Open Source Computer Vision ( OpenCV ) software library for capturing and analyzing frames of video. OpenCV contains
2015-08-21
using the Open Computer Vision ( OpenCV ) libraries [6] for computer vision and the Qt library [7] for the user interface. The software has the...depth. The software application calibrates the cameras using the plane based calibration model from the OpenCV calib3D module and allows the...6] OpenCV . 2015. OpenCV Open Source Computer Vision. [Online]. Available at: opencv.org [Accessed]: 09/01/2015. [7] Qt. 2015. Qt Project home
Fully printed flexible and disposable wireless cyclic voltammetry tag.
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-29
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Fully printed flexible and disposable wireless cyclic voltammetry tag
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250
Fully printed flexible and disposable wireless cyclic voltammetry tag
NASA Astrophysics Data System (ADS)
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Cheng, Dai; Wan, Zhaodong; Zhang, Xinyu; Li, Jian; Li, He; Wang, Chunling
2017-01-01
Based on the well-known toxicity of cyclophosphamide (CYP) on the immune system, this research investigated the modulating effects of the long-term dietary Chlorella vulgaris (CV) supplementation on the immunosuppression induced by CYP in mice, in order to provide a novel dietary design to mitigate the side effects of CYP therapy. Control, CYP-treated, CYP + CV (6%), CYP + CV (12%) and CYP + CV (24%) were used for 6 weeks, CV supplement in diet recovered the significantly reduced immunological function in CYP treated mice. As CV may have a modulating function through the inducible expression of cytokines, we assayed the expressions of interleukin-2 (IL-2), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Our results suggested that CYP significantly reduced the lymphocytes proliferation and phagocytic activities of macrophages, and stimulated the production of IL-2, IL-12, TNF-α and IFN-γ and that this impairment has been successfully adjusted by CV supplementation. Treatment with the algae also enhanced the natural killer (NK) cells cytotoxicity, and ameliorate histological changes of the spleen in CYP-treated mice. Therefore, as we found in this study, a diet supplemented with whole CV has beneficial effects on CVP-induced immunosuppression, through its immunomodulatory potential. PMID:28684674
So you want to be a specialist registrar?--What to put in your CV.
Ellis, P E; Ellis, S G S; O'Brien, K D; Joshi, R I
2002-02-09
Dentists applying to a specialist training programme often receive conflicting advice over what to put in their curriculum vitae (CV). We conducted a survey of the Training Programme Directors of the dental specialties to determine what aspects of CV content and presentation styles are considered important. This has allowed us to construct guidelines for what to put in a CV. Recently, structured application forms have become increasingly popular and may be a more objective way to carry out the shortlisting process. The guidelines presented could also be used as a framework for medical personnel departments if structured application forms eventually replace the CV.
A safety assessment of Coriolus versicolor biomass as a food supplement.
Barros, Ana B; Ferrão, Jorge; Fernandes, Tito
2016-01-01
Coriolus versicolor (CV) is a common mushroom with antitumor, anti-inflammatory, antioxidant, antiviral, antibacterial, and immunomodulatory properties. The existence of these properties has been extensively proven mainly using CV extract; research on the biomass form is scarce. The aim of this study was to investigate the safety of the CV biomass form, as it is commonly used as a food supplement. CV biomass powder was dissolved in distilled water and administered daily (2.5, 5.0, and 7.5 g/kg live weight) in single doses by gavage to both female and male Charles River albino rats. No adverse or lethal effects were observed as a consequence of the daily administration of CV biomass. In addition, compared with the control group, no abnormal findings were observed at necropsy and histopathological examination. A safe profile of CV biomass for human consumption can be inferred from the absence of any remarkable adverse effects in rats.
Ho, Cheong-Yip; Kim, Chi-Fai; Leung, Kwok-Nam; Fung, Kwok-Pui; Tse, Tak-Fu; Chan, Helen; Lau, Clara Bik-San
2006-09-01
Coriolus versicolor (CV), also called Yunzhi, has been demonstrated to exert anti-tumor effects on various types of cancer cells. Our previous studies have demonstrated that a standardized aqueous ethanol extract prepared from CV inhibited the proliferation of human leukemia cells via induction of apoptosis. The present study aimed to evaluate the underlying mechanisms of apoptosis through modulation of Bax, Bcl-2 and cytochrome c protein expressions in a human pro-myelocytic leukemia (HL-60) cell line, as well as the potential of the CV extract as anti-leukemia agent using the athymic mouse xenograft model. Our results demonstrated that the CV extract dose-dependently suppressed the proliferation of HL-60 cells (IC50 = 150.6 microg/ml), with increased nucleosome production from apoptotic cells. Expression of pro-apoptotic protein Bax was significantly up-regulated in HL-60 cells treated with the CV extract, especially after 16 and 24 h. Meanwhile, expression of anti-apoptotic protein Bcl-2 was concomitantly down-regulated, as reflected by the increased Bax/Bcl-2 ratio. The CV extract markedly, but transiently, promoted the release of cytochrome c from mitochondria to cytosol after 24-h incubation. In vivo studies in the athymic nude mouse xenograft model also confirmed the growth-inhibitory activity of the CV extract on human leukemia cells. In conclusion, the CV extract attenuated the human leukemia cell proliferation in vivo, and in vitro possibly by inducing apoptosis through the mitochondrial pathway. The CV extract is likely to be valuable for the treatment of some forms of human leukemia.
Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa
2012-01-01
Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353
50 CFR 679.5 - Recordkeeping and reporting (R&R).
Code of Federal Regulations, 2012 CFR
2012-10-01
... ... Logsheets found in these logbooks CV lgl/pot CV trw CP lgl/pot CP trw MS Submit to ... Time limit (1) White... vessel's catch is off-loaded Note: CP = catcher/processor; CV = catcher vessel; lgl = longline; trw...
50 CFR 679.5 - Recordkeeping and reporting (R&R).
Code of Federal Regulations, 2010 CFR
2010-10-01
... ... Logsheets found in these logbooks CV lgl/pot CV trw CP lgl/pot CP trw MS Submit to ... Time limit (1) White... vessel's catch is off-loaded Note: CP = catcher/processor; CV = catcher vessel; lgl = longline; trw...
50 CFR 679.5 - Recordkeeping and reporting (R&R).
Code of Federal Regulations, 2011 CFR
2011-10-01
... ... Logsheets found in these logbooks CV lgl/pot CV trw CP lgl/pot CP trw MS Submit to ... Time limit (1) White... vessel's catch is off-loaded Note: CP = catcher/processor; CV = catcher vessel; lgl = longline; trw...
NASA Astrophysics Data System (ADS)
Pradeep, Krishna; Poiroux, Thierry; Scheer, Patrick; Juge, André; Gouget, Gilles; Ghibaudo, Gérard
2018-07-01
This work details the analysis of wafer level global process variability in 28 nm FD-SOI using split C-V measurements. The proposed approach initially evaluates the native on wafer process variability using efficient extraction methods on split C-V measurements. The on-wafer threshold voltage (VT) variability is first studied and modeled using a simple analytical model. Then, a statistical model based on the Leti-UTSOI compact model is proposed to describe the total C-V variability in different bias conditions. This statistical model is finally used to study the contribution of each process parameter to the total C-V variability.
[Smoking, vaping and cardiovascular risk : an update].
Dalkou, Sofia; Clair, Carole
2017-06-07
It is well known that tobacco smoking increases cardiovascular (CV) mortality and morbidity, however, smoking cessation is often neglected compared to other CV risk factors. Behavioral counseling as well as smoking cessation treatments are efficient and do not increase the risk of CV events when used for a defined duration. Electronic nicotine delivery systems (ENDS) contain potentially cardiotoxic substances but in lower concentrations than in cigarettes. The CV effect of ENDS is to date difficult to assess and depends on the type of device used and its mode of consumption. For smokers with a known CV disease who have quit smoking using ENDS, it is recommended that they stop using them as soon as they have stabilized.
A curriculum vitae that gives you a competitive edge.
Hinck, S M
1997-07-01
All nurses with advancing careers should maintain a current curriculum vitae (CV) to chronicle professional accomplishments. Whatever the work setting, a CV can showcase skills and achievements. It is used when applying for a new position, but also within one's current situation to inform other professionals of specific interests and abilities. This article reviews nursing literature regarding preparation of a CV and suggests a format for the advanced practice nurse to use when writing a CV.
50 CFR 679.20 - General limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... season (1) Trawl 60% 20% 20% (i) Trawl CV 70% 10% 20% (ii) Trawl CP 50% 30% 20% (2) Hook-and-line CP and...-line CP 48.7 (5) Pot CV ≥60 ft (18.3 m) LOA 8.4 (6) Pot CP 1.5 (7) AFA trawl CP 2.3 (8) Amendment 80...) Trawl CV 74 % 11 % 15 % (ii) Trawl CP 75 % 25 % 0 % (2) Hook-and-line CP, hook-and-line CV ≥60 ft (18.3...
50 CFR 679.20 - General limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... season (1) Trawl 60% 20% 20% (i) Trawl CV 70% 10% 20% (ii) Trawl CP 50% 30% 20% (2) Hook-and-line CP and...-line CP 48.7 (5) Pot CV ≥60 ft (18.3 m) LOA 8.4 (6) Pot CP 1.5 (7) AFA trawl CP 2.3 (8) Amendment 80...) Trawl CV 74 % 11 % 15 % (ii) Trawl CP 75 % 25 % 0 % (2) Hook-and-line CP, hook-and-line CV ≥60 ft (18.3...
Rayar, Michel; Tron, Camille; Jézéquel, Caroline; Beaurepaire, Jean Marie; Petitcollin, Antoine; Houssel-Debry, Pauline; Camus, Christophe; Verdier, Marie Clémence; Dehlawi, Ammar; Lakéhal, Mohamed; Desfourneaux, Véronique; Meunier, Bernard; Sulpice, Laurent; Bellissant, Eric; Boudjema, Karim; Lemaitre, Florian
2018-03-01
Tacrolimus (TAC) is the cornerstone of immunosuppressive regimen in liver transplantation (LT). Its pharmacokinetics is characterized by a high interpatient and intrapatient variability (IPV) leading to an unpredictable dose-response relationship. The aim of our study was to evaluate the impact of TAC IPV (IPV) on graft and patient outcomes after LT. We retrospectively analyzed 812 LT recipients treated with TAC. The IPV of TAC concentrations was estimated by calculating the coefficient of variation (CV) of whole blood trough concentrations. Patients were categorized in 2 groups: low IPV (CV < 40%) and high IPV (CV ≥ 40%). There were significantly more neurologic complications (31.2% vs 16.6%, P < 0.001), cardiovascular complications (19.7% vs 9.7%, P < 0.001), and acute renal failure requiring dialysis (8.5% vs 2.2%, P < 0.001) in the high CV group than in the low CV group. Moreover, graft survival was significantly poorer in the high CV group (hazard ratio, 1.42; 95% confidence interval, 1.04-1.95; P = 0.03). A pretransplantation elevated Model for End-Stage Liver Disease score (P < 0.001) and Child-Pugh grade (P < 0.001) were identified as risk factors for presenting a high CV. A high CV of TAC concentrations was found to be predictive of TAC-related toxicity and poorer survival.
O'Keefe, Barry R; Murad, André M; Vianna, Giovanni R; Ramessar, Koreen; Saucedo, Carrie J; Wilson, Jennifer; Buckheit, Karen W; da Cunha, Nicolau B; Araújo, Ana Claudia G; Lacorte, Cristiano C; Madeira, Luisa; McMahon, James B; Rech, Elibio L
2015-09-01
There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 μg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Thyagarajan, Bharat; Howard, Annie Green; Durazo-Arvizu, Ramon; Eckfeldt, John H; Gellman, Marc D; Kim, Ryung S; Liu, Kiang; Mendez, Armando J; Penedo, Frank J; Talavera, Gregory A; Youngblood, Marston E; Zhao, Lihui; Sotres-Alvarez, Daniela
2016-12-01
Biomarker variability, which includes within-individual variability (CV I ), between-individual variability (CV G ) and methodological variability (CV P + A ) is an important determinant of our ability to detect biomarker-disease associations. Estimates of CV I and CV G may be population specific and little data exists on biomarker variability in diverse Hispanic populations. Hence, we evaluated all 3 components of biomarker variability in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) using repeat blood collections (n=58) and duplicate blood measurements (n=761-929 depending on the biomarker). We estimated the index of individuality (II) ((CV I +CV P + A )/CV G ) for 41 analytes and evaluated differences in the II across sexes and age groups. Biomarkers such as fasting glucose, triglycerides and ferritin had substantially higher inter-individual variability and lower II in HCHS/SOL as compared to the published literature. We also found significant sex-specific differences in the II for neutrophil count, platelet count, hemoglobin, % eosinophils and fasting glucose. The II for fasting insulin, post oral glucose tolerance test glucose and cystatin C was significantly higher among the 18-44y age group as compared to the 45+y age group. The implications of these findings for determining biomarker-disease associations in Hispanic populations need to be evaluated in future studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Letchamo, Wudeneh; Ward, William; Heard, Brooks; Heard, Denise
2004-06-16
The essential oil content and the composition of subterranean parts of two valerian (Valeriana officinalis, L.) cultivars Select and Anthose, from certified commercial organic fields, were determined by hydrodistillation, followed by gas chromatography (GC) and GC/mass spectrometry analysis. Eight and fourteen month old cv. Select had 0.67 and 0.87% essential oil, while similar aged cv. Anthose contained 0.97 and 1.1% essential oil. Forty-three and fifty-three components from cv. Select and cv. Anthose oils were detected, respectively. The oil composition significantly varied due to the cultivar type, plant age, and/or harvesting time. The major components for cv. Select were valerenal, bornyl acetate, 15-acetoxy valeranone, valerenic acid, and camphene, while cv. Anthose had valerenal, (-)-bornyl acetate, alpha-humulene, camphene, 15-acetoxy valeranone, and valerenic acid. With further aging of the plants, the valerenal, valerenic acid, and alpha-humulene contents increased. The oil of cv. Select had a strong antimicrobial effect against Aspergillus niger, Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae, while cv. Anthose showed low or no activity against all test microbes, including Pseudomonas aeruginosa, suggesting that the inhibitory activity of valerian oil depends on the cultivar and its developmental stage. The oil profile of our cultivars did not match the literature proposed chemotype profiles.
Lv, Xiaodan; Zhang, Yingshi; Niu, Yixuan; Song, Qi; Zhao, Qingchun
2018-04-01
Previous studies seem to show different effects of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) on cardiovascular (CV) events in hypertensive patients with type 2 diabetes mellitus (T2DM). Our objective was to analyze which are preferable on the incidence of all-cause mortality, CV death, and major CV events in hypertensive patients with T2DM. PubMed, MEDLINE, and EMBASE were searched for randomized controlled trials (RCTs) published up to June 2016 with ACEI or ARBs as the intervention for hypertensive patients with T2DM. The primary end points were all-cause mortality and CV death. The secondary end points were myocardial infarction (MI), stroke, heart failure (HF), and CV events. Two investigators extracted the information independently. Data were pooled using a fixed-effects model or a random-effects model if significant heterogeneity was present. A total of 13 trials were included for analysis, 5 ACEI trials (24,976 patients) and 8 ARB trials (22,032 patients) followed for a mean of 3.8 years. Treatment with ACEI was associated with significantly reduction in all-cause mortality [odds ratio (OR) 0.87; 95% confidence interval (95% CI), 0.80-0.94], CV death (OR 0.81; 95% CI, 0.68-0.98), and other CV outcomes such as MI (0R 0.77; 95% CI, 0.66-0.90), stroke (OR 0.88; 95% CI, 0.78-0.99), HF (OR 0.65; 95% CI, 0.47-0.90), and CV events (OR 0.83; 95% CI, 0.73-0.95), whereas ARBs therapy had no significant reduction in the results of many primary and secondary outcomes. This meta-analysis suggests that treatment with ACEI showed a significant CV protection for all-cause mortality, CV death, and major CV events, whereas ARBs had no benefits on these outcomes except MI. In consideration of high mortality and morbidity, ACEI was preferable than ARBs on patients with hypertension and T2DM.
Evaluation of the Dacos 3.0 analyser.
Pons, J F; Alumá, A; Antoja, F; Biosca, C; Alsina, M J; Galimany, R
1990-01-01
The selective multitest Coulter Dacos 3.0 analyser was evaluated according to the guidelines of the Comisión de Instrumentación de la Sociedad Española de Química Clínica and of the European Committee for Clinical Laboratory Standards.THE EVALUATION WAS PERFORMED IN FOUR STEPS: examination of the analytical units; evaluation of routine working; study of interferences; and assessment of practicability.The evaluation included a photometric study. The inaccuracy is acceptable for 340 nm and 420 nm, and the imprecision at absorbances from 0.05 to 2.00 ranged from 0.06 to 0.28% at 340 nm and from 0.06 to 0.08% at 420 nm. The linearity showed some dispersion at low absorbance for PNP at 420 nm and the drift was negligible.The imprecision of the pipette delivery system, the temperature control system and the washing system were satisfactory.IN ROUTINE WORK CONDITIONS, SEVEN ANALYTICAL METHODS WERE STUDIED: glucose, creatinine, iron, total protein, AST, ALP and calcium. Within-run imprecision ranged, at low concentrations, from 0.9% (CV) for glucose, to 7.6% (CV) for iron; at medium concentrations, from 0.7% (CV) for total protein to 5.2% (CV) to creatinine; and at high concentrations, it ranged from 0.6% (CV) for glucose to 3.9% (CV) for ALP.Between-run imprecision at low concentrations ranged from 1.4% (CV) for glucose to 15.1% (CV) for iron; at medium concentrations it ranged from 1.2% (CV) for protein to 6.7% (CV) for iron; and at high concentrations the range is from l.2for AST to 5.7% (CV) for iron.No contamination was found in the sample carry-over study. Some contamination was found in the reagent carry-over study (total protein due to iron and calcium reagents). Relative inaccuracy is good for all the constituents assayed. Only LDH (high and low levels) and urate (low level) showed weak and negative interference caused by turbidity, and gamma-GT (high level) and amylase, bilirubin and ALP (two levels) showed a negative interference caused by haemolysis.
Rabago, David; Kijowski, Richard; Woods, Michael; Patterson, Jeffrey J.; Mundt, Marlon; Zgierska, Aleksandra; Grettie, Jessica; Lyftogt, John; Fortney, Luke
2013-01-01
Objective To assess the relationship between knee osteoarthritis (KOA)-specific quality-of-life (QoL) and intra-articular cartilage volume (CV) in participants treated with prolotherapy. KOA is characterized by CV loss and multifactorial pain. Prolotherapy is an injection therapy reported to improve KOA-related QoL compared to blinded saline injections and at-home exercise but the mechanism of action is unknown. Design Two-arm (Prolotherapy, Control), partially blinded, controlled trial. Setting Outpatient. Participants 37 adults with ≥3 months of symptomatic KOA. Intervention Prolotherapy: 5 monthly injection sessions; Control: blinded saline injections or at-home exercise. Outcome Measures Primary: KOA-specific QoL scores (baseline, 5, 9, 12, 26, 52 weeks; Western Ontario McMaster University Osteoarthritis Index, WOMAC). Secondary: KOA-specific pain, stiffness, function (WOMAC subscales), magnetic resonance imaging (MRI)-assessed CV (baseline, 52 weeks). Results Knee-specific QoL improvement among Prolotherapy participants exceeded that of Controls (17.6±3.2 versus 8.6±5.0 points, p=0.05) at 52 weeks. Both groups lost CV over time (p<0.05); no between-group differences were noted (p=0.98). While Prolotherapy participants lost CV at varying rates, those who lost the least CV (“Stable CV”) had the greatest improvement in pain scores. Among Prolotherapy, but not Control participants, the change in CV and the change in pain (but not stiffness or function) scores were correlated; each 1% CV loss was associated with 2.7% less improvement in pain score (p<0.05). Conclusions Prolotherapy resulted in safe, substantial improvement in KOA-specific QoL compared to Control over 52-weeks. Among prolotherapy participants, but not Controls, MRI-assessed CV change (CV stability) predicted pain severity score change, suggesting prolotherapy may have pain-specific disease-modifying effect. Further research is warranted. PMID:23850615
Cardiovascular risk in peritoneal dialysis - a Portuguese multicenter study.
Neves, Marta; Machado, Susana; Rodrigues, Luís; Borges, Andreia; Maia, Pedro; Campos, Mário
2014-01-01
Cardiovascular (CV) disease is the major cause of mortality in patients undergoing renal replacement therapy. The primary aim of the study was to evaluate the CV risk profile and prevalence of CV disease in patients on peritoneal dialysis (PD) in Portugal. The secondary goal was to establish parameters most associated with CV disease. Retrospective, multicenter study of the prevalent adult population on PD. Six hundred patients were included (56.7% male; mean age 53.5 ± 15.3 years), on PD for 25.6 ± 21.9 months. Patients were divided into two groups: group 1 (n=166) with CV disease and group 2 (n=434) without CV disease. Comparisons were made regarding traditional CV risk factors and those associated with uremia and PD itself, and a multivariate analysis was performed to determine variables independently associated with CV disease. At the end of the study, the prevalence of CV disease was 28%. At univariate analysis, group 1 presented a higher frequency of males (p<.01), older patients (p<.01), diabetics (p<.01), occurrence of left ventricular hypertrophy (LVH) (p<.01), mean C-reactive protein (CRP) (p=.04), lower mean parathormone level (p=.014), lower serum phosphorus (p=.02), lower daily urine output (p=.04), lower weekly Kt/V (p=.008), increased use of icodextrin and hypertonic glucose-based PD solutions (p<.001 and p=.006, respectively) and more were under continuous ambulatory PD (CAPD) (p=.014) and had a high peritoneal transport status (p=.02). Multivariate analysis provided a significant discriminatory influence pertaining to age >50 years, CRP>0.6 mg/dl, male gender, diabetes, LVH, CAPD and anuria, when comparing group 1 and group 2. Risk factors most related to the development of CV disease in PD in Portugal are age >50 years, CRP>0.6 mg/dL, male gender, diabetes, LVH, CAPD and anuria.
Chay, Wen Yee; Tham, Chee Kian; Toh, Han Chong; Lim, Hwee Yong; Tan, Chee Kiat; Lim, Cindy; Wang, Who-Whong; Choo, Su-Pin
2017-08-01
The majority of patients with hepatocellular carcinoma (HCC) are inoperable and results with conventional chemotherapy are dismal. Many end up with no treatment options and resort to alternative medicine. The authors report the use of Coriolus versicolor (CV) in advanced HCC patients with poor liver function or who were unfit to receive standard therapy. Fifteen eligible cases were randomized 2:1 to either CV or placebo. The primary endpoint was the median time to progression (TTP) between both arms. Secondary endpoints include evaluating response rates, toxicity, quality of life (QOL), progression-free survival (PFS), and overall survival (OS). Further correlative studies were performed looking at the effect of CV on the immune system. The median treatment duration was 1.5 cycles and 3 cycles on the placebo and CV arm, respectively. Median TTP was 2.5 (1.4-5.3) months compared to 4.2 (0.4-4.2) months in the CV and placebo arm, respectively, hazard ratio (HR) 0.70 (0.16-3.05 p = 0.634). Median PFS was 2.5 (1.4-5.3) months in the CV and 1.1 (0.4-4.2) months in the placebo arm, HR 0.42 (0.13-1.34, p = 0.144). Median OS was 6.5 (3.3-24.1) and 2.2 (0.8-23.3) months, respectively, HR 0.35 (0.10-1.25, p = 0.105). Social and emotional functioning scores were higher in the CV group compared to placebo group on treatment. CV subjects had less appetite loss and pain symptoms compared to placebo subjects during treatment. There was no difference in TTP with use of CV compared to placebo. CV subjects generally had better QOL on treatment compared to placebo subjects. The utility of this supplement in patients whose primary treatment goal is palliation should be further explored.
Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study.
Fournier, Sara B; Donley, David A; Bonner, Daniel E; Devallance, Evan; Olfert, I Mark; Chantler, Paul D
2015-01-01
The metabolic syndrome (MetS) is associated with threefold increased risk of cardiovascular (CV) morbidity and mortality, which is partly due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular (LV) contractility and aerobic capacity and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse peak exercise CV dysfunction. Furthermore, examining how exercise training alters CV function in a group of individuals with MetS before the development of diabetes and/or overt CV disease can provide insights into whether some of the pathophysiological CV changes can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 wk of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Twenty participants with MetS underwent either 8 wk of aerobic exercise training (MetS-ExT, n = 10) or remained sedentary (MetS-NonT, n = 10) during this period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Exercise training did not alter resting LV diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise, an increase in LV contractility (40%, P < 0.01), cardiac output (28%, P < 0.05), and aerobic capacity (20%, P < 0.01), but a reduction in vascular resistance (30%, P < 0.05) and arterial-ventricular coupling (27%, P < 0.01), were noted in the MetS-ExT but not in the MetS-NonT group. Furthermore, an improvement in lifetime risk score was also noted in the MetS-ExT group. These findings have clinical importance because they provide insight that some of the pathophysiological changes associated with MetS can be improved and can lower the risk of CV disease.
Home, automated office, and conventional office blood pressure as predictors of cardiovascular risk.
Andreadis, Emmanuel A; Papademetriou, Vasilios; Geladari, Charalampia V; Kolyvas, George N; Angelopoulos, Epameinondas T; Aronis, Konstantinos N
2017-03-01
Automated office blood pressure (AOBP) has recently been shown to closely predict cardiovascular (CV) events in the elderly. Home blood pressure (HBP) has also been accepted as a valuable method in the prediction of CV disease. This study aimed to compare conventional office BP (OBP), HBP, and AOBP in order to evaluate their value in predicting CV events and deaths in hypertensives. We assessed 236 initially treatment naïve hypertensives, examined between 2009 and 2013. The end points were any CV and non-CV event including mortality, myocardial infarction, coronary heart disease, hospitalization for heart failure, severe arrhythmia, stroke, and intermittent claudication. We fitted proportional hazards models using the different modalities as predictors and evaluated their predictive performance using three metrics: time-dependent receiver operating characteristics curves, the Akaike's Information Criterion, and Harrell's C-index. After a mean follow-up of 7 years, 23 participants (39% women) had experienced ≥1 CV event. Conventional office systolic (hazard ratio [HR] per 1 mm Hg increase in BP, 1.028; 95% confidence interval [CI], 1.009-1.048), automated office systolic (HR per 1 mm Hg increase in BP, 1.031; 95% CI, 1.008-1.054), and home systolic (HR, 1.025; 95% CI, 1.003-1.047) were predictive of CV events. All systolic BP measurements were predictive after adjustment for other CV risk factors (P < .05). The predictive performance of the different modalities was similar. Conventional OBP was significantly higher than AOBP and average HBP. AOBP predicts equally well to OBP and HBP CV events. It appears to be comparable to HBP in the assessment of CV risk, and therefore, its introduction into guidelines and clinical practice as the reference method for assessing BP in the office seems reasonable after verification of these findings by randomized trials. Copyright © 2017 American Society of Hypertension. All rights reserved.
Schulz, S; Seitter, L; Werdan, K; Hofmann, B; Schaller, H-G; Schlitt, A; Reichert, S
2018-05-06
Biological plausibility of an association between severe periodontitis and cardiovascular disease (CVD) has been proven. Genetic characteristics play an important role in both complex inflammatory diseases. Polymorphisms (single nucleotide polymorphisms [SNPs]) in the long noncoding RNA, antisense noncoding RNA in the INK4 locus (ANRIL), were shown to play a leading role in both diseases. The primary objectives of the study were to assess, among cardiovascular (CV angiographically proven ≥50% stenosis of a main coronary artery) patients, the impact of ANRIL SNPs rs133049 and rs3217992 on the severity of periodontitis and the previous history of coronary events, as well as on the occurrence of further adverse CV events. The prevalence of severe periodontitis was analyzed in 1002 CV patients. ANRIL SNPs rs133049 and rs3217992 were genotyped. The prognostic value of both ANRIL SNPs for combined CV endpoint (stroke/transient ischemic attack [TIA], myocardial infarction, death from a CV-related event, death from stroke) was evaluated after a 3-year follow-up period. Hazard ratios (HRs) were adjusted for established CV risk factors applying Cox regression. ANRIL SNPs rs133049 and rs3217992 were not associated with severe periodontitis or history of CVD in CV patients. In the Kaplan-Meier survival curve including the log rank-test (P = .036) and Cox regression (hazard ratio = 1.684, P = .009) the AA genotype of rs3217992 was shown to be an independent predictor for adverse CV events after 3 years of follow-up. SNPs in ANRIL are not risk modulators for severe periodontitis and history of CVD in CV patients. The AA genotype of ANRIL SNPs rs3217992 possesses prognostic power for further CV events within 3 years of follow-up. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Genotyping of enteroviruses isolated in Kenya from pediatric patients using partial VP1 region.
Opanda, Silvanos M; Wamunyokoli, Fred; Khamadi, Samoel; Coldren, Rodney; Bulimo, Wallace D
2016-01-01
Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3'-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.
Yang, Shuhua; Zhang, Yuexiang; Liu, Ying; Wang, Jianhong; Chen, Shuqin; Li, Shuxia
2017-01-01
The study aimed to evaluate whether cytolytic vaginosis (CV) has important clinical implications for recurrent vulvovaginitis and to identify clinical differences between CV and vulvovaginal candidosis (VVC). Medical histories, physical examinations and laboratory findings were used to diagnose and assess the prevalence rates of various vulvovaginal infections among 536 women with recurrent vulvovaginitis. Chi-square and Fisher exact tests were used to compare age, menstrual cycle phase at episode onset, symptoms/signs of infection and discharge characteristics between CV and VVC with single infection. Among the 484 women with a single-infection recurrent vulvovaginitis, the prevalence of CV (n = 143; 26.7%) was second only to VVC (n = 196; 36.6%). CV symptoms occurred predominantly during the ovulatory and luteal phases. Meanwhile, VVC episodes were not concentrated premenstrually, but rather occurred throughout the menstrual cycle. Significant differences were found in the vaginal pH, discharge characteristics and frequency of inflammatory symptoms between the 2 groups. CV is clinically important, because it is a common cause of recurrent vulvovaginitis. To distinguish CV from VVC, gynecologists should consider the patient's medical history, physical and laboratory findings, vaginal pH and vaginal discharge characteristics. © 2016 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, L.W.; Anderson, D.R.; Lennox, W.J.
1993-05-13
FDA approved, injectable preparations of candidate compounds BENZTROPINE (BZT), 1.0 mg/ml; biperiden (BIP), 5.0 mg/ml; dicyclomine (DCL), 10 mg/ml; 1-hyoscyamine (HYO), 0.5 mg/ml; orphenadrine (ORP), 30 mg/ml; scopolamine (SCP), 1.0 mg/ml were tested in parallel with diazepam (DZ, the standard) in male guinea pigs against ongoing soman induced convulsive (CV)/sub-CV activity. Three trained graders concurrently assigned CV/sub-CV scores (12 - convulsions; 0 normal) to each animal. Animals received (im) pyridostigmine (PYR; 26 ug/kg) 30 min before soman (56 ug/kg; 2 LD50), atropine (2 mg/kg) admixed with 2-PAM (25 mg/kg) at one min after soman, and the candidate drug preparation atmore » 5.67 min post soman, a time when CV activity is assured. BIP and SCP demonstrated efficacy over dosage ranges between 10 and 0.3 and 1.0 and 0.13 mg/kg, respectively, while the other preparations were less effective at their respective maximum dosages. At optimal dosages of SCP (0.5 mg/kg) and BIP (10 mg/kg), the CV/sub-CV scores were significantly lower (p < 0.05) than those of DZ.« less
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong
2018-04-01
The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.
Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas
2018-02-10
Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.
Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats*
Mohd Azamai, Emey Suhana; Sulaiman, Suhaniza; Mohd Habib, Shafina Hanim; Looi, Mee Lee; Das, Srijit; Abdul Hamid, Nor Aini; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum
2009-01-01
Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats. PMID:19198018
Body fat mass and lean mass as predictors of survival in hemodialysis patients.
Kakiya, R; Shoji, T; Tsujimoto, Y; Tatsumi, N; Hatsuda, S; Shinohara, K; Kimoto, E; Tahara, H; Koyama, H; Emoto, M; Ishimura, E; Miki, T; Tabata, T; Nishizawa, Y
2006-08-01
A higher body mass index (BMI) is a predictor of better survival in hemodialysis patients, although the relative importance of body fat and lean mass has not been examined in the dialysis population. We performed an observational cohort study in 808 patients with end-stage renal disease on maintenance hemodialysis. At baseline, fat mass was measured by dual-energy X-ray absorptiometry and expressed as fat mass index (FMI; kg/m2). Lean mass index (LMI) was defined as BMI minus FMI. During the mean follow-up period of 53 months, 147 deaths, including 62 cardiovascular (CV) and 85 non-CV fatal events, were recorded. In univariate analysis, LMI was not significantly associated with CV or non-CV death, whereas a higher FMI was predictive of lower risk for non-CV death. Analyses with multivariate Cox models, which took other confounding variables as covariates, indicated the independent associations between a higher LMI and a lower risk of CV death, as well as between a higher FMI and a lower risk of non-CV death. These results indicate that increased fat mass and lean mass were both conditions associated with better outcomes in the dialysis population.
ERIC Educational Resources Information Center
Abrahams, A. L.
1976-01-01
Describes results of a study that used CV 100, a fuel additive for use in oil-fired heating systems, on a trial basis in 12 Ontario schools. The test showed an average 12 percent reduction in fuel costs in the schools using CV 100. (JG)