Recent results on CVD diamond radiation sensors
NASA Astrophysics Data System (ADS)
Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration
1998-02-01
CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.
Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC
NASA Astrophysics Data System (ADS)
Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-04-01
CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.
High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition
Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; ...
2015-06-10
Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less
NASA Astrophysics Data System (ADS)
Luk'yanov, A. Yu; Ral'chenko, Viktor G.; Khomich, A. V.; Serdtsev, E. V.; Volkov, P. V.; Savel'ev, A. V.; Konov, Vitalii I.
2008-12-01
A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 μm is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm-1, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK-1 at room temperature), makes this material attractive for fabricating output windows of high-power CO2 lasers, especially for manufacturing large-size optics.
Scattering of low-energetic atoms and molecules from a boron-doped CVD diamond surface
NASA Astrophysics Data System (ADS)
Allenbach, M.; Neuland, M. B.; Riedo, A.; Wurz, P.
2018-01-01
For the detection of low energetic neutral atoms for the remote sensing of space plasmas, charge state conversion surfaces are used to ionize the neutrals for their subsequent measurement. We investigated a boron-doped Chemical Vapor Deposition (CVD) diamond sample for its suitability to serve as a conversion surface on future space missions, such as NASA's Interstellar Mapping and Acceleration Probe. For H and O atoms incident on conversion surface with energies ranging from 195 to 1000 eV and impact angles from 6° to 15° we measured the angular scattering distributions and the ionization yields. Atomic force microscope and laser ablation ionization mass spectrometry analyses were applied to further characterize the sample. Based on a figure-of-merit, which included the ionization yield and angular scatter distribution, the B-doped CVD surface was compared to other, previously characterized conversion surfaces, including e.g. an undoped CVD diamond with a metallized backside. For particle energies below 390 eV the performance of the B-doped CVD conversion surfaces is comparable to surfaces studied before. For higher energies the figure-of-merit indicates a superior performance. From our studies we conclude that the B-doped CVD diamond sample is well suited for its application on future space missions.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.
1996-01-01
Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.
Chemical-Vapor-Deposited Diamond Film
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This chapter describes the nature of clean and contaminated diamond surfaces, Chemical-vapor-deposited (CVD) diamond film deposition technology, analytical techniques and the results of research on CVD diamond films, and the general properties of CVD diamond films. Further, it describes the friction and wear properties of CVD diamond films in the atmosphere, in a controlled nitrogen environment, and in an ultra-high-vacuum environment.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.
Diagnostic Techniques Used to Study Chemical-Vapor-Deposited Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2000-01-01
The advantages and utility of chemical-vapor-deposited (CVD) diamond as an industrial ceramic can only be realized if the price and quality are right. Until recently, this technology was of interest only to the academic and basic research community. However, interest has grown because of advances made by leading CVD diamond suppliers: 1) Reduction of the cost of CVD polycrystalline diamond deposition below $5/carat ($8/sq cm); 2) Installation of production capacity; 3) Epitaxial growth of CVD single-crystal diamond. Thus, CVD diamond applications and business are an industrial reality. At present, CVD diamond is produced in the form of coatings or wafers. CVD diamond film technology offers a broader technological potential than do natural and high-pressure synthetic diamonds because size, geometry, and eventually cost will not be as limiting. Now that they are cost effective, diamond coatings - with their extreme properties - can be used in a variety of applications. Diamond coatings can improve many of the surface properties of engineering substrate materials, including erosion, corrosion, and wear resistance. Examples of actual and potential applications, from microelectromechanical systems to the wear parts of diamond coatings and related superhard coatings are described. For example, diamond coatings can be used as a chemical and mechanical barrier for the space shuttles check valves, particularly on the guide pins and seat assemblies.
CVD diamond detectors for ionizing radiation
NASA Astrophysics Data System (ADS)
Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-10-01
In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.
NASA Astrophysics Data System (ADS)
Barboza-Flores, Marcelino
2015-03-01
Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged
Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel
2018-02-07
The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved understanding of thermal conductivity inhomogeneity in high-quality CVD polycrystalline diamond that is important for applications in the thermal management of high-power electronics.
New developments in CVD diamond for detector applications
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.
Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented.
NASA Astrophysics Data System (ADS)
Ade, N.; Nam, T. L.; Mhlanga, S. H.
2013-05-01
Although the near-tissue equivalence of diamond allows the direct measurement of dose for clinical applications without the need for energy-corrections, it is often cited that diamond detectors require pre-irradiation, a procedure necessary to stabilize the response or sensitivity of a diamond detector before dose measurements. In addition it has been pointed out that the relative dose measured with a diamond detector requires dose rate dependence correction and that the angular dependence of a detector could be due to its mechanical design or to the intrinsic angular sensitivity of the detection process. While the cause of instability of response has not been meticulously investigated, the issue of dose rate dependence correction is uncertain as some studies ignored it but reported good results. The aims of this study were therefore to investigate, in particular (1) the major cause of the unstable response of diamond detectors requiring pre-irradiation; (2) the influence of dose rate dependence correction in relative dose measurements; and (3) the angular dependence of the diamond detectors. The study was conducted with low-energy X-rays and electron therapy beams on HPHT and CVD synthesized diamonds. Ionization chambers were used for comparative measurements. Through systematic investigations, the major cause of the unstable response of diamond detectors requiring the recommended pre-irradiation step was isolated and attributed to the presence and effects of ambient light. The variation in detector's response between measurements in light and dark conditions could be as high as 63% for a CVD diamond. Dose rate dependence parameters (Δ values) of 0.950 and 1.035 were found for the HPHT and CVD diamond detectors, respectively. Without corrections based on dose rate dependence, the relative differences between depth-doses measured with the diamond detectors and a Markus chamber for exposures to 7 and 14 MeV electron beams were within 2.5%. A dose rate dependence correction using the Δ values obtained seemed to worsen the performance of the HPHT sample (up to about 3.3%) but it had a marginal effect on the performance of the CVD sample. In addition, the angular response of the CVD diamond detector was shown to be comparable with that of a cylindrical chamber. This study concludes that once the responses of the diamond detectors have been stabilised and they are properly shielded from ambient light, pre-irradiation prior to each measurement is not required. Also, the relative dose measured with the diamond detectors do not require dose rate dependence corrections as the required correction is only marginal and could have no dosimetric significance.
Micro-strip sensors based on CVD diamond
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; RD42 Collaboration
2000-10-01
In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Shvydko, Yury; Stoupin, Stanislav
A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less
Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.
Steeds; Charles; Gilmore; Butler
2000-07-01
It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.
Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon
NASA Astrophysics Data System (ADS)
Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.
2017-10-01
In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.
Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.
Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals
NASA Astrophysics Data System (ADS)
Lin, Zichao; Sun, Fanghong; Shen, Bin
2016-11-01
Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive strength between the contacting surfaces.
Lubrication by Diamond and Diamondlike Carbon Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1997-01-01
Regardless of environment (ultrahigh vacuum, humid air, dry nitrogen, or water), ion-beam-deposited diamondlike carbon (DLC) and nitrogen-ion-implanted, chemical-vapor-deposited (CVD) diamond films had low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6)cu mm/N(dot)m). These films can be used as effective wear-resistant, self-lubricating coatings regardless of environment. On the other hand, as-deposited, fine-grain CVD diamond films; polished, coarse-grain CVD diamond films; and polished and then fluorinated, coarse-grain CVD diamond films can be used as effective wear-resistant, self-lubricating coatings in humid air, in dry nitrogen, and in water, but they had a high coefficient of friction and a high wear rate in ultrahigh vacuum. The polished, coarse-grain CVD diamond film revealed an extremely low wear rate, far less than 10(exp 10) cu mm/N(dot)m, in water.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
Effects of Surface Treatments on Secondary Electron Emission from CVD Diamond Films
NASA Technical Reports Server (NTRS)
Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Zorman, Christian; Wang, Yaxin; Lamouri, A.
1995-01-01
Secondary electron emission (SEE) properties of polycrystalline diamond films grown by chemical vapor deposition (CVD) were measured. The total secondary yield (sigma) from as-grown samples was observed to be as high as 20 at room temperature and 48 while heating at 700 K in vacuum. Electron-beam-activated, alkali-terminated diamond films have shown stable values of sigma as high as 60 when coated with CsI and similarly high values when coated with other alkali halides. Diamond coated with BaF2 had a stable sigma of 6, but no enhancement of the SEE properties was observed with coatings of Ti or Au. Hydrogen was identified to give rise to this effect in as-grown films. However, electron beam exposure led to a reduction in sigma values as low as 2. Exposure to a molecular hydrogen environment restored sigma to its original value after degradation, and enabled stable secondary emission during electron beam exposure. Atomic hydrogen and hydrogen plasma treatments were performed on diamond/Mo samples in an attempt to increase the near-surface hydrogen concentration which might lead to increased stability in the secondary emission. Raman scattering analysis, scanning electron microscopy, and Auger electron spectroscopy (AES) confirmed that hydrogen plasma and atomic hydrogen treatments improved the quality of the CVD diamond significantly. Elastic recoil detection (ERD) showed that heating as-grown diamond targets to 7OO K, which was correlated with an increase in sigma, removed contaminants from the surface but did not drive hydrogen from the diamond bulk. ERD showed that the hydrogen plasma treatment produced an increase in the hydrogen concentration in the near-surface region which did not decrease while heating in vacuum at 700 K, but no improvement in the SEE properties was observed.
The use of CVD diamond burs for ultraconservative cavity preparations: a report of two cases.
Carvalho, Carlos Augusto R; Fagundes, Ticiane C; Barata, Terezinha J E; Trava-Airoldi, Vladimir Jesus; Navarro, Maria Fidela L
2007-01-01
During the past decades, scientific developments in cutting instruments have changed the conventional techniques used to remove caries lesions. Ultrasound emerged as an alternative for caries removal since the 1950s. However, the conventional technology for diamond powder aggregation with nickel metallic binders could not withstand ultrasonic power. Around 5 years ago, an alternative approach using chemical vapor deposition (CVD) resulted in synthetic diamond technology. CVD diamond burs are obtained with high adherence of the diamond as a unique stone on the metallic surface with excellent abrading performance. This technology allows for diamond deposition with coalescent granulation in different formats of substrates. When connected to an ultrasonic handpiece, CVD diamond burs become an option for cavity preparation, maximizing preservation of tooth structure. Potential advantages such as reduced noise, minimal damage to the gingival tissue, extended bur durability, improved proximal cavity access, reduced risk of hitting the adjacent tooth resulting from the high inclination angles, and minimal patient's risk of metal contamination. These innovative instruments also potentially eliminate some problems regarding decreased cutting efficiency of conventional diamond burs. This clinical report presents the benefits of using CVD diamond burs coupled with an ultrasonic handpiece in the treatment of incipient caries. CVD diamond burs coupled with an ultrasonic device offer a promising alternative for removal of carious lesions when ultraconservative cavity preparations are required. Additionally, this system provides a less-painful technique for caries removal, with minimal noise.
NASA Astrophysics Data System (ADS)
Vaz, R.; May, P. W.; Fox, N. A.; Harwood, C. J.; Chatterjee, V.; Smith, J. A.; Horsfield, C. J.; Lapington, J. S.; Osbourne, S.
2015-03-01
Diamond-based photomultipliers have the potential to provide a significant improvement over existing devices due to diamond's high secondary electron yield and narrow energy distribution of secondary electrons which improves energy resolution creating extremely fast response times. In this paper we describe an experimental apparatus designed to study secondary electron emission from diamond membranes only 400 nm thick, observed in reflection and transmission configurations. The setup consists of a system of calibrated P22 green phosphor screens acting as radiation converters which are used in combination with photomultiplier tubes to acquire secondary emission yield data from the diamond samples. The superior signal voltage sampling of the phosphor screen setup compared with traditional Faraday Cup detection allows the variation in the secondary electron yield across the sample to be visualised, allowing spatial distributions to be obtained. Preliminary reflection and transmission yield data are presented as a function of primary electron energy for selected CVD diamond films and membranes. Reflection data were also obtained from the same sample set using a Faraday Cup detector setup. In general, the curves for secondary electron yield versus primary energy for both measurement setups were comparable. On average a 15-20% lower signal was recorded on our setup compared to the Faraday Cup, which was attributed to the lower photoluminescent efficiency of the P22 phosphor screens when operated at sub-kilovolt bias voltages.
Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; ...
2016-09-29
By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. Lastly, these CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvilmore » cell.« less
Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD
NASA Astrophysics Data System (ADS)
Zhao, Yun; Guo, Yanzhao; Lin, Liangzhen; Zheng, Yuting; Hei, Lifu; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Li, Chengming
2018-06-01
Microwave plasma chemical vapor deposition (MPCVD) was used to grow single-crystal diamonds on two types of single-crystal diamond seed substrates prepared by high-pressure, high-temperature (HPHT) and chemical vapor deposition (CVD) methods. The quality of diamonds grown on the different seed substrates was compared. Fluorescence characteristics showed that the sectors of the HPHT seed substrates were obviously partitioned. Raman and absorption spectra showed that the CVD seed substrate produced higher-quality crystals with fewer nitrogen impurities. X-ray topography showed that the HPHT seed substrate had obvious growth sector boundaries, inclusions, dislocations, and stacking faults. The polarization characteristics of HPHT seed substrate were obvious, and the stress distribution was not uniform. When etching HPHT and CVD seed substrates using the same parameters, the etching morphology and extent of different growth sectors of the two substrates differed. Although extended defects were inevitably formed at the interface and propagated in the CVD layer, the dislocation density of a 1 mm-thick CVD layer grown on a CVD seed substrate was only half that of a 1 mm-thick CVD layer grown on an HPHT seed substrate. Therefore, the use of CVD seed substrate enabled the growth of a relatively higher-quality CVD single-crystal diamond.
NASA Astrophysics Data System (ADS)
Fraga, M. A.; Contin, A.; Rodríguez, L. A. A.; Vieira, J.; Campos, R. A.; Corat, E. J.; Trava Airoldi, V. J.
2016-02-01
Many developments have been made to improve the quality and adherence of CVD diamond films onto WC-Co hard metal tools by the removing the cobalt from the substrate surface through substrate pretreatments. Here we compare the efficiency of three chemical pretreatments of WC-Co substrates for this purpose. First, the work was focused on a detailed study of the composition and structure of as-polished and pretreated substrate surfaces to characterize the effects of the substrate preparation. Considering this objective, a set of WC-9% Co substrates, before and after pretreatment, was analyzed by FEG-SEM, EDS and x-ray diffraction (XRD). The second stage of the work was devoted to the evaluation of the influence of seeding process, using 4 nm diamond nanoparticles, on the morphology and roughness of the pretreated substrates. The last and most important stage was to deposit diamond coatings with different crystallite sizes (nano and micro) by hot-filament CVD to understand fully the mechanism of growth and adhesion of CVD diamond films on pretreated WC-Co substrates. The transition from nano to microcrystalline diamond was achieved by controlling the CH4/H2 gas ratio. The nano and microcrystalline samples were grown under same time at different substrate temperatures 600 °C and 800 °C, respectively. The different substrate temperatures allowed the analysis of the cobalt diffusion from the bulk to the substrate surface during CVD film growth. Furthermore, it was possible to evaluate how the coating adhesion is affected by the diffusion. The diamond coatings were characterized by Raman spectroscopy, XRD, EDS, FEG-SEM, atomic force microscope and 1500 N Rockwell indentation to evaluate the adhesion.
Electrical applications of CVD diamond films
NASA Astrophysics Data System (ADS)
Fujimori, Naoji
Electronics applications of CVD diamond films are reported. The properties of epitaxial diamond films are affected by the orientation of the substrate and the deposition conditions. Boron-doped epitaxial films are found to have the same characteristics as natural IIb diamonds. An LED and an FET were successfully fabricated using boron-doped epitaxial films and Schottky junctions. However, these devices did not exhibit satisfactory properties. Other applications of CVD diamond films include speaker diaphragms (as both a thin-film coating and a free-standing film), and as an ideal packaging material (due to its high thermal conductivity and low dielectric constant).
CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1998-01-01
When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).
CVD diamond pixel detectors for LHC experiments
NASA Astrophysics Data System (ADS)
Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A. M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J. C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.; RD42 Collaboration
1999-08-01
This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.
Ultratough single crystal boron-doped diamond
Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC
2015-05-05
The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.
CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.
1998-01-01
The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).
Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.
1999-01-01
Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.
Selected Topics in CVD Diamond Research
NASA Astrophysics Data System (ADS)
Koizumi, Satoshi; Nebel, Christoph E.; Nesladek, Milos
2006-10-01
Since the discovery of Chemical Vapor Deposition (CVD) diamond growth in 1976, the steady scientific progress often resulted in surprising new discoveries and breakthroughs. This brought us to the idea to publish the special issue Selected Topics in CVD Diamond Research in physica status solidi (a), reflecting such advancements and interesting results at the leading edge of diamond research.The present issue summarizes this progress in the CVD diamond field by selecting contributions from several areas such as superconductivity, super-excitonic radiation, quantum computing, bio-functionalization, surface electronic properties, the nature of phosphorus doping, transport properties in high energy detectors, CVD growth and properties of nanocrystalline diamond. In all these directions CVD diamond appears to be very competitive in comparison with other semiconducting materials.As Editors of this special issue, we must admit that the selection is biased by our opinion. Nonetheless, we are sure that each contribution introduces new ideas and results which will improve the understanding of the current level of physics and chemistry of this attractive wide-bandgap semiconductor and which will help to bring it closer to applications.All submissions were invited based on the contributions of the authors to their specific research field. The Feature Articles have the format of topical reviews to give the reader a comprehensive summary. Partially, however, they are written in research paper style to report new results of ongoing research.We hope that this issue will attract the attention of a broad community of scientists and engineers, and that it will facilitate the utilization of diamond in electronic applications and technologies of the future.
Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Olstad, R.; Jory, H.
2017-09-08
This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this projectmore » uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemtsev, G., E-mail: g.nemtsev@iterrf.ru; Amosov, V.; Meshchaninov, S.
We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.
da Silva, Melissa Aline; Di Nicolo, Rebeca; Barcellos, Daphne Camara; Batista, Graziela Ribeiro; Pucci, Cesar Rogerio; Rocha Gomes Torres, Carlos; Borges, Alessandra Bühler
2013-01-01
The aim of this study was to compare the microtensile bond strength of three adhesive systems, using different methods of dentin preparation. A hundred and eight bovine teeth were used. The dentin from buccal face was exposed and prepared with three different methods, divided in 3 groups: Group 1 (DT)- diamond tip on a high-speed handpiece; Group 2 (CVD)-CVD tip on a ultrasonic handpiece; Group 3 (LA)-Er: YAG laser. The teeth were divided into 3 subgroups, according adhesive systems used: Subgroup 1-Adper Single Bond Plus/3M ESPE (SB) total-etch adhesive; Subgroup 2-Adper Scotchbond SE/3M ESPE (AS) selfetching adhesive; Subgroup 3-Clearfil SE Bond/Kuraray (CS) selfetching adhesive. Blocks of composite (Filtek Z250-3M ESPE) 4 mm high were built up and specimens were stored in deionized water for 24 hours at 37°C. Serial mesiodistal and buccolingual cuts were made and stick-like specimens were obtained, with transversal section of 1.0 mm(2). The samples were submitted to microtensile test at 1 mm/min and load of 10 kg in a universal testing machine. Data (MPa) were subjected to ANOVA and Tukey's tests (p < 0.05). Surface treatment with Diamond or CVD tips associated with Clearfil SE Bond adhesive produced significantly lower bond strength values compared to other groups. Surface treatment with Er: YAG laser associated with Single Bond Plus or Clearfil SE Bond adhesives and surface treatment with CVD tip associated with Adper Scotchbond SE adhesive produced significantly lower bond strength values compared to surface treatment with diamond or CVD tips associated with Single Bond Plus or Adper Scotchbond SE adhesives. Interactions between laser and the CVD tip technologies and the different adhesive systems can produce a satisfactory bonding strength result, so that these associations may be beneficial and enhance the clinical outcomes.
NASA Astrophysics Data System (ADS)
Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.
1997-02-01
The thermoluminescent (TL) response of Chemical Vapour Deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters.
Diamond detectors for high energy physics experiments
NASA Astrophysics Data System (ADS)
Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.
2018-01-01
Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.
Correlation of CVD Diamond Electron Emission with Film Properties
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.
1996-03-01
Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.
Ultratough CVD single crystal diamond and three dimensional growth thereof
Hemley, Russell J [Washington, DC; Mao, Ho-kwang [Washington, DC; Yan, Chih-shiue [Washington, DC
2009-09-29
The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.
Status of the R&D activity on diamond particle detectors
NASA Astrophysics Data System (ADS)
Adam, W.; Bellini, B.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.; RD42 Collaboration
2003-09-01
Chemical Vapor Deposited (CVD) polycrystalline diamond has been proposed as a radiation-hard alternative to silicon in the extreme radiation levels occurring close to the interaction region of the Large Hadron Collider. Due to an intense research effort, reliable high-quality polycrystalline CVD diamond detectors, with up to 270 μm charge collection distance and good spatial uniformity, are now available. The most recent progress on the diamond quality, on the development of diamond trackers and on radiation hardness studies are presented and discussed.
Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials
NASA Astrophysics Data System (ADS)
Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.
2013-10-01
Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.
NASA Astrophysics Data System (ADS)
Kunuku, Srinivasu; Chen, Yen-Chun; Yeh, Chien-Jui; Chang, Wen-Hao; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I.-Nan
2016-10-01
We report the synthesis of silicon-vacancy (SiV) incorporated spherical shaped ultrananocrystalline diamond (SiV-UNCD) particulates (size ∼1 μm) with bright luminescence at 738 nm. For this purpose, different granular structured polycrystalline diamond films and particulates were synthesized by using three different kinds of growth plasma conditions on the three types of substrate materials in the microwave plasma enhanced CVD process. The grain size dependent photoluminescence properties of nitrogen vacancy (NV) and SiV color centers have been investigated for different granular structured diamond samples. The luminescence of NV center and the associated phonon sidebands, which are usually observed in microcrystalline diamond and nanocrystalline diamond films, were effectively suppressed in UNCD films and UNCD particulates. Micron sized SiV-UNCD particulates with bright SiV emission has been attained by transfer of SiV-UNCD clusters on soda-lime glass fibers to inverted pyramidal cavities fabricated on Si substrates by the simple crushing of UNCD/soda-lime glass fibers in deionized water and ultrasonication. Such a plasma enhanced CVD process for synthesizing SiV-UNCD particulates with suppressed NV emission is simple and robust to attain the bright SiV-UNCD particulates to employ in practical applications.
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
NASA Astrophysics Data System (ADS)
Ficek, M.; Drijkoningen, S.; Karczewski, J.; Bogdanowicz, R.; Haenen, K.
2016-01-01
It is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of a linear antenna microwave plasma enhanced chemical vapor deposition system (LA MW CVD) is the fact that it allows to grow the diamond layers at low temperature (below 300°C) [1]. High quality nanocrystalline diamond (NCD) thin films with thicknesses ranging from 70 nm to 150 nm, were deposited on silicon, glass and optical fibre substrates [2]. Substrates pretreatment by dip-coating and spin coating process with a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) has been applied. During the deposition process the continuous mode of operation of the LA MW CVD system was used, which produces a continuous wave at a maximum power of 1.9 kW (in each antenna). Diamond films on optical fibres were obtained at temperatures below 350°C, providing a clear improvement of results compared to our earlier work [3]. The samples were characterized by scanning electron microscopy (SEM) imaging to investigate the morphology of the nanocrystalline diamond films. The film growth rate, film thickness, and optical properties in the VIS-NIR range, i.e. refractive index and extinction coefficient will be discussed based on measurements on reference quartz plates by using spectroscopic ellipsometry (SE).
Nitrogen doping, optical characterization, and electron emission study of diamond
NASA Astrophysics Data System (ADS)
Park, Minseo
Nitrogen-doped chemical vapor deposited (CVD) diamond films were synthesized with N2 (nitrogen) and C3H6N6 (melamine) as doping sources. More effective substitutional nitrogen doping was achieved with C3H6N6 than with N 2. Since a melamine molecule has an existing cyclic C-N bonded ring, it is expected that the incorporation of nitrogen on substitution diamond lattice should be facilitated. The diamond film doped with N2 contained a significant amount of non-diamond carbon phases. The samples were analyzed by scanning electron microscopy, Raman scattering, photoluminescence spectroscopy, and field emission measurements. The sample produced using N 2 exhibited a lower field emission turn-on field than the sample produced using C3H6N6. It is believed that the presence of the graphitic phases (or amorphous sp2 carbon) at the grain boundaries of the diamond and/or the nanocrystallinity (or microcrystallinity) of the diamond play a significant role in lowering the turn-on field of the film produced using N2. The nature of the nitrogen-related 1190 cm-1 Raman peak was investigated. Nitrogen is incorporated predominantly to the crystalline or amorphous sp2 phases when nitrogen is added to the growing diamond. Field emission characteristics from metallic field emitter coated with type Ia and Ib diamond powders were also investigated. No significant difference in electron emission characteristics were found in these samples. Voltage-dependent field emission energy distribution (V-FEED) measurement was performed to analyze the energy distribution of the emitted electrons. It is believed that substitutional nitrogen doping plays only a minor role in changing field emission characteristics in diamond. Discontinuous diamond films were deposited on silicon using a microwave plasma chemical vapor deposition (MPCVD) system. The diamond deposits were sharpened by argon ion beam etching. Raman spectroscopy was carried out to study the structural change of the diamond after ion beam bombardment. Field emission measurements were performed in-situ with an electron beam induced current (EBIC) probe inside the chamber of the scanning electron microscope. It was found that amorphous sp2 carbon is produced as the diamond is sputtered by the Ar ion beam. The field emission turn-on field was also significantly lowered after sharpening, which, it is speculated, is caused by field enhancement due to a change in geometry and/or structural changes (such as amorphization of crystalline diamond into graphitic or amorphous sp2 carbon) by Ar ion irradiation. Secondary electron emission patterning of single crystal diamond surfaces with hydrogen and oxygen plasma treatments was demonstrated. Hydrogen plasma treated regions were much brighter than the oxygen terminated regions. Results of atomic force microscopy confirmed that the observed contrast is not topographical. Several other possible negative electron affinity (or low positive electron affinity) materials such as chemical vapor deposited (CVD) diamond, aluminum nitride and tetrahedrally bonded amorphous carbon [tx a-C 1-x] were also investigated. Faint image contrast (patterning) was also observed from polycrystalline CVD diamond, single crystal aluminum nitride films, and polycrystalline aluminum nitride films; however, no contrast at all was obtained from tetrahedrally bonded amorphous carbon [tx a-C1-x] films.
CVD diamond substrate for microelectronics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burden, J.; Gat, R.
1996-11-01
Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing,more » and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.« less
Nano-inclusions in diamond: Evidence of diamond genesis
NASA Astrophysics Data System (ADS)
Wirth, R.
2015-12-01
The use of Focused Ion Beam technology (FIB) for TEM sample preparation introduced approximately 15 years ago revolutionized the application of TEM in Geosciences. For the first time, FIB enabled cutting samples for TEM use from exactly the location we are interested in. Applied to diamond investigation, this technique revealed the presence of nanometre-sized inclusions in diamond that have been simply unknown before. Nanoinclusions in diamond from different location and origin such as diamonds from the Lower and Upper Mantle, metamorphic diamonds (Kazakhstan, Erzgebirge, Bohemia), diamonds from ophiolites (Tibet, Mongolia, Xinjiang, Ural Mountains), diamonds from igneous rocks (Hawaii, Kamchatka) and impact diamonds (Popigai Crater, Siberia) have been investigated during the last 15 years. The major conclusion of all these TEM studies is, that the nanoinclusions, their phases and phase composition together with the micro- and nanostructure evidence the origin of diamond and genesis of diamond. We can discriminate Five different mechanisms of diamond genesis in nature are observed: Diamond crystallized from a high-density fluid (Upper mantle and metamorphic diamond). Diamond crystallized from carbonatitic melt (Lower mantle diamond). Diamond precipitates from a metal alloy melt (Diamond from ophiolites). Diamond crystallized by gas phase condensation or chemical vapour condensation (CVD) (Lavas from Kamchatka, xenoliths in Hawaiian lavas). Direct transformation of graphite into diamond.
A beam radiation monitor based on CVD diamonds for SuperB
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.
2013-08-01
Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.
NASA Astrophysics Data System (ADS)
Kukushkin, V. A.
2017-10-01
A way to significantly increase the spatial resolution of the color center photoluminescence collection in chemically vapor-deposited (CVD) diamond at a fixed exciting beam focal volume is suggested. It is based on the creation of a narrow waveguide for the color center photoluminescence with a small number of allowed vertical indices of guided modes. The waveguide is formed between the top surface of a CVD diamond film and an underlaid mirror—a Bragg superlattice made of interchanging high- and low boron-doped layers of CVD diamond. The guided color center photoluminescence is extracted through the top surface of a CVD diamond film with the frustrated total internal reflection method. According to the results of simulation made for a case when color centers are nitrogen-vacancy (NV) centers, the suggested way allows to increase the maximal value of the NV center concentration still compatible with selective collection of their photoluminescence by several times at a fixed exciting beam focal volume. This increase is provided without the deterioration of the NV center photoluminescence collection efficiency.
Observation of twinning in diamond CVD films
NASA Astrophysics Data System (ADS)
Marciniak, W.; Fabisiak, K.; Orzeszko, S.; Rozploch, F.
1992-10-01
Diamond particles prepared by dc-glow-discharge enhanced HF-CVD hybrid method, from a mixture of acetone vapor and hydrogen gas have been examined by TEM, RHEED and dark field method of observation. Results suggest the presence of twinned diamond particles, which can be reconstructed by a sequence of twinning operations. Contrary to the 'stick model' of the lattice, very common five-fold symmetry of diamond microcrystals may be obtained by applying a number of edge dislocations rather than the continuous deformation of many tetrahedral C-C bonds.
Olson, D.W.
2013-01-01
Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.
Measurements and Diagnostics of Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.
1999-01-01
The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.
Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces
Moore, Samuel L.; Vohra, Yogesh K.
2015-01-01
Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less
NASA Astrophysics Data System (ADS)
Jiang, N.; Deguchi, M.; Wang, C. L.; Won, J. H.; Jeon, H. M.; Mori, Y.; Hatta, A.; Kitabatake, M.; Ito, T.; Hirao, T.; Sasaki, T.; Hiraki, A.
1997-04-01
A transmission electron microscope (TEM) study of ion-implanted chemical-vapor-deposited (CVD) diamond is presented. CVD diamond used for transmission electron microscope observation was directly deposited onto Mo TEM grids. As-deposited specimens were irradiated by C (100 keV) ions at room temperature with a wide range of implantation doses (10 12-10 17/cm 2). Transmission electron diffraction (TED) patterns indicate that there exists a critical dose ( Dc) for the onset of amorphization of CVD diamond as a result of ion induced damage and the value of critical dose is confirmed to be about 3 × 10 15/cm 2. The ion-induced transformation process is clearly revealed by high resolution electron microscope (HREM) images. For a higher dose implantation (7 × 10 15/cm 2) a large amount of diamond phase is transformed into amorphous carbon and many tiny misoriented diamond blocks are found to be left in the amorphous solid. The average size of these misoriented diamond blocks is only about 1-2 nm. Further bombardment (10 17/cm 2) almost kills all of the diamond phase within the irradiated volume and moreover leads to local formation of micropolycrystalline graphite.
Recent Results with CVD Diamond Trackers
NASA Astrophysics Data System (ADS)
Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-08-01
We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm 2 diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 μs shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm 2 diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.
Performance of irradiated CVD diamond micro-strip sensors
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S. V.; Thomson, G. B.
2002-01-01
CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15/cm 2) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p/ cm2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π/ cm2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.
Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.
Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke
2014-06-24
The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.
Profiling of Current Transients in Capacitor Type Diamond Sensors.
Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai
2015-06-08
The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo's theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μ(e) = 4000 cm2/Vs and holes μ(h) = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion D(a) = 97 cm2/s and the carrier recombination lifetime τ(R,CVD) ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond.
Radiation tolerance of CVD diamond detectors for pions and protons
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.
2002-01-01
The paper gives new results on the radiation tolerance of CVD diamond for irradiation with 300 MeV/ c pions and 24 GeV/ c protons. The measured charge signal spectrum is compared at several irradiation levels with the spectrum calculated by a model. Irradiation by particles causes damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model show that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal.
Liquid impact and fracture of free-standing CVD diamond
NASA Astrophysics Data System (ADS)
Kennedy, Claire F.; Telling, Robert H.; Field, John E.
1999-07-01
The Cavendish Laboratory has developed extensive facilities for studies of liquid and solid particle erosion. This paper describes the high-speed liquid impact erosion of thin CVD diamond discs and the variation with grain sizes of the absolute damage threshold velocity (ADTV), viz., the threshold below which the specimen shows no damage. All specimens fail by rear surface cracking and there is shown to be a shallow dependence of rear surface ADTV on grain size. Fracture propagation in CVD diamond has also been monitored using a specially-designed double-torsion apparatus and data for K1C are presented. Tentatively, the results suggest that finer-grained CVD diamond exhibits a higher fracture toughness, although the differences are slight even over a fourfold variation in the mean grain size. No preference for intergranular fracture was observed and one may conclude from this that the grain boundaries themselves do not seriously weaken the material. The large pre-existing flaws, both within and between grains, whose size varies the grain size are believed to be the dominant source of weakness.
1991-05-01
J. S. Ma, H. Kawarada, T. Yonehara, & A. Hiraki DIAMOND ON SILICON: A HOT FILAMENT CVD STUDY OF 266 NUCLEATION P. Ascarelli, S. Fontana, E. Molinari...BORON-DOPED CVD DIAMONDS H. Ka warada, Y. Yokota, H. Matsuyama T. Sogi, & A. Hiraki SPATIALLY AND SPECTALLY RESOLVED 427 CATHODOLUMINESCENCE...Sheng Ma, *Hiroshi Kawarada, "Takao Yonehara, and Akio Hiraki Department of Electrical Engineering, Osaka University, Suita-shi, Osaka 565, Japan
Profiling of Current Transients in Capacitor Type Diamond Sensors
Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai
2015-01-01
The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo’s theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μe = 4000 cm2/Vs and holes μh = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion Da = 97 cm2/s and the carrier recombination lifetime τR,CVD ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond. PMID:26061200
A novel Mo-W interlayer approach for CVD diamond deposition on steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference inmore » the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.« less
A novel Mo-W interlayer approach for CVD diamond deposition on steel
NASA Astrophysics Data System (ADS)
Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao
2015-04-01
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.
Scanning Tunneling Microscopy Studies of Diamond Films and Optoelectronic Materials
NASA Technical Reports Server (NTRS)
Perez, Jose M.
1996-01-01
We present a summary of the research, citations of publications resulting from the research and abstracts of such publications. We have made no inventions in the performance of the work in this project. The main goals of the project were to set up a Chemical Vapor Deposition (CVD) diamond growth system attached to an UltraHigh Vacuum (UHV) atomic resolution Scanning Tunneling Microscopy (STM) system and carry out experiments aimed at studying the properties and growth of diamond films using atomic resolution UHV STM. We successfully achieved these goals. We observed, for the first time, the atomic structure of the surface of CVD grown epitaxial diamond (100) films using UHV STM. We studied the effects of atomic hydrogen on the CVD diamond growth process. We studied the electronic properties of the diamond (100) (2x1) surface, and the effect of alkali metal adsorbates such as Cs on the work function of this surface using UHV STM spectroscopy techniques. We also studied, using STM, new electronic materials such as carbon nanotubes and gold nanostructures. This work resulted in four publications in refereed scientific journals and five publications in refereed conference proceedings.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter
2017-04-01
The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionised. Regarding the constraints of weight, volume and power consumption, the technique of surface ionisation complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionised by passing through a foil, are ionised by scattering on a charge state conversion surface [1]. Since more than 30 years intense research work is done to find and optimise suitable materials for use as charge state conversion surfaces for space application. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Regarding these parameters, diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness [2]. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Building on the successes of the IBEX mission [3], the follow up mission IMAP (InterstellarMApping Probe) will take up to further explore the boundaries of the heliosphere. The IMAP mission is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [4]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour deposition (CVD) method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility at the University of Bern [5] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [1]. We compare the results of earlier investigations of a metallised CVD sample [6] to our latest measurements of a Boron-doped CVD diamond sample. We additionally measured the B-concentration in the sample to prove our predictions of the B-concentration needed to reach sufficient conductibility for the sample not getting electrostatically charged during instrument operation. The results of narrower scattering cones and higher ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces and that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [1] P. Wurz, Detection of Energetic Neutral Atoms, in The Outer Heliosphere: Beyond the Planets, Copernicus Gesellschaft e.V., Katlenburg-Lindau, Germany, 2000, p. 251-288. [2] P. Wurz, R. Schletti, M.R. Aellig, Surf. Sci. 373(1997), 56-66. [3] D.J. McComas et al., Geophys. Res. Lett. 38(2011), L18101. [4] N.A. Schwadron et al., J. of Phys.. Conf. Series 767(2016): 012025 [5] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2013): 402-410. [6] M.B. Neuland, J.A. Scheer, A. Riedo and P. Wurz, Appl. Surf. Sci. 313(2014):293-303.
NASA Astrophysics Data System (ADS)
Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David
2013-12-01
The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.
Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.
2015-02-01
Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.
Scanning tunneling microscopy studies of diamond films and optoelectronic materials
NASA Technical Reports Server (NTRS)
Perez, Jose M.
1993-01-01
In this report, we report on progress achieved from 12/1/92 to 10/1/93 under the grant entitled 'Scanning Tunneling Microscopy Studies of Diamond Films and Optoelectronic Materials'. We have set-up a chemical vapor deposition (CVD) diamond film growth system and a Raman spectroscopy system to study the nucleation and growth of diamond films with atomic resolution using scanning tunneling microscopy (STM). A unique feature of the diamond film growth system is that diamond films can be transferred directly to the ultrahigh vacuum (UHV) chamber of a scanning tunneling microscope without contaminating the films by exposure to air. The University of North Texas (UNT) provided $20,000 this year as matching funds for the NASA grant to purchase the diamond growth system. In addition, UNT provided a Coherent Innova 90S Argon ion laser, a Spex 1404 double spectrometer, and a Newport optical table costing $90,000 to set-up the Raman spectroscopy system. The CVD diamond growth system and Raman spectroscopy system will be used to grow and characterize diamond films with atomic resolution using STM as described in our proposal. One full-time graduate student and one full-time undergraduate student are supported under this grant. In addition, several graduate and undergraduate students were supported during the summer to assist in setting-up the diamond growth and Raman spectroscopy systems. We have obtained research results concerning STM of the structural and electronic properties of CVD grown diamond films, and STM and scanning tunneling spectroscopy of carbon nanotubes. In collaboration with the transmission electron microscopy (TEM) group at UNT, we have also obtained results concerning the optoelectronic material siloxene. These results were published in refereed scientific journals, submitted for publication, and presented as invited and contributed talks at scientific conferences.
Charge multiplication effect in thin diamond films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skukan, N., E-mail: nskukan@irb.hr; Grilj, V.; Sudić, I.
2016-07-25
Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanchemore » multiplication and radiation detectors with extreme radiation hardness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.
2016-11-15
Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelone, M.; Pillon, M.; Bertalot, L.
A polycrystalline chemical vapor deposited (CVD) diamond detector was installed on a JET tokamak in order to monitor the time dependent 14 MeV neutron emission produced by D-T plasma pulses during the Trace Tritium Experiment (TTE) performed in October 2003. This was the first tentative ever attempted to use a CVD diamond detector as neutron monitor in a tokamak environment. Despite its small active volume, the detector was able to detect the 14 MeV neutron emission (>1.0x10{sup 15} n/shot) with good reliability and stability during the experimental campaign that lasted five weeks. The comparison with standard silicon detectors presently usedmore » at JET as 14 MeV neutron monitors is reported, showing excellent correlation between the measurements. The results prove that CVD diamond detectors can be reliably used in a tokamak environment and therefore confirm the potential of this technology for next step machines like ITER.« less
Tribological properties of CVD diamond coated ceramic surfaces
NASA Astrophysics Data System (ADS)
Abreu, Cristiano Simoes de
Recent developments in chemical vapour deposited (CVD) diamond coatings have attracted considerable interest and a host of new applications, each more challenging than the others. This increased attention results from the fact that CVD diamond lms retain to a large extent the outstanding physical and chemical properties of natural single crystal diamond such as extreme hardness, chemical inertness and high corrosion resistance, optical transparency and high thermal conductivity. Diamond features also surprisingly low friction and high wear resistance in unlubricated sliding contacts. Moreover, as opposed to natural diamond where the friction and wear behaviour is highly dependent on crystal orientation, polycrystalline CVD diamond lms supersede the monocrystalline variety due to isotropic tribological properties and possibility of coating complex shapes. Several materials have been tested and more or less successfully used as substrates for CVD diamond coatings. Nonetheless, satisfactory adherence of diamond coatings lms is often only attainable by the use of interlayers, in order to compensate for the large interfacial thermal expansion mismatch between the coating and substrate, which represent an additional processing step and added costs. A promising route will consist in using substrate materials with a low thermal expansion mismatch relative to that of diamond and, therefore, enhanced 1m adhesion. Among these, the ceramic silicon nitride (Si3N4) arises as a serious candidate. As a general rule, available literature regarding the tribological performance of CVD diamond coated Si3N4 lms is scarce, and the few available tribological data only deals with low applied loads. That being said, the correct tribological assessment of CVD diamond coated Si3N4 lms under more realistic sliding conditions, reproducing the stresses found in applications fields such as the fluid handling and metalworking industry, as well as in emerging biotribological areas, is on the agenda. In the present work, homologous tribological tests involving two distinct crystalline scale diamond coatings, namely microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) coatings, were performed under unlubricated and water lubricated sliding conditions. The friction and wear behaviour of each diamond system was assessed using a reciprocating motion type geometry under moderated to high applied normal loads, reaching maximum values as high as 160 N in the case of lubricated MCD lms. Influence of grain size effects and surface pre-treatments of the substrate on the tribological performance of MCD and NCD coatings, respectively, has also been undertaken. Several complementary characterisation techniques, including scanning electron microscopy, atomic force microscopy and micro-Raman studies, were used in order to assess the diamond quality, stress state, topography evolution of worn surfaces, wear resistance and prevailing wear mechanisms. The distinct friction regimes occurring for diamond-on-diamond dry sliding tests and condition for the delamination of the coating were also studied by the means of acoustic emission measurements. The friction performance of the MCD coatings under dry sliding were characterised by very low steady-state friction coeficient values in the range 0:03 - 0:04, regardless of the applied load. Such exceptional atrituous behaviour under unlubricated conditions was accompanied by a high resistance to wear damage, with wear rates characteristic of mild to very mild wear regimes (10. -8-10. -7mm3N-1m-1). The MCD water lubricated systems revealed even lower friction resistance (0.01 - 0.03), as well as a two-fold increase on the threshold load (150 N) prior to lm delamination under tribological stress. The inherent lower surface roughness of the NCD lms was responsible for a marginally lower steady-state friction response (0.02 - 0.03) in relation to the MCD coatings, and showed to be independent of the nishing condition and substrate surface pre-treatments. Moreover, the moderate initial friction response occurring during the running-in period of accommodation between opposing MCD surfaces was greatly suppressed by the much lower starting surface roughness found in the NCD coatings. Similarly to what was observed in water lubricated MCD coatings, homologous pairs of NCD lms sliding in distilled water displayed an improved tribological performance characterised by a high resistance to wear damage (10. -8 mm. 3N-1m-1) and higher threshold loads under tribologicalaction, making them promising candidates for highly demanding tribological applications, namely in biotribology where their clinical use e.g. in total arthroplasty is a possibility.
Diamond Nucleation Using Polyethene
NASA Technical Reports Server (NTRS)
Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)
2013-01-01
The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.
Diamond nucleation using polyethene
Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad
2013-07-23
The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.
Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD
NASA Astrophysics Data System (ADS)
Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu
2017-12-01
Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.
Polycrystalline CVD diamond device level modeling for particle detection applications
NASA Astrophysics Data System (ADS)
Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.
2016-12-01
Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.
Pulse height distribution and radiation tolerance of CVD diamond detectors
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dangelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.; Fenyvesi, A.; Molnar, J.; Sohler, D.; RD42 Collaboration
2000-06-01
The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/ c protons, 300 MeV/ c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal.
CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, D.
1999-04-19
A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less
Novel diamond cells for neutron diffraction using multi-carat CVD anvils.
Boehler, R; Molaison, J J; Haberl, B
2017-08-01
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.
Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films.
Rath, Patrik; Khasminskaya, Svetlana; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram Hp
2013-01-01
Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using efficient grating coupling devices prepared from partially etched diamond thin films, we investigate millimetre-sized optical circuits and achieve single-mode waveguiding at telecoms wavelengths. Our results pave the way towards broadband optical applications for sensing in harsh environments and visible photonic devices.
Laikhtman, A; Rapoport, L; Perfilyev, V; Moshkovich, A; Akhvlediani, R; Hoffman, A
2011-09-01
In the present work we perform optimization of mechanical and crystalline properties of CVD microcrystalline diamond films grown on steel substrates. A chromium-nitride (Cr-N) interlayer had been previously proposed to serve as a buffer for carbon and iron inter-diffusion and as a matching layer for the widely differing expansion coefficients of diamond and steel. However, adhesion and wear as well as crystalline perfection of diamond films are strongly affected by conditions of both Cr-N interlayer preparation and CVD diamond deposition. In this work we assess the effects of two parameters. The first one is the temperature of the Cr-N interlayer preparation: temperatures in the range of 500 degrees C-800 degrees C were used. The second one is diamond film thickness in the 0.5 microm-2 microm range monitored through variation of the deposition time from approximately 30 min to 2 hours. The mechanical properties of so deposited diamond films were investigated. For this purpose, scratch tests were performed at different indentation loads. The friction coefficient and wear loss were assessed. The mechanical and tribological properties were related to structure, composition, and crystalline perfection of diamond films which were extensively analyzed using different microscopic and spectroscopic techniques. It was found that relatively thick diamond film deposited on the Cr-N interlayer prepared at the temperature similar to that of the CVD process has the best mechanical and adhesion strength. This film was stable without visible cracks around the wear track during all scratch tests with different indentation loads. In other cases, cracking and delamination of the films took place at low to moderate indentation loads.
Parameterisation of radiation effects on CVD diamond for proton irradiation
NASA Astrophysics Data System (ADS)
Hartjes, F.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-08-01
The paper reviews measurements of the radiation hardness of CVD diamond for 24 GeV/c proton irradiation at fluences up to 5 ∗10 15 protons/cm 2. The results not only show radiation damage but also an annealing effect that is dominant at levels around 10 15 protons/cm 2. A model describing both effects is introduced, enabling a prediction of the distribution curve of the charge signal for other levels.
Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond.
Khan, R U A; Cann, B L; Martineau, P M; Samartseva, J; Freeth, J J P; Sibley, S J; Hartland, C B; Newton, M E; Dhillon, H K; Twitchen, D J
2013-07-10
Defects causing colour in nitrogen-doped chemical vapour-deposited (CVD) diamond can adversely affect the exceptional optical, electronic and spintronic properties of the material. Several techniques were used to study these defects, namely optical absorption spectroscopy, thermoluminescence (TL) and electron paramagnetic resonance (EPR). From our studies, the defects causing colour in nitrogen-doped CVD diamond are clearly not the same as those causing similar colour in natural diamonds. The brown colour arises due to a featureless absorption profile that decreases in intensity with increasing wavelength, and a broad feature at 360 nm (3.49 eV) that scales in intensity with it. Another prominent absorption band, centred at 520 nm (2.39 eV), is ascribed to the neutral nitrogen-vacancy-hydrogen defect. The defects responsible for the brown colour possess acceptor states that are 1.5 eV from the valence band (VB) edge. The brown colour is removed by heat treatment at 1600 ° C, whereupon new defects possessing shallow (<1 eV) trap states are generated.
Reproducibility of CVD diamond detectors for radiotherapy dosimetry
NASA Astrophysics Data System (ADS)
Betzel, G. T.; Lansley, S. P.; McKay, D.; Meyer, J.
2012-11-01
Three in-house X-ray detectors based on diamond chemical vapor deposition (CVD) from the same manufactured batch of single crystal films were investigated for their reproducibility. Leakage current, priming dose, response dynamics, dose linearity, dependence on dose rate and angular dependence were used to evaluate differences between detectors. Slight differences were seen in leakage currents before (<1.5 pA) and after (<12 pA) irradiation. A priming dose of ˜7 Gy and rise and fall times of 2 s were found for all three detectors. Sensitivities differed by up to 10%. Dependence on dose rate were similar (∆=0.92-0.94). Angular dependence was minimal (97-102% avg.). Differences in detector performance appeared to be primarily due to film thickness, which can significantly change sensitivities (nC Gy-1) and applied fields (V μm-1) for detectors with small sensitive volumes. Results suggest that preselection of CVD diamond films according to thickness in addition to material quality would be required to avoid individual calibration, which is performed for commercially available natural diamond detectors.
Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.
2013-12-15
Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less
NASA Astrophysics Data System (ADS)
Nasieka, Iurii; Strelchuk, Victor; Naseka, Victor; Stubrov, Yuriy; Dudnik, Stanislav; Gritsina, Vasiliy; Opalev, Oleg; Koshevoy, Konstantin; Strel'nitskij, Vladimir; Tkach, Vasyl; Boyko, Mykola; Antypov, Ievgen
2018-06-01
The PE CVD method with magnetic field discharge stabilization was applied for the growth of arrays of freestanding diamond grains (island films) as well as continuous films on Mo and Si substrates with (1 1 1) and (1 0 0) faceted microcrystals, respectively. Raman, SEM, XRD and PL methods were used for search of the specific features of defects embedded into (1 0 0) and (1 1 1) faceted grains. The main characteristic differences in the defect states of the diamond island films grown on Si and Mo substrates with (1 0 0) and (1 1 1) faceted diamond microcrystals were discussed on the base of the experimental data.
Zero bias thermally stimulated currents in synthetic diamond
NASA Astrophysics Data System (ADS)
Mori, R.; Miglio, S.; Bruzzi, M.; Bogani, F.; De Sio, A.; Pace, E.
2009-06-01
Zero bias thermally stimulated currents (ZBTSCs) have been observed in single crystal high pressure high temperature (HPHT) and polycrystalline chemical vapor deposited (pCVD) diamond films. The ZBTSC technique is characterized by an increased sensitivity with respect to a standard TSC analysis. Due to the absence of the thermally activated background current, new TSC peaks have been observed in both HPHT and pCVD diamond films, related to shallow activation energies usually obscured by the emission of the dominant impurities. The ZBTSC peaks are explained in terms of defect discharge in the nonequilibrium potential distribution created by a nonuniform traps filling at the metal-diamond junctions. The electric field due to the charged defects has been estimated in a quasizero bias TSC experiment by applying an external bias.
High resolution, monochromatic x-ray topography capability at CHESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z.
2016-07-27
CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities,more » and presents experimental results from several applications.« less
Novel diamond cells for neutron diffraction using multi-carat CVD anvils
Boehler, R.; Molaison, J. J.; Haberl, B.
2017-08-17
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less
NASA Astrophysics Data System (ADS)
Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Pivovarov, Yu. L.; Rusetskii, A. S.; Tukhfatullin, T. A.
2017-07-01
Orientation effect of increasing the enhancement factor of DD-reaction in CVD-Diamond was investigated by simulation. It is obtained that the flux peaking effect up to 2.2 times increases the relative enhancement factor for a parallel beam and up to 1.2 times for the deuteron beam with angular divergence equals 3 critical channeling angles. Qualitative agreement with the experiment was obtained.
Diamond structure recovery during ion irradiation at elevated temperatures
NASA Astrophysics Data System (ADS)
Deslandes, Alec; Guenette, Mathew C.; Belay, Kidane; Elliman, Robert G.; Karatchevtseva, Inna; Thomsen, Lars; Riley, Daniel P.; Lumpkin, Gregory R.
2015-12-01
CVD diamond is irradiated by 5 MeV carbon ions, with each sample held at a different temperature (300-873 K) during irradiations. The defect structures resulting from the irradiations are evident as vacancy, interstitial and amorphous carbon signals in Raman spectra. The observed variation of the full width at half maximum (FWHM) and peak position of the diamond peak suggests that disorder in the diamond lattice is reduced for high temperature irradiations. The dumbbell interstitial signal is reduced for irradiations at 873 K, which suggests this defect is unstable at these temperatures and that interstitials have migrated to crystal surfaces. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy results indicate that damage to the diamond structure at the surface has occurred for room temperature irradiations, however, this structure is at least partially recovered for irradiations performed at 473 K and above. The results suggest that, in a high temperature irradiation environment such as a nuclear fusion device, in situ annealing of radiation-created defects can maintain the diamond structure and prolong the lifetime of diamond components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, Setyo, E-mail: setyo-p@batan.go.id, E-mail: purwantosetyo@yahoo.com; Dimyati, A., E-mail: arbi-dimyati@hotmail.com; Iskandar, R.
Nanostructure investigation on the post implantation by Fe-B and NiFe-B on CVD diamond/Si(111) film have been studied by means of STEM related to their GMR phenomena. Two samples were investigated carefully, firstly sample is post NiFe-B at E=70keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as A-E3D1). Secondly, is post FeB at E=20 keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as B-E1D1). Based on FPP measurement at room temperature (RT) and H{sub applied} = 8 kOe, A-E3D1 sample has MR ratio almost 80% and MR ratio in B-E1D1 sample is 45%. Based on STEM-EDX investigation, there are two aspectsmore » of how MR ratio of A-E3D1 more higher than those of B-E1D1. Firstly, surface nanostructure on the top of A-E3D1 film is more grazing than on the top of B-E1D1. Analysis with Scanning Transmission Electron Microscope (STEM) equipped with Electron Energy Loss Spectroscopy (EELS) the growth of amorphous carbon layer on top of the implanted diamond film with thickness around 100 nm and only 20 nm on the no implanted sample have observed. Boron atoms were found inside the carbon amorphous layer distributed homogenously. Secondly, oxygen content at the interface between diamond film and silicon substrate in sample A-E3D1 was lower than those in B-E1D1 sample. This condition gives the resistance value in A-E3D1 lower than value in B-E1D1. This result is close to the Raman Spectroscopy data measurement which obviously suggests changes on the Raman spectrum due to implantation related to Oxygen excitation from B-E1D1 sample.« less
1991-12-31
continue on facet coatings, PL correlation to device performance, and CVD diamond. All global issues mentioned in Section 2.0 will be addresses and...The CVD diamond submounts will be hermetically sealed, electrically isolated and liquid cooled. (Deliverables: 5 5-bar arrays.) The following global ... issues not mentioned above will be investigated continuously throughout all four phases of this program: (1) design and development of a mask set to
Investigation of laser ablation of CVD diamond film
NASA Astrophysics Data System (ADS)
Chao, Choung-Lii; Chou, W. C.; Ma, Kung-Jen; Chen, Ta-Tung; Liu, Y. M.; Kuo, Y. S.; Chen, Ying-Tung
2005-04-01
Diamond, having many advanced physical and mechanical properties, is one of the most important materials used in the mechanical, telecommunication and optoelectronic industry. However, high hardness value and extreme brittleness have made diamond extremely difficult to be machined by conventional mechanical grinding and polishing. In the present study, the microwave CVD method was employed to produce epitaxial diamond films on silicon single crystal. Laser ablation experiments were then conducted on the obtained diamond films. The underlying material removal mechanisms, microstructure of the machined surface and related machining conditions were also investigated. It was found that during the laser ablation, peaks of the diamond grains were removed mainly by the photo-thermal effects introduced by excimer laser. The diamond structures of the protruded diamond grains were transformed by the laser photonic energy into graphite, amorphous diamond and amorphous carbon which were removed by the subsequent laser shots. As the protruding peaks gradually removed from the surface the removal rate decreased. Surface roughness (Ra) was improved from above 1μm to around 0.1μm in few minutes time in this study. However, a scanning technique would be required if a large area was to be polished by laser and, as a consequence, it could be very time consuming.
Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya
2013-12-01
Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.
FIB and CVD Fabrication of Carbon Nanostructures on Diamond and Quartz Substrates
2011-03-29
reveal non-linear conductivity, current injection trough insulating diamond, bistability of current flow, and coulomb blockade at room temperature...insulating diamond, bistability of current flow, and coulomb blockade at room temperature. Also we developed methods of fabrication of large uniform...T. Midletton, A. De Stefano, "Characterization of Pink Diamonds of Different Origin: Natural from Argyle, Irradiated, HPHT treated, Treated with
All-Diamond Microelectrodes as Solid State Probes for Localized Electrochemical Sensing.
Silva, Eduardo L; Gouvêa, Cristol P; Quevedo, Marcela C; Neto, Miguel A; Archanjo, Braulio S; Fernandes, António J S; Achete, Carlos A; Silva, Rui F; Zheludkevich, Mikhail L; Oliveira, Filipe J
2015-07-07
The fabrication of an all-diamond microprobe is demonstrated for the first time. This ME (microelectrode) assembly consists of an inner boron doped diamond (BDD) layer and an outer undoped diamond layer. Both layers were grown on a sharp tungsten tip by chemical vapor deposition (CVD) in a stepwise manner within a single deposition run. BDD is a material with proven potential as an electrochemical sensor. Undoped CVD diamond is an insulating material with superior chemical stability in comparison to conventional insulators. Focused ion beam (FIB) cutting of the apex of the ME was used to expose an electroactive BDD disk. By cyclic voltammetry, the redox reaction of ferrocenemethanol was shown to take place at the BDD microdisk surface. In order to ensure that the outer layer was nonelectrically conductive, a diffusion barrier for boron atoms was established seeking the formation of boron-hydrogen complexes at the interface between the doped and the undoped diamond layers. The applicability of the microelectrodes in localized corrosion was demonstrated by scanning amperometric measurements of oxygen distribution above an Al-Cu-CFRP (Carbon Fiber Reinforced Polymer) galvanic corrosion cell.
NASA Astrophysics Data System (ADS)
Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong
2015-08-01
This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.
Thin CVD-diamond RF Pill-Box vacuum windows for LHCD systems
NASA Astrophysics Data System (ADS)
Ravera, G. L.; Ceccuzzi, S.; Cardinali, A.; Cesario, R.; Mirizzi, F.; Schettini, G.; Tuccillo, A. A.
2014-02-01
The preliminary assessment of a Lower Hybrid Current Drive (LHCD) system for the DEMOnstration power plant (DEMO) is mainly focused on the R&D needs of the less conventional RF components of the Main Transmission Line (MTL) and of the launcher. 500 kW, CW klystrons will be used to deliver the RF power to independent Passive Active Multijunction (PAM) launcher modules at 5 GHz. This paper describes the criteria followed to investigate the optimum solution for the RF window used as vacuum barrier between the MTL and the launcher, an open issue in the LHCD system for ITER too. The best candidate, capable of withstanding a power level of, or above, 0.5 MW in CW operation and to satisfy the electrical and thermonuclear requirements, is a Pill-Box assembly, based on a thin single disk of CVD-diamond as dielectric, water cooled at the edge. A thickness of 3 mm, much shorter than half a wavelength of the TE°11 mode in the dielectric as in the conventional window (unfeasible and too expensive with CVD-diamond at these frequencies), is sufficient to limit the exerted stress at the edge under the fracture stress for a maximum pressure applied of 0.9 MPa. In this paper the simulation results of conventional and thin CVD-diamond vacuum windows are presented comparing S-parameters, losses and electric fields in both matching condition and with VSWR = 2, using WR284 and WR229 as input/output rectangular waveguide.
2012-11-01
microwave plasma-enhanced CVD (MPE-CVD) with presputtered metal catalyst, and floating catalyst thermal CVD (FCT-CVD) with xylene and ferrocene liquid...processes with nickel and iron catalysts, respectively. For the FCT-CVD approach, ferrocene is used as an iron source to promoteCNT growth. Based on...furnace is ramped up to the growth temperature of 750∘C. Ferrocene was dissolved into a xylene solvent in a 0.008 : 1molar volume ratio.The xylene
Status of diamond particle detectors
NASA Astrophysics Data System (ADS)
Krammer, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fish, D.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Manfredi, P. F.; Meier, D.; Mishina, M.; LeNormand, F.; Pan, L. S.; Pernegger, H.; Pernicka, M.; Re, V.; Riester, G. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.
1998-11-01
To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given.
EDC-mediated DNA attachment to nanocrystalline CVD diamond films.
Christiaens, P; Vermeeren, V; Wenmackers, S; Daenen, M; Haenen, K; Nesládek, M; vandeVen, M; Ameloot, M; Michiels, L; Wagner, P
2006-08-15
Chemical vapour deposited (CVD) diamond is a very promising material for biosensor fabrication owing both to its chemical inertness and the ability to make it electrical semiconducting that allows for connection with integrated circuits. For biosensor construction, a biochemical method to immobilize nucleic acids to a diamond surface has been developed. Nanocrystalline diamond is grown using microwave plasma-enhanced chemical vapour deposition (MPECVD). After hydrogenation of the surface, 10-undecenoic acid, an omega-unsaturated fatty acid, is tethered by 254 nm photochemical attachment. This is followed by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC)-mediated attachment of amino (NH(2))-modified dsDNA. The functionality of the covalently bound dsDNA molecules is confirmed by fluorescence measurements, PCR and gel electrophoresis during 35 denaturation and rehybridisation steps. The linking method after the fatty acid attachment can easily be applied to other biomolecules like antibodies and enzymes.
Evaluation of a 3D diamond detector for medical radiation dosimetry
NASA Astrophysics Data System (ADS)
Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.
2017-01-01
Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.
Impedance study of undoped, polycrystalline diamond layers obtained by HF CVD
NASA Astrophysics Data System (ADS)
Paprocki, Kazimierz; Fabisiak, Kazimerz; Dychalska, Anna; Szybowicz, Mirosław; Dudkowiak, Alina; Iskaliyeva, Aizhan
2017-04-01
In this paper, we report results of impedance measurements in polycrystalline diamond films deposited on n-Si using HF CVD method. The temperature was changed from 170 K up to RT and the scan frequency from 42 Hz to 5 MHz. The results of impedance measurement of the real and imaginary parts were presented in the form of a Cole-Cole plot in the complex plane. In the temperatures below RT, the observed impedance response of polycrystalline diamond was in the form of a single semicircular form. In order to interpret the observed response, a double resistor-capacitor parallel circuit model was used which allow for interpretation physical mechanisms responsible for such behavior. The impedance results were correlated with Raman spectroscopy measurements.
Superconductivity in CVD diamond films.
Takano, Yoshihiko
2009-06-24
A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.
Fluorescence and Raman Spectroscopy of Doped Nanodiamonds
NASA Astrophysics Data System (ADS)
Kudryavtsev, O. S.; Khomich, A. A.; Sedov, V. S.; Ekimov, E. A.; Vlasov, I. I.
2018-05-01
Raman and fluorescence spectroscopic techniques were used to study doped nanodiamonds synthesized at high pressure and high temperature (HPHT technique) and by chemical vapor deposition from the gas phase (CVD technique). For the CVD diamonds, a hundred-fold increase in fluorescence intensity of the silicon-vacancy centers normalized to the volume of the probe material was observed with an increase in synthesized diamond particle diameter from 150 to 300 nm. Graphitization temperature upon heating in the air significantly lower than for detonation nanodiamonds was found for the boron-doped HPHT nanodiamonds.
Growth, Characterization and Device Development in Monocrystalline Diamond Films
1988-06-01
ABSTRACT (ContMut on reverse,*i nauar and .dnr,A, A. W, -,,,I !Cu single crystals have been grown and prepared for use as a lattice matched substrate. A...literature survey of potential substrates which are both lattice and energy matched with diamond to promote two-dimensional growth has also been...first reported high resolution lattice imaging of CVD diamond. Diamond power MESFET devices have been theoretically evaluated and found to be capable
Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing
2018-05-01
Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.
The CRDS method application for study of the gas-phase processes in the hot CVD diamond thin film.
NASA Astrophysics Data System (ADS)
Buzaianumakarov, Vladimir; Hidalgo, Arturo; Morell, Gerardo; Weiner, Brad; Buzaianu, Madalina
2006-03-01
For detailed analysis of problem related to the hot CVD carbon-containing nano-material growing, we have to detect different intermediate species forming during the growing process as well as investigate dependences of concentrations of these species on different experimental parameters (concentrations of the CJH4, H2S stable chemical compounds and distance from the filament system to the substrate surface). In the present study, the HS and CS radicals were detected using the Cavity Ring Down Spectroscopic (CRDS) method in the hot CVD diamond thin film for the CH4(0.4 %) + H2 mixture doped by H2S (400 ppm). The absolute absorption density spectra of the HS and CS radicals were obtained as a function of different experimental parameters. This study proofs that the HS and CS radicals are an intermediate, which forms during the hot filament CVD process. The kinetics approach was developed for detailed analysis of the experimental data obtained. The kinetics scheme includes homogenous and heterogenous processes as well as processes of the chemical species transport in the CVD chamber.
Study of the effects of focused high-energy boron ion implantation in diamond
NASA Astrophysics Data System (ADS)
Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.
2017-08-01
Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Z.; Brown, I.G.; Ager, J.W. III
Electron emission from chemical vapor deposited (CVD) diamond and amorphous carbon (a-C) films was observed with a simple field emission device (FED). Both diamond and a-C films were prepared with microwave plasma-enhanced CVD techniques. Electron emission in the field strength range +10 to {minus}10 MVm{sup {minus}1} was studied, and the field emission source was confirmed by a diode characteristic of the {ital I}-{ital V} curve, a straight line in the Fowler--Nordheim (F-N) plot, and direct observation of light emission from a fluorescent screen. The turn-on field strength was {similar_to}5 MVm{sup {minus}1}, which was similar for both kinds of carbon films.more » The highest current density for diamond films, observed at a field strength of 10 MVm{sup {minus}1}, was {similar_to}15 {mu}A cm{sup {minus}2}. Diamond films yielded a higher emission current than a-C films. The reasons for the observed field emission are discussed.« less
Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond.
Khan, R U A; Martineau, P M; Cann, B L; Newton, M E; Twitchen, D J
2009-09-09
We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N(S)(0)) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of N(S)(0) centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH(-)) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N(S)(0) donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N(S)(0) concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N(S)(0) concentration is greater than the increase in NVH(-) concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.
Freestanding diamond films: plates, tubes, and curved diaphragms
NASA Astrophysics Data System (ADS)
Obata, Tatsuo; Morimoto, Shingo
1990-01-01
Free-standing diamond films are prepared by CVD technique to examine their properties directly. The products have a variety of shapes such as plates, tubes and curved diaphragms. Coefficients of thermal expansion (GTE) of the tube are similar to the values of a bulk diamond in the range from 40°C to 500°C. It is found that polished diamond film has uniform infrared transmission ranging from 500cm-1 to 4000cm-1. A speaker diaphragm will be a good application for free-standing diamond film.
Pushing the boundaries of high power lasers: low loss, large area CVD diamond
NASA Astrophysics Data System (ADS)
Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard
2018-02-01
Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.
The 13C(n,α0)10Be cross section at 14.3 MeV and 17 MeV neutron energy
NASA Astrophysics Data System (ADS)
Kavrigin, P.; Belloni, F.; Frais-Koelbl, H.; Griesmayer, E.; Plompen, A. J. M.; Schillebeeckx, P.; Weiss, C.
2017-09-01
At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0) reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α0)10Be cross section was measured relative to 12C(n,α0)9Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition) diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section.
1994-05-01
thermal stresses of 10 million Watts per meter, 1,000 times better than Zerodur *. This property is also important for many thermal management...products UTD has coated to date include: • Optical windows, lenses, and mirrors . Zinc sulfide infrared windows coated with a 2.5 micron-thick...implants 16, 49 microwave plasma-enhanced CVD 2 mirrors , diamond-coated 49 models of diamond growth 10, 25, 33, 34, 39 moderators 10
A thermal-sensitive device fabricated with diamond film and a planar microelectrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changzhi Gu; Zengsun Jin; Xianyi Lu
1995-12-31
Polycrystalline diamond film were deposited by means of the hot filament CVD technique (HFCVD) onto a planar interdigital Ti microelectrode arrays, and forming a thermal-sensitive device, The resistor changes of diamond film caused by temperature are shown to be sensitive, reproducible, rapid and stable thermal-sensitive device. The characteristics of thermal-sensitive for this device was study. Functionalized diamond film deposited onto planar microelectrode arrays can easily detect temperature from 20{degrees}C to 700{degrees}C.
1993-12-01
diamond carbon on diamond Measurements of CVD diamond grown directly on Mo TEM specimen grids were made through a collaboration with the Fritz Haber ...Hawaii, May 1993. 2. --- , University of Illinois at Chicago, March 1993. 3. --- , Fritz Haber Institute, Berlin, June 1993. 3.0 Appendix: 8 1 Real...University, Athens OH 45701 -2979 *Permanent address: Fritz Haber Institute, Berlin, Germany. Thin (1Onm) carbon films are found to adhere to Chemical Vapor
∆ E /∆ E Measurements of Energetic Ions Using CVD Diamond Detectors
Alghamdi, Ahmed; Heilbronn, Lawrence; Castellanos, Luis A.; ...
2018-06-20
Experimental and computational results of a Δ E /Δ E diamond detection system are presented. The Δ E /Δ E detection system was evaluated using energetic proton and iron beams striking thick polyethylene targets at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The measured data for diamond sensor A show good agreement with the Geant4 simulation. In addition, simulations have demonstrated the ability to identify hydrogen isotopes using a diamond detection system.
∆ E /∆ E Measurements of Energetic Ions Using CVD Diamond Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alghamdi, Ahmed; Heilbronn, Lawrence; Castellanos, Luis A.
Experimental and computational results of a Δ E /Δ E diamond detection system are presented. The Δ E /Δ E detection system was evaluated using energetic proton and iron beams striking thick polyethylene targets at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The measured data for diamond sensor A show good agreement with the Geant4 simulation. In addition, simulations have demonstrated the ability to identify hydrogen isotopes using a diamond detection system.
Metzler, Philipp; von Wilmowsky, Cornelius; Stadlinger, Bernd; Zemann, Wolfgang; Schlegel, Karl Andreas; Rosiwal, Stephan; Rupprecht, Stephan
2013-09-01
Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months. Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos(®)) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.
Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S
2012-07-01
Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.
Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering
NASA Astrophysics Data System (ADS)
Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu
2018-02-01
A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.
Equilibrium, chemical kinetic, and transport limitations to diamond growth
NASA Astrophysics Data System (ADS)
Evans, Edward Anthony
Because of their extreme properties, diamond films have found some industrial applications, i.e., heat sinks and tool coatings. However, to increase their economic attractiveness, the growth rate must be increased, the deposition temperature must be lowered, and single crystal films must be achieved. We have studied two types of chemical vapor deposition systems, hot-filament and microwave assisted, in order to understand the factors limiting diamond growth rate. From simultaneous microbalance growth rate measurements and mass spectrometer measurements, changes in growth rate are correlated with changes in gas phase composition. Measured reaction orders support the proposal that diamond growth occurs through a single-carbon-atom species, e.g., CHsb3. When a two-carbon atom source gas is used, it is likely that the dissociation to two, single-carbon atom species occurs on the substrate surface (dissociative adsorption). Furthermore, a shift to zero-order suggests that the diamond growth is a surface-site limited process at higher hydrocarbon concentrations. The diamond growth rate maximum with pressure is explained by transport limitations of species within the reaction zone. The reported diamond growth rates in the hot-filament reactor are several times higher than those reported by other research groups. These higher growth rates result from surrounding the substrate with the filament. We have used the measured growth rates, filament temperatures, and thermocouple measurements to calculate activation energies for diamond growth. When the filament temperature is used for the calculation, an activation energy of 73 kcal per mole is obtained; however, based on estimated substrate temperatures, an activation energy of 18 kcal per mole is determined. A dimensional analysis approach was developed to select the most important gas phase reactions occurring during diamond CVD. Steady-state analysis of these reactions and the application of mass transport equations lead to the conclusion that diamond growth, in current hot-filament and microwave assisted CVD processes, is occurring in a partial equilibrium environment in which diffusion of atomic hydrogen controls the overall diamond growth rate. The initial stages of diamond growth on non-diamond substrates correspond to carburization, nucleation and growth. When polycrystalline or single crystal diamond is used as a substrate, the carburization and nucleation stages are not observed and growth begins immediately. The nucleation rate depends sensitively on the radiative heat transfer to the substrate. Adding ozone to the hot-filament CVD charge increases the production of carbon monoxide and carbon dioxide; this increase is observed with or without the filament being activated. A consistent effect on the diamond growth rate was not observed when ozone was added to the hot-filament reactor.
1997-01-01
Chemistry Division, Code 6174 Materiaux Leninsky prospekt, 53 Gas/Surface Dinamics Section et des Hautes Pressions Moscow 117924, Russia Washington, D.C...reactor for diamond CVD. Strengths and limitations of this and the various alternative H atom detection methods will be summarised, before
Single crystal CVD diamond membranes as Position Sensitive X-ray Detector
NASA Astrophysics Data System (ADS)
Desjardins, K.; Menneglier, C.; Pomorski, M.
2017-12-01
Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.
2013-01-01
FCT-CVD) with xylene and ferrocene liquid mixture without any prior catalyst deposition. T-CVD is a low cost system that can easily be set up to grow...iron catalysts, respectively. For the FCT-CVD approach, ferrocene is used as an iron source to promote CNT growth. Based on these repeatable results...kept at 250 ° C while the high temperature furnace is ramped up to the growth temperature of 750 ° C. Ferrocene was dissolved into xylene solvent in
NASA Astrophysics Data System (ADS)
Ballinger, Jared
Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase. Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels to promote diamond film surface modification. The future direction for continued research of nanostructured diamond coatings on microwave plasma CVD borided stainless steel should further investigate the adhesion of both borided interlayers and subsequent NSD films in addition to short, interrupted diamond depositions to study the interlayer/diamond film interface.
On the Fabrication and Behavior of Diamond Microelectromechanical Sensors (DMEMS)
NASA Technical Reports Server (NTRS)
Holmes, K.; Davidson, J. L.; Kang, W. P.; Howell, M.
2001-01-01
CVD (chemically vapor deposited) diamond films can be processed similar to "conventional" semiconductor device fabrication and as such can be used to achieve microelectromechanical structures (MEMS) also similar to, for example, silicon technology. Very small cantilever beams, membranes, stripes, tips, etc. can be constructed in doped and undoped diamond films and offer an array of choices in diamond with its known superior properties such as elastic modulus, high temperature semiconduction, high thermal conductivity, very low coefficient of expansion and numerous other diamond parameters. This paper will review the construction and behavior of the second generation DMEMS devices comprised as an accelerometer with a diamond diaphragm for use in very high G applications and a diamond pressure sensor for very high temperature and frequency response.
Lárraga-Gutiérrez, José Manuel; Ballesteros-Zebadúa, Paola; Rodríguez-Ponce, Miguel; García-Garduño, Olivia Amanda; de la Cruz, Olga Olinca Galván
2015-01-21
A CVD based radiation detector has recently become commercially available from the manufacturer PTW-Freiburg (Germany). This detector has a sensitive volume of 0.004 mm(3), a nominal sensitivity of 1 nC Gy(-1) and operates at 0 V. Unlike natural diamond based detectors, the CVD diamond detector reports a low dose rate dependence. The dosimetric properties investigated in this work were dose rate, angular dependence and detector sensitivity and linearity. Also, percentage depth dose, off-axis dose profiles and total scatter ratios were measured and compared against equivalent measurements performed with a stereotactic diode. A Monte Carlo simulation was carried out to estimate the CVD small beam correction factors for a 6 MV photon beam. The small beam correction factors were compared with those obtained from stereotactic diode and ionization chambers in the same irradiation conditions The experimental measurements were performed in 6 and 15 MV photon beams with the following square field sizes: 10 × 10, 5 × 5, 4 × 4, 3 × 3, 2 × 2, 1.5 × 1.5, 1 × 1 and 0.5 × 0.5 cm. The CVD detector showed an excellent signal stability (<0.2%) and linearity, negligible dose rate dependence (<0.2%) and lower response angular dependence. The percentage depth dose and off-axis dose profiles measurements were comparable (within 1%) to the measurements performed with ionization chamber and diode in both conventional and small radiotherapy beams. For the 0.5 × 0.5 cm, the measurements performed with the CVD detector showed a partial volume effect for all the dosimetric quantities measured. The Monte Carlo simulation showed that the small beam correction factors were close to unity (within 1.0%) for field sizes ≥1 cm. The synthetic diamond detector had high linearity, low angular and negligible dose rate dependence, and its response was energy independent within 1% for field sizes from 1.0 to 5.0 cm. This work provides new data showing the performance of the CVD detector compared against a high spatial resolution diode. It also presents a comparison of the CVD small beam correction factors with those of diode and ionization chamber for a 6 MV photon beam.
Ionization signals from diamond detectors in fast-neutron fields
NASA Astrophysics Data System (ADS)
Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.
2016-09-01
In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.
Luminescence and conductivity studies on CVD diamond exposed to UV light
NASA Astrophysics Data System (ADS)
Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.
1999-04-01
The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.
Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav
2017-11-08
Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.
Micro-Raman Analysis of Irradiated Diamond Films
NASA Technical Reports Server (NTRS)
Newton, R. L.; Munafo, Paul M. (Technical Monitor)
2002-01-01
Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies such as Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (1015 - 1017 H+/cm2 doses) irradiated chemical vapor deposited (CVD) diamond reveals that the microstructure is retained even after high radiation exposure.
NASA Astrophysics Data System (ADS)
Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Zhang, Jian; Lou, Liren; Zhu, Wei; Wang, Guanzhong
2016-11-01
Utilizing PMMA mask, nanoscale arrays of nitrogen-vacancy (NV) centers in diamond have been fabricated by ion beam implantation (IBM). Long coherence time of the spin of NV centers, comparable with that of the native NV centers in CVD grown diamond, has been achieved by high-temperature annealing. With dynamic decoupling technology, coherence time was extended to 1.4 millisecond, which enable an ac magnetic field detection with a sensitivity of 80 nT\\cdot Hz^{-1/2}.
Multi-Energy Processing for Novel Coating Technologies
2014-12-18
tungsten carbide (WC) substrate (BS-6S, Basic Carbide Corp.) with a dimension of 25.4 x 25.4 x 1.6 mm^ and a cobalt composition of 6% was placed on a...as dopant sources. (a) No NH3 + No laser (b) NH3 added, No laser (c) 10.591 ^m Figure 4.4 SEM micrographs of the diamond films deposited using...typed 37 diamond. Nitrogen was widely used as n-typed dopant . Nitrogen-containing additives in CVD diamond growth led to severe deterioration of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S.; Bentley, C. D.; Foster, J. M.
2008-10-15
Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculationsmore » using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.« less
NASA Astrophysics Data System (ADS)
Gao, Jie; Hei, Hongjun; Shen, Yanyan; Liu, Xiaoping; Tang, Bin; He, Zhiyong; Yu, Shengwang
2015-11-01
W metallic coatings were synthesized on free-standing chemical vapor deposition (CVD) diamond films using double glow plasma surface alloying (DGPSA) technology. The influence of varying metalizing temperatures on the microstructures, phase composition and adhesion of the W metallic coatings were investigated. Likewise, the effectiveness of the W metallic coatings was preliminary evaluated via examining the shear strength of the brazing joints between W-metalized diamond films and commercial cemented carbide (WC-Co) inserts. The results showed that continuous and compact W metallic coatings were formed on the diamond films in the temperature range of 750-800 °C, while cracks or cavities presented at the W/diamond interface at 700 °C, 850 °C and 900 °C. Inter-diffusion of W and C atoms preformed, and WC and W2C were formed at the W/diamond interfaces at all temperatures except 700 °C, at which only W2C was formed. Moreover, etched cavities appeared at the W/diamond interface when the temperature exceeded 850 °C. The critical loads for coating delamination, as measured with the scratch test, increased as the temperature rose from 700 °C to 800 °C, while decreased with further increasing temperature. The maximum load was obtained at 800 °C with a value of 17.1 N. Besides, the shear strength of the brazing joints depicted the similar trend with the critical load. The highest shear strength (249 MPa) was also obtained at 800 °C.
Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.
Kasiwattanawut, Haruetai; Tchouaso, Modeste Tchakoua; Prelas, Mark A
2018-05-22
This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239 Pu and 241 Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239 Pu and 2.2% at 5.48 MeV of 241 Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.; Chubenko, A. P.; Ralchenko, V. G.; Bolshakov, A. P.
2015-07-01
At the ion accelerator HELIS at LPI, the neutron yield is investigated in DD reactions within a strongly textured polycrystalline deuterium-saturated CVD diamond under irradiation by a deuterium ion beam with the energy of less than 30 keV. The measurements of the neutron flux in the beam direction are performed using a multichannel detector based on 3He counters, in dependence on the target angle, β, with respect to the beam axis. A significant anisotropy in the neutron yield is observed. At β = 0° the yield is higher by a factor of 3 as compared to that at β = ±45°. The possible reasons for the anisotropy, including ion channeling, are discussed.
Carbon-Based Wear Coatings: Properties and Applications
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2003-01-01
The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.
2013-01-01
catalyst thermal CVD (FCT-CVD) with xylene and ferrocene liquid mixture without any prior catalyst deposition. T-CVD is a low-cost system that can... ferrocene is used as an iron source to promoteCNT growth. Based on these repeatable results, the CNT growth parameters were used to grow CNTs on the...temperature furnace is ramped up to the growth temperature of 750∘C. Ferrocene was dissolved into a xylene solvent in a 0.008 : 1molar volume ratio.The xylene
Fabrication of monolithic microfluidic channels in diamond with ion beam lithography
NASA Astrophysics Data System (ADS)
Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.
2017-08-01
In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.
Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim
2016-11-17
Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c -axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.
Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1996-01-01
Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6) mm(exp 3) N(exp -1) m(exp -1). Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum.
Trapezoidal diffraction grating beam splitters in single crystal diamond
NASA Astrophysics Data System (ADS)
Kiss, Marcell; Graziosi, Teodoro; Quack, Niels
2018-02-01
Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.
Zhuang, Hao; Song, Bo; Staedler, Thorsten; Jiang, Xin
2011-10-04
By combining microcontact printing with a nanodiamond seeding technique, a precise micrometer-sized chemical vapor deposition (CVD) diamond pattern have been obtained. On the basis of the guidance of basic theoretical calculations, monodisperse detonation nanodiamonds (DNDs) were chosen as an "ink" material and oxidized poly(dimethylsiloxane) (PDMS) was selected to serve as a stamp because it features a higher interaction energy with the DNDs compared to that of the original PDMS. The adsorption kinetics shows an approximately exponential law with a maximum surface DND density of 3.4 × 10(10) cm(-2) after 20 min. To achieve a high transfer ratio of DNDs from the PDMS stamp to a silicon surface, a thin layer of poly(methyl methacrylate) (PMMA) was spin coated onto the substrates. A microwave plasma chemical vapor deposition system was used to synthesize the CVD diamond on the seeded substrate areas. Precise diamond patterns with a low expansion ratio (3.6%) were successfully prepared after 1.5 h of deposition. Further increases in the deposition time typically lead to a high expansion rate (∼0.8 μm/h). The general pattern shape, however, did not show any significant change. Compared with conventional diamond pattern deposition methods, the technique described here offers the advantages of being simple, inexpensive, damage-free, and highly compatible, rendering it attractive for a broad variety of industrial applications. © 2011 American Chemical Society
Nanodiamonds: The ways forward
NASA Astrophysics Data System (ADS)
Tamburri, Emanuela; Orlanducci, Silvia; Reina, Giacomo; Lavecchia, Teresa; Angjellari, Mariglen; Rossi, Marco; Terranova, Maria Letizia
2015-06-01
We present here a short overview of the main classes of methods used to generate diamond nanostructures. The described methodologies, namely the CVD techniques, the explosive reactions, the laser-induced processes and the plasma treatments, offer the feasibility to produce nanosized diamonds in forms of powders or films, to modulate size, shape and structure of individual nanograins or of nanodiamond aggregates, to build complex architectures. A proper design and a subsequent controlled production of diamond structures at the nanoscale are strict requirements for the transition from fundamental material research to real-world applications.
NASA Astrophysics Data System (ADS)
Lu, Xianfeng
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
NASA Astrophysics Data System (ADS)
Nazari, Mohammad; Hancock, B. Logan; Anderson, Jonathan; Hobart, Karl D.; Feygelson, Tatyana I.; Tadjer, Marko J.; Pate, Bradford B.; Anderson, Travis J.; Piner, Edwin L.; Holtz, Mark W.
2017-10-01
Studies of diamond material for thermal management are reported for a nominally 1-μm thick layer grown on silicon. Thickness of the diamond is measured using spectroscopic ellipsometry. Spectra are consistently modeled using a diamond layer taking into account surface roughness and requiring an interlayer of nominally silicon carbide. The presence of the interlayer is confirmed by transmission electron microscopy. Thermal conductivity is determined based on a heater which is microfabricated followed by back etching to produce a supported diamond membrane. Micro-Raman mapping of the diamond phonon is used to estimate temperature rise under known drive conditions of the resistive heater. Consistent values are obtained for thermal conductivity based on straightforward analytical calculation using phonon shift to estimate temperature and finite element simulations which take both temperature rise and thermal stress into account.
Silicon Oil DC200(R)5CST as AN Alternative Coolant for Cvd Diamond Windows
NASA Astrophysics Data System (ADS)
Vaccaro, A.; Aiello, G.; Meier, A.; Schere, T.; Schreck, S.; Spaeh, P.; Strauss, D.; Gantenbein, G.
2011-02-01
The production of high power mm-wave radiation is a key technology in large fusion devices, since it is required for localized plasma heating and current drive. Transmission windows are necessary to keep the vacuum in the gyrotron system and also act as tritium barriers. With its excellent optical, thermal and mechanical properties, synthetic CVD (Chemical Vapor Deposition) diamond is the state of the art material for the cw transmission of the mm-wave beams produced by high power gyrotrons. The gyrotrons foreseen for the W7-X stellarator are designed for cw operation with 1 MW output power at 140 GHz. The output window unit is designed by TED (Thales Electron Devices, France) using a single edge circumferentially cooled CVD-diamond disc with an aperture of 88 mm. The window unit is cooled by de-ionized water which is considered as chemical aggressive and might cause corrosion in particular at the brazing. The use of a different coolant such as silicon oil could prevent this issue. The cooling circuit has been simulated by steady-state CFD analysis. A total power generation of 1 kW (RF transmission losses) with pure Gaussian distribution has been assumed for the diamond disc. The performance of both water and the industrial silicon oil DC200(R) have been investigated and compared with a focus on the temperature distribution on the disc, the pressure drop across the cooling path and the heat flux distribution. Although the silicon oil has a higher viscosity (~x5), lower heat capacity (~x1/2) and lower thermal conductivity (~x1/3), it has proven to be a good candidate as alternative to water.
Ultrasonic cavity preparation using CVD coated diamond bur: A case report
de Vasconcellos, Beatriz Tholt; Thompson, Jeffrey Y.; de Paula Macedo, Manoel Roberto; de Oliveira Maia, Janaína Monalisa; Oda, Margareth; Garone-Netto, Narciso
2013-01-01
Before any restorative procedure can be undertaken a proper cavity preparation is required. This clinical step is the mechanical alteration of the tooth to receive a restorative material with which a satisfactory form, function and the esthetics of the tooth will be established. In recent years improvements in materials and techniques have been devised and new technologies are now available for this purpose. The aim of the present study is to report two clinical cases in which a CVD coated diamond bur coupled to an ultrasonic handpiece is used in dental preparation. This technique provides an accurate and conservative tooth preparation with ideal access and visibility and because of enhanced efficiency can also play a role in eliminating some of the patient discomfort of the dental treatment. PMID:23408140
Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim
2016-01-01
Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions. PMID:28335345
Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas
NASA Astrophysics Data System (ADS)
Tallaire, A.; Mayer, L.; Brinza, O.; Pinault-Thaury, M. A.; Debuisschert, T.; Achard, J.
2017-10-01
High density Nitrogen-Vacancy (NV) centre ensembles incorporated in plasma assisted chemical vapour deposition (CVD) diamond are crucial to the development of more efficient sensing devices that use the properties of luminescent defects. Achieving high NV doping with N2 as the dopant gas source during diamond growth is, however, plagued by the formation of macroscopic and point defects that quench luminescence. Moreover, such NVs are found to exhibit poor photostability under high laser powers. Although this effect can be harnessed to locally and durably switch off NV luminescence for data storage, it is usually undesirable for most applications. In this work, the use of N2O as an alternative doping source is proposed. Much higher amounts of the doping gas can be added without significantly generating defects, which allows the incorporation of perfectly photostable and higher density NV ensembles. This effect is believed to be related to the lower dissociation energy of the N2O molecule together with the beneficial effect of the presence of a low and controlled amount of oxygen near the growing surface.
ATLAS DBM Module Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soha, Aria; Gorisek, Andrej; Zavrtanik, Marko
2014-06-18
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is beingmore » investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond-based luminosity monitor to complement the time-segmented ATLAS Beam Conditions Monitor (BCM) so that, when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning, the ATLAS luminosity measurement is not compromised.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konov, V I
The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)
Thin film diamond temperature sensor array for harsh aerospace environment
NASA Technical Reports Server (NTRS)
Aslam, M.; Masood, A.; Fredricks, R. J.; Tamor, M. A.
1992-01-01
The feasibility of using polycrystalline CVD diamond films as temperature sensors in harsh aerospace environment associated with hypersonic flights was tested using patterned diamond resistors, fabricated on flat or curved oxidized Si surfaces, as temperature sensors at temperatures between 20 and 1000 C. In this temperature range, the measured resistance was found to vary over 3 orders of magnitude and the temperature coefficient of resistance to change from 0.017/K to 0.003/K. After an annealing treatment, the resistance change was reproducible within 1 percent on the entire temperature range for short measuring times.
2016-01-01
We report a combined experimental and modeling study of microwave-activated dilute CH4/N2/H2 plasmas, as used for chemical vapor deposition (CVD) of diamond, under very similar conditions to previous studies of CH4/H2, CH4/H2/Ar, and N2/H2 gas mixtures. Using cavity ring-down spectroscopy, absolute column densities of CH(X, v = 0), CN(X, v = 0), and NH(X, v = 0) radicals in the hot plasma have been determined as functions of height, z, source gas mixing ratio, total gas pressure, p, and input power, P. Optical emission spectroscopy has been used to investigate, with respect to the same variables, the relative number densities of electronically excited species, namely, H atoms, CH, C2, CN, and NH radicals and triplet N2 molecules. The measurements have been reproduced and rationalized from first-principles by 2-D (r, z) coupled kinetic and transport modeling, and comparison between experiment and simulation has afforded a detailed understanding of C/N/H plasma-chemical reactivity and variations with process conditions and with location within the reactor. The experimentally validated simulations have been extended to much lower N2 input fractions and higher microwave powers than were probed experimentally, providing predictions for the gas-phase chemistry adjacent to the diamond surface and its variation across a wide range of conditions employed in practical diamond-growing CVD processes. The strongly bound N2 molecule is very resistant to dissociation at the input MW powers and pressures prevailing in typical diamond CVD reactors, but its chemical reactivity is boosted through energy pooling in its lowest-lying (metastable) triplet state and subsequent reactions with H atoms. For a CH4 input mole fraction of 4%, with N2 present at 1–6000 ppm, at pressure p = 150 Torr, and with applied microwave power P = 1.5 kW, the near-substrate gas-phase N atom concentration, [N]ns, scales linearly with the N2 input mole fraction and exceeds the concentrations [NH]ns, [NH2]ns, and [CN]ns of other reactive nitrogen-containing species by up to an order of magnitude. The ratio [N]ns/[CH3]ns scales proportionally with (but is 102–103 times smaller than) the ratio of the N2 to CH4 input mole fractions for the given values of p and P, but [N]ns/[CN]ns decreases (and thus the potential importance of CN in contributing to N-doped diamond growth increases) as p and P increase. Possible insights regarding the well-documented effects of trace N2 additions on the growth rates and morphologies of diamond films formed by CVD using MW-activated CH4/H2 gas mixtures are briefly considered. PMID:27718565
Nanostructured Diamond Device for Biomedical Applications.
Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S
2015-02-01
Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.
A new tubular hot-wire CVD for diamond coating
NASA Astrophysics Data System (ADS)
Motahari, Hamid; Bellah, Samad Moemen; Malekfar, Rasoul
2017-06-01
A new tubular hot-wire chemical vapor deposition (HWCVD) system using a tubular quartz vacuum chamber has been fabricated. The filaments in this system can heat the substrate and act as a gas activator and thermally activator for gas species at the same time. The nano- and microcrystalline diamond coatings on the surface of steel AISI 316 substrates have been grown. To assess the results, SEM and FESEM images and Raman spectroscopy investigations have been applied. The results reveal that micro- and nanocrystalline diamond structures have been formed in the coatings, but the disordered diamond and some non-diamond phases, such as graphitic carbons, are also present in the coating layers. The analytical measurements show the growth of diamond films with well-faceted crystals in (111) direction. However, intrinsic stress, secondary nucleation, and poor adhesion are the main issues of future research for this new designed HWCVD.
A large area diamond-based beam tagging hodoscope for ion therapy monitoring
NASA Astrophysics Data System (ADS)
Gallin-Martel, M.-L.; Abbassi, L.; Bes, A.; Bosson, G.; Collot, J.; Crozes, T.; Curtoni, S.; Dauvergne, D.; De Nolf, W.; Fontana, M.; Gallin-Martel, L.; Hostachy, J.-Y.; Krimmer, J.; Lacoste, A.; Marcatili, S.; Morse, J.; Motte, J.-F.; Muraz, J.-F.; Rarbi, F. E.; Rossetto, O.; Salomé, M.; Testa, É.; Vuiart, R.; Yamouni, M.
2018-01-01
The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l'hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused ( 1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.
Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, M. L.; Rossi, M.; Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it
The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.
Preliminary Results of Field Emission Cathode Tests
NASA Technical Reports Server (NTRS)
Sovey, James S.; Kovaleski, Scott D.
2001-01-01
Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.
Diamond-Reinforced Matrix Composites
1993-05-10
by chemical vapor deposition ( CVD ). 14 While preferable, scratching and oil- coating of substrate filaments 15 may not be absolutely necessary. For...composites. 25 13 Docket No.: N.C. 72,578 PATENT APPLICATION Inventor’s Name: Natishan et al. 1 4) Anti -oxidation coatings such as refractory oxides or 2...the mismatch in the 5 coefficients of thermal expansion (CTE). By coating the 6 reinforcement with diamond prior to the final 7 anti -oxidant coating
Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1994-01-01
Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum. The wear mechanism of diamond films is that of small fragments chipping off the surface. The size of wear particles is related to the extent of wear rates.
Synthesizing Diamond from Liquid Feedstock
NASA Technical Reports Server (NTRS)
Tzeng, Yonhua
2005-01-01
A relatively economical method of chemical vapor deposition (CVD) has been developed for synthesizing diamond crystals and films. Unlike prior CVD methods for synthesizing diamond, this method does not require precisely proportioned flows of compressed gas feedstocks or the use of electrical discharges to decompose the feedstocks to obtain free radicals needed for deposition chemical reactions. Instead, the feedstocks used in this method are mixtures of common organic liquids that can be prepared in advance, and decomposition of feedstock vapors is effected simply by heating. The feedstock used in this method is a solution comprising between 90 and 99 weight percent of methanol and the balance of one or more other oxyhydrocarbons that could include ethanol, isopropanol, and/or acetone. This mixture of compounds is chosen so that dissociation of molecules results in the desired proportions of carbon-containing radicals (principally, CH3) and of OH, H, and O radicals. Undesirably, the CVD temperature and pressure conditions thermodynamically favor the growth of graphite over the growth of diamond. The H radicals are desirable because they help to stabilize the growing surface of diamond by shifting the thermodynamic balance toward favoring the growth of diamond. The OH and O radicals are desirable because they preferentially etch graphite and other non-diamond carbon, thereby helping to ensure the net deposition of pure diamond. The non-methanol compounds are included in the solution because (1) methanol contains equal numbers of C and O atoms; (2) an excess of C over O is needed to obtain net deposition of diamond; and (3) the non-methanol molecules contain multiple carbon atoms for each oxygen atom and thus supply the needed excess carbon A typical apparatus used in this method includes a reservoir containing the feedstock liquid and a partially evacuated stainless-steel reaction chamber. The reservoir is connected to the chamber via tubing and a needle valve or other suitable flow controller. When the liquid enters the low-pressure environment inside the chamber, it evaporates to form a vapor mixture of the same chemical composition. In addition to the inlet for the feedstock liquid, the chamber is fitted with an outlet connected to a vacuum pump (not shown) through a throttle valve (also not shown) that is automatically controlled to keep the pressure at or near the required value throughout the deposition process. Inside the chamber, a spiral filament made of tungsten, tantalum, graphite, or other high-melting-temperature material is electrically heated to a temperature >2,000 C high enough to cause dissociation of vapor molecules into the aforementioned radicals. A deposition substrate typically, a diamond-polished silicon wafer about 2.5 cm square is positioned about 2 cm away from the filament. The exact location of the substrate is chosen so that the substrate becomes heated by the filament to a deposition temperature in the approximate range of 800 to 1,000 C.
Cold cathode vacuum discharge tube
Boettcher, Gordon E.
1998-01-01
A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.
D.C. Arcjet Diamond Deposition
NASA Astrophysics Data System (ADS)
Russell, Derrek Andrew
1995-01-01
Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by counting the number of radiated Swan band photons. This is big enough to account for a significant amount (10%) of the diamond growth.
Gonzaga, Carla Castiglia; Bravo, Ruth Peggy; Pavelski, Thiago Vinícius; Garcia, Paula Pontes; Correr, Gisele Maria; Leonardi, Denise Piotto; da Cunha, Leonardo Fernandes; Furuse, Adilson Yoshio
2015-01-01
Objectives. This study evaluated the influence of cavity surface finishing with diamond burs of different grit mounted on high-speed turbine and ultrasound on the roughness and microshear bond strength (MBS) of a lithium silicate glass-ceramic to enamel and dentin. Methods. Enamel and dentin specimens were divided into seven groups, according to the type of surface finishing: 1200-grit sandpaper (control), two different brands of medium-grit and fine-grit diamond burs in a high-speed turbine; medium-grit and fine-grit CVD (chemical vapor deposition) tips in an ultrasonic device. Roughness parameters (n = 5) and MSBS to a glass-ceramic (n = 10) were determined. Data were analyzed using ANOVA and Tukey's test (α = 5%). Results. Control group showed lower mean roughness readings and groups that used medium-grit diamond burs showed the highest mean roughness values. Regarding MSBS, there was no statistical difference when comparing the groups gritted with the same brand of medium- and fine-grit burs and tips. Conclusions. Cavity surface finishing influenced the roughness parameters and MSBS of a glass-ceramic to enamel and dentin. Medium-grit diamond burs in high-speed turbine showed the highest mean roughness values. Fine-grit CVD tips in ultrasound presented the highest MSBS values for both enamel and dentin. PMID:27347507
Gonzaga, Carla Castiglia; Bravo, Ruth Peggy; Pavelski, Thiago Vinícius; Garcia, Paula Pontes; Correr, Gisele Maria; Leonardi, Denise Piotto; da Cunha, Leonardo Fernandes; Furuse, Adilson Yoshio
2015-01-01
Objectives. This study evaluated the influence of cavity surface finishing with diamond burs of different grit mounted on high-speed turbine and ultrasound on the roughness and microshear bond strength (MBS) of a lithium silicate glass-ceramic to enamel and dentin. Methods. Enamel and dentin specimens were divided into seven groups, according to the type of surface finishing: 1200-grit sandpaper (control), two different brands of medium-grit and fine-grit diamond burs in a high-speed turbine; medium-grit and fine-grit CVD (chemical vapor deposition) tips in an ultrasonic device. Roughness parameters (n = 5) and MSBS to a glass-ceramic (n = 10) were determined. Data were analyzed using ANOVA and Tukey's test (α = 5%). Results. Control group showed lower mean roughness readings and groups that used medium-grit diamond burs showed the highest mean roughness values. Regarding MSBS, there was no statistical difference when comparing the groups gritted with the same brand of medium- and fine-grit burs and tips. Conclusions. Cavity surface finishing influenced the roughness parameters and MSBS of a glass-ceramic to enamel and dentin. Medium-grit diamond burs in high-speed turbine showed the highest mean roughness values. Fine-grit CVD tips in ultrasound presented the highest MSBS values for both enamel and dentin.
Identification of the structure of the 3107 cm(-1) H-related defect in diamond.
Goss, J P; Briddon, P R; Hill, V; Jones, R; Rayson, M J
2014-04-09
A prominent hydrogen-related infrared absorption peak seen in many types of diamonds at 3107 cm(-1) has been the subject of investigation for many years. It is present in natural type-Ia material and can be introduced by heat-treating synthetic or CVD diamond. Based upon the most recent experimental data, it is thought that the defect giving rise to this vibrational mode is vacancy-related and is likely to contain nitrogen. Using first-principles simulations we present a VN3H model for the originating centre that simultaneously satisfies the different experimental observations including the strain response.
Dosimetry with diamond detectors
NASA Astrophysics Data System (ADS)
Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.
2010-05-01
In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.
Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth
Tzeng, Yan-Kai; Zhang, Jingyuan Linda; Lu, Haiyu; ...
2017-02-09
Color center-containing nanodiamonds have many applications in quantum technologies and biology. Diamondoids, molecular-sized diamonds have been used as seeds in chemical vapor deposition (CVD) growth. However, optimizing growth conditions to produce high crystal quality nanodiamonds with color centers requires varying growth conditions that often leads to ad-hoc and time-consuming, one-at-a-time testing of reaction conditions. In order to rapidly explore parameter space, we developed a microwave plasma CVD technique using a vertical, rather than horizontally oriented stage-substrate geometry. With this configuration, temperature, plasma density, and atomic hydrogen density vary continuously along the vertical axis of the substrate. Finally, this variation allowedmore » rapid identification of growth parameters that yield single crystal diamonds down to 10 nm in size and 75 nm diameter optically active center silicon-vacancy (Si-V) nanoparticles. Furthermore, this method may provide a means of incorporating a wide variety of dopants in nanodiamonds without ion irradiation damage.« less
The edge transient-current technique (E-TCT) with high energy hadron beam
NASA Astrophysics Data System (ADS)
Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko
2016-09-01
We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.
NASA Technical Reports Server (NTRS)
Murakawa, M. (Editor); Miyoshi, K. (Editor); Koga, Y. (Editor); Schaefer, L. (Editor); Tzeng, Y. (Editor)
2003-01-01
These are the Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference held at Epochal Tsukuba International Conference Center from August 18 to 21, 2003. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 175 invited and contributing papers by authors from over 18 countries for presentations at ADC/FCT 2003 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.
Diamond and diamondlike carbon as wear-resistant, self-lubricating coatings for silicon nitride
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
Recent work on the friction and wear properties of as-deposited fine-grain diamond, polished coarse-grain diamond, and as-deposited diamondlike carbon (DLC) films in humid air at a relative humidity of approximately 40 percent and in dry nitrogen is reviewed. Two types of chemical vapor deposition (CVD) processes are used to deposit diamond films on silicon nitride (Si3N4) substrates: microwave-plasma and hot-filament. Ion beams are used to deposit DLC films of Si3N4 substrates. The diamond and DLC films in sliding contact with hemispherical bare Si3N4 pins have low steady-state coefficients of friction (less than 0.2) and low wear rates (less than 10(exp -7) mm(exp 2)/N-m), and thus, can be used effectively as wear-resistant, self-lubricating coatings for Si3N4 in the aforementioned two environments.
NASA Technical Reports Server (NTRS)
Tzeng, Y. (Editor); Miyoshi, K. (Editor); Yoshikawa, M. (Editor); Murakawa, M. (Editor); Koga, Y. (Editor); Kobashi, K. (Editor); Amaratunga, G. A. J. (Editor)
2001-01-01
These are the Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference hosted by Auburn University from August 6 to 10, 2001. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 200 invited and contributing papers by authors from over 20 countries for presentations at ADC/FCT 2001 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.
The first bump-bonded pixel detectors on CVD diamond
NASA Astrophysics Data System (ADS)
Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V. G.; Pan, L. S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G.; RD42 Collaboration
1999-11-01
Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 μm was observed, consistent with expectations given the detector pitch.
Quantifying the limits of through-plane thermal dissipation in 2D-material-based systems
NASA Astrophysics Data System (ADS)
Yasaei, Poya; Behranginia, Amirhossein; Hemmat, Zahra; El-Ghandour, Ahmed I.; Foster, Craig D.; Salehi-Khojin, Amin
2017-09-01
Through-plane thermal transport accounts for a major fraction of heat dissipation from hot-spots in many existing devices made of two-dimensional (2D) materials. In this report, we performed a set of electrical thermometry measurements and 3D finite element analyses to quantify the limits of power dissipation in monolayer graphene, a representative of 2D materials, fabricated on various technologically viable substrates such as chemical vapor deposited (CVD) diamond, tape-casted (sintered) aluminum nitride (AlN), and single crystalline c-plane sapphire as well as silicon with different oxide layers. We demonstrate that the heat dissipation through graphene on AlN substrate near room temperature outperforms those of CVD diamond and other studied substrates, owing to its superior thermal boundary conductance (TBC). At room temperature, our measurements reveal a TBC of 33.5 MW · m-2 · K-1 for graphene on AlN compared to 6.2 MW · m-2 · K-1 on diamond. This study highlights the importance of simultaneous optimization of the interfaces and the substrate and provides a route to maximize the heat removal capability of 2D-material-based devices.
Characterization of CVD micrometer-size diamond (abstract)
NASA Astrophysics Data System (ADS)
Ohsumi, K.; Hagiya, K.; Miyamoto, M.; Matsuda, J.; Ohmasa, M.
1989-07-01
In the field of material sciences, it has long been desired to develope the equipment to obtain crystallographic information of micrometer-size crystalline substances. Synchrotron radiation (SR) could be a candidate to deal with such a small specimen other than electron microscope. It seems more advantageous to utilize SR from the viewpoint that the processing of the diffraction data that has already been established for identification of the materials, structure analysis, and refinement. Even in the case of SR, special care should be taken for the measurement of very weak diffracted intensities. In the case not using SR, the size of 50 μm might be the limit for the specimen to be examined by the diffraction method. The diffracted intensity is proportional to the volume of the specimen, and that of micrometer-size crystal is estimated as 10-5 times of that of the limit mentioned above. The noise level of the experiment, therefore, should be as low as possible. If the noise level becomes negligibly small, the signal could be accumulated continually to the desired intensity level by adjusting measuring time. The experiment, for the purpose, should be carried out in vacuum with the stational crystal method and with very narrow collimated x-ray beams. The Laue method is employed by the above reason, as well as the fact that the intensity of each Bragg reflection on a reciprocal row passing through the origin of the reciprocal space is superposed with each other, which also intensifies a diffraction spot on the photographic plate. The Laue camera is set up at BL-4B of Photon Factory, sealed in vacuum and installed with a very narrow collimater. The development of the system has been performed to the level which several Bragg reflections of molybdenum single crystal with 0.8 μm in its diameter can be taken on the imaging plate for 50-min exposure with ring current from 128 to 125 mA. The origin of diamonds in meteorites has been a controversy as to whether they are formed from carbonaceous materials by impact shock or directly formed from vapor. Recent discovery of vapor-growth diamonds in carbonaceous chondrites has generated a renewed interest in the origin of ureilite diamonds. Two types of micrometer-size diamonds were prepared. One of them was grown under low pressure by chemical vapor deposition (CVD) from gaseous mixtures of H2 and CH4, and another was synthesized by shock effect (kindly offered by Nippon Oil & Fats Co., Ltd.) The micro-Laue method was applied to them in order to get information about their microstructures. Two characteristics are recognized in profiles of reflections themselves and in whole patterns of the Laue photographs. The reflections of CVD diamonds are elongated but symmetric in their profiles and are distributed regularly as they are indexed by the diamond lattice, while those of shock effect are also elongated and asymmetric, and are distributed at random as they cannot be indexed. The characteristics observed by the method may be useful to ascribe the origin to CVD or shock effect.
Cold cathode vacuum discharge tube
Boettcher, G.E.
1998-03-10
A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.
Cold cathode vacuum discharge tube
Boettcher, G.E.
1998-04-14
A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.
Growth of High-Quality Carbon Nanotudes on Free-Standing Diamond Substrates (Postprint)
2010-03-01
thickness and consisting of 20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor, Transmission electron microscopy...multi walled CNTs forming a mat of 5 lm thickness and consisting of 20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2...desired devices. For example, chip cooling with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal
NASA Astrophysics Data System (ADS)
Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2018-06-01
Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.
Synthetic diamond devices for radio-oncology applications
NASA Astrophysics Data System (ADS)
Descamps, C.; Tromson, D.; Mer, C.; Nesládek, M.; Bergonzo, P.; Benabdesselam, M.
2006-09-01
Diamond exhibits a range of outstanding properties that make it a material of interest for radiation detection and particularly in the field of dosimetry applications. In fact, its crystallographic structure makes it chemically inert and radiation hard. Moreover, its atomic number (carbon Z = 6) close to the equivalent effective atomic number of human soft tissues (Z = 7.4) and of water (reference material in radiotherapy) enables a direct evaluation of the deposited dose without requiring corrections for material nature or energy. Finally, as a bio-compatible material, it can be sterilised, and it is non-toxic thus giving strong advantages for medical uses. Natural diamonds are expensive, rare and their use implies a severe gem selection to fabricate reproducible and reliable devices. The emergence of synthetic samples from the chemical vapour deposition (CVD) technique offers new possibilities in the fabrication of ionisation chamber for the particular field of radiotherapy. Previous studies have shown that defect levels present in material clearly influence the device response under irradiation. Therefore, in order to optimise dosimetric characteristics needed in radiotherapy applications, various low and precisely nitrogen concentrations were incorporated in the material during growth. Influence of these incorporations on ionisation chamber response under medical cobalt irradiator is presented in this paper.
Diamond detectors for the TOTEM timing upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antchev, G.; Aspell, P.; Atanassov, I.
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision.more » This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. In conclusion, after introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.« less
Diamond detectors for the TOTEM timing upgrade
Antchev, G.; Aspell, P.; Atanassov, I.; ...
2017-03-09
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision.more » This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. In conclusion, after introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.« less
Diamond X-ray Photodiode for White and Monochromatic SR beams
Keister, Jeffrey W.; Smedley, John; Muller, Erik M.; Bohon, Jen; Héroux, Annie
2011-01-01
High purity, single crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for x-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high flux and high speed applications are described. PMID:21822344
Diamond MEMS: wafer scale processing, devices, and technology insertion
NASA Astrophysics Data System (ADS)
Carlisle, J. A.
2009-05-01
Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.
Preface: phys. stat. sol. (a) 202/11
NASA Astrophysics Data System (ADS)
Bergonzo, Philippe; Nesládek, Milo
2005-09-01
The present issue of physica status solidi (a) contains a collection of 31 papers presented at the 10th International Workshop on Surface and Bulk Defects in CVD Diamond Films held in Diepenbeek-Hasselt, Belgium, 23-25 February 2005. The 10th anniversary of the meeting proved the success of the concept, which originated in 1996 with the idea of bringing together scientists who are active and innovative in the field of electronic and optical properties of thin film diamond. This year the programme contained 9 invited oral talks, 14 contributed oral talks and 34 posters. 103 Participants from 14 countries (Austria, Belgium, Czech Republic, Finland, France, Germany, Japan, Mexico, Poland, Slovak Republic, Sweden, Switzerland, UK, USA) took part in the meeting. The meeting was traditionally directed towards topics ranging from defects and their characterization as well as electrical transport in CVD diamond towards modern diamond thin film devices including bio-sensing applications. Also, diamond homoepitaxial and heteroepitaxial growth, doping, hydrogen induced surface conductivity and several other topics including defects in boron nitride materials were addressed. Intense and lively discussions were as usual part of this meeting to which the hospitality of the city of Hasselt contributed greatly.The workshop would have not been possible without the support of many people and institutions. We also acknowledge the financial support of the Scientific Research Community of the F.W.O.-Vlaanderen (Belgium) and the University of Hasselt. We also thank the editorial staff of physica status solidi, most notably Stefan Hildebrandt, for their excellent and patient work. Finally, we would like to thank Ken Haenen, whose skills for the successful organization are gratefully acknowledged.August 2005
Linares, Robert; Doering, Patrick; Linares, Bryant
2009-01-01
The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-01-01
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-02-10
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.
Testing of a sCVD diamond detection system in the CROCUS reactor
NASA Astrophysics Data System (ADS)
Hursin, M.; Weiss, C.; Frajtag, P.; Lamirand, V.; Perret, G.; Kavrigin, P.; Pautz, A.; Griesmayer, E.
2018-05-01
The paper describes the testing of the NEUTON detection system into CROCUS, the zero-power reactor of the École Polytechnique Fédérale de Lausanne (EPFL). NEUTON is composed of a 4 mm × 4 mm sCVD diamond detector with a 6Li converter and the associated acquisition electronics. It is developed by CIVIDEC Instrumentation GmbH. The use of a diamond detector with converter in the mixed radiation field of a nuclear reactor is challenging because these detectors are sensitive to gamma-rays, fast neutrons and thermal neutrons through conversion in 6Li . In NEUTON, the rejection of gamma-rays is achieved in real time, via the analysis of the signal pulse shape from the detector. To do so, a few signal characteristics (amplitude, area and FWHM) are recorded in the integrated Field Programmable Gate Arrays (FPGA) of the system. This treatment does not induce any dead time. Measurements in CROCUS demonstrated for the first time the capability of a system like NEUTON to detect and separate fast neutrons, thermal neutrons, and gamma-rays. The system response was shown to be linear with respect to the reactor power (up to 35W) and its thermal sensitivity was found to be (3.5± 0.2)× 10^{-5} cps/nv.
Micro-Raman Analysis of Irradiated Diamond Films
NASA Technical Reports Server (NTRS)
Newton, Robert L.
2003-01-01
Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies, even in Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (10(exp 15) - 10(exp 17) H(+)/sq cm doses) irradiated chemical vapor deposited (CVD) films are presented and indicate that their microstructure is retained even after high radiation exposure.
Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application
NASA Astrophysics Data System (ADS)
Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.
2013-02-01
This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.
NASA Astrophysics Data System (ADS)
Peiyu, JI; Jun, YU; Tianyuan, HUANG; Chenggang, JIN; Yan, YANG; Lanjian, ZHUGE; Xuemei, WU
2018-02-01
A high growth rate fabrication of diamond-like carbon (DLC) films at room temperature was achieved by helicon wave plasma chemical vapor deposition (HWP-CVD) using Ar/CH4 gas mixtures. The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy. The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe. The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed. The growth rate of the DLC films reaches a maximum value of 54 μm h-1 at the CH4 flow rate of 85 sccm, which is attributed to the higher plasma density during the helicon wave plasma discharge. The CH and H α radicals play an important role in the growth of DLC films. The results show that the H α radicals are beneficial to the formation and stabilization of C=C bond from sp2 to sp3.
Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates
NASA Astrophysics Data System (ADS)
Lesik, M.; Plays, T.; Tallaire, A.; Achard, J.; Brinza, O.; William, L.; Chipaux, M.; Toraille, L.; Debuisschert, T.; Gicquel, A.; Roch, J. F.; Jacques, V.
2015-06-01
Thick CVD diamond layers were successfully grown on (113)-oriented substrates. They exhibited smooth surface morphologies and a crystalline quality comparable to (100) electronic grade material, and much better than (111)-grown layers. High growth rates (15-50 {\\mu}m/h) were obtained while nitrogen doping could be achieved in a fairly wide range without seriously imparting crystalline quality. Electron spin resonance measurements were carried out to determine NV centers orientation and concluded that one specific orientation has an occurrence probability of 73 % when (100)-grown layers show an equal distribution in the 4 possible directions. A spin coherence time of around 270 {\\mu}s was measured which is equivalent to that reported for material with similar isotopic purity. Although a higher degree of preferential orientation was achieved with (111)-grown layers (almost 100 %), the ease of growth and post-processing of the (113) orientation make it a potentially useful material for magnetometry or other quantum mechanical applications.
The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC
NASA Astrophysics Data System (ADS)
Schaefer, D. M.; ATLAS Collaboration
2016-07-01
After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.
Monocrystalline CVD-diamond optics for high-power laser applications
NASA Astrophysics Data System (ADS)
Holly, C.; Traub, M.; Hoffmann, D.; Widmann, C.; Brink, D.; Nebel, C.; Gotthardt, T.; Sözbir, M. C.; Wenzel, C.
2016-03-01
The potential of diamond as an optical material for high-power laser applications in the wavelength regime from the visible spectrum (VIS) to the near infrared (NIR) is investigated. Single-crystal diamonds with lateral dimensions up to 7×7mm2 are grown with microwave plasma assisted chemical vapor deposition (MPACVD) in parallel with up to 60 substrates and are further processed to spherical optics for beam guidance and shaping. The synthetic diamonds offer superior thermal, mechanical and optical properties, including low birefringence, scattering and absorption, also around 1 μm wavelength. We present dielectric (AR and HR) coated single-crystal diamond optics which are tested under high laser power in the multi-kW regime. The thermally induced focal shift of the diamond substrates is compared to the focal shift of a standard collimating and focusing unit for laser cutting made of fused silica optics. Due to the high thermal conductivity and low absorption of the diamond substrates compared to the fused silica optics no additional focal shift caused by a thermally induced refractive index change in the diamond is observed in our experiments. We present experimental results regarding the performance of the diamond substrates with and without dielectric coatings under high power and the influences of growth induced birefringence on the optical quality. Finally, we discuss the potential of the presented diamond lenses for high-power applications in the field of laser materials processing.
Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.
2010-01-01
In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
NASA Astrophysics Data System (ADS)
Majchrowicz, D.; Den, W.; Hirsch, M.
2016-09-01
The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.
Single crystal CVD diamond membranes for betavoltaic cells
NASA Astrophysics Data System (ADS)
Delfaure, C.; Pomorski, M.; de Sanoit, J.; Bergonzo, P.; Saada, S.
2016-06-01
A single crystal diamond large area thin membrane was assembled as a p-doped/Intrinsic/Metal (PIM) structure and used in a betavoltaic configuration. When tested with a 20 keV electron beam from a high resolution scanning electron microscope, we measured an open circuit voltage (Voc) of 1.85 V, a charge collection efficiency (CCE) of 98%, a fill-factor of 80%, and a total conversion efficiency of 9.4%. These parameters are inherently linked to the diamond membrane PIM structure that allows full device depletion even at 0 V and are among the highest reported up to now for any other material tested for betavoltaic devices. It enables to drive a high short-circuit current Isc up to 7.12 μA, to reach a maximum power Pmax of 10.48 μW, a remarkable value demonstrating the high-benefit of diamond for the realization of long-life radioisotope based micro-batteries.
Andreev, G N; Schrader, B; Boese, R; Rademacher, P; von Cranach, L
2001-12-01
Using an improved sampling arrangement we observed the FT Raman spectra of the different phases of a 'jumping crystal', an inositol derivative. The phase transition produced--as consequences of large changes of the unit cell constants--changes in frequency and intensity mainly of CH deformation vibrations. Photochemical reactions, usually produced with light quanta in the visible range, are not activated with the quanta from the Nd:YAG laser at 1064 nm. The Raman spectra of the 'dark' form of a dinitrobenzyl pyridine and afterwards the 'light' form, the product of its illumination in the visible range, were recorded. We could not observe changes of most bands, especially not of the NO2-vibrations; however, a new strong band appeared at 1253 cm(-1), which may be due to the expected NH-photo-isomer. Genuine gemstones and fakes can be unambiguously identified by FT Raman spectroscopy. This is especially useful for the stones whose physical properties are quite similar to those of diamonds--moissanite and zirconia. The quality of diamonds can be estimated from relative band intensities; however, this is not in complete agreement with the internationally accepted visual qualification. Synthetic diamonds produced by CVD (chemical vapor deposition) show remarkable differences from natural ones in their FT-Raman spectra.
NASA Astrophysics Data System (ADS)
Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain
2011-05-01
Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.
Diamond growth on copper rods from polymer composite nanofibres
NASA Astrophysics Data System (ADS)
Varga, M.; Potocky, S.; Tesarek, P.; Babchenko, O.; Davydova, M.; Kromka, A.
2014-09-01
The potential uses of diamond films can be found in a diverse range of industrial applications. However, deposition of diamond films onto some foreign materials is still not a simple task. Here we present the growth of adherent diamond films on copper rods with the focus on substrate pre-treatment by polyvinyl alcohol composite nanofibres. The primary role of the polymer fibres substantially act as a carbon source which enhances the diamond nucleation and accelerates a homogenous CVD growth. Diamond growth was carried out in pulsed linear antenna microwave chemical vapour deposition system, which is characterized by cold plasma due to larger distance of hot plasma region from the substrate, at various gas compositions. The large distance between plasma source and the substrate holder also allows the uniform deposition of diamond on a large number of substrates with complex geometry (3D objects) as well as for the vertically positioned substrates. Moreover, the inhomogeneity in diamond film thickness deposited on vertically positioned substrates was suppressed by using polyvinyl alcohol nanofibre textile. Combination of PVA polymer fibres use together with this unique deposition system leads to a successful overcoating of the copper rods by continuous diamond film without the film cracking or delamination. We propose that the sequence of plasma-chemical reactions enhances the transformation of certain number of carbon atoms into the sp3-bonded form which further are stabilized by atomic hydrogen coming from plasma.
Coaxial CVD diamond detector for neutron diagnostics at ShenGuang III laser facility.
Yu, Bo; Liu, Shenye; Chen, Zhongjing; Huang, Tianxuan; Jiang, Wei; Chen, Bolun; Pu, Yudong; Yan, Ji; Zhang, Xing; Song, Zifeng; Tang, Qi; Hou, Lifei; Ding, Yongkun; Zheng, Jian
2017-06-01
A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system. The average sensitivity is 0.677 μV ns/n for 14 MeV (DT fusion) neutrons at an electric field of 1000 V/mm, and the linear dynamic range is beyond three orders of magnitude. The ion temperature results fluctuate widely from the neutron time-of-flight scintillator detector results because of the short flight length. These characteristics of small size, large linear dynamic range, and insensitive to x-ray make the diamond detector suitable to measure the neutron yield, ion temperature, and neutron emission time.
NASA Astrophysics Data System (ADS)
Jackman, R. B.
2003-03-01
It is not an exaggeration to say that over the past forty years solid-state electronic devices have revolutionized working practices and the way leisure time is spent. The semiconductor at the heart of the vast majority of these electronic devices is silicon. Predictions that new semiconductors will be required to enable the pace of the electronics revolution to be kept at its present level are regularly made, but silicon device engineers just keep coming up with ways to make silicon devices better and better. It is the year 1990, and reliable chemical vapour deposition (CVD) techniques for the formation of large area films of diamond have been demonstrated in a number of research laboratories around the world. The first major international conferences on the growth, properties and potential applications for diamond, now available in a form useful to device engineers for the first time, have taken place. A survey of the basic properties of diamond suggests that it is an ideal material for electronics. It has a wide bandgap (5.5 eV, indirect), high saturated carrier velocities and carrier mobilities (and electrons and holes have similar values), a high electric field breakdown strength, low dielectric constant, high thermal conductivity and high visible-infrared radiation transparency. Many potential applications can, and have been proposed, including high power and high frequency electronic devices. When the resilience of diamond to high levels of radiation or heat, and the prospect of a negative electron affinity surface are also considered, many more applications come to mind such as high temperature or radiation hard electronics, radiation detectors, optoelectronic devices and cold cathodes. At this time, diamond films grown on non-diamond substrates are polycrystalline, and highly defective, but high purity single crystal material is considered `just around the corner'. There is even a naturally occurring dopant, boron, to enable p-type diamond to be produced and surely it is only a matter of months before n-type material is realized. Researchers can be found talking to the media about future computers that will have within them semiconducting chips made of diamond early in the new century. Let us now move to the present, the year 2003. Diamond films grown on non-diamond substrates are still polycrystalline, although far less defective. Single crystal material is available, but not in large areas since it is produced through the homoepitaxial growth of a high purity layer on a (relatively) cheap, but small, substrate. The only dopant that all laboratories can master is still boron, but at least three labs have reliably generated n-type conductivity through the incorporation of phosphorus, although the donor level formed is deep at around 0.6 eV (nor is boron shallow, forming an acceptor level at 0.37 eV). There are no mass market active diamond electronic devices for sale, and certainly no computers with diamond-based chips at their heart. Why? Well perhaps the early predictions were simply too ambitious. Ten or so years is not a long time in terms of the development of a new semiconductor. Also the predictors were far too ready to dismiss silicon. This article is being written on a Macintosh laptop computer, whose base can get too hot for the lap after prolonged use! Silicon for high temperature electronics? Well yes, if you introduce silicon-on-insulator (SOI) technology as Motorola have done. The level of investment required for even the most basic semiconductor fabrication facility is measured in billions of US dollars. New semiconductors will not be used within mass production environments unless they offer not just incremental improvements, but major steps forward, and do so reliably. It can be argued that it was the need for microwave devices that emerged with modern communications that gave III-V semiconductors their breakthrough, not the prospect of an improved computer. In this new century those working in the field of diamond electronics have become more realistic in their ambitions, and with this realism have come many successes, even though they are on a smaller scale than originally predicted. You can buy active electronic devices based upon CVD diamond, but they are aimed at niche markets. For this reason, many of the multi-national companies no longer support programmes in diamond electronics, but in their place are plenty of medium and small enterprises for whom niche markets are just fine. Optoelectronic devices and radiation detectors, in particular, have been produced with performance levels that are commercially useful. For example, aspects of my own work at UCL have led to the commercial introduction of deep UV diamond-based photodetectors, and CEA in Paris have introduced a range of radiation detectors that are being purchased for use within the nuclear industry. This is not to say that mass market applications for diamond will not emerge, it is simply that if they do they are likely to be where diamond enables a new technology, not an incremental improvement to an existing one. Perhaps the exciting new topic of quantum computing could be just such a technology in 10-20 years time. Equally exciting is the integration of electronics with biological materials, and nano-biotechnology could perhaps be a major application area for diamond-based devices in the future. All future developments of diamond electronics will be underpinned by fundamental insight into the way that the diamond grows, its properties and the physics controlling the operation of device structures. Whilst many CVD methods have been used to grow diamond, micowave plasma enhanced CVD has proved to be the most effective for the growth of high purity material. Until recently growth rates were limited to around 1 µm h-1, making the material fairly costly to produce. This can now be increased to beyond 50 µm h-1 making even the highest quality diamond substrates commercially accessible for many applications. The electronic properties of the material have also been improving dramatically over the last few months, such that it is possible to produce CVD material with carrier mobilities that surpass the best natural diamonds (see for example, Science (2002) 297 1670). This special issue of Semiconductor Science and Technology is dedicated to surveying recent developments in diamond electronics that are being enabled by these improvements in growth. Most of this special issue addresses crystalline diamond. However, two articles have been included on diamond-like carbon (DLC), to give the reader some insight into the properties and applications of this related, but different, material. In fact DLC is not a single material, but is a fully constrained network of sp2 and sp3 carbon (sometimes with hydrogen), where the sp2 and sp3 ratio, and hence the materials properties, can be varied. The issue begins with an article on the electronic properties of diamond; doping diamond is then considered. The fascinating observation that hydrogen terminated diamond surfaces display p-type conductivity is then discussed, followed by some diamond processing issues and electronic device fabrication. Papers on properties and applications follow. At the end of the issue are two largely theoretical papers submitted by Johann Prins. These papers are thought provoking, but make some very controversial claims. They are included here so that the reader can consider the approach developed within these two associated papers, perhaps thinking how this impacts upon their own work, even if the end conclusions remain open to debate. Indeed, it is hoped that this debate will be opened up through their publication, enabling this area of thought to be more widely explored and critically examined. Optical picture of a homoepitaxial film Figure 1. Optical picture of a homoepitaxial film grown at a rate of more than 50 µm h-1. Figure 1 is an optical picture of a homoepitaxial film grown in my laboratories at UCL at a rate of more than 50 µm h-1. It is included for no scientific or technical reason, nor is it our best layer. It is simply included as a beautiful picture, and to remind us that not all good things have to be for a commercial application! It has been a pleasure working with the authors and IOPP in bringing together this special issue. I hope you, the reader, find it useful.
Single crystal CVD diamond membranes for betavoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delfaure, C.; Pomorski, M., E-mail: michal.pomorski@cea.fr; Sanoit, J. de
2016-06-20
A single crystal diamond large area thin membrane was assembled as a p-doped/Intrinsic/Metal (PIM) structure and used in a betavoltaic configuration. When tested with a 20 keV electron beam from a high resolution scanning electron microscope, we measured an open circuit voltage (V{sub oc}) of 1.85 V, a charge collection efficiency (CCE) of 98%, a fill-factor of 80%, and a total conversion efficiency of 9.4%. These parameters are inherently linked to the diamond membrane PIM structure that allows full device depletion even at 0 V and are among the highest reported up to now for any other material tested for betavoltaic devices. Itmore » enables to drive a high short-circuit current I{sub sc} up to 7.12 μA, to reach a maximum power P{sub max} of 10.48 μW, a remarkable value demonstrating the high-benefit of diamond for the realization of long-life radioisotope based micro-batteries.« less
Pressure, stress, and strain distribution in the double-stage diamond anvil cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, Sergey S., E-mail: slobanov@carnegiescience.edu; V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090; Prakapenka, Vitali B.
Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typicalmore » of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.« less
Rapid Growth of Nanostructured Diamond Film on Silicon and Ti-6Al-4V Alloy Substrates.
Samudrala, Gopi K; Vohra, Yogesh K; Walock, Michael J; Miles, Robin
2014-01-13
Nanostructured diamond (NSD) films were grown on silicon and Ti-6Al-4V alloy substrates by microwave plasma chemical vapor deposition (MPCVD). NSD Growth rates of 5 µm/h on silicon, and 4 µm/h on Ti-6Al-4V were achieved. In a chemistry of H₂/CH₄/N₂, varying ratios of CH₄/H₂ and N₂/CH₄ were employed in this research and their effect on the resulting diamond films were studied by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. As a result of modifying the stock cooling stage of CVD system, we were able to utilize plasma with high power densities in our NSD growth experiments, enabling us to achieve high growth rates. Substrate temperature and N₂/CH₄ ratio have been found to be key factors in determining the diamond film quality. NSD films grown as part of this study were shown to contain 85% to 90% sp³ bonded carbon.
NASA Astrophysics Data System (ADS)
Kasuya, Koichi; Motokoshi, Shinji; Taniguchi, Seiji; Nakai, Mitsuo; Tokunaga, Kazutoshi; Mroz, Waldemar; Budner, Boguslaw; Korczyc, Barbara
2015-02-01
Tungsten and SiC are candidates for the structural materials of the nuclear fusion reactor walls, while CVD poly-crystal diamond is candidate for the window material under the hazardous fusion stresses. We measured the surface endurance strength of such materials with commercial displacement sensors and our recent evaluation method. The pulsed high thermal input was put into the material surfaces by UV lasers, and the surface erosions were diagnosed. With the increase of the total number of the laser shots per position, the crater depth increased gradually. The 3D and 2D pictures of the craters were gathered and compared under various experimental conditions. For example, the maximum crater depths were plotted as a function of shot accumulated numbers, from which we evaluated the threshold thermal input for the surface erosions to be induced. The simple comparison-result showed that tungsten was stronger roughly two times than SiC. Then we proposed how to monitor the surface conditions of combined samples with such diamonds coated with thin tungsten layers, when we use such samples as parts of divertor inner walls, fusion chamber first walls, and various diagnostic windows. We investigated how we might be able to measure the inner surface erosions with the same kinds of displacement sensors. We found out the measurable maximum thickness of such diamond which is useful to monitor the erosion. Additionally we showed a new scheme of fusion reactor systems with injectors for anisotropic pellets and heating lasers under the probable use of W and/or SiC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomorski, Michal; Mer-Calfati, Christine; Foulon, Francois
Diamond exhibits a combination of properties which makes it attractive for neutron detection in hostile conditions. In the particular case of detection in a nuclear reactor, it is resilient to radiation, exhibits a natural low sensitivity to gamma rays, and its small size (as compared with that of gas ionisation chambers) enables fluency monitoring with a high position resolution. We report here on the use of synthetic CVD diamond as a solid state micro-fission chamber with U-235 converting material for in-core thermal neutron monitoring. Two types of thin diamond detectors were developed for this application. The first type of detectormore » is fabricated using thin diamond membrane obtained by etching low-cost commercially available single crystal CVD intrinsic diamond, so called 'optical grade' material. Starting from a few hundred of micrometre thick samples, the sample is sliced with a laser and then plasma etched down to a few tenths of micrometre. Here we report the result obtained with a 17 μm thick device. The detection surface of this detector is equal to 1 mm{sup 2}. Detectors with surfaces up to 1 cm{sup 2} can be fabricated with this technique. The second type of detector is fabricated by growing successively two thin films of diamond, by the microwave enhanced chemical vapour deposition technique, on HPHT single crystal diamond. A first, a film of boron doped (p+) single crystal diamond, a few microns thick, is deposited. Then a second film of intrinsic diamond with a thickness of a few tens of microns is deposited. This results in a P doped, Intrinsic, Metal structure (PIM) structure in which the intrinsic volume id the active part of the detector. Here we report the results obtained with a 20 μm thick intrinsic whose detection surface is equal to 0.5 mm{sup 2}, with the possibility to enlarge the surface of the detector up to 1 cm{sup 2}. These two types of detector were tested at the VR-1 research reactor at the Czech Technical University in Prague. The Training Reactor VR-1 is a pool type (light water) reactor based on UO{sub 2} low enriched uranium. It has a nominal power of 1 kW, and can be operated for a short period up to 5 kW. The arrangement of the reactor pool reactor facilitates access to the core, setting and removal of various experimental samples and detectors, and safe and easy handling of fuel assemblies. The reactor is equipped with two horizontal channels (radial and tangential) and 10 vertical channels, of varying diameters, which can be loaded into various core positions, and one pneumatic transfer system. It is also equipped with several specifically designed educational instrumentation systems that can be used to supply complementary measurements and characterization around the reactor. The reactor is operated by the Department of Nuclear Reactors of the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague. The two detectors were placed in-core through one of the vertical insertion channel. They were coupled to remote placed (5 m BNC cable) classical nuclear charge sensitive electronics. Detection properties of both sensors, including: pulse height spectra of U-235 fission fragments (response linearity with neutron flux, count rate, gamma background, were evaluated varying the power of the reactor from 0.005 W to 500 W. The evolution of the counting rate of the thinned optical grade detector as a function of counting rate of a gas ionization chamber used currently for reactor monitoring shows the very good linearity of the detector over the 5 decades. Similar results were obtained with the PIM detector. Additionally fast transient current signals of the detectors were recorded on a digital storage oscilloscope (DSO) using broad-band amplifier and with a simple bias-T, showing potential use of such sensors for neutron counting with no need of an amplification stage, since non-amplified signals from fission fragments exceeded 4 mV in amplitude. Therefore, one can think of simple neutron counting system by feeding diamond detectors signals directly to the low threshold discriminators. The results obtained on the VR1 will be described and discussed in detail in the paper and associated presentation. The results demonstrate that diamond micro-fission chambers can be used for in-core neutron monitoring, where robust, simple and compact devices are required.« less
Atomic composition and electrical characteristics of epitaxial CVD diamond layers doped with boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surovegina, E. A., E-mail: suroveginaka@ipmras.ru; Demidov, E. V.; Drozdov, M. N.
2016-12-15
The results of analysis of the atomic composition, doping level, and hole mobility in epitaxial diamond layers when doped with boron are reported. The layers are produced by chemical-vapor deposition. The possibilities of uniform doping with boron to a level in the range 5 × 10{sup 17} to ~10{sup 20} at cm{sup –3} and of δ doping to the surface concentration (0.3–5) × 10{sup 13} at cm{sup –3} are shown. The conditions for precision ion etching of the structures are determined, and barrier and ohmic contacts to the layers are formed.
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
Critical Assessment of Optical Properties of CVD Diamond Films
1991-04-12
electron has a different momentum at the bottom of the conduction band than at the top of the valence band. Because the photon momentum is very small , a...3622 (1971). 3 J.L. Warren, J.L. Yarnell, G. Dolling, and R.A. Cowley, Phys. Rev. 158, 805-808 (1967). 4 S. Musikant , Optical Materials (Marcel Dekker
Co-doping of CVD diamond with boron and sulfur
NASA Astrophysics Data System (ADS)
Eaton, Sally Catherine
Boron is well-established as a p-type dopant in diamond, but attempts to find a viable n-type dopant remain unsuccessful. In 1999, sulfur was reported to give n-type conductivity. However, later measurements indicated that the samples contained boron and were p-type. Recently, we showed that diamond co-doped with sulfur and small quantities of boron shows n-type conductivity, which was established by Mott-Schottky analyses, thermoelectric effect, Hall measurements, scanning tunneling spectroscopy (STS), and UV open-circuit photo-potential. At higher boron concentrations, a transition to p-type behavior is observed due to overcompensation. Experiments performed without boron in the feed gas or without residual boron in the reactor chamber showed no sulfur incorporation and no change in conductivity. There is evidence that the excess sulfur concentration in the near-surface region is not stable. At room temperature and below, the activation energies range from 0.06 to 0.12 eV. Above 400K there is an irreversible loss in conductivity and the activation energy increases to approximately 1.3 eV. Additionally, we observed by SIMS that there exists a concentration gradient in sulfur with film depth. This sulfur concentration gradient is also observed in our electrical measurements. STS shows a decrease in conductivity with film depth and Hall effect measurements show both p-type and n-type coefficients for samples which are n-type in the near-surface region. The flat-band potential obtained from the Mott-Schottky experiments is only 1 to 1.5 V more negative on the electrochemical scale than that for boron-doped diamond. This implies that the Fermi level is only 1 to 1.5 eV higher than the Fermi level in boron-doped diamond. This observation implies that the n-type conductivity is not by excitation of electrons to the conduction band, but by an alternate mechanism that occurs in the middle of the band gap. One such possibility is an acceptor impurity band. Electrons from individual donor states can be excited into this acceptor band where they are free to move. This mechanism would create n-type conductivity even if the Fermi level was low in the bandgap.
Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S
2015-05-01
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.
Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth
Tang, Y. -H.; Golding, B.
2016-02-02
Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less
Investigation of 3D diamond detector dosimetric characteristics
NASA Astrophysics Data System (ADS)
Kanxheri, K.; Alunni Solestizi, L.; Biasini, M.; Caprai, M.; Dipilato, A. C.; Iacco, M.; Ionica, M.; Lagomarsino, S.; Menichelli, M.; Morozzi, A.; Passeri, D.; Sciortino, S.; Talamonti, C.; Zucchetti, C.; Servoli, L.
2018-06-01
Recently, a polycrystalline chemical vapor deposited (pCVD) 3D diamond detector with graphitic in bulk electrodes, fabricated using a pulsed laser technique has been evaluated for photon beam radiation dosimetry during in-air exposure. The same 3D diamond detector, has now been investigated to evaluate its performance under clinically relevant conditions putting the detector inside a Polymethylmethacrylate (PMMA) phantom, to obtain higher precision dosimetric measurements. The detector leakage current was of the order of ± 25 pA or less for bias voltages up to ‑100 V. The 3D detector was tested for time stability and repeatability showing excellent performance with less than 0.6% signal variation. It also showed a linear response for low dose rates with a deviation from linearity of 2%. It was also possible to verify the detector response as a function of the depth in PMMA up to 18 cm.
Domestic and Industrial Water Disinfection Using Boron-Doped Diamond Electrodes
NASA Astrophysics Data System (ADS)
Rychen, Philippe; Provent, Christophe; Pupunat, Laurent; Hermant, Nicolas
This chapter first describes main properties and manufacturing process (production using HF-CVD, quality-control measurements, etc.) of diamond electrodes and more specifically boron-doped diamond (BDD) electrodes. Their exceptional properties make such electrodes particularly suited for many disinfection applications as thanks to their wide working potential window and their high anodic potential, they allow generating a mixture of powerful oxidizing species mainly based on active oxygen and peroxides. Such mixture of disinfecting agents is far more efficient than conventional chemical or physical known techniques. Their efficiency was tested against numerous microorganisms and then proved to be greater than conventional methods. All bacteria and viruses tested up to date were inactivated 3-5 times faster with a treatment based on with BDD electrodes and the DiaCellⓇ technology than with other techniques. Several applications, either industrial or private (wellness and home use), are discussed with a focus on the dedicated products and the main technology advantages.
Nature and origin of interstellar diamond from the Allende CV3 meteorite
NASA Technical Reports Server (NTRS)
Blake, David; Freund, Friedemann; Bunch, Ted; Krishnan, Kannan; Stampfer, Mitch; Chang, Sherwood; Tielens, Alexander G. G. M.
1990-01-01
Data and experimental evidence which support the contention that the C delta diamonds may result from grain-grain collisions in supernova shocks in the interstellar medium are presented. Fragments of the Allende CV3 chondrite were acid-treated. A whitish powder was obtained. For the Analytical Electron Microscopy (AEM) a small drop of ethanol suspension was transferred onto holey carbon support films on 3 mm EM grids. The AEM was performed on transmission-thin fragments of the material which overlay holes in the film, to eliminate interference from the substrate. Electron Spectroscopy for Chemical Analysis (ESCA) was performed on a large aliquot of C. Diamond was identified by selected area electron diffraction. Scanning Transmission Electron Microscope / Energy Dispersive X-ray (STEM-EDS) microanalyses of the C delta diamond, using a light-element detector, show that oxygen and possibly nitrogen are the only impurities consistently present. ESCA spectra from bulk C delta material confirm the presence of N at a level of 0.35 percent or less. Under UV irradiation a yellow-red fluorescence is observed, consistent with that of natural diamonds containing substitutional N. Electron Energy Loss Spectra (EELS) were recorded at 2 eV resolution from the C delta diamond, high pressure synthetic diamond, a diamond film produced in a low pressure plasma by chemical vapor deposition (CVD) on a heated silicon substrate (Roy, 1987), graphite, and amorphous arc sputtered carbon. Comparison of the carbon K edge shape and fine structure shows the Allende C delta phase to be largely diamond, but with a significant pre-edge absorption feature indicative of transitions of C 1s electrons into pi asterisk orbitals which are absent in the purely sp(3)-bonded diamond but present in graphite and amorphous carbon.
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-02-07
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials.
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-01-01
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials. PMID:29414839
Rapid Growth of Nanostructured Diamond Film on Silicon and Ti–6Al–4V Alloy Substrates
Samudrala, Gopi K.; Vohra, Yogesh K.; Walock, Michael J.; Miles, Robin
2014-01-01
Nanostructured diamond (NSD) films were grown on silicon and Ti–6Al–4V alloy substrates by microwave plasma chemical vapor deposition (MPCVD). NSD Growth rates of 5 μm/h on silicon, and 4 μm/h on Ti–6Al–4V were achieved. In a chemistry of H2/CH4/N2, varying ratios of CH4/H2 and N2/CH4 were employed in this research and their effect on the resulting diamond films were studied by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. As a result of modifying the stock cooling stage of CVD system, we were able to utilize plasma with high power densities in our NSD growth experiments, enabling us to achieve high growth rates. Substrate temperature and N2/CH4 ratio have been found to be key factors in determining the diamond film quality. NSD films grown as part of this study were shown to contain 85% to 90% sp3 bonded carbon. PMID:28788461
NEXAFS Study of the Annealing Effect on the Local Structure of FIB-CVD DLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikubo, Akihiko; Kato, Yuri; Igaki, Jun-ya
2007-01-19
Annealing effect on the local structure of diamond like carbon (DLC) formed by focused ion beam-chemical vapor deposition (FIB-CVD) was investigated by the measurement of near edge x-ray absorption fine structure (NEXAFS) and energy dispersive x-ray (EDX) spectra. Carbon K edge absorption NEXAFS spectrum of FIB-CVD DLC was measured in the energy range of 275-320 eV. In order to obtain the information on the location of the gallium in the depth direction, incidence angle dependence of NEXAFS spectrum was measured in the incident angle range from 0 deg. to 60 deg. . The peak intensity corresponding to the resonance transitionmore » of 1s{yields}{sigma}* originating from carbon-gallium increased from the FIB-CVD DLC annealed at 200 deg. C to the FIB-CVD DLC annealed at 400 deg. C and decreased from that at 400 deg. C to that at 600 deg. C. Especially, the intensity of this peak remarkably enhanced in the NEXAFS spectrum of the FIB-CVD DLC annealed at 400 deg. C at the incident angle of 60 deg. . On the contrary, the peak intensity corresponding to the resonance transition of 1s{yields}{pi}* originating from carbon double bonding of emission spectrum decreased from the FIB-CVD DLC annealed at 200 deg. C to that at 400 deg. C and increased from that at 400 deg. C to that at 600 deg. C. Gallium concentration in the FIB-CVD DLC decreased from {approx_equal}2.2% of the as-deposited FIB-CVD DLC to {approx_equal}1.5% of the FIB-CVD DLC annealed at 600 deg. C from the elementary analysis using EDX. Both experimental results indicated that gallium atom departed from FIB-CVD DLC by annealing at the temperature of 600 deg. C.« less
Energy response of diamond sensor to beta radiation.
Tchouaso, Modeste Tchakoua; Kasiwattanawut, Haruetai; Prelas, Mark A
2018-04-26
This paper demonstrates the ability of diamond sensors to respond to beta radiation. A Chemical Vapor Deposition (CVD) single crystal diamond was used in this work. The diamond crystal has a dimension of 4.5×4.5 by 0.5 mm thick. Metal contacts were fabricated on both sides of the diamond using titanium and palladium metals with thicknesses of 50 nm and 150 nm, respectively. The energy response of the diamond sensor was experimentally measured using three beta isotopes that cover the entire range of beta energy: 147 Pm, a weak beta radiation with a maximum energy of 0.225 MeV, 2 ° 4 Tl, a medium energy beta radiation with a maximum energy of 0.763 MeV, and 9 °Sr/ 9 °Y, with both a medium energy beta radiation with a maximum energy of 0.546 MeV, and a high energy beta radiation with a maximum energy of 2.274 MeV. The beta measurements indicate that diamond sensors are sensitive to beta radiation and are suitable for beta spectroscopy. This is important in estimating dose since diamond is tissue equivalent, and the absorbed dose is easily determined from the energy and the mass of the active volume. The high energy betas from 2 ° 4 Tl and 90 Sr/ 90 Y penetrates the sensor without depositing sufficient energy in the active area because their range is larger than the thickness of sensor. The sensitivity of the detector is limited because of its small volume and can be improved by combining smaller area sensors since growing large size diamond is currently a challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less
Multilayered micro/nanocrystalline CVD diamond coatings for biotribology =
NASA Astrophysics Data System (ADS)
Salgueiredo, Ermelinda da Conceicao Portela
In the present work multilayered micro/nanocrystalline (MCD/NCD) diamond coatings were developed by Hot Filament Chemical Vapour Deposition (HFCVD). The aim was to minimize the surface roughness with a top NCD layer, to maximize adhesion onto the Si3N4 ceramic substrates with a starting MCD coating and to improve the mechanical resistance by the presence of MCD/NCD interfaces in these composite coatings. This set of features assures high wear resistance and low friction coefficients which, combined to diamond biocompatibility, set this material as ideal for biotribological applications. The deposition parameters of MCD were optimized using the Taguchi method, and two varieties of NCD were used: NCD-1, grown in a methane rich gas phase, and NCD-2 where a third gas, Argon, was added to the gas mixture. The best combination of surface pre-treatments in the Si3N4 substrates is obtained by polishing the substrates with a 15 mum diamond slurry, further dry etching with CF4 plasma for 10 minutes and final ultrasonic seeding in a diamond powder suspension in ethanol for 1 hour. The interfaces of the multilayered CVD diamond films were characterized with high detail using HRTEM, STEM-EDX and EELS. The results show that at the transition from MCD to NCD a thin precursor graphitic film is formed. On the contrary, the transition of the NCD to MCD grade is free of carbon structures other than diamond, as a result of the richer atomic hydrogen content and of the higher substrate temperature for MCD deposition. At those transitions, WC nanoparticles were found due to contamination from the filament, being also present at the first interface of the MCD layer with the silicon nitride substrate. In order to study the adhesion and mechanical resistance of the diamond coatings, indentation and particle jet blasting tests were conducted, as well as tribological experiments with homologous pairs. Indentation tests proved the superior behaviour of the multilayered coatings that attained a load of 800 N without delamination, when compared to the mono and bilayered ones. The multilayered diamond coatings also reveal the best solid particle erosion resistance, due to the MCD/NCD interfaces that act as crack deflectors. These results were confirmed by an analytical model on the stress field distribution based on the von Mises criterion. Regarding the tribological testing under dry sliding, multilayered coatings also exhibit the highest critical load values (200N for Multilayers with NCD-2). Low friction coefficient values in the range mu=0.02- 0.09 and wear coefficient values in the order of 10. -7 mm3 N-1 m-1 were obtained for the ball and flat specimensindicating a mild wear regime. Under lubrication with physiological fluids (HBSS e FBS), lower wear coefficient values 10. -9-10. -8 mm3 N-1 m-1) wereachieved, governed by the initial surface roughness and the effective contact pressure.
Electron-spectroscopy and -diffraction study of the conductivity of CVD diamond ( 0 0 1 )2×1 surface
NASA Astrophysics Data System (ADS)
Kono, S.; Takano, T.; Shimomura, M.; Goto, T.; Sato, K.; Abukawa, T.; Tachiki, M.; Kawarada, H.
2003-04-01
A chemical vapor deposition as-grown diamond (0 0 1) single-domain 2 × 1 surface was studied by electron-spectroscopy and electron-diffraction in ultrahigh vacuum (UHV). In order to change the surface conductivity (SC) of the diamond in UHV, three annealing stages were used; without annealing, annealing at 300 °C and annealing at 550 °C. From low energy electron diffraction and X-ray photoelectron spectroscopic (XPS) studies, an existence of SC was suggested for the first two stages of annealing and an absence of SC was suggested for the last stage of annealing. Changes in C KVV Auger electron spectroscopic spectra, C KVV Auger electron diffraction (AED) patterns and C 1s XPS peak positions were noticed between the annealing stages at 300 and 550 °C. These changes are interpreted as such that the state of hydrogen involvement in a subsurface of diamond (0 0 1)2 × 1 changes as SC changes. In particular, the presence of local disorder in diamond configuration in SC subsurface is pointed out from C KVV AED. From C 1s XPS peak shifts, a lower bound for the Fermi-level for SC layers from the valence band top is presented to be ˜0.5 eV.
Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films
NASA Astrophysics Data System (ADS)
Garratt, Elias James
Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Watson, E. B.; Meunier, V.; Kharche, N.
2018-07-01
Diffusivities of helium, deuterium and hydrogen have been characterized in diamond. Polished CVD diamond was implanted with either 3He, 2H, or 1H. Implanted samples were sealed under vacuum in silica glass capsules, and annealed in 1-atm furnaces. 3He, 2H and 1H distributions were measured with Nuclear Reaction Analysis. We obtain these Arrhenius relations: DHe = 4.00 × 10-15 exp(-138 ± 14 kJ mol-1/RT) m2 s-1. D2H = 1.02 × 10-4 exp(-262 ± 17 kJ mol-1/RT) m2 s-1. D1H = 2.60 × 10-4 exp(-267 ± 15 kJ mol-1/RT) m2 s-1. Diffusivities of 1H and 2H agree within experimental uncertainties, indicating little diffusive mass fractionation of hydrogen in diamond. To complement the experimental measurements, we performed calculations using a first-principles quantum mechanical description of diffusion in diamond within the Density Functional Theory (DFT). Differences in 1H and 2H diffusivities from calculations are found to be ∼4.5%, reflected in differences in the pre-exponential factor. This small difference in diffusivities, despite the large relative mass difference between these isotopes, is due to the fact that the atomistic process involved in the transition along the diffusion pathway is dictated by local changes to the diamond structures rather than to vibrations involving 1H/2H. This finding is consistent with the experimental results given experimental uncertainties. In contrast, calculations for helium diffusion in diamond indicate a difference of 15% between diffusivities of 3He and 4He. Calculations of diffusion distances for hydrogen using our data yield a distance of 50 μm in diamond in 300,000 years at 500 °C and ∼30 min at 1400 °C. Diffusion distances for He in diamond are shorter than for H at all temperatures above ∼350 °C, but differences increase dramatically with temperature because of the higher activation energy for H diffusion. For example, a 50 μm diffusion distance for He would be attained in ∼40 Myr at 500 °C and 400 yr at 1400 °C. For comparison, a 50 μm diffusion distance for N in diamond would require nearly 1 billion years at 1400 °C. The experimental data indicate that diamonds equilibrate with ambient H and He in the mantle on timescales brief relative to most geological processes and events. However, He diffusion in diamond is slower than in any other mineral measured to date, including other kimberlite-hosted minerals. Under some circumstances, diamond may provide information about mantle He not recoverable from other minerals. One possibility is diamonds entrained in kimberlites. Since the ascent of kimberlite from the mantle to near-surface is very rapid, entrained diamonds may retain most or all of the H and He acquired in mantle environments. Calculations using reasonable ascent rates and T-t paths indicate that He diffusive loss from kimberlite-hosted diamonds is negligible for grains of 1.0-0.2 mm radius, with fractional losses <0.15% for all ascent rates considered. If the host kimberlite magma is effectively quenched in the near-surface (or is erupted), diamonds should contain a faithful record of [He] and He isotopes from the mantle source region. Preservation of H in kimberlite-hosted diamonds is less clear-cut, with model outcomes depending critically upon rates of ascent and cooling.
Deposition of dual-layer coating on Ti6Al4V
NASA Astrophysics Data System (ADS)
Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.
2017-03-01
Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.
Resonant third harmonic generation of KrF laser in Ar gas.
Rakowski, R; Barna, A; Suta, T; Bohus, J; Földes, I B; Szatmári, S; Mikołajczyk, J; Bartnik, A; Fiedorowicz, H; Verona, C; Verona Rinati, G; Margarone, D; Nowak, T; Rosiński, M; Ryć, L
2014-12-01
Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.
Barbosa, D C; Melo, L L; Trava-Airoldi, V J; Corat, E J
2009-06-01
In this work we have investigated the effect of substrate temperature on the growth rate and properties of nanocrystalline diamond thin films deposited by hot filament chemical vapor deposition (HFCVD). Mixtures of 0.5 vol% CH4 and 25 vol% H2 balanced with Ar at a pressure of 50 Torr and typical deposition time of 12 h. We present the measurement of the activation energy by accurately controlling the substrate temperature independently of other CVD parameters. Growth rates have been measured in the temperature range from 550 to 800 degrees C. Characterization techniques have involved Raman spectroscopy, high resolution X-ray difractometry and scanning electron microscopy. We also present a comparison with most activation energy for micro and nanocrystalline diamond determinations in the literature and propose that there is a common trend in most observations. The result obtained can be an evidence that the growth mechanism of NCD in HFCVD reactors is very similar to MCD growth.
NASA Astrophysics Data System (ADS)
Ivanov, O. A.; Kuzikov, S. V.; Vikharev, A. A.; Vikharev, A. L.; Lobaev, M. A.
2017-10-01
We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.
Performance characteristics of nanocrystalline diamond vacuum field emission transistor array
NASA Astrophysics Data System (ADS)
Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.
2012-06-01
Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.
Performance characteristics of nanocrystalline diamond vacuum field emission transistor array
NASA Astrophysics Data System (ADS)
Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.
2012-05-01
Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.
NASA Astrophysics Data System (ADS)
Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao
2018-03-01
In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.
Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control
NASA Astrophysics Data System (ADS)
Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.
2002-08-01
Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. heat Flux levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive heat flux levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel heat sinks to representative high heat flux problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel heat sink has been fabricated, and another is in process and will be performance tested. The heat sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.
Interface Properties of Wide Bandgap Semiconductor Structures
1993-12-01
oxyacetylene torch and a water cooled substrate. Studying and controlling this chemical vapor deposition (CVD) process, however, can be frustrating because the...the carbide heat of formation. The precursors of chlorinated methylsilanes coupled with bias were used to deposit C films on Si(100). Textured C (lll...films were also achieved using an oxyacetylene torch . Cu forms an epitaxial rectifyingIcontact to diamond with a Schottky barrier height (SBH) of
NASA Astrophysics Data System (ADS)
Deferme, Wim
Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.
Effect of ultrasonic tip and root-end filling material on bond strength.
Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário
2016-11-01
The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.
Taylor, Alice C; Vagaska, Barbora; Edgington, Robert; Hébert, Clément; Ferretti, Patrizia; Bergonzo, Philippe; Jackman, Richard B
2015-12-01
We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated. Biocompatibility was assessed by observing the interaction of human neural stem cells (hNSCs) with a variety of NCD substrates including un-doped ones, and NCD doped with boron, which are both planar, and nanostructured. hNSCs were chosen due to their sensitivity, and various methods including cell population and confluency were used to quantify biocompatibility. Boron inclusion into NCD film was shown to have no observable effect on hNSC attachment, proliferation and viability. Furthermore, the biocompatibility of nanostructured boron-doped NCD is increased upon nanostructuring, potentially due to the increased surface area. Diamond is an attractive material for supporting the attachment and development of cells as it can show exceptional biocompatibility. When boron is used as a dopant within diamond it becomes a p-type semiconductor, and at high concentrations the diamond becomes quasi-metallic, offering the prospect of a direct electrical device-cell interfacing system.
Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-07-01
The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.
Mechanical and tribological properties of gradient a-C:H/Ti coatings
NASA Astrophysics Data System (ADS)
Batory, D.; Szymański, W.; Cłapa, M.
2013-08-01
The unusual combination of high hardness and very low friction coefficient are the most attractive tribological parameters of DLC (diamond-like carbon) layers. However, their usability is strongly restricted by the limited thickness due to high residual stress. The main goal of the presented work was to obtain thick, wear resistant and well adherent DLC layers while keeping their perfect friction parameters. As a proposed solution a Ti-Ti x C y gradient layer was manufactured as the adhesion improving interlayer followed by a thick diamond-like carbon film. This kind of combination seems to be very promising for many applications, where dry friction conditions for highly loaded elements can be observed. Both layers were obtained in one process using a hybrid deposition system combining PVD and CVD techniques in one reaction chamber. The investigation was performed on nitrided samples made from X53CrMnNiN21-9 valve steel. Structural features, surface topography, tribological and mechanical properties of manufactured layers were evaluated. The results of the investigation confirmed that the presented deposition technique makes it possible to manufacture thick and well adherent carbon layers with high hardness and very good tribological parameters. Preliminary investigation results prove the possibility of application of presented technology in automotive industry.
NASA Astrophysics Data System (ADS)
Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang
2016-05-01
There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.
Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES
NASA Astrophysics Data System (ADS)
Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.
2014-11-01
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.
Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining
NASA Astrophysics Data System (ADS)
Lei, X. L.; He, Y.; Sun, F. H.
2016-12-01
The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.
NASA Astrophysics Data System (ADS)
Okhotnikov, V. V.; Linnik, S. A.; Gaidaichuk, A. V.; Shashev, D. V.; Nazarova, G. Yu; Yurchenko, V. I.
2016-02-01
A new method of selective deposition of polycrystalline diamond has been developed and studied. The diamond coatings with a complex, predetermined geometry and resolution up to 5 μm were obtained. A high density of polycrystallites in the coating area was reached (up to 32·107 pcs/cm2). The uniformity of the film reached 100%, and the degree of the surface contamination by parasitic crystals did not exceed 2%. The technology was based on the application of the standard photolithography with an addition of nanodiamond suspension into the photoresist that provided the creation of the centers of further nucleation in the areas which require further overgrowth. The films were deposited onto monocrystalline silicon substrates using the method of “hot filaments” in the CVD reactor. The properties of the coating and the impact of the nanodiamond suspension concentration in the photoresist were also studied. The potential use of the given method includes a high resolution, technological efficiency, and low labor costs compared to the standard methods (laser treatment, chemical etching in aggressive environments,).
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai; ...
2017-10-23
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan -Kai
Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon-vacancy (SiV) centers in diamond offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye–Waller factor. The possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times makes them promising candidates for qubits. Here, we have developed arrays of nanopillars containing single (SiV) centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the excited state population of a single SiV center at the opticalmore » transition frequency. The high quality of the chemical vapor deposition (CVD) grown SiV centers provides excellent spectral stability, which allows us to coherently manipulate and quasi-resonantly read out the excited state population of individual SiV centers on picosecond timescales using ultrafast optical pulses. Furthermore, this work opens new opportunities to create a scalable on-chip diamond platform for quantum information processing and scalable nanophotonics applications.« less
Circularly polarized Raman study on diamond structure crystals
NASA Astrophysics Data System (ADS)
Lee, Je-Ho; Kim, Sera; Seong, Maeng-Je
2018-01-01
Circularly polarized Raman and/or photoluminescence (PL) analyses have recently been very important in studying physical properties of many layered materials that were either mechanically exfoliated or grown by chemical-vapor-deposition (CVD) on silicon substrates. Since silicon Raman signal is always accompanied by the circularly polarized Raman and/or PL signal from the layered materials, observation of proper circularly polarized Raman selection rules on silicon substrates would be extremely good indicator that the circularly polarized Raman and/or PL measurements on the layered materials were done properly. We have performed circularly polarized Raman measurements on silicon substrates and compared the results with the Raman intensities calculated by using Raman tensors of the diamond crystal structure. Our experimental results were in excellent agreement with the calculation. Similar circularly polarized Raman analysis done on germanium substrate also showed good agreement.
Growth of High Quality Carbon Nanotubes on Free Standing Diamond Substrates
2010-01-01
CNTs forming a mat of ~5 µm thickness and consisting of ~20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor...with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal interface materials were also discussed by Zhu...using a 1 inch diameter quartz tube in a horizontal furnace. Initially, the tube furnace was evacuated by using a rough pump and then purged with Ar
Microstructure and mechanical properties of diamond films on titanium-aluminum-vanadium alloy
NASA Astrophysics Data System (ADS)
Catledge, Shane Aaron
The primary focus of this dissertation is the investigation of the processing-structure-property relationships of diamond films deposited on Ti-6Al-4V alloy by microwave plasma chemical vapor deposition (MPCVD). By depositing a well-adhered protective layer of diamond on an alloy component, its hardness, wear-resistance, performance, and overall lifetime could be significantly increased. However, due to the large thermal expansion mismatch between the diamond film and metal (and the corresponding residual stress induced in the film), film adhesion is typically unsatisfactory and often results in immediate delamination after processing. Therefore, it is a major goal of this research to improve adhesion of the diamond film to the alloy substrate. Through the use of innovative processing techniques involving MPCVD deposition conditions and methane (CH4), nitrogen (N2), and hydrogen (H2) chemistry, we have achieved diamond films which consistently adhere to the alloy substrate. In addition, we have discovered that, with the appropriate choice of deposition conditions, the film structure can be tailored to range from highly crystalline, well-faceted diamond to nanocrystalline diamond with extremely low surface roughness (as low as 27 nm). The relationship between processing and structure was studied using in-situ optical emission spectroscopy, micro-Raman spectroscopy, surface profilometry, glancing-angle x-ray diffraction, and scanning electron microscopy. We observe that when nitrogen is added to the H2/CH4 feedgas mixture, a carbon-nitrogen (CN) emission band arises and its relative abundance to the carbon dimer (C2) gas species is shown to have a pronounced influence on the diamond film structure. By appropriate choice of deposition chemistry and conditions, we can tailor the diamond film structure and its corresponding properties. The mechanical properties of interest in this thesis are those relating to the integrity of the film/substrate interface, as well as the hardness, wear resistance, residual stress, and elastic modulus of the film. The mechanical properties of the diamond coatings were characterized by indentation and wear testing instruments. Finally, we developed a model based on fundamental thermodynamic and optical principles for extracting the time dependence of film thickness and surface roughness using optical pyrometry for the case of an absorbing substrate. This model provides a convenient way to determine film thickness during growth in CVD systems as well as a reliable estimate of surface roughness.
Medical beam monitor—Pre-clinical evaluation and future applications
NASA Astrophysics Data System (ADS)
Frais-Kölbl, Helmut; Griesmayer, Erich; Schreiner, Thomas; Georg, Dietmar; Pernegger, Heinz
2007-10-01
Future medical ion beam applications for cancer therapy which are based on scanning technology will require advanced beam diagnostics equipment. For a precise analysis of beam parameters we want to resolve time structures in the range of microseconds to nanoseconds. A prototype of an advanced beam monitor was developed by the University of Applied Sciences Wiener Neustadt and its research subsidiary Fotec in co-operation with CERN RD42, Ohio State University and the Jožef Stefan Institute in Ljubljana. The detector is based on polycrystalline Chemical Vapor Deposition (pCVD) diamond substrates and is equipped with readout electronics up to 2 GHz analog bandwidth. In this paper we present the design of the pCVD-detector system and results of tests performed in various particle accelerator based facilities. Measurements performed in clinical high energy photon beams agreed within 1.2% with results obtained by standard ionization chambers.
Ion Beam Analysis Of Nitrogen Incorporated Ultrananocrystalline Diamond (UNCD) Thin Films
NASA Astrophysics Data System (ADS)
AlFaify, S.; Garratt, E.; Dissanayake, A.; Mancini, D. C.; Kayani, A.
2011-06-01
Determination of the elemental composition is important to correlate the properties of nitrogen incorporated Ultrananocrystalline Diamond (UNCD) thin films with their growth conditions. Films were deposited by CVD deposition technology and nitrogen incorporation was introduced by diluting the growth Ar/CH4 plasma with N2 gas. Deposition of UNCD thin films was carried out on tungsten (˜15 nm) coated Si substrates with varying concentrations of N2 diluted to the growth plasma. Scanning electron microscopy (SEM) and Raman spectroscopy (RS) were used to confirm the characteristic morphology of the UNCD film and its dominant sp3 bonding respectively. The deposited films were smooth on the submicron scale with the RMS roughness value of 2.9-5.1 nm. Reflectometry spectroscopy analysis (RES) technique was used to measure the films thicknesses. To obtain the elemental composition of the UNCD thin films, Rutherford Backscattering Spectrometry (RBS), Non-Rutherford Backscattering Spectrometry (NRBS), Elastic Recoil Detection Analysis (ERDA) and Nuclear Reaction Analysis (NRA) were performed. Deposited UNCD films contained less than 5 at.% of H while N content incorporated in the films was estimated to be lower than 1 at.%. The intermixing region between the substrate and the film was found to be negligible. Moreover, amorphous phase as determined by Raman analysis was found to be increasing for the sample deposited with N2.
Formation of nanocrystalline diamond in polymer like carbon films deposited by plasma CVD.
Bhaduri, A; Chaudhuri, P
2009-09-01
Conventional plasma enhanced chemical vapour deposition (PECVD) method is generally not suitable for the growth of nanocrystalline diamond (NCD) films. However, our study shows that conditions favourable for powder formation help to grow large amount of nanocrystallites in conventional PECVD. With CH4 as the carbon source gas, dilution with Ar and moderate (50 W) rf power enhances formations of powders (nanoparticles) and C2 dimers within the plasma. On the other hand, with pure CH4 or with hydrogen diluted CH4, powder formation as also NCD growth is hindered. It is proposed that the nanoparticles formed in the plasma act as the "islands" while the C2 dimers are the "seeds" for the NCD growth. The structure of the films deposited on the grounded anode under different conditions of dilution has been studied. It is observed that with high Ar dilution the films contain NCD embedded in polymer like carbon (PLC) matrix.
Surface Structure of Aerobically Oxidized Diamond Nanocrystals
Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...
2014-10-27
Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λ excit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton ismore » observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less
Surface Structure of Aerobically Oxidized Diamond Nanocrystals
2015-01-01
We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035
Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipenko, M.; Ripani, M.; Ricco, G.
2015-07-01
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based onmore » conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)« less
The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.
Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A
2015-09-01
The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced laser diagnostics for diamond deposition research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, C.H.; Owano, T.G.; Wahl, E.H.
Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for diamond synthesis applications due to the inherently high reactant densities and throughput, but the associated high gas-phase collision rates in the boundary layer above the substrate produce steep thermal and species gradients which can drive the complex plasma chemistry away from optimal conditions. To understand and control these environments, accurate measurements of temperature and species concentrations within the reacting boundary layer are needed. This is challenging in atmospheric pressure reactors due to the highly luminous environment, steep thermal and species gradients, and small spatial scales. The applicability of degenerate four-wavemore » mixing (DFWM) as a spectroscopic probe of atmospheric pressure reacting plasmas has been investigated. This powerful, nonlinear technique has been applied to the measurement of temperature and radical species concentrations in the boundary layer of a diamond growth substrate immersed in a flowing atmospheric pressure plasma. In-situ measurements of CH and C{sub 2} radicals have been performed to determine spatially resolved profiles of vibrational temperature, rotational temperature, and species concentration. Results of these measurements are compared with the predictions of a detailed numerical simulation.« less
Vacancy-impurity centers in diamond: prospects for synthesis and applications
NASA Astrophysics Data System (ADS)
Ekimov, E. A.; Kondrin, M. V.
2017-06-01
The bright luminescence of impurity-vacancy complexes, combined with high chemical and radiation resistance, makes diamond an attractive platform for the production of single-photon emitters and luminescent biomarkers for applications in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers, are discussed in this review; their similarities and differences are demonstrated in terms of the more thoroughly studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescent centers opens a unique opportunity for the controlled synthesis of single-photon emitters in nanodiamonds. We demonstrate prospects for the high-pressure high-temperature (HPHT) technique to create single-photon emitters, not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods but also as a primary synthesis tool for producing color centers in nanodiamonds. Besides practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have a fundamental importance for deeper understanding of shelving levels, the electronic structure, and optical properties of these centers. In conclusion, we discuss several open problems regarding the structure, charge state, and practical application of these centers, which still require a solution.
X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond
NASA Astrophysics Data System (ADS)
Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid
2010-05-01
Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay phyllosilicates, serpentine, zircon, a hydrous carbonate and an unidentified zeolite. Many of these phases are deuteric, replacing high-T, high-P micas and carbonates that precipitate from the fluid in the diamond stability field. The ongoing XRD study will (1) elucidate the mineralogy of fluid inclusions in diamonds from Wawa, (2) compare XRD analyses to distinguish between diamonds with carbonatitic versus saline fluid compositions, and (3) reveal whether carbonates occur as crystalline phases or as dissolved or amorphous material in fibrous diamond.
Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter
2016-02-01
Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate. Copyright © 2015 Elsevier B.V. All rights reserved.
Miranda, C R B; Azevedo, A F; Baldan, M R; Beloto, A F; Ferreira, N G
2009-06-01
Nanocrystalline diamond (NCD) films were formed on porous silicon (PS) substrate by Chemical Vapor Deposition/Infiltration (CVD/CVI) process using a hot filament reactor. This innovative procedure is determinant to grow a controlled three-dimensional diamond structure with diamond grains formation in the pores, covering uniformly the different growth planes. In this CVI process, a piece of reticulated vitreous carbon (RVC) was used, under de PS substrate, as an additional solid source of hydrocarbon that ensures the production of pertinent carbon growth species directly on PS and into its pores. PS substrates were obtained by anodization etching process of n-type silicon wafer in a hydrofluoric acid (HF) solution containing acetonitrile (CH3CN) which result in an uniform and well controlled porous distribution and size when compared with the usual ethanol solution. Depositions were performed using Ar-H2-CH4 where the methane concentration varied from 0 up to 1.0 vol%, to analyze the influence of RVC use as an additional carbon source on growth mechanism. Scanning Electron Microscopy (SEM) and Field Emission Gun (FEG) were used to investigate PS and NCD film morphology. SEM images of NCD showed faceted nanograins with average size from 5 to 16 nm and uniform surface texture covering all the supports among the pores resulting in an apparent micro honeycomb structure. Raman spectra confirmed the existence of sp2-bonded carbon at the grain boundaries. The spectra showed a peak that may be deconvoluted in two components at 1332 cm(-1) (diamond) and 1345 cm(-1) (D band). Two shoulders at 1150 and 1490 cm(-1) also appear and are assigned to transpolyacetylene (TPA) segments at the grain boundaries of NCD surfaces. In addition, X-ray diffraction analyses of all films presented characteristic diamond diffraction peaks corresponding to (111), (220) and (311).
Soignard, Emmanuel; Benmore, Chris J; Yarger, Jeffery L
2010-03-01
Diamond anvil cells (DACs) are widely used for the study of materials at high pressure. The typical diamonds used are between 1 and 3 mm thick, while the sample contained within the opposing diamonds is often just a few microns in thickness. Hence, any absorbance or scattering from diamond can cause a significant background or interference when probing a sample in a DAC. By perforating the diamond to within 50-100 microm of the sample, the amount of diamond and the resulting background or interference can be dramatically reduced. The DAC presented in this article is designed to study amorphous materials at high pressure using high-energy x-ray scattering (>60 keV) using laser-perforated diamonds. A small diameter perforation maintains structural integrity and has allowed us to reach pressures >50 GPa, while dramatically decreasing the intensity of the x-ray diffraction background (primarily Compton scattering) when compared to studies using solid diamonds. This cell design allows us for the first time measurement of x-ray scattering from light (low Z) amorphous materials. Here, we present data for two examples using the described DAC with one and two perforated diamond geometries for the high-pressure structural studies of SiO(2) glass and B(2)O(3) glass.
Garrett, David J; Saunders, Alexia L; McGowan, Ceara; Specks, Joscha; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard A; Nayagam, David A X
2016-01-01
Recently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo. © 2015 Wiley Periodicals, Inc.
Thermal rectification in thin films driven by gradient grain microstructure
NASA Astrophysics Data System (ADS)
Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel
2018-03-01
As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Averichkin, P. A., E-mail: P-Yugov@mail.ru; Donskov, A. A.; Dukhnovsky, M. P.
The results of using carbidsiliconoxide (a-C:SiO1{sub .5}) films with a thickness of 30–60 nm, produced by the pyrolysis annealing of oligomethylsilseskvioksana (CH{sub 3}–SiO{sub 1.5}){sub n} with cyclolinear (staircased) molecular structure, as intermediate films in the hydride vapor phase epitaxy of gallium nitride on polycrystalline CVD-diamond substrates are presented. In the pyrolysis annealing of (CH{sub 3}–SiO{sub 1.5}){sub n} films in an atmosphere of nitrogen at a temperature of 1060°C, methyl radicals are carbonized to yield carbon atoms chemically bound to silicon. In turn, these atoms form a SiC monolayer on the surface of a-C:SiO{sub 1.5} films via covalent bonding with silicon.more » It is shown that GaN islands grow on such an intermediate layer on CVD-polydiamond substrates in the process of hydride vapor phase epitaxy in a vertical reactor from the GaCl–NH{sub 3}–N{sub 2} gas mixture.« less
Gray, Benjamin J; Bracken, Richard M; Turner, Daniel; Morgan, Kerry; Mellalieu, Stephen D; Thomas, Michael; Williams, Sally P; Williams, Meurig; Rice, Sam; Stephens, Jeffrey W
2014-05-01
To assess the prevalence of undiagnosed cardiovascular disease (CVD) in a cohort of male steelworkers in South Wales, UK. Male steel industry workers (n = 221) with no prior diagnosis of CVD or diabetes accepted a CVD risk assessment within the work environment. Demographic, anthropometric, family, and medical histories were all recorded and capillary blood samples obtained. The 10-year CVD risk was predicted using the QRISK2-2012 algorithm. Up to 81.5% of workers were either overweight or obese. More than 20% of workers were found to have diastolic hypertension, high total cholesterol, and/or a total cholesterol/high-density lipoprotein ratio of six or more. Over one quarter of workers assessed had an increased 10-year CVD risk. Despite a physically demanding occupation, risk assessment in the workplace uncovered significant occult factors in CVD risk in a sample of male heavy industry workers.
Eclogitic inclusions in diamonds: Evidence of complex mantle processes over time
NASA Astrophysics Data System (ADS)
Taylor, Lawrence A.; Snyder, Gregory A.; Crozaz, Ghislaine; Sobolev, Vladimir N.; Yefimova, Emiliya S.; Sobolev, Nikolai V.
1996-08-01
The first ion-probe trace element analyses of clinopyroxene-garnet pairs both included within diamonds and from the eclogite host xenoliths are reported; these diamondiferous eclogites are from the Udachnaya and Mir kimberlite pipes, Yakutia, Russia. The major and trace element analyses of these diamond-inclusion and host-rock pairs are compared in order to determine the relative ages of the diamonds, confirm or deny genetic relationships between the diamonds and the eclogites, evaluate models of eclogite petrogenesis, and model igneous processes in the mantle before, during, and after diamond formation. The most striking aspect of the chemical compositions of the diamond inclusions is the diversity of relationships with their eclogite hosts. No single distinct pattern of variation from diamond inclusion minerals to host minerals is found for all four samples. Garnet and clinopyroxene inclusions in the diamonds from two samples (U-65/3 and U-66/3) have lower Mg#s, lower Mg, and higher Fe contents, and lower LREE than those in the host eclogite. We interpret such variations as due to metasomatism of the host eclogite after diamond formation. One sample, U-41/3 shows enrichment in diamond-inclusion MREE enrichment relative to the eclogite host and may indicate a metasomatic event prior to, or during, diamond formation. Bulanova [2] found striking differences between inclusions taken from within different portions of the very same diamond. Clinopyroxene inclusions taken from the central (early) portions of Yakutian diamonds were lower in Mg# and Mg contents (by up to 25%) than those later inclusions at the rims of diamonds. These trends are parallel to those between diamond inclusions and host eclogites determined for four of the five samples from the present study and may merely represent changing magmatic and/or P-T conditions in the mantle. Garnet trace element compositions are similar in relative proportions, but variable in abundances, between diamond inclusions and host eclogites. This is probably due to the rapid diffusion of trace elements in garnet under mantle temperatures and consequent alteration of the garnet, and not due to juvenile diamonds 'locking in' source heterogeneities (c.f., [3]). Trace element compositions of clinopyroxenes included in diamonds are generally similar to those in the host eclogite. However, one host clinopyroxene does show enrichment in the LREE compared to that in the inclusion and may be attributed to mantle metasomatism, not related to kimberlite transport. In another eclogite, M-46, the host clinopyroxene is depleted in the LREE and Fe, and enriched in the HREE and Mg, relative to the inclusion and is consistent with partial melting of the eclogite subsequent to diamond formation. Sm/Nd ratios in clinopyroxenes appear to be little affected by these processes for most samples, allowing SmNd isotopic studies to yield important information about ancient protoliths. Eclogitic mineral inclusions in Yakutian diamonds appear consanguineous with the diamonds, a contention supported by the observations of Bulanova [2]. Therefore, ReOs whole-rock and Sm/Nd clinopyroxene age determinations of the Udachnaya eclogites also yield the time of diamond formation, approximately 2.9 Ga [32,33].
NASA Astrophysics Data System (ADS)
Shu, Guoyang; Dai, Bing; Ralchenko, V. G.; Khomich, A. A.; Ashkinazi, E. E.; Bolshakov, A. P.; Bokova-Sirosh, S. N.; Liu, Kang; Zhao, Jiwen; Han, Jiecai; Zhu, Jiaqi
2017-04-01
We studied defects and stress distributions in mosaic epitaxial diamond film using a confocal Raman spectroscopy, with a special attention to the junction area between the crystals. The mosaics was grown by microwave plasma CVD on closely arranged (1 0 0)-oriented HPHT type Ib substrates. The width of stress affected and defect enriched region around the junction show a tendency of extending with the film thickness, from ≈40 μm on the film-substrate interface to ≈250 μm in the layer 500 μm above the substrate, as found from the mosaics analysis in cross-section. The stress field around the junction demonstrates a complex pattern, with mixed domains of tensile and compressive stress, with maximum value of σ ≈ 0.6 GPa. A similar non-uniform pattern was observed for defect distribution as well. No sign of amorphous sp2 carbon in the junction zone was revealed.
Characteristics of Diamond-Like Carbon Films Deposited on Polymer Dental Materials
NASA Astrophysics Data System (ADS)
Ohtake, Naoto; Uchi, Tomio; Yasuhara, Toshiyuki; Takashima, Mai
2012-09-01
Characterizations of diamond-like carbon (DLC) deposited on a polymer artificial tooth were performed. DLC films were deposited on dental parts made of poly(methyl methacrylate) (PMMA) resin by dc-pulse plasma chemical vapor deposition (CVD) from methane. Wear resistance test results revealed that a DLC-coated resin tooth has a very high wear resistance against tooth brushing, and endures 24 h brushing without a marked weight decrease. Cell cultivation test results show that DLC plays an important role in preventing cell death. Moreover, a biocompatibility test using a rabbit revealed that a connective tissue in the vicinity of DLC-coated PMMA is significantly thinner than that of noncoated PMMA. The numbers of inflammatory cells in the vicinity of DLC-coated and noncoated surfaces are 0 and 508 cells/mm2, respectively. These results led us to conclude that DLC films are an excellent material for use as the coating of a polymer artificial tooth in terms of not only high wear resistance but also biocompatibility.
Photoconductive switch package
Ca[rasp, George J
2013-10-22
A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.
Micro and nanocrystalline diamond formation on reticulated vitreous carbon substrate
NASA Astrophysics Data System (ADS)
Diniz, A. V.; Trava-Airoldi, V. J.; Corat, E. J.; Ferreira, N. G.
2005-10-01
High diamond nucleation and a three-dimensional growth on reticulated vitreous carbon substrate are obtained by chemical vapor deposition. Scanning electron microscopy images show continuous films covering the whole substrate including the center of 3.5 mm thick porous samples. It is evident the nanocrystalline diamond (NCD) film formation on deeper substrate regions. The grain size can vary from nano to micro scale for deposition time of 20 h. Raman spectra of sample regions closer to filaments exhibit well-defined diamond line. For central regions of sample (depth between 1.0 and 2.0 mm) Raman spectra also confirm NCD film.
Microhabitat use of the diamond darter
Welsh, Stuart A.; Smith, Dustin M.; Taylor, Nate D.
2013-01-01
The only known extant population of the diamond darter (Crystallaria cincotta) exists in the lower 37 km of Elk River, WV, USA. Our understanding of diamond darter habitat use was previously limited, because few individuals have been observed during sampling with conventional gears. We quantified microhabitat use of diamond darters based on measurements of water depth, water velocity and per cent substrate composition. Using spotlights at night-time, we sampled 16 sites within the lower 133 km of Elk River and observed a total of 82 diamond darters at 10 of 11 sampling sites within the lower 37 km. Glides, located immediately upstream of riffles, were the primary habitats sampled for diamond darters, which included relatively shallow depths (<1 m), moderate-to-low water velocities (often < 0.5 m·s−1) and a smooth water surface. Microhabitat use (mean ± SE) of diamond darters was estimated for depth (0.47 ± 0.02 m), average velocity (0.27 ± 0.01 m·s−1) and bottom velocity (0.15 ± 0.01 m·s−1). Substrate used (mean ± SE) by diamond darters was predominantly sand intermixed with lesser amounts of gravel and cobble: % sand (52.1 ± 1.6), % small gravel (12.2 ± 0.78), % large gravel (14.2 ± 0.83), % cobble (19.8 ± 0.96) and % boulder (1.6 ± 0.36). Based on our microhabitat use data, conservation and management efforts for this species should consider preserving glide habitats within Elk River. Spotlighting, a successful sampling method for diamond darters, should be considered for study designs of population estimation and long-term monitoring.
Sirois, Fuschia M
2015-06-01
Personality is an important epidemiological factor for understanding health outcomes. This study investigated the associations of trait procrastination with hypertension and cardiovascular disease (HT/CVD) and maladaptive coping by testing an extension of the procrastination-health model among individuals with and without HT/CVD. Individuals with self-reported HT/CVD (N = 182) and healthy controls (N = 564), from a community sample, completed an online survey including measures of personality, coping, and health outcomes. Logistic regression analysis controlling for demographic and higher order personality factors found that older age, lower education level and higher procrastination scores were associated with HT/CVD. Moderated mediation analyses with bootstrapping revealed that procrastination was more strongly associated with maladaptive coping behaviours in participants with HT/CVD than the healthy controls, and the indirect effects on stress through maladaptive coping were larger for the HT/CVD sample. Results suggest procrastination is a vulnerability factor for poor adjustment to and management of HT/CVD.
PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009
NASA Astrophysics Data System (ADS)
Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall
2009-09-01
Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and hence material perfection, improves. The ultimate prize for man-made diamond is surely not in the synthesis of gem stones, but in delivering technological solutions enabled by diamond to the challenges facing our society today. If the special properties are to be exploited to their full potential, at least four crucial factors must be considered. First, there must be sufficient scientific understanding of diamond to make applications effective, efficient and economical. Secondly, the means of fabrication and control of properties have to be achieved so that diamond's role can be optimised. Thirdly, it is not enough that its properties are superior to existing materials: they must be so much better that it is worth initiating new technologies to exploit them. Finally, any substantial applications will have to address the society's major needs worldwide. The clear technology drivers for the 21st century come from the biomedical technologies, the demand for energy subject to global constraints, and the information technologies, where perhaps diamond will provide the major enabling technology [1]. The papers in this volume concern the solid state physics of diamond, and primarily concern the first two factors: understanding, and control of properties. They address many of the outstanding basic problems, such as the identification of existing defects, which affect the material's properties, both desirable and less so. Regarding future substantial applications, one paper discusses diamond's exceptional properties for quantum information processing [2], a topic on which there have been many recent papers, and where a diamond colour centre single photon source is already commercially available. Biomedical applications of diamond are recognised, partly tribological and partly electrochemical, but lie outside the present group of papers. Processing and controlling diamond surfaces and interfaces with other materials in their environment are critical steps en route to exploitation. Boron-doped diamond has already found application in electro-analysis and in the bulk oxidation of dissolved species in solution [3]. Energy-related applications—ranging from high-power electronics [3] to a potential first wall of fusion reactors [4]—are further exciting potential applications. Even small and ugly diamonds have value. Their mechanical properties [5] dominate, with significant niche applications such as thermal sinks. The major applications for diamond to date exploit only a fraction of diamond's special properties: visual for status diamonds, and mechanical for working diamonds. Diamond physics reaches well beyond the usual laboratory, to the geological diamond formation processes in the Earth's mantle. Characterization of natural gem diamonds [6, 7] is one part of the detective story that allows us to understand the conditions under which they formed. It was only half a century ago that the scientific and technological challenges of diamond synthesis were met systematically. Today, most of the recent research on diamond has concentrated on synthetics, whether created using high pressure, high temperature (HPHT) techniques or chemical vapour deposition (CVD). The HPHT synthesis of diamond has advanced dramatically [8, 9] to the extent that dislocation birefringence [10] can be largely eliminated. In silicon technology, the elimination of dislocations was a major step in microelectronics. Now, even diamond can be synthesised containing virtually no dislocations. The understanding of the critical processes that are involved in CVD diamond growth are becoming clearer. Two papers in this issue model it on a microscopic scale [11, 12], and a further two explore the practical techniques [13, 14] in order to lead to improvement in deposition techniques. Diamond is emerging as an engineering material [3] with its cost no longer regarded as prohibitive even for some large-scale uses, such as the fusion reactor first wall. It is striking how few useful dopants can be put into diamond in a controlled way. The studies reported here, whether theory or experiment, concentrate on phosphorus [14] as the donor, and demonstrate that boron (although deep in semiconductor terms,) can act as the acceptor [3] in practical devices. Other impurities, with deeper levels, such as nitrogen [15], with the muon as an honorary hydrogen [16], are studied in depth. Here, many of the characterization techniques developed over several decades have been brought to bear, to attempt to quantify impurities and defects and ultimately assist in improving the crystal quality [17, 18, 15]. However, further, more novel techniques such as reflection anisotropy spectroscopy [19] and luminescence lifetime mapping [20] have been introduced to diamond in this issue, and one can see how such techniques might play a crucial role in areas such as systems for quantum information processing. The presence and migration of radiation damage defects [21, 22], vacancies and interstitials, and vacancy clusters can dramatically influence the exploitable properties of diamond [23, 24]. It is now apparent that charge traps not only impact on electrical properties, but also on the colour of diamond and that thermo-chromic and photo-chromic effects are more common than previously thought [25, 23]. Combinations, like the negatively charged nitrogen-vacancy centre, have proved impressive in quantum information studies [26]. But diamond has yet to benefit from the sort of dopant engineering that has helped silicon to become ubiquitous. It is becoming clear that because of the deep ionisation energies of the dopants that can be incorporated into diamond, conventional semiconductor physics can only be applied at high temperatures; rather different technologies have to be exploited to ensure that diamond's potential for devices is fulfilled. There are technical improvements which need to be made: the elimination of defects that trap carriers, cause de-coherence, affect the colour or strength, or have other serious effects in the relevant application, and the development of robust ohmic contacts [27]. The material developments of the last 50 years include silicon becoming the semiconductor of choice, many new and better-developed polymers, the transformation of communications by silica-based optical fibres, and the emergence of synthetic diamond. Could diamond's special virtues yield major new opportunities? Its optical properties are exceptional, usually in desirable ways (high refractive indices can create indirect problems). The mechanical properties are truly outstanding, again usually in desirable ways (adhesion can be challenging). The thermal properties are similarly exceptional, with a thermal conductivity that exceeds copper. Diamond withstands aggressive environments, including extremes of pH. Its carrier mobility can be phenomenal, and electron emission can be excellent. Moreover, diamond can be compatible with silicon electronics, even if the involvement of a second material is inconvenient. Here the problems start. Even limited developments could be significant. For instance, the ability to control the populations of the various N, B, P and vacancy centres would open up potentially unique optoelectronic and spintronic opportunities. Control of diamond's properties is difficult, but this is where basic research can help (using all the techniques explored in this issue, and more). It is barely practical to create n-type diamond, but unipolar devices, exploiting excellent quality boron doped p-type material, can be designed [3]. Electrical contacts can be tricky to fabricate, but progress is being made here [3, 27]. Diamond is perceived as unacceptably expensive, but for a high-quality device for an exceptional environment, this is not a problem. Carbon-based electronic materials are strikingly diverse. They include diamond, graphite, nanotubes and buckyball structures, amorphous carbons, and nanodiamond. Add hydrogen and one has a range of diamond-like carbons and the wealth of organics. Such carbon-based materials include small molecules and polymers: impressive insulators, semiconducting and conducting polymers, switchable forms, superconducting and magnetic forms, and some with the highest electrical conductivities of any material. Diamond-like carbons can have controllable mechanical properties from the viscoelastic to the highly rigid. Photochemistry brings opportunities for novel processing methods. Even water-based processing may sometimes be possible (alas, not for diamond), and additional tools like self-organisation of organic molecules on surfaces have been demonstrated. The best carbons have impressive, sometimes supreme, performances, including the mobility and optical properties of diamond, spin-conserving transport in carbon nanotubes, and electron emission. For almost all measures of performance, there is some carbon-based material that performs better than silicon. Might hybrid carbon-based materials be more successful even than silicon [28]? Should we think less about 'diamond' and more about the integration of diamond as one component of carbon electronics? Device fabrication needs lithography optics and resists, and processing at the anticipated smaller scales may well exploit new electronic excitation methods. Alternative dielectrics and interconnect materials introduce new compatibility issues, and there are further varied constraints from displays, spintronic components, electron emitters or transparent conductors. Could the many carbon-based materials with interesting functional properties lead to a new class of alternative systems? This collection of papers was brought together to celebrate 60 years of conferences sponsored by the De Beers Group of companies on the science and technology of diamond. The transformation of diamond science and technology over those 60 years can be seen in varied ways. First, there has been a series of books stimulated by the conferences [29-31] complementing numerous other more recent texts on diamond (e.g. [32]). These show a striking evolution from the early pioneering studies of tribology, radiation damage, and thermal and optical properties to a wider range of electronic properties, spectroscopies, and characterization from the macroscopic to nanoscopic scales, as well as the now almost universal dialogue between experiment and theory. Secondly, new experimental and theoretical techniques have emerged, many of which are featured in the papers in this issue. Thirdly, there is a range of new technologies only made possible because of the catalytic role of the conferences. These include the spectroscopies that distinguish natural from synthetic or treated diamonds in a way that earns customer confidence. There are also new customer products, like speaker domes, where success has depended on the understanding of mechanical properties at a level not commonly available. Potentially big applications, like the fusion reactor's first wall, will follow on from early radiation damage studies. Fourthly, the young scientists who have been supported over the years have now made their way in many fields, not just diamond research, but certainly including technologies that use diamond. The sponsorship of science in this field has benefited both those supported and those who provide that support. Finally, we see serious thoughts about what might be the big new technologies of the 21st century, since these will need a fundamental understanding of materials properties and their control. There has been exceptional progress in this area, in specimen sizes, quality, and performance. These massive improvements in materials availability create opportunities for the major technological applications in the energy, environment, health and information technologies that will surely drive the big industrial expansions over the next decades. References [1] Stoneham A M 2007 Thinking about diamond (ed P Bergonzo, R Gat, R B Jackman and C E Nebel) MRS Proc. 956 1-10 [2] Stoneham A M 2008 Future Perspectives for Diamond for Physics and Applications of CVD Diamond ed S Koizumi, M Nesladek and C E Nebel (New York: Wiley-VCH) [3] Balmer R S et al 2009 J. Phys.: Condens. Matter 21 364221 [4] Stoneham A M, Matthews J R and Ford I J 2004 J. Phys.: Condens. Matter 16 S2597 [5] Liang Q, Yan C, Meng Y, Lai J, Krasnicki S, Mao H and Hemley R J 2009 J. Phys.: Condens. Matter 21 364215 [6] Stachel T and Harris J W 2009 J. Phys.: Condens. Matter 21 364206 [7] McNeill J, Pearson D G, Klein-BenDavid O, Nowell G M, Ottley C J and Chinn I 2009 J. Phys.: Condens. Matter 21 364207 [8] Martineau P M, Gaukroger M P, Guy K B, Lawson S C, Twitchen D J, Friel I, Hansen J O, Summerton G C, Addison T P G and Burns R 2009 J. Phys.: Condens. Matter 21 364205 [9] Burns R C et al 2009 J. Phys.: Condens. Matter 21 364224 [10] Pinto H and Jones R 2009 J. Phys.: Condens. Matter 21 364220 [11] May P W, Allan N L, Ashfold M N R, Richley J C and Mankelevich Yu A 2009 J. Phys.: Condens. Matter 21 364203 [12] Butler J E, Mankelevich Yu A, Cheesman A, Ma J and Ashfold N R 2009 J. Phys.: Condens. Matter 21 364201 [13] Silva F, Hassouni K, Bonnin X and Gicquel A 2009 J. Phys.: Condens. Matter 21 364202 [14] Haenen K, Lazea A, Barjon J, D'Haen J, Habka N, Teraji T, Koizumi S and Mortet V 2009 J. Phys.: Condens. Matter 21 364204 [15] Felton S, Cann B L, Edmonds A M, Liggins S, Cruddace R J, Newton M E, Fisher D and Baker J M 2009 J. Phys.: Condens. Matter 21 364212 [16] Etmimi K M, Goss J P, Briddon P R and Gseia E M 2009 J. Phys.: Condens. Matter 21 364211 [17] Moore M 2009 J. Phys.: Condens. Matter 21 364217 [18] Maki J M, Tuomisto F, Kelly C J, Fisher D and Martineau P M 2009 J. Phys.: Condens. Matter 21 364216 [19] Schwitters M, Martin D S, Unsworth P, Farrell T, Butler J E and Weightman P 2009 J. Phys.: Condens. Matter 21 364218 [20] Liaugaudas G, Collins A T, Suhling K, Davies G and Heintzmann R 2009 J. Phys.: Condens. Matter 21 364210 [21] Collins A T and Kiflawi I 2009 J. Phys.: Condens. Matter 21 364209 [22] Steeds J W, Sullivan W, Wotherspoon A and Hayes J M 2009 J. Phys.: Condens. Matter 21 364219 [23] Fisher D, Sibley S J and Kelly C J 2009 J. Phys.: Condens. Matter 21 364213 [24] Bangert U, Barnes R, Gass M H, Bleloch A L, and Godfrey I S 2009 J. Phys.: Condens. Matter 21 364208 [25] Khan R U A, Martineau P M, Cann B L, Newton M E and Twitchen D J 2009 J. Phys.: Condens. Matter 21 364214 [26] Stoneham A M, Harker A H and Morley G W 2009 J. Phys.: Condens. Matter 21 364222 [27] Evans D A, Roberts O R, Williams G T, Vearey-Roberts A R, Bain F, Evans S, Langstaff D and Twitchen D J 2009 J. Phys.: Condens. Matter 21 364223 [28] Stoneham A M 2004 Nat. Mater. 3 3 [29] Berman R (ed) 1965 Physical Properties of Diamond (Oxford: Clarendon) [30] Field J E (ed) 1979 The Properties of Diamond (London: Academic) [31] Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic) [32] Sussmann R S (ed) 2009 CVD Diamond for Electronic Devices and Sensors (Wiley Series in Materials for Electronic and Optoelectronic Applications) (New York: Wiley)
NASA Astrophysics Data System (ADS)
Matsumoto, Ryo; Yamashita, Aichi; Hara, Hiroshi; Irifune, Tetsuo; Adachi, Shintaro; Takeya, Hiroyuki; Takano, Yoshihiko
2018-05-01
Diamond anvil cells using boron-doped metallic diamond electrodes covered with undoped diamond insulating layers have been developed for electrical transport measurements under high pressure. These designed diamonds were grown on a bottom diamond anvil via a nanofabrication process combining microwave plasma-assisted chemical vapor deposition and electron beam lithography. The resistance measurements of a high-quality FeSe superconducting single crystal under high pressure were successfully demonstrated by just putting the sample and gasket on the bottom diamond anvil directly. The superconducting transition temperature of the FeSe single crystal was increased to up to 43 K by applying uniaxial-like pressure.
NASA Astrophysics Data System (ADS)
Czas, Janina; Stachel, Thomas; Pearson, D. Graham; Stern, Richard A.; Read, George H.
2018-05-01
We studied eclogite xenoliths (diamond-free n = 28; diamondiferous n = 22) from the Cretaceous Fort à la Corne Kimberlite Field in Western Canada for their major element, trace element and oxygen isotope compositions to assess their origin and metasomatic history, and possible relationships between metasomatism and diamond formation. All eclogites have major element and oxygen isotope compositions consistent with a derivation from different levels of subducted, seawater altered oceanic crust. While barren xenoliths are more likely to be of gabbroic origin, diamond-bearing samples commonly have signatures consistent with shallow basaltic protoliths. The mineral chemistry in bimineralic diamond-free eclogites spans a wide compositional range, yet it is typically homogenous within individual xenoliths. Temperatures calculated from Mg-Fe exchange between garnet and clinopyroxene range widely for these eclogites, from 740 to 1300 °C, indicating the presence of eclogite through most of the lithospheric mantle. Diamondiferous samples are restricted to high temperatures (1180-1390 °C), consistent with derivation from the zone of diamond stability. Compositionally, diamond-bearing eclogites span a broad range similar to their barren counterparts, but there is also heterogeneity in mineral chemistry on the intra-sample level and in particular garnets are characterised by strong internal chemical gradients. This intra-sample heterogeneity is interpreted as the result of intense melt metasomatism, which occurred in temporal proximity to host kimberlite magmatism, strongly affected major, trace and even oxygen isotope values and resulted in diamond brecciation and annealing.
Estrogen Receptors and Chronic Venous Disease.
Serra, R; Gallelli, L; Perri, P; De Francesco, E M; Rigiracciolo, D C; Mastroroberto, P; Maggiolini, M; de Franciscis, S
2016-07-01
Chronic venous disease (CVD) is a common and relevant problem affecting Western people. The role of estrogens and their receptors in the venous wall seems to support the major prevalence of CVD in women. The effects of the estrogens are mediated by three estrogen receptors (ERs): ERα, ERβ, and G protein-coupled ER (GPER). The expression of ERs in the vessel walls of varicose veins is evaluated. In this prospective study, patients of both sexes, with CVD and varicose veins undergoing open venous surgery procedures, were enrolled in order to obtain vein samples. To obtain control samples of healthy veins, patients of both sexes without CVD undergoing coronary artery bypass grafting with autologous saphenous vein were recruited (control group). Samples were processed in order to evaluate gene expression. Forty patients with CVD (10 men [25%], 30 women [75%], mean age 54.3 years [median 52 years, range 33-74 years]) were enrolled. Five patients without CVD (three men, two women [aged 61-73 years]) were enrolled as the control group. A significant increase of tissue expression of ERα, ERβ and GPER in patients with CVD was recorded (p < .01), which was also related to the severity of venous disease. ERs seem to play a role in CVD; in this study, the expression of ERs correlated with the severity of the disease, and their expression was correlated with the clinical stage. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yue, Donghui; Ji, Tingting; Qin, Tianru; Wang, Jia; Liu, Cailong; Jiao, Hui; Zhao, Lin; Han, Yonghao; Gao, Chunxiao
2018-02-01
The study on the thermal transport properties of matter under high pressure is important but is hard to fulfill in a diamond anvil cell (DAC) because the accurate measurement of the temperature gradient within the sample of DAC is very difficult. In most cases, the sample temperature can be read accurately from the thermocouples that are directly attached to the lateral edges of diamond anvils because both the sample and diamond anvils can be uniformly heated up to a given temperature. But for the thermal transport property studies in DAC, an artificial temperature distribution along the compression axis is a prerequisite. Obviously, the temperature of the top or bottom surface of the sample cannot be substituted by that of diamond anvils although diamond anvils can be considered as a good medium for heat conduction. With temperature field simulation by finite element analysis, it is found that big measurement errors can occur and are fatal to the correct analysis of thermal transport properties of materials. Thus, a method of combining both the four-thermocouple configuration and temperature field analysis is presented for the accurate temperature distribution measurement in DAC, which is based on the single-function relationship between temperature distribution and sample thermal conductivity.
Sitras, V; Fenton, C; Acharya, G
2015-02-01
Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CVD and PE share same common traits in their gene expression profile indicating common pathways in their pathophysiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Finite element design for the HPHT synthesis of diamond
NASA Astrophysics Data System (ADS)
Li, Rui; Ding, Mingming; Shi, Tongfei
2018-06-01
The finite element method is used to simulate the steady-state temperature field in diamond synthesis cell. The 2D and 3D models of the China-type cubic press with large deformation of the synthesis cell was established successfully, which has been verified by situ measurements of synthesis cell. The assembly design, component design and process design for the HPHT synthesis of diamond based on the finite element simulation were presented one by one. The temperature field in a high-pressure synthetic cavity for diamond production is optimized by adjusting the cavity assembly. A series of analysis about the influence of the pressure media parameters on the temperature field are examined through adjusting the model parameters. Furthermore, the formation mechanism of wasteland was studied in detail. It indicates that the wasteland is inevitably exists in the synthesis sample, the distribution of growth region of the diamond with hex-octahedral is move to the center of the synthesis sample from near the heater as the power increasing, and the growth conditions of high quality diamond is locating at the center of the synthesis sample. These works can offer suggestion and advice to the development and optimization of a diamond production process.
Erbium ion implantation into diamond - measurement and modelling of the crystal structure.
Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Sedmidubský, David; Hušák, Michal; Remeš, Zdeněk; Varga, Marián; Kromka, Alexander; Böttger, Roman; Oswald, Jiří
2017-02-22
Diamond is proposed as an extraordinary material usable in interdisciplinary fields, especially in optics and photonics. In this contribution we focus on the doping of diamond with erbium as an optically active centre. In the theoretical part of the study based on DFT simulations we have developed two Er-doped diamond structural models with 0 to 4 carbon vacancies in the vicinity of the Er atom and performed geometry optimizations by the calculation of cohesive energies and defect formation energies. The theoretical results showed an excellent agreement between the calculated and experimental cohesive energies for the parent diamond. The highest values of cohesive energies and the lowest values of defect formation energies were obtained for models with erbium in the substitutional carbon position with 1 or 3 vacancies in the vicinity of the erbium atom. From the geometry optimization the structural model with 1 vacancy had an octahedral symmetry whereas the model with 3 vacancies had a coordination of 10 forming a trigonal structure with a hexagonal ring. In the experimental part, erbium doped diamond crystal samples were prepared by ion implantation of Er + ions using ion implantation fluences ranging from 1 × 10 14 ions per cm 2 to 5 × 10 15 ions per cm 2 . The experimental results revealed a high degree of diamond structural damage after the ion implantation process reaching up to 69% of disordered atoms in the samples. The prepared Er-doped diamond samples annealed at the temperatures of 400, 600 and 800 °C in a vacuum revealed clear luminescence, where the 〈110〉 cut sample has approximately 6-7 times higher luminescence intensity than the 〈001〉 cut sample with the same ion implantation fluence. The reported results are the first demonstration of the Er luminescence in the single crystal diamond structure for the near-infrared spectral region.
Photoconductive switch package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporaso, George J.
2015-10-27
A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the centralmore » portion to actuate the switch.« less
Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond
NASA Astrophysics Data System (ADS)
Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.
2014-12-01
Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.
CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.
Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O
2013-02-20
The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-10-02
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.
Thermal Characterization for a Modular 3-D Multichip Module
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Plante, Jeannette; Shaw, Harry
2000-01-01
NASA Goddard Space Flight Center has designed a high-density modular 3-D multichip module (MCM) for future spaceflight use. This MCM features a complete modular structure, i.e., each stack can be removed from the package without damaging the structure. The interconnection to the PCB is through the Column Grid Array (CGA) technology. Because of its high-density nature, large power dissipation from multiple layers of circuitry is anticipated and CVD diamond films are used in the assembly for heat conduction enhancement. Since each stacked layer dissipates certain amount of heat, designing effective heat conduction paths through each stack and balancing the heat dissipation within each stack for optimal thermal performance become a challenging task. To effectively remove the dissipated heat from the package, extensive thermal analysis has been performed with finite element methods. Through these analyses, we are able to improve the thermal design and increase the total wattage of the package for maximum electrical performance. This paper provides details on the design-oriented thermal analysis and performance enhancement. It also addresses issues relating to contact thermal resistance between the diamond film and the metallic heat conduction paths.
NASA Astrophysics Data System (ADS)
Noborisaka, Mayui; Hirako, Tomoaki; Shirakura, Akira; Watanabe, Toshiyuki; Morikawa, Masashi; Seki, Masaki; Suzuki, Tetsuya
2012-09-01
Diamond-like carbon (DLC) films were synthesized by the dielectric barrier discharge-based plasma deposition at atmospheric pressure and their hardness and gas barrier properties were measured. A decrease in size of grains and heating substrate temperature improved nano-hardness up to 3.3 GPa. The gas barrier properties of DLC-coated poly(ethylene terephthalate) (PET) sheets were obtained by 3-5 times of non-coated PET with approximately 0.5 µm in film thickness. The high-gas-barrier DLC films deposited on PET sheets are expected to wrap elevated bridge of the super express and prevent them from neutralization of concrete. We also deposited DLC films inside PET bottles by the microwave surface-wave plasma chemical vapor deposition (CVD) method at near-atmospheric pressure. Under atmospheric pressure, the films were coated uniformly inside the PET bottles, but did not show high gas barrier properties. In this paper, we summarize recent progress of DLC films synthesized at atmospheric pressure with the aimed of food packaging and concrete pillar.
Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei
2015-01-01
The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals. PMID:28793597
NASA Astrophysics Data System (ADS)
Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.
2004-10-01
Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, L. G.; Lawson, M.; Onyszczak, M.
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less
Steele, L. G.; Lawson, M.; Onyszczak, M.; ...
2017-11-28
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less
Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki
2015-11-09
Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less
Diamond heteroepitaxial lateral overgrowth
Tang, Y. -H.; Bi, B.; Golding, B.
2015-02-24
A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.
Factors associated with blue-collar workers' risk perception of cardiovascular disease.
Hwang, Won Ju; Hong, Oisaeng; Kim, Mi Ja
2012-12-01
The purpose of this study was to investigate the contribution of actual cardiovascular disease (CVD) risk, as well as, individual, psychosocial, and work-related factors as predictors of CVD risk perception among Korean blue-collar workers. The participants were 238 Korean blue-collar workers who worked in small companies. Data were collected through a survey; anthropometric and blood pressure measures; and blood sampling for lipid levels. Blue-collar workers had high actual CVD risk and low CVD risk perception. The significant predictors of risk perception included perceived health status, alcohol consumption, knowledge of CVD risk, actual CVD risk, decision latitude, and shift work. The model explained 26% of the variance in CVD risk perception. The result suggests when occupational health nurses are giving routine health examination in small companies, they can enhance CVD risk perception in blue-collar workers by providing essential information about CVD risk factors and personal counseling on the individual worker's CVD risk status.
Studying Ultradisperse Diamond Structure within Explosively Synthesized Samples via X-Ray Techniques
NASA Astrophysics Data System (ADS)
Sharkov, M. D.; Boiko, M. E.; Ivashevskaya, S. N.; Belyakova, N. S.
2013-08-01
XRD (X-Ray Diffraction) and SAXS (Small-Angle X-Ray Scattering) data have been measured for a pair of samples produced with the help of explosives. XRD peaks have shown the both samples to contain crystal diamond components as well as graphite ones. Basing on SAXS analysis, possible presence of grains with radii up to 30-50 nm within all the samples has been shown. Structure components with fractal dimension between 1 and 2 in the sample have been detected, this fact being in agreement with the assumption of diamond grain coating similarity to onion shells. In order to broad rocking curves analysis, the standard SAXS treatment technique has been complemented by a Fourier filtering procedure. For the sample #1, rocking curve components corresponding to individual interplanar distances with magnitudes from 5 nm up to 15 nm have been separated. A hypothesis relating these values to the distances between concentric onion-like shells of diamond grains has been formulated.
Jackson, Rod
2017-01-01
Background Many national cardiovascular disease (CVD) risk factor management guidelines now recommend that drug treatment decisions should be informed primarily by patients’ multi-variable predicted risk of CVD, rather than on the basis of single risk factor thresholds. To investigate the potential impact of treatment guidelines based on CVD risk thresholds at a national level requires individual level data representing the multi-variable CVD risk factor profiles for a country’s total adult population. As these data are seldom, if ever, available, we aimed to create a synthetic population, representing the joint CVD risk factor distributions of the adult New Zealand population. Methods and results A synthetic population of 2,451,278 individuals, representing the actual age, gender, ethnicity and social deprivation composition of people aged 30–84 years who completed the 2013 New Zealand census was generated using Monte Carlo sampling. Each ‘synthetic’ person was then probabilistically assigned values of the remaining cardiovascular disease (CVD) risk factors required for predicting their CVD risk, based on data from the national census national hospitalisation and drug dispensing databases and a large regional cohort study, using Monte Carlo sampling and multiple imputation. Where possible, the synthetic population CVD risk distributions for each non-demographic risk factor were validated against independent New Zealand data sources. Conclusions We were able to develop a synthetic national population with realistic multi-variable CVD risk characteristics. The construction of this population is the first step in the development of a micro-simulation model intended to investigate the likely impact of a range of national CVD risk management strategies that will inform CVD risk management guideline updates in New Zealand and elsewhere. PMID:28384217
Knight, Josh; Wells, Susan; Marshall, Roger; Exeter, Daniel; Jackson, Rod
2017-01-01
Many national cardiovascular disease (CVD) risk factor management guidelines now recommend that drug treatment decisions should be informed primarily by patients' multi-variable predicted risk of CVD, rather than on the basis of single risk factor thresholds. To investigate the potential impact of treatment guidelines based on CVD risk thresholds at a national level requires individual level data representing the multi-variable CVD risk factor profiles for a country's total adult population. As these data are seldom, if ever, available, we aimed to create a synthetic population, representing the joint CVD risk factor distributions of the adult New Zealand population. A synthetic population of 2,451,278 individuals, representing the actual age, gender, ethnicity and social deprivation composition of people aged 30-84 years who completed the 2013 New Zealand census was generated using Monte Carlo sampling. Each 'synthetic' person was then probabilistically assigned values of the remaining cardiovascular disease (CVD) risk factors required for predicting their CVD risk, based on data from the national census national hospitalisation and drug dispensing databases and a large regional cohort study, using Monte Carlo sampling and multiple imputation. Where possible, the synthetic population CVD risk distributions for each non-demographic risk factor were validated against independent New Zealand data sources. We were able to develop a synthetic national population with realistic multi-variable CVD risk characteristics. The construction of this population is the first step in the development of a micro-simulation model intended to investigate the likely impact of a range of national CVD risk management strategies that will inform CVD risk management guideline updates in New Zealand and elsewhere.
Preface: phys. stat. sol. (a) 203/12
NASA Astrophysics Data System (ADS)
Jackman, Richard B.; Nesládek, Milo; Haenen, Ken
2006-09-01
The 30 papers gathered in this issue of physica status solidi (a) give a thorough overview over different topics that were presented during the 11th edition of the International Workshop on Surface and Bulk Defects in CVD Diamond Films (SBDD), which took place from 22 to 24 February 2006, at the Hasselt University in Diepenbeek-Hasselt, Belgium. Since its start more than 10 years ago, the SBDD Workshop has grown into a well-established, yearly early bird meeting place, addressing new emerging science related to the progress in the CVD diamond field. The 10 invited lectures, 29 contributed oral presentations and 26 posters were presented in several sessions during an intense two and a half day long meeting.The number of participants reached 115 this year with participants coming from fifteen countries: Austria, Belgium, Czech Republic, France, Germany, Israel, Italy, Japan, Mexico, Poland, Russia, Singapore, Slovak Republic, Sweden, UK, and USA. The mixture of young and established scientists, including a great proportion of students, made this meeting a hot spot of lively discussions on a wide range of scientific subjects, not only during the meeting itself, but also at several occasions throughout many social events offered by the hospitality of the city of Hasselt.It stands for itself that the workshop would not have been possible without the support of many people and institutions. For financial aid we are especially indebted to the Scientific Research Community Surface Modification of Materials of the F.W.O.-Vlaanderen (Belgium), whose incessant support plays an important role in keeping this meeting going. We also thank the Hasselt University for offering the lecture hall and infrastructure facilities and Seki Technotron Corp. for sponsoring the poster reception and their presence with a table top exhibit. Finally we highly appreciate the active approach of the editorial staff of physica status solidi in this conference and would like to thank most notably Stefan Hildebrandt, Ron Schulz-Rheinländer, Christoph Lellig, and Julia Hübner, for their excellent and patient work, bringing the number of successfully published proceedings of SBDD in pss (a) up to 8 already!To finish, we would all like to invite you to the 12th edition of the SBDD series, newly renamed as Hasselt Diamond Workshop, to be held at its established location of Diepenbeek-Hasselt. We look forward meeting you again at SBDD XII in 2007:Hasselt Diamond Workshop - SBDD XII
Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Leal, David A.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar; Leal-Quiros, E.
2006-12-01
Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, P., E-mail: pchow@carnegiescience.edu; Xiao, Y. M.; Rod, E.
2015-07-15
The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input fieldmore » of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.« less
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, P.Z.
1981-07-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, andmore » few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.« less
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
NASA Astrophysics Data System (ADS)
Takacs, Peter Z.
1982-04-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense X-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.
Bjørkhaug, I; Hatløy, A
2009-01-01
This article describes the implementation of respondent driven sampling (RDS) in a study conducted in Kono District, Sierra Leone. RDS was used to identify children, under the age of 18 years old, working in the diamond sector of Sierra Leone. This includes children working directly as diamond miners as well as children working in the informal sector connected to the diamond field. The article seeks to postulate that RDS is a suitable method for a rapid approach to a population that is unidentified in size and demonstrate how RDS can reach a study population within a limited period.
Controlled in situ boron doping of diamond thin films using solution phase
NASA Astrophysics Data System (ADS)
Roy, M.; Dua, A. K.; Nuwad, J.; Girija, K. G.; Tyagi, A. K.; Kulshreshtha, S. K.
2006-12-01
Controlled boron doping of diamond film using nontoxic reagents is a challenge in itself. During the present study, attempts have been made to dope diamond films in situ with boron from a solution of boric acid (H3BO3) in methanol (CH3OH) using a specially designed bubbler that ensured continuous and controlled flow of vapors of boron precursors during deposition. The samples are thoroughly characterized using a host of techniques comprising of x-ray photoelectron spectroscopy, Raman, x-ray diffraction, and current-voltage measurements (I-V). Cross-sectional micro-Raman spectroscopy has been used to obtain depth profile of boron in diamond films. Boron concentration ([B]) in the films is found to vary linearly on a semilog scale with molarity (M) of H3BO3 in CH3OH. Lattice constant of our samples is smaller than the reported American society for testing and materials (ASTM) values due to oxygen incorporation and it increases with [B] in the diamond samples. Heavily boron doped samples exhibit Fano deformation of the Raman line shape and negative and/zero activation barrier in temperature dependent I-V measurements that indicate the formation of metallic phase in the samples. The present study illustrates the feasibility of safe and controlled boron doping of diamond films using a solution of H3BO3 in CH3OH over a significant range of [B] from semiconductor to metallic regime but with a little adverse effect due to unintentional but unavoidable incorporation of oxygen.
Vieira, Áurea Simone Barroso; Pedro, Rafael de Lima; Antunes, Leonardo Dos Santos; Alves Dos Santos, Márcia Pereira; Antunes, Livia Azeredo Alves; Primo, Laura Guimarães; Maia, Lucianne Cople
2011-05-01
The aim of this in-vitro study was to compare the effect of high-speed cutting (HS) with ultrasonic abrasion (US) concerning the internal topography and the presence of a smear layer in a cavity preparation performed in healthy deciduous molars. Seven first deciduous molars were used. Two occlusal cavity preparation were done, one in the medial fossula and another in the distal fossula, which were chosen randomly. One preparation was carried out with a diamond point adapted to the HS system (GI), while a chemical vapor deposition (CVD) point adapted to a US device (GII) was used for the other preparation. Subsequently, all samples (n = 14) were cleaved to observe the inside and then prepared for evaluation using scanning electron photomicroscopy. The internal topography of the prepared cavities was descriptively analyzed. In order to assess the presence of a smear layer, scores were tabulated using the 2000 GMC program and analyzed using the Mann-Whitney test. Concerning the internal topography, the presence of striae was verified in both groups. In the GI group they were finer, found in a greater number, and with narrower spaces between them. In the GII group, the striae were undulating, similar to the effect of wheels on sand, and with wider spaces between them. As regards the presence of a smear layer, there was no statistically significant difference between the groups (P > 0.05). In view of the methodology employed, it may be concluded that cavity preparation with a CVD point in a US abrasion system led to the formation of fewer striae and both devices promoted the marked presence of a smear layer, obstructing dentinal tubuli.
Pieniak, Zuzanna; Verbeke, Wim; Perez-Cueto, Federico; Brunsø, Karen; De Henauw, Stefaan
2008-01-01
Background The purpose of this study was to explore the cross-cultural differences in the frequency of fish intake and in motivations for fish consumption between people from households with (CVD+) or without (CVD-) medical history of cardiovascular disease, using data obtained in five European countries. Methods A cross-sectional consumer survey was carried out in November-December 2004 with representative household samples from Belgium, the Netherlands, Denmark, Poland and Spain. The sample consisted of 4,786 respondents, aged 18–84 and who were responsible for food purchasing and cooking in the household. Results Individuals from households in the CVD+ group consumed fish more frequently in Belgium and in Denmark as compared to those in the CVD- group. The consumption of fatty fish, which is the main sources of omega-3 PUFA associated with prevention of cardiovascular diseases, was on the same level for the two CVD groups in the majority of the countries, except in Belgium where CVD+ subjects reported to eat fatty fish significantly more frequently than CVD- subjects. All respondents perceived fish as a very healthy and nutritious food product. Only Danish consumers reported a higher subjective and objective knowledge related to nutrition issues about fish. In the other countries, objective knowledge about fish was on a low level, similar for CVD+ as for CVD- subjects, despite a higher claimed use of medical information sources about fish among CVD+ subjects. Conclusion Although a number of differences between CVD- and CVD+ subjects with respect to their frequency of fish intake are uncovered, the findings suggest that fish consumption traditions and habits – rather than a medical history of CVD – account for large differences between the countries, particularly in fatty fish consumption. This study exemplifies the need for nutrition education and more effective communication about fish, not only to the people facing chronic diseases, but also to the broader public. European consumers are convinced that eating fish is healthy, but particular emphasis should be made on communicating benefits especially from fatty fish consumption. PMID:18783593
Diamond and Carbon Nanotube Composites for Supercapacitor Devices
NASA Astrophysics Data System (ADS)
Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson
2017-02-01
We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.
NASA Astrophysics Data System (ADS)
Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming
2014-04-01
Boron doped (B-doped) diamond films are deposited onto WC-Co inserts by HFCVD with the mixture of acetone, trimethyl borate (C3H9BO3) and H2. The as-deposited B-doped diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy, 3D surface topography based on white-light interferometry and Rockwell hardness tester. The effects of mechanical polishing on the friction behavior and cutting performance of B-doped diamond are evaluated by ball-on-plate type reciprocating tribometer and turning of aluminum alloy 7075 materials, respectively. For comparison, the same tests are also conducted for the bare WC-Co inserts with smooth surface. Friction tests suggest that the unpolished and polished B-doped diamond films possess relatively low fluctuation of friction coefficient than as-received bare WC-Co samples. The average stable friction coefficient for B-doped diamond films decreases apparently after mechanical polishing. The values for WC-Co sample, unpolished and polished B-doped diamond films are approximately 0.38, 0.25 and 0.11, respectively. The cutting results demonstrate that the low friction coefficient and high adhesive strength of B-doped diamond films play an essential role in the cutting performance enhancement of the WC-Co inserts. However, the mechanical polishing process may lower the adhesive strength of B-doped diamond films. Consequently, the polished B-doped diamond coated inserts show premature wear in the machining of adhesive aluminum alloy materials.
Rutledge, Thomas; Linke, Sarah E; Krantz, David S; Johnson, B Delia; Bittner, Vera; Eastwood, Jo-Ann; Eteiba, Wafia; Pepine, Carl J; Vaccarino, Viola; Francis, Jennifer; Vido, Diane A; Merz, C Noel Bairey
2009-11-01
To study the independent and interactive effects of depression and anxiety symptoms as predictors of cardiovascular disease (CVD) events in a sample of women with suspected myocardial ischemia. Symptoms of depression and anxiety overlap strongly and are independent predictors of CVD events. Although these symptoms commonly co-occur in medical patients, little is known about combined effects of depression and anxiety on CVD risk. A total of 489 women completed a baseline protocol including coronary angiogram, CVD risk factor assessment, and questionnaire-based measures of depression and anxiety symptoms, using the Beck Depression Inventory (BDI) and State Trait Anxiety Inventory (STAI), respectively. Participants were followed for a median 5.9 years to track the prevalence of CVD events (stroke, myocardial infarction, heart failure, and CVD-related mortality). We tested the BDI x STAI interaction effect in addition to the BDI and STAI main effects. Seventy-five women (15.3% of sample) experienced a CVD event, of which 18 were deaths attributed to cardiovascular causes. Results using Cox regression indicated a significant BDI x STAI interaction effect in the prediction of CVD events (p = .02) after covariate adjustment. Simple effect analyses indicated that depression scores were significant predictors of CVD events among women with low anxiety scores (hazard ratio [HR] = 2.3 [in standard deviation units]; 95% Confidence Interval [CI] = 1.3-3.9; p = .005) but not among women with higher levels of anxiety (HR = 0.99; 95% CI = 0.70-1.4; p = .95). Among women with suspected myocardial ischemia, the value of depression symptoms for predicting CVD events varied by the severity of comorbid anxiety. These results suggest that the clinical utility of depression measures may be improved by using them in combination with measures of anxiety.
Guimarães, Zulmira A S; Damatta, Renato A; Guimarães, Renan S; Filgueira, Marcello
2017-01-01
With the aim of introducing permanent prostheses with main properties equivalent to cortical human bone, Ti-diamond composites were processed through powder metallurgy. Grade 1 titanium and mixtures of Ti powder with 2%, 5% and 10 wt% diamond were compacted at 100MPa, and then sintered at 1250°C/2hr/10-6mbar. Sintered samples were studied in the point of view of their microstructures, structures, yield strength and elastic modulus. The results showed that the best addition of diamonds was 2 wt%, which led to a uniform porosity, yield strength of 370MPa and elastic modulus of 13.9 GPa. Samples of Ti and Ti-2% diamond were subjected to in vitro cytotoxicity test, using cultures of VERO cells, and it resulted in a biocompatible and nontoxic composite material.
Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.
2018-04-01
The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (<300 K). The obtained value is in good agreement with the ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.
High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure
NASA Astrophysics Data System (ADS)
Albrecht, Alexander R.; Rotter, Thomas J.; Hains, Christopher P.; Stintz, Andreas; Xin, Guofeng; Wang, Tsuei-Lian; Kaneda, Yushi; Moloney, Jerome V.; Malloy, Kevin J.; Balakrishnan, Ganesh
2011-03-01
We compare an InAs quantum dot (QD) vertical external-cavity surface-emitting laser (VECSEL) design consisting of 4 groups of 3 closely spaced QD layers with a resonant periodic gain (RPG) structure, where each of the 12 QD layers is placed at a separate field antinode. This increased the spacing between the QDs, reducing strain and greatly improving device performance. For thermal management, the GaAs substrate was thinned and indium bonded to CVD diamond. A fiber-coupled 808 nm diode laser was used as pump source, a 1% transmission output coupler completed the cavity. CW output powers over 4.5 W at 1250 nm were achieved.
NASA Astrophysics Data System (ADS)
Cartigny, Pierre; Farquhar, James; Thomassot, Emilie; Harris, Jeffrey W.; Wing, Bozwell; Masterson, Andy; McKeegan, Kevin; Stachel, Thomas
2009-11-01
In order to address diamond formation and origin in the lithospheric mantle underlying the Central Slave Craton, we report N- and C-stable isotopic compositions and N-contents and aggregation states for 85 diamonds of known paragenesis (73 peridotitic, 8 eclogitic and 4 from lower mantle) from the Panda kimberlite (Ekati Mine, Lac de Gras Area, Canada). For 12 peridotitic and two eclogitic sulfide inclusion-bearing diamonds from this sample set, we also report multiple-sulfur isotope ratios. The 73 peridotitic diamonds have a mean δ13C-value of - 5.2‰ and range from - 6.9 to - 3.0‰, with one extreme value at - 14.1‰. The associated δ15N-values range from - 17.0 to + 8.5‰ with a mean value of - 4.0‰. N-contents range from 0 to 1280 ppm. The 8 eclogitic diamonds have δ13C-values ranging from - 11.2 to - 4.4‰ with one extreme value at - 19.4‰. Their δ15N ranges from - 2.1 to + 7.9‰ and N-contents fall between 0 and 3452 ppm. Four diamonds with an inferred lower mantle origin are all Type II (i.e. nitrogen-free) and have a narrow range of δ13C values, between - 4.5 and - 3.5‰. The δ34S of the 14 analyzed peridotitic and eclogitic sulfide inclusions ranges from - 3.5 to +5.7‰. None of them provide evidence for anomalous δ33S-values; observed variations in δ33S are from +0.19 to - 0.33‰, i.e. within the 2 sigma uncertainties of mantle sulfur ( δ33S = 0‰). At Panda, the N contents and the δ13C of sulfide-bearing peridotitic diamonds show narrower ranges than silicate-bearing peridotitic diamonds. This evidence supports the earlier suggestion established from eclogitic diamonds from the Kaapvaal that sulfide-(±silicate) bearing diamonds sample a more restricted portion of sublithospheric mantle than silicate-(no sulfide) bearing diamonds. Our findings at Panda suggest that sulfide-bearing diamonds should be considered as a specific diamond population on a global-scale. Based on our study of δ34S, Δ 33S, δ15N and δ13C, we find no evidence for subduction-related isotopic signatures in the mantle sampled by Panda diamonds.
NASA Astrophysics Data System (ADS)
Makeev, A. B.; Kriulina, G. Yu.
2012-12-01
Representative samples of diamonds from five kimberlite pipes (Lomonosovskaya, Archangel'sk, Snegurochka, XXIII Congress of the Communist Party of the Soviet Union (CPSU), and Internationalnaya) of the Arkhangelskaya and Yakutian diamond provinces in Russia have been studied. Thirty-three varieties of metal films have been identified as syngenetic associated minerals. The films consist of 15 chemical elements that occur in the form of native metals and their natural alloys. Remnants of metal films were detected within diamond crystals. The metal films coating diamonds are a worldwide phenomenon. To date, these films have been described from Europe, Asia, South America, and Africa. Native metals, their alloys, and intermetallides are actual companion minerals of diamond.
Development of CVD-W coatings on CuCrZr and graphite substrates with a PVD intermediate layer
NASA Astrophysics Data System (ADS)
Song, Jiupeng; Lian, Youyun; Lv, Yanwei; Liu, Junyong; Yu, Yang; Liu, Xiang; Yan, Binyou; Chen, Zhigang; Zhuang, Zhigang; Zhao, Ximeng; Qi, Yang
2014-12-01
In order to apply tungsten (W) coatings by chemical vapor deposition (CVD) for repairing or updating the plasma facing components (PFCs) of the first wall and divertor in existing or future tokomaks, where CuCrZr or graphite is the substrate material, an intermediate layer by physical vapor deposition (PVD) has been used to accommodate the interface stress due to the mismatch of thermal expansion or act as a diffusion barrier between the CVD-W coating and the substrate. The prepared CuCrZr/PVD-Cu/CVD-W sample with active cooling has passed thermal fatigue tests by electron beam with an absorbed power of 2.2 MW/m2, 50 s on/50 s off, for 100 cycles. Another graphite/PVD-Si/CVD-W sample without active cooling underwent thermal fatigue testing with an absorbed power density of 4.62 MW/m2, 5 s on/25 s off, for 200 cycles, and no catastrophic failure was found.
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, M.; Pruteanu, C. G.; Donnelly, M. -E.
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Radiation attenuation by single-crystal diamond windows
Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...
2017-02-01
As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less
Use of natural diamonds to monitor 14C AMS instrument backgrounds
NASA Astrophysics Data System (ADS)
Taylor, R. E.; Southon, John
2007-06-01
To examine one component of the instrument-based background in the University of California Keck Carbon Cycle AMS spectrometer, we have obtained measurements on a set of natural diamonds pressed into sample holders. Natural diamond samples (N = 14) from different sources within rock formations with geological ages greatly in excess of 100 Ma yielded a range of currents (∼110-250 μA 12C- where filamentous graphite typically yields ∼150 μA 12C-) and apparent 14C ages (64.9 ± 0.4 ka BP [0.00031 ± 0.00002 fm] to 80.0 ± 1.1 ka BP [0.00005 ± 0.00001 fm]). Six fragments cut from a single diamond exhibited essentially identical 14C values - 69.3 ± 0.5 ka-70.6 ± 0.5 ka BP. The oldest 14C age equivalents were measured on natural diamonds which exhibited the highest current yields.
Nucleation and growth studies of crystalline carbon phases at nanoscale
NASA Astrophysics Data System (ADS)
Mani, Radhika C.
Understanding the nucleation and early stage growth of crystals from the vapor phase is important for realizing large-area single-crystal quality films, controlled synthesis of nanocrystals, and the possible discovery of new phases of materials. Carbon provides the most interesting system because all its known crystalline phases (diamond, graphite and carbon nanotubes) are technologically important materials. Hence, this dissertation is focused on studying the nucleation and growth of carbon phases synthesized from the vapor phase. Nucleation experiments were performed in a microwave plasma chemical vapor deposition (CVD) reactor, and the resulting carbon nanocrystals were analyzed primarily using electron nanodiffraction and Raman spectroscopy. These studies led to the discovery of two new crystalline phases of sp 3 carbon other than diamond: face-centered and body-centered cubic carbon. Nanodiffraction results revealed possible hydrogen substitution into diamond-cubic lattices, indicating that these new phases probably act as intermediates in diamond nucleation. Nucleation experiments also led to the discovery of two new morphologies for sp2 carbon: nanocrystals of graphite and tapered, hollow 1-D structures termed here as "carbon nanopipettes". A Kinetic Monte Carlo (KMC) algorithm was developed to simulate the growth of individual diamond crystals from the vapor phase, starting with small clusters of carbon atoms (or seeds). Specifically, KMC simulations were used to distinguish the kinetic rules that give rise to a star-shaped decahedral morphology compared to decahedral crystals. KMC simulations revealed that slow adsorption on the {111} step-propagation sites compared to kink sites leads to star-decahedral crystals, and higher adsorption leads to decahedral crystals. Since the surfaces of the nanocrystals of graphite and nanopipettes were expected to be composed primarily of edge-plane sites, the electrochemical behavior of both these materials were investigated with compounds requiring chemisorption, specifically biologically important species. Both these materials exhibited a stable and reversible voltammetric behavior for dopamine (a neurotransmitter) similar to that of graphite edge planes. Furthermore, a simple bottom-up concept utilizing the tapered morphology of the nanopipettes was developed to assemble a nanoarray sensor for fast cyclic voltammetry. In summary, the main outcomes of this dissertation include: the discovery of new crystalline carbon phases, understanding kinetic faceting of multiply twinned diamond crystals and tapered morphologies of carbon nanotubes, and development of new electrode materials based on sp2 carbon nanocrystals for sensing biologically important analytes.
High levels of cynical distrust partly predict premature mortality in middle-aged to ageing men.
Šmigelskas, Kastytis; Joffė, Roza; Jonynienė, Jolita; Julkunen, Juhani; Kauhanen, Jussi
2017-08-01
The aim of this study was to evaluate the effect of cynical distrust on mortality in middle-aged and aging men. The analysis is based on Kuopio Ischemic Heart Disease study, follow-up from 1984 to 2011. Sample consisted of 2682 men, aged 42-61 years at baseline. Data on mortality was provided by the National Death Registry, causes of death were classified by the National Center of Statistics of Finland. Cynical distrust was measured at baseline using Cynical Distrust Scale. Survival analyses were conducted using Cox regression models. In crude estimates after 28 years of follow-up, high cynical distrust was associated with 1.5-1.7 higher hazards for earlier death compared to low cynical distrust. Adjusted for conventional risk factors, high cynical distrust was significantly associated regarding CVD-free men and CVD mortality, while non-CVD mortality in study sample was consistently but not significantly associated. The risk effects were more expressed after 12-20 years rather than in earlier or later follow-up. To conclude, high cynical distrust associates with increased risk of CVD mortality in CVD-free men. The associations with non-CVD mortality are weaker and not reach statistical significance.
Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers
NASA Technical Reports Server (NTRS)
Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain
2010-01-01
The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work for this design is to apply the high output power from both the 250 and 300 GHz to multiple chains in order to generate milliwatts at 2.3 THz. Using the first generation of results for this innovation, 40 mW of output power were produced from a 240-GHz tripler at 350-mW input power, and 27- mW output power was produced from a 300-GHz tripler at 408-mW input power. This is two times higher than the current state-of-the-art output power capability. A finite-element thermal simulation also shows that 30-microns thick diamond dropped the temperature of the anodes by at least 200 C.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay
2017-02-01
In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.
[Spectroscopic studies on transition metal ions in colored diamonds].
Meng, Yu-Fei; Peng, Ming-Sheng
2004-07-01
Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.
New diamond cell for single-crystal x-ray diffraction
NASA Astrophysics Data System (ADS)
Boehler, Reinhard
2006-11-01
A new design for a high-precision diamond cell is described. Two kinematically mounted steel disks are elastically deflected to generate pressure. This principle provides higher precision in the diamond anvil alignment than most sliding piston-cylinder or guide-pin devices at significantly lower cost. With this new diamond cell conical diamond anvils with an x-ray aperture of 85° were successfully tested to over 50GPa using helium as a pressure medium. Anvil thickness of less than 1.4mm provides high x-ray transmission and low background, a significant improvement compared to beryllium or diamond-disk backing plates. Because the diamond anvils are supported by tungsten carbide seats, samples and pressure media can be annealed by external or laser heating to provide hydrostatic pressure conditions.
Measuring Charge Collection Efficiency in Diamond Vertex Detectors
NASA Astrophysics Data System (ADS)
Josey, Brian; Seidel, Sally; Hoeferkamp, Martin
2011-10-01
As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.
Deposition of diamond-like films by ECR microwave plasma
NASA Technical Reports Server (NTRS)
Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)
1995-01-01
Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.
Thick Nano-Crystalline Diamond films for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawedeit, Christoph
This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuermore » Nukleartechnik at Technical University of Germany supported the work.« less
Effects of Different Surface Treatments on Composite Repairs.
Batista, Graziela Ribeiro; Kamozaki, Maria Beatriz Beber; Gutierrez, Natália Cortez; Caneppele, Taciana Marco Ferraz; Rocha Gomes Torres, Carlos
2015-08-01
To evaluate the influence of different surface treatments on roughness and bond strength of composite repairs. 120 truncated conical specimens were prepared with composite Grandio SO (VOCO) and submitted to 5000 thermal cycles. Specimens were divided into 12 groups (n = 10) regarding the surface treatments: negative control (NC), without treatment; medium-grit diamond bur (MGD); coarse-grit diamond bur (CGD); conventional carbide bur (ConC); crosscut carbide bur (CutC); chemical vapor deposition diamond bur (CVD); sandblasting with aluminum oxide (AlO); Er:YAG laser 200 mJ/10 Hz (Er200); Er:YAG laser 60 mJ/10 Hz (Er50); Nd:YAG laser 120 mJ/15 Hz (Nd120); Nd:YAG laser 60 mJ/ 15Hz (Nd60); air abrasion with 110-μm silica modified aluminum oxide (Rocatec Plus-3M) (SIL). After the surface treatments, the surface roughness (Ra) was measured using a profilometer, and then the adhesive system Admira Bond (VOCO) was applied. Another truncated conical restoration was built up with the same composite over the bonded area of each specimen. In order to evaluate the cohesive strength, double-cone specimens were made and considered as a control group (CoheC). The specimens were submitted to tensile bond strength testing and the obtained data (MPa) were evaluated by one-way ANOVA, Tukey's and correlation tests. ANOVA showed significant differences among experimental groups for roughness and adhesive strength (p < 0.00). The roughness values (Ra) were: NC (0.21 ± 0.19)(c); ConC (0.30 ± 0.08)(c); CutC (0.50 ± 0.22)(cd); CVD (0.74 ± 0.14)(bd); MGD (0.89 ± 0.39)(ab); Er50 (0.89 ± 0.14)(ab); AlO (0.90 ± 0.07)(ab); Nd60 (0.94 ± 0.33ab; SIL (0.98 ± 0.07)(ab); Nd120 (1.10 ± 0.19)(a); CGD (1.10 ± 0.32)(a); Er200 (1.12 ± 0.21)(a). The results of the tensile bond strength test in MPa were: CGD (11.58 ± 3.03)(a); MGD (12.66 ± 3.82)(ab); NC (13.51 ± 3.95(ab); Nd120 (14.11 ± 5.95)(ab); ConC (14.73 ± 6.12)(ab); Er200 (15.51 ± 1.45)(abc); CVD (15.61 ± 5.00(abc); Er50 (16.44 ± 2.75) (abc); CutC (16.79 ± 2.98)(abc); Nd60 (17.72 ± 2.45)(abcd); AlO (18.33 ± 3.19)(bcd); SIL (21.13 ± 4.48(cd); CoheC (23.50 ± 5.81)(d). The groups followed by the same letters were not statistically significantly different (Tukey's test). No correlation was found between bond strength and roughness (r = 0.007). Air abrasion with silica coating (Rocatec) was the only method which resulted in significantly higher bond strength in relation to the negative control group. The increase in laser energy produced a rougher surface, but reduced the bond strength.
Bagheri, Nasser; Gilmour, Bridget; McRae, Ian; Konings, Paul; Dawda, Paresh; Del Fante, Peter; van Weel, Chris
2015-02-26
Cardiovascular disease (CVD) continues to be a leading cause of illness and death among adults worldwide. The objective of this study was to calculate a CVD risk score from general practice (GP) clinical records and assess spatial variations of CVD risk in communities. We used GP clinical data for 4,740 men and women aged 30 to 74 years with no history of CVD. A 10-year absolute CVD risk score was calculated based on the Framingham risk equation. The individual risk scores were aggregated within each Statistical Area Level One (SA1) to predict the level of CVD risk in that area. Finally, the pattern of CVD risk was visualized to highlight communities with high and low risk of CVD. The overall 10-year risk of CVD in our sample population was 14.6% (95% confidence interval [CI], 14.3%-14.9%). Of the 4,740 patients in our study, 26.7% were at high risk, 29.8% were at moderate risk, and 43.5% were at low risk for CVD over 10 years. The proportion of patients at high risk for CVD was significantly higher in the communities of low socioeconomic status. This study illustrates methods to further explore prevalence, location, and correlates of CVD to identify communities of high levels of unmet need for cardiovascular care and to enable geographic targeting of effective interventions for enhancing early and timely detection and management of CVD in those communities.
NASA Astrophysics Data System (ADS)
Melton, G. L.; Stachel, T.; Stern, R. A.; Carlson, J.; Harris, J. W.
2013-09-01
One hundred and twenty-one micro-diamonds (< 1 mm) and 90 macro-diamonds (2.5 mm to 3.4 mm) from the Panda kimberlite (Ekati mine, Central Slave Craton, Canada) were analyzed for nitrogen content, nitrogen aggregation state (%B) and platelet and hydrogen peak areas (cm- 2). Micro-diamond nitrogen concentrations range from < 10 at. ppm to 1696 at. ppm (median = 805 at. ppm) and the median aggregation state is 23%B. Macro-diamonds range from < 10 at. ppm to 1260 at. ppm (median = 187 at. ppm) nitrogen and have a median nitrogen aggregation of 26%B. Platelet and hydrogen peaks were observed in 37% and 79% of the micro-diamonds and 79% and 56% of the macro-diamonds, respectively. Nitrogen based time averaged residence temperatures indicate that micro- and macro-diamonds experienced similar thermal mantle residence histories, both populations displaying bimodal residence temperature distributions with a gap between 1130 °C and 1160 °C (at 3.5 Ga residence). In addition, SIMS carbon isotopic analyses for the micro-diamonds were obtained: δ13C compositions range from - 6.9‰ to + 1.8‰ (median = - 4.3‰). CL imaging reveals distinct growth layers that in some samples differ by > 2‰, but mostly vary by < 0.5‰. Comparison of only the “gem-quality” samples (n = 49 micro- and 90 macro-diamonds) between the two diamond sets, indicates a statistically significant shift of + 1.3‰ in average δ13C from macro- to micro-diamonds and this shift documents distinct diamond forming fluids, fractionation process or growth histories. A broad transition to heavier isotopic values is also observed in connection to decreasing mantle residence temperatures. The bimodal mantle residence temperature distribution may coincide with the transition from highly depleted shallow to more fertile deep lithospheric mantle observed beneath the Central Slave Craton. The increase in δ13C with decreasing residence temperature (proxy for decreasing depth) is interpreted to reflect diamond formation from a carbonate-bearing metasomatic fluid/melt that isotopically evolves as it percolates upward through the lithosphere.
NASA Astrophysics Data System (ADS)
Manfredotti, Claudio
Because of its physical properties (strong radiation hardness, wide energy gap with a consequent extremely low dark current, very large electron and hole mobility) diamond is a very good candidate for nuclear particle detection, particularly in harsh environments or in conditions of strong radiation damage. Being commonly polycrystalline, diamond samples obtained by chemical vapour deposition (CVD) are not homogeneous, not only from the morphological point of view, but also from the electronic one. As a consequence, as it was indicated quite early starting from 1995, charge collection properties such as charge collection efficiency (cce) are not uniform, but they are depending on the site hit by incoming particle. Moreover, these properties are influenced by previous irradiations which are used in order to improve them and, finally, they are also dependent on the thickness of the sample, since the electronic non uniformity extends also in depth by affecting the profile of the electrical field from top to bottom electrode of the nuclear detector in the standard "sandwich" arrangement. By the use of focussed ion beams, it is possible to investigate these non uniformities by the aid of techniques like IBIC (Ion Beam Induced Charge) and IBIL (Ion Beam Induced Luminescence) with a space resolution of the order of 1 m. This relatively new kind of microscopy, which is called "ion microscopy", is capable not only to give 2D maps of cce, which can be quite precisely compared with morphological images obtained by Scanning Electron Microscopy (generally the grains display a much better cce than intergrain regions), but also to give the electric field profile from one electrode to the other one in a "lateral" arrangement of the ion beam. IBIL, by supplying 2D maps of luminescence intensity at different wavelength, can give information about the presence of specific radiative recombination centers and their distribution in the material. Finally, a new technique called XBIC (X-ray Beam Induced Charge), which makes use of very collimated (to 0.1 m) x-ray beams from high energy electron synchrotrons, opens new ways to map cce with a less damaging radiation and with a better energy resolution. In this paper we resume recent and less recent work carried out by our group by using these techniques, a work that has been undertaken afterwards also by other research groups in the world. In particular, topics such as the better homogeneity obtained by "priming" and the effects of "light priming", together with a certain "complementarity" between IBIC and IBIL maps, giving evidence that radiative recombination centers along the grain boundaries or in damaged regions are important in affecting cce, will be presented and discussed in some details. The conclusion is that ion microscopy is a powerful and essentially unique method for the investigation of diamond and other semiconductor materials proposed for nuclear detection.
Studies of Diamonds Using Electron Paramagnetic Resonance and Other Techniques
NASA Astrophysics Data System (ADS)
Zhang, Shigang
Studies of impurities/defects in diamonds grown with the high-temperature high-pressure technique (HTHP) and B- and P-doped diamond films using fast ion implantation and chemical evaporation have been carried out. The main technique employed in the study is electron paramagnetic resonance (EPR). Raman, laser and X-ray fluorescence are also used to characterize the samples. While other commonly used techniques such as infrared (IR) spectroscopy detect no nitrogen in an isotopically enriched ^ {12}C diamond, the clear EPR spectrum consistently measures a nitrogen concentration of about 0.05ppm by calibration against a few standards. The ^{12}C diamond is evaluated to be ideal for optical window application and studies of diamond properties. Neither the EPR lineshape nor the second moment supports a random nitrogen distribution in the ^{12}C diamond. Instead, the average nitrogen distance is found to be larger than the of the random nitrogen distribution. The g-tensor for substitutional nitrogen is found to be axially symmetric along the (111) direction with g_| - g_| = 0.00002(5). In the study of a HTHP IIb blue semiconducting diamond, neutral N is measured with a concentration of 0.02ppm. The result is not well understood since neutral nitrogen is expected to lose its extra electron to boron due to electron-hole recombination. Further studies are suggested to better understand this result. EPR studies of two sets of P-doped diamond films grown using fast ion implantation and chemical incorporation reveal that defect levels caused by diamond doping are still too high for semiconductor applications. As expected, P doping causes a defect level two orders of magnitude higher than B doping, which can be explained by the relatively larger size of P than B. The theoretical analysis based on EPR hyperfine interaction suggest that P forms a shallow donor in diamond and that the electron density at the P site is |psi(0)|^2 = 0.27 times 10^{24} cm^ {-3}. This is consistent with the temperature dependent EPR experimental results. The EPR spectra for all diamond samples I have studied are compared, revealing that the HTHP diamonds show no defect related spectrum, which are commonly observed in natural IIa and IIb diamonds. This result indicates that HTHP diamond has superior quality compared to other diamonds.
Examining risk factors for cardiovascular disease among food bank members in Vancouver.
Fowokan, A O; Black, J L; Holmes, E; Seto, D; Lear, S A
2018-06-01
Food banks provide supplemental food to low-income households, yet little is known about the cardiovascular health of food banks members. This study therefore described cardiovascular disease (CVD) risk factors among food bank members and explored associations between food insecurity and CVD risk. Adults ≥18 years (n = 77) from three food bank sites in metro Vancouver, British Columbia completed surveys and physical assessments examining a range of socio-demographic variables and CVD risk factors. A composite measure of myocardial infarction (MI) risk called the INTERHEART score was assessed and household food insecurity was measured using the Household Food Security Survey Module. Regression models were used to explore associations between food insecurity and CVD risk measures, including the INTERHEART score. Ninety-seven percent of food bank members reported experiencing food insecurity, 65% were current smokers, 53% reported either chronic or several periods of stress in the past year, 55% reported low physical activity levels and 80% reported consuming fewer than five servings of fruit and vegetables daily. Prevalence of self-reported diabetes and hypertension were 13% and 29% respectively. Fifty-two percent of the sample were at high risk of non-fatal MI. No statistically significant associations were found between increased severity of food insecurity and CVD risk factors among this sample where both severe food insecurity and high CVD risks were prevalent. Food bank members were at elevated risk for CVD compared with the general population. Strategies are needed to reduce prevalence of food insecurity and CVD risk factors, both of which disproportionately affected food bank members.
Invasion of Hydrous Fluids Predates Kimberlite Formation
NASA Astrophysics Data System (ADS)
Kopylova, M. G.; Wang, Q.; Smith, E. M.
2017-12-01
Petrological observations on diamonds and peridotite xenoliths in kimberlites point towards an influx of hydrous metasomatic fluids shortly predating kimberlite formation. Diamonds may grow at different times within the same segment of the cratonic mantle, and diamonds that form shortly before (<5-7 My) the kimberlite entrainment host the more hydrous fluid inclusions. Younger fibrous diamonds typically contain 10-25 wt.% water in fluid inclusions, while older octahedrally-grown diamonds host "dry" N2-CO2 fluids. Our recent studies of fluids in diamond now show that many different kinds of diamonds can contain fluid inclusions. Specifically, we found a new way to observe and analyze fluids in octahedrally-grown, non-fibrous diamonds by examining healed fractures. This is a new textural context for fluid inclusions that reveals a valuable physical record of infiltrating mantle fluids, that postdate diamond growth, but equilibrate within the diamond stability field at depths beyond 150 km. Another sign of the aqueous fluids influx is the formation of distinct peridotite textures shortly predating the kimberlite. Kimberlites entrain peridotite xenoliths with several types of textures: older coarse metamorphic textures and younger, sheared textures. The preserved contrast in grain sizes between porphyroclasts and neoblasts in sheared peridotites constrain the maximum duration of annealing. Experimental estimates of the annealing time vary from 7x107 sec (2 years) to 106 years (1 My) depending on olivine hydration, strain rate, pressure, temperature and, ultimately, the annealing mechanism. Kimberlite sampling of sheared peridotites from the lithosphere- asthenosphere boundary (LAB) implies their formation no earlier than 1 My prior to the kimberlite ascent. Water contents of olivine measured by FTIR spectrometry using polarized light demonstrated contrasting hydration of coarse and sheared samples. Olivine from sheared peridotite samples has the average water content of 78±3 ppm, in contrast to the less hydrated coarse peridotites (33±6 ppm). LAB hydration results in the lower viscosity of the mantle (1-4 orders of magnitude) translating into 10-104- fold increase in strain rate if stress, its duration, pressure, temperature and the deformation mechanism are assumed constant.
Episodic diamond growth beneath the Kaapvaal Craton at Jwaneng Mine, Botswana
NASA Astrophysics Data System (ADS)
Gress, Michael U.; Howell, Daniel; Chinn, Ingrid L.; Speich, Laura; Kohn, Simon C.; van den Heuvel, Quint; Schulten, Ellen; Pals, Anna S. M.; Davies, Gareth R.
2018-05-01
Important implications for the interior workings of the Earth can be drawn by studying diamonds and their inclusions. To better understand the timing and number of diamond forming events beneath the NW margin of the Kaapvaal Craton, a comprehensive reassessment of Jwaneng's diamond populations has been undertaken. We report new inclusion abundance data from the visual examination of 130,000 diamonds that validate the predominance of an eclogitic diamond suite (up to 88%) with on average 5% inclusion-bearing diamonds (with inclusions >10 μm in size). From this population, polished plates from 79 diamonds of eclogitic and peridotitic paragenesis have been studied with cathodoluminescence (CL) imaging and infrared spectroscopy (FTIR) traverses. The majority (80%) record major changes in N concentration and aggregation states, as well as sharp boundaries in the CL images of individual plates that are interpreted to demarcate discrete diamond growth events. In addition, bulk FTIR data have been acquired for 373 unpolished diamonds. Silicate inclusions sampled from distinct growth zones define 2 compositional groups of omphacites and pyrope-almandines associated with different N contents in their diamond hosts. These findings reinforce previous observations that at Jwaneng at least seven individual diamond forming events can be identified - 3 peridotitic and 4 eclogitic. The results demonstrate that detailed examination of diamond plates by CL imaging and FTIR traverses is necessary to unveil the complex history recorded in diamonds.
Dose Enhancement near Metal Interfaces in Synthetic Diamond Based X-ray Dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, Dalal
Diamond is an attractive material for medical dosimetry due to its radiation hardness, fast response, chemical resilience, small sensitive volume, high spatial resolution, near-tissue equivalence, and energy and dose rate independence. These properties make diamond a promising material for medical dosimetry compared to other semiconductor detector materials and wider radiation detection applications. This study is focused on one of the important factors to consider in the radiation detector; the influence of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond radiation dosimeters with carbon based electrodes as a function of bias voltages. Monte Carlo (MC) simulations with BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigation. MC simulations show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystal (SC) and one polycrystalline (PC) samples with carbon based electrodes were used. The samples were each mounted inside a tissue equivalent encapsulation design in order to minimize fluence perturbations. Copper, Gold and Lead have been investigated experimentally as generators of photoelectrons using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond detector. The variation in the photocurrent ratio measurements depends on the type of diamond samples, their electrode fabrication and the applied bias voltages indicating that the dose enhancement from diamond-metal interface modifies the electronic performance of the detector.
NASA Astrophysics Data System (ADS)
Weimer, Wayne A.; Johnson, Curtis E.
1990-12-01
A microwave plasma enhanced chemical vapor deposition system is characterized using optical emission spectroscopy and mass spectrometry. CH4 CH2 CH4 and CO were used as carbon source gases. The effects of 02 addition to the feed gas is examined. Emission from CH in the plasma is observed and CH4 is a stable reaction product for all carbon source gases used. 02 is fully consumed and converted to H20 and CO. Emission from C is observed for all hydrocarbon gases when 02 is added but is absent when CO is the carbon source gas. Addition of 02 also dramatically affects the relative amount of reaction products as the carbon in the system is converted to CO. 1.
Monte Carlo study of microdosimetric diamond detectors
NASA Astrophysics Data System (ADS)
Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona
2015-09-01
Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengdi, E-mail: M.Yang@utwente.nl; Aarnink, Antonius A. I.; Kovalgin, Alexey Y.
2016-01-15
In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 °C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H{sub 2}), which reacted with WF{sub 6} at the substrate to deposit W. The growth behavior was monitored in real time by an in situ spectroscopic ellipsometer. In this work, the authors compare samples with tungsten grown by either HWALD or chemical vapor deposition (CVD) in terms of growth kinetics and properties. For CVD, the samples were made in a mixture of WF{sub 6} and molecularmore » or atomic hydrogen. Resistivity of the WF{sub 6}-H{sub 2} CVD layers was 20 μΩ·cm, whereas for the WF{sub 6}-at-H-CVD layers, it was 28 μΩ·cm. Interestingly, the resistivity was as high as 100 μΩ·cm for the HWALD films, although the tungsten films were 99% pure according to x-ray photoelectron spectroscopy. X-ray diffraction reveals that the HWALD W was crystallized as β-W, whereas both CVD films were in the α-W phase.« less
Noble gases in diamonds - Occurrences of solarlike helium and neon
NASA Technical Reports Server (NTRS)
Honda, M.; Reynolds, J. H.; Roedder, E.; Epstein, S.
1987-01-01
Seventeen diamond samples from diverse locations were analyzed for the contents of He, Ar, Kr, and Xe, and of their isotopes, using a Reynolds (1956) type glass mass spectrometer. The results disclosed a large spread in the He-3/He-4 ratios, ranging from values below atmospheric to close to the solar ratio. In particular, solarlike He-3/He-4 ratios were seen for an Australian colorless diamond composite and an Arkansas diamond, which also displayed solarlike neon isotopic ratios. Wide variation was also observed in the He-4/Ar-40 ratios, suggesting a complex history for the source regions and the diamond crystallization processes.
Effect of obesity on cardiovascular disease risk factors in African American women.
Henry-Okafor, Queen; Cowan, Patricia A; Wicks, Mona N; Rice, Muriel; Husch, Donna S; Khoo, Michelle S C
2012-04-01
Obesity is a growing health care concern with implications for cardiovascular disease (CVD). Obesity and CVD morbidity and mortality are highly prevalent among African American women. This pilot study examined the association between obesity and the traditional and emerging CVD risk factors in a sample of African American women. Participants comprised 48 women (27 obese, 21 normal weight) aged 18-45. with no known history of CVD. The women completed demographic and 7-day physical activity recall questionnaires. Height and weight were used to determine body mass index (BMI). Hypertension risk was assessed using the average of two resting blood pressure (BP) measurements. Lipid profile, blood glucose, fibrinogen, high-sensitivity C-reactive protein (hs-CRP), plasminogen activator inhibitor-1 (PAI-1), soluble intercellular adhesion molecule-1 (sICAM-1), and E-selectin (eSel) levels were assessed using fasting blood samples. Laboratory findings were interpreted using the American Diabetes Association (ADA) and Adult Treatment Panel (ATP) III reference guidelines as well as manufacturers' reference ranges for the novel CVD risk factors. The most common traditional risk factors were physical inactivity (72.9%), positive family history of CVD (58.3%), and obesity (56.3%). Obese individuals had elevated systolic BP (p = .0002), diastolic BP (p = .0007) and HDL-cholesterol (p = .01), triglyceride (p = .02), hs-CRP (p = .002), and fibrinogen (p = .01), when compared with normal-weight women. The findings suggest an association between obesity and higher prevalence of both traditional and emerging CVD risk factors in young African American women.
The Anvils as Pressure Calibrants in the Hydrothermal Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Davis, M. K.; Panero, W. R.; Stixrude, L. P.
2003-12-01
Throughout the crust and the upper part of the mantle, water is an important agent of heat and mass transport in processes ranging from metasomatism to magma generation in arc environments. One of the important properties of water in this regime: its ability to dissolve significant amounts of solids, presents a substantial challenge to the experimental study of water-rich systems. Many commonly used pressure standards, such as quartz and ruby, dissolve in water under the conditions accessible to the hydrothermal diamond anvil cell (up to 1200 K and 5 GPa). For this reason, it is important to develop alternative pressure calibrants. Two methods have been developed by other groups for pressure calibration in the HDAC in the presence of water. One method relies on the equation of state of the ambient fluid and the observation that the sample chamber remains approximately isochoric on heating. Disadvantages of this method include our imperfect knowledge of the equation of state of water over the relevant pressure-temperature interval, possible changes in fluid composition, and sample chamber assembly relaxation at temperatures above 800 K. The second method is based on the Raman signal from diamond chips loaded with the sample. Synthetic 13C diamond is used to avoid overlap with the much stronger signal from the anvils. Diamond is an ideal pressure sensor since it is chemically inert and unaffected by water. Therefore, we use the tips of the diamond anvils as "internal" sensors. The primary disadvantage of this method is that the stress distribution inside the anvils is non-hydrostatic and inhomogeneous, although the normal stress across the diamond-sample interface must be continuous. Using confocal micro-Raman spectroscopy we are able to characterize both the inhomogeneity and the non-hydrostaticity of the diamond stress field by combining axial and radial transects with peak shapes. We find that on room temperature loading there is substantial inhomogeneity in the diamond stress field: variations of up to 2.3 cm-1 or about 0.8 GPa over a pressure range of 0 to 3.5 GPa. However, heating substantially reduces inhomogeneity in the vicinity of the diamond-sample interface allowing the derivation of a useful pressure calibration. Preliminary results show that the primary Raman line of diamond shifts with respect to temperature according to the equation 1332.15 - 0.0016x - 3.5e-5x2 + 7.1e-11x3 where x is temperature. The same Raman line of diamond shifts with pressure according to the equation 1332.15 + 3.4*P where the pressure, P, is in GPa. We find that the effects of temperature and pressure are independent of one another so that an independent measurement of temperature (with thermocouples) together with the measured Raman shift determines the pressure with an accuracy of 0.27 GPa at 800K and 2 GPa. We compare our calibration to the quartz and ruby calibration scales over the range where they are stable. We also compare our calibration to previous experiments using independent pressure calibrants.
Double bevel construction of a diamond anvil
Moss, W.C.
1988-10-11
A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.
Double bevel construction of a diamond anvil
Moss, William C.
1988-01-01
A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.
Song, Yang; Swain, Greg M
2007-06-12
An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.
In situ Analysis of North American Diamond: Implications for Diamond Growth Modeling
NASA Astrophysics Data System (ADS)
Schulze, D. J.; Van Rythoven, A. D.; Hauri, E.; Wang, J.
2014-12-01
Diamond crystals from three North American kimberlite occurrences were investigated with cathodoluminescence (CL) and secondary ion mass spectrometry (SIMS) to determine their growth history, carbon isotope composition and nitrogen content. Samples analyzed include sixteen from Lynx (Quebec), twelve from Kelsey Lake (Colorado) and eighteen from A154 South (Diavik mine, Northwest Territories). Growth histories for the samples vary from simple to highly complex based on their CL images and depending on the individual stone. Deformation lamellae are evident in CL images of the Lynx crystals which typically are brownish in color. Two to five points per diamond were analyzed by SIMS for carbon isotope composition (δ13CPDB) and three to seven points for nitrogen content. The results for the A154 South (δ13CPDB = -6.76 to -1.68 ‰) and Kelsey Lake (δ13CPDB = -11.81 to -2.43 ‰) stones (mixed peridotitic and eclogitic suites) are similar to earlier reported values. The Lynx kimberlite stones have anomalously high carbon isotope ratios and range from -3.58 to +1.74 ‰. The Lynx diamond suite is almost entirely peridotitic. The unusually high (i.e. >-5‰) δ13C values of the Lynx diamonds, as well as those from Wawa, Ontario and Renard, Quebec, may indicate an anomalous carbon reservoir for the Superior cratonic mantle relative to other cratons. In addition to the heavier carbon isotope values, the Lynx samples have very low nitrogen contents (<100 ppm). Nitrogen contents for Kelsey Lake and Diavik samples are more typical and range to ~1100 ppm. Comparison of observed core to rim variations in nitrogen content and carbon isotopes with modeled Rayleigh fractionation trends for published diamond growth mechanisms allows for evaluation of carbon speciation and other parent fluid conditions. Observed trends that closely follow modeled data are rare, but appear to suggest diamond growth from carbonate-bearing fluids at Lynx and Diavik, and growth from a methane-bearing fluid at Kelsey Lake. However the majority of crystals appear to have very complex growth histories that are clearly the result of multiple growth and resorption events. Trends observed in most of the samples from this study are chaotic and no consistent patterns are seen.
Properties of the carbon-palladium nanocomposites studied by Raman spectroscopy method
NASA Astrophysics Data System (ADS)
Belka, Radosław; Suchańska, Małgorzata
2013-10-01
In this paper, the results for thin carbon-palladium (C-Pd) nanocomposites obtained by PVD (Physical Vapour Deposition) and PVD/CVD (Chemical Vapour Deposition) method, carried out using Raman spectroscopy method are presented. Studies reveal the dominance of fullerene-like structure for PVD samples and graphite-like structures for CVD samples. The type of substrate and metal content have great impact on spectra shapes.
Diamond- cBN alloy: A universal cutting material
Wang, Pei; He, Duanwei; Wang, Liping; ...
2015-09-08
Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less
Diamond-cBN alloy: A universal cutting material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154; He, Duanwei, E-mail: duanweihe@scu.edu.cn
Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis andmore » characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.« less
Diamond- cBN alloy: A universal cutting material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; He, Duanwei; Wang, Liping
Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less
Morshedi-Meibodi, Ali; Larson, Martin G; Levy, Daniel; O'Donnell, Christopher J; Vasan, Ramachandran S
2002-10-15
A delayed heart rate (HR) recovery after graded exercise testing has been associated with increased all-cause mortality in clinic-based samples. No prior study has examined the association of HR recovery after exercise with the incidence of coronary heart disease (CHD) and cardiovascular disease (CVD) events. We evaluated 2,967 Framingham study subjects (1,400 men, mean age 43 years) who were free of CVD and underwent a treadmill exercise test (Bruce protocol) at a routine examination. We examined the relations of HR recovery indexes (decrease in HR from peak exercise) to the incidence of a first CHD or CVD event and all-cause mortality, adjusting for established CVD risk factors. During follow-up (mean 15 years), 214 subjects experienced a CHD event (156 men), 312 developed a CVD event (207 men), and 167 died (105 men). In multivariable models, continuous HR recovery indexes were not associated with the incidence of CHD or CVD events, or with all-cause mortality. However, in models evaluating quintile-based cut points, the top quintile of HR recovery (greatest decline in HR) at 1-minute after exercise was associated with a lower risk of CHD (hazards ratio vs bottom 4 quintiles 0.54, 95% confidence interval [CI], 0.32 to 0.93) and CVD (hazards ratio 0.61, 95% CI 0.41 to 0.93), but not all-cause mortality (hazards ratio 0.99, 95% CI 0.60 to 1.62). In our community-based sample, HR recovery indexes were not associated with all-cause mortality. A very rapid HR recovery immediately after exercise was associated with lower risk of CHD and CVD events. These findings should be confirmed in other settings.
Diamond exploration and regional prospectivity of Western Australia
NASA Astrophysics Data System (ADS)
Hutchison, Mark T.
2018-06-01
Pre-1.6 Ga rocks comprise around 45% of the onshore area of Western Australia (WA), constituting the West Australian Craton (WAC) (including the Archean Yilgarn and Pilbara Cratons) and the western part of the North Australian Craton (NAC). These areas provide the conditions suitable for diamond formation at depth, and numerous diamondiferous lamproite and kimberlite fields are known. As emplacement ages span close to 2500 Ma, there are significant opportunities for diamond-affinity rocks being present near-surface in much of the State, including amongst Phanerozoic rocks. WA's size, terrain, infrastructure and climate, mean that many areas remain underexplored. However, continuous diamond exploration since the 1970s has resulted in abundant data. In order to advance future exploration, a comprehensive database of results of diamond exploration sampling (Geological Survey of Western Australia 2018) has been assessed. The Yilgarn and Pilbara Cratons have spinel indicators almost exclusively dominated by chromite (>90% of grains), whereas (Mg,Fe,Ti)-bearing Al-chromites account for more of the indicator spinels in the NAC, up to 50% of grains at the Northern Territory (NT) border. Increasing dominance of Al in chromites is interpreted as a sign of weathering or a shallower source than Al-depleted Mg-chromites. Garnet compositions across the State also correlate with geological subdivisions, with lherzolitic garnets showing more prospective compositions (Ca-depleted) in WAC samples compared to the NAC. WAC samples also show a much broader scatter into strongly diamond-prospective G10 and G10D compositions. Ilmenites from the NAC show Mg-enriched compositions (consistent with kimberlites), over and above those present in NT data. However, ilmenites from the WAC again show the most diamond-prospective trends. Numerous indicator mineral concentrations throughout the State have unknown sources. Due in part to the presence of diamondiferous lamproites, it is cautioned that some accepted indicator mineral criteria do not apply in parts of WA. For example Ca-depleted garnets, Mg-depleted ilmenites and Cr-depleted and Al-absent clinopyroxenes are all sometimes associated with strongly diamondiferous localities. Quantitative prospectivity analysis has also been carried out based on the extent and results of sampling, age of surface rocks relative to ages of diamond-prospective rocks, and the underlying mantle structure. Results show that locations within the NAC and with proximity to WA's diamond mines score well. However, results point to parts of the WAC being more prospective, consistent with mineral chemical data. Most notable are the Hamersley Basin, Eastern Goldfields Superterrane and the Goodin Inlier of the Yilgarn Craton. Despite prolific diamond exploration, WA is considerably underexplored and the ageing Argyle mine and recent closure of operations at Ellendale warrant a re-evaluation of diamond potential. Results of mineral chemistry and prospectivity analysis make a compelling case for renewed exploration.
Krishnamoorthy, Parasuram; Kalla, Aditi; Figueredo, Vincent M
2018-05-01
Epidemiologic studies suggest reduced cardiovascular disease (CVD) events with moderate alcohol consumption. However, heavy and binge drinking may be associated with higher CVD risk. Utilizing the Nationwide Inpatient Sample, we studied the association between a troublesome alcohol history (TAH), defined as those with diagnoses of both chronic alcohol syndrome and acute withdrawal history and CVD events. Patients >18 years with diagnoses of both chronic alcohol syndrome and acute withdrawal using the International Classification of Diseases-Ninth Edition-Clinical Modification (ICD-9-CM) codes 303.9 and 291.81, were identified in the Nationwide Inpatient Sample 2009-2010 database. Demographics, including age and sex, as well as CVD event rates were collected. Patients with TAH were more likely to be male, with a smoking history and have hypertension, with less diabetes, hyperlipidemia and obesity. After multimodal adjusted regression analysis, odds of coronary artery disease, acute coronary syndrome, in-hospital death and heart failure were significantly lower in patients with TAH when compared to the general discharge patient population. Utilizing a large inpatient database, patients with TAH had a significantly lower prevalence of CVD events, even after adjusting for demographic and traditional risk factors, despite higher tobacco use and male sex predominance, when compared to the general patient population. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
High-pressure resistivity technique for quasi-hydrostatic compression experiments.
Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V
2013-06-01
Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.
1976-01-01
The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.
Chronic Kidney Disease as a Predictor of Cardiovascular Disease (From the Framingham Heart Study)
Parikh, Nisha I.; Hwang, Shih-Jen; Larson, Martin G.; Levy, Daniel; Fox, Caroline S.
2008-01-01
Chronic kidney disease (CKD) is a risk factor for cardiovascular disease (CVD), although shared risk factors may mediate much of the association. We related CKD and CVD in the setting of specific CVD risk factors and determined whether more advanced CKD was a CVD risk equivalent. The Framingham Heart Study original cohort (n=2471, mean age 68 years, 58.9% women) was studied. Glomerular filtration rate (eGFR) was estimated using the simplified Modification of Diet in Renal Disease Study equation. CKD was defined as eGFR < 59 mL/min per 1.73 m2 (women) and < 64 (men) and Stage 3b CKD defined as eGFR 30-44 (women) and 30-50 (men). Cox Proportional Hazard models adjusting for CVD risk factors were used to relate CKD to CVD. We tested for effect modification by CVD risk factors. Overall, 23.2% of the study sample had CKD (n=574; mean eGFR 50 mL/min per 1.73 m2) and 5.3% had Stage 3b CKD (n=131; mean eGFR 42 mL/min per 1.73 m2). In multivariable models (mean follow-up time 16 years), Stage 3 CKD was marginally associated with CVD (HR=1.17, 95% CI 0.99-1.38, p=0.06), whereas Stage 3b CKD was associated with CVD [HR=1.41, 95% CI 1.05-1.91, p=0.02]. Upon testing CVD risk equivalency, the risk of CVD for Stage 3b CKD among participants with prior CVD was significantly lower as compared to participants with prior CVD and no Stage 3b CKD (age- and sex-adjusted HR for CVD = 0.66 [95% CI 0.47 to 0.91], p=0.01). Low HDL modified the association between CKD and CVD (p-value=0.004 for interaction). Stage 3b CKD is associated with CVD but is not a CVD risk equivalent. In conclusion, CVD risk in the setting of CKD is higher in the setting of low HDL cholesterol. PMID:18572034
Cho, Soo-Kyung; Kim, Dam; Won, Soyoung; Lee, Jiyoung; Park, ByeongJu; Jang, Eun Jin; Bae, Sang-Cheol; Sung, Yoon-Kyoung
2018-02-01
To estimate the incidence of cardiovascular disease (CVD) in Asian patients with rheumatoid arthritis (RA) and to evaluate the impact of anti-rheumatic treatment on the development of CVD. A retrospective cohort of Asian patients with RA was established to identify the incidence rate (IR) of CVD in RA patients. The cohort was generated using the Korean National Healthcare claims database, which contained claims from Jan 2009 to Dec 2013. A total of 137,512 RA patients were identified; individuals with a history of CVD for 6 months or more before the index date were excluded. Nested case-control samples were drawn from the full study population with a case:control ratio of 1:4 (n = 7102 cases; n = 27,018 controls without CVD). A conditional multivariate regression model was used to evaluate the impact of anti-rheumatic treatment on the development of CVD in RA patients after matching for age, sex, RA index date, comorbidities, and drug use (e.g., antiplatelet agents and cholesterol-lowering agents). The IR for development of overall CVD in RA patients was 182.1 (95% CI: 178.4-185.9) per 10,000 person-years. In models adjusted for other CVD risk factors, disease-modifying anti-rheumatic drugs (DMARDs) (OR = 0.79) were protective against CVD, and biologic DMARDs were not significantly associated with CVD risk (OR = 0.85). Corticosteroids (OR = 1.26) and NSAIDs (nonselective NSAIDs: OR = 1.32, Cox-2 inhibitors: OR = 1.31) were risk factors for CVD in RA patients. The use of DMARDs is protective against CVD, while corticosteroids and NSAIDs increased the risk of CVD in RA patients. Copyright © 2018 Elsevier Inc. All rights reserved.
Hwang, Won Ju; Park, Yunhee
2015-12-01
The purpose of this study was to investigate individual and organizational level of cardiovascular disease (CVD) risk factors associated with CVD risk in Korean blue-collar workers working in small sized companies. Self-report questionnaires and blood sampling for lipid and glucose were collected from 492 workers in 31 small sized companies in Korea. Multilevel modeling was conducted to estimate effects of related factors at the individual and organizational level. Multilevel regression analysis showed that workers in the workplace having a cafeteria had 1.81 times higher CVD risk after adjusting for factors at the individual level (p=.022). The explanatory power of variables related to organizational level variances in CVD risk was 17.1%. The results of this study indicate that differences in the CVD risk were related to organizational factors. It is necessary to consider not only individual factors but also organizational factors when planning a CVD risk reduction program. The factors caused by having cafeteria in the workplace can be reduced by improvement in the CVD-related risk environment, therefore an organizational-level intervention approach should be available to reduce CVD risk of workers in small sized companies in Korea.
AuCl3 doping-induced conductive unstability for CVD-grown graphene on glass substrate
NASA Astrophysics Data System (ADS)
Wang, Jiaqing; Liu, Xianming; Cao, Xueying; Zhang, Peng; Lei, Xiaohua; Chen, Weimin
2017-09-01
Graphene is a candidate material for next-generation high performance transparent conducting film (TCF) to replace indium tin oxide (ITO) materials. However, the sheet resistance of large area graphene obtained by the chemical vapor deposition (CVD) method is higher than other kinds of TCFs. The main strategies for improving the electrical conductivity of graphene films have been based on various doping treatments. AuCl3 is one of the most effective dopants. In this paper, we investigate the influence of AuCl3 doping on the conductive stability of CVD-grown graphene. Large area graphene film synthesized by CVD and transferred to glass substrates is taken as experimental sample. AuCl3 in nitromethane is used to dope the graphene films to improve the electrical conductivity. Another sample without doping is prepared for comparison. The resistances of graphene under periodic visible light irradiation with and without AuCl3 doping are measured. Results show that the resistances for all samples increase exponentially under lighting, while decrease slowly in an exponential form as well after the light is switched off. The relative resistance changes for undoped and doped samples are compared under 445nm light irradiation with 40mW/cm2, 60mW/cm2, 80mW/cm2, 100mW/cm2 in atmosphere and vacuum. The change rate and degree for doped graphene are greater than that of undoped graphene. It is evident from the experimental data that AuCl3 doping may induce conductive unstability for CVD-grown graphene on glass substrate.
NASA Astrophysics Data System (ADS)
Smith, Evan M.; Kopylova, Maya G.; Frezzotti, Maria Luce; Afanasiev, Valentin P.
2015-02-01
Fluid inclusions were studied in six octahedrally-grown, eclogitic diamonds from the Ebelyakh River mine, northern Russia, using microthermometry and Raman spectroscopy. The fluids are CO2-N2 mixtures with 40 ± 4 mol% N2, which are trapped along fractures that healed in the diamond stability field. The CO2-rich composition of the fluids provides the first empirical evidence that CO2 can be liberated as a free phase in eclogite in the diamond stability field of the lithospheric mantle, as has been previously predicted from theory. This finding means that the interpretation of carbon isotopes in eclogitic diamonds should not overlook isotopic fractionation due to CO2 liberation from carbonatitic diamond-forming media as it percolates through eclogites. Preferential nucleation of CO2 bubbles in eclogite compared to peridotite may lead to a rock type-specific fracturing mechanism and sampling bias that would help explain the overabundance of eclogite xenoliths in kimberlites. Fluid inclusions in octahedrally-grown, non-fibrous diamonds from both the studied Ebelyakh diamonds and those from other cratons do not show detectable amounts of water. In comparison, fibrous diamond fluid inclusions typically contain 10-25 wt.% water. The absence of "dry" fluids in fibrous diamonds and the presence of these in octahedrally-grown diamonds may indicate different compositions of fluids equilibrated with these two types of diamonds. If there is variability in the water content in diamond-forming fluids, it should affect diamond growth morphology. Water could be responsible for causing fibrous diamond growth, by inhibiting the advancement of growth steps within octahedral faces.
The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, D.; Lohstroh, A.; Albarakaty, H.
2017-11-01
This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.
Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes
NASA Astrophysics Data System (ADS)
Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.
2016-02-01
Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.
NASA Astrophysics Data System (ADS)
Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, Linbo
2008-11-01
Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 μm in diameter and ˜50 μm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 °C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 °C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90° angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 μm, a pressure of 76 MPa at 500 °C was maintained for 2 h with no change in the original fluid density.
Chou, I.-Ming; Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Shang, L.
2008-01-01
Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 ??m in diameter and ???50 ??m deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 ??C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 ??C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90?? angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 ??m, a pressure of 76 MPa at 500 ??C was maintained for 2 h with no change in the original fluid density. ?? 2008 American Institute of Physics.
Chou, I-Ming; Bassett, William A; Anderson, Alan J; Mayanovic, Robert A; Shang, Linbo
2008-11-01
Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 microm in diameter and approximately 50 microm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 degrees C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 degrees C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90 degrees angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 microm, a pressure of 76 MPa at 500 degrees C was maintained for 2 h with no change in the original fluid density.
Are drivers with CVD more at risk for motor vehicle crashes? Study of men aged 45 to 70.
Guibert, R.; Potvin, L.; Ciampi, A.; Loiselle, J.; Philibert, L.; Franco, E. D.
1998-01-01
OBJECTIVE: To examine whether male drivers aged 45 to 70 years suffering from cardiovascular disease (CVD) are more likely to be involved in motor vehicle crashes (MVC) that are reported to the police. DESIGN: Population-based case-control study. SETTING: Data on drivers' ages and medical conditions were compiled from the Societé de l'assurance automobile du Québec's (SAAQ) computerized files. A questionnaire was mailed to all subjects to collect additional information on annual distances driven and various driving behaviours. PARTICIPANTS: Age-stratified population-based random sample. Subjects were 2504 drivers involved in MVCs during a 6-month period; controls were 2520 drivers not involved in crashes. MAIN OUTCOME MEASURES: Proportion of drivers with CVD involved in MVCs. RESULTS: Response rate to the questionnaire was 35.5%. Analysis of the SAAQ files' entire sample of 5024 drivers showed that drivers suffering from CVD were less likely to be involved in MVCs (odds ratio [OR] 0.82, 95% confidence interval [CI] 0.67 to 0.99) than drivers without CVD. Although the estimate of risk remains unchanged when adjusted for age, it becomes statistically insignificant. It also remains unchanged and statistically insignificant when adjusted for yearly distance driven and driver behaviour, as shown by responses to the questionnaire. Drivers suffering from CVD drove significantly less each year (8900 km) than drivers without medical conditions (13,000 km). CONCLUSION: This study shows no increased risk of motor vehicle crashes for drivers suffering from CVD. PMID:9585850
Ozima, M.; Tatsumoto, M.
1997-01-01
Ten carbonados from Central Africa were studied for U-Th-Pb systematics. To extract U, Th, and Pb from the samples, we developed a cold combustion technique wherein diamond was burnt in liquid oxygen. The technique gave low blanks; 25-50 pg for Pb, 3 pg for U, and 5 pg for Th. After very thorough acid treatments of the carbonados with hot HNO3, HF, and HCl over one week, most of U, Th, and Pb were removed from the samples. Lead in the acid-leached diamonds was highly radiogenic (206Pb/204Pb up to 470). However, the amounts of U and Th in the acid-leached diamonds are too low to account for the radiogenic Pb even if we assume 4.5 Ga for the age of the diamonds. Therefore, we conclude that the radiogenic Pb was implanted into the diamonds from surroundings by means of recoil energy of radioactive decays of U and Th. From the radiogenic lead isotopic composition, we estimate a minimum age of 2.6 Ga and a maximum age of 3.8 Ga for the formation of the carbonados. The above findings of the implantation of recoiled radiogenic Pb into carbonados is consistent with the process of radiation-induced crystallization which was proposed for carbonado by Kaminsky (1987). We show from some theoretical considerations that when highly energetic particles, such as those emitted from radioactive decay of U and Th, interact with carbonaceous materials, they give rise to cascades of atomic disturbance (over regions of about a few nanometer), and the disturbed atoms are likely to recrystallize to form micro-diamonds because of increasing surface energy due to small size. The radiation-induced diamond formation mechanism may be relevant to the origin of nano-diamonds in primitive meteorites. Copyright ?? 1997 Elsevier Science Ltd.
Electrical resistivity measurements on fragile organic single crystals in the diamond anvil cell
NASA Astrophysics Data System (ADS)
Adachi, T.; Tanaka, H.; Kobayashi, H.; Miyazaki, T.
2001-05-01
A method of sample assembly for four-probe resistivity measurements on fragile organic single crystals using a diamond anvil cell is presented. A procedure to keep insulation between the metal gasket and four leads of thin gold wires bonded to the sample crystal by gold paint is described in detail. The resistivity measurements performed on a single crystal of an organic semiconductor and that of neutral molecules up to 15 GPa and down to 4.2 K showed that this new procedure of four-probe diamond anvil resistivity measurements enables us to obtain sufficiently accurate resistivity data of organic crystals.
90-kilobar diamond-anvil high-pressure cell for use on an automatic diffractometer.
Schiferl, D; Jamieson, J C; Lenko, J E
1978-03-01
A gasketed diamond-anvil high-pressure cell is described which can be used on a four-circle automatic diffractometer to collect x-ray intensity data from single-crystal samples subjected to truly hydrostatic pressures of over 90 kilobars. The force generating system exerts only forces normal to the diamond faces to obtain maximum reliability. A unique design allows exceptionally large open areas for maximum x-ray access and is particularly well suited for highly absorbing materials, as the x rays are not transmitted through the sample. Studies on ruby show that high-pressure crystal structure determinations may be done rapidly, reliably, and routinely with this system.
Growth of ultrananocrystalline diamond film by DC Arcjet plasma enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Chen, G. C.; Li, B.; Yan, Z. Q.; Liu, J.; Lu, F. X.; Ye, H.
2012-06-01
Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H2/CH4, in which the flow ratio of CH4 to H2 (F/F) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the "pineapple-like" morphology and the "cauliflower-like" morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH4 to H2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the "pineapple-like" films whilst there were ultrananocrystalline grains within "cauliflower-like" films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the "cauliflower-like" films whilst (100) crystalline plane was the dominant surface in the "pineapple-like" films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions.
Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Zhixue; Amulele, George; Lee, Kanani K. M.
In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, themore » side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.« less
A carbon and nitrogen isotope study of carbonaceous vein material in ureilite meteorites
NASA Technical Reports Server (NTRS)
Russell, S. S.; Arden, J. W.; Franchi, I. A.; Pillinger, C. T.
1993-01-01
The ureilite meteorite group is known to be rich in carbon in the form of graphite/diamond veins that are associated with planetary type noble gases. This paper reports preliminary data from a systematic study of the carbon and nitrogen isotopic composition of this carbonaceous vein material. A previous study focused on the whole rock signatures and reported that the carbon inventory appeared to be dominated by the graphitic/diamond intergrowths, whereas the nitrogen was clearly composed of several distinct components including one that was isotopically light, possibly associated with the carbonaceous material. Recent studies have demonstrated that diamonds in the solar system formed in many different environments. C and N measurements from ureilitic diamond made in a similar way would be a useful addition to this overall study. The methods used for isolating diamonds of possible presolar origin from primitive meteorites are equally applicable to the processing of carbon bearing components in the ureilite group so that their stable isotopic composition can be determined. Herein we discuss conjoint C and N stepped combustion measurements made on crushed whole rock ureilite samples that have been treated with 1M HCl/9M HF to dissolve silicate and free metal. In addition, two samples have been further treated with oxidizing acids to leave a diamond rich residue.
Homoepitaxial Boron Doped Diamond Anvils as Heating Elements in a Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Montgomery, Jeffrey; Samudrala, Gopi; Smith, Spencer; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel
2013-03-01
Recent advances in designer-diamond technology have allowed for the use of electrically and thermally conducting homoepitaxially-grown layers of boron-doped diamond (grown at 1200 °C with a 2% mixture of CH4 in H, resulting in extremely high doping levels ~ 1020/cm3) to be used as heating elements in a diamond anvil cell (DAC). These diamonds allow for precise control of the temperature inside of the diamond anvil itself, particularly when coupled with a cryostat. Furthermore, the unmatched thermally conducting nature of diamond ensures that no significant lateral gradient in temperature occurs across the culet area. Since a thermocouple can easily be attached anywhere on the diamond surface, we can also measure diamond temperatures directly. With two such heaters, one can raise sample temperatures uniformly, or with any desired gradient along the pressure axis while preserving optical access. In our continuing set of benchmark experiments, we use two newly created matching heater anvils with 500 μm culets to analyze the various fluorescence emission lines of ruby microspheres, which show more complicated behavior than traditional ruby chips. We also report on the temperature dependence of the high-pressure Raman modes of paracetamol (C8H9NO2) up to 20 GPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Korenstein, Ralph
2009-10-06
Samples of CVD ZnS from the United States, Germany, Israel, and China were evaluated using transmission spectroscopy, x-ray diffraction, photoluminescence, and biaxial flexure testing. Visible and near-infrared scattering, 6 μm absorption, and ultraviolet cut-on edge varied substantially in tested materials. Crystallographic hexagonality and texture was determined and correlated with optical scattering. Transmission cut-on (ultraviolet edge) blue-shifts with annealing and corresponds to visible color but not the 6 μm absorption. Photoluminescence results suggest that CVD ZnS exhibits a complex suite of electronic bandgap defects. All CVD ZnS tested with biaxial flexure exhibit similar fracture strength values and Weibull moduli. This surveymore » suggests that technical understanding of the structure and optical properties CVD ZnS is still in its infancy.« less
Scalzi, Lisabeth V; Hollenbeak, Christopher S; Wang, Li
2010-09-01
To determine whether racial disparities exist with regard to the age at which patients with systemic lupus erythematosus (SLE) experience cardiovascular disease (CVD) and CVD-associated death. Using the 2003-2006 Nationwide Inpatient Sample, we calculated the age difference between patients with SLE and their race- and sex-matched controls at the time of hospitalization for a cardiovascular event and for CVD-associated death. In addition, we calculated the age difference between white patients with SLE and sex-matched controls for each minority group for the same outcomes. The mean age difference between women with and those without SLE at the time of admission for a CVD event was 10.5 years. All age differences between women with SLE (n = 3,627) and women without SLE admitted for CVD were significant (P < 0.0001). Among different racial groups with SLE, black women were the youngest to be admitted with CVD (53.9 years) and to have a CVD-associated in-hospital death (52.8 years; n = 218). Black women with SLE were 19.8 years younger than race- and sex-matched controls at the time of CVD-associated death. Admission trends for CVD were reversed for black women, such that the highest proportions of these patients were admitted before age 55 years, and then the proportions steadily decreased across age categories. Among the 805 men with SLE who were admitted with a CVD event, those who were black or Hispanic were youngest. There are significant racial disparities with regard to age at the time of hospital admission for CVD events and CVD-related hospitalization resulting in death in patients with SLE.
Mackey, Rachel H.; Kuller, Lewis H.; Deane, Kevin D.; Walitt, Brian T.; Chang, Yuefang F.; Holers, V. Michael; Robinson, William H.; Tracy, Russell P.; Hlatky, Mark A.; Eaton, Charles; Liu, Simin; Freiberg, Matthew S.; Talabi, Mehret Birru; Schelbert, Erik B.; Moreland, Larry W.
2015-01-01
Objective This report evaluates incidence of cardiovascular disease (CVD) morbidity and mortality over 10 years among the >160,000 postmenopausal women in the Women’s Health Initiative (WHI) in relation to self-reported RA, disease modifying anti-rheumatic drugs (DMARD) use, anti-CCP+, RF+, CVD risk factors, joint pain, and inflammation (white blood cell (WBC) count and IL-6.) Methods Anti-CCP and RF were measured on a sample (n=9,988) of WHI participants with self-reported RA. RA was classified as self-reported RA plus anti-CCP+ positivity and/or use of DMARDs. Self-reported RA that was both anti-CCP− and DMARD− was classified as “unverified RA.” Results Age-adjusted rates of coronary heart disease (CHD), stroke, CVD, fatal CVD and total mortality were higher for women with RA vs. no RA, with multivariable-adjusted HR(95%CI) of 1.46(1.17, 1.83) for CHD, and 2.55(1.86, 3.51) for fatal CVD. Within RA, anti-CCP+ and RF+ were not significantly associated with higher risk of any outcomes, despite slightly higher risk of fatal CVD and death for anti-CCP+ vs. anti-CCP− RA. Joint pain severity and CVD risk factors were strongly associated with CVD risk, even for women with no RA. CVD incidence was increased for RA vs. no RA at almost all risk factor levels, except low levels of joint pain or inflammation. Within RA, inflammation was more strongly associated with fatal CVD and total mortality than CHD or CVD. Conclusion Among postmenopausal women, RA was associated with 1.5-2.5 higher CVD risk, strongly associated with CV risk factors, joint pain severity, and inflammation, but similar for anti-CCP+ and RF+. Clinical Trial Registration clinicaltrials.gov identifier: NCT00000611 PMID:25988241
Valamparampil, Mathew Joseph; Mohan, Ananth; Jose, Chinu; Sadheesan, Deepthi Kottassery; Aby, Jemin Jose; Vasudevakaimal, Prasannakumar; Varghese, Sara; Surendrannair, Anish Tekkumkara; Ashokan, Achu Laila; Madhusoodhanan, Resmi Santhakumari; Ilyas, Insija Selene; Rajeevan, Amjith; Karthikeyan, Sreekanth Balakrishnan; Devadhas, Krishna Sulochana; Raghunath, Rajesh; Surendran, Sethulekshmi; Muraleedharanpillai, Harikrishnan; Nujum, Zinia Thajudeen
2018-04-01
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the world. The determinants of CVD in an urban population using conventional and geographic information system techniques were attempted as a community-based census-type cross-sectional study in Kerala, India, among 1649 individuals residing in 452 households. Sociodemographic details, risk factor exposures, and self-reported disease prevalence were determined. Location of houses, wells from which subjects drew drinking water, and distances of the house from the outer road (proxy for air pollution) were mapped using differential global positioning system and pH of water samples determined. Prevalence of CVD was 5.8%. Significant predictors of CVD were male gender, diabetes mellitus, hypertension, and hypothyroidism. Statistically significant spatial association was found between CVD and groundwater pH. Geographic information system technology is useful in identification of spatial clustering and disease hotspots for designing preventive strategies targeting CVD.
Ultrashort pulse laser deposition of thin films
Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.
2002-01-01
Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.
Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; ...
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.
2016-01-01
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122
Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle.
Shirey, Steven B; Richardson, Stephen H
2011-07-22
Mineral inclusions encapsulated in diamonds are the oldest, deepest, and most pristine samples of Earth's mantle. They provide age and chemical information over a period of 3.5 billion years--a span that includes continental crustal growth, atmospheric evolution, and the initiation of plate tectonics. We compiled isotopic and bulk chemical data of silicate and sulfide inclusions and found that a compositional change occurred 3.0 billion years ago (Ga). Before 3.2 Ga, only diamonds with peridotitic compositions formed, whereas after 3.0 Ga, eclogitic diamonds became prevalent. We suggest that this resulted from the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson cycle of plate tectonics.
Study to define behavior of liquid lubricants in an elastohydrodynamic contact
NASA Technical Reports Server (NTRS)
Lauer, J. L.
1974-01-01
The spectra of an ester and a saturated hydrocarbon polymer were obtained at pressures ranging from ambient to 2 GN/sq m (20 kilobar) and at temperatures between ambient and 180 C in absorption and between 150 C and 210 C in emission. To simulate contact conditions the fluids were contained in the tiny sample volume of a diamond cell, i.e., the hole in a metal spacer separating two diamonds pressed against each other in a nut crackerlike arrangement. Pressures could be deduced from bandshifts and states of aggregation from bandwidths in the fluorescence spectrum of a ruby crystal immersed in the fluids. An infrared Fourier transform spectrometer was used with attachments specially designed to analyze the radiation passed through the sample and both diamonds (absorption technique) or the radiation emanating from the heated sample and passing through only one diamond (emission technique). The latter technique is applicable to operating EHD contacts. Spectral changes pointing to possible glass transitions and composition changes were observed. Emission and absorption spectra were generally equivalent. Some emission bandshapes appear to be temperature sensitive enough to be useful as internal temperature probes.
Nomura, Shuhei; Gilmour, Stuart; Oikawa, Tomoyoshi; Lee, Kiwon; Kiyabu, Grace Y; Shibuya, Kenji
2017-01-01
Objective To assess the medium-term indirect impact of the 2011 Fukushima Daiichi nuclear accident on cardiovascular disease (CVD) risks and to identify whether risk factors for CVD changed after the accident. Participants Residents aged 40 years and over participating in annual public health check-ups from 2009 to 2012, administered by Minamisoma city, located about 10 to 40 km from the Fukushima Daiichi nuclear plant. Methods The sex-specific Framingham CVD risk score was considered as the outcome measure and was compared before (2009–2010) and after the accident (2011–2012). A multivariate regression analysis was employed to evaluate risk factors for CVD. Results Data from 563 individuals (60.2% women) aged 40 to 74 years who participated in the check-ups throughout the study period was analysed. After adjusting for covariates, no statistically significant change was identified in the CVD risk score postaccident in both sexes, which may suggest no obvious medium-term health impact of the Fukushima nuclear accident on CVD risk. The risk factors for CVD and their magnitude and direction (positive/negative) did not change after the accident. Conclusions There was no obvious increase in CVD risks in Minamisoma city, which may indicate successful management of health risks associated with CVD in the study sample. PMID:29275343
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2012-10-01
New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.
Chou, I-Ming; Anderson, Alan J.
2009-01-01
Raman analysis of the vapor phase formed after heating pure water to near critical (355–374 °C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 × 10−11 mol) of methane were produced in the HDAC at 355 °C and 30 MPa over a period of ten minutes. At temperatures of 650 °C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.
Study of diamond film growth and properties
NASA Technical Reports Server (NTRS)
Albin, Sacharial
1990-01-01
The objective was to study diamond film growth and its properties in order to enhance the laser damage threshold of substrate materials. Calculations were performed to evaluate laser induced thermal stress parameter, R(sub T) of diamond. It is found that diamond has several orders of magnitude higher in value for R(sub T) compared to other materials. Thus, the laser induced damage threshold (LIDT) of diamond is much higher. Diamond films were grown using a microwave plasma enhanced chemical vapor deposition (MPECVD) system at various conditions of gas composition, pressure, temperature, and substrate materials. A 0.5 percent CH4 in H2 at 20 torr were ideal conditions for growing of high quality diamond films on substrates maintained at 900 C. The diamond films were polycrystalline which were characterized by scanning electron microscopy (SEM) and Raman scattering spectroscopy. The top surface of the growing film is always rough due to the facets of polycrystalline film while the back surface of the film replicates the substrate surface. An analytical model based on two dimensional periodic heat flow was developed to calculate the effective in-plane (face parallel) diffusivity of a two layer system. The effective diffusivity of diamond/silicon samples was measured using a laser pulse technique. The thermal conductivity of the films was measured to be 13.5 W/cm K, which is better than that of a type Ia natural diamond. Laser induced damage experiments were performed on bare Si substrates, diamond film coated Si, and diamond film windows. Significant improvements in the LIDT were obtained for diamond film coated Si compared to the bare Si.
Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure
NASA Astrophysics Data System (ADS)
Liu, Jin; Zhan, Guodong; Wang, Qiang; Yan, Xiaozhi; Liu, Fangming; Wang, Pei; Lei, Li; Peng, Fang; Kou, Zili; He, Duanwei
2018-02-01
We report an approach to strengthen micro-grained polycrystalline diamond (MPD) compact through work hardening under high pressure and high temperature, in which both hardness and fracture toughness are simultaneously boosted. Micro-sized diamond powders are treated without any additives under a high pressure of 14 GPa and temperatures ranging from 1000 °C to 2000 °C. It was found that the high pressure and high temperature environments could constrain the brittle feature and cause a severe plastic deformation of starting diamond grains to form a mutual bonded diamond network. The relative density is increased with temperature to nearly fully dense at 1600 °C. The Vickers hardness of the well-prepared MPD bulks at 14 GPa and 1900 °C reaches the top limit of the single crystal diamond of 120 GPa, and the near-metallic fracture toughness of the sample is as high as 18.7 MPa m1/2.
Zhu, Di; Zhang, Linghong; Ruther, Rose E; Hamers, Robert J
2013-09-01
The photocatalytic reduction of N₂ to NH₃ is typically hampered by poor binding of N₂ to catalytic materials and by the very high energy of the intermediates involved in this reaction. Solvated electrons directly introduced into the reactant solution can provide an alternative pathway to overcome such limitations. Here we demonstrate that illuminated hydrogen-terminated diamond yields facile electron emission into water, thus inducing reduction of N₂ to NH₃ at ambient temperature and pressure. Transient absorption measurements at 632 nm reveal the presence of solvated electrons adjacent to the diamond after photoexcitation. Experiments using inexpensive synthetic diamond samples and diamond powder show that photocatalytic activity is strongly dependent on the surface termination and correlates with the production of solvated electrons. The use of diamond to eject electrons into a reactant liquid represents a new paradigm for photocatalytic reduction, bringing electrons directly to reactants without requiring molecular adsorption to the surface.
DNA damage in children and adolescents with cardiovascular disease risk factors.
Kliemann, Mariele; Prá, Daniel; Müller, Luiza L; Hermes, Liziane; Horta, Jorge A; Reckziegel, Miriam B; Burgos, Miria S; Maluf, Sharbel W; Franke, Silvia I R; Silva, Juliana da
2012-09-01
The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) assays in leukocytes. A total of 34 children and adolescents selected from a population sample were divided into three groups according to their level of CVD risk. Moderate and high CVD risk subjects showed significantly higher body fat and serum CVD risk markers than low risk subjects (P<0.05). High risk subjects also showed a significant increase in DNA damage, which was higher than that provided by low and moderate risk subjects according to SCGE, but not according to the CBMN assay. Vitamin C intake was inversely correlated with DNA damage by SCGE, and micronucleus (MN) was inversely correlated with folate intake. The present results indicate an increase in DNA damage that may be a consequence of oxidative stress in young individuals with risk factors for CVD, indicating that the DNA damage level can aid in evaluating the risk of CVD.
Self-perceived health versus actual cardiovascular disease risks.
Ko, Young; Boo, Sunjoo
2016-01-01
Self-perceived poor health is related to cardiovascular disease (CVD) risk perception, cardiovascular event, hospital readmission, and death from CVD. This study evaluated the associations between self-perceived health and actual CVD risk in South Koreans as well as the influence of sociodemographic and cardiovascular risk factors on self-perceived poor health. This is a secondary data analysis of the 2010 Korea National Health and Nutrition Examination Survey. The sample was 4535 South Koreans aged 30-74 years without CVD. Self-perceived health status was compared with actual cardiovascular risk separately by sex using χ(2) -tests. Logistic regressions were used to identify potential sociodemographic and cardiovascular risk factors of self-perceived poor health. Self-perceived poor health was related to higher CVD risk but there were substantial gaps between them. Among cardiovascular risk factors, dyslipidemia, obesity, smoking, and a family history of CVD did not affect self-perceived health. Gaps between perceived health and actual CVD risk should be closed to optimize cardiovascular health of South Koreans. Koreans need to increase risk perception to a level commensurate with their actual risk. Healthcare providers should try to provide individuals at increased CVD risk with better information more frequently, especially those who have favorable perceptions of their health but smoke or have elevated cholesterol levels and bodyweight. © 2015 Japan Academy of Nursing Science.
Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data
NASA Astrophysics Data System (ADS)
Chinn, Ingrid L.; Perritt, Samantha H.; Stiefenhofer, Johann; Stern, Richard A.
2018-05-01
Spatially resolved analyses reveal considerable isotopic heterogeneity within and among diamonds ranging in size from 0.15 to 4.75 mm from the Orapa Mine, Botswana. The isotopic data are interpreted in conjunction with nitrogen aggregation state data and growth zone relationships from cathodoluminescence images. The integrated information confirms that a distinct diamond growth event (with low IaAB nitrogen aggregation states, moderately high nitrogen contents and δ13C and δ15N values compatible with average mantle values) is younger than the dominant population(s) of Type IaAB diamonds and cores of composite diamonds with more negative and positive δ13C and δ15N values, respectively. A significant proportion of the older diamond generation has high nitrogen contents, well outside the limit sector relationship, and these diamonds are likely to reflect derivation from subducted organic matter. Diamonds with low δ13C values combined with high nitrogen contents and positive δ15N values have not been previously widely recognised, even in studies of diamonds from Orapa. This may have been caused by prior analytical bias towards inclusion-bearing diamonds that are not necessarily representative of the entire range of diamond populations, and because of average measurements from heterogeneous diamonds measured by bulk combustion methods. Two distinct low nitrogen/Type II microdiamond populations were recognised that do not appear to continue into the macrodiamond sizes in the samples studied. Other populations, e.g. those containing residual singly-substituted nitrogen defects, range in size from small microdiamonds to large macrodiamonds. The total diamond content of the Orapa kimberlite thus reflects a complex assortment of multiple diamond populations.
Spatola, Chiara A. M.; Cappella, Emanuele A. M.; Goodwin, Christina L.; Baruffi, Matteo; Malfatto, Gabriella; Facchini, Mario; Castelnuovo, Gianluca; Manzoni, Gian Mauro; Molinari, Enrico
2014-01-01
Psychological inflexibility refers to the attempt to decrease internal distress even when doing so is inconsistent with life values, and has been identified as a potential barrier to making and maintaining health behavior changes that are consistent with a heart-healthy lifestyle. Disease- and behavior-specific measures of psychological inflexibility have been developed and utilized in treatment research. However, no specific measure has been created for patients with heart disease. Thus, the CardioVascular Disease Acceptance and Action Questionnaire (CVD-AAQ) was developed. The present study is aimed to evaluate the psychometric properties of the CVD-AAQ and to explore its association with measures of psychological adjustment and cardiovascular risk factors in an Italian sample of 275 cardiac patients. Exploratory factor analysis showed a structural one-factor solution with satisfactory internal consistency and test–retest reliability. The relation with other measures was in the expected direction with stronger correlations for the theoretically consistent variables, supporting convergent and divergent validity. CVD-AAQ scores were associated with general psychological inflexibility, anxiety and depression and inversely correlated with psychological well-being. Moreover, the results showed that CVD-AAQ scores are associated with two relevant risk factors for cardiac patients, namely low adherence to medication and being overweight. In sum, results suggest that the CVD-AAQ is a reliable and valid measure of heart disease-specific psychological inflexibility with interesting clinical applications for secondary prevention care. PMID:25452737
Picollo, Federico; Battiato, Alfio; Carbone, Emilio; Croin, Luca; Enrico, Emanuele; Forneris, Jacopo; Gosso, Sara; Olivero, Paolo; Pasquarelli, Alberto; Carabelli, Valentina
2014-12-30
The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16‑channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.
AC calorimetry of H2O at pressures up to 9 GPa in diamond anvil cells
NASA Astrophysics Data System (ADS)
Geballe, Zachary M.; Struzhkin, Viktor V.
2017-06-01
If successfully developed, calorimetry at tens of GPa of pressure could help characterize phase transitions in materials such as high-pressure minerals, metals, and molecular solids. Here, we extend alternating-current calorimetry to 9 GPa and 300 K in a diamond anvil cell and use it to study phase transitions in H2O. In particular, water is loaded into the sample chambers of diamond-cells, along with thin metal heaters (1 μm-thick platinum or 20 nm-thick gold on a glass substrate) that drive high-frequency temperature oscillations (20 Hz to 600 kHz; 1 to 10 K). The heaters also act as thermometers via the third-harmonic technique, yielding calorimetric data on (1) heat conduction to the diamonds and (2) heat transport into substrate and sample. Using this method during temperature cycles from 300 to 200 K, we document melting, freezing, and proton ordering and disordering transitions of H2O at 0 to 9 GPa, and characterize changes in thermal conductivity and heat capacity across these transitions. The technique and analysis pave the way for calorimetry experiments on any non-metal at pressures up to ˜100 GPa, provided a thin layer (several μm-thick) of thermal insulation supports a metallic thin-film (tens of nm thick) Joule-heater attached to low contact resistance leads inside the sample chamber of a diamond-cell.
Plan for Subdividing Genesis Mission Diamond-on-Silicon 60000 Solar Wind Collector
NASA Technical Reports Server (NTRS)
Burkett, Patti J.; Allton, J. A.; Clemett, S. J.; Gonzales, C. P.; Lauer, H. V., Jr.; Nakamura-Messenger, K.; Rodriquez, M. C.; See, T. H.; Sutter, B.
2013-01-01
NASA's Genesis solar wind sample return mission experienced an off nominal landing resulting in broken, albeit useful collectors. Sample 60000 from the collector is comprised of diamond-like-carbon film on a float zone (FZ) silicon wafer substrate Diamond-on-Silicon (DOS), and is highly prized for its higher concentration of solar wind (SW) atoms. A team of scientist at the Johnson Space Center was charged with determining the best, nondestructive and noncontaminating method to subdivide the specimen that would result in a 1 sq. cm subsample for allocation and analysis. Previous work included imaging of the SW side of 60000, identifying the crystallographic orientation of adjacent fragments, and devising an initial cutting plan.
Spies, Petra E; Verbeek, Marcel M; Sjogren, Magnus J C; de Leeuw, Frank-Erik; Claassen, Jurgen A H R
2014-01-01
Preclinical and post-mortem studies suggest that Alzheimer disease (AD) causes cerebrovascular dysfunction, and therefore may enhance susceptibility to cerebrovascular disease (CVD). The objective of this study was to investigate this association in a memory clinic population. The AD biomarkers CSF amyloid β42, amyloid β40 and APOE-ε4 status have all been linked to increased CVD risk in AD, and therefore the first aim of this study was to analyze the association between these biomarkers and CVD. In 92 memory clinic patients the cross-sectional association between AD biomarkersand the severity of CVD was investigated with linear regression analysis. Additionally, we studied whether AD biomarkers modified the relation between vascular risk factors and CVD. CVD was assessed on MRI through a visual rating scale.Analyses were adjusted for age. The second aim of this study was to investigate the association between clinical AD and CVD, where 'clinical AD' was defined as follows: impairment in episodic memory, hippocampal atrophy and an aberrant concentration of cerebrospinal fluid (CSF) biomarkers. 47 of the 92 patients had AD. No association between CSF amyloid β42, amyloid β40 or APOE-ε4 status and CVD severity was found, nor did these AD biomarkers modify the relation between vascular risk factors and CVD. Clinical AD was not associated with CVD severity (p=0.83). Patients with more vascular risk factors had more CVD, but this relationship was not convincingly modified by AD (p=0.06). In this memory clinic population, CVD in patients with AD was related to vascular risk factors and age, comparable to patients without AD. Therefore, in our study, the preclinical and post-mortem evidence that AD would predispose to CVD could not be translated clinically. Further work, including replication of this work in a different and larger sample, is warranted.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.
1978-01-01
The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.
Conway, Sadie H.; Pompeii, Lisa A.; Roberts, Robert E.; Follis, Jack L.; Gimeno, David
2015-01-01
Objectives To examine the presence of a dose-response relationship between work hours and incident cardiovascular disease (CVD) in a representative sample of U.S. workers. Methods Retrospective cohort study of 1,926 individuals from the Panel Study of Income Dynamics (1986–2011) employed for at least 10 years. Restricted cubic spline regression was used to estimate the dose-response relationship of work hours with CVD. Results A dose-response relationship was observed in which an average workweek of 46 hours or more for at least 10 years was associated with increased risk of CVD. Compared to working 45 hours per week, working an additional 10 hours per week or more for at least 10 years increased CVD risk by at least 16%. Conclusions Working more than 45 work hours per week for at least 10 years may be an independent risk factor for CVD. PMID:26949870
Fatty acids linked to cardiovascular mortality are associated with risk factors
Ebbesson, Sven O. E.; Voruganti, Venkata S.; Higgins, Paul B.; Fabsitz, Richard R.; Ebbesson, Lars O.; Laston, Sandra; Harris, William S.; Kennish, John; Umans, Benjamin D.; Wang, Hong; Devereux, Richard B.; Okin, Peter M.; Weissman, Neil J.; MacCluer, Jean W.; Umans, Jason G.; Howard, Barbara V.
2015-01-01
Background Although saturated fatty acids (FAs) have been linked to cardiovascular mortality, it is not clear whether this outcome is attributable solely to their effects on low-density lipoprotein cholesterol (LDL-C) or whether other risk factors are also associated with FAs. The Western Alaskan Native population, with its rapidly changing lifestyles, shift in diet from unsaturated to saturated fatty acids and dramatic increase in cardiovascular disease (CVD), presents an opportunity to elucidate any associations between specific FAs and known CVD risk factors. Objective We tested the hypothesis that the specific FAs previously identified as related to CVD mortality are also associated with individual CVD risk factors. Methods In this community-based, cross-sectional study, relative proportions of FAs in plasma and red blood cell membranes were compared with CVD risk factors in a sample of 758 men and women aged ≥35 years. Linear regression analyses were used to analyze relations between specific FAs and CVD risk factors (LDL-C, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, systolic blood pressure, diastolic blood pressure, heart rate, body mass index, fasting glucose and fasting insulin, 2-hour glucose and 2-hour insulin). Results The specific saturated FAs previously identified as related to CVD mortality, the palmitic and myristic acids, were adversely associated with most CVD risk factors, whereas unsaturated linoleic acid (18:2n-6) and the marine n-3 FAs were not associated or were beneficially associated with CVD risk factors. Conclusions The results suggest that CVD risk factors are more extensively affected by individual FAs than hitherto recognized, and that risk for CVD, MI and stroke can be reduced by reducing the intake of palmitate, myristic acid and simple carbohydrates and improved by greater intake of linoleic acid and marine n-3 FAs. PMID:26274054
First Principles Study of Nanodiamond Optical and Electronic Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raty, J; Galli, G
2004-10-21
Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibits very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films.« less
A cross-sectional analysis of cardiovascular disease in the hemophilia population
Sood, Suman L.; Cheng, Dunlei; Ragni, Margaret; Kessler, Craig M.; Quon, Doris; Shapiro, Amy D.; Key, Nigel S.; Manco-Johnson, Marilyn J.; Cuker, Adam; Kempton, Christine; Wang, Tzu-Fei; Eyster, M. Elaine; Kuriakose, Philip; von Drygalski, Annette; Gill, Joan Cox; Wheeler, Allison; Kouides, Peter; Escobar, Miguel A.; Leissinger, Cindy; Galdzicka, Sarah; Corson, Marshall; Watson, Crystal
2018-01-01
Men with hemophilia were initially thought to be protected from cardiovascular disease (CVD), but it is now clear that atherothrombotic events occur. The primary objective of the CVD in Hemophilia study was to determine the prevalence of CVD and CVD risk factors in US older men with moderate and severe hemophilia and to compare findings with those reported in age-comparable men in the Atherosclerosis Risk in Communities (ARIC) cohort. We hypothesized if lower factor levels are protective from CVD, we would see a difference in CVD rates between more severely affected and unaffected men. Beginning in October 2012, 200 patients with moderate or severe hemophilia A or B (factor VIII or IX level ≤ 5%), aged 54 to 73 years, were enrolled at 19 US hemophilia treatment centers. Data were collected from patient interview and medical records. A fasting blood sample and electrocardiogram (ECG) were obtained and assayed and read centrally. CVD was defined as any angina, any myocardial infarction by ECG or physician diagnosis, any self-reported nonhemorrhagic stroke or transient ischemic attack verified by physicians, or any history of coronary bypass graft surgery or coronary artery angioplasty. CVD risk factors were common in the population. Compared with men of similar age in the ARIC cohort, patients with hemophilia had significantly less CVD (15% vs 25.8%; P < .001). However, on an individual patient level, CVD events occur and efforts to prevent cardiovascular events are warranted. Few men were receiving secondary prophylaxis with low-dose aspirin, despite published opinion that it can be used safely in this patient population. PMID:29895623
Convenient optical pressure gauge for multimegabar pressures calibrated to 300 GPa
NASA Astrophysics Data System (ADS)
Sun, Liling; Ruoff, Arthur L.; Stupian, Gary
2005-01-01
The accurate measurement of pressure by a straightforward and inexpensive optical procedure has been needed in the multimegabar region since static pressures over 216GPa, 361GPa, 420GPa and 560GPa were obtained in the diamond anvil cell. Here, a simple optical pressure gauge based on the Raman shift of the diamond at the center of a diamond tip at the diamond-sample interface is calibrated against a primary gauge (Pt isotherm at 300K from shock data) to 300GPa, thus enabling researchers who do not have a synchrotron to conveniently measure pressure with an optical scale from 50to300GPa.
Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.
Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K
2013-05-02
Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of Tube Processing on the Fatigue Life of Nitinol
NASA Astrophysics Data System (ADS)
Adler, Paul; Frei, Rudolf; Kimiecik, Michael; Briant, Paul; James, Brad; Liu, Chuan
2018-03-01
Nitinol tubes were manufactured from Standard Grade VIM-VAR ingots using Tube Manufacturing method "TM-1." Diamond-shaped samples were laser cut, shape set, then fatigued at 37 °C to 107 cycles. The 50, 5, and 1% probabilities of fracture were calculated as a function of number of cycles to fracture and compared with probabilities determined for fatigue data published by Robertson et al. (J Mech Behav Biomater 51:119-131, 2015). Robertson tested similar diamonds made from the same standard grade of Nitinol as in the current study, two other standard grades of Nitinol, and two high-purity grades of Nitinol expressly designed to improve fatigue life. Robertson's tubes were manufactured using Tube Manufacturing method "TM-2." Fatigue performance of TM-1 and TM-2 diamonds were compared: At 107 cycles, strain amplitudes corresponding to the three probabilities of fracture of the TM-1 diamonds were 2-3 times those of the TM-2 diamonds made from the same grade of Nitinol, and comparable to TM-2 diamonds made from the higher-purity materials. This difference is likely a result of the differences in tube manufacturing techniques and effects on resulting microstructures. Microstructural analyses of samples revealed a correlation between the median probability of fracture and median inclusion diameter that follows an inverse power-law function of the form y ≈ x -1.
Hyperlipidemia and Medical Expenditures by Cardiovascular Disease Status in US Adults.
Zhang, Donglan; Wang, Guijing; Fang, Jing; Mercado, Carla
2017-01-01
Hyperlipidemia is a major risk factor for cardiovascular disease (CVD), affecting 73.5 million American adults. Information about health care expenditures associated with hyperlipidemia by CVD status is needed to evaluate the economic benefit of primary and secondary prevention programs for CVD. The study sample includes 48,050 men and nonpregnant women ≥18 from 2010 to 2012 Medical Expenditure Panel Survey. A 2-part econometric model was used to estimate annual hyperlipidemia-associated medical expenditures by CVD status. The estimation results from the 2-part model were used to calculate per-capita and national medical expenditures associated with hyperlipidemia. We adjusted the medical expenditures into 2012 dollars. Among those with CVD, per person hyperlipidemia-associated expenditures were $1105 [95% confidence interval (CI), $877-$1661] per year, leading to an annual national expenditure of $15.47 billion (95% CI, $5.23-$27.75 billion). Among people without CVD, per person hyperlipidemia-associated expenditures were $856 (95% CI, $596-$1211) per year, resulting in an annual national expenditure of $23.11 billion (95% CI, $16.09-$32.71 billion). Hyperlipidemia-associated expenditures were attributable mostly to the costs of prescription medication (59%-90%). Among people without CVD, medication expenditures associated with hyperlipidemia were $13.72 billion (95% CI, $10.55-$15.74 billion), higher in men than in women. Hyperlipidemia significantly increased medical expenditures and the increase was higher in people with CVD than without. The information on estimated expenditures could be used to evaluate and develop effective programs for CVD prevention.
NASA Astrophysics Data System (ADS)
Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.
2014-01-01
Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate, kimberlite-like 206Pb/204Pb and 208Pb/204Pb ratios. A multi-stage evolution of the diamond-forming fluids source can be constrained from our new isotopic data, indicating an Achaean enrichment event resulting in elevated U/Pb, Rb/Sr ratios and enrichment in LREEs. This source underwent a more recent fractionation, in the last 500 Myr that may have been related to the diamond-forming event. There is a strong correspondence between fluids with relatively unradiogenic Sr isotopes and relatively low (La, Nd, Sm)/(Nb, Zr) and (Ba, Th)/(Nb) ratios. Sr isotopic enrichment is accompanied by an increase in these ratios. The least trace element enriched and most isotopically depleted fluids are from the high-Mg carbonatitic suite. Thus, HDFs could be derived from asthenospheric mantle as low degree melts that interact to varying degrees with an ancient, metasomatized, rutile- and phlogopite bearing, sub continental lithosphere mantle. The internal heterogeneity in the Sr isotopic ratios within a single diamond suite and even within single diamonds may indicate fluid-mixing processes. Such mixing may occur during migration through preferred mantle veins and may be affected by the small-scale geochemical variability within them.
X-ray topographic study of diamonds: implications for the genetic nature of inclusions in diamond
NASA Astrophysics Data System (ADS)
Agrosì, Giovanna; Nestola, Fabrizio; Tempesta, Gioacchino; Bruno, Marco; Scandale, Eugenio; Harris, Jeff W.
2014-05-01
In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them (Howell, 2012 and references therein). Nevertheless, to obtain rigorous information about chemical and physical conditions of diamond formation, it is crucial to determine if the crystallization of the inclusions occurred before (protogenetic nature), during (syngenetic nature) or after (epigenetic nature) the growth of diamond (Wiggers de Vries et al., 2011). X-ray topography (XRDT) can be a helpful tool to verify the genetic nature of inclusions in diamond. This technique characterizes the extended defects and reconstructs the growth history of the samples (Agrosì et al., 2013 and references therein) and, consequently contributes to elucidation of the relationship between the inclusions and the host-diamond. With this aim a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond crystal was the one previously studied by Nestola et al. (2011) who performed in-situ crystal structure refinement of the inclusions to obtain data about the formation pressure. The inclusions were iso-oriented olivines that did not show evident cracks and subsequently could not be considered epigenetic. Optical observations revealed an anomalous birefringence in the adjacent diamond and the inclusions had typical "diamond-imposed cubo-octahedral" shape for the largest olivine. The diffraction contrast study shows that the diamond exhibits significant deformation fields related to plastic post growth deformation. The crystallographic direction of strains was established applying the extinction criterion. Section topographs were taken to minimize the overlapping of the strain field associate with the different defects and revealed that no dislocations nucleated from the olivine inclusions. Generally, when a solid inclusion has been incorporated in the growing crystal, the associated volume distortion can be minimized by means the nucleation of dislocations and/or twinning (Agrosì et al., 2013). In our case, the specific and significant features - the olivine inclusions showing a "diamond imposed cubo-octahedral shape" and no dislocation nucleation - that characterize this sample will be discussed in detail. References: F Nestola, P Nimis, L Ziberna, M Longo, A Marzoli, JW Harris, MH Manghnani (2011): Earth and Planetary Science Letters 305 (1), 249-255. Howell, D. (2012): Eur. J. Mineral., 24, 575-585. Wiggers de Vries D.F., Drury M.R., de Winter D.A. M., Bulanova G P., Pearson D. G., Davies G. R. (2011): Contrib. Mineral. Petrol. 161, 565-579. Agrosì G., Tempesta G., Scandale E., Harris J.W. (2013): Eur. J. Mineral, 25 (4), 551-559.
Rasiah, Rajah; Thangiah, Govindamal; Yusoff, Khalid; Manikam, Rishya; Chandrasekaran, Sankara Kumar; Mustafa, Rujhan; Bakar, Najmin Binti Abu
2015-12-16
Numerous studies have shown the importance of physical activity in reducing the morbidity and mortality rates caused by cardiovascular disease (CVD). However, most of these studies emphasise little on the cumulative effect of CVD risk factors. Hence, this study investigates the association between physical exercise and cumulative CVD risk factors among adults in three different age groups. Using a sample of 7276 respondents drawn from community centers, the REDISCOVER team gathered information on physical activity, CVD risk factors (obesity, diabetes, hypertension, hypercholesterolemia, tobacco use) and socioeconomic and demographic variables in Malaysia. Because the study required medical examination, a convenience sampling frame was preferred in which all volunteers were included in the study. Fasting blood samples and anthropometric (height, weight and more) measurements were collected by trained staffs. Socio-demographic and physical activity variables were recorded through questionnaires. A Chi-square test was performed to identify the bivariate association between the covariates (socioeconomic variables, demographic variables and physical activity) and outcome variable. The association between the main exposure, physical activity, and the outcome variable, cumulative CVD risk factors, was assessed using an ordinal logistic regression model, controlling for socioeconomic status and demographic influences in three different age groups, 35-49, 50-64 and 65 and above. The mean age of participants is 51.8 (SD = 9.4). Respondents in the age groups of 35-49 (aORmoderate = 0.12; 95 % CI: 0.02 - 0.53 ) and 65 and above (aORhigh = 0.58; 95 % CI: 0.24, 0.78) showed a statistically significant inverse relationship between physical activity and cumulative CVD risk factors. However, this relationship was not significant among respondents in the 50-64 age group suggesting the possible influence of other variables, such as stress and environment. The statistically significant results show a negative association between physical exercise and cumulative CVD risk factors. However, the lack of a significant relationship in the 50-64 age group suggests the need to include other considerations in future studies, such as stress and environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.
Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less
Thermally induced alkylation of diamond.
Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D
2010-12-21
We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.
Moore, Samuel L.; Samudrala, Gopi K.; Catledge, Shane A.; ...
2018-01-23
Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1-15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCDmore » were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.« less
Duncan, Michael J.; Vale, Susana; Santos, Maria Paula; Ribeiro, José Carlos; Mota, Jorge
2012-01-01
The aim of this study was to examine any differences in cardiovascular disease (CVD) risk in Portuguese children split by parental educational level. A cross-sectional school-based study was conducted in 2011 on 359 Portuguese children (202 girls and 157 boys) aged 10 to 17 years (mean age ± SD = 13.9 ± 1.98 years). Height and body mass were assessed to determine body mass index (BMI). Parental education level (PEL) was used as a surrogate for socioeconomic status (SES). Capillary blood sampling was used to determine: Total Cholesterol (TC), Triglycerides (TG), Fasting Glucos (GLUC), High and Low Density Lipoprotein (HDL/LDL). These measurements were combined with measures of systolic blood pressure and cardiorespiratory fitness as z-scores. CVD risk was constructed by summing the z-scores. Analysis of covariance, controlling for BMI, indicated that CVD risk was significantly different across PEL groups (p = 0.01), with CVD risk score being significantly lower in low (p = 0.04) and middle (p = 0.008) PEL groups, compared to high PEL. Moreover, the covariate, BMI was also significant (p = 0.0001, β = 0.023), evidencing a significant positive association between BMI and CVD risk, with higher BMI associated with greater CVD risk. In Portuguese children, significantly greater CVD risk was found for children of high PEL, while higher BMI was associated with greater CVD risk. PMID:23330223
Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature
NASA Astrophysics Data System (ADS)
Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A.
2018-01-01
Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond detectors irradiated with 14 MeV neutrons at room temperature.
3D investigation of inclusions in diamonds using X-ray micro-tomography
NASA Astrophysics Data System (ADS)
Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.
2012-04-01
The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-μCT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-μCT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-μCT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia, Russia), the Jericho Kimberlite (Slave Craton, Canada) and São Luiz-Juina (Brazil). The information obtained by tomographic experiments were combined with X-ray single-crystal diffraction data (see Nestola et al 2011) in order to identify the inclusion parageneses (peridotitic, eclogitic or websteritic) and to finally determine the origin of the studied diamonds. Our results showed that, by combining X-μCT with X-ray diffraction data, it is possible to exactly determine the 3D position of each inclusion together with their crystal size, even though they cannot be detected by using an optical microscope. In addition, such method could have strong crystallographic implications for inclusions still trapped in diamonds as it enables the application of a reliable numerical absorption correction to the 3D intensity data collections. REF. Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H., Fedortchouk, Y. (2011): First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle. Earth Planet. Sci. Lett., 305, 249-255.
NASA Astrophysics Data System (ADS)
Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken
2007-07-01
We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.
Effects of laser-induced heating on nitrogen-vacancy centers and single-nitrogen defects in diamond
NASA Astrophysics Data System (ADS)
Szczuka, Conrad; Drake, Melanie; Reimer, Jeffrey A.
2017-10-01
We investigate the effects of laser-induced heating of NV- and P1 defects in diamonds by X-band CW EPR spectroscopy, with particular attention to temperature effects on the zero field splitting and electron polarization. A 532 nm laser with intensities of 7-36 mW mm-2 is sufficient to heat diamond samples from room temperature to 313-372 K in our experimental setup. The temperature effects on the determined NV- zero-field splittings are consistent with previously observed non-optical heating experiments. Electron spin polarization of the NV- defects were observed to increase, then saturate, with increasing laser light intensities up to 36 mW mm-2 after accounting for heating effects. We observe that EPR signal intensities from P1 centers do not follow a Boltzmann trend with laser-induced sample heating. These findings have bearing on the design of diamond-based polarization devices and magnetometry applications.
Electron Emission Observations from As-Grown and Vacuum-Coated Chemical Vapor Deposited Diamond
NASA Technical Reports Server (NTRS)
Lamouri, A.; Wang, Yaxin; Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Mueller,W.
1996-01-01
Field emission has been observed from chemical vapor deposited diamond grown on Mo and Si substrates. Emission was observed at fields as low as 20 kV/cm. The samples were tested in the as-grown form, and after coating with thin films of Au, CsI, and Ni. The emission current was typically maximum at the onset of the applied field, but was unstable, and decreased rapidly with time from the as-grown films. Thin Au layers, approximately 15 nm thick, vacuum deposited onto the diamond samples significantly improved the stability of the emission current at values approximately equal to those from uncoated samples at the onset of the applied field. Thin layers of CsI, approximately 5 nm thick, were also observed to improve the stability of the emission current but at values less than those from the uncoated samples at the onset of the applied field. While Au and CsI improved the stability of the emission, Ni was observed to have no effect.
Raman Scattering in a New Carbon Material
NASA Technical Reports Server (NTRS)
Voronov, O. A.; Street, K. W., Jr.
2010-01-01
Samples of a new carbon material, Diamonite-B, were fabricated under high pressure from a commercial carbon black--identified as mixed fullerenes. The new material is neither graphite-like nor diamond-like, but exhibits electrical properties close to graphite and mechanical properties close to diamond. The use of Raman spectroscopy to investigate the vibrational dynamics of this new carbon material and to provide structural characterization of its short-, medium- and long-range order is reported. We also provide the results of investigations of these samples by high-resolution electron microscopy and X-ray diffraction. Hardness, electrical conductivity, thermal conductivity and other properties of this new material are compared with synthetic graphite-like and diamond-like materials, two other phases of synthetic bulk carbon.
Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Ott, Ulrich; Tsuchiyama, Akira; Kayama, Masahiro; Simonia, Irakli; Boudou, Jean-Paul
2012-12-01
Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature-dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.
NASA Astrophysics Data System (ADS)
Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg
Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.
Use Of The Diamond Cell In An Industrial Laboratory
NASA Astrophysics Data System (ADS)
Barbour, Rachael L.; Stephens, J. D.; Cameron, David G.
1989-12-01
The traditional method for recording the IR spectra of solids has been KBr pellet transmission spectroscopy. This technique has several disadvantages: sample preparation time, matrix contamination, spectral distortion, ion exchange, a limited spectral range, scattering, loss of sample integrity during grinding, etc. In recent years, diffuse reflectance, ATR, photoacoustic reflectance, and external reflectance have been used increasingly, facilitated by the high SNR of FT instruments. In many cases, the diamond cell is an attractive alternative to all of these. The spectral range is -100 -1 to the UV, excluding the 2200-2000 cm -1 region. Spectral distortion, usually a great problem with inorganics, is greatly reduced as a result of sample homogeneity (from a spectral point of view) and refractive index matching. There is no matrix contamination: scattering, background slope, and all absorption bands are from the sample. There is no ion exchange. The sample size requirements are minimal. Finally, sample preparation requires the somewhat lost. but powerful, art of microscopic examination. In some instances, there may be sample orientation or pressure induced phase changes associated with the use of the diamond cell. A common misconception is that an IR microscope is needed to use the diamond cell. In fact, ~5 minutes will suffice without a beam condenser; 1 minute is all that is needed with one. In part, this is because one usually has excellent control of the optical thickness; with experience, the cell can easily be assembled to give bands in the 0.7-1.5 absorbance range, and making the sample thinner merely involves pressing the diamonds together. Given the above, the microscope should only be used for inhomogeneous samples as one loses all information below 700 cm-1, the region of greatest value when studying inorganics. We also note that the cell can readily be moved from a mid-IR to a far-IR bench. We have moved to the point where this is the dominant sampling technique, with ATR being the next most important. Diffuse reflectance and KBr pellets are seldom used. The cell has been used on inorganics (mid and far IR) including extremely small pure mineral samples selected by hand. It is also used for polymers, polymer inclusions, filter deposits, pure (and not so puce) organics, and general "what is this stuff" samples. Examples of a wide variety of analyses will be given.
Low-energy nuclear reactions in crystal structures
NASA Astrophysics Data System (ADS)
Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.
2017-09-01
Results of studying low-energy nuclear reactions at the HELIS facility (LPI) are presented. Investigations of yields from DD reactions in deuterated crystal structures at deuteron energies of 10 to 25 keV show a considerable enhancement effect. It is shown that exposure of the deuterated targets to the H+ (proton) and Ne+ beams with energies from 10 to 25 keV and an X-ray beam with the energy of 20 to 30 keV stimulates DD reaction yields. For the CVD diamond target, it is shown that its orientation with respect to the deuteron beam affects the neutron yield. The D+ beam is shown to cause much higher heat release in the TiDx target than the H+ and Ne+ beams, and this heat release depends on the deuterium concentration in the target and the current density of the deuteron beam.
Graphite to diamond transformation during sediment-peridotite interaction at 7.5 and 10.5 GPa
NASA Astrophysics Data System (ADS)
Girnis, A. V.; Brey, G. P.; Bulatov, V. K.; Höfer, H. E.; Woodland, A. B.
2018-06-01
Diamond nucleation and growth were investigated experimentally at 7.5 and 10.5 GPa and temperatures up to 1500 °C. Samples consisted of two layers: i) H2O- and CO2-bearing model sediment and ii) graphite-bearing garnet harzburgite comprising natural minerals. Two experimental series were conducted, one under a controlled temperature gradient with the sedimentary layer usually in the cold zone and the other under isothermal conditions. In the latter case, diamond seeds were added to the sedimentary mixture. During the experiments, the sedimentary layer partially or completely melted, with the melt percolating and interacting with the adjacent harzburgite. The graphite-to-diamond transition in the peridotite was observed above 1300 °C at 7.5 GPa and 1200 °C at 10.5 GPa in the temperature-gradient experiments, and at temperatures 100 °C lower in the isothermal experiments with diamond seeds. Newly formed diamond occurs mostly as individual grains up to 10 μm in size and is separate from graphite aggregates. In some cases, an association of diamond with magnesite was observed. Diamond nucleation occurs in hydrous and CO2-bearing silicate melt following graphite dissolution and recrystallization. In the case of the diamond-magnesite association, diamond was probably formed through carbonate reduction coupled with graphite oxidation. The composition of the melts ranged from "carbonatitic" with 10 wt% SiO2 and >50 wt% volatiles to hydrous silicate with 40 wt% SiO2 and <10 wt% volatiles. This variation has no strong effect on diamond nucleation or growth.
Bonner, Carissa; Jansen, Jesse; McKinn, Shannon; Irwig, Les; Doust, Jenny; Glasziou, Paul; McCaffery, Kirsten
2014-05-29
Cardiovascular disease (CVD) prevention guidelines encourage assessment of absolute CVD risk - the probability of a CVD event within a fixed time period, based on the most predictive risk factors. However, few General Practitioners (GPs) use absolute CVD risk consistently, and communication difficulties have been identified as a barrier to changing practice. This study aimed to explore GPs' descriptions of their CVD risk communication strategies, including the role of absolute risk. Semi-structured interviews were conducted with a purposive sample of 25 GPs in New South Wales, Australia. Transcribed audio-recordings were thematically coded, using the Framework Analysis method to ensure rigour. GPs used absolute CVD risk within three different communication strategies: 'positive', 'scare tactic', and 'indirect'. A 'positive' strategy, which aimed to reassure and motivate, was used for patients with low risk, determination to change lifestyle, and some concern about CVD risk. Absolute risk was used to show how they could reduce risk. A 'scare tactic' strategy was used for patients with high risk, lack of motivation, and a dismissive attitude. Absolute risk was used to 'scare' them into taking action. An 'indirect' strategy, where CVD risk was not the main focus, was used for patients with low risk but some lifestyle risk factors, high anxiety, high resistance to change, or difficulty understanding probabilities. Non-quantitative absolute risk formats were found to be helpful in these situations. This study demonstrated how GPs use three different communication strategies to address the issue of CVD risk, depending on their perception of patient risk, motivation and anxiety. Absolute risk played a different role within each strategy. Providing GPs with alternative ways of explaining absolute risk, in order to achieve different communication aims, may improve their use of absolute CVD risk assessment in practice.
Rottenberg, Jonathan; Yaroslavsky, Ilya; Carney, Robert M; Freedland, Kenneth E; George, Charles J; Baji, Ildikó; Dochnal, Roberta; Gádoros, Júlia; Halas, Kitti; Kapornai, Krisztina; Kiss, Eniko; Osváth, Viola; Varga, Hedvig; Vetró, Agnes; Kovacs, Maria
2014-02-01
Depression in adults is associated with risk factors for cardiovascular disease (CVD). It is unclear, however, when the association between clinical depression and cardiac risk factors develops or how early in life this association can be detected. In an ongoing study of pediatric depression, we compared CVD risk factors including smoking, obesity, physical activity level, sedentary behavior, and parental history of CVD across three samples of adolescents: probands with established histories of childhood-onset major depressive disorder (n = 210), never-depressed siblings of probands (n = 195), and controls with no history of any major psychiatric disorder (n = 161). When assessed during adolescence, 85% of the probands were not in a major depressive episode. Nevertheless, at that assessment, probands had a higher prevalence of regular smoking (odds ratio [OR] = 12.54, 95% confidence interval [CI] = 4.36-36.12) and were less physically active than controls (OR = 0.59, CI = 0.43-0.81) and siblings (OR = 0.70, CI = 0.52-0.94) and had a higher rate of obesity than did controls (OR = 3.67, CI = 1.42-9.52). Parents of probands reported high rates of CVD (significantly higher than did parents of controls), including myocardial infarction and CVD-related hospitalization (ORs = 1.62-4.36, CIs = 1.03-15.40). Differences in CVD risk factors between probands and controls were independent of parental CVD. Major depression in childhood is associated with an unfavorable CVD risk profile in adolescence, and risks for pediatric depression and CVD may coincide in families. Effective prevention and treatment of childhood depression may be a means to reduce the incidence of adult CVD.
Rottenberg, Jonathan; Yaroslavsky, Ilya; Carney, Robert M.; Freedland, Kenneth E.; George, Charles J.; Baji, Ildikó; Dochnal, Roberta; Gádoros, Júlia; Halas, Kitti; Kapornai, Krisztina; Kiss, Enikő; Osváth, Viola; Varga, Hedvig; Vetró, Ágnes; Kovacs, Maria
2014-01-01
Objective Depression in adults is associated with risk factors for cardiovascular disease (CVD). It is unclear, however, when the association between clinical depression and cardiac risk factors develops, or how early in life this association can be detected. Methods In an ongoing study of pediatric depression, we compared CVD risk factors, including smoking, obesity, physical activity level, sedentary behavior, and parental history of CVD, across three samples of adolescents: probands with established histories of childhood-onset major depressive disorder (MDD; N=210), never-depressed siblings of probands (N=195), and controls with no history of any major psychiatric disorder (N=161). Results When assessed during adolescence, 85% of the probands were not in a major depressive episode. Nevertheless, at that assessment, probands had a higher prevalence of regular smoking ([odds ratio [OR] 12.54, 95% confidence interval [CI] = 4.36–36.12) and were less physically active than controls (OR .59, CI = .43–.81) and siblings (OR .70, CI = .52–.94), and had a higher rate of obesity than did controls (OR 3.67, CI = 1.42–9.52). Parents of probands reported high rates of CVD (significantly higher than did parents of controls), including myocardial infarction and CVD-related hospitalization (ORs 1.62–4.36; CIs = 1.03–15.40). Differences in CVD risk factors between probands and controls were independent of parental CVD. Conclusions Major depression in childhood is associated with an unfavorable CVD risk profile in adolescence, and risks for pediatric depression and CVD may coincide in families. Effective prevention and treatment of childhood depression may be a means to reduce the incidence of adult CVD. PMID:24470130
Picollo, Federico; Battiato, Alfio; Carbone, Emilio; Croin, Luca; Enrico, Emanuele; Forneris, Jacopo; Gosso, Sara; Olivero, Paolo; Pasquarelli, Alberto; Carabelli, Valentina
2015-01-01
The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ∼mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16-channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release. PMID:25558992
NASA Astrophysics Data System (ADS)
Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro
2014-03-01
The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.
In situ analysis of carbon isotopes in North American diamonds
NASA Astrophysics Data System (ADS)
van Rythoven, A. D.; Hauri, E. H.; Wang, J.; McCandless, T.; Shirey, S. B.; Schulze, D. J.
2010-12-01
Diamonds from three North American kimberlite occurrences were investigated with cathodoluminescence (CL) and secondary ion mass spectrometry (SIMS) to determine their growth history and carbon isotope composition. Diamonds analyzed include fourteen from Lynx (Quebec), twelve from Kelsey Lake (Colorado) and eleven from A154 South (Diavik mine, Northwest Territories). Growth histories for the diamonds vary from simple to highly complex based on their CL images and depending on the individual stone. Deformation laminae are evident in CL images of the Lynx diamonds that typically are brownish in color. Two to five points per diamond were analyzed by SIMS for carbon isotope composition. Sample heterogeneity is minimal in terms of δ13C (vs. PDB) values. Points within single diamond had a maximum range of approximately 1 ‰. The results for the A154 South (-6.4 to -3 ‰) and Kelsey Lake (-11.2 to -2.6 ‰) stones were in accordance with earlier reported values. The Lynx kimberlite stones have anomalously high ratios and range from -3.5 to +0.2 ‰ (average: -1.4 ‰). No previous carbon isotope analyses on diamonds from Lynx or any other eastern Superior craton occurrence have been published. The diamonds possess carbon isotope ratios higher than those for the only other reported analyses of Superior craton diamonds at Wawa, Ontario (-5.5 to -1.1 ‰). In global terms, the only published analyses of diamonds that consistently contain even higher values are those from New South Wales (Australia). However, these diamonds are alluvial and contain eclogitic and/or exotic mineral inclusions. The Lynx diamonds are entirely peridotitic and from a primary deposit. The unusually low (i.e. >-5‰) δ13C values of the Lynx (and Wawa) diamonds may indicate a different carbon reservoir for the Superior craton mantle as compared to other cratons.
Quantitative analysis of trace element concentrations in some gem-quality diamonds
NASA Astrophysics Data System (ADS)
McNeill, J.; Pearson, D. G.; Klein-Ben David, O.; Nowell, G. M.; Ottley, C. J.; Chinn, I.
2009-09-01
The geochemical signature of diamond-forming fluids can be used to unravel diamond-forming processes and is of potential use in the detection of so-called 'conflict' diamonds. While fluid-rich fibrous diamonds can be analyzed by a variety of techniques, very few data have been published for fluid-poor, gem-quality diamonds because of their very low impurity levels. Here we present a new ICPMS-based (ICPMS: inductively coupled plasma mass spectrometry) method for the analysis of trace element concentrations within fluid-poor, gem-quality diamonds. The method employs a closed-system laser ablation cell. Diamonds are ablated and the products trapped for later pre-concentration into solutions that are analyzed by sector-field ICPMS. We show that our limits of quantification for a wide range of elements are at the sub-pg to low pg level. The method is applied to a suite of 10 diamonds from the Cullinan Mine (previously known as Premier), South Africa, along with other diamonds from Siberia (Mir and Udachnaya) and Venezuela. The concentrations of a wide range of elements for all the samples (expressed by weight in the solid) are very low, with rare earth elements along with Y, Nb, Cs ranging from 0.01 to 2 ppb. Large ion lithophile elements (LILE) such as Rb and Ba vary from 1 to 30 ppb. Ti ranges from ppb levels up to 2 ppm. From the combined, currently small data set we observe two kinds of diamond-forming fluids within gem diamonds. One group has enrichments in LILE over Nb, whereas a second group has normalized LILE abundances more similar to those of Nb. These two groups bear some similarity to different groups of fluid-rich diamonds, providing some supporting evidence of a link between the parental fluids for both fluid-inclusion-rich and gem diamonds.
Su, Tin Tin; Amiri, Mohammadreza; Mohd Hairi, Farizah; Thangiah, Nithiah; Dahlui, Maznah; Majid, Hazreen Abdul
2015-01-01
This study aims to compare various body composition indices and their association with a predicted cardiovascular disease (CVD) risk profile in an urban population in Kuala Lumpur, Malaysia. A cross-sectional survey was conducted in metropolitan Kuala Lumpur, Malaysia, in 2012. Households were selected using a simple random-sampling method, and adult members were invited for medical screening. The Framingham Risk Scoring algorithm was used to predict CVD risk, which was then analyzed in association with body composition measurements, including waist circumference, waist-hip ratio, waist-height ratio, body fat percentage, and body mass index. Altogether, 882 individuals were included in our analyses. Indices that included waist-related measurements had the strongest association with CVD risk in both genders. After adjusting for demographic and socioeconomic variables, waist-related measurements retained the strongest correlations with predicted CVD risk in males. However, body mass index, waist-height ratio, and waist circumference had the strongest correlation with CVD risk in females. The waist-related indicators of abdominal obesity are important components of CVD risk profiles. As waist-related parameters can quickly and easily be measured, they should be routinely obtained in primary care settings and population health screens in order to assess future CVD risk profiles and design appropriate interventions.
Su, Tin Tin; Amiri, Mohammadreza; Mohd Hairi, Farizah; Thangiah, Nithiah; Dahlui, Maznah; Majid, Hazreen Abdul
2015-01-01
Objectives. This study aims to compare various body composition indices and their association with a predicted cardiovascular disease (CVD) risk profile in an urban population in Kuala Lumpur, Malaysia. Methods. A cross-sectional survey was conducted in metropolitan Kuala Lumpur, Malaysia, in 2012. Households were selected using a simple random-sampling method, and adult members were invited for medical screening. The Framingham Risk Scoring algorithm was used to predict CVD risk, which was then analyzed in association with body composition measurements, including waist circumference, waist-hip ratio, waist-height ratio, body fat percentage, and body mass index. Results. Altogether, 882 individuals were included in our analyses. Indices that included waist-related measurements had the strongest association with CVD risk in both genders. After adjusting for demographic and socioeconomic variables, waist-related measurements retained the strongest correlations with predicted CVD risk in males. However, body mass index, waist-height ratio, and waist circumference had the strongest correlation with CVD risk in females. Conclusions. The waist-related indicators of abdominal obesity are important components of CVD risk profiles. As waist-related parameters can quickly and easily be measured, they should be routinely obtained in primary care settings and population health screens in order to assess future CVD risk profiles and design appropriate interventions. PMID:25710002
Candido, L M; Fais, Lmg; Ferreira, E B; Antonio, S G; Pinelli, Lap
To characterize the surface of an yttria-stabilized zirconia (Y-TZP) ceramic after diamond grinding in terms of its crystalline phase, morphology, mean roughness (Ra), and wettability as well as to determine a thermal treatment to reverse the resulting tetragonal to monoclinic (t-m) transformation. Y-TZP specimens were distributed into different groups according to the actions (or no action) of grinding and irrigation. Grinding was accomplished using a diamond stone at a low speed. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, goniometry, and profilometry. In situ high-temperature XRD was used to determine an annealing temperature to reverse the t-m transformation. Ra was submitted to the Kruskal-Wallis test, followed by the Dunn test (α=0.05). The volume fraction of the monoclinic phase and contact angle were submitted to one-way analysis of variance, followed by the Tukey test (α=0.05). Monoclinic zirconia was observed on the surface of samples after dry and wet grinding with a diamond stone. The volume fraction of the monoclinic phase was smaller on the dry ground samples (3.6%±0.3%) than on the wet ground samples (5.6%±0.3%). High-temperature XRD showed reversion of the t-m phase transformation, which started at 700°C and completed at 800°C in a conventional oven. Grinding with a diamond stone partially transformed the crystalline phase on the surface of a Y-TZP ceramic from tetragonal to monoclinic zirconia while simultaneously increasing the surface roughness and wettability. The t-m transformation could be reversed by heat treatment at 800°C or 900°C for 60 minutes or 1000°C for 30 minutes.
Rücker, Viktoria; Keil, Ulrich; Fitzgerald, Anthony P; Malzahn, Uwe; Prugger, Christof; Ertl, Georg; Heuschmann, Peter U; Neuhauser, Hannelore
2016-01-01
Estimation of absolute risk of cardiovascular disease (CVD), preferably with population-specific risk charts, has become a cornerstone of CVD primary prevention. Regular recalibration of risk charts may be necessary due to decreasing CVD rates and CVD risk factor levels. The SCORE risk charts for fatal CVD risk assessment were first calibrated for Germany with 1998 risk factor level data and 1999 mortality statistics. We present an update of these risk charts based on the SCORE methodology including estimates of relative risks from SCORE, risk factor levels from the German Health Interview and Examination Survey for Adults 2008–11 (DEGS1) and official mortality statistics from 2012. Competing risks methods were applied and estimates were independently validated. Updated risk charts were calculated based on cholesterol, smoking, systolic blood pressure risk factor levels, sex and 5-year age-groups. The absolute 10-year risk estimates of fatal CVD were lower according to the updated risk charts compared to the first calibration for Germany. In a nationwide sample of 3062 adults aged 40–65 years free of major CVD from DEGS1, the mean 10-year risk of fatal CVD estimated by the updated charts was lower by 29% and the estimated proportion of high risk people (10-year risk > = 5%) by 50% compared to the older risk charts. This recalibration shows a need for regular updates of risk charts according to changes in mortality and risk factor levels in order to sustain the identification of people with a high CVD risk. PMID:27612145
NASA Technical Reports Server (NTRS)
Greiner, N. Roy; Phillips, Dave; Johnson, J. D.; Volk, Fred
1990-01-01
Diamonds 4 to 7 nm in diameter have been identified and partially isolated from soot formed in detonations of carbon-forming composite explosives. The morphology of the soot has been examined by transmission electron microscopy (TEM), and the identity of the diamond has been established by the electron diffraction pattern of the TEM samples and by the X-ray diffraction (XRD) pattern of the isolated solid. Graphite is also present in the form of ribbons of turbostatic structure with a thickness of 2 to 4 nm. A fraction, about 25 percent of the soot by weight, was recovered from the crude soot after oxidation of the graphite with fuming perchloric acid. This fraction showed a distinct XRD pattern of diamond and the diffuse band of amorphous carbon. The IR spectrum of these diamonds closely matches that of diamonds recovered from meteorites (Lewis et al., 1987), perhaps indicating similar surface properties after the oxidation. If these diamonds are produced in the detonation itself or during the initial expansion, they exhibit a phenomenal crystal growth rate (5 nm/0.00001 s equal 1.8 m/hr) in a medium with a very low hydrogen/carbon ratio. Because the diamonds will be carried along with the expanding gases, they will be accelerated to velocities approaching 8 km/s.
Public knowledge of cardiovascular disease and its risk factors in Kuwait: a cross-sectional survey.
Awad, Abdelmoneim; Al-Nafisi, Hala
2014-11-04
Cardiovascular disease (CVD) is estimated to cause 46% of all mortalities in Kuwait. To design effective primary and secondary prevention programs, an assessment of a population's prior CVD knowledge is of paramount importance. There is scarcity of data on the existing CVD knowledge among the general Kuwaiti population. Hence, this study was performed to assess the level of knowledge towards CVD types, warning symptoms of heart attack or stroke, and CVD risk factors. It also explored public views on the community pharmacists' role in CVD prevention and management. A descriptive cross-sectional survey was performed using a pretested self-administered questionnaire on a sample of 900 randomly selected Kuwaiti individuals. Descriptive and multivariate logistic regression analysis were used in data analysis. The response rate was 90.7%. Respondents' knowledge about types of CVD, heart attack or stroke symptoms was low. Almost 60% of respondents did not know any type of CVD, and coronary heart disease was the commonest identified type (29.0%). Two-fifths of participants were not aware of any heart attack symptoms, and the most commonly known were chest pain (50.4%) and shortness of breath (48.0%). Approximately half of respondents did not recognize any stroke symptoms, and the most commonly recognized were 'confusion or trouble speaking' (36.4%) and 'numbness or weakness' (34.7%). Respondents' knowledge regarding CVD risk factors was moderate. The commonest factors identified by over four-fifths of participants were smoking, obesity, unhealthy diet and physical inactivity. In the multivariate logistic regression analysis, independent predictors of better level of CVD knowledge were females, age 50-59 years, high level of education, regular eating of healthy diet, and had a family history of CVD. Most of respondents only identified the role that pharmacists had to play is to help patients manage their medications, with a minimal role in other aspects of CVD prevention and management. There are deficiencies in CVD knowledge among Kuwaiti population, which could turn into insufficient preventative behaviours and suboptimal patient outcomes. There is an apparent need to establish more wide-spread and effective educational interventions, which should be sensitive to the perceptions, attitudes, and abilities of targeted individuals.
NASA Astrophysics Data System (ADS)
Cayzac, W.; Pomorski, M.; Blažević, A.; Canaud, B.; Deslandes, D.; Fariaut, J.; Gontier, D.; Lescoute, E.; Marmouget, J. G.; Occelli, F.; Oudot, G.; Reverdin, C.; Sauvestre, J. E.; Sollier, A.; Soullié, G.; Varignon, C.; Villette, B.
2018-05-01
Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.
Conway, Sadie H; Pompeii, Lisa A; Roberts, Robert E; Follis, Jack L; Gimeno, David
2016-03-01
The aim of this study was to examine the presence of a dose-response relationship between work hours and incident cardiovascular disease (CVD) in a representative sample of U.S. workers. A retrospective cohort study of 1926 individuals from the Panel Study of Income Dynamics (1986 to 2011) employed for at least 10 years. Restricted cubic spline regression was used to estimate the dose-response relationship of work hours with CVD. A dose-response relationship was observed in which an average workweek of 46 hours or more for at least 10 years was associated with an increased risk of CVD. Compared with working 45 hours per week, working an additional 10 hours per week or more for at least 10 years increased CVD risk by at least 16%. Working more than 45 work hours per week for at least 10 years may be an independent risk factor for CVD.
Removal of single point diamond-turning marks by abrasive jet polishing.
Li, Z Z; Wang, J M; Peng, X Q; Ho, L T; Yin, Z Q; Li, S Y; Cheung, C F
2011-06-01
Single point diamond turning (SPDT) is highly controllable and versatile in producing axially symmetric forms, non-axially-symmetric forms, microstructured surfaces, and free forms. However, the fine SPDT marks left in the surface limit its performance, and they are difficult to reduce or eliminate. It is unpractical for traditional methods to remove the fine marks without destroying their forms, especially for the aspheres and free forms. This paper introduces abrasive jet polishing (AJP) for the posttreatment of diamond-turned surfaces to remove the periodic microstructures. Samples of diamond-turned electroless nickel plated plano mirror were used in the experiments. One sample with an original surface roughness of more than 400 nm decreased to 4 nm after two iterations abrasive jet polishing; the surface roughness of another sample went from 3.7 nm to 1.4 nm after polishing. The periodic signatures on both of the samples were removed entirely after polishing. Contrastive experimental research was carried out on electroless nickel mirror with magnetorheological finishing, computer controlled optical surfacing, and AJP. The experimental results indicate that AJP is more appropriate in removing the periodic SPDT marks. Also, a figure maintaining experiment was carried out with the AJP process; the uniform polishing process shows that the AJP process can remove the periodic turning marks without destroying the original form.
Stewart, Jesse C; Hawkins, Misty A W; Khambaty, Tasneem; Perkins, Anthony J; Callahan, Christopher M
2016-06-01
Because depression and anxiety are typically studied in isolation, our purpose was to examine the relative importance of these overlapping emotional factors in predicting incident cardiovascular disease (CVD). We examined depression and anxiety screens, and their individual items, as predictors of incident hard CVD events, myocardial infarction, and stroke for 8 years in a diverse sample of 2041 older primary care patients initially free of CVD. At baseline, participants completed self-report depression and anxiety screens. Data regarding CVD events were obtained from an electronic medical record system and the Centers for Medicare and Medicaid Services analytic files. During follow-up, 683 (33%) experienced a CVD event. Cox proportional hazards models-adjusted for demographic and CVD risk factors-revealed that a positive anxiety screen, but not a positive depression screen, was associated with an increased risk of a hard CVD event in separate models (Years 0-3: anxiety hazard ratio [HR] = 1.54, 95% confidence interval [CI] = 1.21-1.96, p < .001; Years 3+: anxiety HR = 0.99, CI = 0.81-1.21), p = .93; depression HR = 1.10, CI = 0.88-1.36, p = .41), as well as when entered into the same model (Years 0-3: anxiety HR = 1.53, CI = 1.20-1.95, p < .001; Years 3+: anxiety HR = 0.99, CI = 0.80-1.21, p = .99; depression HR = 1.03, CI = 0.82-1.29, p = .82). Analyses examining individual items and secondary outcomes showed that the anxiety-CVD association was largely driven by the feeling anxious item and the myocardial infarction outcome. Anxiety, especially feeling anxious, is a unique risk factor for CVD events in older adults, independent of conventional risk factors and depression. Anxiety deserves increased attention as a potential factor relevant to CVD risk stratification and a potential target of CVD primary prevention efforts.
Structural and Electronic Properties of Isolated Nanodiamonds: A Theoretical Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raty, J; Galli, G
2004-09-09
Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibit very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films. Here we present a summary of our theoretical results and we briefly outline work in progress on doping of nanodiamond with nitrogen.« less
CVD-graphene for low equivalent series resistance in rGO/CVD-graphene/Ni-based supercapacitors.
Kwon, Young Hwi; Kumar, Sunil; Bae, Joonho; Seo, Yongho
2018-05-11
Reduced equivalent series resistance (ESR) is necessary, particularly at a high current density, for high performance supercapacitors, and the interface resistance between the current collector and electrode material is one of the main components of ESR. In this report, we have optimized chemical vapor deposition-grown graphene (CVD-G) on a current collector (Ni-foil) using reduced graphene oxide as an active electrode material to fabricate an electric double layer capacitor with reduced ESR. The CVD-G was grown at different cooling rates-20 °C min -1 , 40 °C min -1 and 100 °C min -1 -to determine the optimum conditions. The lowest ESR, 0.38 Ω, was obtained for a cell with a 100 °C min -1 cooling rate, while the sample without a CVD-G interlayer exhibited 0.80 Ω. The CVD-G interlayer-based supercapacitors exhibited fast CD characteristics with high scan rates up to 10 Vs -1 due to low ESR. The specific capacitances deposited with CVD-G were in the range of 145.6 F g -1 -213.8 F g -1 at a voltage scan rate of 0.05 V s -1 . A quasi-rectangular behavior was observed in the cyclic voltammetry curves, even at very high scan rates of 50 and 100 V s -1 , for the cell with optimized CVD-G at higher cooling rates, i.e. 100 °C min -1 .
CVD-graphene for low equivalent series resistance in rGO/CVD-graphene/Ni-based supercapacitors
NASA Astrophysics Data System (ADS)
Kwon, Young Hwi; Kumar, Sunil; Bae, Joonho; Seo, Yongho
2018-05-01
Reduced equivalent series resistance (ESR) is necessary, particularly at a high current density, for high performance supercapacitors, and the interface resistance between the current collector and electrode material is one of the main components of ESR. In this report, we have optimized chemical vapor deposition-grown graphene (CVD-G) on a current collector (Ni-foil) using reduced graphene oxide as an active electrode material to fabricate an electric double layer capacitor with reduced ESR. The CVD-G was grown at different cooling rates—20 °C min‑1, 40 °C min‑1 and 100 °C min‑1—to determine the optimum conditions. The lowest ESR, 0.38 Ω, was obtained for a cell with a 100 °C min‑1 cooling rate, while the sample without a CVD-G interlayer exhibited 0.80 Ω. The CVD-G interlayer-based supercapacitors exhibited fast CD characteristics with high scan rates up to 10 Vs‑1 due to low ESR. The specific capacitances deposited with CVD-G were in the range of 145.6 F g‑1–213.8 F g‑1 at a voltage scan rate of 0.05 V s‑1. A quasi-rectangular behavior was observed in the cyclic voltammetry curves, even at very high scan rates of 50 and 100 V s‑1, for the cell with optimized CVD-G at higher cooling rates, i.e. 100 °C min‑1.
Hagberg, James M
2011-09-01
Cardiovascular disease (CVD) and CVD risk factors are highly heritable, and numerous lines of evidence indicate they have a strong genetic basis. While there is nothing known about the interactive effects of genetics and exercise training on CVD itself, there is at least some literature addressing their interactive effect on CVD risk factors. There is some evidence indicating that CVD risk factor responses to exercise training are also heritable and, thus, may have a genetic basis. While roughly 100 studies have reported significant effects of genetic variants on CVD risk factor responses to exercise training, no definitive conclusions can be generated at the present time, because of the lack of consistent and replicated results and the small sample sizes evident in most studies. There is some evidence supporting "possible" candidate genes that may affect these responses to exercise training: APO E and CETP for plasma lipoprotein-lipid profiles; eNOS, ACE, EDN1, and GNB3 for blood pressure; PPARG for type 2 diabetes phenotypes; and FTO and BAR genes for obesity-related phenotypes. However, while genotyping technologies and statistical methods are advancing rapidly, the primary limitation in this field is the need to generate what in terms of exercise intervention studies would be almost incomprehensible sample sizes. Most recent diabetes, obesity, and blood pressure genetic studies have utilized populations of 10,000-250,000 subjects, which result in the necessary statistical power to detect the magnitude of effects that would probably be expected for the impact of an individual gene on CVD risk factor responses to exercise training. Thus at this time it is difficult to see how this field will advance in the future to the point where robust, consistent, and replicated data are available to address these issues. However, the results of recent large-scale genomewide association studies for baseline CVD risk factors may drive future hypothesis-driven exercise training intervention studies in smaller populations addressing the impact of specific genetic variants on well-defined physiological phenotypes.
Duncan, Michael J; Vale, Susana; Santos, Maria Paula; Ribeiro, José Carlos; Mota, Jorge
2013-01-01
To examine the efficacy of aerobic fitness thresholds in predicting weight status and cardiovascular disease risk (CVD) in young people. A cross-sectional school-based study was conducted on 414 Portuguese young people (235 girls and 179 boys) aged 10-16 years (Mean age ± SD = 13.6 ± 1. 8 years). Height and mass were assessed to determine body mass index (BMI). The 20 m multistage shuttle-fitness test (MSFT) was used as an estimate of aerobic fitness. Capillary blood sampling was used to determine: total cholesterol, triglycerides, high-, and low-density lipoprotein. These were combined with measures of systolic blood pressure as z-scores and summed to create a CVD risk score. Analysis of covariance, controlling for sexual maturation, indicated a significant main effect for BMI as a result of fitness category (P = 0.0001). When applied to CVD risk data, there was no difference between "fit" and "unfit" groups (P = 0.136). Subsequent receiver operating curve (ROC) analysis indicated significant diagnostic accuracy of 20 mMSFT performance for boys and girls (both P = 0.0001) with subsequent cut-offs of estimated VO2 peak of 49.5 ml kg(-1) min(-1) for girls and 47.7 ml kg(-1) min(-1) for boys. When applied to BMI and CVD risk data, there was a significant main effect as a result of fitness category for BMI (P = 0.0001) and CVD risk score (P = 0.0001). Recently established cut-points proposed by Boddy et al. (Boddy et al. [2012]: PLoS One 7(9): e45755) show validity in distinguishing between weight status but not CVD risk in Portuguese young people. Alternative ROC generated cut points significantly predicted BMI and CVD risk in this sample. Copyright © 2013 Wiley Periodicals, Inc.
Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.
Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate
2018-03-14
Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.
Pressure-induced transition in the grain boundary of diamond
NASA Astrophysics Data System (ADS)
Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.
2017-12-01
Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature Communications, DOI: 10.1038/ncomms4666, 2014
Diamonds in ophiolites: Contamination or a new diamond growth environment?
NASA Astrophysics Data System (ADS)
Howell, D.; Griffin, W. L.; Yang, J.; Gain, S.; Stern, R. A.; Huang, J.-X.; Jacob, D. E.; Xu, X.; Stokes, A. J.; O'Reilly, S. Y.; Pearson, N. J.
2015-11-01
For more than 20 years, the reported occurrence of diamonds in the chromites and peridotites of the Luobusa massif in Tibet (a complex described as an ophiolite) has been widely ignored by the diamond research community. This skepticism has persisted because the diamonds are similar in many respects to high-pressure high-temperature (HPHT) synthetic/industrial diamonds (grown from metal solvents), and the finding previously has not been independently replicated. We present a detailed examination of the Luobusa diamonds (recovered from both peridotites and chromitites), including morphology, size, color, impurity characteristics (by infrared spectroscopy), internal growth structures, trace-element patterns, and C and N isotopes. A detailed comparison with synthetic industrial diamonds shows many similarities. Cubo-octahedral morphology, yellow color due to unaggregated nitrogen (C centres only, Type Ib), metal-alloy inclusions and highly negative δ13C values are present in both sets of diamonds. The Tibetan diamonds (n = 3) show an exceptionally large range in δ15N (-5.6 to + 28.7 ‰) within individual crystals, and inconsistent fractionation between {111} and {100} growth sectors. This in contrast to large synthetic HPHT diamonds grown by the temperature gradient method, which have with δ15N = 0 ‰ in {111} sectors and + 30 ‰ in {100} sectors, as reported in the literature. This comparison is limited by the small sample set combined with the fact the diamonds probably grew by different processes. However, the Tibetan diamonds do have generally higher concentrations and different ratios of trace elements; most inclusions are a NiMnCo alloy, but there are also some small REE-rich phases never seen in HPHT synthetics. These characteristics indicate that the Tibetan diamonds grew in contact with a C-saturated Ni-Mn-Co-rich melt in a highly reduced environment. The stable isotopes indicate a major subduction-related contribution to the chemical environment. The unaggregated nitrogen, combined with the lack of evidence for resorption or plastic deformation, suggests a short (geologically speaking) residence in the mantle. Previously published models to explain the occurrence of the diamonds, and other phases indicative of highly reduced conditions and very high pressures, have failed to take into account the characteristics of the diamonds and the implications for their formation. For these diamonds to be seriously considered as the result of a natural growth environment requires a new understanding of mantle conditions that could produce them.
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams
Bang, W.; Albright, B. J.; Bradley, P. A.; ...
2015-09-22
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.
Bang, W; Albright, B J; Bradley, P A; Gautier, D C; Palaniyappan, S; Vold, E L; Santiago Cordoba, M A; Hamilton, C E; Fernández, J C
2015-09-22
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)
NASA Astrophysics Data System (ADS)
Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin
2013-06-01
The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, W.; Albright, B. J.; Bradley, P. A.
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less
Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams
NASA Astrophysics Data System (ADS)
Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.
2015-09-01
With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.
ERIC Educational Resources Information Center
Parobek, David; Shenoy, Ganesh; Zhou, Feng; Peng, Zhenbo; Ward, Michelle; Liu, Haitao
2016-01-01
In this upper-level undergraduate experiment, students utilize micro-Raman spectroscopy to characterize graphene prepared by mechanical exfoliation and chemical vapor deposition (CVD). The mechanically exfoliated samples are prepared by the students while CVD graphene can be purchased or obtained through outside sources. Owing to the intense Raman…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A., E-mail: shura.lebe@mail.ioffe.ru; Bogdanova, E. V.
The compensation of moderately doped p-4H-SiC samples grown by the chemical vapor deposition (CVD) method under irradiation with 0.9-MeV electrons and 15-MeV protons is studied. The experimentally measured carrier removal rates are 1.2–1.6 cm{sup –1} for electrons and 240–260 cm{sup –1} for protons. The dependence of the concentration of uncompensated acceptors and donors, measured in the study, demonstrates a linear decrease with increasing irradiation dose to the point of complete compensation. This run of the dependence shows that compensation of the samples is due to the transition of carriers to deep centers formed by primary radiation-induced defects. It is demonstratedmore » that, in contrast to n-SiC (CVD), primary defects in the carbon sublattice of moderately doped p-SiC (CVD) only cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice, or defects in both sublattices are responsible for conductivity compensation. Also, photoluminescence spectra are examined in relation to the irradiation dose.« less
Valero-Elizondo, Javier; Salami, Joseph A; Osondu, Chukwuemeka U; Ogunmoroti, Oluseye; Arrieta, Alejandro; Spatz, Erica S; Younus, Adnan; Rana, Jamal S; Virani, Salim S; Blankstein, Ron; Blaha, Michael J; Veledar, Emir; Nasir, Khurram
2016-09-07
Physical activity (PA) has an established favorable impact on cardiovascular disease (CVD) outcomes and quality of life. In this study, we aimed to estimate the economic effect of moderate-vigorous PA on medical expenditures and utilization from a nationally representative cohort with and without CVD. The 2012 Medical Expenditure Panel Survey data were analyzed. Our study population was limited to noninstitutionalized US adults ≥18 years of age. Variables of interest included CVD (coronary artery disease, stroke, heart failure, dysrhythmias, or peripheral artery disease) and cardiovascular modifiable risk factors (CRFs; hypertension, diabetes mellitus, hypercholesterolemia, smoking, and/or obesity). Two-part econometric models were utilized to study cost data; a generalized linear model with gamma distribution and link log was used to assess expenditures per capita. The final study sample included 26 239 surveyed individuals. Overall, 47% engaged in moderate-vigorous PA ≥30 minutes, ≥5 days/week, translating to 111.5 million adults in the United States stratifying by CVD status; 32% reported moderate-vigorous PA among those with CVD versus 49% without CVD. Generally, participants reporting moderate-vigorous PA incurred significantly lower health care expenditures and resource utilization, displaying a step-wise lower total annual health care expenditure as moving from CVD to non-CVD (and each CRF category). Moderate-vigorous PA ≥30 minutes, ≥5 days/week is associated with significantly lower health care spending and resource utilization among individuals with and without established CVD. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Rao, Krishna D; Bhatnagar, Aarushi; Murphy, Adrianna
2011-01-01
Cardiovascular disease (CVD) and diabetes have become a leading threat to public health in India. This study examines socio-economic differences in self-reported morbidity due to CVD and diabetes, where people having these conditions seek care, how much households pay for and how they finance hospital treatment for these conditions. Data for this study are taken from the National Sample Survey Organization (NSSO) 60 th round on 'Morbidity and Health Care' conducted between January and June 2004. Information from 2,129 and 438 individuals hospitalized for CVD and diabetes was analyzed. The self-reported prevalence among adults was 12 per cent for CVD, 4 per cent (7% urban and 3% rural) for heart disease and 6 per cent (10% in urban and 4% in rural) for diabetes. Both self-reported CVD and diabetes appeared to afflict the wealthier more. The private sector was the main provider of outpatient and inpatient care for CVD and diabetes treatment, though the poor depended more on the public sector. Out-of-pocket payments (OOPS) for hospital treatment claimed a large share of annual household expenditures; 30 per cent for CVD and 17 per cent for diabetes. The OOPS share for diabetes treatment declined with increasing income. The majority of OOPS for hospital treatment paid by the poor was financed through borrowings. The considerable financial strain which households, particularly the poor, face in treating CVD and diabetes is alarming. As the burden due to CVD and diabetes increases in India, more households will be subject to these financial strains and unfortunately, the economically vulnerable among them will be the worst affected. While primary prevention of these conditions need more emphasis, in addition, insurance schemes targeted at the poor like the RSBY have an important role to play in financially protecting vulnerable households.
Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc; Hart, A. John
2013-01-01
Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes. PMID:24289435
Physical-chemical processes of diamond grinding
NASA Astrophysics Data System (ADS)
Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu
2017-10-01
The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulenko, James; Subhash, Ghatu
2016-01-01
The University of Florida (UF) evaluated a composite fuel consisting of UO 2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO 2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO 2 – SiC and UO 2 – Carbon Nanotube fuel pins. UF ismore » proving with the current research results that the addition of diamond micro particles to UO 2 may greatly enhanced the thermal conductivity of the UO 2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.« less
NASA Technical Reports Server (NTRS)
Malina, R. F.; Cash, W.
1978-01-01
Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.
Gregor, M. C.; Fratanduono, D. E.; McCoy, C. A.; ...
2017-04-26
The equation of state of carbon at extreme pressures is of interest to studies of planetary ice giants and white dwarfs and to inertial con nement fusion (ICF) because diamond is used as an ablator material at the National Ignition Facility (NIF). Knowledge of both the high-pressure shock and release responses of diamond are needed to accurately model an ICF implosion and design ignition targets. This article presents Hugoniot and release data for both single-crystal diamond and the high-density carbon (HDC), comprised of nanometer-scale grains, used as a NIF ablator. Experiments were performed at the Omega Laser Facility where diamondmore » was shock-compressed to multimegabar pressures and then released into reference materials with known Hugoniots (quartz, polystyrene, silica aerogel, and liquid deuterium). Impedance matching between diamond and the standards provided the data to constrain diamond release models. Hugoniot data were obtained by impedance matching with a quartz standard and results indicate that the HDC, which is ultrananocrystalline and ~4% less dense, has a sti er Hugoniot as compared to single-crystal diamond. Accuracy of the HDC data were improved using a non-steady waves correction [D. E. Fratanduono et al., J. Appl. Phys. 116, 033517 (2014)] to determine shock velocity pro les in the opaque HDC samples.« less
NASA Astrophysics Data System (ADS)
Korolev, N. M.; Kopylova, M.; Bussweiler, Y.; Pearson, D. G.; Gurney, J.; Davidson, J.
2018-04-01
The mantle beneath the Cullinan kimberlite (formerly known as "Premier") is a unique occurrence of diamondiferous cratonic mantle where diamonds were generated contemporaneously and shortly following a mantle upwelling that led to the formation of a Large Igneous Province that produced the world's largest igneous intrusion - the 2056 Ma Bushveld Igneous Complex (BIC). We studied 332 diamond inclusions from 202 Cullinan diamonds to investigate mantle thermal effects imposed by the formation of the BIC. The overwhelming majority of diamonds come from three parageneses: (1) lithospheric eclogitic (69%), (2) lithospheric peridotitic (21%), and (3) sublithospheric mafic (9%). The lithospheric eclogitic paragenesis is represented by clinopyroxene, garnet, coesite and kyanite. Main minerals of the lithospheric peridotitic paragenesis are forsterite, enstatite, Cr-pyrope, Cr-augite and spinel; the sublithospheric mafic association includes majorite, CaSiO3 phases and omphacite. Diamond formation conditions were calculated using an Al-in-olivine thermometer, a garnet-clinopyroxene thermometer, as well as majorite and Raman barometers. The Cullinan diamonds may be unique on the global stage in recording a cold geotherm of 40 mW/m2 in cratonic lithosphere that was in contact with underlying convecting mantle at temperatures of 1450-1550 °C. The studied Cullinan diamonds contain a high proportion of inclusions equilibrated at temperatures exceeding the ambient 1327 °C adiabat, i.e. 54% of eclogitic diamonds and 41% of peridotitic diamonds. By contrast, ≤ 1% of peridotitic diamond inclusions globally yield equally high temperatures. We propose that the Cullinan diamond inclusions recorded transient, slow-dissipating thermal perturbations associated with the plume-related formation of the 2 Ga Bushveld igneous province. The presence of inclusions in diamond from the mantle transition zone at 300-650 km supports this view. Cullinan xenoliths indicative of the thermal state of the cratonic lithosphere at 1.2 Ga are equilibrated at the relatively low temperatures, not exceeding adiabatic. The ability of diamonds to record super-adiabatic temperatures may relate to their entrainment from the deeper, hotter parts of the upper mantle un-sampled by the kimberlite in the form of xenoliths or their equilibration in a younger lithosphere after a decay of the thermal disturbance.
Emirates Mars Infrared Spectrometer (EMIRS) Overview from the Emirates Mars Mission
NASA Astrophysics Data System (ADS)
Altunaiji, Eman; Edwards, Christopher; Smith, Michael; Christensen, Philip; AlMheiri, Suhail; Reed, Heather
2017-04-01
Emirates Mars Infrared Spectrometer (EMIRS) instrument is one of three scientific instruments aboard the Emirate Mars Mission (EMM), with the name of "Hope". EMM is United Arab Emirates' (UAE) mission to be launched in 2020, with the aim of exploring the dynamics of the atmosphere of Mars on a global scale with sampling on a diurnal and sub-seasonal time-scales. EMM has three scientific instruments selected to provide an improved understanding of circulation and weather in the Martian lower atmosphere as well as the thermosphere and exosphere. The EMIRS instrument is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ μm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beam splitter and state of the art electronics. This instrument utilizes a 3×3 line array detector and a scan mirror to make high-precision infrared radiance measurements over most of the Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere, using a scan-mirror to make 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel while requiring no special spacecraft maneuvers.
Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles
Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas
2017-07-24
Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyagi, Lowell; Department of Earth Sciences, Montana State University, Bozeman, Montana 59717; Kanitpanyacharoen, Waruntorn
2013-02-15
To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate andmore » optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.« less
Spray-loading: A cryogenic deposition method for diamond anvil cell
NASA Astrophysics Data System (ADS)
Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto
2018-05-01
An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.
Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds
NASA Astrophysics Data System (ADS)
McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.
2009-05-01
Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.
Buchan, Duncan S; Ollis, Stewart; Thomas, Non-Eleri; Simpson, Alan; Young, John D; Cooper, Stephen-Mark; Malina, Robert M; Cockcroft, John R; Baker, Julien S
2012-10-01
Information on the health status and physical activity of Scottish adolescents is limited. This study examines the prevalence of cardiovascular disease (CVD) risk in Scottish adolescents by socioeconomic status (SES). Participants were recruited from two high schools that differed in the SES of the students in attendance. The sample included 73 boys and 34 girls (16.4 ± 0.6 years). Variables included anthropometry, physical activity, physical fitness, blood pressure, diet, and 11 metabolic markers of CVD risk. Significant sex differences (P ≤ 0.01) were noted for stature, waist circumference, waist-hip ratio, physical activity, cardiorespiratory fitness, muscular power, sprint speed, and several CVD risk factors: high-density lipoprotein (HDL), low-density lipoprotein (LDL), interleukin-6 (IL-6), and C-reactive protein (CRP) levels. Boys from a lower SES had significantly higher levels of glucose and plasminogen activator inhibitor-1 (PAI-1) but lower levels of adiponectin compared with boys from a higher SES. Girls from a lower SES had significantly (P ≤ 0.01) higher glucose and PAI-1 levels but lower levels of insulin and adiponectin than girls from a higher SES. High fat diets, low physical activity levels, and elevated CRP and total cholesterol levels were the CVD risk factors most commonly identified as being at-risk levels in this cohort, regardless of sex or SES. SES differences were not consistently apparent, but several CVD risk factors were identified as elevated in this sample of adolescents, regardless of sex or SES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, Robert Lawrence; Marsden, David
The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range ofmore » advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.« less
The prototype of the Micro Vertex Detector of the CBM Experiment
NASA Astrophysics Data System (ADS)
Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Li, Qiyan; Michel, Jan; Milanović, Borislav; Müntz, Christian; Neumann, Bertram; Schrader, Christoph; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael
2013-12-01
The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility at Darmstadt, Germany. This fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. Reconstructing those short lived particles requires a vacuum compatible Micro Vertex Detector (MVD) with unprecedented properties. Its sensor technology has to feature a spatial resolution of <5 μm, a non-ionizing radiation tolerance of >1013 neq/cm2, an ionizing radiation tolerance of >3 Mrad and a time resolution of a few 10 μs. The MVD-prototype project aimed to study the integration the CMOS Monolithic Active Pixel Sensors foreseen for the MVD into an ultra light (0.3% X0) and a vacuum compatible detector system based on a cooling support made of CVD-diamond.
NASA Astrophysics Data System (ADS)
Wei, Y. Y.; Eres, Gyula; Merkulov, V. I.; Lowndes, D. H.
2001-03-01
The correlation between prepatterned catalyst film thickness and carbon nanotube (CNT) growth by selective area chemical vapor deposition (CVD) was studied using Fe and Ni as catalyst. To eliminate sample-to-sample variations and create a growth environment in which the film thickness is the sole variable, samples with continuously changing catalyst film thickness from 0 to 60 nm were fabricated by electron-gun evaporation. Using thermal CVD CNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature. There appears to be no strong correlation between the film thickness and the diameter of the tubes. In contrast, using plasma enhanced CVD with Ni as catalyst, vertically oriented CNTs grow in the entire range of catalyst film thickness. The diameter of these CNTs shows a strong correlation with the catalyst film thickness. The significance of these experimental trends is discussed within the framework of the diffusion model for CNT growth.
John, Holly; Hale, Elizabeth D; Treharne, Gareth J; Carroll, Douglas; Kitas, George D
2009-12-01
There are no patient education programmes addressing the increased risk of cardiovascular disease (CVD) associated with rheumatoid arthritis (RA). This is the second in a pair of studies exploring stakeholder perceptions of developing such educational material. Healthcare professionals' perceptions were explored in the first study; here, we explore the perceptions of people with RA. Semi-structured interviews were held individually with 18 people with RA, purposively sampled to include participants with no co-morbid history of CVD, those with CVD risk factors and those who had experienced a CVD event. The interview transcripts were analysed using interpretative phenomenological analysis. Four superordinate themes were identified: experiences of living with RA; reactions to learning about co-morbid CVD; implementing lifestyle changes; and expectations of education. Participants found being diagnosed with RA a devastating experience and were mostly unaware of their increased risk of CVD co-morbidity. They explained how information about CVD would be overwhelming and irrelevant at diagnosis, but they would have coped with 'extra information a bit further down the line'. There is a need to develop educational material or programmes. Their design must consider factors which facilitate lifestyle change, such as motivation or receiving personalized advice, and factors that inhibit change, such as depression or fatalism. Emphasizing the positive effects that some CVD lifestyle changes may have on RA symptom control may be particularly persuasive. Group education would be a popular format. These findings can be directly translated into clinical practice. Copyright (c) 2009 John Wiley & Sons, Ltd.
Bailey, Regan L; Fakhouri, Tala H; Park, Yikyung; Dwyer, Johanna T; Thomas, Paul R; Gahche, Jaime J; Miller, Paige E; Dodd, Kevin W; Sempos, Christopher T; Murray, David M
2015-03-01
Multivitamin-mineral (MVM) products are the most commonly used supplements in the United States, followed by multivitamin (MV) products. Two randomized clinical trials (RCTs) did not show an effect of MVMs or MVs on cardiovascular disease (CVD) mortality; however, no clinical trial data are available for women with MVM supplement use and CVD mortality. The objective of this research was to examine the association between MVM and MV use and CVD-specific mortality among US adults without CVD. A nationally representative sample of adults from the restricted data NHANES III (1988-1994; n = 8678; age ≥40 y) were matched with mortality data reported by the National Death Index through 2011 to examine associations between MVM and MV use and CVD mortality by using Cox proportional hazards models, adjusting for multiple potential confounders. We observed no significant association between CVD mortality and users of MVMs or MVs compared with nonusers; however, when users were classified by the reported length of time products were used, a significant association was found with MVM use of >3 y compared with nonusers (HR: 0.65; 95% CI: 0.49, 0.85). This finding was largely driven by the significant association among women (HR: 0.56; 95% CI: 0.37, 0.85) but not men (HR: 0.79; 95% CI: 0.44, 1.42). No significant association was observed for MV products and CVD mortality in fully adjusted models. In this nationally representative data set with detailed information on supplement use and CVD mortality data ∼20 y later, we found an association between MVM use of >3 y and reduced CVD mortality risk for women when models controlled for age, race, education, body mass index, alcohol, aspirin use, serum lipids, blood pressure, and blood glucose/glycated hemoglobin. Our results are consistent with the 1 available RCT in men, indicating no relation with MVM use and CVD mortality. © 2015 American Society for Nutrition.
Gebreab, Samson Y; Diez Roux, Ana V; Brenner, Allison B; Hickson, DeMarc A; Sims, Mario; Subramanyam, Malavika; Griswold, Michael E; Wyatt, Sharon B; James, Sherman A
2015-01-01
Background Few studies have examined the impact of lifecourse socioeconomic position (SEP) on cardiovascular disease (CVD) risk among African Americans. Methods and Results We used data from the Jackson Heart Study (JHS) to examine the associations of multiple measures of lifecourse SEP with CVD events in a large cohort of African Americans. During a median of 7.2-year follow-up, 362 new or recurrent CVD events occurred in a sample of 5301 participants aged 21 to 94. Childhood SEP was assessed by using mother’s education, parental home ownership, and childhood amenities. Adult SEP was assessed by using education, income, wealth, and public assistance. Adult SEP was more consistently associated with CVD risk in women than in men: age-adjusted hazard ratios for low versus high income (95% CIs), 2.46 (1.19 to 5.09) in women and 1.50 (0.87 to 2.58) in men, P for interaction=0.1244, and hazard ratio for low versus high wealth, 2.14 (1.39 to 3.29) in women and 1.06 (0.62 to 1.81) in men, P for interaction=0.0224. After simultaneous adjustment for all adult SEP measures, wealth remained a significant predictor of CVD events in women (HR=1.73 [1.04, 2.85] for low versus high). Education and public assistance were less consistently associated with CVD. Adult SEP was a stronger predictor of CVD events in younger than in older participants (HR for high versus low summary adult SEP score 3.28 [1.43, 7.53] for participants ≤50 years, and 1.90 (1.36 to 2.66) for participants >50 years, P for interaction 0.0846). Childhood SEP was not associated with CVD risk in women or men. Conclusions Adult SEP is an important predictor of CVD events in African American women and in younger African Americans. Childhood SEP was not associated with CVD events in this population. PMID:26019130
2014-01-01
Background Cardiovascular disease (CVD) prevention guidelines encourage assessment of absolute CVD risk - the probability of a CVD event within a fixed time period, based on the most predictive risk factors. However, few General Practitioners (GPs) use absolute CVD risk consistently, and communication difficulties have been identified as a barrier to changing practice. This study aimed to explore GPs’ descriptions of their CVD risk communication strategies, including the role of absolute risk. Methods Semi-structured interviews were conducted with a purposive sample of 25 GPs in New South Wales, Australia. Transcribed audio-recordings were thematically coded, using the Framework Analysis method to ensure rigour. Results GPs used absolute CVD risk within three different communication strategies: ‘positive’, ‘scare tactic’, and ‘indirect’. A ‘positive’ strategy, which aimed to reassure and motivate, was used for patients with low risk, determination to change lifestyle, and some concern about CVD risk. Absolute risk was used to show how they could reduce risk. A ‘scare tactic’ strategy was used for patients with high risk, lack of motivation, and a dismissive attitude. Absolute risk was used to ‘scare’ them into taking action. An ‘indirect’ strategy, where CVD risk was not the main focus, was used for patients with low risk but some lifestyle risk factors, high anxiety, high resistance to change, or difficulty understanding probabilities. Non-quantitative absolute risk formats were found to be helpful in these situations. Conclusions This study demonstrated how GPs use three different communication strategies to address the issue of CVD risk, depending on their perception of patient risk, motivation and anxiety. Absolute risk played a different role within each strategy. Providing GPs with alternative ways of explaining absolute risk, in order to achieve different communication aims, may improve their use of absolute CVD risk assessment in practice. PMID:24885409
Puspitasari, Hanni P; Costa, Daniel S J; Aslani, Parisa; Krass, Ines
2016-01-01
Community pharmacists have faced ongoing challenges in the delivery of clinical pharmacy services. Various attitudinal and environmental factors have been found to be associated with the provision of general clinical pharmacy services or services which focus on a specific condition, including cardiovascular disease (CVD). However, the interrelationship and relative influence of explanatory factors has not been investigated. To develop a model illustrating influences on CVD support provision by community pharmacists. Mail surveys were sent to a random sample of 1350 Australian community pharmacies to investigate determinants of CVD support provision. A theoretical model modified from the Theory of Planned Behavior (TPB) was used as a framework for the survey instrument. Structural equation modeling was used to determine how pharmacists' attitudes and environmental factors influence CVD support. A response rate of 15.8% (209/1320) was obtained. The model for CVD support provision by community pharmacists demonstrated good fit: χ(2)/df = 1.403, RMSEA = 0.047 (90% CI = 0.031-0.062), CFI = 0.962, TLI = 0.955 and WRMR = 0.838. Factors found to predict CVD support included: two attitudinal latent factors ("subjective norms of pharmacists' role in CVD support" and "pharmacists' perceived responsibilities in CVD support") and environmental factors i.e. pharmacy infrastructure (documentation and a private area), workload, location; government funded pharmacy practice programs; and pharmacists' involvement with Continuing Professional Development and attendance at CVD courses. Pharmacists' attitudes appeared to be the strongest predictor of CVD support provision. The TPB framework was useful in identifying "subjective norms" and "pharmacists' beliefs" as key constructs of community pharmacists' attitudes. Community pharmacies would be able to provide such an advanced clinical service if they strongly believed that this was an acknowledged part of their scope of practice, had adequate infrastructure and employed sufficient numbers of pharmacists with appropriate and relevant knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije
Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less
Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples
Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...
2015-09-01
Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less
NASA Astrophysics Data System (ADS)
Shirey, S. B.
2002-05-01
Gem-quality diamond contains such low abundances of parent-daughter radionuclides that dating the diamond lattice directly by isotopic measurements has been and will be impossible. Absolute ages on diamonds typically are obtained through measurements of their syngenetic mineral inclusions: Rb-Sr in garnet; Sm-Nd in garnet and pyroxene; Re-Os and U-Th-Pb in sulfide; K-Ar in pyroxene; and U-Pb in zircon. The application of the first two isotope schemes in the list requires putting together many inclusions from many diamonds whereas the latter isotope schemes permit ages on single diamonds. The key limitations on the application of these decay pairs are the availability and size of the inclusions, the abundance levels of the radionuclides, and instrumental sensitivity. Practical complications of radioisotope dating of inclusions are fatal to the application of the technique for diamond provenance. In all mines, the ratio of gem-quality diamonds to stones with datable inclusions is very high. Thus there is no way to date the valuable, marketable stones that are part of the conflict diamond problem, just their rare, flawed cousins. Each analysis destroys the diamond host plus the inclusion and can only be carried out in research labs by highly trained scientists. Thus, these methods can not be automated or applied to the bulk of diamond production. The geological problems with age dating are equally fatal to its application to diamond provenance. From the geological perspective, for age determination to work as a tool for diamond provenance studies, diamond ages would have to be specific to particular kimberlites or kimberlite fields and different between fields. The southern African Kaapvaal-Zimbabwe Craton and Limpopo Mobile Belt is the only cratonic region where age determinations have been applied on a large enough scale to a number of kimberlites to illustrate the geological problems in age measurements for diamond provenance. However, this southern African example is seen as typical of other cratons. Here, the nearly universal occurrence of Archean or Proterozoic diamonds in much younger (often Cretaceous) kimberlites proves that diamonds are xenocrysts inherited from the ancient mantle lithospheric keel by the host kimberlite as it erupts. Differences in diamond ages are on the scale of the geological assembly of the mantle lithospheric keel and relate to geological terranes in the lithosphere; they have little to do with individual kimberlites. In southern Africa, two age groupings of diamonds exist: Archean (3.2 to 2.9 Ga) diamonds associated with initial creation/final stabilization of the mantle lithosphere and Proterozoic (1 to 2 Ga) diamonds associated with compositional changes to the mantle keel from magmatism and metasomatism. The distribution of these two age types is cratonwide, encompasses many kimberlites and both age groupings can occur in an individual kimberlite. One expects a recurrence of similar ages with a possible 2 Ga age spread from many different kimberlites across the craton. Similar old ages are seen on other cratons (e.g. Siberian, Slave); thus age can not even distinguish diamond source at the scale of a craton. A further complication is that both sampling of diamonds from their lithospheric host and the resting position of diamonds at the final solidification level of the kimberlite in the crust are accidental. This can produce significant variability in the diamond population which is further complicated if erosion and deposition of the diamonds to form alluvial deposits has obscured their host kimberlite.
Hope and cardiovascular health-promoting behaviour: education alone is not enough.
Feldman, David B; Sills, Jonathan R
2013-01-01
We investigated hope's ability to predict cardiovascular disease (CVD) knowledge and health-promoting behaviours. Snyder defined hope as the combination of goal-directed planning and motivation, and theorised that high-hope people seek knowledge relevant to goal pursuits. We surveyed 391 Latino and Asian participants undergoing CVD risk screening, nearly all immigrants to the USA. This was a particularly important sample because, in general, these populations are considered underserved and under-researched. Pre-screening hope levels were measured. After screening and education, participants rated perceived importance of behaviour change. Behaviour change (salt/fat intake, exercise, CVD information-seeking and visiting a physician) and CVD knowledge were assessed one month later by telephone. Unexpectedly, hope did not predict knowledge. However, hope predicted self-reported behaviour change, though results differed by ethnicity. Among Asian individuals, hope × knowledge predicted reduced salt/fat, CVD information-seeking and physician visits. Among Latino individuals, hope × perceived importance of diet change predicted reduced salt/fat and hope × perceived importance of exercise change predicted increased exercise.
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Voss, A.; Kozarova, R.; Kocourek, T.; Pisarik, P.; Ceccone, G.; Kulisch, W.; Jelinek, M.; Apostolova, M. D.; Reithmaier, J. P.; Popov, C.
2014-04-01
Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O2 or NH3/N2 plasmas and UV/O3 treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.
NASA Astrophysics Data System (ADS)
Lipatov, E. I.; Tarasenko, V. F.
2008-03-01
The optoelectronic switching in two natural diamond samples of type 2-A is studied at voltages up to 1000 V and the energy density of control 60-ns, 308-nm laser pulses up to 0.6 J cm-2. It is shown that the design of a diamond switch affects the switching efficiency. When the energy density exceeds 0.2 J cm-2 and the interelectrode surface is completely illuminated, the surface breakdown is initiated by UV radiation, which shunts the current flow through the diamond crystal. When the illumination of the interelectrode surface is excluded, the surface breakdown does not occur. The threshold radiation densities sufficient for initiating the surface breakdown are determined for electric field strengths up to 10 kV cm-1.
Diamonds in ophiolitic mantle rocks and podiform chromitites: An unsolved mystery
NASA Astrophysics Data System (ADS)
Yang, J.; Zhang, Z.; Xu, X.; Ba, D.; Bai, W.; Fabg, Q.; Meng, F.; Chen, S.; Robinson, P. T.; Dobrzhinetskaya, L.
2009-05-01
In recent years ultrahigh pressure minerals, such as diamond and coesite, and other unusual minerals were discovered in chromitites of the Luobusa ophiolite in Tibet, and 4 new minerals have been approved by the CNMMN. These results have raised many questionsWhat are the occurrences of the diamonds, what is the source of their carbon and how were they formed? What is the origin of the chromites hosting the diamonds and at what depth did they form? What is the genetic relationship between the diamonds and the host chromitites? In what geological, geophysical and geochemical environments can the diamonds be formed and how are they preserved? The UHP minerals from Luobusa are controversial because they have not been found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers in suprasubduction zone environments. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere To approach these problems, we have collected two one-ton samples of harzburgite hosting chromitite orebodies in the Luobusa ophiolite in Tibet. The harzburgite samples were taken close to chromitite orebody 31, from which the diamonds, coesite and other unusual minerals were recovered. We processed these two samples in the same manner as the chromitites and discovered numerous diamonds and more than 50 other mineral species. These preliminary results show that the minerals in the harzburgites are similar to those in the chromitites, suggesting a genetic relationship between them. To determine if such UHP and unusual minerals occur elsewhere, we collected about 1.5 t of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Other minerals include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si-bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites.
Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garratt, Elias; AlFaify, Salem; Yoshitake, T.
2013-01-11
This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less
Effect of chromium underlayer on the properties of nano-crystalline diamond films
NASA Astrophysics Data System (ADS)
Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.
2013-01-01
This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.
The bonding of protective films of amorphic diamond to titanium
NASA Astrophysics Data System (ADS)
Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.
1992-04-01
Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.
Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films
NASA Astrophysics Data System (ADS)
Remes, Zdenek; Sun, Shih-Jye; Varga, Marian; Chou, Hsiung; Hsu, Hua-Shu; Kromka, Alexander; Horak, Pavel
2015-11-01
The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure.