Science.gov

Sample records for cvd facility technical

  1. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    1999-12-16

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  2. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    2000-08-08

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  3. CVD facility electrical system captor/dapper study

    SciTech Connect

    SINGH, G.

    1999-10-28

    Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.

  4. Cold Vacuum Drying (CVD) Facility Sampling and Analysis Plan

    SciTech Connect

    IRWIN, J.J.

    2000-09-22

    The Cold Vacuum Drying (CVD) Facility provides the required process systems, supporting equipment, and facilities needed for the conditioning of spent nuclear fuel (SNF) from the Hanford K-Basins prior to storage at the Canister Storage Building (CSB). The process water conditioning (PWC) system collects and treats the selected liquid effluent streams generated by the CVD process. The PWC system uses ion exchange modules (IXMs) and filtration to remove radioactive ions and particulate from CVD effluent streams. Water treated by the PWC is collected in a 5000-gallon storage tank prior to shipment to an on-site facility for additional treatment and disposal. The purpose of this sampling and analysis plan is to document the basis for achieving the following data quality objectives: (1) Measurement of the radionuclide content of the water transferred from the multi-canister overpack (MCO), vacuum purge system (VPS) condensate tank, MCO/Cask annulus and deionized water flushes to the PWC system receiver tanks. (2) Trending the radionuclide inventory of IXMs to assure that they do not exceed the limits prescribed in HNF-2760, Rev. 0-D, ''Safety Analysis Report for Packaging (Onsite) Ion Exchange Modules,'' and HNF-EP-0063 Rev. 5, ''Hanford Site Solid Waste Acceptance Criteria'' for Category 3, non-TRU, low level waste (LLW). (3) Determining the radionuclide content of the PWC system bulk water storage tank to assure that it meets the limits set forth in HNF-3 172, Rev. 0, ''Hanford Site Liquid Waste Acceptance Criteria,'' to permit transfer and disposal at the Effluent Treatment Facility (ETF) located at the 200 East Area.

  5. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  6. Simple and inexpensive microwave plasma assisted CVD facility

    SciTech Connect

    Brewer, M.A.; Brown, I.G.; Dickinson, M.R.

    1992-12-01

    A simple and inexpensive microwave plasma assisted CVD facility has been developed and used for synthesis of diamond thin films. The system is similar to those developed by others but includes several unique features that make it particularly economical and safe, yet capable of producing high quality diamond films. A 2.45 GHz magnetron from a commercial microwave oven is used as the microwave power source. A conventional mixture of 0.5% methane in hydrogen is ionized in a bell jar reaction chamber located within a simple microwave cavity. By using a small hydrogen reservoir adjacent to the gas supply, an empty hydrogen tank can be replaced without interrupting film synthesis or causing any drift in plasma characteristics. Hence, films can be grown continuously while storing only a 24-hour supply of explosive gases. System interlocks provide safe start-up and shut-down, and allow unsupervised operation. Here the authors describe the electrical, microwave and mechanical aspects of the system, and summarize the performance of the facility as used to reproducibly synthesize high quality diamond thin films.

  7. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  8. Cold Vacuum Drying (CVD) Facility Acceptance for Beneficial Use

    SciTech Connect

    BRISBIN, S.A.

    2000-01-05

    This document provides a checklist of the items required for turnover of the Cold Vacuum Drying Facility from the Construction Projects organization to the Operations organization. This document will be updated periodically to document completion of additional deliverables.

  9. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  10. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect

    CROWE, R.D.

    2000-08-07

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  11. CVD Diamond Detector Stability Issues for Operation at the National Ignition Facility

    SciTech Connect

    Schmid, G J; Koch, J A; Moran, M J; Lerche, R A; Izumi, N; Phillips, T W; Glebov, V Y; Sangster, T C; Stoeckl, C

    2003-08-22

    Synthetic diamond crystals produced by the Chemical Vapor Deposition (CVD) technique can serve as fast, radiation hard, neutron sensors for the National Ignition Facility (NIF). Here we explore the stability issues, such as charge trapping and high-flux saturation, that will be relevant to operation at the NIF.

  12. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  13. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  14. Growth of mirror-like ultra-nanocrystalline diamond (UNCD) films by a facile hybrid CVD approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuo; Man, Weidong; Lyu, Jilei; Xiao, Xiong; You, Zhiheng; Jiang, Nan

    2017-05-01

    In this study, growth of mirror-like ultra-nanocrystalline diamond (UNCD) films by a facile hybrid CVD approach was presented. The nucleation and deposition of UNCD films were conducted in microwave plasma CVD (MPCVD) and direct current glow discharge CVD (DC GD CVD) on silicon substrates, respectively. A very high nucleation density (about 1 × 1011 nuclei cm-2) was obtained after plasma pretreatment. Furthermore, large area mirror-like UNCD films of Φ 50 mm were synthesized by DC GD CVD. The thickness and grain size of the UNCD films are 24 μm and 7.1 nm, respectively. In addition, the deposition mechanism of the UNCD films was discussed. Development of CVD ultra-nanocrystalline diamond films and related high-precision machining products (International S&T Cooperation, No. S2015ZR1100).

  15. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  16. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  17. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect

    SHAPLEY, B.J.

    2000-04-20

    The purpose of this System Design Description (SDD) is to describe the characteristics of the Cold Vacuum Drying (CVD) Facility general service helium system. The general service helium system is a general service facility process support system, but does include safety-class structures, systems and components (SSCs) providing protection to the offsite public. The general service helium system also performs safety-significant functions that provide protection to onsite workers. The general helium system essential function is to provide helium (He) to support process functions during all phases of facility operations. General service helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The general service helium system also supplies helium to purge the process water conditioning (PWC) lines and components and the vacuum purge system (VPS) vacuum pump. The general service helium system, if available following an Safety Class Instrument and Control System (SCIC) Isolation and Purge (IS0 and PURGE) Trip, can provide an alternate general service helium system source to supply the Safety-Class Helium (SCHe) System.

  18. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    SciTech Connect

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  19. High Exposure Facility Technical Description

    SciTech Connect

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  20. Technical bases DWPF Late Washing Facility

    SciTech Connect

    Fish, D.L.; Landon, L.F.

    1992-08-10

    A task force recommended that the technical feasibility of a Late Wash' facility be assessed [1]. In this facility, each batch of tetraphenylborate slurry from Tank 49 would be given a final wash to reduce the concentrations of nitrite and radiolysis products to acceptable levels. Laboratory-scale studies have demonstrated that d the nitrite content of the slurry fed to DWPF is reduced to 0.01 M or less (and at least a 4X reduction in concentration of the soluble species is attained), (1) the need for HAN during hydrolysis is eliminated (eliminating the production of ammonium ion during hydrolysis), (2) hydrolysis may be done with a catalyst concentration that will not exceed the copper solubility in glass and (3) the non-polar organic production during hydrolysis is significantly reduced. The first phase of an aggressive research and development program has been completed and all test results obtained to date support the technical feasibility of Late Washing. Paralleling this research and development effort is an aggressive design study directed by DWPF to scope and cost retrofitting the Auxiliary Pump Pit (APP) to enable performing a final wash of each batch of precipitate slurry before R is transferred into the DWPF Soft Processing Cell (SPC). An initial technical bases for the Late Wash Facility was transmitted to DWPF on June 15, 1992. Research and development activities are continuing directed principally at optimization of the cross-f low fitter decontamination methodology and pilot-scale validation of the recommended benzene stripping metodology.

  1. A facile process for soak-and-peel delamination of CVD graphene from substrates using water

    PubMed Central

    Gupta, Priti; Dongare, Pratiksha D.; Grover, Sameer; Dubey, Sudipta; Mamgain, Hitesh; Bhattacharya, Arnab; Deshmukh, Mandar M.

    2014-01-01

    We demonstrate a simple technique to transfer chemical vapour deposited (CVD) graphene from copper and platinum substrates using a soak-and-peel delamination technique utilizing only hot deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing unintentional doping, as confirmed by Raman and electrical measurements. The process allows the reuse of substrates and hence can enable the use of oriented substrates for growth of higher quality graphene, and is an inherently inexpensive and scalable process for large-area production. PMID:24457558

  2. Technical Facilities Management, Loan Pool, and Calibration

    NASA Technical Reports Server (NTRS)

    Smith, Jacob

    2011-01-01

    My work at JPL for the SURF program began on June 11, 2012 with the Technical Facilities Management group (TFM). As well as TFM, I worked with Loan Pool and Metrology to help them out with various tasks. Unlike a lot of other interns, I did not have a specific project rather many different tasks to be completed over the course of the 10 weeks.The first task to be completed was to sort through old certification reports in 6 different boxes to locate reports that needed to be archived into a digital database. There were no reports within these boxes that needed to be archived but rather were to be shredded. The reports went back to the early 1980's and up to the early 2000's. I was looking for reports dated from 2002 to 2012

  3. Laser diagnostics and modeling of plasma assisted CVD. Final technical report

    SciTech Connect

    1996-02-01

    Plasma assisted chemical vapor deposition (PACVD) represents a novel approach for utilizing the nonequilibrium effects of reactive plasmas for depositing a wide range of protective hardface coatings that have both wear and erosion application. The nonequilibrium plasma is the heart of this complex system and has the function of generating the reactive molecular fragments (radicals) and atomic species at concentration levels unattainable by other competing processes. It is now widely accepted that such advanced protective hardface coatings materials will play a vital role in the energy technologies of the coming decades, with major applications in diverse areas ranging from aerospace and commercial propulsion systems (jet engines) to automotive components and internal combustion engines, (ceramic heat engines), cutting and machining tools, electronic packaging, thermal management, and possibly room-temperature superconductors. Wear and associated erosion aspects are responsible for an enormous expenditure of energy and fiscal resources in almost all DOE applications. Many of the results from this investigation arc also applicable to other materials processing reactors such as electron beam, PVD, CVD, laser ablation, microwave, high energy cathodic arc, thermal plasma (rf or dc) and combustion spray. These also include the various hybrid systems such as the rf/dc arc as used in Japan for diamond deposition and e-beam PVD deposition of advanced titanium alloy coatings as used at the Paton Institute in Kiev, Ukraine.

  4. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  5. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation & Control System Design Description

    SciTech Connect

    WHITEHURST, R.

    1999-12-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  6. Application of Seismic Design Requirements to Cold Vacuum Drying (CVD) Facility Structures and Systems and Components

    SciTech Connect

    CREA, B.A.

    1999-11-15

    The methodology followed in assignment of Performance Class (PC) for Natural Phenomena Hazards (NPH) seismic loads for Cold Vacuum Drying Facility (CVDF) Structures, Systems and Components is defined. The loading definition associated with each PC and structure, system and component is then defined.

  7. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Master Equipment List

    SciTech Connect

    IRWIN, J.J.

    1999-09-21

    This document provides the master equipment list (MEL) for the Cold Vacuum Drying Facility (CVDF). The MEL was prepared to comply with DOE Standard 3024-98, Content of System Design Descriptions. The MEL was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems and the CVDF System Design Descriptions (SDD). The MEL identifies the SSCs and their safety functions, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. The MEL also includes operating parameters, manufacturer information, and references the procurement specifications for the SSCs. This MEL shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR, the SDD's, and CVDF operations.

  8. Food irradiation facilities: Requirements and technical aspects

    NASA Astrophysics Data System (ADS)

    Mittendorfer, Josef

    2016-12-01

    This survey presents some aspects and requirement for food irradiation facilities. Topics like radiation source, dose ranges and dose rate are discussed, together with logistics and operational considerations

  9. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  10. Solid waste disposal facility criteria. Technical manual

    SciTech Connect

    Not Available

    1993-11-01

    The technical manual has been developed to assist municipal solid waste landfill (MSWLF) owners and operators in achieving compliance with the revised MSWLF Criteria, promulgated on October 9, 1991 in Title 40, Part 258, of the Code of Federal Regulations (CFR). The manual is not a regulatory document, and does not provide mandatory technical guidance, but does provide assistance for coming into compliance with the technical aspects of the revised landfill Criteria. The document is intended for use by landfill owners/operators and their consultants and contractors who provide advice on demonstrating compliance with the Part 258 standards.

  11. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.

    2013-10-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.

  12. Technical Design of Hadron Therapy Facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Lorna Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  13. Technical design of hadron therapy facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Loma Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  14. Using X-Rays to Test CVD Diamond Detectors for Areal Density Measurement at the National Ignition Facility

    SciTech Connect

    Dauffy, L S; Koch, J A; Tommasini, R; Izumi, N

    2008-05-06

    At the National Ignition Facility (NIF), 192 laser beams will compress a target containing a mixture of deuterium and tritium (DT) that will release fusion neutrons, photons, and other radiation. Diagnostics are being designed to measure this emitted radiation to infer crucial parameters of an ignition shot. Chemical Vapor Deposited (CVD) diamond is one of the ignition diagnostics that will be used as a neutron time-of-flight detector for measuring primary (14.1 MeV) neutron yield, ion temperature, and plasma areal density. This last quantity is the subject of this study and is inferred from the number of downscattered neutrons arriving late in time, divided by the number of primary neutrons. We determine in this study the accuracy with which this detector can measure areal density, when the limiting factor is detector and electronics saturation. We used laser-produced x-rays to reproduce NIF signals in terms of charge carriers density, time between pulses, and amplitude contrast and found that the effect of the large pulse on the small pulse is at most 8.4%, which is less than the NIF accuracy requirement of {+-} 10%.

  15. Coaxial CVD diamond detector for neutron diagnostics at ShenGuang III laser facility

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Liu, Shenye; Chen, Zhongjing; Huang, Tianxuan; Jiang, Wei; Chen, Bolun; Pu, Yudong; Yan, Ji; Zhang, Xing; Song, Zifeng; Tang, Qi; Hou, Lifei; Ding, Yongkun; Zheng, Jian

    2017-06-01

    A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system. The average sensitivity is 0.677 μV ns/n for 14 MeV (DT fusion) neutrons at an electric field of 1000 V/mm, and the linear dynamic range is beyond three orders of magnitude. The ion temperature results fluctuate widely from the neutron time-of-flight scintillator detector results because of the short flight length. These characteristics of small size, large linear dynamic range, and insensitive to x-ray make the diamond detector suitable to measure the neutron yield, ion temperature, and neutron emission time.

  16. Coaxial CVD diamond detector for neutron diagnostics at ShenGuang III laser facility.

    PubMed

    Yu, Bo; Liu, Shenye; Chen, Zhongjing; Huang, Tianxuan; Jiang, Wei; Chen, Bolun; Pu, Yudong; Yan, Ji; Zhang, Xing; Song, Zifeng; Tang, Qi; Hou, Lifei; Ding, Yongkun; Zheng, Jian

    2017-06-01

    A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system. The average sensitivity is 0.677 μV ns/n for 14 MeV (DT fusion) neutrons at an electric field of 1000 V/mm, and the linear dynamic range is beyond three orders of magnitude. The ion temperature results fluctuate widely from the neutron time-of-flight scintillator detector results because of the short flight length. These characteristics of small size, large linear dynamic range, and insensitive to x-ray make the diamond detector suitable to measure the neutron yield, ion temperature, and neutron emission time.

  17. Ramjet engine test facility (RJTF). Technical report

    SciTech Connect

    1998-02-01

    The National Aerospace Laboratory of Japan constructed a ramjet engine test facility (RJTF) at the Kakuda Research Center in 1994. It can duplicate engine test conditions in the range of flight Mach numbers from 4 to 8. The facility can supply non-vitiated air for M4 and M6 to identify the contamination effect in the vitiated air, to provide the basis for evaluating engine performance in the M8 flight condition. This paper outlines the unique features and operating characteristics of the RJTF. The quality of air stream obtained during facility calibration, and the facility-engine interaction are described. Finally the authors review tests of an H2-fueled scramjet that are currently underway.

  18. F/H effluent treatment facility. Technical data summary

    SciTech Connect

    Ryan, J P; Stimson, R E

    1984-12-01

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process.

  19. Absolute x-ray and neutron calibration of CVD-diamond-based time-of-flight detectors for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Kabadi, N. V.; Sio, H.; Rinderknecht, H.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V.; Forrest, C.; Knauer, J.

    2016-10-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility routinely measures proton and neutron nuclear bang-times in inertial confinement fusion (ICF) implosions. The active detector medium in pTOF is a chemical vapor deposition (CVD) diamond biased to 250 - 1500 V. This work discusses an absolute measurement of CVD diamond sensitivity to continuous neutrons and x-rays. Although the impulse response of the detector is regularly measured on a diagnostic timing shot, absolute sensitivity of the detector's response to neutrons and x-rays has not been fully established. X-ray, DD-n, and DT-n sources at the MIT HEDP Accelerator Facility provide continuous sources for testing. CVD diamond detectors are also fielded on OMEGA experiments to measure sensitivity to impulse DT-n. Implications for absolute neutron yield measurements at the NIF using pTOF detectors will be discussed. This work was supported in part by the U.S. DoE and LLNL.

  20. Guidelines for the Preparation of Ocean Facilities Program Technicals Reports.

    DTIC Science & Technology

    1976-11-01

    contents include criteria for Navy and Marine Corps administration buildings and related facilities .. . . , architectural requirements, mechanical and...basic manuals covering the various fields of engineering and architecture . These criteria, together with the definitive designs and guideline...architects and engineers. Many criteria and standards appearing in technical texts issued by Government agencies, professional architectural and

  1. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  2. Technical viability and development needs for waste forms and facilities

    SciTech Connect

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It was not the intent of this session to recommend or advocate any one technology over another.

  3. 131. Back side technical facilities passageways building no. 106 to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    131. Back side technical facilities passageways building no. 106 to transmitter building no. 102, transmitter building no. 102 to building no. 105 "plans, elevations & sections" - mechanical, AS-BLT AW 36-25-13, sheet 24, dated 23 February, 1981. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. Technical bases DWPF Late Washing Facility. Revision 1

    SciTech Connect

    Fish, D.L.; Landon, L.F.

    1992-08-10

    A task force recommended that the technical feasibility of a ``Late Wash` facility be assessed [1]. In this facility, each batch of tetraphenylborate slurry from Tank 49 would be given a final wash to reduce the concentrations of nitrite and radiolysis products to acceptable levels. Laboratory-scale studies have demonstrated that d the nitrite content of the slurry fed to DWPF is reduced to 0.01 M or less (and at least a 4X reduction in concentration of the soluble species is attained), (1) the need for HAN during hydrolysis is eliminated (eliminating the production of ammonium ion during hydrolysis), (2) hydrolysis may be done with a catalyst concentration that will not exceed the copper solubility in glass and (3) the non-polar organic production during hydrolysis is significantly reduced. The first phase of an aggressive research and development program has been completed and all test results obtained to date support the technical feasibility of Late Washing. Paralleling this research and development effort is an aggressive design study directed by DWPF to scope and cost retrofitting the Auxiliary Pump Pit (APP) to enable performing a final wash of each batch of precipitate slurry before R is transferred into the DWPF Soft Processing Cell (SPC). An initial technical bases for the Late Wash Facility was transmitted to DWPF on June 15, 1992. Research and development activities are continuing directed principally at optimization of the cross-f low fitter decontamination methodology and pilot-scale validation of the recommended benzene stripping metodology.

  5. The Injection Facility at Ketzin: Technical Installations & Operation

    NASA Astrophysics Data System (ADS)

    Moeller, F.; Bannach, A.; Becker, W.; Koehler, S.

    2009-04-01

    The injection facility consists of 5 main plunger pumps (0…1.000 kg/h), a heating device (305 kWel.) and two intermediate storage tanks (50 to, each). One additional smaller pump has been installed to allow for smaller injection rates (around 300 kg/h). The facility is designed to implement a CO2 stream of 300 kg/h to 3.250 kg/h (200 kg/h stepwise) at 50 °C at the heater outlet, resulting in a maximum amount of 78 to per day. An overall control and automation system is in place for steering the entire injection process and monitoring the relevant parameters (i.e. CO2 flow, temperature along the injection string, pressure data from the formation and the wellheads etc.). All emergency shut-down (ESD) functionality is software independent and has been certified by local authorities and technical control boards. Besides the presentation of of the technical facilities the talk will give an overview on the legal organisation of the injection operation and will light on so far experienced wellbore and reservoir behaviour.

  6. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  7. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  8. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2010-03-05

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  9. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    SciTech Connect

    R.E. Flye

    2000-10-24

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  10. Technical issues in licensing low-level radioactive waste facilities

    SciTech Connect

    Junkert, R.

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  11. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  12. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation and Control System Design Description SYS 93-2

    SciTech Connect

    WHITEHURST, R.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  13. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description (SYS 47-4)

    SciTech Connect

    IRWIN, J.J.

    2000-06-13

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid P&ID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water P&ID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO.

  14. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    SciTech Connect

    Not Available

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992.

  15. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    SciTech Connect

    Not Available

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ``review process technology issues preventing start up of the DWPF.`` This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992.

  16. GUIDELINES FOR REALISTIC FACILITY PLANNING FOR SCHOOLS OF VOCATIONAL, TECHNICAL, AND ADULT EDUCATION.

    ERIC Educational Resources Information Center

    Wisconsin State Board of Vocational, Technical, and Adult Education, Madison.

    SPECIFIC INFORMATION NEEDED BY LOCAL SCHOOL DISTRICT PERSONNEL IN PLANNING VOCATIONAL, TECHNICAL, AND ADULT EDUCATION FACILITIES IS PROVIDED. AREAS COVERED ARE (1) SEVEN STEPS IN FACILITY PLANNING, (2) DETAILS OF VOCATIONAL EDUCATION FACILITY PLANNING FROM INCEPTION TO DEDICATION, (3) A PLANNING CHECKLIST, (4) GUIDELINE STANDARDS FOR CEILING…

  17. Technical Review of the Laboratory Biosphere Closed Ecological System Facility

    NASA Astrophysics Data System (ADS)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.

  18. Technical Specifications for the Neutron Radiography Facility (TRIGA Mark 1 Reactor). Revision 6

    SciTech Connect

    Tomlinson, R.L.; Perfect, J.F.

    1988-04-01

    These Technical Specifications state the limits under which the Neutron Radiography Facility, with its associated TRIGA Mark I Reactor, is operated by the Westinghouse Hanford Company for the US Department of Energy. These specifications cover operation of the Facility for the purpose of examination of specimens (including contained fissile material) by neutron radiography, for the irradiation of specimens in the pneumatic transfer system and approved in-core or in-pool irradiation facilities and operator training. The Final Safety Analysis Report (TC-344) and its supplements, and these Technical Specifications are the basic safety documents of the Neutron Radiography Facility.

  19. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  20. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  1. Repositioning the Facilities in Technical College Workshops for Efficiency: A Case Study of North Central Nigeria

    ERIC Educational Resources Information Center

    Umar, Ibrahim Y.; Ma'aji, Abdullahi S.

    2010-01-01

    This article focuses on assessing the facilities in Government Technical College workshops in the context of a developing country. A descriptive survey design was adopted. Two research questions and a hypothesis were formulated to guide the study. A 35-item questionnaire was developed based on the National Board for Technical Education (NBTE)…

  2. Technical Support Document for Title V Permitting of Printing Facilities

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules, including Title V. This document provides the technical support for compliance in the printing and publishing industry.

  3. Technical Support Section Instrument Support Program for Nuclear and Nonnuclear Facilities with Safety Requirements

    SciTech Connect

    Adkisson, B.P.

    1995-01-01

    This document describes the requirements, procedures, and responsibilities of the Instrumentation and Controls (I and C) Division's Technical Support Section (TSS) for instruments identified in nonreactor nuclear and nonnuclear facilities at Oak Ridge National Laboratory (ORNL) with Operational Safety Requirements (OSRs) or Limiting Conditions Documents (LCDs). As a result of DOE order 5480.22 Technical Safety Requirements (TSRs), OSRs, and LCDs for nuclear facilities will be eventually replaced by TSRs. OSRs or LCDs will continue to be required for high-, moderate-, or low-level radiological nonnuclear facilities. The objective of this document is to present an instrument surveillance plan for nonreactor nuclear and nonnuclear facility-identified instruments or systems as specified in the facility's OSR, LCD, or TSR. The instrument surveillance plan is a collaborative effort between the facility manager and the I and C Division TSS staff, thereby ensuring that the surveillance requirements stated in the OSR, LCD, or TSR are fulfilled within the required time frame.

  4. Aerospace Technology: Technical Data and Information on Foreign Test Facilities

    DTIC Science & Technology

    1990-06-22

    Tunnel S-1 84 Hypervelocity Wind Tunnel Data Sheets 87 VKI Isentropic Light Piston Compression Tube CT-2 87 VKI Longshot Free Piston Tunnel ST-1 90 Air...Engine Test Facility 441 Appendix X 443 Aerospace Test Subsonic Wind Tunnel Data Sheets 444Facilities in West DLR Berlin Evacuable Free -jet...493 DLR Goettingen Rotating Cascades Wind Tunnel 497 (RGG) DLR Koln-Porz Trisonic Wind Tunnel (TMK) 501 DLR Koln-Porz Vertical Free -jet Test Chamber

  5. Professional technical support services for the Mining Equipment Test Facility. First annual technical progress report, April 14-September 30, 1981

    SciTech Connect

    Garson, R C

    1981-10-01

    The Department of Energy recently began the operation of its Mining Equipment Test Facility. One component at that facility is the highly sophisticated Mine Roof Simulator (MRS) for research and development of roof support equipment. Because of its previous experience, the University of Pittsburgh was contracted to assist the Facilities Manager by providing professional technical support services, principally for the MRS. This technical progress report briefly describes the services provided during the reporting period and planned for the next period. No significant technical disclosures of interest to those not associated with the MRS are contained herein. One of the four units of the US government-owned METF is the Mine Roof Simulator. This unique $10 million test facility was designed to simulate underground mine roof loads and motions. The MRS is a hybrid, analog-digital, computer-controlled, closed-loop, electro-hydraulic, research device capable of applying either loads or displacements in the vertical and one horizontal axis. Its vertical capacity of 3,000,000 pounds can be applied over its 20 by 20 foot active test area. The horizontal load capacity is 1,600,000 pounds. It can simulate coal seam heights of up to 16 feet. Automatic data acquisition and real time display are provided. The most modern, sophisticated technology was used in its design and construction.

  6. Crowder College MARET Center Facility Final Scientific/Technical Report

    SciTech Connect

    Rand, Amy

    2013-08-20

    This project was a research facility construction project and did not include actual research. The new facility will benefit the public by providing training opportunities for students, as well as incubator and laboratory space for entrepreneurs in the areas of alternative and renewable energies. The 9,216 -square-foot Missouri Alternative and Renewable Energy Technology (MARET) Center was completed in late 2011. Classes in the MARET Center began in the spring 2012 semester. Crowder College takes pride in the MARET Center, a focal point of the campus, as the cutting edge in education, applied research and commercial development in the growing field of green technology.

  7. Geothermal research at the Puna facility. Technical progress report

    SciTech Connect

    Chen, B.

    1985-12-12

    Research progress is reported. A conceptual model of the reservoir was developed comprising two production zones of different characteristics: the upper zone producing liquid while the lower zone produces vapor. Preliminary studies were carried out at the HGP-A facility on the flocculation behavior of silica under various conditions. (ACR)

  8. Geothermal research at the Puna Facility. Technical report

    SciTech Connect

    Chen, B.

    1986-04-01

    This report consists of a summary of the experiments performed to date at the Puna Geothermal Research Facility on silica in the geothermal fluid from the HGP-A well. Also presented are some results of investigations in commercial applications of the precipitated silica. (ACR)

  9. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  10. Designing and constructing/installing technical security countermeasures (TSCM) into supersensitive facilities

    SciTech Connect

    Davis, D.L.

    1988-01-01

    The design and construction of supersensitive facilities and the installation of systems secure from technical surveillance and sabotage penetration involve ''TSCM'' in the broad sense of technical ''security'' countermeasures. When the technical threat was at a lower level of intensity and sophistication, it was common practice to defer TSCM to the future facility occupant. However, the New Moscow Embassy experience has proven this course of action subject to peril. Although primary concern with the embassy was audio surveillance, elsewhere there are other threats of equal or greater concern, e.g., technical implants may be used to monitor readiness status or interfere with the operation of C3I and weapons systems. Present and future technical penetration threats stretch the imagination. The Soviets have committed substantial hard scientific resources to a broad range of technical intelligence, even including applications or parapsychology. Countering these threats involves continuous TSCM precautions from initial planning to completion. Designs and construction/installation techniques must facilitate technical inspections and preclude the broadest range of known and suspected technical penetration efforts.

  11. Technical energy audit of the Rifle Correctional Facility

    SciTech Connect

    Not Available

    1980-01-01

    This energy audit was initiated to pinpoint the reasons for the disproportionate budget share of energy costs at the Rifle Correctional Facility, one of Colorado's newest prisons. Conservation options and retrofits are discussed in detail as are the economics of improvements and rising energy costs. Because of the site's geographic situation, techniques of solar adaptation are discussed, although emphasis is on conservation strategies. Partial wood heating is also considered. Rifle's particular security system may also work to its advantage through the use of inmate labor as a cost-saving measure both during the improvements and as a long-term strategy.

  12. The solar test facility LS-1 - Technical description

    NASA Astrophysics Data System (ADS)

    Blaesser, G.; Hettinger, H.; Krebs, K.; Pace, S.; Prins, A. J.; Rossi-Gianoli, E.

    An indoor solar cell module and collector test facility, LS-1, operated by Ispra is described. A multiple lamp system is employed to produce a uniform and uncollimated light distribution on a flat test plane located in a climatic chamber. Numerical models have been devised to quantify the intensity falling on the test plane in any inclination. A mirror channel reflects the light onto the test plane, with the intensity being controlled by the number of lamps turned on. Automated monitoring equipment collects data for the output and cell performance parameters, flow rates through a solar flat plate collector panel, winds speeds simulated in the chamber, and temperatures of all components and fluids.

  13. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  14. 115. Back side technical facilities S.R. radar transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. Back side technical facilities S.R. radar transmitter building no. 101, "elevations - sheet 2" - architectural, AS-BLT AW 35-46-03, sheet 5, dated 23 June, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. 114. Back side technical facilities S.R. radar transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. Back side technical facilities S.R. radar transmitter building no. 101 "elevations - sheet 1" - architectural, AS-BLT AW 35-46-03, sheet 5, dated 23 June, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. MECHANIZATION STUDY OF THE TECHNICAL LIBRARY U.S. NAVAL AVIONICS FACILITY, INDIANAPOLIS, INDIANA.

    ERIC Educational Resources Information Center

    KERSHAW, G.A.; AND OTHERS

    THE NAVAL AVIONICS FACILITY, INDIANAPOLIS (NAFI) TECHNICAL LIBRARY IS PLANNING A MECHANIZED SYSTEM TO PRODUCE A PERMUTED INDEX OF PERTINENT PERIODICAL REFERENCES AND PROCEEDINGS, WITH BOOKS AND DOCUMENTS TO BE ADDED LATER. INPUT TO THE SYSTEM IS PUNCHED PAPER TAPE PREPARED FROM THE SOURCE MATERIAL, AND THE PRIMARY PROGRAM IS A "CANNED"…

  17. Report of National Vocational-Technical Facility Planning Conference (Las Vegas, Nevada, May, 1967).

    ERIC Educational Resources Information Center

    McQueen, Robert

    Presentations at the conference, which was attended by 137 persons, included: (1) "A Road to Quality Vocational Facilities" by S.J. Knezevich, (2) "A Systems Approach to School Construction" by John Boice, (3) "The Birth of a New Vocational-Technical Center" by Clayton Farnsworth, (4) "Architectural Features of…

  18. A TECHNICAL GUIDE, REPORT C--EDUCATIONAL FACILITIES WITH NEW MEDIA.

    ERIC Educational Resources Information Center

    GREEN, ALAN C.; AND OTHERS

    THE REPORT PROVIDES DETAILED TECHNICAL GUIDANCE IN MAKING DESIGN DECISIONS. IT IS DIRECTED TO PERSONNEL CONCERNED WITH THE DETAILS OF DESIGN SUCH AS ARCHITECTS, ENGINEERS, SUPPLIERS, AND MEDIA SPECIALISTS. THE DATA OFFER GUIDANCE IN THE PROGRAMING AND PLANNING OF EDUCATIONAL FACILITIES AND INFORMATION ON (1) ENVIRONMENTAL FACTORS AND FURNISHINGS,…

  19. Application of fast CVD diamond photoconductor detectors to MeV X-ray metrology for the AIRIX flash radiographic facility

    NASA Astrophysics Data System (ADS)

    Negre, J. P.; Rubbelynck, C.

    2000-09-01

    Diamond has many attractive properties which make it an ideal material for X-ray dosimetry both in physics experiments and medical fields. However, diamond detector abilities have not been well explored under pulsed X-ray irradiations in the range of the MeV energy. To improve the measurement accuracy for use with quantitative radiography of very dense object undergoing an implosion, the detector Mucaddix, composed with five X-ray CVD diamond-sensitive elements, has been developed. It will be integrated into the nearby structures of AIRIX, an induction linear accelerator which is now built in CEA Moronvilliers for detonic experiments with MeV- Bremsstrahlung radiation fields of more than 500 rad per pulse at 1 m from the source. This paper describes, the specifications required for the AIRIX hardness environment, the detector design, and presents experimental results from BALZAC III, a MeV X-ray flash generator.

  20. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  1. The magnetohydrodynamics coal-fired flow facility. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    1995-07-01

    In this quarterly technical progress report, UTSI reports on the status of a multi-task contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. With program resources at a minimum due to closeout the MHD program, no further testing occurred during the quarter, but the DOE CFFF facility was maintained in a standby status, preventive maintenance and repairs accomplished as needed. Plans and actions progressed for environmental actions needed at the site to investigate and characterize the groundwater. Data and documentation on results of the MHD program have been identified for archiving and are being maintained for archival storage.

  2. 120. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "foundation & first floor plan" - structural, AS-BLT AW 35-46-04, sheet 65, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 122. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "elevations & details" - structural, AS-BLT AW 35-46-04, sheet 73, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 118. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 13, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. 121. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "sections & elevations" - structural, AS-BLT AW 35-46-04, sheet 72, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 116. Back side technical facilities S.R. radar transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Back side technical facilities S.R. radar transmitter building no. 101, "equipment room details" - mechanical, AS-BLT AW 35-46-03, sheet 73.1, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 119. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. Back side technical facilities S.R. radar transmitter & computer building no. 102, section I "tower plan, sections & details" - structural, AS-BLT AW 35-46-04, sheet 62, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. 108. Back side technical facilities S.R. (scanning radar), scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. Back side technical facilities S.R. (scanning radar), scanner building no. 104, "first floor & mezzanine plan" - architectural, AS-BLT AW 35-03-89, sheet 1 of 40, dated November, 1960. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. 117. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 12, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. 109. Back side technical facilities S.R. scanner building no. 104, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. Back side technical facilities S.R. scanner building no. 104, "cross & longitudinal sections & roof plan" - architectural, AS-BLT AW 35-03-89, sheet 5 of 40, dated 23 November, 1960. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. CVD and Oxidative Stress

    PubMed Central

    Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger

    2017-01-01

    Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726

  12. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  13. Technical Support Section Instrument Support Program for nuclear and nonnuclear facilities with safety requirements

    SciTech Connect

    Adkisson, B.P.; Allison, K.L.

    1995-01-01

    This document describes requirements, procedures, and supervisory responsibilities of the Oak Ridge National Laboratory (ORNL) Instrumentation and Controls (I&C) Division`s Technical Support Section (TSS) for instrument surveillance and maintenance in nonreactor nuclear facilities having identified Operational Safety Requirements (OSRs) or Limiting Conditions Document (LCDs). Implementation of requirements comply with the requirements of U.S. Department of Energy (DOE) Orders 5480.5, 5480.22, and 5481.1B; Martin Marietta Energy Systems, Inc. (Energy Systems), Policy Procedure ESS-FS-201; and ORNL SPP X-ESH-15. OSRs and LCDs constitute an agreement or contract between DOE and the facility operating management regarding the safe operation of the facility. One basic difference between OSRs and LCDs is that violation of an OSR is considered a Category II occurrence, whereas violation of an LCD requirement is considered a Category III occurrence (see Energy Systems Standard ESS-OP-301 and ORNL SPP X-GP-13). OSRs are required for high- and moderate-hazard nuclear facilities, whereas the less-rigorous LCDs are required for low-hazard nuclear facilities and selected {open_quotes}generally accepted{close_quotes} operations. Hazard classifications are determined through a hazard screening process, which each division conducts for its facilities.

  14. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  15. Facile preparation of carbon coated magnetic Fe{sub 3}O{sub 4} particles by a combined reduction/CVD process

    SciTech Connect

    Tristao, Juliana C.; Oliveira, Aline A.S.; Ardisson, Jose D.; Dias, Anderson; Lago, Rochel M.

    2011-05-15

    Graphical abstract: Magnetic carbon coated Fe{sub 3}O{sub 4} particles are prepared by a one step combined reduction of Fe{sub 2}O{sub 3} together with a CVD process of using methane. Analyses show that the Fe{sub 2}O{sub 3} is reduced by methane to produce mainly Fe{sub 3}O{sub 4} particles coated with amorphous carbon. These materials can be separated into two fractions by simple dispersion in water and can be used as adsorbents, catalyst supports and rapid coagulation systems. Research highlights: {yields} Magnetic Fe{sub 3}O{sub 4} particles coated with a very thin layer of amorphous carbon (4 wt%). {yields} Combined reduction of Fe{sub 2}O{sub 3} with a Chemical Vapor Deposition process using methane. {yields} Nanoparticles with an average size of 100-200 nm. {yields} Uses as adsorbent, catalyst support and rapid coagulation systems. -- Abstract: In this work, we report a simple method for the preparation of magnetic carbon coated Fe{sub 3}O{sub 4} particles by a single step combined reduction of Fe{sub 2}O{sub 3} together with a Chemical Vapor Deposition process using methane. The temperature programmed reaction monitored by Moessbauer, X-ray Diffraction and Raman analyses showed that Fe{sub 2}O{sub 3} is directly reduced by methane at temperatures between 600 and 900 {sup o}C to produce mainly Fe{sub 3}O{sub 4} particles coated with up to 4 wt% of amorphous carbon. These magnetic materials can be separated into two fractions by simple dispersion in water, i.e., a settled material composed of large magnetic particles and a suspended material composed of nanoparticles with an average size of 100-200 nm as revealed by Scanning Electron Microscopy and High-resolution Transmission Electron Microscopy. Different uses for these materials, e.g., adsorbents, catalyst supports, rapid coagulation systems, are proposed.

  16. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    SciTech Connect

    Soli T. Khericha

    2006-09-01

    This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

  17. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... National Cemetery Administration. An Office of Construction and Facilities Management or National...

  18. System Control Facilities: Head-Ends and Central Processors. A Survey of Technical Requirements for Broadband Cable Teleservices; Volume Four.

    ERIC Educational Resources Information Center

    Smith, Ernest K.; And Others

    The system control facilities in broadband communication systems are discussed in this report. These facilities consist of head-ends and central processors. The first section summarizes technical problems and needs, and the second offers a cursory overview of systems, along with an incidental mention of processors. Section 3 looks at the question…

  19. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  20. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of

  1. The magnetohydrodynamics Coal-Fired Flow Facility. Technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1993-02-01

    In this quarterly technical progress report, UTSI reports on progress on a multi-task contract to develop the technology for the steam bottoming plant for an MHD Steam Combined Cycle power plant. Two proof-of-concept (POC) tests totaling 614 hours of coal fired operation were conducted during the quarter using low sulfur Montana Rosebud coal. The results of these tests are summarized. Operational aspects of the particulate control devices being evaluated, a dry electrostatic precipitator (ESP) and a reverse air baghouse, are discussed. A sootblowing control system for the convective heat transfer surfaces that senses the need to clean the tubes by temperatures is described. Environmental reporting includes measurement of levels of ground water wells over time and the remote air quality measurements of impact of the stack emissions from the two tests. Results of testing candidate ceramic tubes for a recuperative high temperature air heater are included. Analyses of the tube materials tested in the 2000 hour test series previously completed on high sulfur Illinois No. 6 coal are summarized. Facility maintenance and repair activities for the DOE Coal Fired Flow Facility are summarized. The major facility modification discussed is the completion of the installation of a Wet ESP with rotary vacuum filter which is replacing the venturi scrubber as the primary facility particulate control device for any exhaust gases that are not routed through the dry ESP or baghouse.

  2. Thermal Analysis of Cold Vacuum Drying (CVD) of Spent Nuclear Fuel (SNF)

    SciTech Connect

    PIEPHO, M.G.

    2000-03-23

    The thermal analysis examined transient thermal and chemical behavior of the Multi-Canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with N Reactor spent fuel. This analysis provides the basis for the MCO thermal behavior at the CVD Facility in support of the safety basis documentation.

  3. Health Facility Graduation from Donor-Supported Intensive Technical Assistance and Associated Factors in Zambia.

    PubMed

    Koni, Phillip; Chishinga, Nathaniel; Nyirenda, Lameck; Kasonde, Prisca; Nsakanya, Richard; Welsh, Michael

    2015-01-01

    The FHI360-led Zambia Prevention Care and Treatment partnership II (ZPCT II) with funding from United States Agency for International Development, supports the Zambian Ministry of Health in scaling up HIV/AIDS services. To improve the quality of HIV/AIDS services, ZPCT II provides technical assistance until desired standards are met and districts are weaned-off intensive technical support, a process referred to as district graduation. This study describes the graduation process and determines performance domains associated with district graduation. Data were collected from 275 health facilities in 39 districts in 5 provinces of Zambia between 2008 and 2012. Performance in technical capacity, commodity management, data management and human resources domains were assessed in the following services areas: HIV counselling and testing and prevention of mother to child transmission, antiretroviral therapy/clinical care, pharmacy and laboratory. The overall mean percentage score was calculated by obtaining the mean of mean percentage scores for the four domains. Logistic regression models were used to obtain odds ratios (OR) and 95% confidence intervals (CI) for the domain mean percentage scores in graduated versus non-graduated districts; according to rural-urban, and province strata. 24 districts out of 39 graduated from intensive donor supported technical assistance while 15 districts did not graduate. The overall mean percentage score for all four domains was statistically significantly higher in graduated than non-graduated districts (93.2% versus 91.2%, OR = 1.34, 95%CI:1.20-1.49); including rural settings (92.4% versus 89.4%, OR = 1.43,95%CI:1.24-1.65). The mean percentage score in human resource domain was statistically significantly higher in graduated than non-graduated districts (93.6% versus 71.6%, OR = 5.81, 95%CI: 4.29-7.86) and in both rural and urban settings. QA/QI tools can be used to assess performance at health facilities and determine readiness for

  4. Health Facility Graduation from Donor-Supported Intensive Technical Assistance and Associated Factors in Zambia

    PubMed Central

    Koni, Phillip; Chishinga, Nathaniel; Nyirenda, Lameck; Kasonde, Prisca; Nsakanya, Richard; Welsh, Michael

    2015-01-01

    Introduction The FHI360-led Zambia Prevention Care and Treatment partnership II (ZPCT II) with funding from United States Agency for International Development, supports the Zambian Ministry of Health in scaling up HIV/AIDS services. To improve the quality of HIV/AIDS services, ZPCT II provides technical assistance until desired standards are met and districts are weaned-off intensive technical support, a process referred to as district graduation. This study describes the graduation process and determines performance domains associated with district graduation. Methods Data were collected from 275 health facilities in 39 districts in 5 provinces of Zambia between 2008 and 2012. Performance in technical capacity, commodity management, data management and human resources domains were assessed in the following services areas: HIV counselling and testing and prevention of mother to child transmission, antiretroviral therapy/clinical care, pharmacy and laboratory. The overall mean percentage score was calculated by obtaining the mean of mean percentage scores for the four domains. Logistic regression models were used to obtain odds ratios (OR) and 95% confidence intervals (CI) for the domain mean percentage scores in graduated versus non-graduated districts; according to rural-urban, and province strata. Results 24 districts out of 39 graduated from intensive donor supported technical assistance while 15 districts did not graduate. The overall mean percentage score for all four domains was statistically significantly higher in graduated than non-graduated districts (93.2% versus 91.2%, OR = 1.34, 95%CI:1.20–1.49); including rural settings (92.4% versus 89.4%, OR = 1.43,95%CI:1.24–1.65). The mean percentage score in human resource domain was statistically significantly higher in graduated than non-graduated districts (93.6% versus 71.6%, OR = 5.81, 95%CI: 4.29–7.86) and in both rural and urban settings. Conclusions QA/QI tools can be used to assess performance at

  5. Technical justification for a request to reclassify the former CCC/USDA facility at Canada, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-12-21

    Contamination in groundwater at Canada, Kansas, was discovered in 1997, during limited private well sampling near former grain storage facilities of the Commodity Credit Corporation, U.S. Department of Agriculture (CCC/USDA). Subsequent investigations by the Kansas Department of Health and Environment (KDHE) confirmed carbon tetrachloride and nitrate concentrations in groundwater above the respective maximum contaminant levels (MCLs) of 5.0 {micro}g/L and 10.0 mg/L. The KDHE investigations identified both the former CCC/USDA grain storage facility and a private grain storage facility as likely sources for the carbon tetrachloride contamination. The CCC/USDA funded extension of a rural water district line to provide a permanent alternate water supply, and the KDHE has conducted long-term monitoring under the State Water Plan. This document presents an analysis of the available information for the Canada site, acquired in previous investigations and the long-term KDHE monitoring. This analysis forms the technical justification for a request to reclassify the former CCC/USDA grain storage facility at Canada as a site requiring no further action under the Intergovernmental Agreement (IGA) between the KDHE and the USDA's Farm Service Agency. The KDHE's long-term water level monitoring results indicate a consistent groundwater flow direction to the east-southeast. Consequently, the wells with the highest overall concentrations of carbon tetrachloride are downgradient from the private grain storage facility but not downgradient from the former CCC/USDA facility. The KDHE criterion for reclassification of a site is that contamination there should not pose an unacceptable risk, on the basis of analytical results for four consecutive, equally timed, sequenced sampling episodes over a period of no less than two years. In seven KDHE sampling events over a period of six years (2001-2007), the concentrations of carbon tetrachloride in the monitoring well on the former CCC

  6. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  7. Diagnostic development and support of MHD test facilities. Technical progress report, January--March 1991

    SciTech Connect

    Shepard, W.S.; Cook, R.L.

    1991-12-31

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`S computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  8. Diagnostic development and support of MHD Test Facilities. Technical progress report, October 1991--December 1991

    SciTech Connect

    Not Available

    1994-07-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`s computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  9. Technical progress report for the magnetohydrodynamics coal-fired flow facility for the period April 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-07-01

    In this quarterly technical progress report, UTSI reports on the status of a multitask contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing occurred or was scheduled during the quarter, but the DOE CFFF facility was maintained in a standby status.

  10. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-06-01

    In this quarterly technical progress report, UTSI reports on the status of a multi-task contract to develop the technology for the steam bottoming portion of a MHD Steam Combined Cycle Power Plant. The report describes the facility maintenance and environmental work completed, status of completing technical reports and certain key administrative actions occurring during the quarter. In view of current year budget reductions and program reductions to closeout the MHD program, downsizing of the UTSI work force took place. No further testing has occurred or is scheduled, and the planned effort for this period was to maintain the DOE CFFF facility in a standby status and to complete test reports.

  11. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    SciTech Connect

    Bamberger, Judith A.; Burks, Barry L.; Quigley, Keith D.; Butterworth, S. W.; Falter, Diedre D.

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

  12. Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  15. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  16. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  17. Test facilities for investigation of combustion processes built at the Technical University of Lodz

    NASA Astrophysics Data System (ADS)

    Kowalewski, Grzegorz

    2001-04-01

    A number of fundamental research projects devoted to combustion processes have been carried out during the last years in the Department of Heat Technology and Refrigeration of the Technical University of Lodz, Poland. The investigations under various conditions of combustion have been conducted with the following research facilities and equipment: (1) a drop tower with 1.2 sec of microgravity conditions and ca. 1 m3 volume of the experimental package, (2) a test rig with a rotating cylindrical vessel (combustion chamber) up to 6000 rpm, (3) schlieren devices of 300 and 150 mm diameter, including a compact system for experiments in the drop tower, (4) several specialized chambers for combustion of gas- and two-phase mixtures, (5) high speed photography equipment including a 500 fps camera. Some of the experiments and facilities are presented on 27.5 min long video and mentioned in this paper in a form of the editing list of the video. Some examples of abstracts of particular specialized publications are quoted.

  18. Nuts and CVD.

    PubMed

    Ros, Emilio

    2015-04-01

    Nuts are nutrient-dense foods with complex matrices rich in unsaturated fatty acids and other bioactive compounds, such as l-arginine, fibre, healthful minerals, vitamin E, phytosterols and polyphenols. By virtue of their unique composition, nuts are likely to beneficially affect cardiovascular health. Epidemiological studies have associated nut consumption with a reduced incidence of CHD in both sexes and of diabetes in women, but not in men. Feeding trials have clearly demonstrated that consumption of all kinds of nuts has a cholesterol-lowering effect, even in the context of healthy diets. There is increasing evidence that nut consumption has a beneficial effect on oxidative stress, inflammation and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Contrary to expectations, epidemiological studies and clinical trials suggest that regular nut consumption is not associated with undue weight gain. Recently, the PREvención con DIeta MEDiterránea randomised clinical trial of long-term nutrition intervention in subjects at high cardiovascular risk provided first-class evidence that regular nut consumption is associated with a 50 % reduction in incident diabetes and, more importantly, a 30 % reduction in CVD. Of note, incident stroke was reduced by nearly 50 % in participants allocated to a Mediterranean diet enriched with a daily serving of mixed nuts (15 g walnuts, 7.5 g almonds and 7.5 g hazelnuts). Thus, it is clear that frequent nut consumption has a beneficial effect on CVD risk that is likely to be mediated by salutary effects on intermediate risk factors.

  19. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  20. [The material and technical base of fluorographic units of primary health care facilities and its development promises].

    PubMed

    Sterlikov, S A; Bogorodskaia, E M; Ponomareva, E G; Grigor'ev, A V

    2011-01-01

    The goal of the study was to assess the status of equipment and the staff potential in the fluorography and X-ray units of primary health care facilities and to define priorities and the volume of investments for their modernization. Two hundred and seventy-two health care facilities were studied through the use of questionnaires. The data were processed using standard statistical methods, such as calculation of the mean, median, and 95% confidence intervals. Prognosis was made for the idling period of equipment during stagnation of measures to improve the material and technical base of fluorography units. Priorities for modernizing the material and technical base and the staff potential were defined for the fluorography units of primary health care facilities. The volume of investments required for the modernization was estimated.

  1. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  2. Technical Report for Calculations of Atmospheric Dispersion at Onsite Locations for Department of Energy Nuclear Facilities

    SciTech Connect

    Levin, Alan; Chaves, Chris

    2015-04-04

    The Department of Energy (DOE) has performed an evaluation of the technical bases for the default value for the atmospheric dispersion parameter χ/Q. This parameter appears in the calculation of radiological dose at the onsite receptor location (co-located worker at 100 meters) in safety analysis of DOE nuclear facilities. The results of the calculation are then used to determine whether safety significant engineered controls should be established to prevent and/or mitigate the event causing the release of hazardous material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposure at the co-located worker location was also performed. DOE’s evaluation consisted of: (a) a review of the regulatory basis for the default χ/Q dispersion parameter; (b) an analysis of this parameter’s sensitivity to various factors that affect the dispersion of radioactive material; and (c) performance of additional independent calculations to assess the appropriate use of the default χ/Q value.

  3. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1993

    SciTech Connect

    Not Available

    1993-07-01

    This is the fifteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1993.Work accomplished during the reporting period includes: the expansion joint heaters and control system were installed and tested. The system consists of 8 bellows heaters and 14 heaters on the adjacent piping. During initial testing, 11 of the 14 pipe and heaters failed due to overheating caused by control and installation problems; A pneumatically powered vibrator was installed in the APF manway nozzle to vibrate the hopper liner during back pulsing. This should eliminate any build-up on the pipes of the hopper; Two half capacity diesel driven back-up pulse air compressors were rented and installed; Installation of an emergency ash removal system was completed. The system enables ash to be removed via a line connected to the pipe between the outlet of the screw cooler and the inlet of the lockhopper system; Installation of the spoiling air line, valves, and metering orifice to the primary cyclone was completed; Numerous revisions were made to the Net 90 instrumentation and control system and the POPS data trending system to enhance system control and performance monitoring capability.

  4. The Magnetohydrodynamics Coal-Fired Flow Facility technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    In this quarterly technical progress report, UTSI reports on a multi-task research contract directed toward developing the technology for an MHD steam combined cycle power plant. During the period two tests were conducted in the DOE Coal Fired FLow Facility. Both of these tests were part of the western coal proof-of-concept (POC) test series. The report describes the performance of the tests and provides some preliminary performance data on particulate removal systems during the tests. The performance of ceramic tubes being tested for high temperature air heater application is described. Performance of advanced diagnostics equipment from both UTSI and MSU is summarized. The results of experiments designed to determine the effects of potassium compounds on combustion are included. Plans for analysis of metal tube specimens previously removed from the test train are discussed. Modeling and analysis of previous test data include a deposition model to predict ash deposition on tubes, mass balance results, automated data screening and chemical analyses and the data base containing these analyses. Laboratory tests on sealing ceramic tubes and corrosion analyses of previously tested tubes are reported.

  5. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the eleventh technical progress report submitted to the Department of Energy (DOE) in connection with the Cooperative Agreement between DOE and Ohio Power company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1992. Activities included: The Tidd combustor internals were modified to connect the hot gas system for slipstream operation; Various pre-operational activities were completed, including pneumatic leak testing of the HGCU system, operation of the closed cycle cooling water system, operation of the back pulse compressor and air preheater, and checkout of the back pulse skid. Initial operation of the system using the bypass cyclone occurred during May 21--23, 1992; On May 23, 1992, an expansion joint ruptured, forcing the unit to be shut down. The failure was later determined to be due to stress corrosion. Following the expansion joint failure, a complete engineering review of the system was undertaken and is continuing; Contract Modification No. 6 was issued to Westinghouse during this quarter. This modification is for APF surveillance testing services; A purchase order was issued to Battelle for ash sampling hardware and testing services.

  6. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    SciTech Connect

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  7. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  8. PFBC HGCU Test Facility technical progress report second quarter, CY 1994

    SciTech Connect

    Mudd, M.J.

    1994-07-01

    This is the nineteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 444 continuous hours (including 15 hours at the end of the first quarter) during Test Run 18. The system was shut down on April 18, 1994, and remained out of service for the remainder of the quarter. Highlights of this period are summarized below: operated HGCU for 444 continuous hours which was the longest run so far in 1994; completed Hazardous Air Pollutant testing; inspected Advanced Particle Filter (APF) following testing and found 28 broken filter candles; cleaned and reassembled the APF without the inner rows of candles in the upper and middle plenums since ash bridging between these candles and the center support pipe caused the candle failures; installed 30 new filter candles of different materials for testing in the APF; and installed additional air piping and valves to permit the primary cyclone to be totally spoiled in service and thereby direct all of the ash into the filter.

  9. Astronomic Telescope Facility: Preliminary systems definition study report. Volume 2: Technical description

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie (Editor)

    1987-01-01

    The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.

  10. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed

  11. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-09-01

    This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

  12. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  13. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    SciTech Connect

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  14. Numerical Facilities: A Review of the Literature. Technical Report 1985-3.

    ERIC Educational Resources Information Center

    Tal, Joseph S.

    This review of the relevant literature in the area of numerical facility attempts to clarify the construct of numerical facility and provide guidance for items tapping this ability. The review is presented in five parts. The first section introduces two approaches that can be used to investigate numerical facility, including factor analysis.…

  15. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  16. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical...

  17. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical...

  18. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    SciTech Connect

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  19. CVD Diamond Dielectric Accelerating Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Gat, R.

    2009-01-22

    The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerating structures: high RF breakdown field, extremely low dielectric losses and the highest available thermoconductive coefficient. Using chemical vapor deposition (CVD) cylindrical diamond structures have been manufactured with dimensions corresponding to fundamental TM{sub 01} mode frequencies in the GHz to THz range. Surface treatments are being developed to reduce the secondary electron emission (SEE) coefficient below unity to reduce the possibility of multipactor. The diamond CVD cylindrical waveguide technology developed here can be applied to a variety of other high frequency, large-signal applications.

  20. Power Systems Development Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-10-01

    The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: 1. Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. 2. Hot Gas Cleanup Units to mate to all gas streams. 3. Combustion Gas Turbine. 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility, finalizing the selection for the Carbonizer/Transport and the circulating pressurized fluidized-bed combustor (CPFBC) particulate control devices (PCDs), drafting the air permit for the facility and continue the installation of the transport reactor development unit (TRDU). The detailed design of the PSDF continued to refine interface points to streamline the design of the facility.

  1. HANDBOOK: GUIDE TO TECHNICAL RESOURCES FOR THE DESIGN OF LAND DISPOSAL FACILITIES

    EPA Science Inventory

    This Handbook facilitates the preparation and processing of land disposal permit applications. It directs the regulated community and the regulators to the appropriate EPA technical resource documents, as they prepare or review permits required under PL 480 (RCRA). Topics discuss...

  2. Twin Quintuplets in CVD Diamond

    DTIC Science & Technology

    1992-08-26

    microscopy (HRTEM). We conclude that the twin quintuplets have two main morphologies. The first consists of four Sigma = 3 twin boundaries and one...slightly more than the 70.53 deg tilt of a Sigma = 3 boundary. These grain boundaries and the conventional diamond lattice twin boundaries are the only types of boundaries that we have observed in CVD diamond.

  3. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    SciTech Connect

    French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.

    2016-02-29

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  4. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    SciTech Connect

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  5. Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    1995-07-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  6. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical assistance... their costs. (c) FEMA will inform the licensee in writing of the Federal support which will be...

  7. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical assistance... their costs. (c) FEMA will inform the licensee in writing of the Federal support which will be...

  8. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical assistance... their costs. (c) FEMA will inform the licensee in writing of the Federal support which will be...

  9. Electrical characterization of CVD graphene

    NASA Astrophysics Data System (ADS)

    Dávila, Yarely; Pinto, Nicholas; Luo, Zhengtang; Johnson, Alan, Jr.

    2012-02-01

    Graphene is a one atom thick carbon sheet that can be obtained via exfoliation of graphite or via chemical vapor deposition (CVD). By using a very simple shadow masking technique, gold contact pads were evaporated over the graphene thereby eliminating chemical etching that is required when using photolithography and often leads to sample contamination. CVD graphene was electrically characterized in a FET configuration under different experimental conditions that include UV exposure, gas sensing and temperature. Our measurements yielded a carrier mobility of up to 3000 cm^2/V-s for some devices. Exposure to UV dopes graphene in a controlled manner. The doping level could be maintained indefinitely in vacuum or could be completely reversed by slight heating in air without loss of device performance. The FET's were also tested at different temperatures with little change in the transconductance response. Exposure to ammonia gas n-doped graphene while exposure to NO2 p-doped it.

  10. [The access of independent midwives to maternity ward technical facilities: the experimentation of a level-1 department].

    PubMed

    Nohuz, E; Brunel, A; Tarraga, E; Albaut, M; Paganelli, C; Gillot, V; Julien, G; Larregain, N; Tarrit, V; Allegre, G; Gerbaud, L

    2015-04-01

    The first aim of this study was to evaluate the access of independent midwives to the technical facilities of a level-1 maternity hospital, with a follow-up of 2 years. The second aim was to evaluate the transfer of clinical responsibility, when a patient stops being managed by the independent midwife to be taken care of by the hospital team. A retrospective study including 51 patients. Analysis of maternal and perinatal data. Of the 51 births, there were 42 vaginal deliveries without intervention (82.35%), 3 instrumental deliveries (5.88%), 6 caesarean sections (11.76%). The midwife-led care was completed in 70.59% of cases. The rate of transfer of clinical responsibility during labor was 25.49%. We conducted a neonatal transfer due to a respiratory distress syndrome. The access to technical support appears as an opportunity for independent midwives to establish a special relationship with their patients. However, this device preserves the possibility of a traditional hospital care when needed. This way, access to the technical support is a safe alternative that has the consent of the users (patients and midwives) as well as of the entire hospital team. Moreover, such device allowed an increase of 5% per year of our obstetrical activity with an estimated increase of 10% per year. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  12. A Technical Analysis of Ontario Universities' Requirements for Library Facilities, 1970-76.

    ERIC Educational Resources Information Center

    Thompson, Ivor William; Hansen, Bertrand L.

    The Ontario Council of University Librarians (OCUL) was requested to undertake an assessment of the library facilities that would be required by each university to serve the enrollment projected for 1975-76. After submission of the report a research staff refined the data and analysis, and placed the figures for all universities on a comparable…

  13. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    ERIC Educational Resources Information Center

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  14. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 2

    SciTech Connect

    Olsen, P.A.; Brown, R.L.

    1995-03-22

    Tank Farm facilities compliance with the workplace air sampling (WPAS) program has been assessed. Requirements bases for determining compliance and recommendations are included. In the current condition all buildings are in compliance with the WPAS program. This document also supersedes WHC-SD-SQA-TA-20012, revision 0.

  15. Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report

    SciTech Connect

    Schoenmackers, R.

    1988-11-01

    This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

  16. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    SciTech Connect

    Farrar, Paul

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  17. Technical publications of the NASA Wallops Flight Facility, 1980 through 1983

    NASA Technical Reports Server (NTRS)

    Foster, J. N.

    1984-01-01

    This bibliography lists the publications sponsored by the NASA Wallops Flight Center/NASA Goddard Space Flight Center, Wallops Flight Facility during the period 1980 through 1983. The compilation contains citations listed by type of publication; i.e., NASA formal report, NASA contractor report, journal article, or presentation; by contract/grant number; and by accession number. Oceanography, astrophysics, artificial satellites, fluid mechanics, and sea ice are among the topics covered.

  18. Technical site characterization of the Mercer County Ash Disposal Facility: A case history

    SciTech Connect

    Allen, R.C.; Walton, C.G.; Zweig, L.T. )

    1993-03-01

    The Waste-Tech Services, Inc., Mercer County Ash Disposal Facility is a proposed Resource Conservation and Recovery Act (RCRA) permitted hazardous waste treatment, storage and disposal facility located SW of Princeton, Missouri. The facility is to accept, store, treat and landfill ash residues from RCRA-permitted hazardous waste incineration. The site was characterized for a permit application submitted to the Missouri Department of Natural Resource (MDNR). MDNR was involved during all site characterization stages, including MDNR review, input and oversight during the planning, field execution and report-preparation stages. Both parties agreed upon the needs required for characterizing the sites prior field work, and the MDNR ensured that scope of work stipulations were implemented in the field and reported. Three broad characterization categories were defined: (1) physical characteristics; (2) biological characteristics; and, (3) socio-economic considerations. Physical criteria include the geologic, geotechnical, hydrogeologic and hydrologic site conditions. Threatened and Endangered Species and Wetlands comprised the biologic issues. Socio-economics considered cultural resources, such as history and archeology, market proximity, capacity assurance and transportation.

  19. Development of a multi-resource alternate energy facility. Final technical report

    SciTech Connect

    Keel, J.S.

    1981-04-01

    A grant was awarded for development of a bio-gas alternate energy project on a 60 acre cattle farm on the outskirts of Harrison, Arkansas. The project required construction of a bio-gas plant to demonstrate that methane gas produced from livestock manure can lead to semi-independence of rural areas from traditional energy resources, and that the effluent fertilizer produced will reduce reliance on chemical fertilizers. A supplemental grant was awarded for adding a solar hot water heater for the bio-gas plant, and a wind powered electrical generating system for the project. Thus, this is a multi-resource alternate energy facility that uses solar, wind and bio-conversion to produce energy for the farm. The facility has three sub-systems: (a) A bio-gas plant which produces methane gas which can be used for hot water heat or other human comfort needs, generation of electricity, a rich effluent alternate fertilizer, and an alternate vehicle fuel. (b) A solar hot water heater that provides supplemental heat for the methane-powered bio-gas digester circulating hot water system. (c) A wind powered electrical generating system which supplements farm and residential electrical demands. The goals of the facility are to: (a) Introduce small-scale alternate energy technology into farming operations. (b) Demonstrate that small-scale energy alternatives are practical and attainable. (c) Stimulate production of alternate energy technology in Agriculture.

  20. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    SciTech Connect

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The French national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.

  1. Nondiscrimination on the basis of disability by public accommodations and in commercial facilities; Americans With Disabilities Act accessibility guidelines for buildings and facilities--Department of Justice. Final rule: technical amendment.

    PubMed

    1993-04-05

    This document contains technical amendments to the regulations on nondiscrimination on the basis of disability by public accommodations and in commercial facilities, which implement title III of the Americans with Disabilities Act (ADA) and to appendix A to those regulations. This final rule makes some technical corrections to the regulations and amends the regulations to reference an Office and Management and Budget control number in compliance with the Paperwork Reduction Act of 1980, as amended.

  2. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect

    KURTZ, J.E.

    2000-05-10

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, and radiation surveys of the Cold Vacuum Drying Facility (CVD) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  3. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  4. Pretreatment Engineering Platform--Reducing Technical Risks for the Waste Treatment Plant Pretreatment Facility through Scaled Process Testing

    SciTech Connect

    Musick, Chris A.; Barnes, Steven M.; Huckaby, James L.; Josephson, Gary B.; Gilbert, Robert A.

    2008-02-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will separate and vitrify (immobilize in glass) millions of gallons of radioactive and chemical wastes stored at the Hanford Site. Pretreatment of the waste by caustic and oxidative leaching processes will minimize the volume of high-level waste (HLW) to be vitrified, and cross-flow ultrafiltration will be used to remove liquids from the HLW solid slurry. An extensive and critical review of the WTP technical bases and design identified the need to demonstrate of the integrated leaching and ultrafiltration processes at greater than bench scale. To respond to this need, the WTP prime contractor, Bechtel National, Inc., and their principle subcontractor Washington Group International concluded a 1/4.5 scale facility to treat non-radioactive waste simulants was needed to demonstrate the process. This paper describes the technical bases and design of the scaled Pretreatment Engineering Platform (PEP) and the strategy to develop waste simulants to be used in the PEP

  5. Technical report for the generic site add-on facility for plutonium polishing

    SciTech Connect

    Collins, E. D.

    1998-06-01

    The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can b e dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C.

  6. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  7. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  8. Preliminary design for a Zero Gravity Test Facility (ZGTF). Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Germain, A.

    1981-01-01

    The functional requirements and best conceptual design of a test facility that simulates weightless operating conditions for a high gain antenna systems (HGAS), that will broadcast to the Tracking Data Relay Satellites were defined. The typical HGAS defined is mounted on a low Earth orbiting satellite, and consists of an antenna with a double gimbal pointing system mounted on a 13 foot long mast. Typically, the gimbals are driven by pulse modulated dc motors or stepper motors. These drivers produce torques on the mast, with jitter that excites the satellite and may cause disturbances to sensitive experiments. The dynamic properties of the antenna support structure (mast), including flexible mode characteristics were defined. The torque profile induced on the spacecraft by motion of the high gain antenna was estimated. Gain and phase margins of the servo control loop of the gimbal drive electronics was also verified.

  9. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    SciTech Connect

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described.

  10. Technical assessment of the rock support condition at the Near-Surface Test Facility

    SciTech Connect

    Pye, J.H.

    1985-03-28

    Inspections were made at the Near-Surface Test Facility to determine the current condition and overall integrity of the rock support, comprised in general of rock bolts and shotcrete. The rock support behavior was identified as being passive. Preliminary findings show that differences in the rock support are confined to thin, weak and debonded shotcrete. The estimated, areal extent of these deficiencies is 2077 sq. ft. representing 3.8% of the total area of the high-back. The principal cause of concern associated with these deficiencies is the potential for small pieces of shotcrete to fall from the high-back. Construction records show that current conditions largely coincide with deficiencies identified and dispositioned at the time of construction.

  11. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  12. Design of the Grimethorpe Experimental Facility as of March 1981: a technical report

    SciTech Connect

    Not Available

    1984-06-01

    The Experimental Pressurized Fluidized Bed Combustor, which has been built as an extension to the National Coal Board Power Station, which is adjacent to Grimethorpe Colliery, Yorkshire, England, is described in this report. The Governments of the United Kingdom, the United States of America and the Federal Republic of Germany, under the auspices of the International Energy Agency, have agreed to share equally between them the costs of building and operating the plant. Control of the project was vested in an Executive Committee consisting of one representative of each Government with all decisions requiring unanimity. The actual operation of the project was vested in an Operating Agent, NCB (IEA Services) Ltd., a wholly owned subsidiary of the National Coal Board. The Implementing Agreement envisages a seven year project to be executed in four stages: (1) Procurement of Design Study with accompanying tender documents. (2) Tendering for construction of the Plant; study of appraisal of tenders. (3) Construction and acceptance of the Plant. (4) Operation of the Plant. The project is now towards the end of Stage 3. Construction has been completed and commissioning is in progress to prepare the plant for the start of the operational phase in Autumn 1981. Because of the confidentiality of much of the design information, for the purposes of this report technical descriptions have been confined to that of a general appraisal.

  13. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    SciTech Connect

    Olsen, P.A.

    1994-09-21

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ``US Department of Energy Radiological Control Manual`` as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms` workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  14. Shawnee Test Program. TVA Shawnee Test Facility. Final technical report, December 26, 1980-May 31, 1981

    SciTech Connect

    Barkley, J.B.; Garrison, F.C.; Runyan, R.A.; Wells, W.L.

    1982-10-01

    Tests were conducted on train 100 (spray tower) at the Shawnee Test Facility between December 26, 1980, and May 30, 1981. Objectives were, respectively, to demonstrate the ability to operate a limestone scrubber on flue gas from high-sulfur coal using adipic acid slurry additive and forced oxidation long term without scale buildup at >90% SO/sub 2/ removal; to obtain factorial test data on a limestone spray tower system using forced oxidation and adipic acid; to evaluate the effect of changing spray header height and direction in a spray tower on SO/sub 2/ removal; and to determine if sodium thiosulfate is effective as a slurry additive to inhibit sulfate scale buildup. Operating conditions were determined wherein acceptable SO/sub 2/ removal (90 percent minimum) could be obtained over a three month period using limestone and adipic acid with forced oxidation. Quantitative relationships between spray header height, spray direction, and SO/sub 2/ removal were obtained for a spray tower having multi-level spray headers. Sodium thiosulfate added at a rate to maintain a 250 ppM level in the scrubber slurry under specific operating conditions was found to inhibit crystallization of sulfate from solution and to remove sulfate scale buildup already in place.

  15. Improving measurement quality assurance for photon irradiations at Department of Energy facilities. Final technical report

    SciTech Connect

    1996-05-01

    For radiation-instrument calibration to be generally acceptable throughout the US, direct or indirect traceability to a primary standard is required. In most instances, one of the primary standards established at NIST is employed for this purpose. The Department of Energy Laboratory Accreditation Program (DOELAP) is an example of a program employing dosimetry based on the NIST primary photon-, beta particle- and neutron-dosimetry standards. The NIST primary dosimetry standards for bremsstrahlung were first established in the 1950s. They have been updated since then on several occasions. In the 1970s, Technical Committee 85 of the International Standards Organization (ISO) started its work on establishing sets of internationally acceptable, well-characterized photon beams for the calibration of radiation-protection instruments. It is the intent of this paper to make a detailed comparison between the current NIST and the most up-to-date ISO techniques. At present, 41 bremsstrahlung techniques are specified in ISO 4037 while NIST supports a total of 32 techniques. Given the existing equivalences, it makes sense to try to extend the NIST techniques to cover more of the ISO Narrow Spectrum and High Air-Kerma Rate Series. These extensions will also allow the possibility for use of ISO beam techniques in future revisions of the DOELAP standard, which has been suggested by DOE. To this end, NIST was funded by DOE to procure material and make adaptations to the existing NIST x-ray calibration ranges to allow NIST to have the capability of producing all the ISO bremsstrahlung techniques. The following sections describe the steps that were taken to achieve this.

  16. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  17. Diamond film by hot filament CVD method

    NASA Technical Reports Server (NTRS)

    Hirose, Y.

    1988-01-01

    Diamond synthesis by the hot filament CVD method is discussed. A hot filament decomposes gas mixtures and oxygen containing organic compounds such as alcohols. which are carbon sources. The resulting thin films, growth mechanisms, and characteristics and problems associated with the hot filament CVD method are analyzed and evaluated.

  18. FTIR monitoring of industrial scale CVD processes

    NASA Astrophysics Data System (ADS)

    Hopfe, V.; Mosebach, H.; Meyer, M.; Sheel, D.; Grählert, W.; Throl, O.; Dresler, B.

    1998-06-01

    The goal is to improve chemical vapour deposition (CVD) and infiltration (CVI) process control by a multipurpose, knowledge based feedback system. For monitoring the CVD/CVI process in-situ FTIR spectroscopic data has been identified as input information. In the presentation, three commonly used, and distinctly different, types of industrial CVD/CVI processes are taken as test cases: (i) a thermal high capacity CVI batch process for manufacturing carbon fibre reinforced SiC composites for high temperature applications, (ii) a continuously driven CVD thermal process for coating float glass for energy protection, and (iii) a laser stimulated CVD process for continuously coating bundles of thin ceramic fibers. The feasibility of the concept with FTIR in-situ monitoring as a core technology has been demonstrated. FTIR monitoring sensibly reflects process conditions.

  19. Technical Basis for Safe Operations with Pu-239 in NMS and S Facilities (F and H Areas)

    SciTech Connect

    Bronikowski, M.G.

    1999-03-18

    Plutonium-239 is now being processed in HB-Line and H-Canyon as well as FB-Line and F-Canyon. As part of the effort to upgrade the Authorization Basis for H Area facilities relative to nuclear criticality, a literature review of Pu polymer characteristics was conducted to establish a more quantitative vs. qualitative technical basis for safe operations. The results are also applicable to processing in F Area facilities.The chemistry of Pu polymer formation, precipitation, and depolymerization is complex. Establishing limits on acid concentrations of solutions or changing the valence to Pu(III) or Pu(VI) can prevent plutonium polymer formation in tanks in the B lines and canyons. For Pu(IV) solutions of 7 g/L or less, 0.22 M HNO3 prevents polymer formation at ambient temperature. This concentration should remain the minimum acid limit for the canyons and B lines when processing Pu-239 solutions. If the minimum acid concentration is compromised, the solution may need to be sampled and tested for the presence of polymer. If polymer is not detected, processing may proceed. If polymer is detected, adding HNO3 to a final concentration above 4 M is the safest method for handling the solution. The solution could also be heated to speed up the depolymerization process. Heating with > 4 M HNO3 will depolymerize the solution for further processing.Adsorption of Pu(IV) polymer onto the steel walls of canyon and B line tanks is likely to be 11 mg/cm2, a literature value for unpolished steel. This value will be confirmed by experimental work. Tank-to-tank transfers via steam jets are not expected to produce Pu(IV) polymer unless a larger than normal dilution occurs (e.g., >3 percent) at acidities below 0.4 M.

  20. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1994-06-01

    In this quarterly technical progress report, UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle power plant. The experimental program was effectively terminated and reoriented to preparation of reports on previous tests and maintaining the DOE facility. In this report, the results of tube corrosion studies for the samples removed after 500 hours of western coal testing are summarized. Plans for evaluating the tube samples after termination of the tests at 1,047 hours are discussed. The status of development of models to predict ash deposition on conductive heat transfer tubes and their validation with experimental data is presented. Modeling and experiments to induce agglomeration of particulate are also discussed. Significant accomplishments, findings and conclusions include: In summary, corrosion measurements on typical, commercial stainless steels and on low and intermediate chromium steels after 639 hours of LMF5 exposure in the SHTM test sections revealed corrosion that was generally acceptable in magnitude if corrosion kinetics are parabolic, but, except for the higher chromium alloys 253MA and 310, not if kinetics are linear. The production of bilayer scales, and the large amount of scale separation and fragmentation make long term parabolic kinetics unlikely, and result in a high likelihood for breakaway corrosion.

  1. Saturation of CVD Diamond Detectors

    SciTech Connect

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  2. Toward clean suspended CVD graphene

    SciTech Connect

    Yulaev, Alexander; Cheng, Guangjun; Hight Walker, Angela R.; Vlassiouk, Ivan V.; Myers, Alline; Leite, Marina S.; Kolmakov, Andrei

    2016-08-26

    The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using a Pt catalyst and activated carbon. The cleanliness of the suspended graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and X-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain a larger area of clean, suspended CVD graphene. Lastly, our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.

  3. Toward clean suspended CVD graphene

    SciTech Connect

    Yulaev, Alexander; Cheng, Guangjun; Hight Walker, Angela R.; Vlassiouk, Ivan V.; Myers, Alline; Leite, Marina S.; Kolmakov, Andrei

    2016-08-26

    The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using a Pt catalyst and activated carbon. The cleanliness of the suspended graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and X-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain a larger area of clean, suspended CVD graphene. Lastly, our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.

  4. Toward clean suspended CVD graphene

    DOE PAGES

    Yulaev, Alexander; Cheng, Guangjun; Hight Walker, Angela R.; ...

    2016-08-26

    The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using a Pt catalyst and activated carbon. The cleanliness of the suspendedmore » graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and X-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain a larger area of clean, suspended CVD graphene. Lastly, our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.« less

  5. Toward Clean Suspended CVD Graphene.

    PubMed

    Yulaev, Alexander; Cheng, Guangjun; Walker, Angela R Hight; Vlassiouk, Ivan V; Myers, Alline; Leite, Marina S; Kolmakov, Andrei

    2016-01-01

    The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using Pt catalyst and activated carbon. The cleanliness of the suspended graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and x-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain larger area of clean, suspended CVD graphene. Our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.

  6. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    SciTech Connect

    Vikharev, A.; Gorbachev, A.; Kozlov, A.; Litvak, A.; Bykov, Yu.; Caplan, M.

    2006-01-03

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  7. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    SciTech Connect

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  8. Fracture characteristics of monolayer CVD-graphene.

    PubMed

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-24

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  9. Fracture Characteristics of Monolayer CVD-Graphene

    NASA Astrophysics Data System (ADS)

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-03-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized.

  10. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  11. Comparison of Perceived and Technical Healthcare Quality in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana

    PubMed Central

    Alhassan, Robert Kaba; Duku, Stephen Opoku; Janssens, Wendy; Nketiah-Amponsah, Edward; Spieker, Nicole; van Ostenberg, Paul; Arhinful, Daniel Kojo; Pradhan, Menno; Rinke de Wit, Tobias F.

    2015-01-01

    Background Quality care in health facilities is critical for a sustainable health insurance system because of its influence on clients’ decisions to participate in health insurance and utilize health services. Exploration of the different dimensions of healthcare quality and their associations will help determine more effective quality improvement interventions and health insurance sustainability strategies, especially in resource constrained countries in Africa where universal access to good quality care remains a challenge. Purpose To examine the differences in perceptions of clients and health staff on quality healthcare and determine if these perceptions are associated with technical quality proxies in health facilities. Implications of the findings for a sustainable National Health Insurance Scheme (NHIS) in Ghana are also discussed. Methods This is a cross-sectional study in two southern regions in Ghana involving 64 primary health facilities: 1,903 households and 324 health staff. Data collection lasted from March to June, 2012. A Wilcoxon-Mann-Whitney test was performed to determine differences in client and health staff perceptions of quality healthcare. Spearman’s rank correlation test was used to ascertain associations between perceived and technical quality care proxies in health facilities, and ordered logistic regression employed to predict the determinants of client and staff-perceived quality healthcare. Results Negative association was found between technical quality and client-perceived quality care (coef. = -0.0991, p<0.0001). Significant staff-client perception differences were found in all healthcare quality proxies, suggesting some level of unbalanced commitment to quality improvement and potential information asymmetry between clients and service providers. Overall, the findings suggest that increased efforts towards technical quality care alone will not necessarily translate into better client-perceived quality care and willingness to

  12. Comparison of Perceived and Technical Healthcare Quality in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana.

    PubMed

    Alhassan, Robert Kaba; Duku, Stephen Opoku; Janssens, Wendy; Nketiah-Amponsah, Edward; Spieker, Nicole; van Ostenberg, Paul; Arhinful, Daniel Kojo; Pradhan, Menno; Rinke de Wit, Tobias F

    2015-01-01

    Quality care in health facilities is critical for a sustainable health insurance system because of its influence on clients' decisions to participate in health insurance and utilize health services. Exploration of the different dimensions of healthcare quality and their associations will help determine more effective quality improvement interventions and health insurance sustainability strategies, especially in resource constrained countries in Africa where universal access to good quality care remains a challenge. To examine the differences in perceptions of clients and health staff on quality healthcare and determine if these perceptions are associated with technical quality proxies in health facilities. Implications of the findings for a sustainable National Health Insurance Scheme (NHIS) in Ghana are also discussed. This is a cross-sectional study in two southern regions in Ghana involving 64 primary health facilities: 1,903 households and 324 health staff. Data collection lasted from March to June, 2012. A Wilcoxon-Mann-Whitney test was performed to determine differences in client and health staff perceptions of quality healthcare. Spearman's rank correlation test was used to ascertain associations between perceived and technical quality care proxies in health facilities, and ordered logistic regression employed to predict the determinants of client and staff-perceived quality healthcare. Negative association was found between technical quality and client-perceived quality care (coef. = -0.0991, p<0.0001). Significant staff-client perception differences were found in all healthcare quality proxies, suggesting some level of unbalanced commitment to quality improvement and potential information asymmetry between clients and service providers. Overall, the findings suggest that increased efforts towards technical quality care alone will not necessarily translate into better client-perceived quality care and willingness to utilize health services in NHIS

  13. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many

  14. Test facility for advanced electric adjustable frequency drives and generators of typical industrial ratings. Final technical report

    SciTech Connect

    1997-12-01

    A test facility has been developed, for electric adjustable-speed motors and variable-speed generators, that is unique in US universities in terms of its range (5 to 300 hp currently with 0.1 to 1,000 hp final capability) and flexibility (standard NEMA frame and novel geometry machines can be accommodated). The basic facility was constructed with funding from the Electric Power Research Institute. The instrumentation obtained under this DOE grant has been integrated into the facility which was completed in Fall 1997. The facility has already provided useful studies for DOE, EPRI, as well as several West Coast industries and electric energy utilities.

  15. Knowledge of risk factors for diabetes or cardiovascular disease (CVD) is poor among individuals with risk factors for CVD

    PubMed Central

    Dunstan, Libby; Busingye, Doreen; Reyneke, Megan; Orgill, Mary; Cadilhac, Dominique A.

    2017-01-01

    Background There is limited evidence on whether having pre-existing cardiovascular disease (CVD) or risk factors for CVD such as diabetes, ensures greater knowledge of risk factors important for motivating preventative behaviours. Our objective was to compare knowledge among the Australian public participating in a health check program and their risk status. Methods Data from the Stroke Foundation ‘Know your numbers’ program were used. Staff in community pharmacies provided opportunistic health checks (measurement of blood pressure and diabetes risk assessment) among their customers. Participants were categorised: 1) CVD ± risk of CVD: history of stroke, heart disease or kidney disease, and may have risk factors; 2) risk of CVD only: reported having high blood pressure, high cholesterol, diabetes or atrial fibrillation; and 3) CVD risk free (no CVD or risk of CVD). Multivariable logistic regression analyses were performed including adjustment for age and sex. Findings Among 4,647 participants, 12% had CVD (55% male, 85% aged 55+ years), 47% were at risk of CVD (40% male, 72% 55+ years) and 41% were CVD risk free (33% male, 27% 55+ years). Participants with CVD (OR: 0.66; 95% CI: 0.55, 0.80) or risk factors for CVD (OR: 0.65; 95% CI: 0.57, 0.73) had poorer knowledge of the risk factors for diabetes/CVD compared to those who were CVD risk free. After adjustment, only participants with risk factors for CVD (OR: 0.80; 95% CI: 0.69, 0.93) had poorer knowledge. Older participants (55+ years) and men had poorer knowledge of diabetes/CVD risk factors and complications of diabetes. Conclusions Participants with poorer knowledge of risk factors were older, more often male or were at risk of developing CVD compared with those who were CVD risk free. Health education in these high risk groups should be a priority, as diabetes and CVD are increasing in prevalence throughout the world. PMID:28245267

  16. Knowledge of risk factors for diabetes or cardiovascular disease (CVD) is poor among individuals with risk factors for CVD.

    PubMed

    Kilkenny, Monique F; Dunstan, Libby; Busingye, Doreen; Purvis, Tara; Reyneke, Megan; Orgill, Mary; Cadilhac, Dominique A

    2017-01-01

    There is limited evidence on whether having pre-existing cardiovascular disease (CVD) or risk factors for CVD such as diabetes, ensures greater knowledge of risk factors important for motivating preventative behaviours. Our objective was to compare knowledge among the Australian public participating in a health check program and their risk status. Data from the Stroke Foundation 'Know your numbers' program were used. Staff in community pharmacies provided opportunistic health checks (measurement of blood pressure and diabetes risk assessment) among their customers. Participants were categorised: 1) CVD ± risk of CVD: history of stroke, heart disease or kidney disease, and may have risk factors; 2) risk of CVD only: reported having high blood pressure, high cholesterol, diabetes or atrial fibrillation; and 3) CVD risk free (no CVD or risk of CVD). Multivariable logistic regression analyses were performed including adjustment for age and sex. Among 4,647 participants, 12% had CVD (55% male, 85% aged 55+ years), 47% were at risk of CVD (40% male, 72% 55+ years) and 41% were CVD risk free (33% male, 27% 55+ years). Participants with CVD (OR: 0.66; 95% CI: 0.55, 0.80) or risk factors for CVD (OR: 0.65; 95% CI: 0.57, 0.73) had poorer knowledge of the risk factors for diabetes/CVD compared to those who were CVD risk free. After adjustment, only participants with risk factors for CVD (OR: 0.80; 95% CI: 0.69, 0.93) had poorer knowledge. Older participants (55+ years) and men had poorer knowledge of diabetes/CVD risk factors and complications of diabetes. Participants with poorer knowledge of risk factors were older, more often male or were at risk of developing CVD compared with those who were CVD risk free. Health education in these high risk groups should be a priority, as diabetes and CVD are increasing in prevalence throughout the world.

  17. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  18. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  19. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  20. Review of the geological and structural setting near the site of the proposed Transuranic Waste Facility (TRUWF) Technical Area 52 (TA-52), Los Alamos National Laboratory

    SciTech Connect

    Schultz-Fellenz, Emily S.; Gardner, Jamie N.

    2007-10-01

    Because of Los Alamos National Laboratory’s proximal location to active geologic structures, assessment of seismic hazards, including the potential for seismic surface rupture, must occur before construction of any facilities housing nuclear or other hazardous materials. A transuranic waste facility (TRUWF) planned for construction at Technical Area 52 (TA-52) provides the impetus for this report. Although no single seismic hazards field investigation has focused specifically on TA-52, numerous studies at technical areas surrounding TA-52 have shown no significant, laterally continuous faults exhibiting activity in the last 10 ka within 3,000 ft of the proposed facility. A site-specific field study at the footprint of the proposed TRUWF would not yield further high-precision data on possible Holocene faulting at the site because post-Bandelier Tuff sediments are lacking and the shallowest subunit contacts of the Bandelier Tuff are gradational. Given the distal location of the proposed TRUWF to any mapped structures with demonstrable Holocene displacement, surface rupture potential appears minimal at TA-52.

  1. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect

    PACKER, M.J.

    2000-05-10

    The purpose of this document is to evaluate selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying operations. The problems were evaluated to answer specific design questions. The document is formatted as a topical report with each section representing a specific problem solution. The problem solutions are reported in the calculation format specified in HNF-1613, Rev. 0, EP 7.6.

  2. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and

  3. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  4. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The technical and engineering plan for an ethanol from corn fuel grade production facility is given. Included is a review of current technology, process technology recommendation, single vs. multi by-product process, process description, resource requirements, utilities, use of boiler flue gas for by-product drying, plant layout alternatives, production schedule, and procurement plan. As components of production the following are covered: corn supply, other raw materials supply, site selection, and the socio-economic environment of the area. The community infrastructure of Plaquemines Parish is described.

  5. Variability in Chemical Vapor Deposited Zinc Sulfide: Assessment of Legacy and International CVD ZnS Materials

    SciTech Connect

    McCloy, John S.; Korenstein, Ralph

    2009-10-06

    Samples of CVD ZnS from the United States, Germany, Israel, and China were evaluated using transmission spectroscopy, x-ray diffraction, photoluminescence, and biaxial flexure testing. Visible and near-infrared scattering, 6 μm absorption, and ultraviolet cut-on edge varied substantially in tested materials. Crystallographic hexagonality and texture was determined and correlated with optical scattering. Transmission cut-on (ultraviolet edge) blue-shifts with annealing and corresponds to visible color but not the 6 μm absorption. Photoluminescence results suggest that CVD ZnS exhibits a complex suite of electronic bandgap defects. All CVD ZnS tested with biaxial flexure exhibit similar fracture strength values and Weibull moduli. This survey suggests that technical understanding of the structure and optical properties CVD ZnS is still in its infancy.

  6. Thin CVD Coating Protects Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  7. Thin CVD Coating Protects Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  8. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    PubMed

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  10. Producing a programmatic environmental impact statement for a large federal facility: a GIS technical leader`s perspective

    SciTech Connect

    Kuiper, J.

    1996-05-01

    Producing a programmatic Environmental Impact Statement (EIS) for a large federal facility requires consideration of a wide range of activities, collection of an extensive amount of data, and analysis and modeling to determine the nature and extent of potential environmental impacts. EIS documents provide the most detailed analyses of federal facilities required by the National Environmental Policy Act of 1969. An extensive, environmentally focused Geographic Information System (GIS) was developed and used in the analyses, modeling, and mapping for an EIS of a federal facility with an area of more than 100 square miles. The final products of the EIS process will include a printed document with more than 250-GIS-produced maps, CD-ROM versions of both the document and the GIS metadata dictionary, and an environmentally focused GIS that will form a baseline of information for the facility. The environmental GIS will augment the installation`s existing infrastructure-related GIS>

  11. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The major emphasis during this reporting period was finishing the conceptual design for the test facility and discussions on the potential expansion of the test facility. Results are discussed for the following subtasks of conceptual design: design bases; quasifier/combustor and hot stream design; balance of plant designs; and particulate collection.

  12. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  13. Technical progress report for the Magnetohydrodynamics Coal-Fired Flow Facility. January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported in developing technology for steam bottoming cycle of the coal-fired MHD Steam Combined Cycle Power Plant. During this period, no testing was scheduled in the DOE Coal-Fired Flow Facility. The report covers facilities modification and maintenance in preparation for a 225 hour POC test that is scheduled for early next quarter. The modifications to the dry ESP to replace the electrodes with smaller diameter wires is discussed. Continued work on the rotary vacuum filter, which is designed to separate the more soluble potassium carbonate from the potassium sulfate and fly ash, is reported. Environmental activities for the quarter are summarized.

  14. A PLANNING GUIDE FOR VOCATIONAL-INDUSTRIAL AND VOCATIONAL-TECHNICAL BUILDING FACILITIES FOR COMPREHENSIVE HIGH SCHOOLS, NUMBER 18.

    ERIC Educational Resources Information Center

    State Univ. of New York, Albany.

    THIS BOOKLET IS INTENDED AS A GUIDE FOR THOSE RESPONSIBLE FOR PLANNING VOCATIONAL HIGH SCHOOL FACILITIES. DISCUSSION OF TYPES OF INDUSTRIAL EDUCATION, PLANNING PROCEDURES, AND GENERAL CONSIDERATIONS ARE INCLUDED AND INFORMATION IS GIVEN ON--(1) SIZES, SHAPES, AND NUMBER OF SHOPS, (2) BUILDING FLEXIBILITY, (3) LAYOUT OF FLOOR SPACE, (4) SERVICES IN…

  15. 10 MWe solar thermal central receiver pilot plant solar facilities design integration, RADL Item 1-10. Technical status report

    SciTech Connect

    Not Available

    1980-08-01

    Accomplishments are reported in the areas of: program management, system integration, the beam characterization system, receiver unit, thermal storage subsystem, master control system, plant support subsystem and engineering services. A Solar Facilities Design Integration Program Action Items update is included. Cost underruns are discussed. (LEW)

  16. Experimental Facilities in Water Resources Education. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 24.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This monograph is intended to guide teachers of water resources, technicians and university students in establishing physical facilities which can introduce learners to methods, techniques, and instruments used in water resources management and assessment. It is not intended to serve as an exhaustive list of equipment and their descriptions or as…

  17. CVD-Enabled Graphene Manufacture and Technology

    PubMed Central

    2015-01-01

    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694

  18. Family history of cardiovascular disease (CVD), perceived CVD risk, and health-related behavior: A review of the literature

    PubMed Central

    Imes, Christopher C.; Lewis, Frances Marcus

    2012-01-01

    Background Over 82 million Americans have one or more forms of cardiovascular disease (CVD), accounting for 32.8% of all deaths in the United States. Although the evidence for the familial aggregation of CVD is strong, the relationship between family history (FH) of CVD, perceived risk for CVD and their relationship to health-related behavior is poorly understood. Objective The objective of this article is to review and summarize the published research on the relationship between a FH of CVD, an individual’s perceived risk, and health-related behavior in order to make recommendations for clinical practice and future research. Methods A literature search was conducted using PubMed, CINAHL Plus, and PsycINFO to identify articles that examined the relationship between a FH of CVD, perceived CVD risk, and health-promoting behaviors. A total of 263 unique articles were reviewed. Two hundred thirty-eight were excluded, resulting in a total of 25 articles included in the paper. Results There was a positive relationship between a reported FH of CVD and perceived risk. However, the relationship between a FH of CVD and health-related behavior change and perceived risk and behavior change was inconsistent. Conclusions A person’s awareness of their FH of CVD or their own risk for CVD is not a sufficient predictor of changes in their health-related behavior. Future studies are needed to better explain the processes by which perceived CVD risk or FH of CVD can be used to affect health-related behavior changes. It appears that both FH and perceived personal risk for CVD are necessary but not sufficient conditions to change health-related behavior in high-risk populations. Future studies should also test interventions that help individuals with a FH of CVD attribute increased personal risk to themselves for developing CVD, while providing lifestyle management options to minimize their risk. PMID:23321782

  19. [The diagnosis of chronic kidney disease as a tracer of the technical capacity in care facilities of 20 Mexican states].

    PubMed

    Pacheco-Domínguez, Reyna Lizette; Durán-Arenas, Luis; Rojas-Russell, Mario Enrique; Escamilla-Santiago, Ricardo A; López-Cervantes, Malaquías

    2011-01-01

    To assess knowledge and technical capacity of primary care physicians in the management of patients with diabetes mellitus and high blood pressure as well as patients at risk of developing chronic kidney disease, and to use the latter condition as a tracer of the quality of primary care of the Mexican health system. A cross-sectional study included 149 primary health physicians in primary care units from state health care services in 20 states. An instrument with two clinical cases was applied. The average score of the physicians evaluated was 53.7 out of 100. Those physicians working in larger size units and graduated before the year 2000 tend to receive lower scores. The use of chronic kidney disease as a tracer of the technical capacity of the Mexican health care system is useful to understand the problems of primary care in the country's public settings.

  20. Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

  1. Chemical nucleation for CVD diamond growth.

    PubMed

    Giraud, A; Jenny, T; Leroy, E; Küttel, O M; Schlapbach, L; Vanelle, P; Giraud, L

    2001-03-14

    A new nucleation method to form diamond by chemically pretreating silicon (111) surfaces is reported. The nucleation consists of binding covalently 2,2-divinyladamantane molecules on the silicon substrate. Then low-pressure diamond growth was performed for 2 h via microwave plasma CVD in a tubular deposition system. The resulting diamond layers presented a good cristallinity and the Raman spectra showed a single very sharp peak at 1331 cm(-1), indicating high-quality diamonds.

  2. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect

    ELGIN, J.C.

    2000-10-02

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, radiation surveys of the Cold Vacuum Drying Facility (CVD), and radiation surveys of the Canister Storage Building (CSB) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  3. Small-Scale Hydroelectric Power Demonstration Project: reactivation of the Elk Rapids Hydroelectric Facility. Final technical and construction cost report

    SciTech Connect

    Not Available

    1985-05-01

    The Elk Rapids powerhouse dam is located on the Elk River channel in the Village of Elk Rapids, Michigan. Together with a small spillway structure located approximately 500 ft south of the dam, it constitutes the outlet to Lake Michigan for Elk Lake, Skegemog Lake, Torch Lake, Lake Bellaire, Clam Lake, and several smaller lakes. Power has been generated at the Elk Rapids site since the late nineteenth century, but the history of the present facility goes back to 1916 with the construction of the existing powerhouse dam by the Elk Rapids Iron Works Company. The facility was designed to contain four vertical-shaft generating units; however, only a single 270 hp Leffel type K unit was installed in 1916. In 1929, two additional Leffel units, rated 525 hp, were installed, and in 1930 a third 525 hp Leffel unit was added completely utilizing the capacity of the powerhouse and bringing the combined turbine capacity to 1845 hp.

  4. Technical Competencies for the Safe Interim Storage and Management of 233U at U.S. Department of Energy Facilities

    SciTech Connect

    Campbell, D.O.; Krichinsky, A.M.; Laughlin, S.S.; Van Essen, D.C.; Yong, L.K.

    1999-02-17

    Uranium-233 (with concomitant {sup 232}U) is a man-made fissile isotope of uranium with unique nuclear characteristics which require high-integrity alpha containment biological shielding, and remote handling. The special handling considerations and the fact that much of the {sup 233}U processing and large-scale handling was performed over a decade ago underscore the importance of identifying the people within the DOE complex who are currently working with or have worked with {sup 233}U. The availability of these key personnel is important in ensuring safe interim storage, management and ultimate disposition of {sup 233}U at DOE facilities. Significant programs are ongoing at several DOE sites with actinides. The properties of these actinide materials require many of the same types of facilities and handling expertise as does {sup 233}U.

  5. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    SciTech Connect

    Lazaro, M.A.; Vinikour, W.; Allison, T.

    1996-09-01

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  6. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  7. The Japanese tsunami and resulting nuclear emergency at the Fukushima Daiichi power facility: technical, radiologic, and response perspectives.

    PubMed

    Dauer, Lawrence T; Zanzonico, Pat; Tuttle, R Michael; Quinn, Dennis M; Strauss, H William

    2011-09-01

    The Fukushima Daiichi nuclear power facility, in the Futaba District of the Fukushima Prefecture in Japan, was severely damaged by the earthquake and ensuing tsunami that struck off the northern coast of the island of Honshu on March 11, 2011. The resulting structural damage to the plant disabled the reactor's cooling systems and led to significant, ongoing environmental releases of radioactivity, triggering a mandatory evacuation of a large area surrounding the plant. The status of the facility continues to change, and permanent control of its radioactive inventory has not yet been achieved. The purpose of this educational article is to summarize the short-term chronology, radiologic consequences, emergency responses, and long-term challenges associated with this event. Although there is ongoing debate on preparedness before the event and the candor of responsible entities in recognizing and disclosing its severity, it largely appears that appropriate key actions were taken by the Japanese authorities during the event that should mitigate any radiologic health impact. These actions include an organized evacuation of over 200,000 inhabitants from the vicinity of the site and areas early in the emergency; monitoring of food and water and placement of radiation limits on such foodstuffs; distribution of stable potassium iodide; and systematic scanning of evacuees. However, the risk of additional fuel damage and of further, perhaps substantial, releases persists. The situation at the Fukushima Daiichi nuclear facility remains fluid, and the long-term environmental and health impact will likely take years to fully delineate.

  8. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample

  9. Combined electron-beam and coagulation purification of molasses distillery slops. Features of the method, technical and economic evaluation of large-scale facility

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.; Ponomarev, A. V.; Bludenko, A. V.; Minin, V. N.; Elizar'eva, L. M.

    2001-04-01

    The paper summarizes the results obtained from the study on combined electron-beam and coagulation method for purification of molasses distillery slops from distillery produced ethyl alcohol by fermentation of grain, potato, beet and some other plant materials. The method consists in preliminary mixing of industrial wastewater with municipal wastewater, electron-beam treatment of the mixture and subsequent coagulation. Technical and economic evaluation of large-scale facility (output of 7000 m 3 day -1) with two powerful cascade electron accelerators (total maximum beam power of 400 kW) for treatment of the wastewater by the above method was carried out. It was calculated that the cost of purification of the wastes is equal to 0.25 US$ m -3 that is noticeably less than in the case of the existing method.

  10. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    SciTech Connect

    Rathbun, R.

    1994-04-26

    Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

  11. Technical Support for Improving the Licensing Regulatory Base for Selected Facilities Associated with the Front End of the Fuel Cycle

    SciTech Connect

    Clark, R. G.; Schreiber, R. E.; Jamison, J. D.; Davenport, L. C.; Brite, D. W.

    1982-04-01

    Pacific Northwest Laboratory (PNL) was asked by the NRC Office of Nuclear Material Safety and Safeguards (NMSS) to determine the adequacy of its health, safety and environmental regulatory base as a guide to applicants for licenses to operate UF{sub 6} conversion facilities and fuel fabrication plants. The regulatory base was defined as the body of documented requirements and guidance to licensees, including laws passed by Congress, Federal Regulations developed by the NRC to implement the laws, license conditions added to each license to deal with special requirements for that specific license, and Regulatory Guides. The study concentrated on the renewal licensing accomplished in the last few years at five typical facilities, and included analyses of licensing documents and interviews with individuals involved with different aspects of the licensing process. Those interviewed included NMSS staff, Inspection and Enforcement (IE) officials, and selected licensees. From the results of the analyses and interviews, the PNL study team concludes that the regulatory base is adequate but should be codified for greater visibility. PNL recommends that NMSS clarify distinctions among legal requirements of the licensee, acceptance criteria employed by NMSS, and guidance used by all. In particular, a prelicensing conference among NMSS, IE and each licensee would be a practical means of setting license conditions acceptable to all parties.

  12. Technical note: DoseMapper - A validated GUI based exact numerical modelling method of shielding in PET/CT facilities.

    PubMed

    Hermansen, Jonas S; Fonslet, Jesper; Søndergaard, Lasse R

    2017-08-30

    To provide a faster and more intuitive way of designing shielding for PET facilities, while still relying on the principles of the AAPM 108 Taskforce guidelines, as well as illustrating the calculation output using dose maps that are easily evaluated. A graphical user interface was developed, implementing an inverse AAPM method, wherein radiation sources and shield barriers are manually defined. Simulations are calculated using a user defined control mesh grid. DoseMapper simulations were verified against manual calculations using the AAPM guidelines, as well as compared with in-situ dose rate measurements using four different dosemeters. DoseMapper simulations were virtually identical to manual calculations using AAPM guidelines, with a maximum relative error of <0.01%. Comparison with in-situ measurements showed that DoseMapper simulated dose rates in all instances are higher than what can be measured, ensuring no unintended hotspots can be overlooked in the shielding design. DoseMapper is an easy to use implementation of the AAPM 108 Taskforce principles that allows for a rapid iterative design process of shielding in PET facilities, and the resulting maps of dose rate and annual accumulated dose serve as clear documentation for the design. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Modeling for CVD of Solid Oxide Electrolyte

    SciTech Connect

    Starr, T.L.

    2002-09-18

    Because of its low thermal conductivity, high thermal expansion and high oxygen ion conductivity yttria-stabilized zirconia (YSZ) is the material of choice for high temperature electrolyte applications. Current coating fabrication methods have their drawbacks, however. Air plasma spray (APS) is a relatively low-cost process and is suitable for large and relatively complex shapes. it is difficult to produce uniform, relatively thin coatings with this process, however, and the coatings do not exhibit the columnar microstructure that is needed for reliable, long-term performance. The electron-beam physical vapor deposition (EB-PVD) process does produce the desirable microstructure, however, the capital cost of these systems is very high and the line-of-sight nature of the process limits coating uniformity and the ability to coat large and complex shapes. The chemical vapor deposition (CVD) process also produces the desirable columnar microstructure and--under proper conditions--can produce uniform coatings over complex shapes. CVD has been used for many materials but is relatively undeveloped for oxides, in general, and for zirconia, in particular. The overall goal of this project--a joint effort of the University of Louisville and Oak Ridge National Laboratory (ORNL)--is to develop the YSZ CVD process for high temperature electrolyte applications. This report describes the modeling effort at the University of Louisville, which supports the experimental work at ORNL. Early work on CVD of zirconia and yttria used metal chlorides, which react with water vapor to form solid oxide. Because of this rapid gas-phase reaction the water generally is formed in-situ using the reverse water-gas-shift reaction or a microwave plasma. Even with these arrangements gas-phase nucleation and powder formation are problems when using these precursors. Recent efforts on CVD of zirconia and YSZ have focused on use of metal-organic precursors (MOCVD). These are more stable in the gas

  14. Polycrystallinity and stacking in CVD graphene.

    PubMed

    Tsen, Adam W; Brown, Lola; Havener, Robin W; Park, Jiwoong

    2013-10-15

    Graphene, a truly two-dimensional hexagonal lattice of carbon atoms, possesses remarkable properties not seen in any other material, including ultrahigh electron mobility, high tensile strength, and uniform broadband optical absorption. While scientists initially studied its intrinsic properties with small, mechanically exfoliated graphene crystals found randomly, applying this knowledge would require growing large-area films with uniform structural and physical properties. The science of graphene has recently experienced revolutionary change, mainly due to the development of several large-scale growth methods. In particular, graphene synthesis by chemical vapor deposition (CVD) on copper is a reliable method to obtain films with mostly monolayer coverage. These films are also polycrystalline, consisting of multiple graphene crystals joined by grain boundaries. In addition, portions of these graphene films contain more than one layer, and each layer can possess a different crystal orientation and stacking order. In this Account, we review the structural and physical properties that originate from polycrystallinity and stacking in CVD graphene. To begin, we introduce dark-field transmission electron microscopy (DF-TEM), a technique which allows rapid and accurate imaging of key structural properties, including the orientation of individual domains and relative stacking configurations. Using DF-TEM, one can easily identify "lateral junctions," or grain boundaries between adjacent domains, as well as "vertical junctions" from the stacking of graphene multilayers. With this technique, we can distinguish between oriented (Bernal or rhombohedral) and misoriented (twisted) configurations. The structure of lateral junctions in CVD graphene is sensitive to growth conditions and is reflected in the material's electrical and mechanical properties. In particular, grain boundaries in graphene grown under faster reactant flow conditions have no gaps or overlaps, unlike more

  15. An assessment of radiotherapy dosimeters based on CVD grown diamond

    NASA Astrophysics Data System (ADS)

    Ramkumar, S.; Buttar, C. M.; Conway, J.; Whitehead, A. J.; Sussman, R. S.; Hill, G.; Walker, S.

    2001-03-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ≈6 Gy. The diamond devices of CVD2 type had a response at low fields (<1162.8 V/cm) that was linear with dose and dose rate. At high fields (>1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications.

  16. Observation of twinning in diamond CVD films

    NASA Astrophysics Data System (ADS)

    Marciniak, W.; Fabisiak, K.; Orzeszko, S.; Rozploch, F.

    1992-10-01

    Diamond particles prepared by dc-glow-discharge enhanced HF-CVD hybrid method, from a mixture of acetone vapor and hydrogen gas have been examined by TEM, RHEED and dark field method of observation. Results suggest the presence of twinned diamond particles, which can be reconstructed by a sequence of twinning operations. Contrary to the 'stick model' of the lattice, very common five-fold symmetry of diamond microcrystals may be obtained by applying a number of edge dislocations rather than the continuous deformation of many tetrahedral C-C bonds.

  17. CVD diamond growth by dc plasma torch

    NASA Astrophysics Data System (ADS)

    Klocek, Paul; Hoggins, James T.; Taborek, Peter; McKenna, Tom A.

    1990-12-01

    A dc arc discharge plasma torch has been developed for chemical vapor deposition (CVD) diamond growth. The apparatus and process parameters are described. Free-standing polycrystalline diamond samples of 50 mm by 50 mm by a few mm have been grown at high rates. The Raman spectra of the samples show little nondiamond structure. Transmission electron microscopy indicates that the diamond is highly twinned and has a high defect concentration. The infrared spectra indicate the presence of hydrogen contamination in the diamond via absorption bands associated with carbon-hydrogen motion. 2.

  18. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    SciTech Connect

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-12-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

  19. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  20. Comparative evaluation of CVD diamond technologies

    SciTech Connect

    Anthony, T.R.

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  1. Role of sulodexide in the treatment of CVD.

    PubMed

    Andreozzi, G M

    2014-06-01

    Treatment of vascular diseases should be based on established pathophysiological concepts, and this also applies to chronic venous disease (CVD). On the basis of the latest research in this field, this paper summarizes the most advanced pathophysiological knowledge regarding the hemodynamics of the large veins and of the microcirculation, the endothelial function and inflammation, and the use of sulodexide in the treatment of CVD. The emerging theories on the pathophysiology of CVD consider inflammation, endothelial glycocalyx dysfunction, and the consequent changes in the extracellular matrix to play key roles in the development of CVD, and support a renewed interest in the research and application of sulodexide. As part of active approach to the treatment of CVD including edema and trophic venous alterations, sulodexide could help to alleviate progressive signs and symptoms of disease in any clinical CEAP class of CVD, from C1 to C6.

  2. Technical progress report for the magnetohydrodynamics Coal-Fired Flow Facility for the period April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-10-01

    In this quarterly technical progress report, UTSI reports on progress on a multitask contract to develop the necessary technology for the steam bottoming plant of the MHD Steam Combined Cycle power plant. A Proof-Of-Concept (POC) test was conducted during the quarter and the results are reported. This POC test was terminated after 88 hours of operation due to the failure of the coal pulverizer main shaft. Preparations for the test and post-test activities are summarized. Modifications made to the dry electrostatic precipitator (ESP) are described and measurements of its performance are reported. The baghouse performance is summarized, together with actions being taken to improve bag cleaning using reverse air. Data on the wet ESP performance is included at two operating conditions, including verification that it met State of Tennessee permit conditions for opacity with all the flow through it. The results of experiments to determine the effect of potassium seed on NO{sub x} emissions and secondary combustion are reported. The status of efforts to quantify the detailed mass balance for all POC testing is summarized. The work to develop a predictive ash deposition model is discussed and results compared with deposition actually encountered during the test. Plans to measure the kinetics of potassium and sulfur on flames like the secondary combustor, are included. Advanced diagnostic work by both UTSI and MSU is reported. Efforts to develop the technology for a high temperature air heater using ceramic tubes are summarized.

  3. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    SciTech Connect

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  4. Grout disposal facility vault exhauster: Technical background document on demonstration of best available control technology for toxics

    SciTech Connect

    Glissmeyer, J.A.; Glantz, C.S.; Rittman, P.D.

    1994-09-01

    The Grout Disposal Facility (GDF) is currently operated on the US Department of Energy`s Hanford Site. The GDF is located near the east end of the Hanford Site`s 200 East operations area, and is used for the treatment and disposal of low-level radioactive liquid wastes. In the grout treatment process, selected radioactive wastes from double-shell tanks are mixed with grout-forming solids; the resulting grout slurry is pumped to near-surface concrete vaults for solidification and permanent disposal. As part of this treatment process, small amounts of toxic particles and volatile organic compounds (VOCs) may be released to the atmosphere through the GDF`s exhaust system. This analysis constitutes a Best Available Control Technology for Toxics (T-BACT) study, as required in the Washington Administrative Code (WAC 173-460) to support a Notice of Construction for the operation of the GDF exhaust system at a modified flow rate that exceeds the previously permitted value. This report accomplishes the following: assesses the potential emissions from the GDF; estimates air quality impacts to the public from toxic air pollutants; identifies control technologies that could reduce GDF emissions; evaluates impacts of the control technologies; and recommends appropriate emissions controls.

  5. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  6. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V.

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  7. All-Cause and CVD Mortality in Native Hawaiians

    PubMed Central

    Aluli, N. Emmett; Reyes, Phillip W.; Brady, S. Kalani; Tsark, JoAnn U.; Jones, Kristina L.; Mau, Marjorie; Howard, Wm. J.; Howard, Barbara V.

    2010-01-01

    Aims Cardiovascular disease (CVD) is the leading cause of death among Native Hawaiians. In this article, all-cause and cardiovascular mortality rates among Native Hawaiians are examined, along with associated CVD risk factors. Methods A total of 855 Native Hawaiians (343 men and 512 women, ages 19–88) were examined as participants of the Cardiovascular Risk Clinics program (1992–1998) and underwent surveillance through September 2007. Cause of each death was determined by review of medical records, death certificates, newspapers, and through queries to community members. Results CVD accounted for 55% of deaths. Coronary heart disease (CHD) accounted for the majority of CVD deaths. CVD increased with age and was higher in those with diabetes, hypertension, or high low-density lipoprotein cholesterol (LDL-C). CVD rates were higher in men than in women and 4-fold higher in those with diabetes. In addition to age, diabetes, hypertension, and elevated LDL-C were major risk factors. Conclusions Diabetes is a major determinant of CVD in this population and most of the CVD is occurring in those with diabetes. Strategies to prevent diabetes and manage blood pressure and lipids should reduce CVD rates in Native Hawaiians. PMID:20392507

  8. Applications for precision cutting of sharpening CVD diamond film

    SciTech Connect

    Okuzumi, Fuminori; Yoshikawa, Masanori

    1995-12-31

    A thick CVD diamond has been expected to the applications for cutting tools. But it is difficult to sharpen thick CVD diamond films by means of a conventional sharpening method using diamond grinding wheel for forming a large chipping of scores of micrometers at the cutting edge. Accordingly, we have made a thermochemical polishing n apparatus capable of polishing a sharpening for cutting tool and thick CVD diamond films were processed by this apparatus. And then the cutting test by aluminum alloy was conducted and the cutting performance of thick CVD diamond films polished by thermochemical polishing method was evaluated.

  9. Cold Vacuum Drying (CVD) Set Point Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-01-12

    This document provides the calculations used to determine the error of safety class signals used for the CVD process These errors are used with the Parameter limits to arrive at the initial set point. The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated would result in a safety event. Specifically actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge the SCIC receives signals from MCO pressure (both positive pressure and vacuum) helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.

  10. Controlled Chemical Synthesis in CVD Graphene

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Liu, Yunqi

    2017-04-01

    Due to the unique properties of graphene, single layer, bilayer or even few layer graphene peeled off from bulk graphite cannot meet the need of practical applications. Large size graphene with quality comparable to mechanically exfoliated graphene has been synthesized by chemical vapor deposition (CVD). The main development and the key issues in controllable chemical vapor deposition of graphene has been briefly discussed in this chapter. Various strategies for graphene layer number and stacking control, large size single crystal graphene domains on copper, graphene direct growth on dielectric substrates, and doping of graphene have been demonstrated. The methods summarized here will provide guidance on how to synthesize other two-dimensional materials beyond graphene.

  11. Culturally tailored foods and CVD prevention

    PubMed Central

    Winham, Donna M.

    2009-01-01

    Culture plays an integral role in people’s food choices and lifestyle decisions. Health care messages may conflict with cultural beliefs for many immigrant, minority, and low income populations. The multiple ways that culture can positively and negatively affect disease risk must be utilized in the development of ‘culturally tailored’ messages or interventions. Only through the creation of interventions that are meaningful and culturally-relevant can successful behavior stability or change occur. The recognition of current health-promoting factors is important to develop rapport and credibility with individuals and population groups in order to reduce the risk of CVD and other lifestyle-based chronic diseases for optimal health. PMID:20046905

  12. Premature menopause linked to CVD and osteoporosis.

    PubMed

    Park, Claire; Overton, Caroline

    2010-03-01

    Premature menopause affects 1% of women under the age of 40, the usual age of the menopause is 51. Most women will present with irregular periods or no periods at all with or without climacteric symptoms. Around 10% of women present with primary amenorrhoea. A careful history and examination are required. It is important to ask specifically about previous chemotherapy or radiotherapy and to look for signs of androgen excess e.g. polycystic ovarian syndrome, adrenal problems e.g. galactorrhoea and thyroid goitres. Once pregnancy has been excluded, a progestagen challenge test can be performed in primary care. Norethisterone 5 mg tds po for ten days or alternatively medroxyprogesterone acetate 10 mg daily for ten days is prescribed. A withdrawal bleed within a few days of stopping the norethisterone indicates the presence of oestrogen and bleeding more than a few drops is considered a positive withdrawal bleed. The absence of a bleed indicates low levels of oestrogen, putting the woman at risk of CVD and osteoporosis. FSH levels above 30 IU/l are an indicator that the ovaries are failing and the menopause is approaching or has occurred. It should be remembered that FSH levels fluctuate during the month and from one month to the next, so a minimum of two measurements should be made at least four to six weeks apart. The presence of a bleed should not exclude premature menopause as part of the differential diagnosis as there can be varying and unpredictable ovarian function remaining. The progestagen challenge test should not be used alone, but in conjunction with FSH, LH and oestradiol. There is no treatment for premature menopause. Women desiring pregnancy should be referred to a fertility clinic and discussion of egg donation. Women not wishing to become pregnant should be prescribed HRT until the age of 50 to control symptoms of oestrogen deficiency and reduce the risks of osteoporosis and CVD.

  13. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Robert

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  14. Class 1 Permit Modification Notification Addition of Structures within Technical Area 54, Area G, Pad 11, Dome 375 Los Alamos National Laboratory Hazardous Waste Facility Permit, July 2012

    SciTech Connect

    Vigil-Holterman, Luciana R.; Lechel, Robert A.

    2012-08-31

    The purpose of this letter is to notify the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of a Class 1 Permit Modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit issued to the Department of Energy (DOE) and Los Alamos National Security, LLC (LANS) in November 2010. The modification adds structures to the container storage unit at Technical Area (TA) 54 Area G, Pad 11. Permit Section 3.1(3) requires that changes to the location of a structure that does not manage hazardous waste shall be changed within the Permit as a Class 1 modification without prior approval in accordance with Code of Federal Regulations, Title 40 (40 CFR), {section}270.42(a)(1). Structures have been added within Dome 375 located at TA-54, Area G, Pad 11 that will be used in support of waste management operations within Dome 375 and the modular panel containment structure located within Dome 375, but will not be used as waste management structures. The Class 1 Permit Modification revises Figure 36 in Attachment N, Figures; and Figure G.12-1 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Descriptions of the structures have also been added to Section A.4.2.9 in Attachment A, TA - Unit Descriptions; and Section 2.0 in Attachment G.12, Technical Area 54, Area G, Pad 11 Outdoor Container Storage Unit Closure Plan. Full description of the permit modification and the necessary changes are included in Enclosure 1. The modification has been prepared in accordance with 40 CFR {section}270.42(a)(l). This package includes this letter and an enclosure containing a description of the permit modification, text edits of the Permit sections, and the revised figures (collectively LA-UR-12-22808). Accordingly, a signed certification page is also enclosed. Three hard copies and one electronic copy of this submittal will be delivered to the NMED-HWB.

  15. Diet and lifestyle in CVD prevention and treatment

    USDA-ARS?s Scientific Manuscript database

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in developed countries and more recently in developing countries. Modifications to habitual dietary patterns and lifestyle behaviors (physical activity and tobacco use) can strongly influence the risk of developing CVD. Thi...

  16. Prevention: Reducing the risk of CVD in patients with periodontitis.

    PubMed

    Genco, Robert J; Van Dyke, Thomas E

    2010-09-01

    The association between periodontitis and other chronic diseases, such as cardiovascular disease (CVD) and type 2 diabetes mellitus, could be related to systemic inflammation initiated by a local inflammatory challenge. Oliveira et al. have added lack of oral hygiene, and its link with systemic inflammation, to the spectrum of risk factors for CVD.

  17. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Wang, Jianbao; Feng, Fan; Lv, Yanwei; Song, Jiupeng; Chen, Jiming

    2016-12-01

    Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m2. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  18. Cutting characteristics of dental diamond burs made with CVD technology.

    PubMed

    Lima, Luciana Monti; Motisuki, Cristiane; dos Santos-Pinto, Lourdes; dos Santos-Pinto, Ary; Corat, Evaldo Jose

    2006-01-01

    The aim of this study was to determine the cutting ability of chemical vapor deposition (CVD) diamond burs coupled to an ultrasonic dental unit handpiece for minimally invasive cavity preparation. One standard cavity was prepared on the mesial and distal surfaces of 40 extracted human third molars either with cylindrical or with spherical CVD burs. The cutting ability was compared regarding type of substrate (enamel and dentin) and direction of handpiece motion. The morphological characteristics, width and depth of the cavities were analyzed and measured using scanning electron micrographs. Statistical analysis using the Kruskal-Wallis test (p < 0.05) revealed that the width and depth of the cavities were significantly greater when they were prepared on dentin. Wider cavities were prepared when the cylindrical CVD bur was used, and deeper cavities resulted from preparation with the spherical CVD bur. The direction of handpiece motion did not influence the size of the cavities, and the CVD burs produced precise and conservative cutting.

  19. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.; Wang, Guohui; Westsik, Joseph H.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides

  20. Survival Regression Modeling Strategies in CVD Prediction

    PubMed Central

    Barkhordari, Mahnaz; Padyab, Mojgan; Sardarinia, Mahsa; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-01-01

    Background A fundamental part of prevention is prediction. Potential predictors are the sine qua non of prediction models. However, whether incorporating novel predictors to prediction models could be directly translated to added predictive value remains an area of dispute. The difference between the predictive power of a predictive model with (enhanced model) and without (baseline model) a certain predictor is generally regarded as an indicator of the predictive value added by that predictor. Indices such as discrimination and calibration have long been used in this regard. Recently, the use of added predictive value has been suggested while comparing the predictive performances of the predictive models with and without novel biomarkers. Objectives User-friendly statistical software capable of implementing novel statistical procedures is conspicuously lacking. This shortcoming has restricted implementation of such novel model assessment methods. We aimed to construct Stata commands to help researchers obtain the aforementioned statistical indices. Materials and Methods We have written Stata commands that are intended to help researchers obtain the following. 1, Nam-D’Agostino X2 goodness of fit test; 2, Cut point-free and cut point-based net reclassification improvement index (NRI), relative absolute integrated discriminatory improvement index (IDI), and survival-based regression analyses. We applied the commands to real data on women participating in the Tehran lipid and glucose study (TLGS) to examine if information relating to a family history of premature cardiovascular disease (CVD), waist circumference, and fasting plasma glucose can improve predictive performance of Framingham’s general CVD risk algorithm. Results The command is adpredsurv for survival models. Conclusions Herein we have described the Stata package “adpredsurv” for calculation of the Nam-D’Agostino X2 goodness of fit test as well as cut point-free and cut point-based NRI, relative

  1. On the dose response of some CVD diamond thermoluminescent detectors.

    PubMed

    Marczewska, B; Bilski, P; Olko, P; Nesladek, M; Rebisz, M; Guerrero, M J

    2006-01-01

    The linearity of dose response of chemical vapour deposition (CVD) diamonds grown at the Institute for Materials Research at Limburg University, Belgium, was investigated over a dose range relevant for radiotherapy. The following CVD diamonds were investigated: (1) a batch of square 3 x 3 mm2 detectors cut from a CVD wafer and (2) an as-grown CVD wafer of 6 cm diameter. A total of 20 CVD square detectors were irradiated with 137Cs gamma rays over the dose range from 200 mGy to 25 Gy. The CVD wafer, used as a large-area thermoluminescent (TL) detector, was exposed to a 226Ra needle. Very few square detectors showed linearity over a limited dose range, followed by saturation of the TL signal. The dose range of linearity was found to be strongly affected by the thermal annealing procedure of the detector. Owing to its high sensitivity and homogeneity of response, the large CVD diamond wafer was found to be very suitable as a large-area detector for 2-D dose mapping of the 226Ra brachytherapy source, possibly for Quality Assurance purposes.

  2. CVD Diamond Detectors for Current Mode Neutron Time-of-Flight Spectroscopy at OMEGA/NIF

    SciTech Connect

    G. J. Schmid; V. Yu. Glebov; A. V. Friensehner; D. R. Hargrove; S. P. Hatchett; N. Izumi; R. A. Lerche; T. W. Phillips; T. C. Sangster; C. Silbernagel; C. Stoecki

    2001-07-01

    We have performed pulsed neutron and pulsed laser tests of a CVD diamond detector manufactured from DIAFILM, a commercial grade of CVD diamond. The laser tests were performed at the short pulse UV laser at Bechtel Nevada in Livermore, CA. The pulsed neutrons were provided by DT capsule implosions at the OMEGA laser fusion facility in Rochester, NY. From these tests, we have determined the impulse response to be 250 ps fwhm for an applied E-field of 500 V/mm. Additionally, we have determined the sensitivity to be 2.4 mA/W at 500 V/mm and 4.0 mA/W at 1000 V/mm. These values are approximately 2 to 5x times higher than those reported for natural Type IIa diamond at similar E-field and thickness (1mm). These characteristics allow us to conceive of a neutron time-of-flight current mode spectrometer based on CVD diamond. Such an instrument would sit inside the laser fusion target chamber close to target chamber center (TCC), and would record neutron spectra fast enough such that backscattered neutrons and x-rays from the target chamber wall would not be a concern. The acquired neutron spectra could then be used to extract DD fuel areal density from the downscattered secondary to secondary ratio.

  3. CVD Diamond Detectors for Current Mode Neutron Time-of-Flight Spectroscopy at OMEGA/NIF

    SciTech Connect

    Schmid, G J; Friensehner, A F; Glebov, V Y; Hargrove, D R; Hatchett, S P; Izumi, N; Lerche, R A; Phillips, T W; Sangster, T C; Sibernagel, C; Stoeckl, C

    2001-06-19

    As part of a laser fusion diagnostic development program, we have performed pulsed neutron and pulsed laser tests of a CVD diamond detector manufactured from DIAFILM, a commercial grade of CVD diamond. The laser tests were performed at the short pulse UV laser at Bechtel Nevada in Livermore, CA. The pulsed neutrons were provided by DT capsule implosions at the OMEGA laser fusion facility in Rochester, NY. From these tests, we have determined the impulse response to be 250 ps fwhm for an applied E-field of 500 V/mm. Additionally, we have determined the sensitivity to be 2.8 mA/W at 500 V/mm and 4.5 mA/W at 1000 V/mm (2 to 6x times higher than reported values for natural Type IIa diamond). These detector characteristics allow us to conceive of a neutron time-of-flight current mode spectrometer based on CVD diamond. Such an instrument would sit inside the laser fusion target chamber close to TCC, and would record neutron spectra fast enough such that backscattered neutrons and y rays from the target chamber wall would not be a concern. However, the data we have taken show that the Electromagnetic Pulse (EMP) noise could be a limiting factor in performance. Determining the degree to which this noise can be shielded will be an important subject of future tests.

  4. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  5. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  6. Primary prevention of CVD: treating dyslipidaemia.

    PubMed

    Fodor, George

    2008-02-06

    The incidence of dyslipidaemia is high: in 2000, approximately 25% of adults in the USA had total cholesterol greater than 6.2 mmol/L or were taking lipid-lowering medication. Primary prevention in this context is defined as long-term management of people at increased risk but with no clinically overt evidence of CVD - such as acute MI, angina, stroke, and PVD - and who have not undergone revascularisation. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of pharmacological cholesterol-lowering interventions in people at low risk (less than 0.6% annual CHD risk); at medium risk (0.6-1.4% annual CHD risk); and at high risk (at least 1.5% annual CHD risk)? What are the effects of reduced or modified fat diet? We searched: Medline, Embase, The Cochrane Library and other important databases up to March 2006 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 15 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: fibrates, niacin, reduced- or modified-fat diet, resins, and statins.

  7. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  8. Improvements in CVD diamond properties for radiotherapy dosimetry.

    PubMed

    De Angelis, C; Bucciolini, M; Casati, M; Løvik, I; Bruzzi, M; Lagomarsino, S; Sciortino, S; Onori, S

    2006-01-01

    The goal of this work was to compare the behaviour of a chemical vapour deposited (CVD) diamond sample, grown at the University of Florence using a local procedure, with that of a commercial CVD diamond. The comparison was performed exposing both systems to 25 MV photons and measuring the current response during irradiation. Properties of dosimetric interest such as stability of response, dose rate dependence and rise time were investigated. After a preliminary study, which evidenced better performances of the commercial device with respect to the local CVD diamond, the latter was irradiated with a high fluence of fast neutrons. As a result of the neutron treatment, the quality of the CVD home-made diamond has been improved to match with that of the commercial dosemeter.

  9. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  10. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  11. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  12. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  13. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation,...

  14. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas.

    PubMed

    Bepete, George; Voiry, Damien; Chhowalla, Manish; Chiguvare, Zivayi; Coville, Neil J

    2013-07-21

    Chemical doping of graphene with small boron nitride (BN) domains has been shown to be an effective way of permanently modulating the electronic properties in graphene. Herein we show a facile method of growing large area graphene doped with small BN domains on copper foils using a single step CVD route with methane, boric acid powder and nitrogen gas as the carbon, boron and nitrogen sources respectively. This facile and safe process avoids the use of boranes and ammonia. Optical microscopy confirmed that continuous films were grown and Raman spectroscopy confirmed changes in the electronic structure of the grown BN doped graphene. Using XPS studies we find that both B and N can be substituted into the graphene structure in the form of small BN domains to give a B-N-C system. A novel structure for the BN doped graphene is proposed.

  15. A review of vitamin D status and CVD.

    PubMed

    Cashman, Kevin D

    2014-02-01

    Beyond the well-accepted effects on the skeleton, low vitamin D status has been linked to increased risk of several non-skeletal disease, including CVD. If low serum 25-hydroxyvitamin D (25(OH)D) concentration is causally linked to risk of CVD then this is important not only because low vitamin D status is quite common particularly in winter in countries above 40°N, but also of key relevance is the fact that such low vitamin D status can be improved by food-based strategies. The overarching aim of the present paper is to review the current evidence-base to support a link between low vitamin D status and CVD risk. The review initially briefly overviews how mechanistically vitamin D may play a role in CVD and then reviews the current available evidence-base to support a link between low vitamin D status and CVD risk, with particular emphasis on data from the randomised control trials, cohort studies and recent meta-analysis data as well as to the conclusions of a number of authoritative agencies/bodies. Finally, the review summarises current serum 25(OH)D concentrations within a select number of adult populations in the context of different definitions of vitamin D status proposed recently, and then briefly highlights food-based strategies for increasing vitamin D intake and status. In conclusion, at present the data for a causal link between low vitamin D status and CVD are mixed and ambiguous; however, should causality be affirmed by ongoing and future studies, there are food-based strategies for enhanced vitamin D status in the population which could ultimately lower risk of CVD.

  16. Predictors of CVD among breast cancer survivors in an integrated health system | Division of Cancer Prevention

    Cancer.gov

    PROJECT SUMMARY / ABSTRACT Breast cancer survivors are at high risk of developing and dying from cardiovascular disease (CVD) following breast cancer diagnosis, but subpopulations at increased risk and targets for intervention have not been well- characterized. A growing body of literature links CVD with specific cardiotoxic cancer treatments. CVD risk among breast cancer survivors might vary by concomitant non-adherence to CVD medications and presence of CVD risk factors. |

  17. Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok

    2015-09-01

    Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.

  18. Synthesis of CVD-graphene on rapidly heated copper foils.

    PubMed

    Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Hwangbo, Yun; Yoon, Jong-Hyuk; Lee, Eun-Kyu; Ryu, Jaechul; Lee, Hak-Joo; Cho, Seungmin; Lee, Seung-Mo

    2014-05-07

    Most chemical vapor deposition (CVD) systems used for graphene growth mainly employ convection and radiation heat transfer between the heating source and the metal catalyst in order to reach the activation temperature of the reaction, which in general leads to a long synthesis time and poor energy efficiency. Here, we report a highly time- and energy-efficient CVD setup, in which the metal catalyst (Cu) is designed to be physically contacted with a heating source to give quick heat transfer by conduction. The induced conduction heating enabled the usual effects of the pretreatment and annealing of Cu (i.e., annihilation of surface defects, impurities and contaminants) to be achieved in a significantly shorter time compared to conventional CVD. Notably, the rapid heating was observed to lead to larger grains of Cu with high uniformity as compared to the Cu annealed by conventional CVD, which are believed to be beneficial for the growth of high quality graphene. Through this CVD setup, bundles of high quality (∼252 Ω per square) and large area (over 16 inch) graphenes were able to be readily synthesized in 40 min in a significantly efficient way. When considering ease of scalability, high energy effectiveness and considerable productivity, our method is expected to be welcomed by industrialists.

  19. How good can CVD-grown monolayer graphene be?

    NASA Astrophysics Data System (ADS)

    Chen, Bingyan; Huang, Huixin; Ma, Xiaomeng; Huang, Le; Zhang, Zhiyong; Peng, Lian-Mao

    2014-11-01

    Chemical vapor deposition (CVD) is considered the most promising method for pushing graphene into commercial products. However, CVD grown graphene is usually of low quality. In this work we explore how good can CVD-derived monolayer graphene be. Through the combinational optimization of the main processes of growth, transfer, device fabrication and measurements, we show that the optimized CVD graphene can present performance comparable to mechanical exfoliated ones: in particular, high carrier mobility at room temperature on the Si/SiO2 substrate, perfect electron-hole symmetry and excellent uniformity (the mobility ranged from 5000 to 12 000 cm2 V-1 s-1 with an average mobility of ~8800 cm2 V-1 s-1 and 50% were higher than 10 000 cm2 V-1 s-1). In addition we found that the adsorbed oxygen and water molecules on graphene lead to p-type doping in graphene, and transferred charges bring charged impurity scattering to the transporting carriers in the graphene channel. It is therefore necessary to carry out electrical measurements under vacuum to obtain high intrinsic carrier mobility CVD grown graphene.

  20. Thermoluminescence properties of CVD diamond for clinical dosimetry use.

    PubMed

    Benabdesselam, M; Serrano, B; Iacconi, P; Wrobel, F; Lapraz, D; Herault, J; Butler, J E

    2006-01-01

    The application of diamond to dosimetry is desirable because of its tissue equivalence, chemical inertness and small size, but this has not been commercially viable owing to the non-reproducible response of natural diamond. The chemical vapour deposition (CVD) of diamond permits controlled, reproducible and large-scale production of this material at potentially low cost. An investigation of some clinically relevant features like the depth-dose distribution as well as the absorbed dose profile, obtained using thermoluminescence (TL), is reported for several CVD diamond films. The TL characterisation presented here shows that CVD diamond films should be excellent TL-mode detectors in instances of radiotherapy and in vivo radiation dosimetry.

  1. Nucleation and growth of CVD diamond films on patterned substrates

    SciTech Connect

    Monteiro, Othon R.; Liu, Hongbin

    2002-12-20

    The interest in using CVD diamond in the fabrication of microelectro-mechanical components has steadily increased over the last few years. Typical technology for manufacturing such components involves the use of molds patterned in silicon or silicon dioxide, which are filled by diamond deposition. The degree of conformality of the CVD film and the characteristics of the diamond-substrate interface becomes critical for the successful fabrication and performance of such devices. We have investigated the growth of CVD diamond films on patterned substrates using a microwave plasma assisted deposition reactor. In particular the use of seed layers to enhance nucleation on horizontal and vertical walls as well as to promote complete filling of narrow trenches is investigated. Scanning electron microscopy is used to characterize the nucleation and growth of the diamond films.

  2. Characteristics of CVD ternary refractory nitride diffusion barriers

    SciTech Connect

    Fleming, J.G.; Smith, P.M.; Custer, J.S.

    1996-11-01

    A range of different ternary refractory nitride compositions have been deposited by CVD (chemical vapor deposition) for the systems TiSiN, WBN, and WSiN. The precursors used are readily available. The structure, electrical, and barrier properties of the films produced by CVD are similar to those observed for films with similar compositions deposited by PVD (physical vapor deposition). The step coverage of the CVD processes developed is good and in some cases, exceptional. A combination of desirable resistivity, step coverage, and barrier properties exists simultaneously over a reasonable range of compositions for each system. Initial attempts to integrate WSiN films into a standard 0.5 micrometer CMOS process flow in place of a sputtered Ti/TiN stack were successful.

  3. Graphene Glass from Direct CVD Routes: Production and Applications.

    PubMed

    Sun, Jingyu; Chen, Yubin; Priydarshi, Manish Kr; Gao, Teng; Song, Xiuju; Zhang, Yanfeng; Liu, Zhongfan

    2016-12-01

    Recently, direct chemical vapor deposition (CVD) growth of graphene on various types of glasses has emerged as a promising route to produce graphene glass, with advantages such as tunable quality, excellent film uniformity and potential scalability. Crucial to the performance of this graphene-coated glass is that the outstanding properties of graphene are fully retained for endowing glass with new surface characteristics, making direct-CVD-derived graphene glass versatile enough for developing various applications for daily life. Herein, recent advances in the synthesis of graphene glass, particularly via direct CVD approaches, are presented. Key applications of such graphene materials in transparent conductors, smart windows, simple heating devices, solar-cell electrodes, cell culture medium, and water harvesters are also highlighted.

  4. CVD-diamond external cavity Raman laser at 573 nm.

    PubMed

    Mildren, Richard P; Butler, James E; Rabeau, James R

    2008-11-10

    Recent progress in diamond growth via chemical vapor deposition (CVD) has enabled the manufacture of single crystal samples of sufficient size and quality for realizing Raman laser devices. Here we report an external cavity CVD-diamond Raman laser pumped by a Q-switched 532 nm laser. In the investigated configuration, the dominant output coupling was by reflection loss at the diamond's uncoated Brewster angle facets caused by the crystal's inherent birefringence. Output pulses of wavelength 573 nm with a combined energy of 0.3 mJ were obtained with a slope efficiency of conversion of up to 22%.

  5. Graphene Synthesis by Plasma-Enhanced CVD Growth with Ethanol

    SciTech Connect

    Campo, Teresa; Cotto, María; Márquez, Francisco; Elizalde, Eduardo; Morant, Carmen

    2016-03-01

    A modified route to synthesize graphene flakes is proposed using the Chemical Vapor Deposition (CVD) technique, by using copper substrates as supports. The carbon source used was ethanol, the synthesis temperature was 950°C and the pressure was controlled along the whole process. In this CVD synthesis process the incorporation of the carbon source was produced at low pressure and 950°C inducing the appearance of a plasma blue flash inside the quartz tube. Apparently, the presence of this plasma blue flash is required for obtaining graphene flakes. The synthesized graphene was characterized by different techniques, showing the presence of non-oxidized graphene with high purity.

  6. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  7. Tractable Chemical Models for CVD of Silicon and Carbon

    NASA Technical Reports Server (NTRS)

    Blanquet, E.; Gokoglu, S. A.

    1993-01-01

    Tractable chemical models are validated for the CVD of silicon and carbon. Dilute silane (SiH4) and methane (CH4) in hydrogen are chosen as gaseous precursors. The chemical mechanism for each systems Si and C is deliberately reduced to three reactions in the models: one in the gas phase and two at the surface. The axial-flow CVD reactor utilized in this study has well-characterized flow and thermal fields and provides variable deposition rates in the axial direction. Comparisons between the experimental and calculated deposition rates are made at different pressures and temperatures.

  8. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  9. Hazardous Waste Treatment, Storage, and Disposal Facilities-Organic Air Emission Standards for Process Vents and Equipment Leaks - Technical Amendment - Federal Register Notice, April 26, 1991

    EPA Pesticide Factsheets

    This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle

  10. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The management and execution plan for phase 2 construction of an ethyl alcohol production facility is given. Socioeconomic, environmental, health and safety issues are discussed. An economic analysis and a feasibility analysis are given.

  11. Recovery of a CVD diamond detection system from strong pulses of laser produced x-rays

    SciTech Connect

    Dauffy, L S; Koch, J A; Izumi, N; Tommasini, R; Lerche, R A

    2006-04-25

    We are studying the response of a CVD diamond detector to a strong x-ray pulse followed by a second weaker pulse arriving 50 to 300 ns later, with a contrast in amplitude of about 1000. These tests, performed at the LLNL Jupiter laser facility, are intended to produce charge carrier densities similar to those expected during a DT implosion at NIF, where a large 14.1 MeV neutron pulse is followed by a weak downscattered neutron signal produced by slower 6-10 MeV neutrons. The number of downscattered neutrons must be carefully measured in order to obtain an accurate value for the areal density, which is proportional to the ratio of downscattered to primary neutrons. The effects of the first strong pulse may include saturation of the diamond wafer, saturation of the oscilloscope, or saturation of the associated power and data acquisition electronics. We are presenting a double pulse experiment that will use a system of several polycrystalline CVD diamond detectors irradiated by 8.6 keV x-rays emitted from a zinc target. We will discuss implication for a NIF areal density measurement.

  12. Enhancing the mechanical properties of single-crystal CVD diamond.

    PubMed

    Liang, Qi; Yan, Chih-Shiue; Meng, Yufei; Lai, Joseph; Krasnicki, Szczesny; Mao, Ho-Kwang; Hemley, Russell J

    2009-09-09

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness (∼78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  13. Enhancing the Mechanical Properties of Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    Approaches for enhancing the strength and toughness of single-crystal diamond produced by chemical vapor deposition (CVD) at high growth rates are described. CVD processes used to grow single-crystal diamond in high density plasmas were modified to incorporate boron and nitrogen. Semi-quantitative studies of mechanical properties were carried out using Vickers indentation techniques. The introduction of boron in single-crystal CVD diamond can significantly enhance the fracture toughness of this material without sacrificing its high hardness ({approx}78 GPa). Growth conditions were varied to investigate its effect on boron incorporation and optical properties by means of photoluminescence, infrared, and ultraviolet-visible absorption spectroscopy. Boron can be readily incorporated into single-crystal diamond by the methods used, but with nitrogen addition, the incorporation of boron was hindered. The spectroscopic measurements indicate that nitrogen and boron coexist in the diamond structure, which helps explain the origin of the enhanced fracture toughness of this material. Further, low pressure/high temperature annealing can enhance the intrinsic hardness of single-crystal CVD diamond by a factor of two without appreciable loss in fracture toughness. This doping and post-growth treatment of diamond may lead to new technological applications that require enhanced mechanical properties of diamond.

  14. High mobility dry-transferred CVD bilayer graphene

    NASA Astrophysics Data System (ADS)

    Schmitz, Michael; Engels, Stephan; Banszerus, Luca; Watanabe, Kenji; Taniguchi, Takashi; Stampfer, Christoph; Beschoten, Bernd

    2017-06-01

    We report on the fabrication and characterization of high-quality chemical vapor-deposited (CVD) bilayer graphene (BLG). In particular, we demonstrate that CVD-grown BLG can be detached mechanically from the copper foil by a hexagonal boron nitride (hBN) crystal after oxidation of the copper-to-BLG interface. Confocal Raman spectroscopy reveals an AB-stacking order of the BLG crystals and a high structural quality. From transport measurements on fully encapsulated hBN/BLG/hBN Hall bar devices, we extract charge carrier mobilities up to 180 000 cm2/(Vs) at 2 K and up to 40 000 cm2/(Vs) at 300 K, outperforming state-of-the-art CVD bilayer graphene devices. Moreover, we show an on-off ratio of more than 10 000 and a band gap opening with values of up to 15 meV for a displacement field of 0.2 V/nm in such CVD grown BLG.

  15. Negative Photoconductivity and Carrier Heating in CVD Graphene

    NASA Astrophysics Data System (ADS)

    Heyman, James; Alebachew, Banteaymolu; Banman, Andrew; Kaminski, Zofia; Foo Kune, Rhyan; Stein, Jacob; Massari, Aaron; Robinson, Jeremy

    2014-03-01

    Ultrafast photoexcitation of CVD graphene typically leads to a transient decrease in conductivity. Previous reports identify two possible mechanisms for this decrease: carrier heating leading to a decrease in mobility, and a photo-induced population inversion producing a negative dynamic resistance. We present time-resolved THz transmission (TRTS) measurements which show that population inversion is not required to observe negative photoconductivity in CVD graphene and confirm the role of carrier heating. In p-type CVD graphene samples interband optical transitions are blocked for pump photon energies less than twice the Fermi energy. However, our pump photon-energy resolved TRTS measurements exhibit negative photoconductivity at all pump wavelengths investigated, indicating that interband excitation leading to population inversion is not required to observe this effect. In addition, we have performed TRTS measurements on CVD graphene in magnetic fields that separately probe carrier mobility and population. We find that negative photoconductivity following photoexcitation primarily arises from a decrease in carrier mobility, confirming the role of carrier heating. Research at NRL was supported by the Office of Naval Research. This research was supported by the National Science Foundation under the RUI grant DMR-1006065.

  16. Fleet servicing facilities for servicing, maintaining, and testing rail and truck radioactive waste transport systems: functional requirements, technical design concepts and options cost estimates and comparisons

    SciTech Connect

    Watson, C.D.; Hudson, B.J.; Keith, D.A.; Preston, M.K. Jr.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-05-01

    This is a resource document which examines feasibility design concepts and feasibility studies of a Fleet Servicing Facility (FSF). Such a facility is intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the United States' waste handling plants presently receiving radioactive wastes have an on-site FSF, nor is there an existing third party facility providing these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the system is placed into service. Thus, a need is indicated for FSF's, or their equivalent, at various radioactive materials receiving sites. In this report, three forms of FSF's solely for spent fuel transport systems were examined: independent, integrated, and colocated. The independent concept was already the subject of a detailed report and is extensively referenced in this document so that capital cost comparisons of the three concepts could be made. These facilities probably could service high-level, intermediate-level, low-level, or other waste transportation systems with minor modification, but this study did not include any system other than spent fuel. Both the Integrated and Colocated concepts were assumed to be associated with some radioactive materials handling facility such as an AFR repository.

  17. Cold vacuum drying facility 90% design review

    SciTech Connect

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  18. Oxidative DNA Damage in Blood of CVD Patients Taking Detralex

    PubMed Central

    Krzyściak, Wirginia; Cierniak, Agnieszka; Kózka, Mariusz; Kozieł, Joanna

    2011-01-01

    The main goal of the work reported here was to determine the degree of oxidative/alkali-labile DNA damages in peripheral blood as well as in the blood stasis from varicose vein of (chronic venous disorder) CVD patients. Moreover, determination of the impact of Detralex usage on the level of (oxidative) DNA damages in CVD patients was evaluated as well. The degree of oxidative DNA damages was studied in a group consisted of thirty patients with diagnosed chronic venous insufficiency (CVI) in the 2nd and 3rd degree, according to clinical state, etiology, anatomy and pathophysiology (CEAP), and qualified to surgical procedure. The control group consisted of normal volunteers (blood donors) qualified during standard examinations at Regional Centers of Blood Donation and Blood Therapy. The comet assay was used for determination of DNA damages. Analyses of the obtained results showed increase in the level of oxidative/alkali-labile DNA damages in lymphocytes originating from antebrachial blood of CVD patients as compared to the control group (Control) (p < 0.002; ANOVA). In addition, it was demonstrated that the usage of Detralex® resulted in decrease of the level of oxidative/alkali-labile DNA damages in CVD patients as compared to patients without Detralex® treatment (p < 0.001; ANOVA). Based on findings from the study, it may be hypothesized about occurrence of significant oxidative DNA damages as the consequence of strong oxidative stress in CVD. In addition, antioxidative effectiveness of Detralexu® was observed at the recommended dose, one tablet twice daily. PMID:21912579

  19. Optical and dielectric properties of CVD polycrystalline diamond plates

    NASA Astrophysics Data System (ADS)

    Sussmann, Ricardo S.; Wort, Christopher J. H.; Sweeney, Charles G.; Collins, J. L.; Dodge, C. N.; Savage, James A.

    1994-09-01

    Optical, and dielectric properties of free-standing plates of polycrystalline diamond grown by chemical vapor deposition (CVD) are reported and compared with Type IIa natural single crystal diamond specimens. Ultra-violet, visible, and Fourier transform infrared spectroscopies have been used to assess the optical quality of the material. It has been found that over most of the spectral range, except at short wavelengths close to the fundamental edge, the transmission of the CVD plates is almost indistinguishable from that of Type IIa natural diamond. In the visible and ultra-violet the transmission is reduced due to a combination of scattering and true absorption. The imaging potential of CVD diamond at 10.6 micrometers wavelength has been assessed by measurements of modulation transfer function (MTF). The intrinsic optical quality of the material is adequate for imaging in the infrared region but improvements are needed to planarize the optical surfaces in order to minimize astigmatism and lensing. Measurements of dielectric constant and dielectric loss tangent were performed at 36 GHz, 72 GHz, and 144 GHz microwave frequencies using an open resonator technique. Bulk values of dielectric loss tangent as low as 73 X 10-6 have been observed. There is evidence that these values may still be affected by surface effects and that the true value for the bulk dielectric loss tangent in high quality CVD diamond plates studied in this paper could be as low as 30 X 10-6 or lower over a wide temperature range up to 250 degree(s)C, the lowest value of loss tangent so far reported for CVD diamond.

  20. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    SciTech Connect

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  1. The impact of a point-of-care testing device on CVD risk assessment completion in New Zealand primary-care practice: A cluster randomised controlled trial and qualitative investigation

    PubMed Central

    Wells, Sue; Rafter, Natasha; Kenealy, Timothy; Herd, Geoff; Eggleton, Kyle; Lightfoot, Rose; Arcus, Kim; Wadham, Angela; Jiang, Yannan; Bullen, Chris

    2017-01-01

    Objectives To assess the effect of a point of care (POC) device for testing lipids and HbA1c in addition to testing by community laboratory facilities (usual practice) on the completion of cardiovascular disease (CVD) risk assessments in general practice. Methods We conducted a pragmatic, cluster randomised controlled trial in 20 New Zealand general practices stratified by size and rurality and randomised to POC device plus usual practice or usual practice alone (controls). Patients aged 35–79 years were eligible if they met national guideline criteria for CVD risk assessment. Data on CVD risk assessments were aggregated using a web-based decision support programme common to each practice. Data entered into the on-line CVD risk assessment form could be saved pending blood test results. The primary outcome was the proportion of completed CVD risk assessments. Qualitative data on practice processes for CVD risk assessment and feasibility of POC testing were collected at the end of the study by interviews and questionnaire. The POC testing was supported by a comprehensive quality assurance programme. Results A CVD risk assessment entry was recorded for 7421 patients in 10 POC practices and 6217 patients in 10 control practices; 99.5% of CVD risk assessments had complete data in both groups (adjusted odds ratio 1.02 [95%CI 0.61–1.69]). There were major external influences that affected the trial: including a national performance target for CVD risk assessment and changes to CVD guidelines. All practices had invested in systems and dedicated staff time to identify and follow up patients to completion. However, the POC device was viewed by most as an additional tool rather than as an opportunity to review practice work flow and leverage the immediate test results for patient education and CVD risk management discussions. Shortly after commencement, the trial was halted due to a change in the HbA1c test assay performance. The trial restarted after the manufacturing

  2. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    SciTech Connect

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-13

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E{sub n} ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.

  3. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel; Gagnon-Moisan, Francis; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas

    2015-01-01

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ En ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.

  4. COMPARATIVE EVALUATION OF RISK FACTORS FOR CARDIOVASCULAR DISEASE (CVD) IN GENETICALLY PREDISPOSED RATS

    EPA Science Inventory

    Rodent CVD models are increasingly used for understanding individual differences in susceptibility to environmental stressors such as air pollution. We characterized pathologies and a number of known human risk factors of CVD in genetically predisposed, male young adult Spontaneo...

  5. THE RELATIONSHIP BETWEEN OZONE-INDUCED LUNG INJURY, ANTIOXIDANT COMPENSATION AND UNDERLYING CARDIOVASCULAR DISEASE (CVD).

    EPA Science Inventory

    Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...

  6. THE RELATIONSHIP BETWEEN OZONE-INDUCED LUNG INJURY, ANTIOXIDANT COMPENSATION AND UNDERLYING CARDIOVASCULAR DISEASE (CVD).

    EPA Science Inventory

    Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...

  7. COMPARATIVE EVALUATION OF RISK FACTORS FOR CARDIOVASCULAR DISEASE (CVD) IN GENETICALLY PREDISPOSED RATS

    EPA Science Inventory

    Rodent CVD models are increasingly used for understanding individual differences in susceptibility to environmental stressors such as air pollution. We characterized pathologies and a number of known human risk factors of CVD in genetically predisposed, male young adult Spontaneo...

  8. NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES

    SciTech Connect

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-18

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker

  9. Characterization of solid wastes for the proposed WyCoalGas gasification facility. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    SciTech Connect

    Not Available

    1982-01-01

    The proposed facility will produce large volumes of coal ash, both from the gasifiers and the steam generating boilers, and flue gas desulfurization (FGD) sludge, requiring disposal. Several other wastes will be produced in much smaller volumes. These major solid waste streams are characterized in this technical note. The waste characterizations are based on the analyses of samples from a test at the SASOL I (proprietary) Limited Coal Conversion facility in South Africa. The SASOL facility uses Lurgi gasifiers, and the test coal was from the Jacobs Ranch coal mine adjacent to the Rochelle mine. Solid waste samples from the XYZ Power Station power plant, which burns coal similar in composition to the Rochelle coal, were also collected and characterized. Wastes other than coal ashes and FGD sludge are characterized based on analyses of waste from similar processes or on existing data from Lurgi gasifiers and steam generating boilers. Section 2 of this note contains a summary of the waste characteristics with emphasis on those waste properties which will affect disposal requirements. Sample acquisition is discussed in Section 3. The final three sections present the detailed results of the waste characterizations. Section 4 describes the analyses that were performed to satisfy current regulations; Section 5 presents the results of a comprehensive analysis of the wastes, including trace element and organic analyses; Section 6 presents the physical properties of the wastes which will affect the waste handling and disposal operations.

  10. Expanded Safety and Immunogenicity of a Bivalent, Oral, Attenuated Cholera Vaccine, CVD 103-HgR Plus CVD 111, in United States Military Personnel Stationed in Panama

    PubMed Central

    Taylor, David N.; Sanchez, José L.; Castro, José M.; Lebron, Carlos; Parrado, Carlos M.; Johnson, David E.; Tacket, Carol O.; Losonsky, Genevieve A.; Wasserman, Steven S.; Levine, Myron M.; Cryz, Stanley J.

    1999-01-01

    To provide optimum protection against classical and El Tor biotypes of Vibrio cholerae O1, a single-dose, oral cholera vaccine was developed by combining two live, attenuated vaccine strains, CVD 103-HgR (classical, Inaba) and CVD 111 (El Tor, Ogawa). The vaccines were formulated in a double-chamber sachet; one chamber contained lyophilized bacteria, and the other contained buffer. A total of 170 partially-immune American soldiers stationed in Panama received one of the following five formulations: (a) CVD 103-HgR at 108 CFU plus CVD 111 at 107 CFU, (b) CVD 103-HgR at 108 CFU plus CVD 111 at 106 CFU, (c) CVD 103-HgR alone at 108 CFU, (d) CVD 111 alone at 107 CFU, or (e) inactivated Escherichia coli placebo. Among those who received CVD 111 at the high or low dose either alone or in combination with CVD 103-HgR, 8 of 103 had diarrhea, defined as three or more liquid stools. None of the 32 volunteers who received CVD 103-HgR alone or the 35 placebo recipients had diarrhea. CVD 111 was detected in the stools of 46% of the 103 volunteers who received it. About 65% of all persons who received CVD 103-HgR either alone or in combination had a fourfold rise in Inaba vibriocidal titers. The postvaccination geometric mean titers were comparable among groups, ranging from 450 to 550. Ogawa vibriocidal titers were about twice as high in persons who received CVD 111 as in those who received CVD 103-HgR alone (600 versus 300). The addition of CVD 111 improved the overall seroconversion rate and doubled the serum Ogawa vibriocidal titers, suggesting that the combination of an El Tor and a classical cholera strain is desirable. While CVD 111 was previously found to be well tolerated in semiimmune Peruvians, the adverse effects observed in this study indicate that this strain requires further attenuation before it can be safely used in nonimmune populations. PMID:10085055

  11. Expanded safety and immunogenicity of a bivalent, oral, attenuated cholera vaccine, CVD 103-HgR plus CVD 111, in United States military personnel stationed in Panama.

    PubMed

    Taylor, D N; Sanchez, J L; Castro, J M; Lebron, C; Parrado, C M; Johnson, D E; Tacket, C O; Losonsky, G A; Wasserman, S S; Levine, M M; Cryz, S J

    1999-04-01

    To provide optimum protection against classical and El Tor biotypes of Vibrio cholerae O1, a single-dose, oral cholera vaccine was developed by combining two live, attenuated vaccine strains, CVD 103-HgR (classical, Inaba) and CVD 111 (El Tor, Ogawa). The vaccines were formulated in a double-chamber sachet; one chamber contained lyophilized bacteria, and the other contained buffer. A total of 170 partially-immune American soldiers stationed in Panama received one of the following five formulations: (a) CVD 103-HgR at 10(8) CFU plus CVD 111 at 10(7) CFU, (b) CVD 103-HgR at 10(8) CFU plus CVD 111 at 10(6) CFU, (c) CVD 103-HgR alone at 10(8) CFU, (d) CVD 111 alone at 10(7) CFU, or (e) inactivated Escherichia coli placebo. Among those who received CVD 111 at the high or low dose either alone or in combination with CVD 103-HgR, 8 of 103 had diarrhea, defined as three or more liquid stools. None of the 32 volunteers who received CVD 103-HgR alone or the 35 placebo recipients had diarrhea. CVD 111 was detected in the stools of 46% of the 103 volunteers who received it. About 65% of all persons who received CVD 103-HgR either alone or in combination had a fourfold rise in Inaba vibriocidal titers. The postvaccination geometric mean titers were comparable among groups, ranging from 450 to 550. Ogawa vibriocidal titers were about twice as high in persons who received CVD 111 as in those who received CVD 103-HgR alone (600 versus 300). The addition of CVD 111 improved the overall seroconversion rate and doubled the serum Ogawa vibriocidal titers, suggesting that the combination of an El Tor and a classical cholera strain is desirable. While CVD 111 was previously found to be well tolerated in semiimmune Peruvians, the adverse effects observed in this study indicate that this strain requires further attenuation before it can be safely used in nonimmune populations.

  12. Development of CVD mullite coatings for Si-based ceramics

    NASA Astrophysics Data System (ADS)

    Auger, Michael Lawrence

    1999-09-01

    To raise fuel efficiencies, the next generation of engines and fuel systems must be lighter and operate at higher temperatures. Ceramic-based materials, which are considerably lighter than metals and can withstand working temperatures of up to 1400sp°C, have been targeted to replace traditional metal-based components. The materials used in combustion environments must also be capable of withstanding erosion and corrosion caused by combustion gases, particulates, and deposit-forming corrodants. With these demanding criteria, silicon-based ceramics are the leading candidate materials for high temperature engine and heat exchanger structural components. However, these materials are limited in gaseous environments and in the presence of molten salts since they form liquid silicates on exposed surfaces at temperatures as low as 800sp°C. Protective coatings that can withstand higher operating temperatures and corrosive atmospheres must be developed for silicon-based ceramics. Mullite (3Alsb2Osb3{*}2SiOsb2) was targeted as a potential coating material due to its unique ability to resist corrosion, retain its strength, resist creep, and avoid thermal shock failure at elevated temperatures. Several attempts to deposit mullite coatings by various processing methods have met with limited success and usually resulted in coatings that have had pores, cracks, poor adherence, and required thermal post-treatments. To overcome these deficiencies, the direct formation of chemically vapor deposited (CVD) mullite coatings has been developed. CVD is a high temperature atomistic deposition technique that results in dense, adherent crystalline coatings. The object of this dissertation was to further the understanding of the CVD mullite deposition process and resultant coating. The kinetics of CVD mullite deposition were investigated as a function of the following process parameters: temperature, pressure, and the deposition reactor system. An empirical kinetic model was developed

  13. Multiwalled carbon nanotube CVD synthesis, modification, and composite applications

    NASA Astrophysics Data System (ADS)

    Qian, Dali

    Well-aligned carbon multiwall nanotube (MWNT) arrays have been continuously synthesized by a floating catalytic chemical vapor deposition (CVD) method involving the pyrolysis of xylene-ferrocene mixtures. The CVD parameters have been studied to selectively synthesize nanotubes with required dimensions. A mixed tip-root growth model has been proposed for the floating catalytic CVD synthesis. Coarsening of the catalyst particle at the root end promoted MWNT wall coarsening (addition of new concentric graphene shells), while the smaller catalyst particle at the tip contributed to MWNT elongation. A two-step process in which ferrocene was fed for only five minutes to nucleate the DTs was developed to understand if a continuous supply of catalyst was necessary for continued growth. The results show that the ferrocene was only necessary for initial nucleation. To simplify the CVD process further, another two-step synthesis method was developed in which the ferrocene was pre-decomposed so that the nanotube nucleation could be isolated from the growth, enabling quantification of growth mechanisms and kinetics. Mass spectra and hydrocarbon analyses of the CVD reactor tail gas were performed to understand the pyrolysis chemistry. Well-aligned N-doped and Ru-doped MWNT arrays have been produced by pyrolysis of pyridine ferrocene mixtures and xylene-ferrocene-ruthenocene mixtures, respectively. Various material characterization techniques were used to measure the dopant distributions and correlate the catalyst phase with the novel nanotube structures. High-temperature annealing has been shown to be a viable means to remove both the catalyst particles and certain microstructural defects within the CVD-derived DTs. The phase transformation of catalyst during annealing has also been studied. Homogeneous distribution of MWNTs in polystyrene matrices was achieved by an ultrasonic assisted solution-evaporation method. Addition of only 1 wt % DTs to polystyrene increased the polymer

  14. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    SciTech Connect

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray and gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.

  15. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    , by the purpose to integrate the carbon nanostructures in the carbon fibers by means of chemical vapor deposition (CVD) method, in order to develop the basic substrate of advanced carbon-based nanocomposite for atomic oxygen protection. The nanostructures grown onto the carbon fibers can be used to create multiscale hybrid carbon nanotube/carbon fiber composites where individual carbon fibers, which are several microns in diameter, are surrounded by nanotubes. The present objective is the setting-up of the CVD parameters for a reliable growth of carbon nanostructures on carbon fiber surface; after that, the results of a preliminary characterization related to atomic oxygen effects testing by means of a ground LEO simulation facility are reported and discussed.

  16. Radiation damage in single crystal CVD diamond material investigated with a high current relativistic 197Au beam

    NASA Astrophysics Data System (ADS)

    Pietraszko, J.; Galatyuk, T.; Grilj, V.; Koenig, W.; Spataro, S.; Träger, M.

    2014-11-01

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high intensity heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2-3×106/s/mm2) of 1.25A GeV Au69+197 ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such a beam are reported.

  17. Evaluation of CVD diamond coating layer using leaky Rayleigh wave.

    PubMed

    Song, Sung-Jin; Kim, Hak-Joon; Wang, Wen-Wu; Yang, Dong-Ju; Kim, Young H; Kwon, Sung D; Takagi, T; Uchimoto, T; Abe, T

    2006-12-22

    In the present study, the possibility of using leaky Rayleigh waves as a nondestructive tool for the evaluation of CVD diamond coating layer is explored experimentally. For this purpose, a set of CVD diamond coated specimens are prepared and the leaky Rayleigh waves are measured in an immersion, pulse-echo setup. For the proper analysis of the acquired signals we propose a novel signal analysis approach, namely the "time trace angular scan (TTAS)" image. Then, the proposed approach together with the backward radiation profiles are applied for the analysis of signals acquired in the initial experiments. The TTAS image shows the entire information on both time-of-arrival and angle of incidence of the signals for the proper "time-angle windowing." Then, the backward radiation profile of the windowed signals provides adequate parameters from which nondestructive evaluation of the coated specimens is carried out.

  18. Optical bleaching, TSL and OSL features of CVD diamond.

    PubMed

    Benabdesselam, M; Iacconi, P; Trinkler, L; Berzina, B; Butler, J E

    2006-01-01

    Luminescence and optical features of chemical vapour deposition (CVD) diamond have been studied in view of the potential application of this material in ionising radiation dosimetry field. For this purpose, thermally stimulated luminescence (TSL) and optically stimulated luminescence (OSL) techniques have been used. A large amount of work has emphasised the excellent dosimetric properties of CVD diamond. Nevertheless, TSL measurements showed that after irradiation, this material is extremely sensitive to ambient light and the stored dose information is drastically affected by optical bleaching. From OSL analysis, it follows that both types of processes (TSL and OSL) were characterised by the same excitation and emission spectra and that optical bleaching originated from a broad stimulation band lying from visible to near infrared with a continuous character.

  19. CVD Diamonds in the BABAR Radiation Monitoring System

    SciTech Connect

    Bruinsma, M

    2004-06-28

    To prevent excessive radiation damage to its Silicon Vertex Tracker, the BaBar experiment at SLAC uses a radiation monitoring and protection system that triggers a beam abort whenever radiation levels are anomalously high. The existing system, which employs large area Si PIN diodes as radiation sensors, has become increasingly difficult to operate due to radiation damage. We have studied CVD diamond sensors as a potential alternative for these silicon sensors. Two diamond sensors have been routinely used since their installation in the Vertex Tracker in August 2002. The experience with these sensors and a variety of tests in the laboratory have shown CVD diamonds to be a viable solution for dosimetry in high radiation environments. However, our studies have also revealed surprising side-effects.

  20. In situ size sorting in CVD synthesis of Si microspheres

    PubMed Central

    Garín, M.; Fenollosa, R.; Kowalski, L.

    2016-01-01

    Silicon microspheres produced in gas-phase by hot-wall CVD offer unique quality in terms of sphericity, surface smoothness, and size. However, the spheres produced are polydisperse in size, which typically range from 0.5 μm to 5 μm. In this work we show through experiments and calculations that thermophoretic forces arising from strong temperature gradients inside the reactor volume effectively sort the particles in size along the reactor. These temperature gradients are shown to be produced by a convective gas flow. The results prove that it is possible to select the particle size by collecting them in a particular reactor region, opening new possibilities towards the production by CVD of size-controlled high-quality silicon microspheres. PMID:27929055

  1. CVD synthesis of boron nitride nanotubes without metal catalysts

    NASA Astrophysics Data System (ADS)

    Ma, R.; Bando, Y.; Sato, T.

    2001-03-01

    An efficient CVD synthetic route for bulk quantities of boron nitride nanotubes (BN-NTs) was developed, where a B-N-O precursor generated from melamine diborate (C 3N 6H 6·2H 3BO 3) was employed as the precursor and no metal catalyst was used. The resultant tubes all show remarkable ordering of the concentric atomic layers and exhibit stoichiometric BN composition. It is commonly found that the nanotubes have bulbous tips showing B-N-O amorphous clusters encapsulated in BN cages. The amorphous clusters might play the catalytic role in the nanotube `tip-growth' process as the metal catalysts do in the metal-catalyzed CVD method.

  2. Graphene Synthesis by Plasma-Enhanced CVD Growth with Ethanol

    DOE PAGES

    Campo, Teresa; Cotto, María; Márquez, Francisco; ...

    2016-03-01

    A modified route to synthesize graphene flakes is proposed using the Chemical Vapor Deposition (CVD) technique, by using copper substrates as supports. The carbon source used was ethanol, the synthesis temperature was 950°C and the pressure was controlled along the whole process. In this CVD synthesis process the incorporation of the carbon source was produced at low pressure and 950°C inducing the appearance of a plasma blue flash inside the quartz tube. Apparently, the presence of this plasma blue flash is required for obtaining graphene flakes. The synthesized graphene was characterized by different techniques, showing the presence of non-oxidized graphenemore » with high purity.« less

  3. In situ size sorting in CVD synthesis of Si microspheres

    NASA Astrophysics Data System (ADS)

    Garín, M.; Fenollosa, R.; Kowalski, L.

    2016-12-01

    Silicon microspheres produced in gas-phase by hot-wall CVD offer unique quality in terms of sphericity, surface smoothness, and size. However, the spheres produced are polydisperse in size, which typically range from 0.5 μm to 5 μm. In this work we show through experiments and calculations that thermophoretic forces arising from strong temperature gradients inside the reactor volume effectively sort the particles in size along the reactor. These temperature gradients are shown to be produced by a convective gas flow. The results prove that it is possible to select the particle size by collecting them in a particular reactor region, opening new possibilities towards the production by CVD of size-controlled high-quality silicon microspheres.

  4. Argan oil improves surrogate markers of CVD in humans.

    PubMed

    Sour, Souad; Belarbi, Meriem; Khaldi, Darine; Benmansour, Nassima; Sari, Nassima; Nani, Abdelhafid; Chemat, Farid; Visioli, Francesco

    2012-06-01

    Limited - though increasing - evidence suggests that argan oil might be endowed with potential healthful properties, mostly in the areas of CVD and prostate cancer. We sought to comprehensively determine the effects of argan oil supplementation on the plasma lipid profile and antioxidant status of a group of healthy Algerian subjects, compared with matched controls. A total of twenty healthy subjects consumed 15 g/d of argan oil - with toasted bread - for breakfast, during 4 weeks (intervention group), whereas twenty matched controls followed their habitual diet, but did not consume argan oil. The study lasted 30 d. At the end of the study, argan oil-supplemented subjects exhibited higher plasma vitamin E concentrations, lower total and LDL-cholesterol, lower TAG and improved plasma and cellular antioxidant profile, when compared with controls. In conclusion, we showed that Algerian argan oil is able to positively modulate some surrogate markers of CVD, through mechanisms which warrant further investigation.

  5. Ultrafast dynamics of photoexcited free carriers in CVD diamonds

    NASA Astrophysics Data System (ADS)

    Liu, Xiangming; Zhang, Ben; Zhong, Quanjie; Peng, Xiaoshi; Liu, Shenye

    2017-06-01

    We report on the experimental studies of the free-carrier dynamics and nonlinear optical properties in both bulk polycrystalline and single-crystal chemical vapor deposition (CVD) diamonds. The dynamics of nonlinear refraction and nonlinear absorption is measured by use of a time-resolved femtosecond pump-probe technique under UV excitation. Nonlinear refraction dynamics indicates a positive Kerr effect. Slow and fast components in nonlinear absorption transmittance are separated and used to determine the free-carrier lifetimes.

  6. Evidence relating sodium intake to blood pressure and CVD.

    PubMed

    O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2014-01-01

    Sodium is an essential nutrient, mostly ingested as salt (sodium chloride). Average sodium intake ranges from 3 to 6 g per day (7.5-15 g/day of salt) in most countries, with regional variations. Increasing levels of sodium intake have a positive association with higher blood pressure. Randomized controlled trials report a reduction in blood pressure with reducing sodium intake from moderate to low levels, which is the evidence that forms the basis for international guidelines recommending all people consume less than 2.0 g of sodium per day. However, no randomized trials have demonstrated that reducing sodium leads to a reduction in cardiovascular disease (CVD). In their absence, the next option is to examine the association between sodium consumption and CVD in prospective cohort studies. Several recent prospective cohort studies have indicated that while high intake of sodium (>6 g/d) is associated with higher risk of CVD compared to those with moderate intake (3 to 5 g/d), lower intake (<3 g/day) is also associated with a higher risk (despite lower blood pressure levels). However, most of these studies were conducted in populations at increased risk of cardiovascular disease. Current epidemiologic evidence supports that an optimal level of sodium intake is in the range of about 3-5 g/day, as this range is associated with lowest risk of CVD in prospective cohort studies. Randomized controlled trials, comparing the effect of low sodium intake to moderate intake on incidence of cardiovascular events and mortality, are required to truly define optimal intake range.

  7. Strain Relaxation in CVD Graphene: Wrinkling with Shear Lag.

    PubMed

    Bronsgeest, Merijntje S; Bendiab, Nedjma; Mathur, Shashank; Kimouche, Amina; Johnson, Harley T; Coraux, Johann; Pochet, Pascal

    2015-08-12

    We measure uniaxial strain fields in the vicinity of edges and wrinkles in graphene prepared by chemical vapor deposition (CVD), by combining microscopy techniques and local vibrational characterization. These strain fields have magnitudes of several tenths of a percent and extend across micrometer distances. The nonlinear shear-lag model remarkably captures these strain fields in terms of the graphene-substrate interaction and provides a complete understanding of strain-relieving wrinkles in graphene for any level of graphene-substrate coherency.

  8. Electrochromic behavior in CVD grown tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Gogova, D.; Iossifova, A.; Ivanova, T.; Dimitrova, Zl; Gesheva, K.

    1999-03-01

    Solid state electrochemical devices (ECDs) for smart windows, large area displays and automobile rearview mirrors are of considerable technological and commercial interest. In this paper, we studied the electrochromic properties of amorphous and polycrystalline CVD carbonyl tungsten oxide films and the possibility for sol-gel thin TiO 2 film to play the role of passive electrode in an electrochromic window with solid polymer electrolyte.

  9. Nutrient Intake, Physical Activity, and CVD Risk Factors in Children

    PubMed Central

    Day, R. Sue; Fulton, Janet E.; Dai, Shifan; Mihalopoulos, Nicole L.; Barradas, Danielle T.

    2009-01-01

    Background Associations among dietary intake, physical activity, and cardiovascular disease (CVD) risk factors are inconsistent among male and female youth, possibly from lack of adjustment for pubertal status. The purpose of this report is to describe the associations of CVD risk factors among youth, adjusted for sexual maturation. Methods Data analyzed in 2007 from a sumsample of 556 children aged 8, 11, and 14 years in Project HeartBeat!, 1991–1993, provide cross-sectional patterns of CVD risk factors by age and gender, adjusting for sexual maturation, within dietary fat and physical activity categories. Results Girls consuming moderate- to high-fat diets were significantly less physically active than those consuming low-fat diets. Boys and girls consuming high-fat diets had higher saturated fat and cholesterol intakes than children in low-fat categories. Boys had no significant differences in physical activity, blood pressure, waist circumference, or plasma cholesterol levels across fat categories. Girls’ plasma cholesterol levels showed no significant differences across fat categories. Dietary intake did not differ across moderate-to-vigorous physical activity (MVPA) categories within gender. There were no differences in BMI by fat or MVPA categories for either gender. Girls’ waist circumference differed significantly by fat category, and systolic blood pressure differed significantly across fat and MVPA categories. Boys’ fifth-phase diastolic blood pressure was significantly different across MVPA categories. Conclusions Girls consuming atherogenic diets were significantly less physically active than those with low fat intakes, whereas boys consuming high-fat diets did not show differences in physical activity measures. With the prevalence of overweight rising among youth, the impact of atherogenic diets and sedentary lifestyles on CVD risk factors is of concern to public health professionals. PMID:19524152

  10. Single Molecule Source Reagents for CVD of Beta Silicon Carbide

    DTIC Science & Technology

    1991-06-30

    Beta silicon carbide is an excellent candidate semiconductor material for demanding applications in high power and high temperature electronic...devices due to its high breakdown voltage, relatively large band gap, high thermal conductivity and high melting point. Use of silicon carbide thin films is...equipment has been used in the CVD systems, but small disparities remain between successive deposited films. The production of practical beta silicon carbide devices

  11. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The technical and economic feasibility of producing motor fuel alcohol from corn in a 100 million gallon per year plant to be constructed in Myrtle Grove, Louisiana is evaluated. The evaluation includes a detailed process design using proven technology, a capital cost estimate for the plant, a detailed analysis of the annual operating cost, a market study, a socioeconomic, environmental, health and safety analysis, and a complete financial analysis. Several other considerations for production of ethanol were evaluated including: cogeneration and fuel to be used in firing the boilers; single by-products vs. multiple by-products; and use of boiler flue gas for by-product drying.

  12. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana

    SciTech Connect

    Not Available

    1982-05-31

    The technical and economic feasibility of producing motor fuel alcohol from corn in a 100 million gallon per year plant to be constructed in Myrtle Grove, Louisiana is evaluated. The evaluation includes a detailed process design using proven technology, a capital cost estimate for the plant, a detailed analysis of the annual operating cost, a market study, a socioeconomic, environmental, health and safety analysis, and a complete financial analysis. Several other considerations for production of ethanol were evaluated including: cogeneration and fuel to be used in firing the boilers; single by-products vs. multiple by-products; and use of boiler flue gas for by-product drying.

  13. Report on International Spaceborne Imaging Spectroscopy Technical Committee Calibration and Validation Workshop, National Environment Research Council Field Spectroscopy Facility, University of Edinburgh

    NASA Technical Reports Server (NTRS)

    Ong, C,; Mueller, A.; Thome, K.; Bachmann, M.; Czapla-Myers, J.; Holzwarth, S.; Khalsa, S. J.; Maclellan, C.; Malthus, T.; Nightingale, J.; hide

    2016-01-01

    Calibration and validation are fundamental for obtaining quantitative information from Earth Observation (EO) sensor data. Recognising this and the impending launch of at least five sensors in the next five years, the International Spaceborne Imaging Spectroscopy Technical Committee instigated a calibration and validation initiative. A workshop was conducted recently as part of this initiative with the objective of establishing a good practice framework for radiometric and spectral calibration and validation in support of spaceborne imaging spectroscopy missions. This paper presents the outcomes and recommendations for future work arising from the workshop.

  14. Laser velocimetry measurements in non-isothermal CVD systems

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.

    1991-01-01

    Researchers at the NASA Langley Research Center are applying laser velocimetry (LV) techniques to characterize the fluid dynamics of non-isothermal flows inside fused silica chambers designed for chemical vapor deposition (CVD). Experimental issues involved in the application of LV techniques to this task include thermophoretic effects on the LV seed particles, seeding the hazardous gases, index of refraction gradients in the flow field and surrounding media, optical access, relatively low flow velocities, and analysis and presentation of sparse data. An overview of the practical difficulties these issues represent to the use of laser velocimetry instrumentation for CVD applications is given. A fundamental limitation on the application of LV techniques in non-isothermal systems is addressed which involves a measurement bias due to the presence of thermal gradients. This bias results from thermophoretic effects which cause seed particle trajectories to deviate from gas streamlines. Data from a research CVD reactor are presented which indicate that current models for the interaction of forces such as Stokes drag, inertia, gravity, and thermophoresis are not adequate to predict thermophoretic effects on particle-based velocimetry measurements in arbitrary flow configurations.

  15. Multisensor ISR in geo-registered contextual visual dataspace (CVD)

    NASA Astrophysics Data System (ADS)

    Kim, Kyungnam; Owechko, Yuri; Flores, Arturo; Korchev, Dmitriy

    2011-06-01

    Current ISR (Intelligence, Surveillance, and Reconnaissance) systems require an analyst to observe each video stream, which will result in analyst overload as systems such as ARGUS or Gorgon Stare come into use with many video streams generated by those sensor platforms. Full exploitation of these new sensors is not possible using today's one video stream per analyst paradigm. The Contextual Visual Dataspace (CVD) is a compact representation of real-time updating of dynamic objects from multiple video streams in a global (geo-registered/annotated) view that combines automated 3D modeling and semantic labeling of a scene. CVD provides a single integrated view of multiple automatically-selected video windows with 3D context. For a proof of concept, a CVD demonstration system performing detection, localization, and tracking of dynamic objects (e.g., vehicles and pedestrians) in multiple infrastructure camera views was developed using a combination of known computer vision methods, including foreground detection by background subtraction, ground-plane homography mapping, and appearance model-based tracking. Automated labeling of fixed and moving objects enables intelligent context-aware tracking and behavior analysis and will greatly improve ISR capabilities.

  16. Controlled CVD growth of Cu-Sb alloy nanostructures.

    PubMed

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-12

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu(11)Sb(3) nanowires (NWs), Cu(2)Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu(11)Sb(3) NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu(11)Sb(3) nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu(11)Sb(3) nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co.

  17. Controlled CVD growth of Cu-Sb alloy nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-01

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu11Sb3 nanowires (NWs), Cu2Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu11Sb3 NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu11Sb3 nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu11Sb3 nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co.

  18. Fracture behavior of warm forged and CVD tungsten

    SciTech Connect

    Lassila, D.H.; Connor, A.

    1991-02-14

    The fracture behavior of warm forged and chemical vapor deposition (CVD) tungsten was studied. Three-point bend tests were used to determine ductile-brittle transition temperatures (DBTT) of the materials using a strain based criterion for the DBTT which was arrived at by analysis of computer code modelling results of the three-point bend test. The DBTT's of the warm forged materials were found to be considerably lower than those of the CVD materials. Scanning electron microscopy (SEM), scanning Auger electron spectroscopy (SAES) and X-ray photoelectron spectroscopy (XPS) were performed to characterize the fracture morphologies and fracture surface compositions of the materials. All fracture surfaces were found to be comprised entirely of tungsten with significant and varying amounts of oxygen and carbon segregation. A large portion of the fracture surfaces of the warm forged materials is intergranular, although this is not always directly evident from SEM observations. The fracture surfaces of the CVD materials were clearly 100% intergranular. Results of the study suggest that the fracture paths of the different materials were related to the DBTTs. 22 refs., 8 figs., 2 tabs.

  19. CVD diamonds as thermoluminescent detectors for medical applications.

    PubMed

    Marczewska, B; Olko, P; Nesladek, M; Waligórski, M P R; Kerremans, Y

    2002-01-01

    Diamond is believed to be a promising material for medical dosimetry due to its tissue equivalence, mechanical and radiation hardness, and lack of solubility in water or in disinfecting agents. A number of diamond samples, obtained under different growth conditions at Limburg University, using the chemical vapour deposition (CVD) technique, was tested as thermoluminescence dosemeters. Their TL glow curve, TL response after doses of gamma rays, fading, and so on were studied at dose levels and for radiation modalities typical for radiotherapy. The investigated CVD diamonds displayed sensitivity comparable with that of MTS-N (Li:Mg,Ti) detectors, signal stability (reproducibility after several readouts) below 10% (1 SD) and no fading was found four days after irradiation. A dedicated CVD diamond plate was grown, cut into 20 detector chips (3 x 3 x 0.5 mm) and used for measuring the dose-depth distribution at different depths in a water phantom, for 60Co and six MV X ray radiotherapy beams. Due to the sensitivity of diamond to ambient light, it was difficult to achieve reproducibility comparable with that of standard LiF detectors.

  20. Engineered CVD Diamond Coatings for Machining and Tribological Applications

    NASA Astrophysics Data System (ADS)

    Dumpala, Ravikumar; Chandran, Maneesh; Ramachandra Rao, M. S.

    2015-07-01

    Diamond is an allotropes of carbon and is unique because of its extreme hardness (~100 GPa), low friction coefficient (<0.05), high thermal conductivity (~2000 Wm-1 K-1), and high chemical inertness. Diamond is being synthesized artificially in bulk form as well as in the form of surface coatings for various engineering applications. The mechanical characteristics of chemical vapor deposited (CVD) diamond coatings such as hardness, adhesion, friction coefficient, and fracture toughness can be tuned by controlling the grain size of the coatings from a few microns to a few nanometers. In this review, characteristics and performance of the CVD diamond coatings deposited on cemented tungsten carbide (WC-Co) substrates were discussed with an emphasis on WC-Co grade selection, substrate pretreatment, nanocrystallinity and microcrystallinity of the coating, mechanical and tribological characteristics, coating architecture, and interfacial adhesion integrity. Engineered coating substrate architecture is essential for CVD diamond coatings to perform well under harsh and highly abrasive machining and tribological conditions.

  1. Approach to diabetes management in patients with CVD.

    PubMed

    Lathief, Sanam; Inzucchi, Silvio E

    2016-02-01

    Epidemiologic analyses have established a clear association between diabetes and macrovascular disease. Vascular dysfunction caused by metabolic abnormalities in patients with diabetes is associated with accelerated atherosclerosis and increased risk of myocardial infarction (MI), stroke, and peripheral arterial disease. Patients with diabetes are at two to four fold higher CV risk as compared to non-diabetic individuals, and CVD remains the leading cause of mortality in patients with this condition. One strategy to reduce CVD burden in patients with diabetes has been to focus on controlling the major metabolic abnormality in this condition, namely hyperglycemia. However, this has not been unequivocally demonstrated to reduced CV events, in contrast to controlling other CVD risk factors linked to hyperglycemia, such as blood pressure, dyslipidemia, and platelet dysfunction. However, In contradistinction, accrued data from a number of large, randomized clinical trials in both type 1 (T1DM) and type 2 diabetes (T2DM) over the past 3 decades have proven that more intensive glycemic control retards the onset and progression of microvascular disease. In this review, we will summarize the key glucose-lowering CV outcomes trials in diabetes, provide an overview of the different drugs and their impact on the CV system, and describe our approach to management of the frequently encountered patient with T2DM and coronary artery disease (CAD) and/or heart failure (HF). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Infrared spectroscopic study of carrier scattering in gated CVD graphene

    NASA Astrophysics Data System (ADS)

    Yu, Kwangnam; Kim, Jiho; Kim, Joo Youn; Lee, Wonki; Hwang, Jun Yeon; Hwang, E. H.; Choi, E. J.

    2016-12-01

    We measured Drude absorption of gated CVD graphene using far-infrared transmission spectroscopy and determined the carrier scattering rate (γ ) as a function of the varied carrier density (n ). The n -dependent γ (n ) was obtained for a series of conditions systematically changed as (10 K, vacuum) → (300 K, vacuum) → (300 K, ambient pressure), which reveals that (1) at low-T, charged impurity (=A /√{n } ) and short-range defect (=B √{n } ) are the major scattering sources which constitute the total scattering γ =A /√{n }+B √{n } , (2) among various kinds of phonons populated at room-T , surface polar phonon of the SiO2 substrate is the dominantly scattering source, and (3) in air, the gas molecules adsorbed on graphene play a dual role in carrier scattering as charged impurity center and resonant scattering center. We present the absolute scattering strengths of those individual scattering sources, which provides the complete map of scattering mechanism of CVD graphene. This scattering map allows us to find out practical measures to suppress the individual scatterings, the mobility gains accompanied by them, and finally the ultimate attainable carrier mobility for CVD graphene.

  3. Ultra-high Burst Strength of CVD Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  4. Development of X-ray facilities for materials research at the Advanced Photon Source. Final technical report for period AUGUST 15, 1996 - AUGUST 14, 2000

    SciTech Connect

    Bedzyk, Michael J.

    2000-09-01

    The P.I. and his research team successfully used the funds from the DOE Instrumentation grant entitled, 'Development of X-Ray Facilities for Materials Research at the Advanced Photon Source,' to design, build, test, and commission a customized surface science x-ray scattering spectroscopy chamber. This instrumentation, which is presently in use at an APS x-ray undulator beam line operated by the DuPont-Northwestern-Dow Collaborative Access Team, is used for x-ray measurements of surface, interface, thin film and nano-structures.

  5. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  6. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    SciTech Connect

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  7. Progress report and technical evaluation of the ISCR pilot test conducted at the former CCC/USDA grain storage facility in Centralia, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2009-01-14

    In October, 2007, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented the document Interim Measure Conceptual Design (Argonne 2007a) to the Kansas Department of Health and Environment, Bureau of Environmental Remediation (KDHE/BER), for a proposed non-emergency Interim Measure (IM) at the site of the former CCC/USDA grain storage facility in Centralia, Kansas (Figure 1.1). The IM was recommended to mitigate existing levels of carbon tetrachloride contamination identified in the vadose zone soils beneath the former facility and in the groundwater beneath and in the vicinity of the former facility, as well as to moderate or decrease the potential future concentrations of carbon tetrachloride in the groundwater. The Interim Measure Conceptual Design (Argonne 2007a) was developed in accordance with the KDHE/BER Policy No.BERRS-029, Policy and Scope of Work: Interim Measures (KDHE 1996). The hydrogeologic, geochemical, and contaminant distribution characteristics of the Centralia site, as identified by the CCC/USDA, factored into the development of the nonemergency IM proposal. These characteristics were summarized in the Interim Measure Conceptual Design (Argonne 2007a) and were discussed in detail in previous Argonne reports (Argonne 2002a, 2003, 2004, 2005a,b,c, 2006a,b, 2007b). The identified remedial goals of the proposed IM were as follows: (1) To reduce the existing concentrations of carbon tetrachloride in groundwater in three 'hot spot' areas identified at the site (at SB01, SB05, and SB12-MW02; Figure 1.2) to levels acceptable to the KDHE. (2) To reduce carbon tetrachloride concentrations in the soils near the location of former soil boring SB12 and existing monitoring well MW02 (Figure 1.2) to levels below the KDHE Tier 2 Risk-Based Screening Level (RBSL) of 200 {micro}g/kg for this contaminant. To address these goals, the potential application of an in situ chemical reduction (ISCR) treatment technology, employing the

  8. Unreviewed Safety Question Determination for TOPAZ II uranium fuel pellet production at the Plutonium Handling Facility (PF-4), Technical Area 55, Los Alamos National Laboratory

    SciTech Connect

    Gordon, D.J.P.

    1993-09-29

    Enriched uranium oxide, nitride, and carbide fuel pellets have been produced at PF-4 since the facility became operational in the late 1970s. The TOPAZ II reactors require fuel enriched to 97% uranium-235. Approximately 75 kilograms (kgs) of uranium will be processed per year in support of this program. The amount of fuel processed per year at PF-4 will not be increased for these programs, but the batch size will be increased to approximately 3 kgs of uranium. The current DOE-approved Final Safety Analysis Report (FSAR) calls for batches containing 45 grams (gms) of plutonium-239 and 172 gms of uranium-235. The impact of increasing the uranium batch size on the facility authorization basis is analyzed in the attached Safety Evaluation Worksheet. In addition, the structural modification for the transformer and vacuum pump installation, required to support the operation, is evaluated. Based on the attached Safety Evaluation, it has been determined that the change in uranium batch size does not constitute an Unreviewed Safety Question (USQ), the increase in uranium batch size does not increase the probability or consequences of any accidents previously analyzed and does not create the possibility for a new type of accident or reduce the margin of safety in the Operational Safety Requirements (OSRs). Similarly, the structural modifications required for the transformer and vacuum pump installation do not increase the probability or consequence of any accident previously analyzed and do not create the possibility for a new type of accident or reduce any margin of safety in the OSRS.

  9. Oats and CVD risk markers: a systematic literature review.

    PubMed

    Thies, Frank; Masson, Lindsey F; Boffetta, Paolo; Kris-Etherton, Penny

    2014-10-01

    High consumption of whole-grain food such as oats is associated with a reduced risk of CVD and type 2 diabetes. The present study aimed to systematically review the literature describing long-term intervention studies that investigated the effects of oats or oat bran on CVD risk factors. The literature search was conducted using Embase, Medline and the Cochrane library, which identified 654 potential articles. Seventy-six articles describing sixty-nine studies met the inclusion criteria. Most studies lacked statistical power to detect a significant effect of oats on any of the risk factors considered: 59 % of studies had less than thirty subjects in the oat intervention group. Out of sixty-four studies that assessed systemic lipid markers, thirty-seven (58 %) and thirty-four (49 %) showed a significant reduction in total cholesterol (2-19 % reduction) and LDL-cholesterol (4-23 % reduction) respectively, mostly in hypercholesterolaemic subjects. Few studies (three and five, respectively) described significant effects on HDL-cholesterol and TAG concentrations. Only three out of twenty-five studies found a reduction in blood pressure after oat consumption. None of the few studies that measured markers of insulin sensitivity and inflammation found any effect after long-term oat consumption. Long-term dietary intake of oats or oat bran has a beneficial effect on blood cholesterol. However, there is no evidence that it favourably modulates insulin sensitivity. It is still unclear whether increased oat consumption significantly affects other risk markers for CVD risk, and comprehensive, adequately powered and controlled intervention trials are required to address this question.

  10. Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident CVD and mortality

    PubMed Central

    Lieb, Wolfgang; Gona, Philimon; Larson, Martin G.; Massaro, Joseph M; Lipinska, Izabella; Keaney, John F.; Rong, Jian; Corey, Diane; Hoffmann, Udo; Fox, Caroline S; Vasan, Ramachandran S.; Benjamin, Emelia J.; O’Donnell, Christopher J; Kathiresan, Sekar

    2011-01-01

    Objective Experimental evidence identified the osteoprotegerin [OPG]/receptor activator of nuclear factor–kappa-B [RANK]/RANK ligand [RANKL] pathway as a candidate system modulating vascular remodeling and cardiovascular disease (CVD). Methods and Results Serum concentrations of OPG and RANKL were measured in 3250 Framingham Study participants (54% women, 61±9 years). During a median follow-up of 4.6 years, 143 (of 3084 free of CVD at baseline) participants developed a first CVD event and 235 died. In multivariable models OPG was associated with increased hazards for incident CVD and mortality (HR: 1.27; 95% CI, 1.04 to 1.54 and HR: 1.25; 95% CI, 1.07 to 1.47 per one-SD increment in log-OPG, respectively). Log-OPG was positively related to multiple CVD risk factors including age, smoking, diabetes, systolic blood pressure and prevalent CVD. In a subsample (n=1264), the prevalence of coronary artery calcification, measured by computed tomography, increased non-significantly with OPG-quartiles. RANKL concentrations displayed inverse associations with multiple CVD risk factors including smoking, diabetes and antihypertensive treatment, and were not related to coronary artery calcification or incident CVD or mortality. Conclusions Our prospective data reinforce OPG as marker for CVD risk factor burden and predictor for CVD and mortality in the community. PMID:20448212

  11. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications.

    PubMed

    Strocov, V N; Wang, X; Shi, M; Kobayashi, M; Krempasky, J; Hess, C; Schmitt, T; Patthey, L

    2014-01-01

    Soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft-X-ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X-ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X-ray beam and optical axis of the analyzer. The high photon flux of up to 10(13) photons s(-1) (0.01% bandwidth)(-1) delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft-X-ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft-X-ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three-dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.

  12. Effective Growth of Boron Nitride Nanotubes by Thermal-CVD

    NASA Astrophysics Data System (ADS)

    Lee, Chee Huei; Xie, Ming; Meyers, Derek; Wang, Jiesheng; Khin Yap, Yoke

    2009-03-01

    The synthesis of boron nitride nanotubes (BNNTs) are challenging as compared to the growth of carbon nanotubes (CNTs). Most of reported techniques required unique setup and temperatures >1300 ^oC. Here we show that clean and long multiwalled BNNTs can be grown by simple catalytic thermal CVD. This was obtained by a growth vapor trapping approach inspired by the whisker nucleation theory. Based on our new findings, we have achieved patterned growth of BNNTs at desired locations. High resolution TEM shows that these BNNTs are highly crystallized. Besides, the tangential vibrational mode predicted by theory was detected in our BNNTs. This vibration mode could be the fingerprint for BNNTs with high crystallinity.

  13. Spray CVD for Making Solar-Cell Absorber Layers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  14. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  15. Selective, pulsed CVD of platinum on microfilament gas sensors

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Moreno, D.J.; Hughes, R.C.; Huber, R.J.; Senturia, S.D.

    1996-05-01

    A post-processing, selective micro-chemical vapor deposition (``micro-CVD``) technology for the deposition of catalytic films on surface-micromachined, nitride-passivated polysilicon filaments has been investigated. Atmospheric pressure deposition of Pt on microfilaments was accomplished by thermal decomposition of Pt acetylacetonate; deposition occurs selectively only on those filaments which are electrically heated. Catalyst morphology, characterized by SEM, can be controlled by altering deposition time, filament temperature, and through the use of pulsed heating of the filament during deposition. Morphology plays an important role in determining the sensitivity of these devices when used as combustible gas sensors.

  16. Paralinear Oxidation of CVD SiC in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Hann, Raiford E., Jr.

    1997-01-01

    The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.

  17. The Oxidation of CVD Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynchGiao N.

    1997-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.

  18. Development of CVD Mullite Coatings for SiC Fibers

    SciTech Connect

    Sarin, V.K.; Varadarajan, S.

    2000-03-15

    A process for depositing CVD mullite coatings on SiC fibers for enhanced oxidation and corrosion, and/or act as an interfacial protective barrier has been developed. Process optimization via systematic investigation of system parameters yielded uniform crystalline mullite coatings on SiC fibers. Structural characterization has allowed for tailoring of coating structure and therefore properties. High temperature oxidation/corrosion testing of the optimized coatings has shown that the coatings remain adherent and protective for extended periods. However, preliminary tests of coated fibers showed considerable degradation in tensile strength.

  19. Fabrication of nanostructured electrodes and interfaces using combustion CVD

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well

  20. Technical writing versus technical writing

    NASA Technical Reports Server (NTRS)

    Dillingham, J. W.

    1981-01-01

    Two terms, two job categories, 'technical writer' and 'technical author' are discussed in terms of industrial and business requirements and standards. A distinction between 'technical writing' and technical 'writing' is made. The term 'technical editor' is also considered. Problems inherent in the design of programs to prepare and train students for these jobs are discussed. A closer alliance between industry and academia is suggested as a means of preparing students with competent technical communication skills (especially writing and editing skills) and good technical skills.

  1. Thermal conductivity of polycrystalline CVD diamond: Experiment and theory

    SciTech Connect

    Inyushkin, A. V. Taldenkov, A. N.; Ral'chenko, V. G.; Konov, V. I.; Khomich, A. V.; Khmel'nitskii, R. A.

    2008-09-15

    The temperature dependences of thermal conductivity {kappa} of polycrystalline CVD diamond are measured in the temperature range from 5 to 410 K. The diamond sample is annealed at temperatures sequentially increasing from 1550 to 1690{sup o}C to modify the properties of the intercrystallite contacts in it. As a result of annealing, the thermal conductivity decreases strongly at temperatures below 45 K, and its temperature dependence changes from approximately quadratic to cubic. At T > 45 K, the thermal conductivity remains almost unchanged upon annealing at temperatures up to 1650{sup o}C and decreases substantially at higher annealing temperatures. The experimental data are analyzed in terms of the Callaway theory of thermal conductivity [9], which takes into account the specific role of normal phonon-phonon scattering processes. The thermal conductivity is calculated with allowance for three-phonon scattering processes, the diffuse scattering by sample boundaries, the scattering by point and extended defects, the specular scattering by crystallite boundaries, and the scattering by intercrystallite contacts. A model that reproduces the main specific features of the thermal conductivity of CVD diamond is proposed. The phonon scattering by intercrystallite contacts plays a key role in this model.

  2. Thermoluminescence in CVD diamond films: application to actinometric dosimetry.

    PubMed

    Barboza-Flores, M; Meléndrez, R; Chernov, V; Castañeda, B; Pedroza-Montero, M; Gan, B; Ahn, J; Zhang, Q; Yoon, S F

    2002-01-01

    Diamond is considered a tissue-equivalent material since its atomic number (Z =6) is close to the effective atomic number of biological tissue (Z =7.42). Such a situation makes it suitable for radiation detection purposes in medical applications. In the present work the analysis is reported of the thermoluminescence (TL) and dosimetric features of chemically vapour deposited (CVD) diamond film samples subjected to ultraviolet (UV) irradiation in the actinometric region. The TL glow curve shows peaks at 120, 220), 320 and 370 degrees C. The 120 and 370 degrees C peaks are too weak and the first one fades away in a few seconds after exposure. The overall room temperature fading shows a 50% TL decay 30 min after exposure. The 320 degrees C glow peak is considered to be the most adequate for dosimetric applications due to its low fading and linear TL behaviour as a function of UV dose in the 180-260 nm range. The TL excitation spectrum presents a broad band with at least two overlapped components around 205 and 220 nm. The results indicate that the TL behaviour of CVD diamond film can be a good alternative to the currently available dosemeter and detector in the actinometric region as well as in clinical and medical applications.

  3. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  4. Crystallographic anisotropy of growth and etch rates of CVD diamond

    SciTech Connect

    Wolfer, M; Biener, J; El-dasher, B S; Biener, M M; Hamza, A V; Kriele, A; Wild, C

    2008-08-05

    The investigation of orientation dependent crystal growth and etch processes can provide deep insights into the underlying mechanisms and thus helps to validate theoretical models. Here, we report on homoepitaxial diamond growth and oxygen etch experiments on polished, polycrystalline CVD diamond wafers by use of electron backscatter diffraction (EBSD) and white-light interferometry (WLI). Atomic force microscopy (AFM) was applied to provide additional atomic scale surface morphology information. The main advantage of using polycrystalline diamond substrates with almost random grain orientation is that it allows determining the orientation dependent growth (etch) rate for different orientations within one experiment. Specifically, we studied the effect of methane concentration on the diamond growth rate, using a microwave plasma CVD process. At 1 % methane concentration a maximum of the growth rate near <100> and a minimum near <111> is detected. Increasing the methane concentration up to 5 % shifts the maximum towards <110> while the minimum stays at <111>. Etch rate measurements in a microwave powered oxygen plasma reveal a pronounced maximum at <111>. We also made a first attempt to interpret our experimental data in terms of local micro-faceting of high-indexed planes.

  5. Epitaxial nucleation of CVD bilayer graphene on copper.

    PubMed

    Song, Yenan; Zhuang, Jianing; Song, Meng; Yin, Shaoqian; Cheng, Yu; Zhang, Xuewei; Wang, Miao; Xiang, Rong; Xia, Yang; Maruyama, Shigeo; Zhao, Pei; Ding, Feng; Wang, Hongtao

    2016-12-08

    Bilayer graphene (BLG) has emerged as a promising candidate for next-generation electronic applications, especially when it exists in the Bernal-stacked form, but its large-scale production remains a challenge. Here we present an experimental and first-principles calculation study of the epitaxial chemical vapor deposition (CVD) nucleation process for Bernal-stacked BLG growth on Cu using ethanol as a precursor. Results show that a carefully adjusted flow rate of ethanol can yield a uniform BLG film with a surface coverage of nearly 90% and a Bernal-stacking ratio of nearly 100% on ordinary flat Cu substrates, and its epitaxial nucleation of the second layer is mainly due to the active CH3 radicals with the presence of a monolayer-graphene-covered Cu surface. We believe that this nucleation mechanism will help clarify the formation of BLG by the epitaxial CVD process, and lead to many new strategies for scalable synthesis of graphene with more controllable structures and numbers of layers.

  6. CVD diamond deposition processes investigation: Cars diagnostics/modeling

    SciTech Connect

    Hay, S.O.; Roman, W.C.; Colket, M.B. III )

    1990-11-01

    The driving force behind the strong interest in diamond deposition processes is the outstanding combination of unique natural properties of this material. A wide variety of techniques has been employed to generate diamond coatings including hot filament, thermal plasma, CVD, PACVD (rf, dc, and microwave), low energy carbon ion beam, laser beam, oxyacetylene torch, and numerous hybrid dual-beam configurations. Thus, there are many routes available for producing diamond coatings in the form of small individual crystals, amorphous coatings, polycrystalline films or single crystal films under conditions far removed from the thermodynamically stable region nominally associated with diamond growth. CVD of diamond coatings from hydrocarbon containing gases can have an almost infinite number of compositions and structures; each with differing amounts of sp{sup 3} (diamond) and sp{sup 2} (graphite) bonding. This variation has contributed to confusion both in the working definition of diamond coatings and in understanding the controlling processes of forming these films. In fact, the mechanisms involved in the gas phase processes, the nucleation and growth structures, and especially their correlation are poorly understood.

  7. VOx effectively doping CVD-graphene for transparent conductive films

    NASA Astrophysics Data System (ADS)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  8. Native NIR-emitting single colour centres in CVD diamond

    NASA Astrophysics Data System (ADS)

    Gatto Monticone, D.; Traina, P.; Moreva, E.; Forneris, J.; Olivero, P.; Degiovanni, I. P.; Taccetti, F.; Giuntini, L.; Brida, G.; Amato, G.; Genovese, M.

    2014-05-01

    Single-photon sources are a fundamental element for developing quantum technologies, and sources based on colour centres in diamonds are among the most promising candidates. The well-known nitrogen vacancy centres are characterized by several limitations, and thus few other defects have recently been considered. In the present work, we characterize, in detail, native efficient single colour centres emitting in the near infra-red (λ = 740-780 nm) in both standard IIa single-crystal and electronic-grade polycrystalline commercial chemical vapour deposited (CVD) diamond samples. In the former case, a high-temperature (T > 1000 °C) annealing process in vacuum is necessary to induce the formation/activation of luminescent centres with good emission properties, while in the latter case the annealing process has marginally beneficial effects on the number and performance of native centres in commercially available samples. Although displaying significant variability in several photo-physical properties (emission wavelength, emission rate instabilities, saturation behaviours), these centres generally display appealing photophysical properties for applications as single photon sources: short lifetimes (0.7-3 ns), high emission rates (˜50-500 × 103 photons s-1) and strongly (>95%) polarized light. The native centres are tentatively attributed to impurities incorporated in the diamond crystal during the CVD growth of high-quality type-IIa samples, and offer promising perspectives in diamond-based photonics.

  9. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  10. CVD of silicon carbide on structural fibers - Microstructure and composition

    NASA Technical Reports Server (NTRS)

    Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.

    1992-01-01

    Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.

  11. CVD of silicon carbide on structural fibers: Microstructure and composition

    NASA Technical Reports Server (NTRS)

    Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.

    1992-01-01

    Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.

  12. Subbandgap-excited photoconductivity in CVD diamond films

    NASA Astrophysics Data System (ADS)

    Beetz, Charles P., Jr.; Lincoln, B. A.; Winn, David R.

    1990-12-01

    The results of room-temperature photoconductivity measurements on free-standing diamond films are reported. The films were grown on Si(100) substrates by hot filament-assisted chemical vapor deposition (CVD) from a methane/hydrogen mixture and ranged in thickness from 40 to 100 pm. The observed photocurrents in unintentionally doped films increased monotonically with increasing excitation energy. The films are found to exhibit photocurrent excitation similar to that observed for bulk diamond. In films doped with either N or Li the photocurrent exhibited broad structure superposed on the monotonic background. The photocurrent was found to depend on the chopping frequency of the excitation light decreasing with increasing chopper frequency indicative of trapping center dominated recombination dynamics. Schottky barrier heights were determined from the photoresponse for Au on CVD diamond film and on (100) oriented single crystalline type ila natural diamond. The measured barrier heights were 2. 02 and 2. 24 eV respectively in good agreement with previously measured values. A second barrier height was obtained from a threshold for internal photoemission at lower energies P4. 35 eV. We were able to observe for the first time an optical enhancement of 20X in the photocurrent using an optical biasing technique. 1.

  13. Dopant Incorporation Efficiency in CVD Silicon Carbide Epilayers

    NASA Technical Reports Server (NTRS)

    Larkin, D. J.

    1996-01-01

    In order to ensure reproducible and reliable SiC semiconductor device characteristics, controlled dopant incorporation must be accomplished. Some of the many factors which greatly influence dopant incorporation are the site-competition effect, SiC(0001) substrate polarity, substrate temperature, and the dopant-source reactor concentration. In this paper, dopant incorporation is considered and compared for various dopants in the context of dopant incorporation efficiency. By using secondary ion mass spectrometry (SIMS), the relative dopant incorporation efficiencies were calculated by dividing the SIMS determined dopant concentration in the resulting epitaxial layer by the intentional gas phase dopant concentration used during the SiC CVD. Specifically, the relative magnitudes of dopant incorporation efficiencies for nitrogen, phosphorus, and boron in 6H-SiC (0001) Si-face epitaxial layers are compared as a function of the site-competition effect and the dopant-source reactor concentrations. This serves as a first approximation for comparison of the relative 'doping potencies' of some common dopants used in SiC CVD epitaxial growth.

  14. Organic solar cells using CVD-grown graphene electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Hobeom; Bae, Sang-Hoon; Han, Tae-Hee; Lim, Kyung-Geun; Ahn, Jong-Hyun; Lee, Tae-Woo

    2014-01-01

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create ‘GraHEL’, which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while Jsc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge.

  15. Predicted Variations in Flow Patterns in a Horizontal CVD Reactor

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    Expressions in terms of common reactor operating parameters were derived for the ratio of the Grashof number to the Reynolds number, Gr/Re, the ratio of the Grashof to the square of 2 the Reynolds number, Gr/Re(exp 2), and the Rayleigh number, Ra. Values for these numbers were computed for an example horizontal CVD reactor and compared to numerical simulations to gauge their effectiveness as predictors of the presence or absence of transverse and longitudinal rolls in the reactor. Comparisons were made for both argon and hydrogen carrier gases over the pressure range 2- 101 kPa. Reasonable agreement was achieved in most cases when using Gr/Re to predict the presence of transverse rolls and Ra to predict the presence of longitudinal rolls. The ratio Gr/Re(exp 2) did not yield useful predictions regarding the presence of transverse rolls. This comparison showed that the ratio of the Grashof number to the Reynolds number, as well as the Rayleigh number, can be used to predict the presence or absence of transverse and longitudinal rolls in a horizontal CVD reactor for a given set of reactor conditions. These predictions are approximate, and care must be exercised when making predictions near transition regions.

  16. Organic solar cells using CVD-grown graphene electrodes.

    PubMed

    Kim, Hobeom; Bae, Sang-Hoon; Han, Tae-Hee; Lim, Kyung-Geun; Ahn, Jong-Hyun; Lee, Tae-Woo

    2014-01-10

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create 'GraHEL', which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while Jsc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge.

  17. Microstructure comparison of transparent and opaque CVD SiC

    SciTech Connect

    Kim, Y.; Zangvil, A.; Goela, J.S.; Taylor, R.L.

    1995-06-01

    Transparent, translucent, and opaque regions of high-purity bulk SiC, produced by CVD, have been characterized for physical properties as well as microstructure and chemical purity to correlate degree of transparency with other material characteristics. A good correlation was obtained between SiC vis-a-vis IR transmission and its microstructure. The transparent material is highly oriented toward the {l_angle}111{r_angle} direction and is characterized by pure, essentially defect-free, cubic {beta}-SiC columnar grains of size 5--10 {micro}m. The translucent material of various colors is mostly cubic in structure but contains large amounts of twins, usually as complex mixtures of several twinning variants and secondary twinning within a single grain. Opaque CVD SiC is randomly oriented, does not exhibit columnar grains, and contains one directional disorder with hexagonal ({alpha}-SiC) symmetry in a majority of grains and high density of dislocations elsewhere.

  18. Mobility enhancement of CVD graphene by spatially correlated charges

    NASA Astrophysics Data System (ADS)

    Turyanska, Lyudmila; Makarovsky, Oleg; Eaves, Laurence; Patanè, Amalia; Mori, Nobuya

    2017-06-01

    We present a strategy for enhancing the carrier mobility of single layer CVD graphene (CVD SLG) based on spatially correlated charges. Our Monte Carlo simulations, numerical modeling and the experimental results confirm that spatial correlation between defects with opposite charges can provide a means to control independently the carrier concentration and mobility of planar field effect transistors in which graphene is decorated with a layer of colloidal quantum dots (QDs). We show that the spatial correlation between electrically charged scattering centres close to the graphene/SiO2 interface and the localised charges in a QD layer can smooth out the electrostatic potential landscape, thus reducing scattering and enhancing the carrier mobility. The QD capping molecules influence the distribution and correlation of electrical charges in the vicinity of SLG and provide a means of tuning the carrier concentration and increasing the carrier mobility in graphene. These results represent a significant conceptual advance and provide a novel strategy for control of the electronic properties of 2D materials that could accelerate their utilization in optoelectronic devices.

  19. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  20. Neutron detection and dosimetry using polycrystalline CVD diamond detectors with high collection efficiency.

    PubMed

    Angelone, M; Marinelli, M; Milani, E; Tucciarone, A; Pillon, M; Pucella, G; Verona-Rinati, G

    2006-01-01

    Polycrystalline chemical vapour deposited (CVD) diamond film is an interesting material for neutron detection and dosimetry. However, the use of CVD diamond detectors is still limited by the low-level signal pulse produced because of the high energy required to produce an electron-hole pair in diamond (13.2 eV) and by the reduced charge collection efficiency owing to several types of traps for electrons and holes in CVD films. A new type of CVD diamond detector with high gain (HG) contacts was produced as part of the collaboration between the ENEA Fusion Division and the Faculty of Engineering of Rome 'Tor Vergata' University. In this paper the performance of the HG CVD diamond detector is presented and possible applications of CVD diamond detectors to neutron dosimetry are also discussed.

  1. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication.

    PubMed

    Coclite, Anna Maria; Howden, Rachel M; Borrelli, David C; Petruczok, Christy D; Yang, Rong; Yagüe, Jose Luis; Ugur, Asli; Chen, Nan; Lee, Sunghwan; Jo, Won Jun; Liu, Andong; Wang, Xiaoxue; Gleason, Karen K

    2013-10-11

    Well-adhered, conformal, thin (<100 nm) coatings can easily be obtained by chemical vapor deposition (CVD) for a variety of technological applications. Room temperature modification with functional polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, and thickness control. Initiated-CVD shows successful results in terms of rationally designed micro- and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative-CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers.

  2. Multi-function Waste Tank Facility path forward engineering analysis -- Technical Task 3.6, Estimate of operational risk in 200 West Area

    SciTech Connect

    Coles, G.A.

    1995-04-28

    Project W-0236A has been proposed to provide additional waste tank storage in the 200 East and 200 West Areas. This project would construct two new waste tanks in the 200 West Area and four new tanks in the 200 East Area, and a related project (Project W-058) would construct a new cross-site line. These projects are intended to ensure sufficient space and flexibility for continued tank farm operations, including tank waste remediation and management of unforeseen contingencies. The objective of this operational risk assessment is to support determination of the adequacy of the free-volume capacity provided by Projects W-036A and W-058 and to determine related impacts. The scope of the assessment is the 200 West Area only and covers the time period from the present to the year 2005. Two different time periods were analyzed because the new cross-site tie line will not be available until 1999. The following are key insights: success of 200 West Area tank farm operations is highly correlated to the success of the cross-site transfer line and the ability of the 200 East Area to receive waste from 200 West; there is a high likelihood of a leak on a complexed single-shell tank in the next 4 years (sampling pending); there is a strong likelihood, in the next 4 years, that some combination of tank leaks, facility upsets, and cross-site line failure will require more free tank space than is currently available in Tank 241-SY-102; in the next 4 to 10 years, there is a strong likelihood that a combination of a cross-site line failure and the need to accommodate some unscheduled waste volume will require more free tank space than is presently available in Tank 241-SY-102; the inherent uncertainty in volume projections is in the range of 3 million gallons; new million-gallon tanks increase the ability to manage contingencies and unplanned events.

  3. Increased risk of cardiovascular disease (CVD) with age in HIV-positive men: a comparison of the D:A:D CVD risk equation and general population CVD risk equations.

    PubMed

    Petoumenos, K; Reiss, P; Ryom, L; Rickenbach, M; Sabin, C A; El-Sadr, W; d'Arminio Monforte, A; Phillips, A N; De Wit, S; Kirk, O; Dabis, F; Pradier, C; Lundgren, J D; Law, M G

    2014-11-01

    The aim of the study was to statistically model the relative increased risk of cardiovascular disease (CVD) per year older in Data collection on Adverse events of anti-HIV Drugs (D:A:D) and to compare this with the relative increased risk of CVD per year older in general population risk equations. We analysed three endpoints: myocardial infarction (MI), coronary heart disease (CHD: MI or invasive coronary procedure) and CVD (CHD or stroke). We fitted a number of parametric age effects, adjusting for known risk factors and antiretroviral therapy (ART) use. The best-fitting age effect was determined using the Akaike information criterion. We compared the ageing effect from D:A:D with that from the general population risk equations: the Framingham Heart Study, CUORE and ASSIGN risk scores. A total of 24 323 men were included in analyses. Crude MI, CHD and CVD event rates per 1000 person-years increased from 2.29, 3.11 and 3.65 in those aged 40-45 years to 6.53, 11.91 and 15.89 in those aged 60-65 years, respectively. The best-fitting models included inverse age for MI and age + age(2) for CHD and CVD. In D:A:D there was a slowly accelerating increased risk of CHD and CVD per year older, which appeared to be only modest yet was consistently raised compared with the risk in the general population. The relative risk of MI with age was not different between D:A:D and the general population. We found only limited evidence of accelerating increased risk of CVD with age in D:A:D compared with the general population. The absolute risk of CVD associated with HIV infection remains uncertain. © 2014 British HIV Association.

  4. 24 CFR 583.140 - Technical assistance.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Technical assistance. 583.140... URBAN DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Assistance Provided § 583.140 Technical assistance. (a) General. HUD may set aside funds annually to provide technical assistance,...

  5. 24 CFR 583.140 - Technical assistance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Technical assistance. 583.140... URBAN DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Assistance Provided § 583.140 Technical assistance. (a) General. HUD may set aside funds annually to provide technical assistance,...

  6. 24 CFR 583.140 - Technical assistance.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Technical assistance. 583.140... URBAN DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Assistance Provided § 583.140 Technical assistance. (a) General. HUD may set aside funds annually to provide technical assistance,...

  7. Facilities Assessment Update Study, 1988.

    ERIC Educational Resources Information Center

    Gunther, William H., Jr.; Collum, John M., Jr.

    This document addresses the physical state of the more than 170 buildings at 28 technical schools administered by the Georgia Department of Technical and Adult Education, concluding that although some progress has been made in reversing the deteriorating condition of the state's school facilities, funding at the current level is not keeping up…

  8. Book Processing Facility Design.

    ERIC Educational Resources Information Center

    Sheahan (Drake)-Stewart Dougall, Marketing and Physical Distribution Consultants, New York, NY.

    The Association of New York Libraries for Technical Services (ANYLTS) is established to develop and run a centralized book processing facility for the public library systems in New York State. ANYLTS plans to receive book orders from the 22 library systems, transmit orders to publishers, receive the volumes from the publishers, print and attach…

  9. Technical advances in hemodialysis therapy.

    PubMed

    Parker, T F

    2000-01-01

    Other than pharmaceutical advancements, the improvements in hemodialysis have largely been due to technical changes. This article summarizes the various technical areas that are noteworthy: hemodialysis membranes; dialysate buffer, electrolyte concentration, and temperature; prescription monitoring; reprocessing; volume-ultrafiltration control; information system interface; arteriovenous access monitoring; water treatment; and continuous and nocturnal dialysis. Within each category, subjective and objective conclusions are drawn as to whether the technical advancements have translated to improved clinical outcomes. In addition, an hypothesis is proposed that due to a confluence of ownership of research and development, manufacturing of equipment, and dialysis facilities conflicts may arise which could slow future technical developments.

  10. Multistep processing and stress reduction in CVD diamond films

    NASA Astrophysics Data System (ADS)

    Nijhawan, Sumit

    A serious impediment in the utility of diamond films is the large internal stresses that develop during growth. These stresses generally have thermal and growth components. The thermal component is determined by the mismatch in thermal expansion coefficients of film and substrate while the growth component may arise from several possible mechanisms during CVD growth. These growth stresses tend to be particularly large in diamond. The objective of this work is to understand and reduce the growth stresses in diamond films by tailoring the CVD process. Continuous, polycrystalline diamond films were deposited on Si by microwave plasma-assisted CVD. Very high internal stresses (>2 GPA) consisting of growth and thermal components were observed. The growth component is tensile and increases with growth time. We were able to reduce the evolution of growth stresses considerably by multistep processing of our films. An intermediate annealing step was included between successive growth periods. It is important to note that the annealing step must be conducted at key points during the growth process in order to effectively reduce stress. Maximum reduction in stress is achieved only if the sample is annealed when the diamond grains are partially coalesced (after 2--3 hours of growth). Annealing of continuous films does not produce a significant reduction in stress. The origin of growth stress in our films is attributed to non-equilibrated initial atomic positions during impingement and the successive relaxations to minimize interfacial energies. The film quality was monitored using Raman spectroscopy and electron microscopy. Based on our experimental results and analyses, it is hypothesized that rearrangements of strained boundary structures during the anneal can lower the interfacial energy change during subsequent growth and produce less stress. Multistep processing was also used to enhance diamond nucleation on Ni. An annealing pretreatment step, that consists of saturating

  11. KSC Technical Capabilities Website

    NASA Technical Reports Server (NTRS)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  12. The features of CNT growth on catalyst-content amorphous alloy layer by CVD-method

    NASA Astrophysics Data System (ADS)

    Dubkov, S.; Bulyarskii, S.; Pavlov, A.; Trifonov, A.; Kitsyuk, E.; Mierczynski, P.; Maniecki, T.; Ciesielski, R.; Gavrilov, S.; Gromov, D.

    2016-12-01

    This work is devoted to the CVD-synthesis of arrays of carbon nanotubes (CNTs) on Co-Zr-N-(O), Ni-Nb-N-(O), Co- Ta-N-(O) catalytic alloy films from gas mixture of C2H2+NH3+Ar at a substrate temperature of about 550°C.Heating of the amorphous alloy causes its crystallization and squeezing of the catalytic metal onto the surface. As a result, small catalyst particles are formed on the surface. The CNT growth takes place after wards on these particles. It should be noted that the growth of CNT arrays on these alloys is insensitive to the thickness of alloy film, which makes this approach technically attractive. In particular, the possibility of local CNT growth at the ends of the Co-Ta-N-(O) film and three-level CNT growth at the end of more complex structure SiO2/Ni-Nb-N-O/SiO2/Ni-Nb-N-O/SiO2/Ni-Nb-N-O/SiO2 is demonstrated.

  13. 340 Facility emergency preparedness hazards assessment

    SciTech Connect

    CAMPBELL, L.R.

    1998-11-25

    This document establishes the technical basis in support of Emergency Planning activities for the 340 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated.

  14. 233-S plutonium concentration facility hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-12-19

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  15. Fast flux test facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-10-24

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  16. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  17. EDC-mediated DNA attachment to nanocrystalline CVD diamond films.

    PubMed

    Christiaens, P; Vermeeren, V; Wenmackers, S; Daenen, M; Haenen, K; Nesládek, M; vandeVen, M; Ameloot, M; Michiels, L; Wagner, P

    2006-08-15

    Chemical vapour deposited (CVD) diamond is a very promising material for biosensor fabrication owing both to its chemical inertness and the ability to make it electrical semiconducting that allows for connection with integrated circuits. For biosensor construction, a biochemical method to immobilize nucleic acids to a diamond surface has been developed. Nanocrystalline diamond is grown using microwave plasma-enhanced chemical vapour deposition (MPECVD). After hydrogenation of the surface, 10-undecenoic acid, an omega-unsaturated fatty acid, is tethered by 254 nm photochemical attachment. This is followed by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC)-mediated attachment of amino (NH(2))-modified dsDNA. The functionality of the covalently bound dsDNA molecules is confirmed by fluorescence measurements, PCR and gel electrophoresis during 35 denaturation and rehybridisation steps. The linking method after the fatty acid attachment can easily be applied to other biomolecules like antibodies and enzymes.

  18. Interfaces in nano-/microcrystalline multigrade CVD diamond coatings.

    PubMed

    Almeida, Flávia A; Salgueiredo, Ermelinda; Oliveira, Filipe J; Silva, Rui F; Baptista, Daniel L; Peripolli, Suzana B; Achete, Carlos A

    2013-11-27

    The interfaces of multilayered CVD diamond films grown by the hot-filament technique were characterized with high detail using HRTEM, STEM-EDX, and EELS. The results show that at the transition from micro- (MCD) to nanocrystalline diamond (NCD), a thin precursor graphitic film is formed, irrespectively of the NCD gas chemistry used (with or without argon). On the contrary, the transition of the NCD to MCD grade is free of carbon structures other than diamond, the result of a higher substrate temperature and more abundant atomic H in the gas chemistry. At those transitions WC nanoparticles could be found due to contamination from the filament, being also present at the first interface of the MCD layer with the silicon nitride substrate.

  19. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  20. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  1. CVD diamond alpha-particle detectors with different electrode geometry.

    PubMed

    Wang, Linjun; Lou, Yanyan; Su, Qingfeng; Shi, Weimin; Xia, Yiben

    2005-10-17

    In this paper, two types of detectors, one with a coplanar and the other with a sandwich geometry using an identical CVD diamond film, were fabricated in order to investigate the effects of the film microstructure on the performance of diamond film alpha-particle detectors. An average charge collection efficiency of 42.9% for the coplanar structure and of 37.4% for the sandwich structure detectors was obtained, respectively. Raman scattering studies directly demonstrated that the different counts, collection efficiencies and photocurrents of the two types of detectors mainly resulted from the different micro-structural features between the final growth side and the nucleation side of the diamond film. Under alpha particle irradiation the detector with sandwich geometry had a similar trend on energy resolution with coplanar geometry under different applied electric field. A good energy resolution of 1.1% was obtained for both detectors.

  2. High-rate diamond deposition by microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Li, Xianglin

    In this dissertation, the growth of CVD (Chemical Vapor Deposition) diamond thin films is studied both theoretically and experimentally. The goal of this research is to deposit high quality HOD (Highly Oriented Diamond) films with a growth rate greater than 1 mum/hr. For the (100)-oriented HOD films, the growth rate achieved by the traditional process is only 0.3 mum/hr while the theoretical limit is ˜0.45 mum/hr. This research increases the growth rate up to 5.3 mum/hr (with a theoretical limit of ˜7 mum/hr) while preserving the crystal quality. This work builds a connection between the theoretical study of the CVD process and the experimental research. The study is extended from the growth of regular polycrystalline diamond to highly oriented diamond (HOD) films. For the increase of the growth rate of regular polycrystalline diamond thin films, a scaling growth model developed by Goodwin is introduced in details to assist in the understanding of the MPCVD (Microwave Plasma CVD) process. Within the Goodwin's scaling model, there are only four important sub-processes for the growth of diamond: surface modification, adsorption, desorption, and incorporation. The factors determining the diamond growth rate and film quality are discussed following the description of the experimental setup and process parameters. Growth rate and crystal quality models are reviewed to predict and understand the experimental results. It is shown that the growth rate of diamond can be increased with methane input concentration and the amount of atomic hydrogen (by changing the total pressure). It is crucial to provide enough atomic hydrogen to conserve crystal quality of the deposited diamond film. The experimental results demonstrate that for a fixed methane concentration, there is a minimum pressure for growth of good diamond. Similarly, for a fixed total pressure, there is a maximum methane concentration for growth of good diamond, and this maximum methane concentration increases

  3. A controlled atmosphere tube furnace was designed for thermal CVD

    NASA Astrophysics Data System (ADS)

    Rashid, M.; Bhatti, J. A.; Hussain, F.; Imran, M.; Khawaja, I. U.; Chaudhary, K. A.; Ahmad, S. A.

    2013-06-01

    High quality materials were used for the fabrication of hi-tech tube furnace. The furnace was especially suitable for thermal Chemical Vapor Deposition (CVD). High density alumina tube was used for the fabrication of furnace. The tube furnace was found to have three different temperature zones with maximum temperature at central zone was found to be 650°C. The flexible heating tape with capacity of 760°C was wrapped on the tube. To minimize the heat losses, asbestos and glass wool were used on heating tape. The temperature of the tube furnace was controlled by a digital temperature controller had accuracy of ±1°C. Methanol was taken as the representative of hydrocarbon sources, to give thin film of carbon. The a-C: H structure was investigated by conventional techniques using optical microscopy, FT-IR and SEM.

  4. Low temperature CVD of TaB/sub 2/

    SciTech Connect

    Randich, E.

    1980-01-01

    Crystalline TaB/sub 2/ has been deposited using the CVD reaction of TaCl/sub 5/ and B/sub 2/H/sub 6/ in the temperature range of 773-1200/sup 0/K. Thermodynamic calculations have been made which compare the use of both B/sub 2/H/sub 6/ and BCl/sub 3/ as B source gases. The deposits obtained with B/sub 2/H/sub 6/ exhibited extremely small crystal size and contained amorphous B when the deposition temperature was below approx. 873/sup 0/K but were substoichiometric in B above this temperature. Carbon analysis indicated that C may substitute for B and thereby stabilize the diboride structure at high deposition temperatures. Microhardness of the coatings decreased with increasing B/Ta ratio and decreasing crystal size.

  5. Supported Catalytic Growth of SWCNTs using the CVD Method

    NASA Astrophysics Data System (ADS)

    Aslam, Z.; Li, X.; Brydson, R.; Rand, B.; Falke, U.; Bleloch, A.

    2006-02-01

    The growth of carbon nanotubes (CNTs) from supported metal catalysts using the CVD method with CH4 as the carbon feedstock was investigated using SEM and TEM. Studies include the influence of the substrate structure, the metal catalyst content and other experimental parameters on the nature of the CNTs produced using calcined aluminium nitrate and delta-alumina nanoparticles (~13nm). The iron catalyst precursors are ferric sulphate and also iron oxide nanoparticles. Using an aberration corrected STEM and a FEGTEM BF imaging has been used to identify symmetries of tubes produced, as well as a TEM-STM tip to measure I-V curves of SWCNTs. It appears the optimum iron precursor and catalyst support for production of SWCNTs is either ferric sulphate or iron oxide nanoparticles supported on deltaalumina nanoparticles.

  6. CVD synthesis of graphene nanoplates on MgO support

    NASA Astrophysics Data System (ADS)

    Jugade, Ravin M.; Sharma, Shalini; Gokhale, Suresh

    2014-06-01

    Synthesis of graphene directly on MgO has been carried out and the structural properties of the obtained material have been investigated. Few-layered graphene was produced by simple thermal decomposition of methane over MgO powder at 950 °C in a CVD reactor. The samples were purified by 10 N HNO3 treatment, and studied by TEM, Raman spectroscopy, EDAX and SEM. TEM clearly indicated the formation of graphene. EDAX showed that the purified sample contained only carbon and no traces of MgO. The characteristic Raman features of graphene were also seen as D-band at 1316 cm-1, G-band at 1602 cm-1, and a small 2D-band at 2700 cm-1 in the Raman spectra. The strong D-band suggests that the graphene possess large number of boundary defects. The small 2D-band indicates the formation of few-layered graphene.

  7. Oxidation kinetics of CVD silicon carbide and silicon nitride

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.

    1992-01-01

    The long-term oxidation behavior of pure, monolithic CVD SiC and Si3N4 is studied, and the isothermal oxidation kinetics of these two materials are obtained for the case of 100 hrs at 1200-1500 C in flowing oxygen. Estimates are made of lifetimes at the various temperatures investigated. Parabolic rate constants for SiC are within an order of magnitude of shorter exposure time values reported in the literature. The resulting silica scales are in the form of cristobalite, with cracks visible after exposure. The oxidation protection afforded by silica for these materials is adequate for long service times under isothermal conditions in 1-atm dry oxygen.

  8. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  9. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  10. Polycrystalline CVD diamond device level modeling for particle detection applications

    NASA Astrophysics Data System (ADS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  11. CVD diamond Brewster window: feasibility study by FEM analyses

    NASA Astrophysics Data System (ADS)

    Aiello, G.; Grossetti, G.; Meier, A.; Scherer, T.; Schreck, S.; Spaeh, P.; Strauss, D.; Vaccaro, A.

    2012-09-01

    Chemical vapor deposition (CVD) diamond windows are a crucial component in heating and current drive (H&CD) applications. In order to minimize the amount of reflected power from the diamond disc, its thickness must match the desired beam wavelength, thus proper targeting of the plasma requires movable beam reflectors. This is the case, for instance, of the ITER electron cyclotron H&CD system. However, looking at DEMO, the higher heat loads and neutron fluxes could make the use of movable parts close to the plasma difficult. The issue might be solved by using gyrotrons able to tune the beam frequency to the desired resonance, but this concept requires transmission windows that work in a given frequency range, such as the Brewster window. It consists of a CVD diamond disc brazed to two copper cuffs at the Brewster angle. The brazing process is carried out at about 800°C and then the temperature is decreased down to room temperature. Diamond and copper have very different thermal expansion coefficients, therefore high stresses build up during the cool down phase that might lead to failure of the disc. Considering also the complex geometry of the window with the skewed position of the disc, analyses are required in the first place to check its feasibility. The cool down phase was simulated by FEM structural analyses for several geometric and constraint configurations of the window. A study of indirect cooling of the window by water was also performed considering a HE11 mode beam. The results are here reported.

  12. A mechanism for selectivity loss during tungsten CVD

    SciTech Connect

    Creighton, J.R.

    1989-01-01

    The authors have investigated possible mechanisms for the loss of selectivity (i.e., deposition on silicon dioxide) during tungsten CVD by reduction of tungsten hexafluoride and found strong evidence that selectivity loss is initiated by desorption of tungsten subfluorides formed by the reaction of WF/sub 6/ with metallic tungsten surfaces. Adsorption and disproportionation of the tungsten subfluorides on the silicon dioxide surface produces a reactive state of tungsten that can lead directly to selectivity loss. The key feature of the experimental setup is the ability to independently heat a tungsten foil and a nearby oxide-covered silicon sample in the presence of tungsten hexafluoride. With the tungsten foil at 600/sup 0/C and the SiO/sub 2//Si sample at --30/sup 0/C under a WF/sub 6/ ambient, a tungsten subfluoride was found to deposit on the SiO/sub 2/ surface. Auger electron spectroscopy was used to measure a F/W ratio of 3.7 +- 0.5. Heating this tungsten subfluoride overlayer resulted in disporportionation to yield gas-phase WF/sub 6/ and metallic tungsten which remained on the surface. With the tungsten foil at 600/sup 0/C and the SiO/sub 2//Si sample at 300/sup 0/C in the presence of WF/sub 6/, metallic tungsten deposited directly on the SiO/sub 2/ without stopping at the subfluoride adsorption step. The net effect of this tungsten subfluoride desorption-disproportionation mechanism is the transport of tungsten from tungsten surfaces to silicon dioxide surfaces as well as other regions in the deposition chamber. Extrapolated rates for this process are high enough to explain the magnitude of the selectivity loss seen at normal CVD temperatures.

  13. Q-factors of CVD monolayer graphene and graphite inductors

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Zhang, Qingping; Peng, Pei; Tian, Zhongzheng; Ren, Liming; Zhang, Xing; Huang, Ru; Wen, Jincai; Fu, Yunyi

    2017-08-01

    A carbon-based inductor may serve as an important passive component in a carbon-based radio-frequency (RF) integrated circuit (IC). In this work, chemical vapor deposition (CVD) synthesized monolayer graphene and graphite inductors are fabricated and their Q-factors are investigated. We find that the large series resistance of signal path (including coil resistance and contact resistance) in monolayer graphene inductors causes negative Q-factors at the whole frequency range in measurement. Comparatively, some of the graphite inductors have all of their Q-factors above zero, due to their small signal path resistance. We also note that some other graphite inductors have negative Q-factor values at low frequency regions, but positive Q-factor values at high frequency regions. With an equivalent circuit model, we confirm that the negative Q-factors of some graphite inductors at low frequency regions are related to their relatively large contact resistances, and we are able to eliminate these negative Q-factors by improving the graphite-metal contact. Furthermore, the peak Q-factor (Q p) can be enhanced by lowering down the resistance of graphite coil. For an optimized 3/4-turn graphite inductor, the measured maximum Q-factor (Q m) can reach 2.36 and the peak Q-factor is theoretically predicted by the equivalent circuit to be as high as 6.46 at a high resonant frequency, which is beyond the testing frequency range. This research indicates that CVD synthesized graphite thin film is more suitable than graphene for fabricating inductors in carbon-based RF IC in the future.

  14. Comparison of health care costs and co-morbidities between men diagnosed with benign prostatic hyperplasia and cardiovascular disease (CVD) and men with CVD alone in a US commercial population.

    PubMed

    Shah, Manan; Butler, Melissa; Bramley, Thomas; Curtice, Tammy G; Fine, Shari

    2007-02-01

    The purpose of this study was to compare costs and treatment patterns between men with concomitant benign prostatic hyperplasia (BPH) and CVD to men with CVD (but not BPH). A retrospective, matched cohort study was utilized to assess costs and treatment between two study populations. The data source was administrative claims from managed care organizations between January 1, 1997 and December 31, 2004. A control group of men with CVD only was created matching by age, index CVD diagnosis date, and CVD diagnoses. Diagnosis and procedure codes identified men with BPH and CVD. Differences in medical costs, co-morbidities, and drug treatments were assessed. Approximately 39% of men identified with BPH also had some form of CVD at the time of BPH diagnosis. Men with BPH and CVD were more likely to have additional co-morbidities, more frequently received medications for CVD and non-CVD disorders, had 44% higher total medical costs than men with CVD only (p < 0.001), and had 42% higher CVD-related costs (p < 0.001) than men with CVD only. The population studied in this analysis was primarily working individuals with health benefits provided by managed care plans; therefore, the results may not generalize to other populations. This study demonstrates in a commercial payer population that men with concomitant BPH and CVD have more co-morbidities, receive pharmacologic agents more frequently, and have higher health care resource utilization than men with CVD only. Due to the high prevalence of co-morbid BPH and CVD, screening for BPH in men presenting with CVD may assist with earlier disease identification and cost management over time.

  15. "Technical" Writing vs. Technical "Writing."

    ERIC Educational Resources Information Center

    Dillingham, J. W.

    Technical writers must have a working knowledge of technology in order to rearrange material others provide, but they do not have the expertise needed to originate materials; that is the job of the technical author. Another job function is that of technical editor--a person who can write, can perform the policy making tasks of an editor, and who…

  16. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics

    SciTech Connect

    Vikharev, A. L. Gorbachev, A. M.; Dukhnovsky, M. P.; Muchnikov, A. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2012-02-15

    The fabrication of diamond substrates in which single-crystalline and polycrystalline CVD diamond form a single wafer, and the epitaxial growth of diamond films on such combined substrates containing polycrystalline and (100) single-crystalline CVD diamond regions are studied.

  17. Universal Design: Supporting Students with Color Vision Deficiency (CVD) in Medical Education

    ERIC Educational Resources Information Center

    Meeks, Lisa M.; Jain, Neera R.; Herzer, Kurt R.

    2016-01-01

    Color Vision Deficiency (CVD) is a commonly occurring condition in the general population. For medical students, it has the potential to create unique challenges in the classroom and clinical environments. Few studies have provided medical educators with comprehensive recommendations to assist students with CVD. This article presents a focused…

  18. Doping-Induced Defects in P-Doped Photo-CVD a-Si:H

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuhiko; Kominato, Toshimi; Takeuchi, Hiroshi; Kuroiwa, Koichi; Tarui, Yasuo

    1987-06-01

    Doping-induced defect creation of photo-CVD amorphous silicon is investigated by photoluminescence and the isothermal capacitance transient spectroscopy technique. The defects induced by phosphorus doping increase as the square root of the gas phase doping ratio, indicating Street’s doping mechanism is basically valid for the Hg-sensitized photo-CVD a-Si:H.

  19. Cold Vacuum Drying facility effluent drains system design description (SYS 18)

    SciTech Connect

    TRAN, Y.S.

    2000-05-11

    The Cold Vacuum Drying (CVD) Facility provides required process systems, supporting equipment, and facilities needed for the Spent Nuclear Fuel (SNF) mission. This system design description (SDD) addresses the effluent drain system (EFS), which supports removal of water from the process bay floors. The discussion that follows is limited to piping, valves, components, and the process bay floor drain retention basin.

  20. NEXAFS Study of the Annealing Effect on the Local Structure of FIB-CVD DLC

    SciTech Connect

    Saikubo, Akihiko; Kato, Yuri; Igaki, Jun-ya; Kanda, Kazuhiro; Matsui, Shinji; Kometani, Reo

    2007-01-19

    Annealing effect on the local structure of diamond like carbon (DLC) formed by focused ion beam-chemical vapor deposition (FIB-CVD) was investigated by the measurement of near edge x-ray absorption fine structure (NEXAFS) and energy dispersive x-ray (EDX) spectra. Carbon K edge absorption NEXAFS spectrum of FIB-CVD DLC was measured in the energy range of 275-320 eV. In order to obtain the information on the location of the gallium in the depth direction, incidence angle dependence of NEXAFS spectrum was measured in the incident angle range from 0 deg. to 60 deg. . The peak intensity corresponding to the resonance transition of 1s{yields}{sigma}* originating from carbon-gallium increased from the FIB-CVD DLC annealed at 200 deg. C to the FIB-CVD DLC annealed at 400 deg. C and decreased from that at 400 deg. C to that at 600 deg. C. Especially, the intensity of this peak remarkably enhanced in the NEXAFS spectrum of the FIB-CVD DLC annealed at 400 deg. C at the incident angle of 60 deg. . On the contrary, the peak intensity corresponding to the resonance transition of 1s{yields}{pi}* originating from carbon double bonding of emission spectrum decreased from the FIB-CVD DLC annealed at 200 deg. C to that at 400 deg. C and increased from that at 400 deg. C to that at 600 deg. C. Gallium concentration in the FIB-CVD DLC decreased from {approx_equal}2.2% of the as-deposited FIB-CVD DLC to {approx_equal}1.5% of the FIB-CVD DLC annealed at 600 deg. C from the elementary analysis using EDX. Both experimental results indicated that gallium atom departed from FIB-CVD DLC by annealing at the temperature of 600 deg. C.

  1. Performance specifications for proton medical facility

    SciTech Connect

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R.; Kubo, H.; Verhey, L.J. |; Castro, J.R. ||

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  2. 13C(n,α0)10Be cross section measurement with sCVD diamond detector

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Griesmayer, E.; Belloni, F.; Plompen, A. J. M.; Schillebeeckx, P.; Weiss, C.

    2016-06-01

    This paper presents 13C(n, α0)10Be cross section measurements performed at the Van de Graaff facility of the Joint Research Centre Geel. The 13C(n, α0)10Be cross section was measured relative to the 12C(n, α0)9Be cross section at 14.3 MeV and 17.0 MeV neutron energies. The measurements were performed with an sCVD (single-crystal chemical vapor deposition) diamond detector which acted as sample and as sensor simultaneously. A novel analysis technique was applied, which is based on the pulse-shape analysis of the detector's ionization current. This technique resulted in an efficient separation of background events and consequently in a well-determined selection of the nuclear reaction channels 12C(n, α0)9Be and 13C(n, α0)10Be.

  3. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets.

    PubMed

    Huang, Yun; Deng, Hui-Xiong; Xu, Kai; Wang, Zhen-Xing; Wang, Qi-Sheng; Wang, Feng-Mei; Wang, Feng; Zhan, Xue-Ying; Li, Shu-Shen; Luo, Jun-Wei; He, Jun

    2015-09-07

    A facile and fruitful CVD method is reported for the first time, to synthesize high-quality hexagonal SnS2 nanosheets on carbon cloth via in situ sulfurization of SnO2. Moreover, highly sensitive phototransistors based on SnS2 with an on/off ratio surpassing 10(6) under ambient conditions and a rising time as short as 22 ms under vacuum are fabricated, which are superior than most phototransistors based on LMDs. Electrical transport measurements at varied temperatures together with theoretical calculations verify that sulfur vacancies generated by the growth process would induce a defect level near the bottom of the conduction band, which significantly affects the performance of the SnS2 device. These findings may open up a new pathway for the synthesis of LMDs, shed light on the effects of defects on devices and expand the building blocks for high performance optoelectronic devices.

  4. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for CVD Prevention in Adults with Risk Factors

    MedlinePlus

    ... final recommendation statement applies to adults who are overweight or obese and who have at least one ... harms of behavioral counseling to prevent CVD in overweight or obese adults at increased risk for CVD: ...

  5. An American Looks at Technical Education in Iraq.

    ERIC Educational Resources Information Center

    Tyree, Larry W.

    1988-01-01

    Offers perceptions on the Iraqi system of technical education based on a two-week lecture tour of the country's two-year technical institutes. Comments on governance and educational philosophy, classroom training and facilities, students, programs, and administrators. (DMM)

  6. Facility Modernization Report

    SciTech Connect

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  7. Career and Technical Education Facilities Modernization Act

    THOMAS, 113th Congress

    Sen. Begich, Mark [D-AK

    2013-03-04

    Senate - 03/04/2013 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Underwater Facility Lift System. Technical Proposal.

    DTIC Science & Technology

    1978-07-12

    capacity for future I ight -duty AC loads. Enviromarine is also very familiar with the equipme’t and has had hands-on use of the Subsea Systemns TV can...er.-s, I!b( Subsea Products Strobe Lights and the Hydro Products 70 n-,n filn camera. Mountings for the cameras and lights will be adjustable to...but it is less conetitive. 3. 2.1.1.6 Heading Sensor - The two types of heading sensors specified will be provided. Enviromarine has previously

  9. Operating team training: Technical training's role

    SciTech Connect

    Greene, G.L.

    1989-10-01

    Technical trainers must assume an increased role in the team training of operating crews of a nuclear facility. Historically,team training has been a human resources type mission because of the focus on interpersonal skills and group skills. The technical trainers have traditionally confined themselves to job-specific technical areas. The gap between these two can be closed by the combined efforts to the two organizations, with the technical trainers taking the lead in program development. This paper describes key elements of the program developed by the training staff at the Fast Flux Test Facility, operated by Westinghouse Hanford Company for the US Department of Energy. 1 ref., 1 tab.

  10. Recovery of CVD Diamond Detectors using Laser Double Pulses

    SciTech Connect

    Dauffy, L S; Lerche, R A; Schmid, G J; Koch, J A; Silbenagel, C

    2005-09-27

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its associated electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 {micro}J, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (E{sub bandgap} = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  11. Carbon Nanotubes Growth by CVD on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Cochrane, J. C.; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Due to the superior electrical and mechanical properties of carbon nanotubes (CNT), synthesizing CNT on various substances for electronics devices and reinforced composites have been engaged in many efforts for applications. This presentation will illustrate CNT synthesized on graphite fibers by thermal CVD. On the fiber surface, iron nanoparticles as catalysts for CNT growth are coated. The growth temperature ranges from 600 to 1000 C and the pressure ranges from 100 Torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than or equal to 900 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in the rough fiber surface without any CNT grown on it. When the growth temperature is relative low (650-800 C), CNT with catalytic particles on the nanotube top ends are fabricated on the graphite surface. (Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis.) (By measuring the samples) Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT (MWCNT), depending on growth concentrations, are found. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  12. Contact resistance study of various metal electrodes with CVD graphene

    NASA Astrophysics Data System (ADS)

    Gahoi, Amit; Wagner, Stefan; Bablich, Andreas; Kataria, Satender; Passi, Vikram; Lemme, Max C.

    2016-11-01

    In this study, the contact resistance of various metals to chemical vapor deposited (CVD) monolayer graphene is investigated. Transfer length method (TLM) structures with varying channel widths and separation between contacts have been fabricated and electrically characterized in ambient air and vacuum condition. Electrical contacts are made with five metals: gold, nickel, nickel/gold, palladium and platinum/gold. The lowest value of 92 Ω μm is observed for the contact resistance between graphene and gold, extracted from back-gated devices at an applied back-gate bias of -40 V. Measurements carried out under vacuum show larger contact resistance values when compared with measurements carried out in ambient conditions. Post processing annealing at 450 °C for 1 h in argon-95%/hydrogen-5% atmosphere results in lowering the contact resistance value which is attributed to the enhancement of the adhesion between metal and graphene. The results presented in this work provide an overview for potential contact engineering for high performance graphene-based electronic devices.

  13. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.

    PubMed

    Borzenets, I V; Shimazaki, Y; Jones, G F; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S

    2016-03-14

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

  14. Experimental Study of the Flow in a Rotating CVD Reactor

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Meng, Jiandong; Jaluria, Yogesh

    2013-11-01

    An experimental model is developed to study the rotating, vertical, impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid flow and thermal characteristics of the system would provide a good basis to model the thin film deposition process. The growth rate and the uniformity of the film are the two most important factors in the CVD process and these depend strongly on the flow and the thermal transport within the system. Operating parameters, such as inflow velocity, susceptor temperature and rotational speed, are used to create different design simulations. Fluid velocities and temperature distributions are recorded to obtain the effects of different operating parameters. Velocities are recorded by using a rotameter and a hot wire anemometer. The temperatures are recorded by using thermocouples and an infrared thermometer. The effects of buoyancy and rotation are examined. The expermental study is also coupled with a numerical study for validation of the numerical model and to expand the domain. Comparisons between the two models are presented, indicating fair agreement. The numerical model also includes simulation of Gallium Nitride (GaN) thin film deposition. This simulation thus includes mass transport and gas kinetics, along with the flow and heat transfer within the system. A three dimensional simulation is needed due to the rotation of the susceptor. The results obtained as well as the underlying fluid flow phenomena are discussed.

  15. Synthesis of vertically aligned boron nitride nanosheets using CVD method

    SciTech Connect

    Zhang, Chao; Hao, Xiaopeng; Wu, Yongzhong; Du, Miao

    2012-09-15

    Highlights: ► The synthesized boron nitride nanosheets (BNNSs) are vertically aligned and very thin. ► No electrical field is applied in the CVD process. ► The thin BNNSs show a low turn-on field of 6.5 V μm{sup −1} and emit strong UV light. -- Abstract: Boron nitride nanosheets (BNNSs) protruding from boron nitride (BN) films were synthesized on silicon substrates by chemical vapor deposition technique from a gas mixture of BCl{sub 3}–NH{sub 3}–H{sub 2}–N{sub 2}. Parts of the as-grown nanosheets were vertically aligned on the BN films. The morphology and structure of the synthesized BNNSs were characterized by scanning electron microscopy, transmission electron microscopy, and Fourier transformation infrared spectroscopy. The chemical composition was studied by energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Cathodoluminescence spectra revealed that the product emitted strong UV light with a broad band ranging from 250 to 400 nm. Field-emission characteristic of the product shows a low turn-on field of 6.5 V μm{sup −1}.

  16. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    PubMed Central

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  17. Excimer Laser Beam Analyzer Based on CVD Diamond

    NASA Astrophysics Data System (ADS)

    Girolami, Marco; Salvatori, Stefano; Conte, Gennaro

    2010-11-01

    1-D and 2-D detector arrays have been realized on CVD-diamond. The relatively high resistivity of diamond in the dark allowed the fabrication of photoconductive "sandwich" strip (1D) or pixel (2D) detectors: a semitransparent light-receiving back-side contact was used for detector biasing. Cross-talk between pixels was limited by using intermediate guard contacts connected at the same ground potential of the pixels. Each pixel photocurrent was conditioned by a read-out electronics composed by a high sensitive integrator and a Σ-Δ ADC converter. The overall 500 μs conversion time allowed a data acquisition rate up to 2 kSPS. The measured fast photoresponse of the samples in the ns time regime suggests to use the proposed devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The technology of laser beam profiling is evolving with the increase of excimer lasers applications that span from laser-cutting to VLSI and MEMS technologies. Indeed, to improve emission performances, fine tuning of the laser cavity is required. In such a view, the development of a beam-profiler, able to work in real-time between each laser pulse, is mandatory.

  18. Innovative machining method on CVD diamond thin film

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Yin; Cheng, Chih-Yung; Liu, Pin-Yin; Wu, Tung-Chuan

    2002-11-01

    Chemical vapor deposition (CVD) diamond has outstanding properties, including low thermal expansion, high chemical resistance and high acoustic propagation and has been widely used in optical, electrical, mechanical, chemical and thermal applications. Since synthesized diamond film results in large surface roughness, the surface treatment or polishing should be applied to expand the applications. Although reducing surface roughness by mechanical and etching methods have been investigated, the cost on the complicated equipment and on the long processing time is the most particular important issue. A new method is developed in the present study to approach the smooth surface by a catalytic grinding wheel. As grinding, the catalytic reaction occurs at the contact area between the grinding wheel and the diamond surface, and sp3 structure of diamond can be converted to sp2 structure with lower bonding energy; therefore, the lower surface roughness. Consequently, the average surface roughness is extremely improved from 230 nm to 20 nm, and the processing time can be shortened 10 times more than conventional methods, either lapping, or chemical assisted lapping.

  19. The evaluation of radiation damage parameter for CVD diamond

    NASA Astrophysics Data System (ADS)

    Grilj, V.; Skukan, N.; Jakšić, M.; Pomorski, M.; Kada, W.; Kamiya, T.; Ohshima, T.

    2016-04-01

    There are a few different phenomenological approaches that aim to track the dependence of signal height in irradiated solid state detectors on the fluence of damaging particles. However, none of them are capable to provide a unique radiation hardness parameter that would reflect solely the material capability to withstand high radiation environment. To extract such a parameter for chemical vapor deposited (CVD) diamond, two different diamond detectors were irradiated with proton beams in MeV energy range and subjected afterwards to ion beam induced charge (IBIC) analysis. The change in charge collection efficiency (CCE) due to defects produced was investigated in context of a theoretical model that was developed on the basis of the adjoint method for linearization of the continuity equations of electrons and holes. Detailed modeling of measured data resulted with the first known value of the kσ product for diamond, where k represents the number of charge carriers' traps created per one simulated primary lattice vacancy and σ represents the charge carriers' capture cross section. As discussed in the text, this product could be considered as a true radiation damage parameter.

  20. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-03-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

  1. Labour force participation and the influence of having CVD on income poverty of older workers.

    PubMed

    Schofield, Deborah J; Callander, Emily J; Shrestha, Rupendra N; Percival, Richard; Kelly, Simon J; Passey, Megan E

    2012-04-05

    In addition to being the leading cause of death, cardiovascular disease (CVD) also impacts upon the ability of individuals to function normally in everyday activities, which is likely to affect individuals' employment. This paper will quantify the relationship between labour force participation, CVD and being in poverty. The 2003 Survey of Disability, Ageing and Carers (SDAC) data were used to assess the impact of having CVD on being in poverty amongst the older working aged (aged 45 to 64) population in Australia. Those not in the labour force with no chronic health condition are 93% less likely to be in poverty than those not in the labour force due to CVD (OR 0.07, 95%CI: 0.07-0.07, p<.0001). The likelihood of being in poverty varies with labour force status for those with CVD: those who were either in full time (OR 0.04, 95% CI: 0.04-0.05, p<.0001) or part time (OR 0.19, 95% CI: 0.18-0.19) employment are significantly less likely to be in poverty than those who have had to retire because of the condition. The efforts to increase the labour force participation of individuals with CVD, or ideally prevent the onset of the condition will likely improve their living standards. This study has shown that having CVD and not being in the labour force because of the condition drastically increases the chances of living in poverty. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. CVD and obesity in transitional Syria: a perspective from the Middle East

    PubMed Central

    Barakat, Hani; Barakat, Hanniya; Baaj, Mohamad K

    2012-01-01

    Purpose Syria is caught in the middle of a disruptive nutritional transition. Its healthcare system is distracted by challenges and successes in other areas while neglecting to address the onslaught of Syria’s cardiovascular disease (CVD) epidemic. Despite the official viewpoint touting improvement in health indicators, current trends jeopardize population health, and several surveys in the Syrian population signal the epidemic spreading far and wide. The goal is to counteract the indifference towards obesity as a threat to Syrian’s health, as the country is slowly becoming a leader in CVD mortality globally. Methods PubMed, World Health Organization, and official government websites were searched for primary surveys in Syria related to CVD morbidity, mortality, and risk factors. Inclusion criteria ensured that results maximized relevance while producing comparable studies. Statistical analysis was applied to detect the most common risk factor and significant differences in risk factor prevalence and CVD rates. Results Obesity remained the prevailing CVD risk factor except in older Syrian men, where smoking and hypertension were more common. CVD mortality was more common in males due to coronary disease, while stroke dominated female mortality. The young workforce is especially impacted, with 50% of CVD mortality occurring before age 65 years and an 81% prevalence of obesity in women over 45 years. Conclusion Syria can overcome its slow response to the CVD epidemic and curb further deterioration by reducing obesity and, thus, inheritance and clustering of risk factors. This can be achieved via multilayered awareness and intensive parental and familial involvement. Extinguishing the CVD epidemic is readily achievable as demonstrated in other countries. PMID:22454558

  3. Development of Micro and Nano Crystalline CVD Diamond TL/OSL Radiation Detectors for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, Marcelino

    2015-03-01

    Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged

  4. TECHNICAL EDUCATION.

    ERIC Educational Resources Information Center

    FRIGIOLA, NICHOLAS F.

    THE CONSENSUS OF OUR NATION'S LEADERS AFFIRMS THAT THE COUNTRY'S GREATEST TECHNICAL EDUCATION VOID IS IN THE AREA BETWEEN THE 12TH GRADE AND THE BACCALAUREATE DEGREE. THE IMPACT OF ACCELERATED PROGRESS IN TECHNOLOGICAL ACHIEVEMENTS MAKES TECHNICAL EDUCATION MANDATORY IF THE MANPOWER SHORTAGE IS NOT TO BECOME A NATIONAL EMERGENCY. BECAUSE NEARLY 80…

  5. Controlled incorporation of mid-to-high Z transition metals in CVD diamond

    SciTech Connect

    Biener, M M; Biener, J; Kucheyev, S O; Wang, Y M; El-Dasher, B; Teslich, N E; Hamza, A V; Obloh, H; Mueller-Sebert, W; Wolfer, M; Fuchs, T; Grimm, M; Kriele, A; Wild, C

    2010-01-08

    We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the doping level were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.

  6. Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar

    SciTech Connect

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

    2008-02-13

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  7. METC Combustion Research Facility

    SciTech Connect

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1994-12-31

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. Currently two combustion rigs are operating and one additional project is under construction for the facility. Space is available in the test cells for at least one additional test rig. A pressurized pulsed combustor began operating in July of 1993. The combustor will carry out pulsed combustion of natural gas at pressures up to 10 atmospheres. A high pressure steady flow rig is currently completely fabricated. The objective of this rig is to test novel, steady-flow, pressurized combustors that produce very low NO{sub x} and other emissions. An evaporation rig currently is in startup. This rig will test the concept of water injection in an externally fired cycle. The specific technical issue that the unit will address is evaporation rates of water droplets in high pressure flows.

  8. Facilities evaluation report

    SciTech Connect

    Sloan, P.A.; Edinborough, C.R.

    1992-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

  9. The ISOLDE facility

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  10. Technical planning activity: Final report

    SciTech Connect

    Not Available

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  11. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    SciTech Connect

    CAMPBELL, L.R.

    1999-01-15

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  12. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  13. Advanced Functional Thin Films Prepared by Plasma CVD

    NASA Astrophysics Data System (ADS)

    Takai, Osamu

    1998-10-01

    Recently water repellency has been required for many types of substrate (e.g. glass, plastics, fibers, ceramics and metals) in various industrial fields. This paper reports on the preparation of highly water-repellent thin films by plasma CVD (PCVD). We have prepared transparent water-repellent thin films at low substrate temperatures by two types of PCVD, rf PCVD and microwave PCVD, using fluoro-alkyl silanes (FASs) as source gases. Silicon oxide thin films contained fluoro-alkyl functions were deposited onto glass and plastics, and realized the excellent water repellency like polytetrafluoroetylene (PTFE) and the high transparency like glass. Increasing the deposition pressure we have formed ultra water-repellent (contact angle for a water drop of over about 150 degrees) thin films by microwave PCVD using a multiple gas mixture of tetramethylsilane (TMS), (heptadecafluoro-1,1,2,2-tetrahydro-decyl)-1-trimethoxysilane (FAS-17) and argon. Ultra water-repellency appears at higher total pressures over 40 Pa because the surface becomes rough due to the growth of large particles. The color of these ultra water-repellent films is slightly white because of the scattering of light by the large particles. Recently we have also deposited transparent ultra water-repellent thin films at low substrate temperatures by microwave PCVD using organosilicon compounds without fluorine as source gases. We evaluated water repellency, optical transmittance, surface morphology and chemical composition of the deposited films. At the suitable substrate position the deposited film gave the contact angle of about 150 degrees and the transmittance of over 80 visible region for a coated glass (thickness was about 1 micron). The control of the surface morphology of the deposited films is most important to obtain the transparent ultra water-repellent films.

  14. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  16. 20. Photocopy of circa 1909 photo Photocopy taken by C.V.D. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of circa 1909 photo Photocopy taken by C.V.D. Hubbard SOUTH FRONT CIRCA 1909, SHOWING ORIGINAL PORCH - Mary A. Bair House, Conestoga Road & Cassatt Avenue (Tredyffrin Township), Berwyn, Chester County, PA

  17. Structural and Electrical Properies of Photo-CVD Silicon Nitride Film

    NASA Astrophysics Data System (ADS)

    Hamano, Kuniyuki; Numazawa, Yoichiro; Yamazaki, Koji

    1984-09-01

    Silicon nitride film was deposited by mercury-sensitized photochemical vapor deposition (photo-CVD) utilizing a gaseous mixture of SiH4 and NH3 under 253.7 nm ultraviolet light irradiation. The structural and electrical properties of the film were then evaluated with emphasis on the substrate temperature dependence. The film contains a considerable amount of hydrogen, and less dense than silicon nitride film deposited by high-temperature chemical vapor deposition. The structural properties of photo-CVD silicon nitride film are basically similar to those of silicon nitride film deposited by plasma-enhanced chemical vapor deposition (P-CVD). However, the film has better insulating properties than P-CVD film, with a smaller leakage current, a higher breakdown field and a smaller positive charge density within the film.

  18. Laser assisted CVD growth of AlN and GaN

    NASA Astrophysics Data System (ADS)

    Halpern, Joshua B.; Frye, Joan M.; Harris, Gary; Aluko, M.

    1990-08-01

    This is the first annual report of a project for investigating laser assisted CVD growth of AlN and GaN. In the first year, three experimental systems have been built. The first is a small, mobile CVD test system for evaluating growth schemes and detection methods for gas and heterogeneous phases. The second is a tunable diode laser spectrometer for monitoring gas phase components in a CVD reactor. The third is a dye laser system for monitoring atoms and small free radicals in the CVD system. First experiments have been done with all three systems. In particular we are investigating the use of 248 nm photolysis of trimethylaluminum near a slightly heated substrate in a mixture of TMA1 and hydrazine for growth of AlN.

  19. MCO loading and cask loadout technical manual

    SciTech Connect

    PRAGA, A.N.

    1998-10-01

    A compilation of the technical basis for loading a multi-canister overpack (MCO) with spent nuclear fuel and then placing the MCO into a cask for shipment to the Cold Vacuum Drying Facility. The technical basis includes a description of the process, process technology that forms the basis for loading alternatives, process control considerations, safety considerations, equipment description, and a brief facility structure description.

  20. Progression of CAC Score and Risk of Incident CVD.

    PubMed

    Radford, Nina B; DeFina, Laura F; Barlow, Carolyn E; Lakoski, Susan G; Leonard, David; Paixao, Andre R M; Khera, Amit; Levine, Benjamin D

    2016-12-01

    The authors sought to determine the relative contributions of baseline coronary artery calcification (CAC), follow-up CAC, and CAC progression on incident cardiovascular disease (CVD). Repeat CAC scanning has been proposed as a method to track progression of total atherosclerotic burden. However, whether CAC progression is a useful predictor of future CVD events remains unclear. This was a prospective observational study of 5,933 participants free of CVD who underwent 2 examinations, including CAC scores, and subsequent CVD event assessment. CAC progression was calculated using the square root method. The primary outcome was total CVD events (CVD death, nonfatal myocardial infarction, nonfatal atherosclerotic stroke, coronary artery bypass surgery, percutaneous coronary intervention). Secondary outcomes included hard CVD events, total coronary heart disease (CHD) events, and hard CHD events. CAC was detected at baseline in 2,870 individuals (48%). The average time between scans was 3.5 ± 2.0 years. After their second scan, 161 individuals experienced a total CVD event during a mean follow-up of 7.3 years. CAC progression was significantly associated with total CVD events (hazard ratio: 1.14, 95% confidence interval: 1.01 to 1.30 per interquartile range; p = 0.042) in the model including baseline CAC, but the contribution of CAC progression was small relative to baseline CAC (chi-square 4.16 vs. 65.92). Furthermore, CAC progression was not associated with total CVD events in the model including follow-up CAC instead of baseline CAC (hazard ratio: 1.05, 95% confidence interval: 0.92 to 1.21; p = 0.475). A model that included follow-up CAC alone performed as well as the model that included baseline CAC and CAC progression. Although CAC progression was independently, but modestly, associated with CVD outcomes, this relationship was no longer significant when including follow-up CAC in the model. These findings imply that if serial CAC scanning is performed

  1. Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. A.

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  2. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.

    1998-01-01

    The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).

  3. Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.

    1999-01-01

    Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.

  4. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  5. Influence of process pressure on β-SiC growth by CVD

    NASA Astrophysics Data System (ADS)

    Andreev, A. A.; Sultanov, A. O.; Gusev, A. S.; Kargin, N. I.; Pavlova, E. P.

    2014-10-01

    3C-SiC films grown on Si (100) substrates by CVD method using silane-propane- hydrogen system were analyzed for crystallinity at various process pressures. The deposition experiments were carried out in a shower-head type cold-wall CVD reactor. The influence of growth conditions on a structural modification of experimental samples was studied by X-ray diffraction (XRD) measurements, Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE).

  6. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.

    1998-01-01

    The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).

  7. Texas State Technical College Review.

    ERIC Educational Resources Information Center

    Aumack, Bruce; Blake, Larry J.

    Texas educational legislation for 1991 required the Texas Higher Education Coordinating Board (THECB) to review the operations of, and the continuing need for, each of the four main campuses and five extension centers of the Texas State Technical College System (TSTCS), and to make recommendations concerning the facilities' continuation and/or…

  8. 44. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION WITH BUILDING METAL SIDING BEING APPLIED ON "B" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  10. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  11. Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)

    SciTech Connect

    TRAN, Y.S.

    2000-06-07

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

  12. Disability rates for cardiovascular and psychological disorders among autoworkers by job category, facility type, and facility overtime hours.

    PubMed

    Landsbergis, Paul A; Janevic, Teresa; Rothenberg, Laura; Adamu, Mohammed T; Johnson, Sylvia; Mirer, Franklin E

    2013-07-01

    We examined the association between long work hours, assembly line work and stress-related diseases utilizing objective health and employment data from an employer's administrative databases. A North American automobile manufacturing company provided data for claims for sickness, accident and disability insurance (work absence of at least 4 days) for cardiovascular disease (CVD), hypertension and psychological disorders, employee demographics, and facility hours worked per year for 1996-2001. Age-adjusted claim rates and age-adjusted rate ratios were calculated using Poisson regression, except for comparisons between production and skilled trades workers owing to lack of age denominator data by job category. Associations between overtime hours and claim rates by facility were examined by Poisson regression and multi-level Poisson regression. Claims for hypertension, coronary heart disease, CVD, and psychological disorders were associated with facility overtime hours. We estimate that a facility with 10 more overtime hours per week than another facility would have 4.36 more claims for psychological disorders, 2.33 more claims for CVD, and 3.29 more claims for hypertension per 1,000 employees per year. Assembly plants had the highest rates of claims for most conditions. Production workers tended to have higher rates of claims than skilled trades workers. Data from an auto manufacturer's administrative databases suggest that autoworkers working long hours, and assembly-line workers relative to skilled trades workers or workers in non-assembly facilities, have a higher risk of hypertension, CVD, and psychological disorders. Occupational disease surveillance and disease prevention programs need to fully utilize such administrative data. Copyright © 2013 Wiley Periodicals, Inc.

  13. Independent technical review, handbook

    SciTech Connect

    Not Available

    1994-02-01

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction, and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.

  14. Rationale and design of the Pharmacist Intervention for Low Literacy in Cardiovascular Disease (PILL-CVD) study.

    PubMed

    Schnipper, Jeffrey L; Roumie, Christianne L; Cawthon, Courtney; Businger, Alexandra; Dalal, Anuj K; Mugalla, Ileko; Eden, Svetlana; Jacobson, Terry A; Rask, Kimberly J; Vaccarino, Viola; Gandhi, Tejal K; Bates, David W; Johnson, Daniel C; Labonville, Stephanie; Gregory, David; Kripalani, Sunil

    2010-03-01

    Medication errors and adverse drug events are common after hospital discharge due to changes in medication regimens, suboptimal discharge instructions, and prolonged time to follow-up. Pharmacist-based interventions may be effective in promoting the safe and effective use of medications, especially among high-risk patients such as those with low health literacy. The Pharmacist Intervention for Low Literacy in Cardiovascular Disease (PILL-CVD) study is a randomized controlled trial conducted at 2 academic centers-Vanderbilt University Hospital and Brigham and Women's Hospital. Patients admitted with acute coronary syndrome or acute decompensated heart failure were randomly assigned to usual care or intervention. The intervention consisted of pharmacist-assisted medication reconciliation, inpatient pharmacist counseling, low-literacy adherence aids, and tailored telephone follow-up after discharge. The primary outcome is the occurrence of serious medication errors in the first 30 days after hospital discharge. Secondary outcomes are health care utilization, disease-specific quality of life, and cost-effectiveness. Enrollment was completed September 2009. A total of 862 patients were enrolled, and 430 patients were randomly assigned to receive the intervention. Analyses will determine whether the intervention was effective in reducing serious medication errors, particularly in patients with low health literacy. The PILL-CVD study was designed to reduce serious medication errors after hospitalization through a pharmacist-based intervention. The intervention, if effective, will inform health care facilities on the use of pharmacist-assisted medication reconciliation, inpatient counseling, low-literacy adherence aids, and patient follow-up after discharge. Clinical Trial Registration- clinicaltrials.gov. Identifier: NCT00632021.

  15. The Effect of Annealing at 1500 C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    SciTech Connect

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-10-07

    The transport of silver in CVD {beta}-SiC has been studied using ion implantation. Silver ions were implanted in {beta}-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 {micro}m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion.

  16. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical safety requirements. (a) A contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility... in the technical safety requirements for nonreactor nuclear facilities. The contractor must report...

  17. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical safety requirements. (a) A contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility... in the technical safety requirements for nonreactor nuclear facilities. The contractor must report...

  18. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical safety requirements. (a) A contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility... in the technical safety requirements for nonreactor nuclear facilities. The contractor must report...

  19. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical safety requirements. (a) A contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility... in the technical safety requirements for nonreactor nuclear facilities. The contractor must report...

  20. 10 CFR 830.205 - Technical safety requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.205 Technical safety requirements. (a) A contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility... in the technical safety requirements for nonreactor nuclear facilities. The contractor must report...

  1. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    NASA Astrophysics Data System (ADS)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive

  2. Metal oxide growth, spin precession measurements and Raman spectroscopy of CVD graphene

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Akitomo

    The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp 2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of CVD grown graphene is crytical due to its scalability. In this thesis, a unique fabrication method of the metal oxide layers on CVD graphene is presented. This is motivated by theoretical work showing that an ultra thin metal oxide film used as a tunnel barrier improves the spin injection efficiency. Introducing a titanium seed layer prior to the aluminum oxide growth showed improved surface and film uniformity and resulted in a completely oxidized film. Utilizing this unique metal oxide film growth process, lateral spin valve devices using CVD graphene as a channel are successfully fabricated. Hanle spin precession measurements are demonstrated on these CVD graphene spin devices. A non-local Hanle voltage model based upon the diffusive spin transport in a solid is utilized to find the spin diffusion length and spin relaxation time of CVD graphene. The measured spin relaxation times in CVD graphene were compatible with the values found in the literature. However, they are an order of magnitude shorter than the theoretical values expected in graphene. To investigate possible origins of this order of magnitude shorter spin relaxation time in graphene, crystal and electrical modifications in CVD graphene are studied throughout the entire device fabrication process. Raman spectroscopy is utilized to track CVD graphene

  3. The use of CVD diamond burs for ultraconservative cavity preparations: a report of two cases.

    PubMed

    Carvalho, Carlos Augusto R; Fagundes, Ticiane C; Barata, Terezinha J E; Trava-Airoldi, Vladimir Jesus; Navarro, Maria Fidela L

    2007-01-01

    During the past decades, scientific developments in cutting instruments have changed the conventional techniques used to remove caries lesions. Ultrasound emerged as an alternative for caries removal since the 1950s. However, the conventional technology for diamond powder aggregation with nickel metallic binders could not withstand ultrasonic power. Around 5 years ago, an alternative approach using chemical vapor deposition (CVD) resulted in synthetic diamond technology. CVD diamond burs are obtained with high adherence of the diamond as a unique stone on the metallic surface with excellent abrading performance. This technology allows for diamond deposition with coalescent granulation in different formats of substrates. When connected to an ultrasonic handpiece, CVD diamond burs become an option for cavity preparation, maximizing preservation of tooth structure. Potential advantages such as reduced noise, minimal damage to the gingival tissue, extended bur durability, improved proximal cavity access, reduced risk of hitting the adjacent tooth resulting from the high inclination angles, and minimal patient's risk of metal contamination. These innovative instruments also potentially eliminate some problems regarding decreased cutting efficiency of conventional diamond burs. This clinical report presents the benefits of using CVD diamond burs coupled with an ultrasonic handpiece in the treatment of incipient caries. CVD diamond burs coupled with an ultrasonic device offer a promising alternative for removal of carious lesions when ultraconservative cavity preparations are required. Additionally, this system provides a less-painful technique for caries removal, with minimal noise.

  4. Can surface preparation with CVD diamond tip influence on bonding to dental tissues?

    NASA Astrophysics Data System (ADS)

    Aparecido Kawaguchi, Fernando; Brossi Botta, Sergio; Nilo Vieira, Samuel; Steagall Júnior, Washington; Bona Matos, Adriana

    2008-04-01

    This study evaluated the influence of chemical vapor deposition (CVD) tips surface treatments of enamel and dentin on bonding resistance of two adhesive systems. Thirty embedded samples were divided in 12 groups ( n = 10), according to factors: substrate (enamel and dentin), adhesive system [etch-and-rinse (SB) and self-etch]; and the surface treatments (paper discs, impact CVD tips and tangential CVD tip). When CVD tip was used in the impact mode the tip was applied perpendicular to dental surface, while at tangential mode, the tip worked parallel to dental surface. Specimens were tested in tension after 24 h at 0.5 mm/min of cross-head speed. ANOVA results, in MPa showed that in enamel, only adhesive system factor was statistically significant ( p = 0.015) under tested conditions, with higher bond strength observed for SB groups. However, in dentin the best bonding performance was obtained in SE groups ( p = 0.00). In both tested substrates, results did not show statistically significant difference for factors treatment and its interactions. ConclusionsIt may be concluded that CVD-tip surface treatment, in both tested modes, did not influence on adhesion to enamel and dentin. But, it is important to choose adhesive system according to the tissue available to bonding.

  5. Intracavity laser spectroscopy of reactive intermediates in the CVD of silicon containing films

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Miller, D. C.; Atkinson, G. H.

    1988-10-01

    The use of intracavity laser spectroscopy (ILS) in the real time, in situ, detection of intermediate gas phase species during the chemical vapor deposition (CVD) of silicon by plasma and pyrolysis processes is demonstrated. Gas phase species that are important in CVD processes as likely precursors either to film growth (e.g., SiH2) or to the incorporation of contaminants/dopants in the deposited films (e.g., C2, BH2) are observed with good sensitivity. ILS measurements of the relative concentrations of such species are used as a basis for selecting CVD process conditions and for evaluating the potentials of various organosilanes as alternative source materials to silane in the CVD of silicon films. These ILS data, in combination with the results of film composition analyses, indicate that SiH2 is formed in a homogeneous, gas phase process and is an important prerequisite for silicon film growth. This conclusion pertains to the CVD of silicon-containing films prepared by pyrolytic decompositions of various organosilanes under conditions of moderate temperature and pressure.

  6. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging

    NASA Astrophysics Data System (ADS)

    Yu, Yuanfang; Li, Zhenzhen; Wang, Wenhui; Guo, Xitao; Jiang, Jie; Nan, Haiyan; Ni, Zhenhua

    2017-03-01

    CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene. Project supported by the National Natural Science Foundation of China (Nos. 61422503, 61376104), the Open Research Funds of Key Laboratory of MEMS of Ministry of Education (SEU, China), and the Fundamental Research Funds for the Central Universities.

  7. Development, initial content validation and reliability of Nigerian composite lifestyle CVD risk factors questionnaire for adolescents.

    PubMed

    Odunaiya, Nse A; Louw, Quinette A; Grimmers-Somers, K; Ogah, Okechukwu S

    2014-09-01

    Cardiovascular disease risk (CVD) factors affect every age category including adolescents in developing nations. Prevention strategies are effective only when there are epidemiological data for the targeted populations. The collection of such data is only made easy with composite lifestyle CVD risk factors measures that are culturally sensitive and acceptable among the target populations. The objective of the study was to develop a culturally sensitive and friendly composite lifestyle CVD risk factors questionnaire for adolescents in Nigeria. A systematic review was conducted to identify existing, published questionnaires from which items could be selected. Content and face validation were conducted using an expert panel and a sub-sample of the target population. Data was analyzed qualitatively and reliability was assessed using intra-class correlation and Kappa statistic. Based on the comments received from experts, the questions were restructured, simplified, clarified, formatted, some questions were added and expert reached a consensus. Kappa showed fair to moderate agreement in 65% of the questions and perfect agreement in one question. The CVD risk factors questionnaire has acceptable content validity and reliability and should be used to assess CVD risk factors among adolescents in Nigeria.

  8. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  9. CVD2014-A Database for Evaluating No-Reference Video Quality Assessment Algorithms.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Vaahteranoksa, Mikko; Vuori, Tero; Oittinen, Pirkko; Hakkinen, Jukka

    2016-07-01

    In this paper, we present a new video database: CVD2014-Camera Video Database. In contrast to previous video databases, this database uses real cameras rather than introducing distortions via post-processing, which results in a complex distortion space in regard to the video acquisition process. CVD2014 contains a total of 234 videos that are recorded using 78 different cameras. Moreover, this database contains the observer-specific quality evaluation scores rather than only providing mean opinion scores. We have also collected open-ended quality descriptions that are provided by the observers. These descriptions were used to define the quality dimensions for the videos in CVD2014. The dimensions included sharpness, graininess, color balance, darkness, and jerkiness. At the end of this paper, a performance study of image and video quality algorithms for predicting the subjective video quality is reported. For this performance study, we proposed a new performance measure that accounts for observer variance. The performance study revealed that there is room for improvement regarding the video quality assessment algorithms. The CVD2014 video database has been made publicly available for the research community. All video sequences and corresponding subjective ratings can be obtained from the CVD2014 project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  10. Chlordane (Technical)

    Integrated Risk Information System (IRIS)

    Chlordane ( Technical ) ; CASRN 12789 - 03 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  11. Technical Mathematics.

    ERIC Educational Resources Information Center

    Flannery, Carol A.

    This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…

  12. Technical Mathematics.

    ERIC Educational Resources Information Center

    Flannery, Carol A.

    This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…

  13. A TRAINING INSTITUTE FOR TEACHERS OF TECHNICAL PROGRAMS IN AGRICULTURE.

    ERIC Educational Resources Information Center

    State Univ. of New York, Cobleskill. Agricultural and Technical Coll.

    A TRAINING INSTITUTE WAS HELD FOR TEACHERS OF TECHNICAL PROGRAMS IN AGRICULTURE IN WHICH SPEAKERS AND DISCUSSION GROUPS EXPLORED AND EXPLAINED (1) THE NEED FOR TECHNICAL EDUCATION IN AGRICULTURE, (2) FACILITIES NECESSARY FOR SUCH INSTRUCTIONAL PROGRAMS, (3) FACULTY REQUIREMENTS FOR TEACHING COURSES IN THE TECHNICAL FIELDS OF AGRICULTURE, (4)…

  14. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  15. Survey of aircraft icing simulation test facilities in North America

    NASA Technical Reports Server (NTRS)

    Olsen, W.

    1981-01-01

    A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.

  16. Final Technical Report

    SciTech Connect

    drucker, jeff

    2014-08-18

    This project investigated the fundamental science of nanowire epitaxy using vapor-liquid-solid growth in the silicon-germanium material system. Ultrahigh vacuum chemical vapor deposition (UHV CVD) was the primary deposition method. Nanowires grown using UHV CVD were characterized ex situ using scanning electron microscopy and a variety of transmission electron microscopy techniques. In situ transmission electron microscopy was also employed to monitor growth in real time and was instrumental in elucidating growth mechanisms.

  17. Low temperature CVD growth of ultrathin carbon films

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Peng; Gan, Wei; Habib, Muhammad; Xu, Weiyu; Fang, Qi; Song, Li

    2016-05-01

    We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC) used in several device processing technologies.

  18. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-05-01

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 °C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity. However, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 °C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 °C. Furthermore, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.

  20. Effect of current stress during thermal CVD of multilayer graphene on cobalt catalytic layer

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuyoshi; Ichikawa, Hiroyasu; Uchida, Takaki

    2016-04-01

    To improve the crystallinity of multilayer graphene (MLG) by CVD at a low temperature, the effect of current stress during thermal CVD on a cobalt (Co) catalytic layer was investigated. The crystallinity of MLG obtained by CVD with current was higher than that without current at the same temperature. This indicates that current has effects besides the Joule heating effect. The current effects on the Co catalytic layer and the MLG growth reaction were investigated, and it was found that current had small effects on the grain size and crystal structure of the Co catalyst and large effects on the MLG growth reaction such as large grain growth and a low activation energy of 0.49 eV, which is close to the value reported for carbon surface diffusion on Co. It is considered that the enhancement of MLG growth reaction by current leads to the improved crystallinity of MLG at a relatively low temperature.