Science.gov

Sample records for cw 250-ghz gyrotron

  1. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  2. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  3. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    PubMed Central

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2012-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron. PMID:23539422

  4. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  5. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source

    NASA Astrophysics Data System (ADS)

    Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G.

    2003-02-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170±50 have been observed in 1- 13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ˜17 have been obtained in two-dimensional 13C- 13C chemical shift correlation spectra of the amino acid U- 13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  6. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source

    NASA Astrophysics Data System (ADS)

    Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G.

    2011-12-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1- 13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ˜17 have been obtained in two-dimensional 13C- 13C chemical shift correlation spectra of the amino acid U- 13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  7. Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source

    PubMed Central

    Bajaj, V.S.; Farrar, C.T.; Hornstein, M.K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K.E.; Temkin, R.J.; Griffin, R.G.

    2010-01-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ~17 have been obtained in two-dimensional 13C–13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments. PMID:12615147

  8. Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source.

    PubMed

    Bajaj, V S; Farrar, C T; Hornstein, M K; Mastovsky, I; Vieregg, J; Bryant, J; Eléna, B; Kreischer, K E; Temkin, R J; Griffin, R G

    2003-02-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  9. 100 GHz, 1 MW, CW gyrotron study program. Final report

    SciTech Connect

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues.

  10. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  11. Development of a 2-MW, CW Coaxial Gyrotron at 70 GHz and Test Facility for ITER

    NASA Astrophysics Data System (ADS)

    Hogge, J. P.; Alberti, S.; Arnold, A.; Bariou, D.; Benin, P.; Bonicelli, T.; Bruschi, A.; Chavan, R.; Cirant, S.; Dumbrajs, O.; Fasel, D.; Gandini, F.; Giguet, E.; Goodman, T.; Heidinger, R.; Henderson, M.; Illy, S.; Jin, J.; Lievin, C.; Magne, R.; Marmillod, P.; Mondino, P. L.; Perez, A.; Piosczyk, B.; Porte, L.; Rzesnicki, T.; Santinelli, M.; Thumm, M.; Tran, M. Q.; Yovchev, I.

    2005-01-01

    In ITER, EC heating and current drive (H&CD) is foreseen not only as a principal auxiliary system for plasma heating and as assist for plasma start-up, but is considered essential in meeting the key requirement of neoclassical tearing mode (NTM) stabilisation, by localized current drive. In the reference ECH design, ITER requires a total of 20 MW/CW power at 170 GHz using gyrotrons with a unit power of 1 MW. A higher power per unit (2 MW/gyrotron) would result in a strong reduction of the cost of the whole ECRH system, and would also relax the room constraints on the launcher antenna design. In view of the capability of coaxial cavity gyrotrons demonstrated with short pulse experiments at FZK, the European Fusion Development Agreement (EFDA) has started in 2003 the development of an industrial 170 GHz 2 MW/CW coaxial cavity gyrotron, in a collaborative effort between European research associations CRPP/EPFL, FZK, TEKES and Thals Electron Devices (TED). The development plan includes three steps to reach successively 2 MW/1s, 2 MW/60s and finally 2 MW/CW operation. The procurement of the first prototype is in progress and it scheduled to be delivered during the first quarter of 2006. The experimental tests of the prototypes will be carried out at CRPP/EPFL, where an ITER relevant test facility is presently under construction and will be achieved during the second half of 2005. The test facility is designed to be flexible enough, allowing the possible commissioning of tubes with different characteristics, as well the tests of the launcher antenna at full performances.

  12. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  13. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L. )

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE{sub 15,2,1} interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs.

  14. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  15. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  16. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  17. Development program for a 200-kW, CW gyrotron. Quarterly report No. 5, July-September 1980

    SciTech Connect

    Tancredi, J.J.; Caplan, M.; Adler, E.A.; Sandoval, J.J.

    1980-01-01

    During this report period, the electrical design of the CW tube was completed. The mechanical design of a collector, capable of providing diagnostic data of the spent beam in S/N 1 was completed. Cold tests of variations of a scaled, X-band cavity were correlated with the calculated results of a cavity computer code. Parts for the magnetron injection gun were placed on order and gun tooling was designed. A subcontract was placed for a superconducting solenoid. A 3 MW power supply was dismantled, packaged and shipped from the Kwajalein Missile Range to storage at Hughes, for use in CW testing at a later date. During the latter part of this report period, a specific interim goal was imposed by ORNL, to provide for a demonstration of a 200 kW, 60 GHz gyrotron capable of 100 ms pulses, by December 31, 1981. The imposition of this interim goal has led to establishing a modified gyrotron design, based on a considerably smaller collector than that required for a CW tube.

  18. Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron

    SciTech Connect

    Link, G.; Feher, L.; Boehme, R.; Weisenburger, A. ); Thumm, M. Univ. of Karlsruhe . Inst. of Microwaves and Electronics); Ritzhaupt-Kleissl, H.J. )

    1999-04-01

    At the Forschungszentrum Karlsruhe, Germany, a compact gyrotron system was established in 1994 to investigate technological applications in the field of high-temperature materials processing by means of millimeter-wave (mm-wave) radiation. Besides the improvement of the system design, research activities are mainly engaged in studies on debindering and sintering of various types of advanced structural and functional ceramics. Due to volumetric heating and enhanced sintering kinetics, the application of microwaves allows one to shorten the processing rime and therefore reduce energy consumption. Besides these effects, microwave technology gives the unique possibility of influencing the microstructure and physical properties of the ceramic materials. This paper will discuss the benefits of the mm-wave technology with respect to sintering of structural ceramics, such as TiO[sub 2]-ZrO[sub 2]-MgO multicomponent ceramics, nanocrystalline oxide ceramics, and Si[sub 3]N[sub 4], as well as lead-zirconate-titanate piezoceramics as one of the most interesting classes of functional ceramics.

  19. Development program for a 200 kW, CW gyrotron. Quarterly report No. 4, April-June 1980

    SciTech Connect

    Tancredi, J.J.; Caplan, M.; Sandoval, J.J.; Weiss, W.

    1980-01-01

    The objective of this program is the design and development of a millimeter-wave device to produce 200 kW of continuous-wave power at 60 GHz. The device, which will be a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron plasma. Smooth control of rf power output over a 17 db range is required, and the device should be capable of operation into a severe time-varyinng rf load mismatch.

  20. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  1. Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron

    NASA Astrophysics Data System (ADS)

    Aripin, Haji; Mitsudo, Seitaro; Sudiana, I. Nyoman; Tani, Shinji; Sako, Katsuhide; Fujii, Yutaka; Saito, Teruo; Idehara, Toshitaka; Sabchevski, Sliven

    2011-06-01

    In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.

  2. High-harmonic gyrotrons

    NASA Astrophysics Data System (ADS)

    McDermott, D. B.; Luhmann, N. C., Jr.

    1984-08-01

    There is currently much interest in the development of moderate to high power (1 kW - 1 MW) millimeter wave sources. Considered applications are mainly related to radar and communication systems. There are, however, also applications in plasma diagnostics, heating, and the nondestructive testing of dielectrics. The dominant source of high-power, high-frequency radiation has become the gyrotron. Jory et al. (1983) have reported operation of a 60 GHz, CW gyrotron, producing output powers in excess of 200 kW. High power, compact submillimeter-wave sources have become possible by making use of the concept of a high-harmonic gyrotron, in which the magnetic field can be reduced by an order of magnitude. Attention is given to synchronism, negative-mass instability, energy requirements, oscillators, efficiency, high power, dielectric loading, the peniotron, and amplifiers.

  3. First demonstration of a vehicle mounted 250GHz real time passive imager

    NASA Astrophysics Data System (ADS)

    Mann, Chris

    2009-05-01

    This paper describes the design and performance of a ruggedized passive Terahertz imager, the frequency of operation is a 40GHz band centred around 250GHz. This system has been specifically targeted at vehicle mounted operation, outdoors in extreme environments. The unit incorporates temperature stabilization along with an anti-vibration chassis and is sealed to allow it to be used in a dusty environment. Within the system, a 250GHz heterodyne detector array is mated with optics and scanner to allow real time imaging out to 100 meters. First applications are envisaged to be stand-off, person borne IED detection to 30 meters but the unique properties in this frequency band present other potential uses such as seeing through smoke and fog. The possibility for use as a landing aid is discussed. A detailed description of the system design and video examples of typical imaging output will be presented.

  4. Design of an induction linac driven CARM (Cyclotron Auto Resonance Maser) oscillator at 250 GHz

    SciTech Connect

    Caplan, M.; Kulke, B.

    1990-01-24

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE{sub 11} mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 {mu}m corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs.

  5. A 250-GHz CARM (Cyclotron Auto Resonance Maser) oscillator experiment driven by an induction linac

    SciTech Connect

    Caplan, M.; Kulke, B.; Bubp, D.G. ); McDermott, D.; Luhmann, N. )

    1990-09-14

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE{sub 11} mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%).

  6. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    SciTech Connect

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs.

  7. A 250 GHz microwave interferometer for divertor experiments on DIII-D

    SciTech Connect

    James, R.A.; Nilson, D.G.; Stever, R.D.; Hill, D.N.; Casper, T.A.

    1994-01-31

    A new 250 GHz, two-frequency microwave interferometer system has been developed to diagnose divertor plasmas on DIII-D. This diagnostic will measure the line-averaged density across both the inner and outer, lower divertor legs. With a cut-off density of over 7 {times} 10{sup 14} cm{sup {minus}3}, temporal measurements of ELMs, MARFs and plasma detachment are expected. The outer leg system will use a double pass method while the inner leg system will be single pass. Two special 3D carbon composite tiles are used, one to protect the microwave antennas mounted directly under the strike point and the other as the outer leg reflecting surface. Performance, design constraints, and the thermalmechanical design of the 3D carbon composite tiles are discussed.

  8. Innovation on high-power long-pulse gyrotrons

    NASA Astrophysics Data System (ADS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  9. Development of gyrotrons for fusion with power exceeding 1 MW over a wide frequency range

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Imai, T.; Minami, R.; Numakura, T.; Eguchi, T.; Kato, T.; Endo, Y.; Ichimura, M.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, K.; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.; Mitsunaka, Y.

    2015-09-01

    Megawatt-class gyrotrons covering a wide frequency range (14 GHz-300 GHz) are in increasing demand for nuclear fusion. Recent electron cyclotron heating and electron cyclotron current drive experiments highlight a requirement of megawatt-scale gyrotrons at a relatively lower frequency (14-35 GHz) range of some plasma devices, like GAMMA 10/PDX of the University of Tsukuba, QUEST of Kyushu University, NSTX-U of Princeton Plasma Physics Laboratory, and Heliotron J of Kyoto University. Collaborative studies for designing a new 28 GHz/35 GHz dual-frequency gyrotron and a 14 GHz gyrotron have commenced. Operation above 1 MW of 28 GHz/35 GHz dual oscillation was demonstrated experimentally. Further in the design of dual-frequency gyrotron, operations with 2 MW 3 s and 0.4 MW CW (continuous wave) at 28 GHz, and power exceeding 1 MW for 3 s at 34.8 GHz have been shown to be feasible. The 14 GHz gyrotron is expected to operate above 1 MW. We are also developing higher frequency gyrotrons (77-300 GHz). The joint program of National Institute for Fusion Science and the University of Tsukuba developed two new 154 GHz gyrotrons for the large helical device after the demonstration of three 77 GHz gyrotrons. The 154 GHz gyrotrons achieved a maximum output power of 1.25 MW and quasi-CW operation of 0.35 MW for 30 min.

  10. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    PubMed Central

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  11. Integrated 1.55 µm photomixer local oscillator sources for heterodyne receivers from 70 GHz to beyond 250 GHz

    NASA Astrophysics Data System (ADS)

    Huggard, Peter G.; Azcona, Luis; Laisné, Alexandre; Ellison, Brian N.; Shen, Pengbo; Gomes, Nathan J.; Davies, Phil A.

    2004-10-01

    Photomixing is a flexible and efficient method of providing both local oscillator signals for heterodyne receivers and high frequency phase reference signals. Ultrafast, 70 GHz bandwidth, λ = 1.55 µm, photodiodes from u2t Photonics AG have been incorporated into three designs of mm-wave waveguide mounts. The photomixers utilise a thin freestanding gold foil, or a gold on dielectric, probe to couple power into the waveguide and to deliver the photodiode bias. The frequency coverage of the designs is from 70 GHz to 300 GHz. A method of rapidly characterizing the frequency response of these photomixers using spontaneous-spontaneous beating of light from an EDFA is described. Recent work has been directed at increasing the degree of integration of the photodiode with the waveguide probe and choke filter to reduce the frequency dependence of the output power. A simplified photomixer block manufacturing process has also been introduced. A combined probe and filter structure, impedance matched to both the coplanar output line on the photodiode chip and to 0.4 height milled waveguide, is presented. This matching is achieved over the W-band with a fixed waveguide backshort. We present modelled and experimental results showing the increased efficiency and smoother tuning. The design and frequency response of such a probe is reported. We also present the performance of a simpler mount, operating in the frequency range from 160 GHz to 300 GHz, which generates powers of around 10 µW up to 250 GHz.

  12. Millimeter-wave, megawatt gyrotron development for ECR (electron cyclotron resonance) heating applications

    SciTech Connect

    Jory, H.; Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-09-17

    To address the electron cyclotron heating requirements of planned fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) and the Compact Ignition Tokamak (CIT), Varian is developing gyrotrons at frequencies ranging from 100--300 GHz with output power capabilities up to 1 MW CW. Experimental gyrotrons have been built at frequencies between 100--140 GHz, and a study program has addressed the critical elements of designing 280--300 GHz gyrotrons capable of generating CW power levels up to 1 MW. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 1040 kW at 38% efficiency have been obtained and average powers of 200 kW have been achieved. Long-pulse operation has been extended to pulse durations of 0.5 seconds at power levels of 400 kW. Gyrotron oscillators capable of generating output powers of 500 kW CW at a frequency of 110 GHz have recently been designed and a prototype is currently being tested. Design work for a 1 MW CW gyrotron at 110 GHz, is in progress. The 1 MW CW tube will employ an output coupling approach where the microwave output is separated from the microwave output. 15 refs., 10 figs., 3 tabs.

  13. Integrated Design of Undepressed Collector for Low Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  14. Gyrotron Development in the EU for Present Fusion Experiments and for ITER

    SciTech Connect

    Thumm, M.; Alberti, S.; Hogge, J.-P.; Tran, M. Q.; Yovchev, I.; Arnold, A.; Bariou, D.; Giguet, E.; Lievin, C.; Dammertz, G.; Illy, S.; Jin, J.; Piosczyk, B.; Prinz, O.; Rzesnicki, T.; Yang, X.; Darbos, C.; Magne, R.; Gantenbein, G.

    2006-01-03

    The long term strategy of the EU in the field of gyrotrons in fusion plasma applications is based on two approaches: R and D in laboratories to develop advanced concepts and industrial development of state-of-the-art tubes for use in present experiments like TCV, Tore Supra (118 GHz, 0.5 MW, CW) and W7-X (140 GHz, 1 MW, CW). The results from these two approaches are then applied to the development of a coaxial cavity gyrotron operating at 170 GHz and delivering 2 MW-CW for the electron cyclotron wave system of ITER. This paper will recall the main achievements of this program and will outline the present status of the 170 GHz coaxial cavity gyrotron development.

  15. Progress on Gyrotrons for ITER and Future Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Thumm, Manfred K.

    2009-11-01

    The prototype of the Japan 170 GHz ITER gyrotron holds the energy and efficiency world record of 2.88 GJ (0.8 MW, 3600 s, 57%) with 55% efficiency at 1 MW, 800 s, whereas the Russian 170 GHz ITER prototype tube achieved 0.83 MW with a pulse duration of 203 s at 48% efficiency and 1 MW at 116 s and 52%. The record parameters of the European megawatt-class 140 GHz gyrotron for the Stellarator Wendelstein W7-X are: 0.92 MW output power at 1800 s pulse duration, almost 45% efficiency and 97.5% Gaussian mode purity. All these gyrotrons employ a cylindrical cavity, a quasi-optical output coupler, a synthetic diamond window and a single-stage depressed collector (SDC) for energy recovery. In coaxial cavities the existence of the longitudinally corrugated inner conductor reduces the problems of mode competition and limiting current, thus allowing one to use even higher order modes with lower Ohmic attenuation than in cylindrical cavities. Synthetic diamond windows with a transmission capability of 2 MW, continuous wave (CW) are feasible. In order to keep the number of the required gyrotrons and magnets as low as possible, to reduce the costs of the ITER 26 MW, 170 GHz ECRH system and to allow compact upper launchers for plasma stabilization, 2 MW mm-wave power per gyrotron tube is desirable. The FZK pre-prototype tube for an EU 170 GHz, 2 MW ITER gyrotron has achieved 1.8 MW at 28% efficiency (without depressed collector). Design studies for a 4 MW 170 GHz coaxial-cavity gyrotron with two synthetic diamond output windows and two 2 MW mm-wave output beams for future fusion reactors are currently being performed at FZK. The availability of sources with fast frequency tunability (several GHz s-1, tuning in 1.5-2.5% steps for about ten different frequencies) would permit the use of a simple, fixed, non-steerable mirror antenna for local current drive (ECCD) experiments and plasma stabilization. GYCOM in Russia develops in collaboration with IPP Garching and FZK an industrial

  16. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media

    SciTech Connect

    Glyavin, M. Yu. Denisov, G. G.; Zapevalov, V. E.; Chirkov, A. V.; Fokin, A. P.; Kholoptsev, V. V.; Kuftin, A. N.; Luchinin, A. G.; Golubyatnikov, G. Yu.; Malygin, V. I.; Morozkin, M. V.; Manuilov, V. N.; Proyavin, M. D.; Sedov, A. S.; Tsvetkov, A. I.; Sokolov, E. V.; Tai, E. M.

    2015-05-15

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10{sup −6}.

  17. Present developments and status of electron sources for high power gyrotron tubes and free electron masers

    NASA Astrophysics Data System (ADS)

    Thumm, M.

    1997-02-01

    Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.

  18. Measurement of Radiation Frequency of Gyrotron by GaAs Schottky Barrier Diodes Coupled with Thin-Film Slot Antenna

    NASA Astrophysics Data System (ADS)

    Hayashi, Kosuke; Furuya, Takashi; Tachiki, Takashi; Uchida, Takashi; Idehara, Toshitaka; Yasuoka, Yoshizumi

    2010-03-01

    Thin-film slot-antenna-coupled GaAs Schottky barrier diodes (SBDs) used at the 180 GHz band were fabricated by microfabrication techniques, and the radiation frequency of a gyrotron at the University of Fukui (Gyrotron FU CW IV) was measured. In second-harmonic mixing using a local oscillator (LO) wave of 88.0899 GHz, an intermediate frequency (IF) signal of 102.8 MHz was observed and the radiation frequency of the gyrotron was found to be 176.077 GHz.

  19. 60 GHz gyrotron development program. Quarterly report No. 6, October-December 1980

    SciTech Connect

    Shively, J.F.; Cheng, M.K.; Evans, S.E.; Grant, T.J.; Stone, D.S.

    1981-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, procurement and construction phases of this program are discussed. Progress on gyrotron behavior studies being performed at 28 GHz are also discussed.

  20. First Experimental Results from the EU 2 MW Coaxial Cavity Iter Gyrotron Prototype

    NASA Astrophysics Data System (ADS)

    Goodman, T. P.; Alberti, S.; Droz, E.; Fasel, D.; Hogge, J. P.; Jawla, S.; Porte, L.; Siravo, U.; Tran, M. Q.; Albajar, F.; Bonicelli, T.; Benin, P.; Bethuys, S.; Lievin, C.; Cirant, S.; Dumbrajs, O.; Gantenbein, G.; Illy, S.; Jin, J.; Kern, S.; Piosczyk, B.; Rzesnicki, T.; Thumm, M.

    2009-04-01

    The EU is working towards providing 2 MW, coaxial-cavity, CW, 170 GHz gyrotrons for ITER. Their design is based on results from an experimental pre-prototype tube in operation at FZK for several years, having a pulse length of several milliseconds. The first industrial prototype tube is designed for CW operation, but, in a first phase, will be tested out to 1s at the European Gyrotron Test Facility in Lausanne, Switzerland as part of a phased testing/development program (1 s, 60 s, CW). It is known that RF beam profile shaping, stray radiation handling, and collector cooling at these high power levels are three issues for the gyrotron, The gyrotron, magnet and body power supply have been delivered and successfully installed at the test stand, hosted by the CRPP. The main high voltage power supply delivery is delayed, so one of the power supplies dedicated to 3 of 9 gyrotrons in the TCV EC system is being used as a backup power source (all 3 TCV power sources can be interfaced with the test stand). Cathode conditioning began in November 2007 followed by collector conditioning in December. Parasitic low frequency oscillations have not hindered operation, and the tests have progressed to conditioning out to 0.14 s pulses by March 2008. During this period, the perfomance concerning microwave generation has been characterised and the RF beam profile has been measured at several planes to allow reconstruction of the phase and amplitude profile at the gyrotron window and to provide the necessary information permitting proper alignment of the compact RF loads prior to pulse extension. The power will be measured, according to the pulse length, using either a very-short pulse (<0.01 s) load on loan from FZK, or short-pulse (<0.2 s) or long-pulse (CW), spherical, calorimetric loads developped as part of this program by CNR. This paper presents the preliminary results of these operations.

  1. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  2. 28 GHz Gyrotron ECRH on LDX

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.; Kesner, J.; Michael, P. C.; Garnier, D. T.; Mauel, M. E.

    2010-12-01

    A 10 kW, CW, 28 GHz gyrotron has been implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. This added power represents about a 60% increase in ECRH to a new total of 26.9 kW with sources at 2.45, 6.4, and 10.5 GHz. The 1 Tesla resonances in LDX form small rings encompassing the entire plasma cross-section above and below the floating coil (F-coil) near the dipole axial region. A 32.5 mm diameter TE01 waveguide with a partial Vlasov step cut launches a diverging beam from above the F-coil that depends on internal wall reflections for plasma coupling. Initial gyrotron only plasmas exhibit steep natural profiles with fewer hot electrons than with the other sources. The background scattered radiation suggests that only about half the power is being absorbed with the present launcher.

  3. Gyrotron gun study report

    NASA Astrophysics Data System (ADS)

    Baird, J. M.; Attard, A. C.

    1982-09-01

    The purpose of the program was to explore new gyrotron gun configurations and to design a low velocity spread replacement gun for the NRL 35 GHz gyro-TWT. The specific beam forming techniques which were studied were magnetic field reversal, transverse magnetic field kicker, and single anode (diode-like) Magnetron Injection Guns (MIGs). This report contains a summary of our work in each of these areas as well as a description of the new MIG design for the gyro-TWT. Gyrotron oscillators and amplifiers require an entirely different type of electron gun design than those normally used in conventional tube designs. The ideal beam must not only have the proper geometry to maximize the rf interaction with the selected waveguide circuit mode, but also, for maximum efficiency, there are two additional requirements: (1) the transverse velocity of the electrons must exceed the longitudinal velocity by a typical factor of 1.5 to 2 (intermixed helical electron trajectories are allowed); and (2) the spread in the longitudinal velocities must be small (on the order of 10-20% for oscillators, 2-5% for amplifiers). Several methods for producing gyrotron beams have been investigated, and most likely different approaches will be necessary for differing power levels and velocity spread requirements.

  4. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating

    SciTech Connect

    Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-10-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--500 GHz for use in electron cyclotron resonance (ECR) heating of magnetically-confined plasma. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 940 kW at 35% efficiency have been obtained and average powers of 200 kW have been achieved at peak powers of 400 kW. Long-pulse testing is currently underway. Initial test have resulted in output levels of 400 kW for pulse durations of 380 ms. Design work on 110 GHz, 500 kW CW gyrotron oscillators has recently been completed and a prototype tube has been assembled and is currently being tested. The design of a 110 GHz, 1 MW CW gyrotron, using a novel output coupling approach, is nearly complete. Fabrication of the first 1 MW CW experimental tube is in progress.

  5. Gyrotron transmitting tube

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1983-01-01

    An RF transmitting tube for the 20 GHz to 500 GHz range comprises a gyrotron and a multistage depressed collector. A winding provides a magnetic field which acts on spent, spinning or orbiting electrons changing their motion to substantially forward linear motion in a downstream direction. The spent electrons then pass through a focusser into the collector. Nearly all of the electrons injected into the collector will remain within an imaginary envelope as they travel forward toward the end collector plate. The apertures in the collector plates are at least as large in diameter as the envelope at any particular axial position.

  6. 47 CFR 15.256 - Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of level probing radars within the..., Additional Provisions § 15.256 Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz. (a) Operation under this section is limited to level probing radar...

  7. Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2012-07-01

    Powerful sources of coherent radiation in the sub-terahertz and in the terahertz frequency range of the electromagnetic spectrum are necessary for a great and continuously expanding number of applications in the physical research and in various advanced technological processes as well as in radars, communication systems, for remote sensing and inspection etc.. In recent years, a spectacular progress in the development of various gyro-devices and in particular of the powerful high frequency (sub-terahertz and terahertz) gyrotron oscillators has demonstrated a remarkable potential for bridging the so-called terahertz power gap and stimulated many novel and prospective applications. In this review paper we outline two series of such devices, namely the Gyrotron FU Series which includes pulsed gyrotrons and Gyrotron FU CW Series which consist of tubes operated in a CW (continuous wave) or long pulse mode, both developed at the FIR FU Center. We present the most remarkable achievements of these devices and illustrate their applications by some characteristic examples. An outlook for the further extension of the Gyrotron FU CW Series is also provided.

  8. Gyrotron: an ECH system component

    SciTech Connect

    Loring, C.M.; Eason, H.O.; Kimrey, H.D.; White, T.L.; Jory, H.R.; Evans, S.J.

    1981-01-01

    The gyrotron, or electron-cyclotron maser, in the form of a gyromonotron, is being developed as a source of millimeter wave energy for fusion plasma heating. The characteristics of this high power, high efficiency electron tube are described in terms of the requirements for the beam power supply system, the mechanical support system, the cooling system, the focusing and tuning magnets, and the waveguide system. Requirements of power level and transmission efficiency dictate the use of oversize waveguide. The implications, both to the user and to the interaction mechanisms in the gyrotron, of the use of oversize waveguide are treated. The effects of variations of various operating parameters upon the gyrotron's power output and stability are also discussed. Data from gyrotron development and system operation are used where appropriate.

  9. First experiments with gasdynamic ion source in CW mode.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Vodopyanov, A; Tarvainen, O

    2016-02-01

    A new type of ECR ion source-a gasdynamic ECR ion source-has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600-700 emA/cm(2) in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation. PMID:26931933

  10. Nonstationary oscillations in gyrotrons revisited

    SciTech Connect

    Dumbrajs, O.; Kalis, H.

    2015-05-15

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper.

  11. 60 GHz gyrotron development program. Quarterly report No. 15, January-March 1983

    SciTech Connect

    Shively, J.F.; Bier, R.E.; Caplan, M.; Choi, E.K.; Craig, L.J.; Evans, S.J.; Felch, K.L.; Fox, L.J.; Hu, G.; Huey, H.E.

    1983-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. Additional calculations for stepped cavity designs are reported. The work on collector fatigue improvement has continued. Window work has stressed the implementation of an FC-75 chilling system and the thermal imaging system for viewing the window temperature. Extensive measurements were made on the output window of the 56 GHz CW gyrotron using three systems. Further investigations of three water load approaches are described.

  12. Gyrotron Beam Heating of Ceramic Coatings and Joints

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Bruce, R. W.; Gold, S. H.; Fischer, R. P.; Kinkead, A. K.; Manheimer, W.; Lewis, D., III; Kurihara, L.; Ganguly, S.

    2000-10-01

    A focussed Gaussian beam generated by an 83-GHz, 15-kW CW Gycom gyrotron is being applied to the processing of ceramic materials at the Naval Research Laboratory. Available microwave power densities of >1 kW/cm^2 enable rapid, localized heating of ceramic coatings and joints, provided adequate microwave-material coupling is achieved. This paper describes theoretical and experimental studies of microwave beam coupling to and propagation in multi-component ceramic systems, such as reactive metal brazes (mixtures of ceramic and metal powders), corresponding to joints and coating configurations. The absorption coefficient for typical braze materials has been calculated using the Effective Medium Approximation. Minimization of reflection (important in a single-pass beam system) using a matching plate and beam polarization effects will be discussed, as well as the results of experiments designed to enhance heating rates based on these effects.

  13. 60-GHz-gyrotron development program. Quarterly report No. 13, July-September 1982

    SciTech Connect

    Shively, J.F.; Caplan, M.; Choi, E.K.

    1982-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. A CW experimental tube, X-5, which incorporated a thinner double disc output window to improve window bandwidth, and some modifications to the drift tunnel and cavity coupling proven to be successful in earlier pulse tube tests produced 123 kW of CW output power at 60 GHz before rf load coolant boiling and tube window failure terminated tests. A water load of new design has been constructed and will be used in conjunction with a 56 GHz gyrotron next quarter. Alternative window designs are being explored and developed.

  14. Gyrotron development for space power beaming

    NASA Technical Reports Server (NTRS)

    Manheimer, Wallace M.

    1989-01-01

    The use of a gyrotron for space power beaming, especially in the form of a lunar orbiting power station is discussed. The advantages of phased array power beaming, output power, and the design of a quasi-optical gyrotron are discussed.

  15. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-05-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed.

  16. Operation of the 118 GHz very long pulse Gyrotron for the ECRH experiment on Tore Supra

    NASA Astrophysics Data System (ADS)

    Darbos, C.; Bouquey, F.; Clary, J.; Giruzzi, G.; Jung, M.; Lennholm, M.; Magne, R.; Petit, T.; Portafaix, Ch.; Roux, D.; Segui, J. L.; Zou, X.; Giguet, E.; Lievin, Ch.; Alberti, S.; Hogge, J. P.; Thumm, M.

    2003-02-01

    An ECRH (Electron Cyclotron Resonance Heating) system capable of delivering 2.4 MW CW is presently under development at CEA (Commissariat à l'Energie Atomique) Cadarache, for the Tore Supra experiment, to provide plasma heating and current drive by Electron Cyclotron Resonance interaction. The generator is planned to consist of six gyrotrons TH 1506B developed thanks to a collaboration between TED (Thales Electron Devices) and European laboratories; the gyrotrons are specified to provide RF waves with a frequency of 118 GHz and a unit power of 400 kW (500 kW) for a pulse length up to 600 s (5 s). At present, one prototype and one series tube are installed , which were first tested on dummy loads and then on plasma, individually and together. Even though the specification was not fulfilled, a record pulse of 300 kW during 110 s was achieved by the series gyrotron; the pulse was stopped by a strong degassing within the tube, due to the overheating of the internal mirror box. This seems to be the consequence of spurious frequencies generated in the injector. New upgraded tubes will be developed by TED and the next gyrotron is planned to be delivered during summer 2003. At the end of 2001, 800 kW generated by the two existing gyrotrons were coupled to the plasma, using various polarisations and injection angles allowed by the mobile mirrors of the antenna; the power was modulated at frequencies between 2 Hz and 25 Hz, on both tubes. As a result, about 50 ECRH pulses have successfully been coupled to the plasma, leading to a first comparison of theoretical deposition profiles with the experimental profiles observed through the ECE diagnostic.

  17. Large Scale CW ECRH Systems: Meeting a Challenge

    SciTech Connect

    Erckmann, V.; Braune, H.; Laqua, H. P.; Marushchenko, N. B.; Michel, G.; Kasparek, W.; Plaum, B.; Lechte, C.; Stuttgart, IPF; Petelin, M. I.; Lubiako, L.; Bruschi, A.; D'Arcangelo, O.; Bin, W.; Van Den Braber, R.; Doelman, N.; Gantenbein, G.; Thumm, M.

    2011-12-23

    Electron Cyclotron Resonance Heating (ECRH) systems for next step-fusion devices like W7-X and ITER operate in CW-mode and provide a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configuration and MHD control. The request for many different sophisticated applications results in a growing complexity of the systems. This is in conflict with the request for high availability, reliability, and maintainability, which arises from DEMO demands. 'Advanced' ECRH-components must, therefore, comply with both the complex physics demands and operational robustness and reliability. The W7-X ECRH system is the first CW facility of an ITER relevant size and is used as a test bed for such components. Results on improvements of gyrotrons, transmission components and launchers are presented together with proposals for future developments.

  18. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  19. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  20. 60-GHz gyrotron-development program. Quarterly report No. 9, July-September 1981

    SciTech Connect

    Shively, J.F.; Felch, K.L.; Jory, H.R.; Morwood, R.C.; Spang, S.T.

    1981-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW CW power at 60 GHz. Tests on the first experimental tube were completed. At an rf pulse duration of 60 ms a peak rf output power of 86 kW was measured at an average power of 10.3 kW. A collector heating problem above the well cooled region of the collector was identified. The second experimental tube tested confirmed the over 200 kW peak output power design of the 60 GHz gyrotron.

  1. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  2. Experimental investigation of a coaxial gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Advani, Rahul N.

    1999-09-01

    This thesis presents experimental results of a megawatt power level, 140 GHz coaxial gyrotron oscillator. The coaxial gyrotron has the potential to transport very high power electron beams and thus achieve higher microwave output power levels than conventional gyrotrons. A TE21,13 coaxial gyrotron was designed to operate at 95 kV, 76 A. This tube was tested to high power with the first high power Inverted Magnetron Injection Gun (IMIG). The IMIG electron gun was tested to 10 MW (105 kV, 93 A), which is the highest power level for a non-relativistic gyrotron gun. Operation of the coaxial gyrotron oscillator yielded power levels of greater than 1 MW in two different configurations: with the coaxial conductor (at 92kV, 70 A, and 16% efficiency) and without the coaxial conductor (85 kV, 65 A, and 18% efficiency). We also successfully operated this tube in three configurations (empty cavity, radial output, and axial output) with no beam interception. We observed regimes of dominant single mode and multi-mode operation. We also identified electron beam asymmetries and tube alignment as two major issues, which can limit the performance of a coaxial gyrotron. An unexpected source of magnetic field error was found in the magnetization of the stainless steel parts. All these results have led to techniques for improving not only coaxial gyrotrons but also other gyrotron tubes. We also investigated a ferroelectric cathode, which has the potential to achieve higher currents than thermionic cathodes in a simpler, low cost gun. We report the first results on a ferroelectric cathode gun in a magnetron injection gun configuration suitable for use in a gyrotron. It had an annular emitter shape with a diameter of 11.4 cm and a width of 0.25 cm and operated at currents of up to 10 A (1.1 A/cm2) at 8 kV, in 5 μs flat-top pulses. This result (along with the kiloampere beam obtained at Integrated Applied Physics) demonstrate the scalability of ferroelectric cathodes to large diameter

  3. Development of problem-oriented software packages for numerical studies and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-03-01

    Gyrotrons are the most powerful sources of coherent CW (continuous wave) radiation in the frequency range situated between the long-wavelength edge of the infrared light (far-infrared region) and the microwaves, i.e., in the region of the electromagnetic spectrum which is usually called the THz-gap (or T-gap), since the output power of other devices (e.g., solid-state oscillators) operating in this interval is by several orders of magnitude lower. In the recent years, the unique capabilities of the sub-THz and THz gyrotrons have opened the road to many novel and future prospective applications in various physical studies and advanced high-power terahertz technologies. In this paper, we present the current status and functionality of the problem-oriented software packages (most notably GYROSIM and GYREOSS) used for numerical studies, computer-aided design (CAD) and optimization of gyrotrons for diverse applications. They consist of a hierarchy of codes specialized to modelling and simulation of different subsystems of the gyrotrons (EOS, resonant cavity, etc.) and are based on adequate physical models, efficient numerical methods and algorithms.

  4. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  5. Final Report for "Gyrotron Design and Evaluation using New Particle-in-Cell Capability"

    SciTech Connect

    David N Smithe

    2008-05-28

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO’s) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R&D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO’s, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  6. 60 GHz gyrotron development program. Quarterly report No. 8, April-June 1981

    SciTech Connect

    Shively, J.F.; Evans, S.J.; Felch, K.L.; Grant, T.J.; Jory, H.R.; Morwood, R.C.; Stone, D.S.

    1981-01-01

    The objective of this program is to develop a microwave oscillator designed to produce 200 kW of CW output power at 60 GHz. Neither tunability nor bandwidth is considered an important parameter in the design but efficiency is. Mode purity in the output waveguide is not a requirement for the device, but the circular electric mode is considered desirable because of its low loss properties. Initial tests of X-1 were completed. At a pulse duration of 265 ..mu..s a peak output power of 150 kW wass measured. A body heating phenomenon was identified as a drift tube oscillation. The second experimental tube incorporating a cathode in an optimized location and a water cooled anode is available for test after test set debugging. The third experimental tube incorporating a modified drift tube is under construction. A CW gyrotron is also under construction. Quotes for a spare superconducting solenoid magnet system have been received. Debugging of the test set, using X-1 as a load, is continuing. A variety of waveguide components have been completed. The gyrotron behavior investigation is continuing. The arcing and crowbar, new cathode material, parameter space, rf output stability, low level starting and efficiency investigations were completed during the quarter.

  7. Electron-optical systems for planar gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-01

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%-30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  8. The 110 GHz Gyrotron System on DIII-D: Gyrotron Tests and Physics Results

    SciTech Connect

    J. Lohr; P. Calahan; R.W. Callis; T.S. Chu; J.S. deGrassie; I. Gorelov; H. Ikezi; R.A. Legg; T.C. Luce; C.C. Petty; D. Ponce; R. Prater; D.J. Schuster; S.E. Tsimring

    1999-12-01

    The DIII-D tokamak has installed a system with three gyrotrons at the 1 MW level operating at 110 GHz. Physics experiments on electron cyclotron current drive, heating, and transport have been performed. Good efficiency has been achieved both for on-axis and off-axis current drive with relevance for control of the current density profile leading to advanced regimes of tokamak operation, although there is a difference between off-axis ECCD efficiency inside and outside the magnetic axis. Heating efficiency is excellent and electron temperatures up to 10 keV have been achieved. The gyrotron system is versatile, with poloidal scan and control of the polarization of the injected rf beam. Phase correcting mirrors form a Gaussian beam and focus it into the waveguide. Both perpendicular and oblique launch into the tokamak have been used. Three different gyrotron designs are installed and therefore unique problems specific to each have been encountered, including parasitic oscillations, mode hops during modulation and polarization control problems. Two of the gyrotrons suffered damage during operations, one due to filament failure and one due to a vacuum leak. The repairs and subsequent testing will be described. The transmission system uses evacuated, windowless waveguide and the three gyrotrons have output windows of three different materials. One gyrotron uses a diamond window and generates a Gaussian beam directly. The development of the system and specific tests and results from each of the gyrotrons will be presented. The DIII-D project has committed to an upgrade of the system, which will add three gyrotrons in the 1 MW class, all using diamond output windows, to permit operation at up to ten seconds per pulse at one megawatt output for each gyrotron.

  9. Calorimetric Power Measurements of the DIII-D Gyrotron System

    NASA Astrophysics Data System (ADS)

    Gorelov, I.; Lohr, J.; Callis, R. W.; Cary, W. P.; Ponce, D.; Pinsker, R. I.; Chiu, H.; Baity, F. W.

    2001-10-01

    Gyrotron power measurements are an integral part of rf experiments on DIII-D. The ECH complex at General Atomics is built up from four 110 GHz, 1 MW gyrotrons, one from Communication and Power Industry (CPI) and three from Russia's Gyrotron Company (Gycom). Power measurements are made calorimetrically using the temperature and flow measurements of the gyrotron cooling circuits. Three such circuits are measured on the Gycom gyrotrons: window, MOU and dummy load. Interior cooling circuits are additionally measured on the CPI gyrotron that are very useful when tuning for maximum power and efficiency. Calorimetric signals from each cooling circuit are acquired by computer, where the dissipated energy is calculated with a LabView program. From these calculations, total rf power and efficiency were determined. Thus, calorimetry measurements were effectuated during gyrotron operations to provide the average power of each pulse.

  10. Start currents in an overmoded gyrotron

    NASA Astrophysics Data System (ADS)

    Yeddulla, M.; Nusinovich, G. S.; Antonsen, T. M.

    2003-11-01

    High-power long-pulse millimeter-wave gyrotrons operate in high-order modes. The spectral density of these modes is very high. Therefore, self-excitation conditions can be fulfilled for several modes simultaneously. Correspondingly, in order to determine which mode will be excited first in such a device, the starting currents of competing modes should be calculated much more accurately than in gyrotrons with a rarer spectrum. In the present paper, an existing linear theory is generalized to take into account effects of magnetic field tapering, cavity profile, finite beam thickness, velocity spread and axially dependent beam coupling to the fields of competing modes. Starting currents are calculated for the operating and the most dangerous competing mode in a 140 GHz gyrotron, which is under development at Communication and Power Industries. Calculations show that the radial position of the electron beam plays a critical role in deciding which mode dominates the mode competition.

  11. Gyrotron Performance on the 110 GHZ Installation at the DIII-D Tokamak

    SciTech Connect

    Gorelov, I.; Lohr, J.M.; Ponce, D.; Callis, R.W.; Ikezi, H.; Legg, R.A.; Tsimring, S.E.

    1999-06-01

    The 110 GHz gyrotron system on the DIII-D tokamak comprises three different gyrotrons in the 1 MW class. The individual gyrotron characteristics and the operational experience with the system are described.

  12. A review on the sub-THz/THz gyrotrons

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2016-05-01

    A review on the sub-THz/THz gyrotrons is performed in this manuscript. The present development status of gyrotrons can be divided into three streams for the sake of better understanding: 1. low frequency (<35 GHz), medium power (<100 kW), small size and easy to handle gyrotrons for industrial applications, 2. very high power (1 MW or more), medium frequency (100-200 GHz) gyrotrons for plasma fusion applications, 3. low power (few tens of watt to kW), high frequency (>200 GHz) gyrotrons for various innovative applications. In this manuscript, the third stream of gyrotron development is reviewed. In last few decades several innovative applications are searched in sub-THz/THz band where the gyrotrons could be used as an efficient source of RF radiation. The applications of sub-THz/THz gyrotrons including the futuristic scope of the device are also discussed in this article. Further, several criticalities arise in the design and development when the gyrotron operation shifts toward the high frequency band. Various such design and technological challenges are also discussed here. Finally the development status of sub-THz/THz gyrotrons as per the use in various scientific and technological applications is also discussed.

  13. Mode suppression means for gyrotron cavities

    DOEpatents

    Chodorow, Marvin; Symons, Robert S.

    1983-08-09

    In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.

  14. Electron-optical systems for planar gyrotrons

    SciTech Connect

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-15

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%–30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  15. Analysis of cavity and window for THz gyrotron

    SciTech Connect

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  16. On optimization of sub-THz gyrotron parameters

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2012-10-15

    The theory is developed describing how the optimization of gyrotron parameters should be done taking into account two effects deteriorating the gyrotron efficiency: the spread in electron velocities and the spread in the guiding center radii. The paper starts from qualitative analysis of the problem. This simplified theory is used for making some estimates for a specific gyrotron design. The same design is then studied by using more accurate numerical methods. Results of the latter treatment agree with former qualitative predictions.

  17. 60 GHz gyrotron development program. Final report, April 1979-June 1984

    SciTech Connect

    Shively, J.F.; Bier, R.E.; Caplan, M.; Cheng, M.K.; Choi, E.; Conner, C.C.; Craig, L.J.; Evans, S.J.; Evers, S.J.; Felch, K.L.

    1986-01-01

    The original objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW CW power output at 110 GHz. The use of cyclotron resonance interaction was pursued, and the design phases of this effort are discussed. Later, however, the program's objective was changed to develop a family of oscillators capable of producing 200 kw of peak output power at 60 GHz. Gyrotron behavior studies were performed at 28 GHz to obtain generic design information as quickly as possible. The first experimental device at 60 GHz produced over 200 kw of peak power at a pulse duration of 20 ..mu..s. Heating problems and mode interference were encountered. The second experimental tube incorporated an optimized gun location but also suffered from mode interference. The third experimental tube included modifications that reduced mode interference. It demonstrated 200 kw of peak output at 100 ms pulse duration. The fourth experimental tube, which used an older rf circuit design but in a CW configuration, produced 71.5 kW CW. The fifth experimental tube incorporated a thinner double-disc output window which improved window bandwidth and reduced window loss. This tube also incorporated modifications to the drift tunnel and cavity coupling, which had proven successful in the third experimental pulse tube tests. It produced 123 kW of CW output power at 60 GHz rf load coolant boiling and tube window failure terminated the tests. A new waterload was designed and constructed, and alternative window designs were explored. A secondary task of developing a 56 GHz CW tube produced in excess of 100 kW CW at this alternate frequency. Testing of the sixth experimental tube resulted in operation at CW output power in the range of 200 to 206 kW for an hour. Output mode purity of the seventh experimental tube was measured at 95% TE/sub 02/. The tube was operated for about forty-five minutes with CW power output over 200 kW.

  18. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  19. Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Thumm, Manfred

    2002-05-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in high-frequency broadband electron paramagnetic resonance and other types of spectroscopy. Future applications which await the development of novel high-power FEM amplifiers and gyro-amplifiers include high-resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of these recent applications of gyro-devices and FEMs and compares their specific advantages.

  20. A vacuum window for a 1 MW CW 110 GHz gyrotron

    SciTech Connect

    Moeller, C.P.; Doane, J.L.; DiMartino, M.

    1994-07-01

    Development of high power microwave sources for fusion applications is limited by the availability of suitable vacuum windows in the 100 to 200 GHz frequency range. A novel vacuum window is described which uses water cooled sapphire as the dielectric. Heat removal is achieved by using thin slats of sapphire interleaved and brazed to niobium hexagonal tubes in which the cooling water flows. Analysis indicates a window 100 cm{sup 2} in area can readily pass 1 MW in the HE{sub 11} mode at 110 GHz for current experimental applications and 1 MW with a HE{sub 11}{sup 0}-HE{sub 12}{sup 0} mixture at 170 GHz, the projected ITER frequency.

  1. 95 GHz Gyrotron with Ferroelectric Cathode

    NASA Astrophysics Data System (ADS)

    Einat, M.; Pilossof, M.; Ben-Moshe, R.; Hirshbein, H.; Borodin, D.

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ˜0.5μs pulses are reported; a duty cycle of 10% is estimated to be achievable.

  2. 23 GHz ferroelectric electron gun based gyrotron

    NASA Astrophysics Data System (ADS)

    Ben-Moshe, R.; Einat, M.

    2011-04-01

    Ferroelectric cathodes have been explored as an alternative electron source for microwave tubes. Past experiments have demonstrated operation at frequencies of 2-10 GHz. Since the ferroelectric cathode is based on surface plasma, the relatively high energy spread limits the tube operation frequency. Hence, the possibility to obtain higher frequencies remained questionable. In this experimental work a gyrotron oscillator was designed with the operation frequency increased toward that of millimeter waves. A cylindrical tube with a cutoff frequency of ˜22 GHz was integrated to a ferroelectric electron gun. Pulses of ˜0.5 μs duration with a frequency of 23 GHz were obtained.

  3. Design of Matching Optics Unit (MOU) for coaxial ITER gyrotron

    SciTech Connect

    Jin, Jianbo; Gantenbein, Gerd; Kern, Stefan; Rzesnicki, Tomasz; Thumm, Manfred

    2011-07-01

    The paper presents the design of a MOU for the coaxial ITER gyrotron. Corrugated waveguides are used to transmit the high power mm-waves generated by gyrotrons to the plasma Electron Cyclotron Resonance Heating (ECRH) and Current Drive (CD). The MOU contains two focusing mirrors, which are used to convert the gyrotron output into a Gaussian distribution with optimal parameters to improve the coupling efficiency of the TEM{sub 00} Gaussian distribution to the HE{sub 11} mode of the corrugated wave guide. The calculation results reveal that the coupling efficiency of the Gaussian beam to the HE{sub 11} mode is approximately 96.33%. (author)

  4. Intense high-frequency gyrotron-based microwave beams for material processing

    SciTech Connect

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  5. 110 GHz, 1 MW Gyrotron Design Upgrades

    NASA Astrophysics Data System (ADS)

    Cauffman, Steve; Felch, Kevin; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Dubrule, Craig

    1999-11-01

    Communications and Power Industries has incorporated a number of design changes into its most recent series of 110 GHz 1 MW gyrotrons, for use in ECH and ECCD experiments on the DIII-D tokamak. Two development gyrotrons previously installed at DIII-D used a modulating-anode electron gun design and output windows consisting of double-disk face-cooled sapphire on one system and an edge-cooled CVD diamond disk on the other. Three new systems presently in fabrication and test employ (a) a single-anode electron gun to avoid excitation of spurious modes during turn-on and turn-off and to simplify power supply requirements, (b) a modified TE_22,6 cavity to reduce competition from neighboring modes, (c) a two inch aperture edge-cooled CVD diamond window to allow transmission of a 1 MW Gaussian output beam, (d) a superconducting magnet system with a cryo-cooler to reduce liquid helium consumption, and (e) a number of internal and external plumbing simplifications to make cooling system connections more straightforward. Initial test results, if available, will be presented.

  6. Reflections in gyrotrons with radial output: Consequences for the ITER coaxial gyrotron

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Nusinovich, G. S.; Piosczyk, B.

    2004-12-01

    A theory describing the influence of reflections on operation of gyrotrons with radial output is presented. The theory is used for evaluating the effect of reflections on the operation of the 170 GHz ITER coaxial cavity gyrotron, which is under development in cooperation between EUROATOM Associations (CRPP Lausanne, FZK Karlsruhe, and HUT Helsinki) together with European tube industry (Thales Electron Devices, Velizy, France). It is shown that for optimally chosen external magnetic field value and electron beam radius, possible reflections do not change the final steady-state operation, which corresponds to generation of a 2.2 MW millimeter-wave power. The effect of deviation of the magnetic field and the beam radius from optimal values on the device operation is also studied.

  7. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  8. Effect of electron beam misalignments on the gyrotron efficiency

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2013-07-15

    The theory describing the operation of gyrotrons with tilted and shifted electron beams has been developed. Effects of the tilt and shift are studied for a 1 MW, 170 GHz gyrotron, which is presently under development in Europe for electron cyclotron resonance plasma heating and current drive in the International Thermonuclear Experimental Reactor. It is shown that one should expect significant deterioration of gyrotron operation in such gyrotrons when the tilt angle exceeds 0.4°–0.5° and the parallel shift of the beam axis with respect to the axis of a microwave circuit is larger than 0.4–0.5 mm. At the same time, simultaneous tilting and shifting in a proper manner can mitigate this deteriorating effect.

  9. Gyrotron cavity resonator with an improved value of Q

    DOEpatents

    Stone, David S.; Shively, James F.

    1982-10-26

    A gyrotron cavity resonator is connected smoothly and directly to an output waveguide with a very gradually tapered wall so that values of external Q lower than twice the diffraction limit are obtainable.

  10. The 10-100 kW submillimeter gyrotron

    NASA Technical Reports Server (NTRS)

    Spira, S.; Kreischer, K. E.; Temkin, R. J.

    1989-01-01

    High frequency high harmonic gyrotrons; cyclotron autoresonance maser (CARM); CARM amplifier schematics; MIT electron gun; and baseline design for the 140 GHz CARM amplifier are briefly reviewed. This presentation is represented by viewgraphs only.

  11. High power millimeter and submillimeter wave lasers and gyrotrons

    NASA Astrophysics Data System (ADS)

    Temkin, R. J.; Cohn, D. R.; Danly, B. G.; Kreischer, K. E.; Woskoboinikow, P.

    1985-10-01

    High power sources of coherent radiation in the millimeter and submillimeter wavelength range are useful in a number of applications, including plasma heating, plasma diagnostics, radar and communications. Two of the most important sources in this wavelength range are the optically pumped laser and the gyrotron. Major recent advances in both laser and gyrotron research are described. Possible techniques for improving the efficiency and operating characteristics of these devices are also reviewed.

  12. Superconducting magnets for 110-150 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Baze, J.-M.; Lesmond, C.; Lottin, J.-C.; Capitain, J.-J.; Lafon, D.; Magne, R.; Bonnet, P.; Bourquard, A.; Bresson, D.; Lacaze, A.

    1994-07-01

    Seven superconducting focusing magnets have been constructed for vertical gyrotrons devoted to the plasma heating of the tokomak Tore Supra. The performances in magnetic field strength, profile and homogeneity are spread over a large range so as to suit gyrotrons of microwave frequencies extending from 110 GHz to 150 GHz. The cryostats have a low consumption in cryogenic fluids which insure a one week autonomy.

  13. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2008-01-01

    Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was −2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge. PMID:19081779

  14. Phonological and Phonetic Asymmetries of Cw Combinations

    ERIC Educational Resources Information Center

    Suh, Yunju

    2009-01-01

    This thesis investigates the relationship between the phonological distribution of Cw combinations, and the acoustic/perceptual distinctiveness between syllables with plain C onsets and with Cw combination onsets. Distributional asymmetries of Cw combinations discussed in this thesis include the avoidance of Cw combinations in the labial consonant…

  15. Experimental Study of a 200-300 GHZ Megawatt Gyrotron Oscillator

    NASA Astrophysics Data System (ADS)

    Grimm, Terry L.

    A detailed experimental study is presented of a pulsed megawatt gyrotron oscillator operating in the 200-300 GHz range whose design is consistent with continuous operation for ECRH of fusion plasmas. A cylindrical waveguide cavity over 20 free space wavelengths in diameter was designed to limit ohmic wall losses in the copper cavity to less than 2 kW/cm^2. The frequency spacing between TE waveguide modes in this highly overmoded cavity is less than 2%. The cavity is positioned at the peak magnetic field of a 14 T Bitter magnet. Two different radii beams produced by magnetron injection guns (MIGs) were used to excite the cavity. The large and small MIG guns produced annular beams of 0.75 cm and 0.45 cm radius respectively. The guns operate with beam currents approaching 60 A and voltages as high as 100 kV. The voltage is produced by a line-type modulator with a pulse length of 3 mu s at a repetition rate of up to 4 Hz. Experimental results have shown that megawatt power levels can be generated in CW gyrotron oscillators at 200-300 GHz with efficiencies approaching 20%. The emission is single mode, single frequency with a single rotation which can easily be mode converted for transmission. No multimoding was observed at the high powers and efficiencies. The highest power reached with the large MIG gun was 0.97 MW at 230 GHz in the TE_{34,6} mode with an efficiency of 18% and beam parameters of 59 A and 90 kV. This was the peak efficiency which was also obtained at 290 GHz in the TE_{41,8 } mode with a power of 0.89 MW and beam parameters of 54 A and 93 kV. The highest power reached with the small MIG gun was 0.78 MW at 280 GHz in the TE _{25,13} mode with an efficiency of 17% and beam parameters of 51 A and 92 kV. The small MIG gun peak efficiency was also 18% at 0.72 MW, 290 GHz in the TE_{25,14} mode. Efficiencies obtained in this experiment are about half of less highly overmoded gyrotrons. Analysis of the experiment shows mode competition is the main cause of the

  16. Experimental study of a 200--300 GHz megawatt gyrotron oscillator

    SciTech Connect

    Grimm, T.L.

    1992-01-01

    An experimental study is presented of a pulsed megawatt gyrotron oscillator operating in the 200-300 GHz range whose design is consistent with continuous operation for ECRH of fusion plasmas. A cylindrical waveguide cavity over 20 free space wavelengths in diameter was designed to limit ohmic wall losses in the copper cavity to < 2 kW/cm[sup 2]. The frequency spacing between TE waveguide modes in this highly overmoded cavity is < 2%. The cavity is positioned at the peak magnetic field of a 14 T Bitter magnet. Two different radii beams produced by magnetron injection guns (MIGs) were used to excite the cavity. The large and small MIG guns produced annual beams of 0.75 cm and 0.45 cm radius. The guns operate with beam currents approaching 60 A and voltages as high as 100 kV. The voltage is produced by a line-type modulator with a pulse length of 3 [mu]s at a repetition rate of up to 4 Hz. Megawatt power levels can be generated in CW gyrotron oscillators at 200-300 GHz with efficiencies approaching 20%. The emission is single mode, single frequency with a single rotation which can easily be mode converted for transmission. No multimoding was observed at the high powers and efficiencies. The highest power reached with the large MIG gun was 0.97 MW at 230 GHz in the TE[sub 34,6] mode with an efficiency of 18% and beam parameters of 59 A and 90kV. This was the peak efficiency which was also obtained at 290 GHz in the TE[sub 41,8] mode with a power of 0.89 MW and beam parameters of 54 A and 93 kV. The highest power with the small MIG gun was 0.78 MW at 280 GHz in the TE[sub 25,13] mode with an efficiency of 17% and beam parameters of 51 A and 92 kV. The small MIG gun peak efficiency was 18% at 0.72 MW, 290 GHz in the TE[sub 25,14] mode. Efficiencies are about half of less highly overmoded gyrotrons. Mode competition is the main cause of the low efficiency, with voltage depression, beam thickness and velocity spread contributing only a fraction to the decrease.

  17. Design of a Second Harmonic Double-Beam Continuous Wave Gyrotron with Operating Frequency of 0.79 THz

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Glyavin, M. Yu; Sedov, A. S.; Zaslavsky, V. Yu; Idehara, T.

    2015-12-01

    This paper presents the most essential steps of a design study of a novel second harmonic gyrotron operating in CW (continuous wave) regime at a frequency of 0.79 THz and an output power of 1-100 W. It is based on a novel idea for suppression of the parasitic modes using a double-beam electron-optical system (EOS). It includes a triode magnetron injection gun (MIG), which forms two high-quality helical electron beams (HEB). Different schemes, namely one with two generating beams and another with one generating and one absorbing beam, have been investigated and compared. It has been shown that the scheme with two generating beams is more advantageous since it allows an effective suppression of the parasitic modes and a stable single-mode operation at the second harmonic resonance. A MIG which is appropriate for the realization of the latter scheme has been optimized using numerical codes for computer-aided design (CAD). It forms beams with practically equal pitch factors and moderate velocity spread. The construction of the gun is not sensitive to small misalignments and shifts of the electrodes and the magnetic field. Among the most promising characteristics of the presented design are an improved mode selection and a stable single-mode generation at currents that are two to three times higher than the currents in the single-beam (i.e., conventional) gyrotrons.

  18. Structural and Microwave Properties of Silica Xerogel Glass-Ceramic Sintered by Sub-millimeter Wave Heating using a Gyrotron

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Mitsudo, S.; Prima, E. S.; Sudiana, I. N.; Tani, S.; Sako, K.; Fujii, Y.; Saito, T.; Idehara, T.; Sano, S.; Sunendar, B.; Sabchevski, S.

    2012-11-01

    In this paper, we present and discuss experimental results from a microwave sintering of silica glass-ceramics, produced from amorphous silica xerogel extracted from sago waste ash. As a radiation source for a microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of the amorphous silica xerogel have been dry pressed and then sintered at temperatures ranging from 300 °C to 1200 °C. Microwave absorbing properties of the sintered samples were investigated by measuring the dielectric constant, the dielectric loss, and the reflection loss at different frequencies in the interval from 8.2 to 12.4 GHz. Furthermore, the characteristics of the formation process for producing silica glass-ceramics were studied using a Raman Spectroscopy and a Scanning Electron Microscopy (SEM). The results indicate that the samples sintered at 1200 °C are characterized by lower reflection losses and a better transparency due to the formation of a fully crystallized silica glass- ceramic at sufficiently high temperature.

  19. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Khutoryan, E. M.; Tatematsu, Y.; Yamaguchi, Y.; Kuleshov, A. N.; Dumbrajs, O.; Matsuki, Y.; Fujiwara, T.

    2015-09-01

    The high-speed frequency modulation of a 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) was achieved by modulation of acceleration voltage of beam electrons. The modulation speed f m can be increased up to 10 kHz without decreasing the modulation amplitude δ f of frequency. The amplitude δ f was increased almost linearly with the modulation amplitude of acceleration voltage Δ V a. At the Δ V a = 1 kV, frequency spectrum width df was 50 MHz in the case of f m < 10 kHz. The frequency modulation was observed as both the variation of the IF frequency in the heterodyne detection system measured by a high-speed oscilloscope and the widths of frequency spectra df measured on a frequency spectrum analyzer. Both results well agree reasonably. When f m exceeds 10 kHz, the amplitude δ f is decreased gradually with increasing f m because of the degradation of the used amplifier in response for high-speed modulation. The experiment was performed successfully for both a sinusoidal wave and triangle wave modulations. We can use the high-speed frequency modulation for increasing the enhancement factor of the dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy, which is one of effective and attractive methods for the high-frequency DNP-NMR spectroscopy, for example, at 700 MHz. Because the sensitivity of NMR is inversely proportional to the frequency, high-speed frequency modulation can compensate the decreasing the enhancement factor in the high-frequency DNP-NMR spectroscopy and keep the factor at high value. In addition, the high-speed frequency modulation is useful for frequency stabilization by a PID control of an acceleration voltage by feeding back of the fluctuation of frequency. The frequency stabilization in long time is also useful for application of a DNP-NMR spectroscopy to the analysis of complicated protein molecules.

  20. CW RFQ fabrication and engineering

    SciTech Connect

    Schrage, D.; Young, L.; Roybal, P.

    1998-12-31

    The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology.

  1. Start current analysis of a 140 GHz CPI gyrotron

    NASA Astrophysics Data System (ADS)

    Yeddulla, M.; Nusinovich, G. S.; Antonsen, T. M.

    2003-12-01

    In a gyrotron, it is difficult to accurately predict in advance where the resonant interaction between the electrons and outgoing radiation stops. For accurately calculating the start currents for the interacting modes, the exit coordinate has to be fixed where the resonant interaction stops. This paper discusses the difficulty in fixing the exit coordinates for studying start currents in an overmoded gyrotron. Start currents are studied for the operating and the most dangerous parasitic mode of a 140 GHz gyrotron being developed by Communication and Power Industries (CPI). Calculations show that the start currents vary over considerably large values with varying exit coordinates that can cause difficulties in predicting which mode dominates the mode competition.

  2. Development of high-power gyrotrons with gradually tapered cavity

    SciTech Connect

    Lei Chaojun; Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang

    2012-12-15

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  3. Phase locking and bandwidth in a gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Latham, P. E.; Granatstein, V. L.; Carmel, Y.

    1993-06-01

    For imaging radar and for satellite and space communication (e.g. NASA's deep space network), it is important that the bandwidth be as large as possible. Here we derive a formalism for computing the phase locking bandwidth that can be achieved in a gyrotron oscillator while varying the beam voltage. As an example, a second harmonic TE02/03 gyrotron is considered. For this device, the effective bandwidth can be increased by a factor of about 3 compared with the fixed voltage case by allowing the beam voltage to change together with the input locking signal.

  4. Phase locking and bandwidth in a gyrotron oscillator

    NASA Technical Reports Server (NTRS)

    Latham, P. E.; Granatstein, V. L.; Carmel, Y.

    1993-01-01

    For imaging radar and for satellite and space communication (e.g. NASA's deep space network), it is important that the bandwidth be as large as possible. Here we derive a formalism for computing the phase locking bandwidth that can be achieved in a gyrotron oscillator while varying the beam voltage. As an example, a second harmonic TE02/03 gyrotron is considered. For this device, the effective bandwidth can be increased by a factor of about 3 compared with the fixed voltage case by allowing the beam voltage to change together with the input locking signal.

  5. Designing A Mode Converter For Use With A Gyrotron

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.

    1995-01-01

    Report describes process of designing corrugated, circular-cross-section length of waveguide converting input electromagnetic radiation at frequency of 34.5 GHz in TM(11) mode to output radiation in HE(11) mode. TM(11)-mode input radiation supplied by gyrotron generating continuous-wave power of 200 kW at 34.5 GHz in TE(01) mode followed by TE(01)-to-TM(11) mode converter. Together, gyrotron and mode converters constitute prototype high-power transmitter for long-distance free-space communication.

  6. Suppression of parasitic space-charge oscillations in a gyrotron

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Piosczyk, B.; Sominski, G. G.; Thumm, M.; Samsonov, D. B.

    2006-10-01

    We study the influence of nonuniform electric and magnetic fields in the helical-beam compression region on the low-frequency parasitic space-charge oscillations for a moderate-power (˜ 100 kW) 4-mm gyrotron. Suppression of the oscillations is achieved by optimization of both the cathode-unit geometry in the magnetron-injector gun and the magnetic-field distribution in the region near the cavity input. The obtained data are evidence of possible effective operation of the gyrotron at elevated pitch-factor values α > 1.5 even for emitters with no highest emission uniformity (δje ≈ 30%).

  7. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  8. Active heater control and regulation for the Varian VGT-8011 gyrotron

    SciTech Connect

    Harris, T.E.

    1991-10-01

    The Varian VGT-8011 gyrotron is currently being used in the new 110 GHz 2 MW ECH system installed on D3-D. This new ECH system augments the 60 GHz system which uses Varian VA-8060 gyrotrons. The new 110 GHz system will be used for ECH experiments on D3-D with a pulse width capability of 10 sec. In order to maintain a constant RF outpower level during long pulse operation, active filament-heater control and regulation is required to maintain a constant cathode current. On past D3-D experiments involving the use of Varian VA-8060 gyrotrons for ECH power, significant gyrotron heater-emission depletion was experienced for pulse widths > 300 msec. This decline in heater-emission directly results in gyrotron-cathode current droop. Since RF power from gyrotrons decreases as cathode current decreases, it is necessary to maintain a constant cathode current level during gyrotron pulses for efficient gyrotron operation. Therefore, it was determined that a filament-heater control system should be developed for the Varian VGT-8011 gyrotron which will include cathode-current feed-back. This paper discusses the mechanisms used to regulate gyrotron filament-heater voltage by using cathode-current feed-back. 1 fig.

  9. Identification and DNA typing of two Cw7 alleles (Cw*0702 and Cw*0704) in Japanese, with the corrected sequence of Cw*0702.

    PubMed

    Wang, H; Tokunaga, K; Ishikawa, Y; Asahina, A; Kuwata, S; Akaza, T; Tadokoro, K; Shibata, Y; Takiguchi, M; Juji, T

    1996-01-01

    Two alleles encoding HLA-Cw7 antigens, tentatively called C7J1 and C7J2, have been identified in Japanese using a PCR-SSCP method. The nucleotide sequence of full-length C7J1 cDNAs showed a high degree of homology to the reported Cw*0702 sequence except in exon 1. We then resequenced the allele carried by the cell line JY in which Cw*0702 was first identified, according to a request from the WHO Nomenclature Committee. The results revealed complete identity between the corrected Cw*0702 sequence and the C7J1 sequence. On the other hand, the C7J2 sequence was completely identical to the reported Cw*0704 sequence. Sequences specific for Cw*0702 and Cw*0704 were confirmed using PCR-RFLP and PCR-SSO methods. Moreover, association analysis with other HLA locus alleles showed positive associations of Cw*0702 with HLA-B7, -B39, and -B67 and of Cw*0704 with HLA-B70 in Japanese.

  10. Optimal parameters of gyrotrons with weak electron-wave interaction

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Oparina, Yu. S.; Savilov, A. V.; Sedov, A. S.

    2016-09-01

    In low-power gyrotrons with weak electron-wave interaction, there is a problem of determining the optimal length of the operating cavity, which is found as a result of a tradeoff between the enhancement of the electron efficiency and the increase in the Ohmic loss share with increasing cavity length. In fact, this is the problem of an optimal ratio between the diffraction and Ohmic Q-factors of the operating gyrotron mode, which determines the share of the radiated rf power lost in the cavity wall. In this paper, this problem is studied on the basis of a universal set of equations, which are appropriate for a wide class of electron oscillators with low efficiencies of the electron-wave interaction.

  11. Optical Spectroscopy of Plasma in a High Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Cohen, W. E.; Gilgenbach, R. M.; Hochman, J. M.; Jaynes, R. L.; Rintamaki, J. I.; Peters, C. W.; Lau, Y. Y.; Spencer, T. A.

    1997-11-01

    Spectroscopic measurements have been performed to characterize the undesired-plasma which exists in a 1-10 MW rectangular-cross-section (RCS) gyrotron. This gyrotron is driven by the Michigan Electron Long Beam Acclerator (MELBA) generator at parameters of: -0.8 MV, 0.1-0.5 kA, and 0.5-1.0 μ sec pulselengths. Optical spectra exhibit strong emission from the hydrogen H-alpha line. The source of hydrogen is believed to be due to water vapor absorbed on surfaces which is ejected and dissociated by electron beam impact. This interpretation is supported by residual gas analyzer (RGA) measurements on the MELBA diode which show increased hydrogen concentration after the shot. Data is being analyzed to investigate possible correlations of plasma optical emission to microwave pulse shortening.

  12. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  13. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  14. Self-consistent non-stationary theory of the gyrotron

    NASA Astrophysics Data System (ADS)

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-01

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theory free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.

  15. EBT-S 28-GHz, 200-kW, CW, mixed-mode, quasi-optical plasma heating system

    SciTech Connect

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.; Bates, D.D.; Eason, H.O.

    1984-07-01

    The ELMO Bumpy Torus-Scale (EBT-S) 28-GHz, 200-kW, cw, plasma heating system consists of a gyrotron oscillator, an oversized waveguide two-bend transmission system, and a quasi-optical mixed-mode microwave distribution manifold that feeds microwave power to the 24 plasma loads of the EBT-S fusion experiment. Balancing power to the 24 loads of the EBT-S fusion experiment. Balancing power to the 24 loads was achieved by adjusting the areas at 24 coupling irises. System performance is easily measured using system calorimetry. The distribution manifold mixed-mode power transmission, reflection, and loss coefficients are 89%, 6%, and 5%, respectively. The overall system efficiency (plasma power/gyrotron power) is 80%, but with some modifications to the distribution manifold we believe the ultimate efficiency can approach 90%. The system reliability is outstanding with a world's record 1 x 10/sup 5/ kW h of 28-GHz energy delivered to the EBT-S device with well over 1 x 10/sup 3/ operating hours.

  16. Possibilities for Continuous Frequency Tuning in Terahertz Gyrotrons with Nontunable Electrodynamic Systems

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Savilov, A. V.; Chang, T. H.

    2016-02-01

    Large ohmic losses in the cavities of terahertz gyrotrons may lead to the overlapping of the axial mode spectra. In a number of gyrotron experiments, this effect has been used to provide a fairly broadband frequency tuning by changing appropriately the operating magnetic field and/or accelerating voltage of the gyrotron. Similar to the systems with nonfixed axial structure of the RF electromagnetic field and low diffraction quality, which are due to weak reflections of the operating wave from the collector end of the electrodynamic system, this changing leads to a monotonic change in the axial index of the operating wave and transition from the gyrotron regime to the gyro-BWO regime. According to a theoretical comparison of these two methods performed on the basis of generalization of self-consistent gyrotron equations with allowance for variations in the axial electron momenta, low-reflection systems can provide a higher efficiency and monotonicity of the frequency tuning.

  17. Infrared Monitoring of 110 GHz Gyrotron Windows at Diii-D

    NASA Astrophysics Data System (ADS)

    Gorelov, Y.; Lohr, J.; Callis, R. W.; Ponce, D.

    2003-02-01

    The combination of low millimeter wave losses and excellent thermal conductivity with good mechanical properties make artificial chemical vapor deposition (CVD) diamonds a compelling choice for 1 MW 110 GHz gyrotron windows. Five gyrotrons are currently operating at the DIII-D tokamak. Three Gycom gyrotrons have boron nitride (BN) ceramic windows. Due to temperature increases of the windows up to about 930°C, the pulse duration of these tubes is limited to 2 s for output power near 800 kW. Two Communications and Power Industries (CPI) gyrotrons with diamond windows are also installed and operating. The diamond disks of these windows and the construction of their water-cooling assemblies are different. This paper reviews the infrared (IR) measurements of both types of gyrotron windows, with emphasis on the two diamond designs.

  18. INFRARED MONITORING OF 110GHz GYROTRON WINDOWS AT DIII-D

    SciTech Connect

    Y. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-05-01

    The combination of low millimeter wave losses and excellent thermal conductivity with good mechanical properties make artificial chemical vapor deposition (CVD) diamonds a compelling choice for 1 MW 110 GHz gyrotron windows. Five gyrotrons are currently operating at the DIII-D tokamak. Three Gycom gyrotrons have boron nitride (BN) ceramic windows. Due to temperature increases of the windows up to about 930 C, the pulse duration of these tubes is limited to 2 s for output power near 800 kW. Two Communications and Power Industries (CPI) gyrotrons with diamond windows are also installed and operating. The diamond disks of these windows and the construction of their water-cooling assemblies are different. This paper reviews the infrared (IR) measurements of both types of gyrotron windows, with emphasis on the two diamond designs.

  19. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    SciTech Connect

    Chirkov, A. V.; Kuftin, A. N.; Denisov, G. G.

    2015-06-29

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  20. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    NASA Astrophysics Data System (ADS)

    Chirkov, A. V.; Denisov, G. G.; Kuftin, A. N.

    2015-06-01

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  1. Antenna decoupling requirements in a gyrotron collective Thomson scattering diagnostic (CTS) (abstract)

    SciTech Connect

    Orsitto, F.; Tartari, U.

    1995-01-01

    The required rejection ratio of the stray light in a CTS, respect to the launching power is investigated, for obtaining useful signal-to-noise ratio. This problem is faced considering the central gyrotron frequency {ital f}{sub 0}, as well as the in-band stray light raising from the spurious mode of the gyrotron and amplified cyclotron emission (the so-called gyrotron noise), falling into the scattered light spectrum. The statistical nature of the gyrotron noise in the scattering band is important because the required decoupling is obtained using the S/N formula where the fluctuation of the plasma radiation and the gyrotron noise fluctuation appears. It turns out that the total decoupling required at {ital f}{sub 0} is of the order of or greater than 80 dB, while in the scattering band could be less than 40 dB. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Antenna decoupling requirements in a gyrotron collective Thomson scattering diagnostic (CTS)

    SciTech Connect

    Orsitto, F.; Tartari, U.

    1995-02-01

    The required rejection ratio of the stray light in a CTS, respect to the launching power is investigated, for obtaining useful signal-to-noise ratio. This problem is faced considering the central gyrotron frequency {ital f}{sub 0}, as well as the in-band stray light raising from the spurious mode of the gyrotron and amplified cyclotron emission (the so-called gyrotron noise), falling into the scattered light spectrum. The statistical nature of the gyrotron noise in the scattering band is important because the required decoupling is obtained using the S/N formula where the fluctuation of the plasma radiation and the gyrotron noise fluctuation appears. It turns out that the total decoupling required at {ital f}{sub 0} is of the order of or greater than 80 dB, while in the scattering band could be less than 40 dB. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    SciTech Connect

    Hou, Shenyong; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  4. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  5. Transmission Line for 258 GHz Gyrotron DNP Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.

    2011-06-01

    We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.

  6. Frequency multiplied harmonic gyrotron-traveling-wave-tube amplifier

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Armstrong, C.M. )

    1994-06-01

    Numerical simulations of a [ital W]-band two-stage tapered, frequency multiplied gyrotron- traveling-wave-tube amplifier are reported. Unlike conventional harmonic gyrodevices, a drive signal at the fundamental harmonic frequency is injected in the first stage for beam modulation, and amplified output radiation is extracted from the third harmonic cyclotron resonance interaction. Numerical results show that broadband millimeter wave radiation is obtained with an efficiency of 10%--15%, a gain of [similar to]30 dB, and an instantaneous bandwidth of [similar to]10% at a center frequency of 95 GHz for [Delta][ital v][sub [ital z

  7. Computer simulation of phase locking multi-cavity relativistic gyrotrons

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Yang, Z. H.; Lin, Chih-Chien

    1989-07-01

    A particle-in-cell model has been employed to investigate the phase-locking phenomenon of multi-cavity relativistic gyrotron oscillators. Simulation results show that a prebunched beam causes the output wave to overshoot, which in turn prolongs the time for establishing phase locking. The beam axial velocity spread is observed to reduce the locking bandwidth. The phenomenon of priming or injection seeding is simulated. The phase locked time depends on the growth rate of the oscillator and the amount of inject frequency deviation from the locking boundary.

  8. Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity

    SciTech Connect

    Yuan, Xuesong; Han Yu; Yan Yang; Lan Ying

    2012-05-15

    The fully numerical nonlinear theory for a gyrotron with a special cross-section interaction cavity has been developed in this paper. In this theory, the analytical solution to different modes in the special cross-section interaction cavity is replaced by the numerical solution based on electromagnetic simulation results. A 0.4 THz third harmonic gyrotron with an azimuthally corrugated interaction cavity has been investigated by using this theory and simulation results show that this approach has a significant advantage of developing high harmonic terahertz gyrotrons.

  9. HIGH POWER LONG PULSE PERFORMANCE OF THE DIII-D GYROTRON INSTALLATION

    SciTech Connect

    J. LOHR; Y.A. GORELOV; R.W. CALLIS; H.J. GRUNLOH; J.J. PEAVY; R.I. PINSKER; D. PONCE; R. PRATER; R.A. ELLIS,III

    2002-05-01

    At DIII-D, five 110 GHz gyrotrons are operating routinely for 2.0 s pulses at generated power levels {ge}750 kW per gyrotron. A sixth gyrotron is being installed, which should bring the generated power level to >4 MW and the injected power to about 3.0 MW. The output power now can be modulated by the plasma control system to fix T{sub e} at a desired value. The system is being used as a tool for control of current diffusion, for current profile control and other experiments leading to advanced tokamak operation.

  10. 137-GHz gyrotron diagnostic for instability studies in Tara

    SciTech Connect

    Machuzak, J.S.; Woskoboinikow, P.; Mulligan, W.J.; Cohn, D.R.; Gerver, M.; Guss, W.; Mauel, M.; Post, R.S.; Temkin, R.J.

    1986-08-01

    A narrow linewidth (<100 kHz), 1-kW, 137-GHz gyrotron and an efficient TE/sub 03/ to TE/sub 11/ cylindrical waveguide mode converter set (>97% TE/sub 11/ mode output) have been built for collective Thomson scattering diagnostics. The main goal will be to study instability driven ion density fluctuations in the Tara plug such as the drift cyclotron loss cone (DCLC), the axial loss cone (ALC), harmonics of the DCLC and ALC, and the ion two-stream instability. The heterodyne receiver and signal optics have been installed on Tara. Background electron cyclotron emission (ECE) at 139 +- 1.5 GHz after electron cyclotron resonance heating (ECRH) in the Tara plug corresponded to equivalent blackbody temperatures of 453 and 70 eV for extraordinary and ordinary emission, respectively. The well-collimated receiver field of view completely through the Tara plug has allowed for excellent polarization discrimination of the ECE. The high-power capability of this gyrotron will allow weak fluctuation levels (n-italic-tilde/n-italic<10/sup -6/) to be detected above this background during ECRH in the plugs.

  11. A Gyrotron-Powered Pellet Accelerator for Tokamak Fueling

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Perkins, F. W.

    2006-04-01

    A novel pellet acceleration concept [1] using microwave power from MW gyrotron sources has been developed that could pave the way for high-speed >3 km/s inner-wall pellet injection on ITER-class tokamaks. The concept is based on the principal of a gun, where a high-pressure propellant gas drives the projectile down the barrel. In the proposed concept, the high gas pressure is created by evaporative explosion of a composite ``pusher'' medium attached behind the DT fuel pellet. The pusher consists of micron-sized conducting particles, (Li, Be, C) embedded uniformly in a D2 ice slug with <5% volume concentration, thus facilitating microwave energy absorption by dissipation of eddy currents flowing within the conducting particles only. Microwave power is delivered to the pusher along a waveguide, which also serves as the pellet launch tube. A scaling law predicts that a pellet of mass M accelerated over a distance L reaches a velocity v (PL/M)^1/3, where P is the gyrotron power.pard[1] P. Parks & F. Perkins, US patent application ``Microwave-Powered Pellet Accelerator,'' No. 11/256/662, October 21, 2005.

  12. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  13. A Two Frequency 1.5 MW Gyrotron Experiment

    NASA Astrophysics Data System (ADS)

    Tax, David; Guss, William; Shapiro, Michael; Temkin, Richard; Rock, Ben; Vernon, Ronald; Neilson, Jeffrey

    2012-10-01

    Megawatt gyrotrons are an important microwave source for electron cyclotron heating and current drive (ECH/ECCD) in fusion plasmas due to their ability to produce megawatts of power at millimeter wave frequencies. The MIT gyrotron operates nominally at 96 kV and 40 A with 3 μs pulses and has previously demonstrated 1.5 MW of output power with > 50 % efficiency at 110 GHz with a depressed collector. A new cavity has been designed for 1.5 MW operation at two distinct frequencies: 110 GHz in the TE22,6 mode and 124.5 GHz in the TE24,7 mode. A new internal mode converter (IMC) consisting of a dimpled wall launcher and four smooth curved mirrors has also been designed and was optimized for both modes. Simulations of the IMC indicate that > 98 % Gaussian beam content could be achieved for each mode. Cold test results for the components will be presented as well as the current status of the hot test experiment.

  14. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  15. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    SciTech Connect

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-15

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE{sub 32,5} mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  16. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    NASA Astrophysics Data System (ADS)

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-01

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE32,5 mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  17. Influence of emitter ring manufacturing tolerances on electron beam quality of high power gyrotrons

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Illy, Stefan; Thumm, Manfred

    2016-08-01

    A sensitivity analysis of manufacturing imperfections and possible misalignments of the emitter ring in the gyrotron cathode structure on the electron beam quality has been performed. It has been shown that a possible radial displacement of the emitter ring of the order of few tens of microns can cause dramatic effects on the beam quality and therefore the gyrotron operation. Two different design approaches are proposed in order to achieve an electron beam which is less sensitive to manufacturing imperfections.

  18. 1.5 MW, 110 GHz Gyrotron with a Depressed Collector

    NASA Astrophysics Data System (ADS)

    Choi, Eunmi; Anderson, James; Shapiro, Michael; Jagadishwar, Sirigiri; Temkin, Richard

    2004-11-01

    A 1.5 MW, 110 GHz gyrotron is under development for electron cyclotron resonance plasma heating at DIII-D. Research conducted at MIT in short pulse operation is aimed at providing data on the operation of the gyrotron at very high efficiency. The 1.5 MW gyrotron design is based on previous successful results from the 1 MW gyrotrons built by Communication and Power Industries (CPI). A TE_22,6 mode cavity is utilized with an electron beam voltage of 96 kV and a beam current of 40 A. Recently we have successfully run the gyrotron in the axial configuration, and the experimental peak power was 1.44 MW at 37 % efficiency, when operating in the TE_22,6 mode. We have rebuilt this experiment in a configuration which has an internal mode converter and depressed collector, which should enhance the efficiency (> 50 %). The internal mode converter of the TE_22,6 mode to a Gaussian beam consists of an irregular waveguide launcher and four quasi-optical mirrors. A new cavity that provides greatly reduced Ohmic heating on the wall has been designed to enhance the gyrotron efficiency. This cavity will be tested in the next stage of the experiment.

  19. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

    SciTech Connect

    Kharchev, Nikolay K.; Batanov, German M.; Kolik, Leonid V.; Malakhov, Dmitrii V.; Petrov, Aleksandr Ye.; Sarksyan, Karen A.; Skvortsova, Nina N.; Stepakhin, Vladimir D.; Belousov, Vladimir I.; Malygin, Sergei A.; Tai, Yevgenii M.

    2013-01-15

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  20. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

    NASA Astrophysics Data System (ADS)

    Kharchev, Nikolay K.; Batanov, German M.; Kolik, Leonid V.; Malakhov, Dmitrii V.; Petrov, Aleksandr Ye.; Sarksyan, Karen A.; Skvortsova, Nina N.; Stepakhin, Vladimir D.; Belousov, Vladimir I.; Malygin, Sergei A.; Tai, Yevgenii M.

    2013-01-01

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  1. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter.

    PubMed

    Kharchev, Nikolay K; Batanov, German M; Kolik, Leonid V; Malakhov, Dmitrii V; Petrov, Aleksandr Ye; Sarksyan, Karen A; Skvortsova, Nina N; Stepakhin, Vladimir D; Belousov, Vladimir I; Malygin, Sergei A; Tai, Yevgenii M

    2013-01-01

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  2. Design Studies on Gyrotron for ECRH in KSTAR^*

    NASA Astrophysics Data System (ADS)

    Ahn, Saeyoung; Huh, Jin Woo; Kim, Hyoung Suk; Lee, Myoung-Jae; Song, Ho Young

    1996-11-01

    Korean National Fusion Project has started to carry out tokamak physics experiment for the Korean Superconducting Tokamak Research (KSTAR). Its current plan is scheduled to build the superconducting research reactor by the year 2002. Initial design parameters are of the major radius between 1.6 and 2.0 m and the minor radius between 0.5 and 1.0 m with plasma current between 2.0 and 5.0 MA. The toroidal field at the plasma center is about 4 tesla. Institute for Advanced Engineering (IAE) will concentrate on design studies of ECRH and gyrotron component development. Some detail plans will be presented. * Work supported by KBSI and KAERI. On leave at Ajou Univ. from NRL.

  3. Gain/bandwidth predictions for travelling-wave gyrotron

    NASA Astrophysics Data System (ADS)

    Sangster, A. J.

    1980-10-01

    Small signal gain computations based on a Pierce description of the traveling-wave gyrotron have been performed for cases involving beam voltages in the range 70-300 kV. Interactions at both the first and the second harmonics of the cyclotron resonance frequency have been considered in order to identify a range of operating parameters for the gyro-traveling-wave amplifier configuration which will potentially produce gain and bandwidth figures of significance to radar and communication systems operating at millimeter-wave frequencies. It is shown that when operated fundamentally and well away from cutoff, the gyro-traveling-wave amplifier can be magnetically tuned over a wide frequency range, with instantaneous bandwidths in the range 4-8% depending on the beam voltage; at voltages in excess of 200 kV, instantaneous bandwidths approaching 10% can be achieved.

  4. Stepwise frequency tuning of a gyrotron backward-wave oscillator

    SciTech Connect

    Chang, T.H.; Chen, S.H.

    2005-01-01

    The gyrotron backward-wave oscillator (gyro-BWO) features broadband tunability, but ragged tuning curves are frequently observed experimentally. Accordingly, a Ka-band gyro-BWO experiment with external circuit mismatch was conducted to examine its tuning properties at two reflected strengths: one is slightly mismatched (15 dB reflection) and the other can be categorized as matched (30 dB reflection). Stepwise frequency tunings by varying the magnetic field, the beam voltage, and the beam current were observed under mismatched conditions. A self-locking model was introduced using the concept of injection-locking, where the output and reinjected signals tend to form a stable phase relation, favoring certain discrete oscillation frequencies. The observed frequencies agree closely with the calculated frequencies. Smooth tuning curves were also obtained, revealing a remedy for the stepwise tuning of a gyro-BWO.

  5. Frequency tunable gyrotron using backward-wave components

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Idehara, T.; Ogawa, I.; Agusu, L.; Kobayashi, S.

    2009-03-01

    We report a frequency tunable scheme for the gyrotron at millimeter/submillimeter regime. Unlike the step-tunable type where oscillation frequencies change discretely, this scheme continuously adjusts the oscillation frequency as the magnetic field varies. It is a hybrid system, taking the advantages of the backward-wave interaction and the converter-free output structure. The characteristics of backward-wave interaction will be shown. A proof of principle experiment was conducted with a scaled cavity. The result shows the oscillation frequency smoothly transitions over a wide range of 6 GHz from 134 to 140 GHz. With proper design this mechanism is capable of producing medium output power with broad frequency tunability up to the terahertz region.

  6. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  7. Cw operation of the FMIT RFQ accelerator

    SciTech Connect

    Cornelius, W.D.

    1985-01-01

    Recently, we have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator. In addition to the operational experiences in achieving this status, some of the modifications of the vacuum system, cooling system, and rf structure are discussed. Preliminary beam-characterization results are presented. 10 refs., 8 figs.

  8. A CW Gunn Diode Switching Element.

    ERIC Educational Resources Information Center

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  9. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  10. Dependence of the gyrotron efficiency on the azimuthal index of non-symmetric modes

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.; Antonsen, T. M.

    2014-06-15

    Development of MW-class gyrotrons for future controlled fusion reactors requires careful analysis of the stability of high efficiency operation in very high-order modes. In the present paper, this problem is analyzed in the framework of the non-stationary self-consistent theory of gyrotrons. Two approaches are used: the one based on the wave envelope representation of the resonator field and the second one based on representation of this field as a superposition of eigenmodes, whose fields are determined by a self-consistent set of equations. It is shown that at relatively low beam currents, when the maximum efficiency can be realized in the regime of soft self-excitation, the operation in the desired mode is stable even in the case of a very dense spectrum of competing modes. At higher currents, the maximum efficiency can be realized in the regimes with hard self-excitation; here the operation in the desired mode can be unstable because of the presence of some competing modes with low start currents. Two 170 GHz European gyrotrons for the international thermonuclear experimental reactor are considered as examples. In the first one, which is the 2 MW gyrotron with a coaxial resonator, the stability of operation in a chosen TE{sub 34,19}-mode in the presence of two sideband modes with almost equidistant spectrum is analyzed and the region of magnetic fields in which the oscillations of the central mode are stable is determined. The operation of the second gyrotron, which is the 1 MW gyrotron with a cylindrical cavity currently under development in Europe, is studied by using the wave envelope approach. It is shown that high efficiency operation of this gyrotron in the TE{sub 32,9}-mode should be stable.

  11. The 110 GHz Gyrotron Installation on DIII--D: Status and Experimental Results

    NASA Astrophysics Data System (ADS)

    Lohr, John; Ponce, Dan; Callis, R. W.; Popov, L.; Zerbini, M.; Cahalan, P.

    1997-11-01

    The 110 GHz installation on DIII--D consists of two gyrotrons each of which operates at generated power levels between 0.5 and 1.0 MW for pulse lengths up to 2.0 s. The gyrotrons are connected to DIII--D by windowless evacuated transmission lines. The greatest experience to date has been accumulated with the Gycom Centaur gyrotron, a diode tube which has been operated reliably at generated rf power levels in excess of 0.80 MW for pulse durations of 2.0 s. This tube has been modulated at 100% depth at frequencies up to 1 kHz. The second gyrotron is a Communications and Power Industries model VGT-8011A, a triode geometry, which is in initial testing. For this gyrotron, collector power loading has been measured, the beam steering has been set and pulse/power extension is in progress. DIII--D tests of the system performance are ongoing and initial tokamak experiments on transport, H--mode physics and scaling have begun.

  12. Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet

    SciTech Connect

    Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I.; Manuilov, V. N.; Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K.

    2006-01-03

    An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

  13. Frequency measurements of the gyrotrons used for collective Thomson scattering diagnostics at TEXTOR and ASDEX Upgrade

    SciTech Connect

    Woskov, P.; Bindslev, H.; Leipold, F.; Meo, F.; Nielsen, S. K.; Tsakadze, E. L.; Korsholm, S. B.; Scholten, J.; Tito, C.; Westerhof, E.; Oosterbeek, J. W.; Leuterer, F.; Monaco, F.; Muenich, M.; Wagner, D.

    2006-10-15

    High resolution frequency measurements of the 110 GHz gyrotron at TEXTOR and the 105 GHz mode of the two-frequency gyrotron (Odissey-1) at ASDEX Upgrade (AUG) have been made in support of fast ion collective Thomson scattering diagnostics. Measurements were done by harmonic heterodyne methods using both fast Fourier transform spectroscopy with digital oscilloscopes and fast scanning spectrum analyzers. Accurate frequencies were obtained with a frequency counter. At TEXTOR, at 180 kW forward power the starting frequency was 109.970{+-}0.005 GHz and chirped down as much as 27 MHz depending on the duty factor. At AUG, at 500 kW forward power the frequency started at 104.786 GHz and chirped down 104 MHz, with 90% of the chirp occurring in the first 100 ms. Plasma perturbation of the TEXTOR gyrotron was observed when both ion cyclotron resonance heating antennas and neutral beam injection were operating, producing modulation at 29 and 58 MHz in the gyrotron output. Each gyrotron was observed to have an instrumental measurement limited linewidth of 120 kHz full width at half maximum.

  14. PRACTICAL EXERIENCES WITH THE 6 GYROTRON SYSTEM ON THE DIII-D TOKAMAK

    SciTech Connect

    LOHR,J; CARY,W.P; GORELOV,Y.A; GRUNLOH,H.J; KAJIWARA,K; PEAVY,J.J; PONCE,D; TOOKER,J; CALLIS,R.W

    2003-10-01

    OAK-B135 The gyrotron installation on the DIII-D tokamak now comprises six 110 GHz gyrotrons in the 1 MW class, three manufactured by CPI[1] and three by Gycom [2]. Two tetrode rectifier/modulator/regulator power supplies were constructed to provide power for the CPI gyrotrons. A second system uses three mod/reg tetrodes connected in parallel, which are fed by a dual parallel tetrode mod/reg to power the Gycom tubes. the windowless evacuated transmission lines are up to 100 m in length, with 80% transmission efficiency. Engineering solutions were developed in specific problematic areas encountered in the development of this complex system, including: Gyrotron instability; high voltage circuit instability; gyrotron conditioning; rf beam forming and coupling to waveguide; output window vacuum seals; material control; launcher mechanics and diagnosis; polarizer mechanics; dummy loads; power measurements; polarization measurements; cooling; calorimetry; and operating controls. The system is in routine operation in support of tokamak experiments, with peak generated power of about 5 MW at 2 s. pulse length and about 3 MW for 5 s. pulses. This presentation focuses on practical lessons learned in the development and operation of these systems.

  15. A 100 MV cryomodule for CW operation

    SciTech Connect

    Charles Reece

    2005-07-10

    A cryomodule designed for high-gradient CW operation has been built at Jefferson Lab. The Renascence cryomodule is the final prototype of a design for use in the 12 GeV CEBAF upgrade. The module uses eight 7-cell 1497 MHz cavities to be individually powered by 13 kW klystrons. Specifications call for providing >109 MV CW with < 250 W of dynamic heat at 2.07 K. The module incorporates a new generation of tuners and higher power input waveguides. A mixture of the new HG and LL cavity shapes are used. A new high thermal conductivity RF feedthrough has been developed and used on the 32 HOM coupler probes of Renascence. The cryomodule assembly is complete. Testing is to begin late June. Design features and initial test data will be presented.

  16. Design for an optical cw atom laser

    PubMed Central

    Ashkin, Arthur

    2004-01-01

    A new type of optical cw atom laser design is proposed that should operate at high intensity and high coherence and possibly record low temperatures. It is based on an “optical-shepherd” technique, in which far-off-resonance blue-detuned swept sheet laser beams are used to make new types of high-density traps, atom waveguides, and other components for achieving very efficient Bose–Einstein condensation and cw atom laser operation. A shepherd-enhanced trap is proposed that should be superior to conventional magneto-optic traps for the initial collection of molasses-cooled atoms. A type of dark-spot optical trap is devised that can cool large numbers of atoms to polarization-gradient temperatures at densities limited only by three-body collisional loss. A scheme is designed to use shepherd beams to capture and recycle essentially all of the escaped atoms in evaporative cooling, thereby increasing the condensate output by several orders of magnitude. Condensate atoms are stored in a shepherd trap, protected from absorbing light, under effectively zero-gravity conditions, and coupled out directly into an optical waveguide. Many experiments and devices may be possible with this cw atom laser. PMID:15302937

  17. Stable, high efficiency gyrotron backward-wave oscillator

    SciTech Connect

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-15

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3 GHz with a peak power of 149 kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  18. Stable, high efficiency gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-01

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3GHz with a peak power of 149kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  19. 60-GHz gyrotron development program alternate frequency study

    SciTech Connect

    Evans, S.J.; Nordquist, A.L.; Wendell, G.E.

    1981-08-01

    The purpose of this study was to take a preliminary look at what the considerations are when scaling the frequency of a gyrotron oscillator a few percent from an existing design. To minimize construction costs, it would be most advantageous to keep all parts the same and operate only with slightly different voltages and magnetic fields. There are two tube parts that must be changed for any frequency modification: the tube output window and the oscillation cavity. This study assumed that the output window and the cavity would be scaled in dimensions for best operation at the new frequency. The main thrust of the study was to examine the feasibility of using the 60 GHz gun (K-8060) and magnet (VYW-8060) for operation at 56 and 52 GHz, and the 28 GHz gun (K-8000) and magnet (VYW-8000) for operation at 26 and 30 GHz. All work was done using Varian computer gun codes and hand calculations. It must be mentioned that these results are only a guideline and that a final design would need some further fine tuning.

  20. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  1. Experimental study of a high-frequency megawatt gyrotron oscillator

    SciTech Connect

    Kreischer, K.E.; Grimm, T.L.; Guss, W.C.; Mobius, A.W.; Temkin, R.J.

    1990-03-01

    A detailed experimental study of the efficiency and output power of a pulsed gyrotron operating in the TE{sub 16,2,1} mode at 148 GHz has been conducted. A peak efficiency of 30% was achieved at 80 kV and 20 A for an output power of 480 kW. The highest output power of 925 kW, corresponding to an efficiency of 19%, was measured at 120 kV and 40 A. Two cavities with different interaction lengths (6.0{lambda} and 4.2{lambda}) were investigated. In both cases, agreement was found between the theoretical and experimental efficiency for beam currents up to 15--20 A. At higher currents, the experimental efficiency saturated between 20% and 25%, well below the 35%-- 40% predicted by theory. No increase was obtained for modest positive or negative linear tapering of the cavity magnetic field. Measurements indicate that the beam velocity ratio decreases as beam current increases, partially explaining the reduced efficiency at higher currents. Operation in different azimuthal rotations of the cavity modes was also observed. The measured rotation was found to be consistent with the theoretical coupling between the beam and rf field.

  2. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    SciTech Connect

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr; Sarksyan, Karen; Skvortsova, Nina; Tanaka, Kenji; Kubo, Shin; Igami, Hiroe; Azuma, Yoshifumi; Tsuji-Iio, Shunji

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  3. Design of 95 GHz, 2 MW Gyrotron for Communication and Security Applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    The design and the numerical simulation of the 95 GHz, 2 MW gyrotron for various kinds of communication, sensing and security applications is presented. The gyrotron is designed for the TE24,8 operating mode. Various in-house developed and commercially available computer codes are used for the design purpose. A 4.25 MW electron gun is designed for the 2 MW of output power. The mode selection, cold cavity and the beam-wave interaction analysis are discussed for the design of weakly tapered open resonator type of interaction cavity. The parametric analysis of the interaction cavity and the electron gun is also presented.

  4. Two-wave regime of operation of the high-harmonic gyrotron

    SciTech Connect

    Savilov, A. V.; Denisov, G. G.; Kalynov, Yu. K.; Osharin, I. V.

    2015-04-15

    The use of the two-wave co-generation is proposed as a way to decrease the effective Q-factor of the operating near-cutoff wave of the gyrotron. In this two-wave regime, the operating wave represents a “hot” wave mode formed by two partial “cold” modes (near-cutoff and far-from-cutoff ones) coupled on the electron beam. It is shown that the use of this regime can provide a significant decrease of the Ohmic losses in low-relativistic high-harmonic gyrotrons operating in the THz frequency range.

  5. Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Bera, Anirban; Kumar, Narendra; Purohit, L. P.; Sinha, Ashok K.

    2010-06-01

    A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.

  6. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  7. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  8. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.

    2015-03-15

    A time-domain theory of frequency-locking gyrotron oscillators with low-Q resonators has been developed. The presented theory is based on the description of wave propagation by a parabolic equation taking into account the external signal by modification of boundary conditions. We show that the developed model can be effectively used for simulations of both single- and multi-mode operation regimes in gyrotrons driven by an external signal. For the case of low-Q resonators typical for powerful gyrotrons, the external signal can influence the axial field profile inside the interaction space significantly and, correspondingly, the value of the electron orbital efficiency.

  9. Three-dimensional particle-in-cell modeling of terahertz gyrotrons with cylindrical and planar configurations of the interaction space

    SciTech Connect

    Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Zheleznov, I. V.; Zotova, I. V.

    2013-04-15

    We perform 3D particle-in-cell simulations of terahertz gyrotrons with two different configurations of the interaction space. For a gyrotron with conventional cylindrical configuration of the interaction cavity, we demonstrate reasonable agreement between simulations and experimental results, including output frequency, structure of the higher-order operating mode (TE{sub 17,4}), output power, and ohmic losses. For a novel planar gyrotron scheme with transverse energy extraction, a possibility of further increasing the oversized factor with the single-mode operation regime retained is shown. Frequency detuning by mechanical variation of the gap between waveguide plates is also demonstrated.

  10. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    NASA Astrophysics Data System (ADS)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  11. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.

    PubMed

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  12. High-frequency gyrotron scattering diagnostic for instability studies on TARA

    SciTech Connect

    Woskoboinikow, P.; Cohn, D.R.; Gerver, M.; Mulligan, W.J.; Post, R.S.; Temkin, R.J.; Trulsen, J.

    1985-05-01

    A 1- to 10-kW,>30-ms pulsed, narrow linewidth (<1 MHz), 137-GHz gyrotron is being fabricated for collective Thomson scattering plasma diagnostics on the TARA tandem mirror experiment. The drift cyclotron loss cone, the axial loss cone, harmonics of these instabilities, and the ion two stream instability in the TARA plugs will be studied with this diagnostic.

  13. Simulation tools for computer-aided design and numerical investigations of high-power gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Balabanova, E.; Kern, S.; Illy, S.; Sabchevski, S.; Thumm, M.; Vasileva, E.; Zhelyazkov, I.

    2012-03-01

    Modelling and simulation are essential tools for computer-aided design (CAD), analysis and optimization of high-power gyrotrons used as radiation sources for electron cyclotron resonance heating (ECRH) and current drive (ECCD) of magnetically confined plasmas in the thermonuclear reactor ITER. In this communication, we present the current status of our simulation tools and discuss their further development.

  14. To the theory of high-power gyrotrons with uptapered resonators

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2010-05-15

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimization of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.

  15. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    PubMed Central

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  16. Experimental observation of the effect of aftercavity interaction in a depressed collector gyrotron oscillator

    SciTech Connect

    Choi, E. M.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.

    2007-09-15

    This paper presents the experimental observation of the effect of an aftercavity interaction (ACI) in a depressed collector gyrotron oscillator. The gyrotron generates an output power of 1.5 MW at 110 GHz in 3 {mu}s pulses with a 96 kV and 40 A electron beam and has a single-stage depressed collector. The ACI arises from an unintended cyclotron resonant interaction between the microwave beam traveling out from the cavity and the gyrating electron beam. The interaction occurs in the uptaper of the launcher, immediately downstream from the cavity, where the magnetic field is slightly lower than its value in the cavity region. The ACI results in a reduction in efficiency since the electron beam tends to extract power from the wave. There is also a broadening of the spent beam energy profile, which reduces the effectiveness of the depressed collector and in turn limits the overall efficiency of a gyrotron. Measurements of the maximum depression voltage of the collector vs beam current at 96 kV are compared with simulations from the MAGY code [M. Botton et al., IEEE Trans. Plasma Sci. 26, 882 (1998)]. Excellent agreement is obtained between theory and experiment but only if the ACI is included. In the present experiment, it is estimated that the observed efficiency of 50% would have been about 60% in the absence of the ACI. These results verify the role of the ACI in reducing the efficiency of the gyrotron interaction.

  17. Performance history and upgrades for the DIII-D gyrotron complex

    SciTech Connect

    Lohr, J.; Anderson, J. P.; Cengher, M.; Ellis, R. A.; Gorelov, Y. A.; Kolemen, E.; Lambot, T.; Murakami, D. D.; Myrabo, L.; Noraky, S.; Parkin, K. L.; Ponce, D.; Torrezan, A.

    2015-03-12

    The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.

  18. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  19. A comparative study on the modeling of dynamic after-cavity interaction in gyrotrons

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.; Ioannidis, Z. C.; Kern, S.; Samartsev, A.; Pagonakis, I. Gr.; Tigelis, I. G.; Jelonnek, J.

    2015-05-01

    There are cases where gyrotron interaction simulations predict dynamic After-Cavity Interaction (ACI). In dynamic ACI, a mode is excited by the electron beam at a dominant frequency in the gyrotron cavity and, at the same time, this mode is also interacting with the beam at a different frequency in the non-linear uptaper after the cavity. In favor of dynamic ACI being a real physical effect, there are some experimental findings that could be attributed to it, as well as some physical rationale indicating the possibility of a mode being resonant with the beam at different frequencies in different regions. However, the interaction codes used in dynamic ACI prediction up to now are based on simplifications that put questions on their capability of correctly simulating this effect. In this work, the shortcomings of the usual simplifications with respect to dynamic ACI modeling, namely, the trajectory approach and the single-frequency boundary condition, are identified. Extensive simulations of dynamic ACI cases are presented, using several "in-house" as well as commercial codes. We report on the comparison and the assessment of different modeling approaches and their results and we discuss whether, in some cases, dynamic ACI can be a numerical artifact or not. Although the possibility of existence of dynamic ACI in gyrotrons is not disputed, it is concluded that the widely used trajectory approach for gyrotron interaction modeling is questionable for simulating dynamic ACI and can lead to misleading results.

  20. CHARACTERISTICS OF DIAMOND WINDOWS ON THE 1 MW, 110 GHz GYROTRON SYSTEMS ON THE DIII-D TOKAMAK

    SciTech Connect

    Y.A. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-08-01

    Diamond disks made using the chemical vapor deposition (CVD) technique are now in common use as gyrotron output windows. The low millimeter wave losses and excellent thermal conductivity of diamond have made it possible to use such windows in gyrotrons with {approx}1 MW output power and pulse length up to and greater than 10 s. A ubiquitous characteristic of diamond gyrotron windows is the presence of apparent hot spots in the infrared images registered during rf pulses. Many of these spots are co-located with bright points seen in visible video images. The spots do not seem to compromise the integrity of the windows. Analysis of the infrared observations on several different gyrotrons operating at the DIII-D tokamak are reported.

  1. Moderate-power cw fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Dianov, Evgenii M

    2004-10-31

    A review of the development and investigation of moderate-power (10{sup -1}-10{sup 2} W) cw fibre lasers is presented. The properties of optical fibres doped with rare-earth ions and methods for fabricating double-clad fibres are considered. The methods for fabrication of fibre Bragg gratings used as selective reflectors are discussed and the grating properties are analysed. The main pump schemes for double-clad fibre lasers are described. The properties of fibre lasers doped with neodymium, ytterbium, erbium, thulium, and holmium ions are also considered. The principles of fabrication of Raman converters of laser radiation based on optical fibres of different compositions are discussed and the main results of their studies are presented. It is concluded that fibre lasers described in the review can produce moderate-power radiation at any wavelength in the spectral range from 0.9 to 2 {mu}m. (review)

  2. Structure and Function of CW Domain Containing Proteins.

    PubMed

    Liu, Yanli; Liu, Shasha; Zhang, Xinxin; Liang, Xiao; Zahid, Kashif Rafiq; Liu, Ke; Liu, Jinlin; Deng, Lingfu; Yang, Jihong; Qi, Chao

    2016-01-01

    The CW domain is a zinc binding domain, composed of approximately 50- 60 amino acid residues with four conserved cysteine (C) and two to four conserved tryptophan (W) residues. The members of the superfamily of CW domain containing proteins, comprised of 12 different eukaryotic nuclear protein families, are extensively expressed in vertebrates, vertebrate-infecting parasites and higher plants, where they are often involved in chromatin remodeling, methylation recognition, epigenetic regulation and early embryonic development. Since the first CW domain structure was determined 5 years ago, structures of five CW domains have been solved so far. In this review, we will discuss these recent advances in understanding the identification, definition, structure, and functions of the CW domain containing proteins. PMID:26806410

  3. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  4. Sequence analysis of the novel HLA-Cw*08 variant allele, Cw*0820, in a Chinese Han individual.

    PubMed

    Deng, Z-H; Xu, Y-P; Wang, D-M

    2009-09-01

    A novel human leukocyte antigen (HLA) allele, HLA-Cw*0820, was identified in a Chinese Han individual. It differs from the closest allele Cw*080101 by single nucleotide change at genomic nucleotide (nt) 1615 G>A (coding sequence nt 652 G>A, codon 194 GTC>ATC) in exon 4, which results in an amino acid change Val194Ile.

  5. Theoretical study on a 0.6 THz third harmonic gyrotron

    SciTech Connect

    Yuan Xuesong; Ma Chunyan; Han Yu; Yan Yang; Lan Ying

    2011-10-15

    A theoretical study on a 0.6 THz third harmonic TE{sub 37} mode gyrotron oscillator is reported in this paper in order to develop a compact, reliable, and high power terahertz radiation source. An output power of 4 kW can be generated in the TE{sub 37} mode (0.6 THz) at a resonant magnetic field of 7.86 T by the gyrotron oscillator operating at 55 kV/2 A with an electron beam radius of 0.32 mm. A magnetron injection gun (MIG) with high compression ratio has been designed. The simulation results of MIG show that the velocity ratio {alpha} is 1.37, and the perpendicular velocity spread and parallel velocity spread are 6.1% and 8.9%, respectively.

  6. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  7. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2016-10-01

    In this review paper, we present the recent progress in the development of a series of gyrotrons at the Research Center for Development of Far-Infrared Region, University of Fukui, that have opened the road to many novel applications in the high-power terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency-tunable sources of coherent radiation operating in a continuous-wave regime. Among them are high-precision spectroscopic techniques (most notably dynamic nuclear polarization-nuclear magnetic resonance, electron spin resonance, X-ray detected magnetic resonance, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, and new medical technologies.

  8. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  9. Amplification of Picosecond Pulses in a 140-GHz Gyrotron-Traveling Wave Tube

    PubMed Central

    Kim, H. J.; Nanni, E. A.; Shapiro, M. A.; Sirigiri, J. R.; Woskov, P. P.; Temkin, R. J.

    2011-01-01

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE06 mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth. PMID:21230783

  10. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  11. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  12. Gyrotron collective Thomson scattering from plasma fluctuations in a Tara axicell

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Myer, R.C.; Mulligan, W.J.; Cohn, D.R.; Gerver, M.; Golovato, S.N.; Horne, S.; Kubota, S.; Post, R.S.; and others

    1988-08-01

    Collective Thomson scattering in the Tara Tandem Mirror axicell at MIT was accomplished with a 137-GHz, approx.0.4-kW, 75-ms pulsed gyrotron. Ion cyclotron waves, ion Bernstein wave harmonics, and other plasma fluctuations possibly due to microinstabilities and magnetohydrodynamic (MHD) activity have been observed during ion cyclotron resonance frequency (ICRF) heating. The observation of ion Bernstein waves may be due to an enhanced ion thermal fluctuation spectrum in an ICRF heated plasma.

  13. The Gyrotron: AN Application of the Relativistic Bunching of Electrons to the Generation of Intense Millimeter Microwave Radiation

    NASA Astrophysics Data System (ADS)

    Caplan, Malcolm

    The cyclotron maser or gyrotron is capable of generating high power microwaves at millimeter wave frequencies for applications in fusion heating, radar astronomy and communications. Analytic and numerical simulation models are developed which describe the behavior of these devices under realistic laboratory conditions including the effects of circuit geometry, beam thermal spread and mode competition. In Chapter 2, a generalized linear theory for the gyrotron is presented in the form of an integro-differential equation which can be solved within various circuit geometries thus describing gyro-amplifiers, gyro-oscillators and gyroklystrons. In Chapter 3 a complete description of a finite size electromagnetic particle simulation model is presented which describes gyrotrons operating in a TE(,mn) waveguide mode. The resulting computer code is a "stretched" version of a 1-3/2 D particle code which apart from modelling transient self-consistent wave beam dynamics includes the essential effects of arbitrary conducting boundaries without requiring a full 2D simulation. The code also allows simultaneous multi-mode interaction. In Chapter 4 simulations and theoretical analysis are made of gyrotron amplifiers operating in the TE(,01) mode to predict bandwidth gain and efficiency with particular attention to the stabilization of absolute instabilities through frequency selective loss. In Chapter 5 the linear eigenmodes and eigenfrequencies of gyrotron oscillators are examined including the effects of beam loading and circuit geometry. Oscillation threshold currents are obtained. The design analysis and predicted efficiencies of gyrotron oscillators operating in the TE(,021) mode with output powers of at least 200 kW are obtained from particle simulations. In Chapter 6 the experimental development of a GHz gyrotron is presented including the design of the magnetron injection gun, circuit, collector and window. Theoretical and numerical predictions of oscillation thresholds and

  14. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  15. NRL quasioptical gyrotron program. Final report, November 1, 1991--October 31, 1993

    SciTech Connect

    Fliflet, A.

    1997-06-01

    The quasioptical gyrotron (QOG) has been under development as a high power, tunable source for tokamak plasma heating applications. Given the critical importance of source efficiency for large-scale ESCH applications, understanding the causes of the low QOG efficiency and finding ways of improving it became a top priority for the current NRL program. The importance of the present work is that is represents new insight into the factors controlling the efficiency of quasioptical gyrotrons. The author has demonstrated that the technique of mode priming provides a method for improving efficiency via enhanced mode detuning and leads to more stable single-mode operation of highly over-moded resonators. The latter feature is an important consideration for output coupler and rf transmission system optimization and can make the QOG less sensitive to external influences such as window reflections. He has shown that a prebunching resonator is readily implemented in the quasioptical configuration. It is relatively free of the problems of spurious modes and cross-talk which plague over-moded prebunching cavities in conventional gyrotrons. The observation of almost 18% efficiency represents a doubling of the previous best single-mode results. Further improvements are expected from the optimization of start-up conditions and the study of the effects of the second harmonic interaction.

  16. A 0.33-THz second-harmonic frequency-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu

    2016-02-01

    Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).

  17. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  18. High power CW iodine laser pumped by solar simulator

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Lee, Min H.; Weaver, Willard R.

    1987-01-01

    An iodine photodissociation laser was pumped by a long Ar arc as the solar simulator to produce a 10-W CW output. Continuous lasing for 1 h was achieved with a flow of the laser material n-C3F7I. The 10-W CW output is the highest produced to date and establishes the feasibility of developing a solar-pumped laser for space power transmission.

  19. 3 μm CW lasers for myringotomy and microsurgery.

    PubMed

    Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S

    2013-03-01

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899. PMID:24382990

  20. Experimental Research on a 1.5 MW, 110 GHz Gyrotron with a Smooth Mirror Internal Mode Converter

    NASA Astrophysics Data System (ADS)

    Tax, D. S.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J.; Torrezan, A. C.

    2010-11-01

    Megawatt gyrotrons are important for electron cyclotron heating (ECH) of fusion plasmas, including ITER. These gyrotrons should operate with high efficiency to reduce the prime power required and to ensure good reliability. The gyrotron efficiency is affected both by the physical principles that govern the device and the performance of components like the internal mode converter (IMC), which must convert the electromagnetic cavity mode into a Gaussian beam. An IMC consisting of a helically-cut launcher and three smooth curved mirrors, which is less susceptible to alignment errors than an IMC using mirrors with phase correcting surfaces, was recently tested on a 1.5 MW, 110 GHz, 3μs pulsed gyrotron operating in the TE22,6 mode, and an output beam with 95.8 ± 0.5 % Gaussian beam content was measured in both hot and cold tests. We are also examining the issue of mode competition in the gyrotron, which can limit the achievable output power and efficiency. The sequence of competing modes excited during the rise time of the voltage pulse has been measured and results are compared with the numerical simulation code MAGY. These results should provide a good test of the accuracy of the code.

  1. On the dependence of the efficiency of a 240 GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index

    SciTech Connect

    Dumbrajs, O.; Avramidis, K. A.; Franck, J.; Jelonnek, J.

    2014-01-15

    Two issues in the cavity design for a Megawatt-class, 240 GHz gyrotron are addressed. Those are first, the effect of a misaligned electron beam on the gyrotron efficiency and second, a possible azimuthal instability of the gyrotron. The aforementioned effects are important for any gyrotron operation, but could be more critical in the operation of Megawatt-class gyrotrons at frequencies above 200 GHz, which will be the anticipated requirement of DEMO. The target is to provide some basic trends to be considered during the refinement and optimization of the design. Self-consistent calculations are the base for simulations wherever possible. However, in cases for which self-consistent models were not available, fixed-field results are presented. In those cases, the conservative nature of the results should be kept in mind.

  2. Comparative Pharmacodynamics of Pancuronium, Cisatracurium, and CW002 in Rabbits

    PubMed Central

    Diaz, Leslie L; Zhang, Jingwei; Heerdt, Paul M

    2014-01-01

    Pancuronium is a long-duration neuromuscular blocking drug (NMBD) that has been used in anesthetized rabbits at 0.1 mg/kg. However, there are limited data regarding the time course for recovery from this dose either spontaneously or with pharmacologic reversal. Here we defined the potency, onset, and recovery characteristics for the intermediate-duration NMBD cisatracurium and CW002 (a novel cysteine-inactivated molecule) in the rabbit, and test the hypothesis that these drugs may be alternatives to 0.1 mg/kg pancuronium for survival procedures. New Zealand white rabbits anesthetized with isoflurane were studied in a cross-over design. Potencies of cisatracurium and CW002 were defined as the effective dose for 95% depression of evoked muscle twitch (ED95). Responses to 3×ED95 were used to define onset (time to maximal effect), recovery index (RI; time from 25% to 75% recovery of twitch), and duration (time to complete recovery). Responses to all drugs were determined with and without reversal by neostigmine–glycopyrrolate or l-cysteine. CW002 was 4-fold more potent than was cisatracurium, but their onset, RI, and duration were similar. Pancuronium had similar onset and RI but longer duration, compared with cisatracurium and CW002. Reversal shortened the recovery index and duration for all 3 drugs. At 3×ED95, cisatracurium and CW002 had the same onset as did standard-dose pancuronium, but durations were shorter and more predictable. In addition, CW002 can be reversed without the potential side effects of cholinergic manipulation. We conclude that cisatracurium and CW002 are viable alternatives to pancuronium for survival studies in rabbits. PMID:24827571

  3. 500-fold enhancement of in situ (13)C liquid state NMR using gyrotron-driven temperature-jump DNP.

    PubMed

    Yoon, Dongyoung; Soundararajan, Murari; Caspers, Christian; Braunmueller, Falk; Genoud, Jérémy; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-09-01

    A 550-fold increase in the liquid state (13)C NMR signal of a 50μL sample was obtained by first hyperpolarizing the sample at 20K using a gyrotron (260GHz), then, switching its frequency in order to apply 100W for 1.5s so as to melt the sample, finally, turning off the gyrotron to acquire the (13)C NMR signal. The sample stays in its NMR resonator, so the sequence can be repeated with rapid cooling as the entire cryostat stays cold. DNP and thawing of the sample are performed only by the switchable and tunable gyrotron without external devices. Rapid transition from DNP to thawing in one second time scale was necessary especially in order to enhance liquid (1)H NMR signal. PMID:27490302

  4. 500-fold enhancement of in situ 13C liquid state NMR using gyrotron-driven temperature-jump DNP

    NASA Astrophysics Data System (ADS)

    Yoon, Dongyoung; Soundararajan, Murari; Caspers, Christian; Braunmueller, Falk; Genoud, Jérémy; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-09-01

    A 550-fold increase in the liquid state 13C NMR signal of a 50 μL sample was obtained by first hyperpolarizing the sample at 20 K using a gyrotron (260 GHz), then, switching its frequency in order to apply 100 W for 1.5 s so as to melt the sample, finally, turning off the gyrotron to acquire the 13C NMR signal. The sample stays in its NMR resonator, so the sequence can be repeated with rapid cooling as the entire cryostat stays cold. DNP and thawing of the sample are performed only by the switchable and tunable gyrotron without external devices. Rapid transition from DNP to thawing in one second time scale was necessary especially in order to enhance liquid 1H NMR signal.

  5. 60 GHz Gyrotron Development Program. Quarterly report No. 16, April-June 1983

    SciTech Connect

    Jory, H.R.; Bier, R.E.; Craig, L.J.; Felch, K.L.; Fox, L.J.; Hu, G.; Huey, H.E.; Spang, S.T.

    1983-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. Additional calculations for stepped cavity designs are reported. The work on collector fatigue improvement has continued. Testing of X-6 results in operation at CW output power in the range of 200 to 206 kW for a time period of one hour. This satisfies one of the program's major milestones and represents a new world record for CW power at frequencies above 28 GHz.

  6. 60-GHz gyrotron development program. Quarterly report No. 11, January-March 1982

    SciTech Connect

    Shively, J.F.; Craig, L.J.; Evans, S.J.; Felch, K.L.; Fox, L.J.; Hu, G.; Jory, H.R.; Spang, S.T.

    1982-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. Tests on two experimental tubes, X-3R and X-4, were completed during the quarter. X-3R, which included design modifications to the beam tunnel and cavity coupling, produced 200 kW of peak rf output power at 100 ms pulse duration. The tube proved to be easier to operate than previous experimental tubes because of the modifications. X-4, which used an older rf circuit design, but in a CW configuration, produced 71.5 kW CW.

  7. A portable CW/FM-CW Doppler radar for local investigation of severe storms

    SciTech Connect

    Unruh, W.P.; Wolf, M.A.; Bluestein, H.B.

    1988-01-01

    During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm. 2 refs., 2 figs.

  8. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1991-01-01

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  9. A method for suppression of spurious fundamental-harmonic waves in gyrotrons operating at the second cyclotron harmonic

    NASA Astrophysics Data System (ADS)

    Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-05-01

    A typical problem of gyrotrons operating at high harmonics of the electron cyclotron frequency is the suppression of parasitic near-cutoff waves excited at lower harmonics. In this paper, a method for a significant improvement of the selectivity of the second-harmonic gyrotrons is proposed. This method is based on the use of quasi-regular cavities with short irregularities, which provide different effects on the process of excitation of the operating second-harmonic wave and the spurious fundamental-harmonic wave by the electron beam.

  10. 60 GHz Gyrotron Development Program. Quarterly report No. 20, April-June 1984

    SciTech Connect

    Jory, H.R.; Bier, R.E.; Craig, L.J.; Felch, K.L.; Fox, L.J.; Lopez, N; Huey, H.E.; Manca, J.; Spang, S.T.

    1984-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of c-w power at 60 GHz with high purity of the output mode. The calculations for the design of the 4-inch diameter collector were concluded. The final design predicts 96.8% TE/sub 02/ mode output and is designed to allow a retrofit replacement of the collector on existing tubes. Work during the quarter emphasized the testing of the c-w tube X-7. Operation of the tube is reported for both pulsed and c-w operation. Output mode purity was measured at 95% TE/sub 02/. The tube was operated for about 40 minutes with c-w power output over 200 kW.

  11. Linear and nonlinear theories of a large-orbit gyrotron traveling wave amplifier

    SciTech Connect

    Jiao Chongqing; Luo Jirun

    2010-05-15

    The linear and nonlinear theories of large-orbit gyrotron traveling wave amplifiers (gyro-TWAs) have been developed based on the corresponding theories of small-orbit gyro-TWAs. The linear theory is in good agreement with the nonlinear theory in the small signal region of large-orbit gyro-TWAs. The phenomenon that most electrons move toward the axis of interaction circuit during the beam-wave interaction is observed and its potential effect on the design of large-orbit coaxial gyro-TWAs is emphasized.

  12. Gyrotron scattering from non-thermal fluctuations in the Tara Tandem Mirror

    SciTech Connect

    Machuzak, J.S.; Myer, R.C.; Woskoboinikow, P.P.; Cohn, D.R.; Gerver, M.; Golovato, S.N.; Horne, S.; Kubota, S.; Mulligan, W.J.; Post, R.S.

    1987-09-01

    A 137 GHz, approx.0.4 kW, 75 ms pulsed gyrotron has been used for collective Thomson scattering in the Tara Tandem Mirror plug cell at MIT. Scattering from ion cyclotron waves during ion cyclotron resonance frequency (ICRF) heating, ion Bernstein wave harmonics, and plasma fluctuations possibly due to microinstabilities have been observed. The observed harmonic nature of the ion Bernstein waves may be due to an enhanced ion thermal frequency spectrum in an ICRF heated plasma. 6 refs., 1 fig.

  13. Design principles for a sheet-beam electron gun for a quasi-optical gyrotron

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace M.; Fliflet, Arne W.; Lee, Robert

    1990-03-01

    The design considerations for a magnetized sheet beam for which the electrons have energy both perpendicular and parallel to the magnetic field are examined, including the basic design principles and scaling laws, the issue of orbit crossing and electrode synthesis in a sheet beam configuration, limiting currents both in the guide tube and across the resonator, and the edge effects and their reduction or elimination by the use of edge focusing electrodes. The application envisioned for the sheet beam is the driving of a quasi-optical gyrotron for electron cyclotron resonance heating and current drive in fusion plasmas.

  14. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    SciTech Connect

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  15. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  16. Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun

    NASA Astrophysics Data System (ADS)

    Cross, A. W.; He, W.; Phelps, A. D. R.; Ronald, K.; Whyte, C. G.; Young, A. R.; Robertson, C. W.; Rafferty, E. G.; Thomson, J.

    2007-06-01

    Experimental operation of a gyrotron traveling wave amplifier with a helically corrugated waveguide using a thermionic cathode electron gun is presented. The coupling between the second harmonic cyclotron mode of the gyrating electron beam and the radiation occurred in the region of near infinite phase velocity over a broad frequency band. With an axis-encircling electron beam of pitch factor of 185keV, and current of 6.0A, the amplifier achieved an output power of 220kW, saturated gain of 24dB, saturated bandwidth of 8.4to10.4GHz, and an interaction efficiency of 20%.

  17. High-power terahertz-range planar gyrotrons with transverse energy extraction.

    PubMed

    Ginzburg, N S; Zotova, I V; Sergeev, A S; Zaslavsky, V Yu; Zheleznov, I V

    2012-03-01

    To increase the output power of terahertz gyrotrons to several hundred kilowatts, we suggest using a planar geometry of interaction space with a sheet electron beam and transverse energy extraction. An advantage of this scheme in comparison with conventional cylindrical geometry is the possibility to ensure effective mode selection over the open transverse coordinate in combination with radiation outcoupling that leads to a substantial reduction of Ohmic losses. Similar to unstable resonators in optics for further growth of the radiation power it is beneficial to introduce waveguide tapering. PMID:22463418

  18. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  19. Feasibility study of a cryogenically cooled window for high-power gyrotrons

    SciTech Connect

    Haste, G.R.; Kimrey, H.D.; Prosise, J.D.

    1986-07-01

    Single-crystal sapphire is currently in use as the material for output windows in high-power microwave tubes, particularly gyrotrons. These windows are currently being cooled by fluorocarbon fluids at near-room temperatures. There are, however, several advantages in operating the window at very low temperatures: less absorption and consequent heating of the window, greater material strength, improved resistance to crack formation, greater thermal conductivity, and reduced thermal expansion. Operation at cryogenic temperatures is shown to be feasible. The output power, which is currently limited by window constraints, could be increased by an order of magnitude or more.

  20. Three dimensional simulations of the LANL large orbit gyrotron using ISIS on the Connection Machine

    SciTech Connect

    Kares, R.J.; Thomas, V.A.; Jones, M.E.

    1994-12-31

    The fully three dimensional electromagnetic curvilinear PIC code ISIS is used on the CM5 supercomputer to simulate the operation of the Large Orbit Gyrotron (LOG) high power microwave source which is current under development at Los Alamos. This source consists of a vane resonator magnetron-type geometry with a rotating annular electron beam in a cusp magnetic field and represents a formidable intrinsically three dimensional computational problem. Animations of beam dynamics and microwave generation in the device will be presented. Comparison with results from the LANL LOG experiment will also be discussed.

  1. SRF cavities for CW option of Project X Linac

    SciTech Connect

    Solyak, N.; Gonin, I.; Khabiboulline, T.; Lunin, A.; Perunov, N.; Yakovlev, V.; /Fermilab

    2009-09-01

    Alternative option of Project X is based on the CW SC 2GeV Linac with the average current 1mA. Possible option of the CW Linac considered in the paper includes low energy part consisted of a few families SC Spoke cavities (from 2.5 MeV to 466 MeV) and high energy part consisted of 2 types of elliptical cavities (v/c=0.81 and v/c=1). Requirements and designed parameters of cavities are considered.

  2. A sensitive and high dynamic range cw laser power meter

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Bindra, K. S.; Oak, S. M.

    2008-12-01

    We report the design of a cost effective, highly sensitive cw laser power meter with a large dynamic range based on a photodiode. The power meter consists of a photodiode, a current to voltage converter circuit, an offset balancing circuit, a microcontroller, an analog to digital converter, reed relays, and an alphanumeric liquid crystal display. The power meter can record absolute laser power levels as low as 1 pW. The dynamic range measured with a cw laser at a wavelength of 532 nm is 8×1010. The high sensitivity and large dynamic range are achieved by the implementation of an analog background balancing circuit and autoranging.

  3. Time Shifted PN Codes for CW Lidar, Radar, and Sonar

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Prasad, Narasimha S. (Inventor); Harrison, Fenton W. (Inventor); Flood, Michael A. (Inventor)

    2013-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  4. cw passive mode locking of a Ti:sapphire laser

    SciTech Connect

    Sarukura, N.; Ishida, Y.; Nakano, H.; Yamamoto, Y. )

    1990-02-26

    cw passive mode locking of a Ti:sapphire laser is achieved with 1,1{prime}-dietyl-2,2{prime}-dicarbocyanine iodide as the saturable absorber dye, using a 5 {mu}m thin dye jet flow. The pulse width is 4.0 ps, which is almost the transform-limited pulse for the observed spectrum width. The output power is {similar to}50 mW, when it is pumped by a 5 W cw Ar laser, while the tuning range is 745--755 nm.

  5. Applications of KHZ-CW Lidar in Ecological Entomology

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  6. Nonlinear optical properties of methyl red under CW irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2015-12-01

    Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.

  7. CW-FIT: Group Contingency Effects across the Day

    ERIC Educational Resources Information Center

    Wills, Howard P.; Iwaszuk, Wendy M.; Kamps, Debra; Shumate, Emily

    2014-01-01

    This study explored the effects of a group-contingency intervention on student behavior across academic instructional periods. Research suggests group contingencies are evidence-based practices, yet calls for investigation to determine the best conditions and groups suited for this type of intervention. CW-FIT (Class-Wide Function-related…

  8. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  9. Quantum mechanical features of optically pumped CW FIR lasers

    NASA Technical Reports Server (NTRS)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  10. Biodegradation of pyrazosulfuron-ethyl by Acinetobacter sp. CW17.

    PubMed

    Wang, Yanhui; Du, Liangwei; Chen, Yingxi; Liu, Xiaoliang; Zhou, Xiaomao; Tan, Huihua; Bai, Lianyang; Zeng, Dongqiang

    2012-03-01

    The pyrazosulfuron-ethyl-degrading bacterium, designated as CW17, was isolated from contaminated soil near the warehouse of the factory producing pyrazosulfuron-ethyl in Changsha city, China. The strain CW17 was identified as Acinetobacter sp. based on analyses of 94 carbon source utilization or chemical sensitivity in Biolog microplates, conventional phenotypic characteristics, and 16S rRNA gene sequencing. When pyrazosulfuron-ethyl was provided as the sole carbon source, the effects of pyrazosulfuron-ethyl concentration, pH, and temperature on biodegradation were examined. The degradation rates of pyrazosulfuron-ethyl at initial concentrations of 5.0, 20.0, and 50.0 mg/L were 48.0%, 77.0%, and 32.6%, respectively, after inoculation for 7 days. The growth of the strain was inhibited at low pH buffers. The chemical degradation occurs much faster at low pH than at neutral and basic pH conditions. The degradation rate of pyrazosulfuron-ethyl at 30°C was faster than those at 20 and 37°C by CW17 strains. Two metabolites of degradation were analyzed by liquid chromatography-mass spectroscopy (LC/MS). Based on the identified products, strain CW17 seemed to be able to degrade pyrazosulfuron-ethyl by cleavage of the sulfonylurea bridge. PMID:22388979

  11. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  12. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  13. Design of a 0.25 THz second harmonic gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, Hongfu

    2008-12-01

    A design process for a second harmonic operation of a low ohm lossy TE03 mode 0.25 THz gyrotron has been presented. Mode competition and mode selection are carefully studied through the linear theory of CRM. The cavity are designed and optimized by using a time domain open cavity calculation code, and validated by using the famous FEM code HFSS. Interaction numerical investigations are carried out by using a self-consistent nonlinear theory cod. The influences of the magnetic field, current, voltage and the velocity ratio of the electron beam under the interaction between the electron beam and RF field are analyzed. The 14-kW 0.25 THz gyrotron with a predicted device efficiency of 39% is driven by a 25-kV 1.5-A (v⊥/v// = 1.5, ▵vz / vz = 6%) electron beam from a magnetron injection gun. A tapered magnetic field is adopted in the large signal simulation to prompt the electron efficiency.

  14. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  15. Nonlinear study of mode locking in a quasi-optical gyrotron

    NASA Astrophysics Data System (ADS)

    Wu, Hao; McCurdy, Alan H.

    1996-10-01

    Nonlinear, time-dependent multimode calculations have been carried out to study mode locking in quasi-optical gyrotron oscillators. The calculations are based on the rate equation model of modal growth and saturation. The slow-time formalism is used for particle motion and both the time varying electric and magnetic fields are included. It is found that radiation pulses of width 400 ps can be generated in nonlinear regime. The gyrotron features an open resonator of length 100 cm formed by a pair of spherical mirrors and a single pencil electron beam guided by external magnetic field in transverse direction to the axis of symmetry of the cavity. The strong current modulation is provided at frequency of 300 MHz, the nominal model spacing between two odd modes in such a cavity. Eight odd modes are found to be locked to generate extremely short radiation pulses. Application for short pulse radiation in millimeter and submillimeter wavelength range include radar, plasma diagnosis, time domain metrology and communication systems. Parametric dependencies investigated include static magnetic field, beam current and beam voltage, as well as the drive signal amplitudes and frequencies. The work is geared towards support of a proof of principle experiment to generate high power radiation pulses of short duration via synchronous mode locking.

  16. Combined Hyperthermia and Photodynamic Therapy Using a Sub-THz Gyrotron as a Radiation Source

    NASA Astrophysics Data System (ADS)

    Miyoshi, Norio; Idehara, Toshitaka; Khutoryan, Eduard; Fukunaga, Yukihiro; Bibin, Andriana Bintang; Ito, Shinji; Sabchevski, Svilen Petrov

    2016-08-01

    In this paper, we present results of a hyperthermia treatment of malignant tumors using a gyrotron as a radiation source for heating of the cancerous tissue. They clearly demonstrate the efficiency of the irradiation by sub-THz waves, which leads to steady decrease of the volume of the tumor and finally to its disappearance. A combination of hyperthermia and photodynamic therapy (PDT) that utilizes a novel multifunctional photosensitizer has also been explored. In the latter case, the results are even more convincing and promising. In particular, while after a hyperthermia treatment sometimes a regrowth of the tumor is being observed, in the case of combined hyperthermia and PDT such regrowth has never been noticed. Another combined therapy is based on a preheating of the tumor by gyrotron radiation to temperatures lower than the hyperthermia temperature of 43 °C and followed then by PDT. The results show that such combination significantly increases the efficiency of the treatment. We consider this phenomenon as a synergy effect since it is absent when hyperthermia and PDT are applied separately, and manifests itself only when both methods are combined.

  17. Simulation of transient behavior in a pulse-line-driven gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Lin, Chih-Chien; Yang, Z. H.; Chu, K. R.; Fliflet, A. W.

    1988-04-01

    Results are reported for a set of slow-time-scale single-mode and fast-time-scale single-mode and multimode simulations of the transient-mode excitation phenomena in a short-pulse high-peak-power Ka-band gyrotron oscillator experiment. Both the slow- and fast-time-scale single-mode simulations are generally in good agreement with each other and, within experimental uncertainties, with the experimental observations of the time dependence and magnetic-field dependence of 35-GHz emission in the TE62 mode. However, the multimode simulations suggest the presence of mode suppression, mode beating, and other nonlinear multimode phenomena that could not easily be observed in the experiment, and generally agree less well with the experimental measurements than the single-mode simulations. The multimode simulations also suggest that steady-state behavior may not be obtainable with the highly time-dependent voltage waveform employed in the experiment, and indicate the importance of carrying out future high-voltage gyrotron experiments with less highly transient voltage waveforms.

  18. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    SciTech Connect

    Li, G. D.; Chang, P. C.; Chiang, W. Y.; Lin, P. N.; Kao, S. H.; Lin, Y. N.; Huang, Y. J.; Barnett, L. R.; Chu, K. R.; Chen, H. Y.; Fan, C. T.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin with a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.

  19. Effect of ion compensation of the beam space charge on gyrotron operation

    SciTech Connect

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  20. Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization

    PubMed Central

    Joye, Colin D.; Griffin, Robert G.; Hornstein, Melissa K.; Hu, Kan-Nian; Kreischer, Kenneth E.; Rosay, Melanie; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Woskov, Paul P.

    2006-01-01

    The operating characteristics of a 140-GHz 14-W long pulse gyrotron are presented. The device is being used in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy experiments. The gyrotron yields 14 W peak power at 139.65 GHz from the TE(0,3) operating mode using a 12.3-kV 25-mA electron beam. Additionally, up to 12 W peak has been observed in the TE(2,3) mode at 136.90 GHz. A series of mode converters transform the TE(0,3) operating mode to the TE(1,1) mode. Experimental results are compared with nonlinear simulations and show reasonable agreement. The millimeter-wave output beam was imaged in a single shot using a pyroelectric camera. The mode patterns matched reasonably well to theory for both the TE(0,1) mode and the TE(1,1) mode. Repeatable mode patterns were obtained at intervals ranging from 0.8 s apart to 11 min apart at the output of the final mode converter. PMID:17431442

  1. Experimental atomic scale investigation of irradiation effects in CW 316SS and UFG-CW 316SS

    NASA Astrophysics Data System (ADS)

    Pareige, P.; Etienne, A.; Radiguet, B.

    2009-06-01

    Materials of the core internals of pressurized water reactor (austenitic stainless steels) are subject to neutron irradiation. To understand the ageing mechanisms associated with irradiation and propose life predictions of components or develop new materials, irradiation damage needs to be experimentally investigated. Atomic scale investigation of a neutron-irradiated CW316 SS with the laser pulsed atom probe gives a detailed description of the solute segregation in the austenitic grains. In order to understand the mechanism of solute segregation detected in the neutron-irradiated materials, ion irradiations were performed. These latest irradiations were realized on a CW 316SS as well as on a nanostructured CW 316SS. The study of irradiation effects in a nanograin material allows first, to easily analyse grain boundary segregation and second, to test the behaviour under irradiation of a new nanostructured material. The three aspects of this atomic scale investigation (neutron irradiation effect, model ion irradiation, new nanostructured CW 316 SS) are tackled in this paper.

  2. 60 GHz Gyrotron Development Program. Quarterly report No. 19, January-March 1984

    SciTech Connect

    Jory, H.R.; Bier, R.E.; Craig, L.J.; Felch, K.L.; Fox, L.J.; Lopez, N.; Huey, H.E.; Manca, J.; Spang, S.T.

    1984-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz with high purity of the output mode. Calculations using TAPER were done for mode conversion in an improved 4-inch-diameter collector. The only remaining problem with the design is that it is slightly longer than previous CW collectors. Power density measurements were made on extended 2.5-inch-diameter collectors using small-diameter coils wound directly onto the collector to properly distribute the beam. The results were very encouraging for future CW operation of this design. Output window activity concentrated on improved surface finish, techniques of edge support and initial design of a sapphire double-disc window.

  3. 60 GHz Gyrotron Development Program. Quarterly report No. 18, October-December 1983

    SciTech Connect

    Jory, H.R.; Bier, R.E.; Craig, L.J.; Felch, K.L.; Fox, L.J.; Lopez, N.; Huey, H.E.; Manca, J.; Spang, S.T.

    1983-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz with high purity of the output mode. Power density measurements on the extended 2-1/2 in. collector used in X-8 showed that better magnetic spreading of the beam is necessary to make it a reliable CW collector. This collector was shown to have excellent output mode purity. Work continued on a low-power-density, low-mode-conversion 4 in. collector with satisfactory results. The double-disc window was tested successfully in relatively pure mode TE/sub 02/ at CW power levels up to 76 kW.

  4. 60-GHz gyrotron development program. Quarterly report No. 14, October-December 1982

    SciTech Connect

    Shively, J.F.; Bier, R.E.; Caplan, M.

    1983-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60GHz. A modified cavity was demonstrated in a pulsed tube to have improved dynamic range. A secondary task of developing a 56 GHz CW tube produced in excess of 100 kW at this alternate frequency. A larger cone waterload suffered from lack of rf beam divergence. Waterloads of new designs are being constructed and will be tested in conjunction with X-6, a new tube with new cavity and window designs. Additional alternative window designs are being explored and developed.

  5. 60-GHz gyrotron development program. Quarterly report No. 12, April-June 1982

    SciTech Connect

    Shively, J.F.; Craig, L.J.; Evans, S.J.; Felch, K.L.; Fox, L.J.; Hu, G.; Jory, H.R.; Spang, S.T.

    1982-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. A CW experimental tube, X-5, produced 100 kW of output power at 60 GHz. The experimental tube incorporated a thinner double-disc output window to improve window bandwidth, and some modifications to the drift tunnel and cavity coupling which were proven to be successful in earlier pulse tube tests. When the boiling problem in the waterload is solved, X-5 will produce even more output power.

  6. PROSPECTS FOR A VERY HIGH POWER CW SRF LINAC

    SciTech Connect

    Robert Rimmer

    2010-06-01

    Steady development in SRF accelerator technology combined with the success of large scale installations such as CEBAF at Jefferson Laboratory and the SNS Linac at ORNL gives credibility to the concept of very high average power CW machines for light sources or Proton drivers. Such machines would be powerful tools for discovery science in themselves but could also pave the way to reliable cost effective drivers for such applications as neutrino factories, an energy-frontier muon collider, nuclear waste transmutation or accelerator driven subcritical reactors for energy production. In contrast to machines such as ILC that need maximum accelerating gradient, the challenges in these machines are mainly in efficiency, reliability, beam stability, beam loss and of course cost. In this paper the present state of the art is briefly reviewed and options for a multi-GeV, multi-MW CW linac are discussed.

  7. Centered CW interference rejection using spread spectrum techniques

    NASA Technical Reports Server (NTRS)

    Scholtz, R. A.

    1980-01-01

    A mathematical model is developed for the rejection of CW interference by spread spectrum techniques. When this interference is known to be exactly at the carrier frequency of the spread spectrum signal, this information can be used to design optimal IF filtering prior to despreading. The application of this approach to the pilot beam receiver of the Solar Power Satellite is considered as an example.

  8. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  9. The eclipsing binary CW Eridani. [three-color photoelectric observation

    NASA Technical Reports Server (NTRS)

    Chen, K.-Y.

    1975-01-01

    Results of three-color photoelectric observations of CW Eridani are presented which were made with a 30-inch telescope over the three-year period from 1970 to 1973. The times of minima are computed, solutions of the light curves are obtained, and theoretical light curves are computed from the solutions. The period is determined to be 2.72837 days, and the orbital and photoelectric elements are derived from solutions based on the idealized Russell model.

  10. Low threshold CW Nc laser oscillator at 1060 nm study

    NASA Technical Reports Server (NTRS)

    Birnbaum, M.; Deshazer, L. G.

    1976-01-01

    A broad range of characteristics of neodymium/yag lasers were investigated. With Nd:YVO4 crystals, CW 1.06 mu lasers were operated with thresholds a factor of 2 lower than Nd:YAG and with greater slope efficiencies. Thus, the first step in the development of new oscillators suitable for application in high data rate laser communication systems which surpass the present performance of the Nd:YAG laser has been successfully demonstrated.

  11. Status of the Project-X CW Linac Design

    SciTech Connect

    Ostiguy, J-F.; Solyak, N.; Berrutti, P.; Carneiro, J.P.; Lebedev, V.; Nagaitsev, S.; Saini, A.; Stheynas, B.; Yakovlev, V.P.; /Fermilab

    2012-05-01

    Project-X is a proposed proton accelerator complex at Fermilab that would provide particle beams to support a diversified experimental program at the intensity frontier. As currently envisioned, the complex would employ a CW superconducting linac to accelerate a 1 mA average, 5 mA peak H{sup -} beam from 2.1 MeV to 3 GeV. A second superconducting linac, operating in pulsed mode would ultimately accelerate a small fraction of this beam up to 8 GeV. The CW linac is based on five families of resonators operating at three frequencies: half-wave (1 family at 162.5 MHz), spoke (2 families at 325 MHz) and elliptical (2 families at 650 MHz). Accelerating and focusing elements are assembled in cryomodules separated by short warm sections. A long open region ({approx} 15 m) allows beam extraction at 1 GeV in support of a nuclear experimental program. In this paper, we present the latest iteration of the CW linac baseline lattice. We also briefly compare it to an alternative where the 162.5 half-wave resonators are replaced with 325 MHz spoke resonators.

  12. Selective suppression of high order axial modes of the gyrotron backward-wave oscillator

    SciTech Connect

    Pao, K. F.; Fan, C. T.; Chang, T. H.; Chiu, C. C.; Chu, K. R.

    2007-09-15

    Selective suppression of high order axial modes of the gyrotron backward-wave oscillator (gyro-BWO) is investigated in theory and in experiment. The gyro-BWO interaction is much more efficient in a down-tapered interaction structure, while it is also more susceptible to the problem of axial mode competition in such a structure. Because higher order axial modes (at a higher oscillation frequency) penetrate deeper into the interaction structure, application of distributed wall loss at the downstream end of the interaction structure is shown to be effective for selective suppression of these modes with minor effects on the efficiency of the desired fundamental axial mode. A stable gyro-BWO operating in a single mode throughout the entire beam pulse is demonstrated on the basis of this principle. Theoretical and experimental results are found to be in good agreement.

  13. Linear theory of large-orbit gyrotron traveling wave amplifiers with misaligned electron beam

    SciTech Connect

    Jiao Chongqing; Luo Jirun

    2010-11-15

    A linear theory of large-orbit gyrotron traveling wave amplifiers (gyro-TWAs), which can be applied to analyze the effect of electron beam misalignment, is developed by specializing the corresponding theory of small-orbit gyro-TWAs. The linear theory is validated by comparing with a nonlinear theory. Numerical results show that beam misalignment can reduce linear gain and amplification bandwidth of large-orbit gyro-TWAs and increase the starting length of large-orbit gyro-BWOs for modes in accordance with the mode-selective condition. In addition, beam misalignment can also break the limitation of mode-selective condition and make the instability problem more complex.

  14. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz

    NASA Astrophysics Data System (ADS)

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260 GHz at power levels less than 1 W. The sweep rate of frequency modulation can reach 14 kHz, and its amplitude is fixed at 50 MHz. In water/glycerol glassy ice doped with 40 mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15 K, thus giving a DNP enhancement of about 80. By employing λ / 4 and λ / 8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power.

  15. High-power, stable Ka/V dual-band gyrotron traveling-wave tube amplifier

    NASA Astrophysics Data System (ADS)

    Hung, Chien-Lun

    2012-05-01

    A dual-band amplifier can reduce the size, cost, and weight of a transmitter in dual-band radar and communication systems. This study proposes and theoretically investigates a gyrotron traveling-wave tube (gyro-TWT) amplifier capable of dual-band operation. Possible oscillations in the coaxial interaction waveguide are stabilized by the lossy inner cylinder. Under stable operating conditions, the gyro-TWT is predicted to provide a peak power of 375 kW with 71 dB saturated gain and 3.8 GHz bandwidth in the Ka-band and a peak power of 150 kW with 35 dB saturated gain and 1.7 GHz bandwidth in the V-band.

  16. Linear analysis of a coaxial-waveguide gyrotron traveling-wave tube

    SciTech Connect

    Hung, C.L.

    2006-03-15

    Linear theory provides an efficient analysis model for the preliminary design of a gyrotron traveling-wave tube (gyro-TWT). This study presents a linear theory, which is applicable to amplifications or self-excited oscillations induced by absolute instabilities in a coaxial waveguide of finite length. The effects of wall losses are incorporated in the theoretical formalism. The validity of the linear theory is verified by comparison with calculation results obtained using an existing self-consistent nonlinear theory. The linear theory is applied to analyze a TE{sub 01} mode coaxial gyro-TWT at the fundamental cyclotron harmonic. Numerical analysis of coupling between the beam cyclotron mode and the waveguide mode provides physical insight into the wave-growing mechanisms of various oscillations. The critical parameters for the onset of threatening oscillation modes are analyzed to determine the stable operating conditions. Finally, the dependencies of small-signal amplifications on system parameters are studied in great detail.

  17. W-band TE01 gyrotron backward-wave oscillator with distributed loss

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Yu, C. F.; Hung, C. L.; Yeh, Y. S.; Hsiao, M. C.; Shin, Y. Y.

    2008-07-01

    Distributed wall loss is proposed to enhance the stability and tunability of a W-band TE01 gyrotron backward-wave oscillator (gyro-BWO). Simulation results reveal that loss effectively suppresses the unwanted transverse modes as well as the high-order axial modes (HOAMs) without degrading the performance of a gyro-BWO that operates at the fundamental axial mode. Linear and nonlinear codes are used to calculate the interaction properties. The effects of the distributed loss on the starting currents of all of the modes of interest are discussed in depth. The interacting structure is optimized for stability. The calculated peak output power is 102kW, corresponding to an efficiency of 20%. The 3dB tuning bandwidth is 1.8GHz, centered at 94.0GHz when using 5A and 100kV electron beam.

  18. Nonlinear oscillation behavior of a driven gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Chang, T. H.; Fan, C. T.; Hung, C. L.; Jhou, J. N.; Huang, J. M.; Shiao, J. L.; Wu, Z. Q.; Chiu, C. C.

    2010-11-01

    Controlling the phase and frequency of a gyrotron backward-wave oscillator (gyro-BWO) by means of injection-locking techniques is of practical importance. This study employed a nonlinear self-consistent time-independent code to analyze the nonlinear oscillation behavior of a driven gyro-BWO. There are three regimes in the driven gyro-BWO, including amplification, injection-locked oscillation, and mode competition regimes. Based on the theory of nonlinear oscillation, the amplification and injection-locked oscillation modes are the stable modes and compete with each other in the mode competition regime. An oscillator plane of the driven gyro-BWO is elucidated in the paper. This work demonstrates for the first time that the amplification mode transits to the injection-locked oscillation mode in the driven gyro-BWO. Moreover, the signification efficiency enhancement of the driven gyro-BWO over the free-running efficiency is found.

  19. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  20. Analytical theory of low-frequency space charge oscillations in gyrotrons

    SciTech Connect

    Yan Ran; Antonsen, T. M. Jr.; Nusinovich, G. S.

    2008-10-15

    Low-frequency oscillations attributed to reflected electrons bouncing adiabatically between the electron gun and the interaction space have been observed in many gyrotrons. An analytical model is considered which allows one to apply space-charge wave theory to the analysis of these oscillations. In the framework of the small-signal theory, the regions of low-frequency oscillations, the oscillation frequency and the temporal and spatial growth rates of low-frequency oscillations are determined in the relevant parameter space. The mode frequency is determined not only by the particle travel time, but by the travel time of charge waves on the reflected electron beam. This explains the existence of modes with noncommensurate frequencies.

  1. Experiments on a Ku-band gyrotron traveling-wave-tube amplifier with a tapered waveguide

    NASA Astrophysics Data System (ADS)

    Jung, Sang Wook; Lee, Han Seul; Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-09-01

    A Ku-band gyrotron traveling-wave-tube (gyro-TWT) amplifier was investigated. To obtain a wide operating bandwidth, we used a two-stage tapered rectangular waveguide interaction circuit. An electron beam of 27 keV and 3.56 A was produced from a double-anode magnetron-injection-gun (MIG). The measured frequency bandwidth over 10 dB gain in the linear operation region was found to be 18%. The gyro-TWT's saturated output power was 14.9 kW at 14.4 GHz, corresponding to a saturated output power gain of 27.4 dB and an efficiency of 15.5%. The measured experimental results were in agreement with those of non-linear numerical simulations.

  2. Precision characterization of gyrotron window materials. Final report, September 1, 1995--April 30, 1997

    SciTech Connect

    Dutta, J.M.; Jones, C.R.

    1998-03-03

    An optical resonator has been constructed to measure dielectric properties of materials at millimeter wavelengths. The objectives are the identification and loss measurements of window materials for high power gyrotrons. The source of radiation is from a backward wave oscillator (BWO) with enhanced power, good stability, and spectral purity. The measurement technique is based on the application of a high Q Fabry-Perot resonator which provides a means of determining the difference in the reciprocal Q-factors with high accuracy. Initial loss measurements at 150 GHz at room temperature are performed on sapphire. Preliminary loss tangent results on sapphire is found to be around 10{sup {minus}4} and are reported here. Work is in progress to develop a system which will scan the resonance rapidly to produce a measurement in less than a minute and to measure the loss as a function of temperature.

  3. 60 GHz gyrotron development program. Quarterly report No. 3, January-March 1980

    SciTech Connect

    Shively, J.F.; Stone, D.S.; Wendell, G.E.

    1980-01-01

    The current objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The early design phases of this program are discussed.

  4. 60 GHz gyrotron development program. Quarterly report No. 4, April-June 1980

    SciTech Connect

    Shively, J.F.; Grant, T.J.; Stone, D.S.; Symons, R.S.; Wendell, G.E.

    1980-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design and early procurement and construction phases of this program are discussed.

  5. 60 GHz gyrotron development program. Quarterly report No. 5, July-September 1980

    SciTech Connect

    Shively, J.F.; Grant, T.J.; Nordquist, A.L.; Stone, D.S.; Wendell, G.E.

    1980-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, procurement and early construction phases of this program are discussed.

  6. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior

    NASA Astrophysics Data System (ADS)

    Kalaria, P. C.; Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2016-09-01

    High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power with an interaction efficiency of 36% including the considerations of realistic beam parameters.

  7. Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Zhelyazkov, I.; Benova, E.; Atanassov, V.; Dankov, P.; Thumm, M.; Arnold, A.; Jin, J.; Rzesnicki, T.

    2006-07-01

    Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems.

  8. A new pair of HLA-C alleles, Cw*12042 and Cw*1203, differing at the KIR-related dimorphism of codons 77-80.

    PubMed

    Vilches, C; Bunce, M; van Dam, M; de Pablo, R

    1998-01-01

    A previously unknown HLA-C variant of the Cw*12 group was identified by PCR-SSP from genomic DNA of cell NDS-JD. Molecular cloning and nucleotide sequence analysis permitted the characterization of the complete coding region of this new allele, Cw*12042. The new variant differs from the recently reported Cw*12041 by two silent changes at exons 2 and 3, and from Cw*1203 by coding changes at codons 77 and 80. Cw*1203 (Ser-Asn) and Cw*12042 (Asn-Lys) constitute the second known example of HLA-C alleles only differing at the KIR-related dimorphism of residues 77-80. The new allele is associated in cell NDS-JD with the haplotype HLA-A*2403, Cw*12042, B*51, DRB1*1502, DRB5*0102, DQB1*0601, possibly related from the evolutionary aspect to the ancestral haplotype A*2402, Cw*1202, B*5201, DRB1*1502, DRB5*0102, DQB1*0601.

  9. Diversity of HLA-B17 alleles and haplotypes in East Asians and a novel Cw6 allele (Cw*0604) associated with B*5701.

    PubMed

    Inoue, T; Ogawa, A; Tokunaga, K; Ishikawa, Y; Kashiwase, K; Tanaka, H; Park, M H; Jia, G J; Chimge, N O; Sideltseva, E W; Akaza, T; Tadokoro, K; Takahashi, T; Juji, T

    1999-06-01

    The distribution of HLA-B17 alleles and their association with HLA-A, -C and -DRB1 alleles were investigated in seven East Asian populations Japanese, South Korean, Chinese-Korean, Man, Northern Han, Mongolian and Buryat populations). The B17 alleles were identified from genomic DNA using group-specific polymerase chain reaction (PCR) followed by hybridization with sequence-specific oligonucleotide probes (SSOP). In all of these East Asian populations, except Japanese and Chinese-Koreans, B*5701 was detected and strongly associated with A*0101, Cw*0602 and DRB1*0701. In contrast, B*5801 was detected in all the seven populations and strongly associated with A*3303, Cw*0302, DRB1*0301 and DRB1*1302. The A*3303-Cw*0302-B*5801-DRB1*1302 haplotype was observed in South Korean, Chinese-Korean, Buryat and Japanese populations, while A*3303-Cw*0302-B*5801-DRB1*0301 was predominantly observed in the Mongolian population. A similar haplotype, A*0101-Cw*0302-B*5801-DRB1*1302, was observed in the Buryat population. A novel Cw6 allele, Cw*0604, was identified in the Man population. This Cw allele was observed on the haplotype A*0101-B*5701-DRB1*0701. Thus, we confirmed, at the sequence level, that the common haplotypes carrying B*5701 and B*5801 have been conserved and shared in East Asian populations.

  10. The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research

    NASA Astrophysics Data System (ADS)

    Kuftin, A. N.; Manuilov, V. N.

    2016-07-01

    We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.

  11. Upgraded Waveguide Components for New 1.2 and 1.5 MW Gyrotrons on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Gorelov, Y. A.; Doane, J. L.; Cengher, M.; Lohr, J.; Ponce, D.

    2012-10-01

    The present gyrotron system on the DIII-D tokamak comprises 110 GHz gyrotrons in the 1 MW class with designed pulse lengths of 10 s. The system is being upgraded with two types of depressed collector gyrotrons producing 1.2 MW at 110 GHz and 1.5 MW at 117.5 GHz, for which waveguide components having higher power ratings will be required. New power monitors and polarizers have been designed and fabricated, which are capable of operating for 10 s pulses at the higher power levels. This presentation reports an analysis of the component heat loading to obtain a thermal equilibrium. Using this equilibrium, a stress strain analysis was performed to calculate life expectancies. The calculations take into account the temperature dependence of the heat transfer coefficient in the component coolant channels. Although the high heat load components required upgrading, the waveguide lines themselves have adequate margins for the expected power and pulse length. A summary of the thermal capabilities of other components will also be presented.

  12. JLab CW Cryomodules for 4th Generation Light Sources

    SciTech Connect

    Rimmer, Robert; Bundy, Richard; Cheng, Guangfeng; Ciovati, Gianluigi; Clemens, William; Daly, Edward; Henry, James; Hicks, William; Kneisel, Peter; Manning, Stephen; Manus, Robert; Marhauser, Frank; Preble, Joseph; Reece, Charles; Smith, Karl; Stirbet, Mircea; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2008-01-23

    Fourth generation light sources hold the prospect of unprecedented brightness and optical beam quality for a wide range of scientific applications. Many of the proposed new facilities will rely on large superconducting radio frequency (SRF) based linacs to provide high energy, low emittance CW electron beams. For high average power applications there is a growing acceptance of energy recovery linac (ERL) technology as the way to support large recirculating currents with modest RF power requirements. CW SRF and high current ERLs are two core competencies at Jefferson Lab. JLab has designed and built a number of CW cryomodules of several different types starting with the original CEBAF design, with variations for higher current in the two generations of JLab’s free-electron laser (FEL), through two intermediate prototypes to the final high-performance module for the 12 GeV upgrade. Each of these represent fully engineered and tested configurations with a variety of specifications that could be considered for possible use in fourth generation light sources. Furthermore JLab has been actively pursuing advanced concepts for highcurrent high-efficiency cryomodules for next generation ERL based FEL’s. These existing and proposed designs span the range from about 1mA single-pass to over 100 mA energy recovered current capability. Specialized configurations also exist for high-current non-energy recovered sections such as the injector region where very high RF power is required. We discuss the performance parameters of these existing and proposed designs and their suitability to different classes of fourth generation light sources.

  13. New frequency translation technique for FM-CW reflectometry.

    PubMed

    Meneses, Luis; Cupido, Luis; Manso, M E

    2010-10-01

    In broadband microwave reflectometry, coherent detection is widely used to obtain the phase information and to improve the systems sensitivity, both in diagnostics measuring the electronic density profile and plasma fluctuations. Coherent detection uses a translated version of the probing signal to guarantee a stable intermediate frequency. Here, a novel technique to generate the frequency translation by double frequency conversion is presented and its advantages over the commonly used single frequency conversion techniques employing image rejection mixers are discussed. The results obtained with the new frequency translator modules developed for the three JET FM-CW reflectometers, operating successfully at JET since mid-2009, are presented. PMID:21061479

  14. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  15. Magnetism in the AM Herculis variable CW 1103+254

    SciTech Connect

    Schmidt, G.D.; Stockman, H.W.; Grandi, S.A.

    1983-08-15

    Time-resolved spectropolarimetry and spectrophotometry of the recently discovered magnetic binary CW 1103+254 reveal Zeeman-split Balmer polarization and absorption features corresponding to a mean photospheric field on the white dwarf primary of strength B = (19 +- 2) x 10/sup 6/ gauss. The orbital inclination i = 69/sup 0/ and latitude of the accreting magnetic pole ..delta.. = -56/sup 0/. With this perspective, we estimate the polar field strength B/sub p/ = (30 +- 5) x 10/sup 6/ gauss.

  16. Design of 250-MW CW RF system for APT

    SciTech Connect

    Rees, D.

    1997-09-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning.

  17. DC information preservation for cardiopulmonary monitor utilizing CW Doppler radar.

    PubMed

    Vergara, Alexander M; Boric-Lubecke, Olga; Lubecke, Victor M

    2008-01-01

    Direct conversion RF receivers introduce large DC offsets, reducing the dynamic range of the baseband signal. Coupled with the relatively small time varying signals in human vital sign monitoring using CW Doppler radar, extraction of cardio-pulmonary information becomes difficult. Previous DC offset compensation techniques utilizing AC coupling have proven detrimental to the performance of the system and the integrity of the low-frequency cardiopulmonary signals. A proposed system utilizing digitally controlled voltage feedback and center finding preserves the important DC information for optimal extraction of phase information in the quadrature system.

  18. High efficiency CW green-pumped alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, J. W.; Brown, D. C.

    2006-02-01

    High power, CW and pulsed alexandrite lasers were produced by pumping the laser rod with a high quality diode pumped 532 nm laser sources. This pumping architecture provides stable performance with output power > 1.4 W at 767nm in the free running mode and 0.78W at 1000 Hz. An output of 80 mW at 375.5 nm was achieved at 500 Hz. This approach holds promise for the production of a scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  19. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    SciTech Connect

    Zhao, Qixiang Yu, Sheng; Zhang, Tianzhong; Li, Xiang

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing the mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.

  20. Experimental demonstration of CW light injection effect in upstream traffic TDM-PON

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Wu, Yu-Fu; Shih, Fu-Yuan; Chi, Sien

    2010-06-01

    High capacity time-division-multiplexed passive optical network (TDM-PON) is an emerging fiber access network that deploys optical access lines between a carrier's central office (CO) and a customer sites. In this investigation, we demonstrate and analyze the continuous wave (CW) upstream effect in TDM-PONs. Besides, we also propose and design a protection apparatus in each optical network unit (ONU) to avoid a CW upstream traffic in TDM-PONs due to sudden external environment change or ONU failure. When an upstream CW injection occurs in TDM access network, the protection scheme can stop the CW effect within a few ms to maintain the entire data traffic.

  1. 60 GHz gyrotron development program. Quarterly report No. 7, January-March 1981

    SciTech Connect

    Shively, J.F.; Evers, S.J.; Evans, S.J.; Stone, D.S.

    1981-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, early construction, and test phases are discussed. A peak output power of over 200 kW was obtained with over 50% efficiency at pulse durations of 20 ..mu..s.

  2. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  3. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  4. RF coupler for high-power CW FEL photoinjector

    SciTech Connect

    Kurennoy, S.; Young, L. M.

    2003-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. The design presently under way is a 100-mA 2.5-cell {pi}-mode, 700-MHz, normal conducting demonstration CW RF photoinjector. This photoinjector will be capable of accelerating 3 nC per bunch with an emittance at the wiggler less than 10 mm-mrad. The paper presents results for the RF coupling from ridged wave guides to hte photoinjector RF cavity. The LEDA and SNS couplers inspired this 'dog-bone' design. Electromagnetic modeling of the coupler-cavity system has been performed using both 2-D and 3-D frequency-domain calculations, and a novel time-domain approach with MicroWave Studio. These simulations were used to adjust the coupling coefficient and calculate the power-loss distribution on the coupling slot. The cooling of this slot is a rather challenging thermal management project.

  5. Photometric Analysis of the Overcontact Binary CW Cas

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O - C curves, the period of the system shows a cyclic period change (P 3 = 69.9 yr, A 3 = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  6. Optimizing Frequency-Modulated CW EDMR in silicon

    NASA Astrophysics Data System (ADS)

    Zhu, Lihuang; van Schooten, Kipp; Ramanathan, Chandrasekhar

    Electrically detected magnetic resonance (EDMR) is a powerful method of probing dopant and defect spin states in semiconductor devices. Moreover, at the single dopant level, these spin states are heavily investigated as potential qubit systems, though facile electronic access to single dopants is exceedingly difficult. We therefore characterize detection sensitivities of frequency-modulated CW-EDMR of phosphorus donors in silicon Si:P using a home-built 2.5 GHz system (~80 mT) at 5 K. An arbitrary waveform generator controls the frequency modulation, allowing us to optimize the signal to noise ratio (SNR) of both the dangling bond and phosphorus donor signals against multiple experimental parameters, such as modulation amplitude and modulation frequency. The optimal range of frequency modulation parameters is constrained by the relaxation time of the phosphorous electron at 5 K, resulting in the same sensitivity limit as field modulated CW-EDMR, but offers some technical advantages; e.g. reducing the relative contribution of magnetic field induced currents and eliminating the need for field modulation coils. We further characterize the EDMR SNR in Si:P as a function of optical excitation energy by using a narrow line laser, tunable across donor exciton and band gap states.

  7. Photometric analysis of the overcontact binary CW Cas

    SciTech Connect

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O – C curves, the period of the system shows a cyclic period change (P {sub 3} = 69.9 yr, A {sub 3} = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  8. Design of collective Thomson scattering system using 77 GHz gyrotron for bulk and tail ion diagnostics in the large helical device

    SciTech Connect

    Nishiura, M.; Tanaka, K.; Kubo, S.; Kawahata, K.; Shimozuma, T.; Mutoh, T.; Saito, T.; Tatematsu, Y.; Notake, T.

    2008-10-15

    Collective Thomson scattering (CTS) system is expected to be a strong diagnostic tool for measuring thermal and fast ion distribution function at a local point inside plasmas. The electron cyclotron resonance heating system using a gyrotron at the frequency range of 77 GHz has been installed at the large helical device (LHD). The feasibility of CTS system using the 77 GHz gyrotron is assessed in terms of scattering spectrum and a background noise of the electron cyclotron emission, which affect the signal to noise ratio, with the realistic plasma parameters and incident port locations of LHD. Based on the calculated scattering spectra for bulk and tail fast ion diagnostics, the scattering radiation receiver system with gyrotron frequency feedback circuit is proposed to avoid the frequency chirping.

  9. Stability Analysis of a Second Harmonic Coaxial-Waveguide Gyrotron Backward-Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Hong, J. H.

    2012-12-01

    This study analyzes the stability of a Ka-band second harmonic gyrotron backward-wave oscillator (gyro-BWO) with a coaxial interaction waveguide. All of the possible competing modes in the frequency tuning range are considered. To suppress various competing modes, the downstream part of the coaxial interaction waveguide is loaded with distributed losses. Although the competing modes have different kinds of transverse field distributions, simulation results show that the losses of the outer cylinder and those of the inner cylinder serve as complementary means of suppressing the competing modes. The losses can stabilize the competing modes while having minor effects on the start-oscillation current of the operating mode. Detailed investigations were performed involving the dependence of the start-oscillation currents on the parameters of the lossy inner cylinder and the lossy outer cylinder, including the resistivity and the length of the lossy section. Moreover, under stable operating conditions, the performances of the second harmonic coaxial gyro-BWO with different sets of circuit parameters are predicted and compared.

  10. Low-order-mode harmonic multiplying gyrotron traveling-wave amplifier in W band

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Hung, C. L.; Chang, T. H.; Chen, C. H.; Yang, S. J.; Lai, C. H.; Lin, T. Y.; Lo, Y. C.; Hong, J. W.

    2012-09-01

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) allow for magnetic field reduction and frequency multiplication. To avoid absolute instabilities, this work proposes a W-band harmonic multiplying gyro-TWA operating at low-order modes. By amplifying a fundamental harmonic TE11 drive wave, the second harmonic component of the beam current initiates a TE21 wave to be amplified. Absolute instabilities in the gyro-TWA are suppressed by shortening the interaction circuit and increasing wall losses. Simulation results reveal that compared with Ka-band gyro-TWTs, the lower wall losses effectively suppress absolute instabilities in the W-band gyro-TWA. However, a global reflective oscillation occurs as the wall losses decrease. Increasing the length or resistivity of the lossy section can reduce the feedback of the oscillation to stabilize the amplifier. The W-band harmonic multiplying gyro-TWA is predicted to yield a peak output power of 111 kW at 98 GHz with an efficiency of 25%, a saturated gain of 26 dB, and a bandwidth of 1.6 GHz for a 60 kV, 7.5 A electron beam with an axial velocity spread of 8%.

  11. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    SciTech Connect

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.

    2014-12-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.

  12. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    NASA Astrophysics Data System (ADS)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to

  13. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  14. Harmonic mode competition in a terahertz gyrotron backward-wave oscillator

    SciTech Connect

    Kao, S. H.; Chiu, C. C.; Chang, P. C.; Wu, K. L.; Chu, K. R.

    2012-10-15

    Electron cyclotron maser interactions at terahertz (THz) frequencies require a high-order-mode structure to reduce the wall loss to a tolerable level. To generate THz radiation, it is also essential to employ cyclotron harmonic resonances to reduce the required magnetic field strength to a value within the capability of the superconducting magnets. However, much weaker harmonic interactions in a high-order-mode structure lead to serious mode competition problems. The current paper addresses harmonic mode competition in the gyrotron backward wave oscillator (gyro-BWO). We begin with a comparative study of the mode formation and oscillation thresholds in the gyro-BWO and gyromonotron. Differences in linear features result in far fewer 'windows' for harmonic operation of the gyro-BWO. Nonlinear consequences of these differences are examined in particle simulations of the multimode competition processes in the gyro-BWO, which shed light on the competition criteria between modes of different as well as the same cyclotron harmonic numbers. The viability of a harmonic gyro-BWO is assessed on the basis of the results obtained.

  15. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    SciTech Connect

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.; Hung, C. L.; Chang, T. H.

    2015-12-15

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.

  16. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  17. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  18. Design of Beam Tunnel for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Alaria, Mukesh K.; Singh, Udaybir; Bera, A.; Singh, T. P.; Sinha, A. K.

    2010-05-01

    A beam tunnel for a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system has been designed. The initial design of the beam tunnel has been carried out on the basis of the required electron beam parameters at the interaction cavity and the electron beam simulation of the magnetron injection gun. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio. In the simulation, the absorption, the reflection and the transmission of RF power by the beam tunnel have been analyzed. Three different lossy ceramics, Al2O3-SiC, AlN-SiC and BeO-SiC have been investigated during the simulation. The simulation results obtained with CST-Microwave Studio have been validated with another 3-D simulation software HFSS. The Q value of the beam tunnel for different ceramic material has also been analyzed to investigate the parasitic mode excitation in the beam tunnel.

  19. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  20. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  1. Study of pseudo noise CW diode laser for ranging applications

    NASA Technical Reports Server (NTRS)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  2. Autoconfocal microscopy with a cw laser and thermionic detection.

    PubMed

    Lim, Daryl; Chu, Kengyeh K; Mertz, Jerome

    2008-06-15

    We introduce an application of thermionic emission in a PMT photocathode. Because of the nonlinear dependence of thermionic emission on absorbed laser power, a conventional PMT is found to produce a virtual pinhole effect that rejects unfocused light at least as strongly as a physical pinhole. This virtual pinhole effect is exploited in a scanning transmission confocal microscope equipped with a cw laser source. Because the area of the PMT photocathode is large, signal descanning is not required and thermionic detection acts as a self-aligned pinhole. Our technique of thermionic-detection autoconfocal microscopy is further implemented with graded-field contrast to obtain enhanced phase-gradient sensitivity in unlabeled samples, such as rat hippocampal brain slices.

  3. Parametric four-wave mixing using a single cw laser.

    PubMed

    Brekke, E; Alderson, L

    2013-06-15

    Four-wave mixing can be used to generate coherent output beams, with frequencies difficult to acquire in commercial lasers. Here, a single narrow external cavity diode laser locked to the two photon 5s-5d transition in rubidium is combined with a tapered amplifier system to produce a high power cw beam at 778 nm and used to generate coherent light at 420 nm through parametric four-wave mixing. This process is analyzed in terms of the intensity and frequency of the incoming beam as well as the atomic density of the sample. The efficiency of the process is currently limited when on resonance due to the absorption of the 420 nm beam, and modifications should allow a significant increase in output power. PMID:23939005

  4. Operational experience with CW high gradient and high QL cryomodules

    SciTech Connect

    Hovater, J. Curt; Allison, Trent L.; Bachimanchi, Ramakrishna; Daly, Edward F.; Drury, Michael A.; Lahti, George E.; Mounts, Clyde I.; Nelson, Richard M.; Plawski, Tomasz E.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  5. Quasi-cw tissue transillumination at 1064 nm

    NASA Astrophysics Data System (ADS)

    Bernini, Umberto; Ramaglia, Antonio; Russo, Paolo

    1997-08-01

    An extended series of transillumination experiments has been performed in vitro on animal samples (bovine muscle, up to 30- mm-thick; chicken wing and quail femur, 12-mm-thick) and in vivo on the human hand (thickness, about 20 mm), using a pulsed light source (7 ns, about 10-4 J/pulse, 10 Hz rep rate) from a collimated (1.2 m) Nd:YAG laser beam (1064 nm). A PIN photodiode connected to a digital oscilloscope was used to measure the maximum intensity of the beam pulse transmitted through the sample (i.e., no temporal discrimination of the output signal was attempted) while it was scanned across the source/detector assembly. One dimensional scans were performed on bovine muscle samples in which thin metallic test objects were embedded, in order to study the spatial resolution of the technique (for bovine muscle at 1064 nm, absorption and reduced scattering coefficients are reported to be about 1 cm-1 and 3 cm-1, respectively). The measured spatial resolution was as good as 3.6 mm in 30 mm of tissue thickness. In the two-dimensional scans of the chicken and quail sample, fat and bone tissues can be easily seen with good resolution, whereas imaging of the middle finger of a human hand shows cartilaginoid and bone tissue with 1 - 2 mm resolution. Hence, this simple collimated quasi-cw technique gives significantly better results for tissue imaging than pure cw transillumination. Use of (pulsed) light above 1000 nm and a high energy content per pulse are supposed to explain the positive experimental findings.

  6. Suppression of the Oscillatory Modes of a Space Charge in the Magnetron Injection Guns of Technological Gyrotrons

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Kuntsevich, A. D.; Manuilov, V. N.

    2015-01-01

    We present the results of based on the PIC method numerical simulation of the dynamic processes of trapping of electrons into the adiabatic trap of a technological gyrotron for different configurations of the electric and magnetic fields in the electron beam formation region. The electrode geometry providing a low reflection coefficient of the magnetic mirror to suppress oscillatory modes in the space-charge cloud and ensure the stability of the electron beam with a high fraction of oscillatory energy in such a system has been found.

  7. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. PMID:26302662

  8. First and second harmonic ECRH experience at gyrotron frequencies at LLNL

    SciTech Connect

    Stallard, B.

    1987-11-01

    Plasma heating of electrons in both mirror machines and tokamaks, using mm wave gyrotron sources, have been carried out in many experiments in recent years. The technology for both sources and mode-preserving waveguide transmission systems is well developed at power levels of 200 kW. At LLNL electron heating at 28 GHz in the TMX-U tandem mirror has been used to create hot electrons required for a thermal barrier (potential well). TMX-U, and other devices operating at lower frequency and power (10 GHz, few kW), routinely generates electron populations with mean energies of 100 to 500 keV and densities in the low to mid 10/sup 11/ cm/sup -3/ range. Radial pressure profiles vary from peaked-on-axis to hollow and are dependent on the mod-B resonance surfaces. Experiments on the axisymmetric mirror SM-1 have shown improved heating efficiency using multiple frequencies with narrow frequency separation. The importance of rf diffusion in determining electron confinement has been shown in CONSTANCE B. Fokker-Planck and particle orbit models have been useful for understanding the importance of cavity heating for creating runaway electrons, the sensitivity of hot electron production to cold plasma, the reduction of electron lifetime by rf diffusion, and the effect of multiple frequencies on heating stochasticity. Potential wells generated in plasmas with large fractions of mirror-trapped electrons have been measured in TMX-U. These offer prospects for enhanced confinement of highly stripped ions. 11 refs., 18 figs., 2 tabs.

  9. Stable coaxial-waveguide gyrotron backward-wave oscillator with distributed losses

    SciTech Connect

    Hung, C. L.

    2010-10-15

    This study analyzes the performance of a coaxial-waveguide gyrotron backward-wave oscillator (gyro-BWO) operating at the fundamental harmonic by considering mode competition, which may be attributed to higher-order axial modes and competing transverse modes. In the coaxial waveguide with a short length and uniform cross section, the threshold currents of the higher-order axial modes are substantially higher than the operating current. Additionally, when the beam voltage or the magnetic field is adjusted, the oscillation that neighbors the minimum start-oscillation current of a transverse mode has a positive-k{sub z} field profile, and is excited near the cutoff frequency. As a result, the distributed wall losses at the downstream end of the interaction structure effectively damp the positive-k{sub z} field, and raise significantly the minimum start-oscillation currents of the competing transverse modes. This study also investigates how the parameters, including lossy section length, outer wall resistivity, inner wall resistivity, and ratio of the outer radius to the inner radius, affect the start-oscillation currents of the competing transverse modes in order to obtain stable operation conditions in the frequency tuning range. As is forecasted, when using a 15 A electron beam, the Ka-band coaxial gyro-BWO produces an output power of 137 kW and 3 dB bandwidth of 4.2% by magnetic tuning and an output power of 145 kW and 3dB bandwidth of 2.0% by beam voltage tuning.

  10. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  11. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier

    NASA Astrophysics Data System (ADS)

    Song, H. H.; McDermott, D. B.; Hirata, Y.; Barnett, L. R.; Domier, C. W.; Hsu, H. L.; Chang, T. H.; Tsai, W. C.; Chu, K. R.; Luhmann, N. C.

    2004-05-01

    Experimental results are presented on the first W-band gyrotron Traveling-Wave Tube (gyro-TWT) developed to exploit the 94 GHz atmospheric window for long-range, high-resolution radar applications. The gyro-TWT is designed to operate in the higher order TE01 mode and is driven by a 100 kV, 5 A electron beam with a pitch angle of v⊥/vz=1 and velocity spread of Δvz/vz=5%. Large-signal simulations predict 140 kW output power at 92 GHz with 28% efficiency, 50 dB saturated gain, and 5% bandwidth. The stability of the amplifier against spurious oscillations has been checked with linear codes. To suppress the potential gyro-BWO interactions involving the TE02, TE11, and TE21 modes, the interaction circuit with a cutoff frequency of 91 GHz has been loaded with loss so that the single-path, cold-circuit attenuation is 90 dB at 93 GHz. A coaxial input coupler with 3% bandwidth is employed with a predicted and measured coupling of 1 dB and 2 dB, respectively. The operating voltage is limited to below 75 kV because of oscillations encountered at higher voltages in this initial embodiment. Preliminary test at Vb=60 kV and Ib=3.7 A yielded 59 kW saturated output power at 92.2 GHz with 42 dB gain, 26.6% efficiency, and a 3 dB bandwidth of 1.2 GHz (1.3%).

  12. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    SciTech Connect

    Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.

    2015-06-15

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  13. CW high intensity non-scaling FFAG proton drivers

    SciTech Connect

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.; /IIT, Chicago

    2011-04-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

  14. CW laser compaction of aqueous solution deposited metal oxide films

    SciTech Connect

    Exarhos, G.J.; Dennis, T.

    1997-12-01

    Zirconium dioxide films were spin cast onto silica or silicon substrates from an aqueous solution comprised of the precursor metal nitrate and an organic complexant such as glycine. The hydrated films so derived consist of an amorphous organic phase in which the metal cations and nitrate anions are homogeneously dispersed. Heating to temperatures above 200 {degrees}C leads to film dehydration followed by an auto-catalyzed oxidation reaction whereby the bound nitrate oxidizes the organic matrix leaving behind an intact stoichiometric and crystalline metal oxide film. Films are characterized using AFM, XRD, and optical methods. Transformation processes in these films have been studied in detail by means of spectroscopic ellipsometry and laser induced fluorescence from films doped with a suitable rare earth probe ion such as SM{sup +3}. In the latter case, the measured fluorescence emission spectra are used to identify the hydrated, dehydrated, amorphous and crystalline metal oxide phases which evolve during processing. These transformations also have been induced upon visible CW laser irradiation at fluences in excess of 1 MW/cm{sup 2}. Under these conditions, the film dehydrates and compacts within the footprint of the incident laser beam rendering this region of the film water insoluble. Post irradiation washing of the film with water removes all vestiges of the film outside of the beam footprint suggesting a possible use of this technique for lithography applications. Films subjected to laser irradiation and post irradiation heating have been characterized with respect to thickness, phase composition, crystallite size and optical constants.

  15. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment

    PubMed Central

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C. Mark; Leys, Natalie

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  16. 60 GHz Gyrotron Development Program. Quarterly report No. 17, July-September 1983

    SciTech Connect

    Jory, H.R.; Bier, R.E.; Craig, L.J.; Felch, K.L.; Fox, L.J.; Huey, H.E.; Manca, J.; Spang, S.T.

    1983-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. Output mode content of X-6 was measured and found to be a mix of TE/sub 01/, TE/sub 02/ and TE/sub 03/ modes with unsatisfactory mode purity. Measurements and calculations are reported which indicate that the mode conversion is caused primarily by collector diameter changes. Test results are reported for X-7 which used a 2.5-inch-diameter collector of extended length. Beam power densities are higher than desired. Preliminary analysis of mode conversion was done on a new 4-inch-diameter collector design. The results are quite promising.

  17. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  18. Family-wide Characterization of Histone Binding Abilities of Human CW Domain-containing Proteins.

    PubMed

    Liu, Yanli; Tempel, Wolfram; Zhang, Qi; Liang, Xiao; Loppnau, Peter; Qin, Su; Min, Jinrong

    2016-04-22

    Covalent modifications of histone N-terminal tails play a critical role in regulating chromatin structure and controlling gene expression. These modifications are controlled by histone-modifying enzymes and read out by histone-binding proteins. Numerous proteins have been identified as histone modification readers. Here we report the family-wide characterization of histone binding abilities of human CW domain-containing proteins. We demonstrate that the CW domains in ZCWPW2 and MORC3/4 selectively recognize histone H3 trimethylated at Lys-4, similar to ZCWPW1 reported previously, while the MORC1/2 and LSD2 lack histone H3 Lys-4 binding ability. Our crystal structures of the CW domains of ZCWPW2 and MORC3 in complex with the histone H3 trimethylated at Lys-4 peptide reveal the molecular basis of this interaction. In each complex, two tryptophan residues in the CW domain form the "floor" and "right wall," respectively, of the methyllysine recognition cage. Our mutation results based on ZCWPW2 reveal that the right wall tryptophan residue is essential for binding, and the floor tryptophan residue enhances binding affinity. Our structural and mutational analysis highlights the conserved roles of the cage residues of CW domain across the histone methyllysine binders but also suggests why some CW domains lack histone binding ability. PMID:26933034

  19. Forensic Application of FM-CW and Pulse Radar

    SciTech Connect

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  20. The molecular determination of HLA-Cw alleles in the Mandenka (West Africa) reveals a close genetic relationship between Africans and Europeans.

    PubMed

    Sanchez-Mazas, A; Steiner, Q G; Grundschober, C; Tiercy, J M

    2000-10-01

    HLA-Cw alleles were determined by high-resolution polymerase chain reaction-sequence-specific oligonucleotide probe (PCR-SSOP) oligotyping in a sample of 165 Mandenka, a population from Eastern Senegal previously analysed for A/B and DRB/DQB polymorphisms. A total of 18 Cw alleles were identified, with Cw*0401/5 and 1601 accounting for a combined frequency of 36%. A comparison of Cw allele frequencies among several populations of different origins, Mandenka, Swiss, English, Ashkenazi Jews from the UK and Japanese, reveals a high genetic heterogeneity among them, but also a much closer relationship between Mandenka, Europeans and Ashkenazi than between any of these populations and Japanese. Cw*0501, Cw*0701 and Cw*1601, among others, appear to be restricted to the European and African populations. Many B-Cw haplotypes exhibit a significant linkage disequilibrium in the Mandenka, among which B*3501-Cw*0401 and B*7801-Cw*1601, formed by the most frequent B and Cw alleles, and B*5201-Cw*1601, B*5702-Cw*18 and B*4410-Cw*0401, not yet observed in other populations. B*3501-Cw*0401 is found with similar frequencies in Europeans. The results possibly support a close historical relationship between Africans and Europeans as compared to East Asiatics. However, the HLA-Cw frequency distributions are characterised by an excess of heterozygotes, indicating that balancing selection may have played a role in the evolution of this polymorphism.

  1. Selective mode suppression in a W-band second harmonic coaxial-waveguide gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Syu, M. F.; Yang, M. T.; Chen, K. L.

    2012-07-01

    A gyrotron backward-wave oscillator (gyro-BWO) encounters increasingly severe mode competition problems during development toward the goal of higher power at high frequencies. A coaxial interaction waveguide with distributed losses is proposed to enhance the stability and frequency tunability of a W-band second harmonic gyro-BWO. The losses of the inner and outer cylinders complement each other and effectively stabilize all of the competing modes while having minor effects on the operating mode. Under stable operating conditions, the W-band second harmonic coaxial gyro-BWO has a predicted peak output power of 71 kW with a magnetic tuning bandwidth of 1.0 GHz.

  2. Effects of tapering structures on the characteristics of a coaxial-waveguide gyrotron backward-wave oscillator

    SciTech Connect

    Hung, C. L.; Chang, T. H.; Yeh, Y. S.

    2011-10-15

    This study analyzes the characteristics of a gyrotron backward-wave oscillator (gyro-BWO) with a longitudinally tapered coaxial-waveguide by using a single-mode, self-consistent nonlinear code. Simulation results indicate that although tapering the inner wall or the outer wall can significantly raise the start-oscillation current, the former is more suitable for mode selection than the latter because an increase of the start-oscillation current by a tapered inner wall heavily depends on the chosen C value (i.e., the average ratio of the outer radius to the inner radius over the axial waveguide length). Selective suppression of the competing mode by tapering the inner wall is numerically demonstrated. Moreover, efficiency of the coaxial gyro-BWO is increased by tapering the outer wall. Properly down-tapering the outer wall ensures that the coaxial gyro-BWO can reach a maximum efficiency over twice that with a uniform one.

  3. A mode-selective circuit for TE01 gyrotron backward-wave oscillator with wide-tuning range

    NASA Astrophysics Data System (ADS)

    Chen, N. C.; Yu, C. F.; Yuan, C. P.; Chang, T. H.

    2009-03-01

    This study proposes a mode-selective circuit to suppress the competing modes in a TE01 gyrotron backward-wave oscillator (gyro-BWO). The circuit, also functioning as an interaction structure, comprises of several transverse slices. It eliminates the restrictions of the mode competitions and allows a longer interaction structure to optimize interacting efficiency. Mode-selective effect will be analyzed. Experimental results indicate that the Ka-band TE01 fundamental harmonic gyro-BWO is capable of continuous tuning from 31.4 to 36.4 GHz with a peak efficiency of 23.7%, corresponding to 100 kW at Ib=4.5 A and Vb=93.6 kV.

  4. Theoretical and experimental study of the space-charge oscillations in the electron-optical system of a relativistic gyrotron

    SciTech Connect

    Ilyakov, E. V. Kulagin, I. S.; Manuilov, V. N.; Movshevich, B. Z.

    2011-12-15

    A theoretical and experimental study of the oscillations of a space-charge cloud in a magnetron-injection gun of a powerful relativistic gyrotron has been performed. The charge storage occurs via electron-beam magnetic compression of the reflection of a part of the electrons having the highest transverse velocities from a magnetic mirror. It has been established that at high values of the compression coefficient the beam loses its stability that finally leads to the appearance of the beam current modulation at the frequency of the longitudinal oscillations of an electron beam in an adiabatic trap. According to the numerical simulations, the energy spread in the formed beam under these conditions reaches 4.6%, which is higher by an order of magnitude than that due to the space-charge effect in the beam transported along the metal tube.

  5. Experimental Procedure for Determination of the Dielectric Properties of Biological Samples in the 2-50 GHz Range

    PubMed Central

    Odelstad, Elias; Raman, Sujith; Rydberg, Anders

    2014-01-01

    The objective of this paper was to test and evaluate an experimental procedure for providing data on the complex permittivity of different cell lines in the 2–50-GHz range at room temperature, for the purpose of future dosimetric studies. The complex permittivity measurements were performed on cells suspended in culture medium using an open-ended coaxial probe. Maxwell’s mixture equation then allows the calculation of the permittivity profiles of the cells from the difference in permittivity between the cell suspensions and pure culture medium. The open-ended coaxial probe turned out to be very sensitive to disturbances affecting the measurements, resulting in poor precision. Permittivity differences were not large in relation to the spread of the measurements and repeated measurements were performed to improve statistics. The 95% confidence intervals were computed for the arithmetic means of the measured permittivity differences in order to test the statistical significance. The results showed that for bone cells at the lowest tested concentration (33 500/ml), there were significance in the real part of the permittivity at frequencies above 30 GHz, and no significance in the imaginary part. For the second lowest concentration (67 000/ml) there was no significance at all. For a medium concentration of bone cells (135 000/ml) there was no significance in the real part, but there was significance in the imaginary part at frequencies below about 25 GHz. The cell suspension with a concentration of 1 350 000/ml had significance in the real part for both high (above 30 GHz) and low (below 15 GHz) frequencies. The imaginary part showed significance for frequencies below 25 GHz. In the case of an osteosarcoma cell line with a concentration of 2 700 000/ml, only the imaginary part showed significance, and only for frequencies below 15 GHz. For muscle cells at a concentration of 743 450/ml, there was only significance in the imaginary part for frequencies below 5 GHz. The experimental data indicated that the complex permittivity of the culture medium may be used for modeling of cell suspensions. PMID:27170886

  6. Ring-Down Spectroscopy for Characterizing a CW Raman Laser

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2007-01-01

    .A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to

  7. Argonne CW Linac (ACWL)—legacy from SDI and opportunities for the future

    NASA Astrophysics Data System (ADS)

    McMichael, G. E.; Yule, T. J.

    1995-09-01

    The former Strategic Defense Initiative Organization (SDIO) invested significant resources over a 6-year period to develop and build an accelerator to demonstrate the launching of a cw beam with characteristics suitable for a space-based Neutral Particle Beam (NPB) system. This accelerator, the CWDD (Continuous Wave Deuterium Demonstrator) accelerator, was designed to accelerate 80 mA cw of D- to 7.5 MeV. A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding from the Department of Defense ended in October 1993. Existing assets have been turned over to Argonne. Assets include a fully functional 200 kV cw D- injector, a cw RFQ that has been tuned, leak checked and aligned, beam lines and a high-power beam stop, all installed in a shielded vault with appropriate safety and interlock systems. In addition, there are two high power (1 MW) cw rf amplifiers and all the ancillary power, cooling and control systems required for a high-power accelerator system. The SDI mission required that the CWDD accelerator structures operate at cryogenic temperatures (26K), a requirement that placed severe limitations on operating period (CWDD would have provided 20 seconds of cw beam every 90 minutes). However, the accelerator structures were designed for full-power rf operation with water cooling and ACWL (Argonne Continuous Wave Linac), the new name for CWDD in its water-cooled, positive-ion configuration, will be able to operate continuously. Project status and achievements will be reviewed. Preliminary design of a proton conversion for the RFQ, and other proposals for turning ACWL into a testbed for cw-linac engineering, will be discussed.

  8. Gyrokinetic formula and experimental examination of the electron-beam misalignment effect on the efficiency of a cylindrical-cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Chang; Liu, Yaowu

    2001-02-01

    By making use of the gyrokinetics of free-electron masers, the efficiency formula of a cylindrical-cavity gyrotron oscillator is presented, where the misalignment of the electron-beam axis to the cavity axis has been taken into account. Comparison with a recent experimental report [Int. J. Infrared and Millimeter Waves 19, 1303 (1998)] is made, which confirms the creditability of the gyrokinetic theory.

  9. Single dose toxicity study of IRDye 800CW in Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Marshall, Milton V.; Draney, Daniel; Sevick-Muraca, Eva M.; Olive, D. Michael

    2010-02-01

    Fluorophore-labeled contrast imaging agents are moving toward clinical use as aids in nodal staging and intraoperative resection of tumors. Near-infrared fluorophores with defined toxicity properties will be needed before these agents can be translated to the clinic. The near-infrared dye IRDye 800CW is frequently used in its N-hydroxysuccinamide (NHS) ester form for labeling these agents. Following conjugation or breakdown of a labeled ligand, excess NHS ester is converted to the carboxylate form. We report here the results of a preliminary toxicity study on IRDye 800CW carboxylate in preparation for its use as a labeling moiety for targeted contrast agents. Male and female Sprague Dawley rats were given a single intravenous or intradermal administration of IRDye 800CW carboxylate; indocyanine green was used as a comparative control. Following administration of varying doses of either the dyes or saline, animals were observed for up to fourteen days during which time, hematological, clinical chemistry, enzymological, and histological testing was performed on animal subgroups. Under the conditions tested, a single administration of IRDye 800CW carboxylate intravenously at dose levels of 1, 5 and 20 mg/kg or 20 mg/kg intradermally produced no pathological evidence of toxicity. A dose of 20 mg/kg was identified as the NOAEL (no observed adverse effect level) following IV or ID routes of administration of IRDye 800CW.

  10. Study of human leukocyte antigen-cw in Egyptian patients with vitiligo.

    PubMed

    Hassab El Naby, Hussein M; Alnaggar, Mohamed R; Abdelhamid, Mahmoud F; Alsaid, Khadiga; Al Shawadfy, Eslam M; Elsaie, Mohamed L

    2015-04-01

    Human leukocyte antigen (HLA) antigens vary considerably in different racial groups, and an analysis of results from several geographical locations suggests that vitiligo appears to be associated with different HLA antigens in different groups. The aim of this work was to assess the association of HLA-Cw with vitiligo in the Egyptian population. Forty unrelated patients with nonsegmental vitiligo and 20 matched controls were selected. A polymerase chain reaction sequence specific primer (PCR-SSP) method was used to determine HLA DNA typing. There was a statistically significant difference in the association of HLA-Cw6 with vitiligo in the 2 studied groups. A comparatively increased number of patients showed HLA-Cw2 and HLA-Cw7 (13.64%). However, there were no statistically significant differences. To the best of our knowledge, this is the first molecular study of HLA typing in Egyptian patients with vitiligo. Our findings are in agreement with earlier studies that reported statistically increased frequencies for allele of HLA-Cw6 in Northern Italian, Kuwaiti, Chinese Han, and Saudi populations (45.45%, P<.05).

  11. [Frequency of HLA-A, HLA-B and HLA-Cw antigens in the Slovak population].

    PubMed

    Kralovicova, J; Kusikova, M; Buc, M; Holomanova, D; Sakalova, A

    2000-01-01

    Results on HLA-A, -B and -Cw antigen frequencies in the Slovak population are presented. HLA-A, -B, -Cw antigens were determined in 654 healthy unrelated individuals. The highest frequency was observed for the antigens HLA-A2, -A1; HLA-B12, -B35, and HLA-Cw8. The least frequent antigens were HLA-A34, -A36, HLA-B58, -B67, -B70, -B77, and HLA-Cw8. The results were compared with those of the previous study and with those of Czech, Austrian and Hungarian populations. No statistically significant differences were observed. (Tab. 5, Fig. 2, Ref. 9.)

  12. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD

    SciTech Connect

    Ogasawara, S.; Kubo, S.; Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Takita, Y.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Tatematsu, Y.; Saito, T.; Minami, R.; Kariya, T.; Imai, T.

    2012-10-15

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE{sub 17,6} mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE{sub 18,6} mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

  13. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD.

    PubMed

    Ogasawara, S; Kubo, S; Nishiura, M; Tatematsu, Y; Saito, T; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahashi, H; Ito, S; Takita, Y; Kobayashi, S; Mizuno, Y; Okada, K; Minami, R; Kariya, T; Imai, T

    2012-10-01

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE(17,6) mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE(18,6) mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

  14. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  15. Efficacy of photodynamic inactivation against Pseudomonas aeruginosa with pulsed light and CW light excitation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tohru; Sato, Shunichi; Kawauchi, Satoko; Terakawa, Mitsuhiro; Shinomiya, Nariyoshi; Saitoh, Daizoh; Ashida, Hiroshi; Obara, Minoru

    2006-02-01

    We compared methylene blue (MB)-mediated photobactericidal efficacies against Pseudomonas aeruginosa when using nanosecond pulsed light and CW light. In the intensity range of 10-200 mW/cm2, there was no significant difference between two cases, while photobactericidal efficacy with nanosecond pulsed light was significantly lower than that with CW light at an intensity of 250 mW/cm2. This is attributable to the saturated absorption of MB molecules due to high peak intensity of nanosecond pulsed light. On the basis of these results, we estimated the depth dependence of bacterial killing, showing that in the skin tissue region deeper than 1.5 mm, photobactericidal efficacy with nanosecond pulsed light was higher than that with CW light. This suggests that the advantage of using high-peak-intensity pulsed light for deep tissue treatment.

  16. The experimental study of a CW 1080 nm multi-point pump fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Ge, Tingwu; Ding, Xing; Tan, Qirui; Wang, Zhiyong

    2016-07-01

    In this paper, we report on a CW 1080 nm fiber laser cascaded-pumped by a CW 975 nm diode laser. The fiber used in the experiment has a core diameter of 20 μm (NA  =  0.06), inner clad of 400 μm (NA  =  0.46), and an absorption coefficient of about 1.26 dB m-1 at 975 nm. An output power of 780 W with an optical conversion efficiency of 71% has been achieved at a pump light of 1.1 kW. To the best of our knowledge, this is the first time that a 1080 nm CW fiber laser has used a cascaded-pump coupler.

  17. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    SciTech Connect

    Schneider, J.D.; Bolme, J.; Brown, V.

    1994-09-01

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction ({ge} 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator.

  18. Theoretical study of cw to short pulse conversion in an active cw-injected ring cavity with a Yb3+:YAG amplifier.

    PubMed

    Huang, Zhiyun; Bourdet, Gilbert L

    2007-05-10

    The short laser pulse generated from an active cw-injected ring cavity with Yb3+:YAG crystal, which is treated as the homogeneously broadened amplifier, is studied theoretically. Based on the derived results, the impacts of the amplifier length, the seeding laser intensity and frequency, the pump intensity, the efficiency of the acousto-optic modulator (AOM), and the frequency shift generated by the AOM on the performance of the laser pulse are analyzed. PMID:17446920

  19. Linear and nonlinear analysis of a gyro-peniotron oscillator and study of start-up scenario in a high order mode gyrotron

    NASA Astrophysics Data System (ADS)

    Yeddulla, Muralidhar

    The Cyclotron Resonant Maser (CRM) is a device in which electrons gyrating in an external magnetic field produce coherent EM radiation. A DC electron beam current must be converted to an AC beam current to create RF energy. There are two possible approaches: phase bunching (O-type) and spatial segregation (M-type). In phase bunching, electrons are either accelerated or decelerated depending on when the electrons enter the interaction region, causing phase bunching. The electron bunches are then slowed down by the RF field for energy extraction. Not all electrons lose energy; some even gain energy. In spatial segregation, electrons entering the interaction region at different times are deflected in different directions. With an appropriate spatially varying RF field, all electrons can lose energy leading to very high conversion efficiency. A CRM with a smooth walled cylindrical waveguide interaction cavity and an annular electron beam passing through it can generate very large amount of RF energy. Depending on the electron beam position a gyrotron (O-type device) and a gyro-peniotron (M-type device) are possible. In this work, first, a nonlinear theory to study CRMs with a smooth walled cylindrical waveguide interaction cavity is presented. The nonlinear set of differential equations are linearized to study the starting conditions of the device. A gyro-peniotron operating in the TE0.2 -mode is studied using the theory presented. It is found that a gyro-peniotron operating in a low order mode can be self excited without mode competition from gyrotron modes, leading to the possibility of a very efficient high power RF source. A higher order mode gyro-peniotron experiences severe mode competition from gyrotron modes. The cavity Q required for gyro-peniotron operation is very high, which can lead to excessive heat in the cavity walls due to ohmic losses. Hence, a gyro-peniotron operation seems practical only in low order modes and in short pulses. Second, an existing

  20. Effect of scanned quasi-cw CO2 laser irradiation on tissue thermal damage

    NASA Astrophysics Data System (ADS)

    Domankevitz, Yacov; Bua, Dominic; Chung, Jina; Hanel, Edward; Silver, Geoffrey; Nishioka, Norman S.

    1994-08-01

    Residual thermal damage produced by a scanned quasi cw CO2 laser was measured in pig skin. The effects of scan speed on thermal damage distribution for laser dwell times ranging between 1 and 150 msec were examined. Significantly larger thermal damage zones were produced along the crater wall for laser dwell times longer than 50 msec. Thermal damage along the crater base was constant independent of dwell time. The preliminary experimental results suggest that quasi cw CO2 can consistently produce less than 200 micrometers zones of thermal damage if laser parameters are carefully chosen.

  1. Admittance Test and Conceptual Study of a CW Positron Source for CEBAF

    SciTech Connect

    Golge, Serkan; Hyde, Charles E.; Freyberger, Arne

    2009-09-02

    A conceptual study of a Continuous Wave (CW) positron production is presented in this paper. The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB) operates with a CW electron beam with a well-defined emittance, time structure and energy spread. Positrons created via bremsstrahlung photons in a high-Z target emerge with a large emittance compared to incoming electron beam. An admittance study has been performed at CEBAF to estimate the maximum beam phase space area that can be transported in the LINAC and in the Arcs. A positron source is described utilizing the CEBAF injector electron beam, and directly injecting the positrons into the CEBAF LINAC.

  2. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  3. Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.

    2012-05-01

    We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.

  4. Influence of the electron velocity spread and the beam width on the efficiency and mode competition in the high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Saito, T.; Tatematsu, Y.; Yamaguchi, Y.

    2016-09-01

    We present results of a theoretical study of influence of the electron velocity spread and the radial width on the efficiency and mode competition in a 300-kW, 300-GHz gyrotron operating in the T E22 ,2 mode. This gyrotron was developed for application to collective Thomson scattering diagnostics in the large helical device and 300-kW level high power single T E22 ,2 mode oscillation has been demonstrated [Yamaguchi et al., J. Instrum. 10, c10002 (2015)]. Effects of a finite voltage rise time corresponding to the real power supply of this gyrotron are also considered. Simulations tracking eight competing modes show that the electron velocity spread and the finite beam width influence not only the efficiency of the gyrotron operation but also the mode competition scenario during the startup phase. A combination of the finite rise time with the electron velocity spread or the finite beam width affects the mode competition scenario. The simulation calculation reproduces the experimental observation of high power single mode oscillation of the T E22 ,2 mode as the design mode. This gives a theoretical basis of the experimentally obtained high power oscillation with the design mode in a real gyrotron and moreover shows a high power oscillation regime of the design mode.

  5. Testing of detector papers with CW liquid-agent droplets of known diameter. Droplets generator, calibration, and procedures. Technical note

    SciTech Connect

    Thoraval, D.; Bovenkamp, J.W.; Bets, R.W.; Preston, J.M.; Hart, L.G.

    1986-01-01

    The droplet generator used at DREO to test the color-producing ability of detector papers with CW-agent droplets of known diameter is described. The calibration of the equipment, the droplet size consistency and the procedure used to test the CW-agent-detector papers are discussed.

  6. Class-Wide Function-Related Intervention Teams "CW-FIT" Efficacy Trial Outcomes

    ERIC Educational Resources Information Center

    Kamps, Debra; Wills, Howard; Dawson-Bannister, Harriett; Heitzman-Powell, Linda; Kottwitz, Esther; Hansen, Blake; Fleming, Kandace

    2015-01-01

    The purpose of the study was to determine the efficacy of the Class-Wide Function-Related Intervention Teams (CW-FIT) program for improving students' on-task behavior, and increasing teacher recognition of appropriate behavior. The intervention is a group contingency classroom management program consisting of teaching and reinforcing appropriate…

  7. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  8. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  9. Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors.

    PubMed

    Kovar, Joy L; Curtis, Evan; Othman, Shadi F; Simpson, Melanie A; Olive, D Michael

    2013-09-15

    Primary brain tumors present significant challenges for surgical resection because of their location and the frequent occurrence of malignant projections extending beyond the primary tumor. Visualization of the tumor margins during surgery is critical for a favorable outcome. We report the use of IRDye 800CW chlorotoxin (CLTX) as a targeted imaging agent for brain tumors in a spontaneous mouse model of medulloblastoma, ND2:SmoA1. Specificity and functionality of the targeted agent were confirmed in cell-based assays. Tumors were detected by magnetic resonance imaging and IRDye 800CW CLTX administered to individual animals for optical imaging at 1-month increments. The integrity of the blood-brain barrier (BBB) was measured by Evan's Blue perfusion prior to sacrifice. Results show that IRDye 800CW CLTX specifically targeted tumor tissue. The extravasation of Evan's Blue was observed in all tumors, suggesting that the presence of the tumors can introduce alterations in the permeability of the BBB. Because increased vascular permeability was observed early in the disease model, larger dye-labeled imaging agents that exceed current BBB size restrictions may warrant renewed consideration as candidates for tumor detection and surgical resection. Our study provides data characterizing in vitro and in vivo use of IRDye 800CW CLTX as a broadly applicable tumor imaging agent. PMID:23711726

  10. Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors.

    PubMed

    Kovar, Joy L; Curtis, Evan; Othman, Shadi F; Simpson, Melanie A; Olive, D Michael

    2013-09-15

    Primary brain tumors present significant challenges for surgical resection because of their location and the frequent occurrence of malignant projections extending beyond the primary tumor. Visualization of the tumor margins during surgery is critical for a favorable outcome. We report the use of IRDye 800CW chlorotoxin (CLTX) as a targeted imaging agent for brain tumors in a spontaneous mouse model of medulloblastoma, ND2:SmoA1. Specificity and functionality of the targeted agent were confirmed in cell-based assays. Tumors were detected by magnetic resonance imaging and IRDye 800CW CLTX administered to individual animals for optical imaging at 1-month increments. The integrity of the blood-brain barrier (BBB) was measured by Evan's Blue perfusion prior to sacrifice. Results show that IRDye 800CW CLTX specifically targeted tumor tissue. The extravasation of Evan's Blue was observed in all tumors, suggesting that the presence of the tumors can introduce alterations in the permeability of the BBB. Because increased vascular permeability was observed early in the disease model, larger dye-labeled imaging agents that exceed current BBB size restrictions may warrant renewed consideration as candidates for tumor detection and surgical resection. Our study provides data characterizing in vitro and in vivo use of IRDye 800CW CLTX as a broadly applicable tumor imaging agent.

  11. Use of Self-Management with the CW-FIT Group Contingency Program

    ERIC Educational Resources Information Center

    Kamps, Debra; Conklin, Carl; Wills, Howard

    2015-01-01

    The purpose of the study was to determine the effects of self-management as a tier two enhancement to the group contingency intervention, Class-Wide Function-related Intervention Teams Program (CW-FIT). Two classrooms, first and fourth grade, and two students in each of the classrooms participated in the intervention. The group contingency…

  12. Noise amplitude measurements of single-mode CW lasers at radio frequencies

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Hillard, M. E., Jr.

    1992-01-01

    This letter presents the results of noise measurements for a variety of single-longitudinal-mode CW lasers (Ar/+/, standing-wave-dye, and ring-dye) that are commercially available. A quantitative comparison of the total output power fluctuations detected over the 7-300 MHz region (3 dB points) is presented.

  13. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  14. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  15. A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band

    SciTech Connect

    Glyavin, M. Yu.; Golubev, S. V.; Izotov, I. V.; Litvak, A. G.; Luchinin, A. G.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Vodopyanov, A. V.

    2014-10-27

    The possibility and prospects of extreme ultraviolet (UV) point-like source development are discussed in the present paper. The UV source is based on the discharge sustained by powerful gyrotron radiation of terahertz (THz) frequency band in non-uniform gas flow injected into vacuum volume through a nozzle with diameter less than 1 mm. Recent developments of THz-band gyrotrons with appropriate power level made such discharges possible. First experimental results on a point-like plasma creation by 100 kW radiation of 0.67 THz gyrotron are presented. The possibility of discharge localization within the area less than 1 mm is demonstrated. The discharge emission within the wavelength range from 112 nm to 650 nm was studied. The measured power of light emission in the range of 112–180 nm was measured to be up to 10 kW.

  16. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Lian, Y. H.; Yeh, Y. S.; Chang, T. H.; Cheng, N. H.

    2012-11-01

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages. Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.

  17. Effect of a backward wave on the stability of an ultrahigh gain gyrotron traveling-wave amplifier

    NASA Astrophysics Data System (ADS)

    Du, Chao-Hai; Liu, Pu-Kun; Xue, Qian-Zhong; Wang, Ming-Hong

    2008-12-01

    A systematic stability analysis method using theoretical tools combining linear and self-consistent nonlinear theory is presented to analyze an ultrahigh gain gyrotron traveling-wave (gyro-TWT) amplifier operated in the fundamental TE11 mode in the Ka-band. It characterizes the role that the backward-wave component plays in the internal feedback physical processes of two major kinds of self-induced oscillations associated with TE11(1) absolute instability and TE21(2) gyrobackward-wave oscillation. For the first time, self-induced constriction in TE11(1) absolute instability caused by a strong backward-wave component is revealed through simulation. Both the thickness and resistivity of the distributed wall loss loaded on the inside of the interaction waveguide have obvious effects on stabilizing both kinds of oscillations. Following the stability analysis, a multistage interaction circuit is proposed by nonlinear analysis which shortens the length of the entire structure and enables the ultrahigh gain gyro-TWT to operate with high stability and wide bandwidth.

  18. Design and measurement of a TE13 input converter for high order mode gyrotron travelling wave amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Guo; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong; Wang, Shafei

    2016-03-01

    A technique to launch a circular TE13 mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE13 mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE32 and TE71 modes are suppressed to allow the transmission of the dominant TE13 mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ˜-1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5-98.7 GHz) and port reflection is less than -15 dB. The conversion efficiency to the TE32 and TE71 modes are, respectively, under -15 dB and -24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.

  19. Effect of a backward wave on the stability of an ultrahigh gain gyrotron traveling-wave amplifier

    SciTech Connect

    Du Chaohai; Liu Pukun; Xue Qianzhong; Wang Minghong

    2008-12-15

    A systematic stability analysis method using theoretical tools combining linear and self-consistent nonlinear theory is presented to analyze an ultrahigh gain gyrotron traveling-wave (gyro-TWT) amplifier operated in the fundamental TE{sub 11} mode in the Ka-band. It characterizes the role that the backward-wave component plays in the internal feedback physical processes of two major kinds of self-induced oscillations associated with TE{sub 11}{sup (1)} absolute instability and TE{sub 21}{sup (2)} gyrobackward-wave oscillation. For the first time, self-induced constriction in TE{sub 11}{sup (1)} absolute instability caused by a strong backward-wave component is revealed through simulation. Both the thickness and resistivity of the distributed wall loss loaded on the inside of the interaction waveguide have obvious effects on stabilizing both kinds of oscillations. Following the stability analysis, a multistage interaction circuit is proposed by nonlinear analysis which shortens the length of the entire structure and enables the ultrahigh gain gyro-TWT to operate with high stability and wide bandwidth.

  20. Stability study of a gyrotron-traveling-wave amplifier based on a lossy dielectric-loaded mode-selective circuit

    SciTech Connect

    Du Chaohai; Liu Pukun

    2009-07-15

    The millimeter microwave source of gyrotron-traveling-wave amplifier (gyro-TWT) is capable of generating high power coherent radiation in a broad bandwidth, while its performance is severely deteriorated by the stability problems. This paper focuses on modeling and the stability analysis of the Naval Research Laboratory (NRL) Ka-band TE{sub 01} mode gyro-TWT based on an interaction circuit alternately loaded with lossy ceramic shells and metal rings. The propagation characteristics of the interaction circuit is analyzed first, based on which the boundary impedance method is employed to build an equivalent uniform lossy circuit. Then the stability of the interaction system is studied using linear and nonlinear theories. The analysis reveals that, due to the special waveguide structure and the dielectric loss, the propagation characteristics of the complex waveguide are similar to that of a uniform lossy circuit. The analysis of the absolute instabilities characterizes the roles the forward-backward-wave components played. The study indicates that the lowest threshold current of the absolute instabilities is higher than the operating current, which brings the system high stability. The reliability of the analysis is proved by the consistency between the analysis and the NRL experimental results.

  1. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    SciTech Connect

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.; Yeh, Y. S.; Chang, T. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages. Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.

  2. A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Yeh, Y. S.; Chang, T. H.; Fang, R. S.

    2016-08-01

    For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.

  3. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    PubMed

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  4. Sequence and Structural Characterization of Great Salt Lake Bacteriophage CW02, a Member of the T7-Like Supergroup

    PubMed Central

    Shen, Peter S.; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M.; Hoggan, Ryan; Culumber, Michele D.; Oberg, Craig J.; Breakwell, Donald P.; Prince, John T.

    2012-01-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1. PMID:22593163

  5. Start-up scenario of a high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Saito, T.; Tatematsu, Y.

    2016-02-01

    We present results of theoretical study of mode competition during the voltage rise of a 300-kW, 300-GHz gyrotron operating in the TE22,2,1 mode. Simulations tracking eight competing modes show that, with a proper choice of the magnetic field, stable excitation of the operating mode can be realized, despite the presence of parasitic modes in the resonator spectrum. A finite voltage rise time, 1 kV/4 ns referred to as the slow voltage rise case, is taken into account to simulate realistically the experimental condition. Simulation results with the finite voltage rise time are in good agreement with the experimental test, in which the gyrotron demonstrated reliable operation at power levels up to 300 kW. Moreover, interesting phenomena are observed. Along with voltage rise, the oscillation manner changes from backward wave oscillation to gyrotron oscillation. In the range of the magnetic field lower than the magnetic field strength at which the TE22,2 mode attains to the maximum power, mode competition with the TE21,2 mode takes place although many other competing modes exist in between the two modes. In addition to the slow voltage rise case, the fast voltage rise case, 10 kV/4 ns, and the instant voltage rise case are considered. For these cases, simulations also predict stable oscillation of the TE22,2 mode with the same power level with the slow voltage rise case. This indicates that stable oscillations of the TE22,2 mode can be obtained in a wide range of the voltage rise time.

  6. [HLA B13, B17, B37 and Cw6 in psoriasis vulgaris: relationship to age of onset (author's transl)].

    PubMed

    Mayr, W R; Gschnait, F; Brenner, W

    1979-03-01

    The frequency of HLA B13, B17, B37 and Cw6 was investigated in 77 patients with psoriasis vulgaris (57 patients with an onset of the disease between 10 and 20 years of age and 20 patients with an onset between 35 and 45 years). A highly significant increase in the frequency of the four HLA antigens tested was found. The highest relative risk was calculated for Cw6 (RR = 8.28). Furthermore, a significant positive association was observed between the presence of Cw6 and an early onset of psoriasis vulgaris.

  7. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths. PMID:26193604

  8. Upgrade and validation on plasma of the Tore Supra CW LHCD generator

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Berger-By, G.; Bertrand, E.; Bouquey, F.; Chaix, J. P.; Corbel, E.; Crest, I.; Ekedahl, A.; Faisse, F.; Fejoz, P.; Garibaldi, P.; Goletto, C.; Lebourg, P.; Leroux, F.; Lombard, G.; Magne, R.; Martinez, A.; Moreau, M.; Mollard, P.; Nicolas, L.; Pagano, M.; Poli, S.; Prou, M.; Raulin, D.; Samaille, F.; Soler, B.; Thouvenin, D.; Volpe, D.; Volpe, R.

    2011-12-01

    A one year-long major upgrade of the 3.7 GHz Lower Hybrid Current Drive (LHCD) generator for the Tore Supra (TS) tokamak has been performed. It consisted in installing a first series of eight Thales Electron Devices (TED) 700 kW CW klystrons, new CW components and auxiliaries, and in modifying the transmitter control and protection software. Modifications and calibration of the sensors and the RF subsystems were completed as well. Finally, the RF power available in the generator has been increased by 35% and the pulse duration could reach 1000 s. A complete validation and optimization of the klystrons have been performed in 2010 on matched load before the generator could enter into operation. The eight klystrons connected with the Full Active Multijunction (FAM) antenna delivered 3.5 MW/50s in December 2010. The upgrade of the generator and the steps to validate the modifications are described.

  9. CW single transverse mode all-fiber Tm3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    Song, E. Z.; Li, W. H.; You, L.

    2012-04-01

    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  10. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  11. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  12. Multilayer optical data storage by fluorescence modulation using a CW laser

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Christenson, Cory W.; Saini, Anuj; Ryan, Christopher J.; Mirletz, Heather; Shiyanovskaya, Irina; Yin, Kezhen; Baer, Eric

    2015-08-01

    Optical data storage has been widely used in certain consumer applications owing to its passive and robust nature, but has failed to keep with larger industry data storage needs due to the lack of capacity. Many alternatives have been proposed and developed, such as 3D data storage using two-photon absorption that require complex and dangerous laser systems to localize the bits. In this paper, we present a method for localizing bits using a CW 405nm laser diode, in a multilayered polymer film. Data is stored by photobleaching a fluorescent dye, and the response of the material is nonlinear, despite the CW laser and absorption in the visible region. This is achieved using sub-μs pulses from the laser initiating a photothermal effect. This writing method, along with the inexpensive roll-to-roll method for making the disc, will allow for terabyte-scale optical discs using conventional commercial optics and lasers.

  13. CW laser strategies for simultaneous, multi-parameter measurements in high-speed gas flows

    NASA Technical Reports Server (NTRS)

    Di Rosa, M. D.; Philippe, L. C.; Arroyo, M. P.; Hanson, R. K.

    1992-01-01

    Strategies utilizing continuous wave (CW) lasers are considered which are capable of simultaneously measuring the flow parameters of velocity, temperature, and pressure at sampling rates exceeding 3 kHz. Velocity is determined from the Doppler shift of the spectral profile, temperature is extracted from intensity ratios of multiple lines, and pressure is measured from either the collision of broadening or the magnitude of absorption. Distinctions between strategies concern the specifics of probe spacies (NO, OH, O2, and H2O) in terms of nominal probe wavelength, equipment, and detection scheme. CW lasers were applied to path-integrated absorption measurements of transient shock-tube flows and spatially resolved laser-induced fluorescence measurements of underexpanded jets.

  14. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  15. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  16. Design of a 1-MW CW 8.5 GHz transmitter for planetary RADAR

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Bhanji, Alaudin M.

    1990-01-01

    A proposed conceptual design for increasing the output power of an existing X-band planetary radar transmitter from 365 kW to 1 MW CW is discussed. The paper covers the basic transmitter system requirements as dictated by the specifications for the radar. The characteristics and expected performance of the high-power klystrons are considered and the transmitter power amplifier system is discussed. Also included in the discussion is the design of the exiter system. Two alternative feed systems for delivering the 1-MW CW signal to the antenna system are described. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology to meet system requirements is given and possible areas of difficulty are summarized.

  17. Sequential CW-EPR image acquisition with 760-MHz surface coil array.

    PubMed

    Enomoto, Ayano; Hirata, Hiroshi

    2011-04-01

    This paper describes the development of a surface coil array that consists of two inductively coupled surface-coil resonators, for use in continuous-wave electron paramagnetic resonance (CW-EPR) imaging at 760 MHz. To make sequential EPR image acquisition possible, we decoupled the surface coils using PIN-diode switches, to enable the shifting of the resonators resonance frequency by more than 200 MHz. To assess the effectiveness of the surface coil array in CW-EPR imaging, two-dimensional images of a solution of nitroxyl radicals were measured with the developed coil array. Compared to equivalent single coil acquired images, we found the visualized area to be extended approximately 2-fold when using the surface coil array. The ability to visualize larger regions of interest through the use of a surface coil array, may offer great potential in future EPR imaging studies. PMID:21320789

  18. CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.

    1996-01-01

    Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.

  19. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    SciTech Connect

    Lihachev, A; Ferulova, I; Vasiljeva, K; Spigulis, J

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  20. Coherent quasi-CW 153-nm light source at high repetition rate

    NASA Astrophysics Data System (ADS)

    Nomura, Yutaka; Ito, Yoshiaki; Ozawa, Akira; Wang, Xiaoyang; Chen, Chuangtian; Shin, Shik; Watanabe, Shuntaro; Kobayashi, Yohei

    2012-02-01

    We present a quasi-cw laser in vacuum ultraviolet region at megahertz repetition rate. The narrowband pulses generated from an ytterbium-fiber laser system at 33 MHz repetition rate at the central wavelength of 1074 nm is frequency-converted by successive stages of LBO crystals and KBBF crystals. The generated radiation at 153 nm has the shortest wavelength achieved through phase-matched frequency conversion processes in nonlinear optical crystals to our knowledge.

  1. Measurements of Partial Reflections at 3.18 Mhz Using the CW Radar Technique

    NASA Technical Reports Server (NTRS)

    Priese, J.; Singer, W.

    1984-01-01

    An equipment for measuring partial reflections using the FM-CW-radar principle at 3.18 MHz, installed at the Ionospheric Observatory Juliusruh of the CISTP (HHI), is described. The linear FM-chirp of 325 kHz bandwidth is Gaussian-weighted in amplitude and gives a height resolution of 1.5 km (chirp length is 0.6 sec). Preliminary results are presented for the first observation period in winter 1982/83.

  2. Simple analytical derivations of thermal lensing in longitudinally Q-CW pumped Yb:YAG.

    PubMed

    Bourdet, Gilbert L; Gouédard, Claude

    2010-08-01

    In this paper, we introduce analytical derivations for the thermal lensing of an end-pumped laser disk. These derivations are done for pump beam shapes from Gaussian to top hat, assuming that the thermal conductivity is either constant with the temperature or not. We give examples in two temperature regions, where the thermal conductivity exhibits T(-1) or T(-2) dependence. Numerical applications are given for a Q-CW pumped Yb:YAG disk laser. PMID:20676168

  3. Observation of spectral asymmetry in cw-pumped type II spontaneous parametric down-conversion

    SciTech Connect

    Zhao, Zhi; Meyer, Kent A; Whitten, William B; Shaw, Robert W; Bennink, Ryan S; Grice, Warren P

    2008-06-01

    We report on a spectral asymmetry in cw-pumped type II spontaneous parametric down-conversion. We observe that when the pump beam is focused, the spectra of ordinary and extraordinary down-converted photons broaden unequally. Theoretical analysis indicates that this asymmetry can be attributed to the difference in the angular dispersion (walk-off) of the two kinds of photons, coupled with the well-known correlation between wavelength and emission direction.

  4. Energy-time entanglement generation in optical fibers under CW pumping.

    PubMed

    Dong, Shuai; Zhou, Qiang; Zhang, Wei; He, Yuhao; Zhang, Weijun; You, Lixing; Huang, Yidong; Peng, Jiangde

    2014-01-13

    In this paper, the energy-time entangled photon-pairs at 1.5 μm are generated by the spontaneous four wave mixing (SFWM) in optical fibers under continuous wave (CW) pumping. The energy-time entanglement property is demonstrated experimentally through an experiment of Franson-type interference. Although the generation rates of the noise photons are one order of magnitude higher than that of the photon-pairs under CW pumping, the impact of noise photons can be highly suppressed in the measurement by a narrow time domain filter supported by superconducting nanowire single photon detectors with low timing jitters and time correlated single photon counting (TCSPC) module with high time resolution. The experiment results show that the SFWM in optical fibers under CW pumping provides a simple and practical way to generate energy-time entanglement at 1.5 μm, which has great potential for long-distance quantum information applications over optical fibers. PMID:24514996

  5. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  6. Design of 57.5 MHz CW RFQ for medium energy heavy ion superconducting linac.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Tretyakova, T. E.; Yaramishev, S. G.; Physics; Inst. of Theoretical and Experimental Physics

    2002-06-01

    The nuclear science community considers the construction of the Rare Isotope Accelerator (RIA) facility as a top priority. The RIA includes a 1.4 GV superconducting linac for production of 400 kW cw heavy ion beams. The initial acceleration of heavy ions delivered from an electron cyclotron resonance ion source can be effectively performed by a 57.5 MHz 4-m long room temperature RFQ. The principal specifications of the RFQ are (i) formation of extremely low longitudinal emittance, (ii) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation, and (iii) simultaneous acceleration of two-charge states of uranium ions. cw operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode, and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses the beam dynamics and electrodynamics design of the RFQ cavity, as well as some aspects of the mechanical design of the low-frequency cw RFQ.

  7. Design of 57.5 MHz cw RFQ structure for the rare isotope accelerator facility.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Yaramishev, S. G.; Tretyakova, T. E.

    2002-01-29

    The Rare Isotope Accelerator (RIA) facility includes a driver linac for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy-ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz four-meter long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low longitudinal emittance; (2) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation; (3) simultaneous acceleration of two-charge states of uranium ions. CW operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses beam dynamics and electrodynamics design of the RFQ cavity, as well as, some aspects of the mechanical design of this low-frequency CW RFQ.

  8. RF couplers for normal-conducting photoinjector of high-power CW FEL

    SciTech Connect

    Kurennoy, S.

    2004-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be built for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by 'dog-bone' irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  9. RF Couplers for Normal-Conducting Photoinjector of High-Power CW FEL

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey; Schrage, Dale; Wood, Richard; Schultheiss, Tom; Rathke, John; Young, Lloyd

    2004-05-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be build for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by "dog-bone" irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  10. Type-I QW cascade diode lasers with 830 mW of CW power at 3 μm

    NASA Astrophysics Data System (ADS)

    Shterengas, L.; Liang, R.; Hosoda, T.; Kipshidze, G.; Belenky, G.; Bowman, S. S.; Tober, R. L.

    2015-03-01

    Cascade pumping schemes that utilize single-QW gain stages enhanced both the power conversion efficiency and the output power level of GaSb-based diode lasers that emit near and above 3 μm at room temperature. The cascade lasers discussed in this work had densely stacked type-I QWs gain stages characterized by high differential gain. The 3 μm emitting devices demonstrated CW threshold current densities near 100 A/cm2, a twofold improvement over the previous world record, that resulted in peak power conversion efficiencies increasing to 16% at 17°C. Comparable narrow ridge two-stage devices generated more than 100 mW of CW power with ~10% power conversion efficiencies. Three-stage multimode cascade lasers emitted 960 mW of CW output power near 3 μm and 120 mW CW near 3.3 μm.

  11. More than 100 channel supercontinuum CW optical source with precise 25GHz spacing for 10Gbit/s DWDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Nan, Yinbo; Zhou, Xianwei

    2006-01-01

    We experimentally demonstrate the generation of supercontinuum (SC) with a 12.5GHz DFB/EAM ultrashort optical pulse broadened in the high nonlinear fiber (HNLF). Through longitudinal mode-carving of the SC spectrum, a novel multiwavelength continuous wave (CW) optical source with precise 25GHz channel spacing is realized. The bit error rate (BER) curve and eye diagram show that the multiwavelength CW optical source is promising for dense wavelength division multiplexing (DWDM) systems.

  12. Observations of tornadoes and wall clouds with a portable FM-CW Doppler radar: 1989--1990 results

    SciTech Connect

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1990-01-01

    The purpose of this paper is to report on our progress using a portable, 1 W,FM (frequency modulated)-CW (continuous wave) Doppler radar developed at the Los Alamos National Laboratory (LANL), to make measurements of the wind field in tornadoes and wall clouds along with simultaneous visual documentation. Results using a CW version of the radar in 1987--1988 are given in Bluestein and Unruh (1989). 18 refs., 2 figs., 1 tab.

  13. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload.

    PubMed

    Huang, Su-Hua; Lien, Jin-Cherng; Chen, Chao-Jung; Liu, Yu-Ching; Wang, Ching-Ying; Ping, Chia-Fong; Lin, Yu-Fong; Huang, An-Cheng; Lin, Cheng-Wen

    2016-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca(2+) overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents. PMID:27563890

  14. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload

    PubMed Central

    Huang, Su-Hua; Lien, Jin-Cherng; Chen, Chao-Jung; Liu, Yu-Ching; Wang, Ching-Ying; Ping, Chia-Fong; Lin, Yu-Fong; Huang, An-Cheng; Lin, Cheng-Wen

    2016-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca2+ overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents. PMID:27563890

  15. Development of a 2 MW CW Waterload for Electron Cyclotron Heating Systems

    SciTech Connect

    R. Lawrence,Ives; Maxwell Mizuhara; George Collins; Jeffrey Neilson; Philipp Borchard

    2012-11-09

    Calabazas Creek Research, Inc. developed a load capable of continuously dissipating 2 MW of RF power from gyrotrons. The input uses HE11 corrugated waveguide and a rotating launcher to uniformly disperse the power over the lossy surfaces in the load. This builds on experience with a previous load designed to dissipate 1 MW of continuous RF power. The 2 MW load uses more advanced RF dispersion to double the capability in the same size device as the 1 MW load. The new load reduces reflected power from the load to significantly less than 1 %. This eliminates requirements for a preload to capture reflected power. The program updated control electronics that provides all required interlocks for operation and measurement of peak and average power. The program developed two version of the load. The initial version used primarily anodized aluminum to reduce weight and cost. The second version used copper and stainless steel to meet specifications for the ITER reactor currently under construction in France. Tests of the new load at the Japanese Atomic Energy Agency confirmed operation of the load to a power level of 1 MW, which is the highest power currently available for testing the load. Additional tests will be performed at General Atomics in spring 2013. The U.S. ITER organization will test the copper/stainless steel version of the load in December 2012 or early in 2013. Both loads are currently being marketed worldwide.

  16. Energy-transfer studies and efficient cw laser operation of a cw Er,Yb:YCOB laser at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Burns, Phillip A.; Dawes, Judith M.; Dekker, Peter; Piper, James A.; Jiang, Haidong; Jiang, Huiajing; Wang, Jiyang

    2003-06-01

    All-solid-state laser devices operating in the 1.5 - 1.6 μm wavelength range have many practical applications. The most notable of these is their use in optical telecommunications, but the current research drive is to increase the output power from high beam quality, solid-state devices for eye-safe applications such as laser range finding and target acquisition, remote sensing of trace elements in air, light detecting and ranging, medicine, metrology and atmospheric phenomena such as measurements of wind shear. Yb3+ ions are co-doped into the host material to improve the pumping efficiency by taking advantage of commercial InGaAs diode lasers emitting at 980 nm. The absorbed pump is then non-radiative transferred to the Er3+ ions, and rapidly decaying to the 4I13/2 upper-laser level. Laser operation in Er,Yb co-doped systems has been dominated by glass hosts (in particular, phosphate) with attempts in crystalline materials yielding disappointing results despite their superior mechanical and thermal properties. In this paper we will present efficient diode-pumped laser operation of the crystalline host material Er,Yb:YCOB at 1.55 μm. By studying the energy transfer mechanisms of this material, we have identified the optimum dopant concentrations and 250 mW of continuous wave (cw) output in TEM00 transverse mode has been obtained with a 2mm crystal in an hemispherical cavity. Also, >150 mW cw has been obtained in a flat-flat cavity arrangement. The output coupling in each case was 1%. The slope efficiency of the laser was 21.9%.

  17. Direct Detection of C_2H_2 in Air and Human Breath by Cw-Crds

    NASA Astrophysics Data System (ADS)

    Schmidt, Florian M.; Vaittinen, Olavi; Metsälä, Markus; Halonen, Lauri

    2010-06-01

    Continuous wave cavity ring-down spectroscopy (cw-CRDS) is an established cavity-enhanced absorption technique that can provide the necessary sensitivity, selectivity and fast acquisition time for many applications involving the detection of trace species. We present a simple but highly sensitive cw-CRDS spectrometer based on an external cavity diode laser operating in the near-infrared region. This instrument allows us to directly detect acetylene (C_2H_2) mixing ratios in air with a detection limit of 120 parts per trillion by volume (pptv) measuring on a C_2H_2 absorption line at 6565.620 cm-1. Acetylene is a combustion product that is routinely used in environmental monitoring as a marker for anthropogenic emissions. In a recent work, the spectrometer was employed to measure the level of acetylene in indoor and outdoor air in Helsinki. Continuous flow measurements with high time resolution (one minute) revealed strong fluctuations in the acetylene mixing ratio in outdoor air during daytime. Due to its non-invasive nature and fast response time, the analysis of exhaled breath for medical diagnostics is an excellent and straightforward alternative to methods using urine or blood samples. In an ongoing study, the cw-CRDS instrument is used to establish the baseline level of acetylene in the breath of the healthy population. An elevated amount of acetylene in breath could indicate exposure to combustion exhausts or other volatile organic compound (VOC) rich sources. The latest results of this investigation will be presented. F. M. Schmidt, O. Vaittinen, M. Metsälä, P. Kraus and L. Halonen, submitted for publication in Appl. Phys. B.

  18. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    DOEpatents

    Alfano, Robert R.; Wang, Wubao

    2000-11-21

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. In accordance with the teachings of the invention, a low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic tansaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively. For example, it may also be used to diagnose diseases associated with the concentration of Raman-active constituents in urine, lymph and saliva It may be used to identify cancer in the breast, cervix, uterus, ovaries and the like by measuring the fingerprint excitation Raman spectra of these tissues. It may also be used to reveal the growing of tumors or cancers by measuring the levels of nitric oxide in tissue.

  19. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  20. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    PubMed

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  1. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: Solving a lineshape paradox

    NASA Astrophysics Data System (ADS)

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4 × 10 19 spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S = 1/2, and centres with S = 0 ground state and thermally accessible triple state S = 1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and 13C nuclei indicates that IOM rad centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H ≈ 1.5 ± 0.5 × 10 -2 of the order of values existing in interstellar medium.

  2. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    SciTech Connect

    Hwang, I.H. . Dept. of Physics); Lee, J.H. . Langley Research Center)

    1991-09-01

    This paper reports on the efficiencies and threshold pump intensities of various solid-state laser materials that have been estimated to compare their performance characteristics as direct solar-pumped CW lasers. Among the laser materials evaluated in this research, alexandrite has the highest slope efficiency of about 12.6%; however, it does not seem to be practical for solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AMO) solar constants and its slope efficiency is about 12% when thermal deformation is completely prevented.

  3. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers.

    PubMed

    Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2015-09-21

    We present experimental measurements of intensity spatio-temporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes. PMID:26406625

  4. 1.86 W cw single-frequency 1319 nm ring laser pumped at 885 nm.

    PubMed

    Li, M L; Zhao, W F; Zhang, S B; Guo, L; Hou, W; Li, J M; Lin, X C

    2012-03-20

    A 1.86 W cw single-frequency 1319 nm laser was produced by using an 885 nm-pumped Nd:YAG crystal with a compact four-mirror ring cavity, for the first time to our knowledge. The Nd:YAG produced a slope efficiency of 21% and an optical-to-optical efficiency of 18% with respect to the absorbed diode pump power. A near-diffraction-limited beam with M(2)=1.2 was achieved under the maximum output power. PMID:22441467

  5. Feasibility and conceptual design of a C.W. positron source at CEBAF

    NASA Astrophysics Data System (ADS)

    Golge, Serkan

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm·mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as delta = 3 x 10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV⊗10 mA e- beam impinging on a 2 mm W target with a 100 mum spot size, we can get up to 3 muA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings. 1,2 1S. Golge et al., in Proceedings of PAC07, Albuquerque, New Mexico, June 2007 2S. Golge et al., AIP Conf. Proc., 1160, 109 (2009)

  6. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  7. A Short Distance CW-Radar Sensor at 77 GHz in LTCC for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Rusch, Christian; Klein, Tobias; Beer, Stefan; Zwick, Thomas

    2013-12-01

    The paper presents a Continuous-Wave(CW)-Radar sensor for high accuracy distance measurements in industrial applications. The usage of radar sensors in industrial scenarios has the advantage of a robust functionality in wet or dusty environments where optical systems reach their limits. This publication shows that accuracies of a few micro-meters are possible with millimeter-wave systems. In addition to distance measurement results the paper describes the sensor concept, the experimental set-up with the measurement process and possibilities to increase the accuracy even further.

  8. Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    SciTech Connect

    Aleksandrov, B P; Bashkin, A S; Beznozdrev, V N; Parfen'ev, M V; Pirogov, N A; Semenov, S N

    2003-01-31

    The problems involved in designing autonomous mobile laser systems based on high-power cw chemical DF lasers, whose mass and size parameters would make it possible to install them on various vehicles, are discussed. The need for mobility of such lasers necessitates special attention to be paid to the quest for ways and means of reducing the mass and size of the main laser systems. The optimisation of the parameters of such lasers is studied for various methods of scaling their systems. A complex approach to analysis of the optical scheme of the laser system is developed. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  9. Comparison between UWB and CW radar sensors for breath activity monitoring

    NASA Astrophysics Data System (ADS)

    Pisa, Stefano; Bernardi, Paolo; Cicchetti, Renato; Giusto, Roberto; Pittella, Erika; Piuzzi, Emanuele; Testa, Orlandino

    2014-05-01

    In this paper the ability of four radar sensors in detecting breath activity has been tested. In particular, range gating UWB, CMOS UWB, CW phase detecting, and FMCW radars have taken into account. Considering a realistic scenario, the radar antenna has been pointed towards the thorax of a breathing subject and the recorded signals have been compared with those of a piezoelectric belt placed around the thorax. Then the ability of the radars in detecting small movements has been tested by means of an oscillating copper plate placed at various distances from the radar antenna. All the considered radars were able to detect the plate movements with a distance-dependent resolution.

  10. First results from the Cornell high Q cw full linac cryo- module

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Furuta, F.; He, Y.; Ge, M.; Hoffstaetter, G.; O'Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Liepe, M.; Markham, S.; Bullock, B.; Elmore, B.; Kaufman, J.; Conway, J.; Veshcherevich, V.

    2015-12-01

    Cornell University has finished building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. The design of the cryomodule and the results of components tested before assembly will be presented in this paper.

  11. Role of thermal diffusion in cw IR laser absorption in gas mixtures.

    PubMed

    Maleissye, J T; Lempereur, F

    1982-01-15

    The absorption of radiation from a cw CO(2) laser by a mixture of absorbing SF(6) and transparent buffer gases has been measured as a function of pressure of added transparent gas (C(4)H(10)). The results are analyzed in terms of thermal diffusion of excited SF6 molecules out of the irradiation zone. In the 60-400-Torr pressure range, thermal difusion depletes the concentration of SF(6) so that the overall absorption is decreased and competes with the various channels of collisional relaxation which enhance absorption. An approximate semiempirical expression is used to determine the transient perturbation of concentration which occurs inside the laser beam.

  12. Feasibility and conceptual design of a C.W. positron source at CEBAF

    SciTech Connect

    Golge, Serkan

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  13. Clinical trials in near infrared fluorescence imaging with IRDye 800CW

    NASA Astrophysics Data System (ADS)

    Draney, Daniel R.

    2015-03-01

    A monofunctional, heptamethine dye, IRDye® 800CW, is being manufactured under GMP conditions for use in human clinical trials. When attached to a suitable targeting agent and paired with an appropriate camera system, the dye allows Near Infrared (NIR) fluorescence imaging of tumor tissue during surgery. The talk will describe the properties of the dye and give an overview of current and planned clinical trials in Europe and the USA. The dye is available in both the NHS ester and carboxylate forms for conjugation to targeting molecules. A GMP toxicology study of the dye was described in a previous publication.

  14. LiMgPO 4:Tb,B OSL phosphor - CW and LM OSL studies

    NASA Astrophysics Data System (ADS)

    Kumar, Munish; Dhabekar, Bhushan; Menon, S. N.; Chougaonkar, M. P.; Mayya, Y. S.

    2011-08-01

    In the adjoining paper, the authors have proposed LiMgPO 4:Tb,B (LMP) OSL phosphor as a potential alternative to α-Al 2O 3:C for dosimetry applications. This calls for developing an understanding on TL and OSL aspects of this highly sensitive LMP phosphor. CW and LM OSL processes were therefore studied experimentally and kinetic analysis was carried out using theoretical models. Continuous wave (CW) OSL curve for LMP phosphor was found not to follow single decaying exponential implying that the CWOSL curve does not follow first order kinetics. Under pre-readout annealing at 125, 200 and 300 °C for 10 s, the nature of decay profile was unaffected and same holds true for optically bleached CWOSL curves. From linearly modulated (LM) OSL studies, it was found that the shape/geometrical factor μ g was ˜0.72 ± 0.03 for wide range of doses (up to 12 Gy studied) and peak position " t m" was also independent of dose. The μ g was found to be unaffected with pre-readout annealing at 125, 200 and 300 °C for 10 s and optical bleaching, however it was found that peak position " t m" shifted towards higher side in time with increase of optical bleaching. Dose dependence tests were also carried out for LMOSL curves and it was found that peak position " t m" was independent of dose, which is typical characteristic of curves following first order kinetics. Hence LM-OSL curve might be mixture of more than one component. Further from CW and LM OSL studies, it was also found that the individual contribution from first, second and third TL peak toward OSL is ˜33%, ˜45% and ˜22%, respectively. Traps beyond 350 °C were found not to contribute towards OSL when stimulated using blue LEDs. In the present paper, the CW and LM OSL processes for LMP phosphor were studied experimentally and their kinetic analysis was carried out.

  15. Explosive vaporization of metallic sodium microparticles by CW resonant laser radiation.

    PubMed

    Atutov, S N; Baldini, W; Biancalana, V; Calabrese, R; Guidi, V; Mai, B; Mariotti, E; Mazzocca, G; Moi, L; Pod'yachev, S P; Tomassetti, L

    2001-11-19

    Explosive vaporization of metallic Na microparticles stimulated by resonant cw laser radiation has been observed in a glass cell. Vaporization occurs at low laser-power density. The effect consists in the generation of optically thick and sharply localized Na vapor clouds propagating in the cell against the laser beam. The effect is explained by laser excitation of Na atoms, which collide onto the surface of the microparticles and transfer their internal energy. This causes other atoms to be vaporized and to continue the avalanche process. PMID:11736344

  16. Explosive vaporization of metallic sodium microparticles by CW resonant laser radiation.

    PubMed

    Atutov, S N; Baldini, W; Biancalana, V; Calabrese, R; Guidi, V; Mai, B; Mariotti, E; Mazzocca, G; Moi, L; Pod'yachev, S P; Tomassetti, L

    2001-11-19

    Explosive vaporization of metallic Na microparticles stimulated by resonant cw laser radiation has been observed in a glass cell. Vaporization occurs at low laser-power density. The effect consists in the generation of optically thick and sharply localized Na vapor clouds propagating in the cell against the laser beam. The effect is explained by laser excitation of Na atoms, which collide onto the surface of the microparticles and transfer their internal energy. This causes other atoms to be vaporized and to continue the avalanche process.

  17. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    SciTech Connect

    Mezhenin, A V; Azyazov, V N

    2012-12-31

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio {Pi}. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at {tau}{sub d} {<=} 7. Efficient energy extraction from the OIL active medium is achieved in the case of {tau}{sub d} = 5 - 7, {Pi} = 4 - 8. (lasers)

  18. DPAL: A new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths

    NASA Astrophysics Data System (ADS)

    Krupke, W. F.; Beach, R. J.; Payne, S. A.; Kanz, V. K.; Early, J. T.

    2004-03-01

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies ~40% (Si) and ~60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected. The potential application to power beaming propulsion to raise satellites from LEO to Geo is discussed.

  19. High-power cw laser bars of the 750 - 790-nm wavelength range

    SciTech Connect

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-06-30

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 - 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  20. DPAL: A New Class of Lasers for CW Power Beaming at Ideal Photovoltaic Cell Wavelengths

    SciTech Connect

    Krupke, W F; Beach, R J; Payne, S A; Kanz, V K; Early, J T

    2003-09-15

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies {approx}40% (Si) and {approx}60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected.

  1. Gas dynamics of the active medium of a supersonic cw HF chemical laser

    SciTech Connect

    Fedorov, Igor' A; Rotinyan, Mikhail A; Krivitskii, A M

    2000-12-31

    Gas-dynamic characteristics of a 5-kW supersonic cw HF chemical laser with a nozzle array of size 25 cm x 2.8 cm and the nozzle - nozzle mixing scheme were experimentally studied. The distributions of Mach numbers, static pressure, total pressure behind the normal shock, and the loss of total pressure were measured in the flow of an active medium in wide ranges of variation of the flow rate of secondary fuel (hydrogen) and pressure in the atomic-fluorine generator. The energy parameters of the laser were found to be interrelated with the gas dynamics and the optical quality of the active laser medium. (lasers)

  2. Simulation of a two-frequency cw chemical HF-HBr laser

    SciTech Connect

    Aleksandrov, B P; Katorgin, B I; Stepanov, A A

    2008-10-31

    An autonomous cw chemical HF-HBr laser emitting simultaneously at {approx}2.7 {mu}m (HF molecules) and {approx}4.2 {mu}m (HBr molecules) is studied numerically by using complete Navier-Stokes equations. It is shown that the output power of the HBr laser per unit area of the nozzle array can achieve {approx}20 W cm{sup -2} for the laser region length {approx}20 cm. The relation between the radiation intensities emitted by HF and HBr molecules is controlled by diluting the secondary fuel by bromine. (lasers)

  3. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    SciTech Connect

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-12-31

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current.

  4. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    PubMed

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  5. Flight, orientation, and homing abilities of honeybees following exposure to 2. 45-GHz CW microwaves

    SciTech Connect

    Gary, N.E.; Westerdahl, B.B.

    1981-01-01

    Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.

  6. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  7. Broad-band chopper for a CW proton linac at Fermilab

    SciTech Connect

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  8. Optimum search strategy for randomly distributed CW transmitters. [for project SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1985-01-01

    The relative probability of detecting randomly distributed CW transmitters as a function of the fraction of the sky which is searched (in a fixed time interval) is given. It is shown that the probability of detecting such a class of transmitters with a given receiving system is a maximum if the entire sky is searched, provided that the receiving system is sufficiently sensitive to detect the nearest transmitter in the allocated time and that the integration time - bandwidth product in a specified direction is greater than 8.

  9. Note on the Optimum Search Strategy for Uniformly Distributed CW Transmitters. [implications for Project Seti

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1984-01-01

    The relative probability of detecting randomly distributed CW transmitters as a function of the fraction of the sky which is searched (in a fixed time) is given. It is shown that the probability of detecting such a class of transmitters with a given receiving system is a maximum if the entire sky is searched. The particular case of a search in which the number of directions searched is equal to the telescope gain and the integration time per beam element is equal to the reciprocal of the channel bandwidth is discussed.

  10. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Morozkin, M. V.; Tsvetkov, A. I.; Lubyako, L. V.; Golubiatnikov, G. Yu.; Kuftin, A. N.; Zapevalov, V. E.; V. Kholoptsev, V.; Eremeev, A. G.; Sedov, A. S.; Malygin, V. I.; Chirkov, A. V.; Fokin, A. P.; Sokolov, E. V.; Denisov, G. G.

    2016-02-01

    We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0 .1 -1 kW was achieved with an efficiency of up to 17 % in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 10 -6 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

  11. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode

    NASA Astrophysics Data System (ADS)

    Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali

    2016-10-01

    We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.

  12. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  13. Class-Wide Function-Related Intervention Teams “CW-FIT” Efficacy Trial Outcomes

    PubMed Central

    Kamps, Debra; Wills, Howard; Bannister, Harriett Dawson; Heitzman-Powell, Linda; Kottwitz, Esther; Hansen, Blake; Fleming, Kandace

    2015-01-01

    The purpose of the study was to determine the efficacy of the Class-wide Function-related Intervention Teams (CW-FIT) program for improving students’ on-task behavior, and increasing teacher recognition of appropriate behavior. The intervention is a group contingency classroom management program consisting of teaching and reinforcing appropriate behaviors (i.e., getting the teacher’s attention, following directions, and ignoring inappropriate behaviors of peers). Seventeen elementary schools, the majority in urban and culturally diverse communities, participated in a randomized trial with 86 teachers (classrooms) assigned to CW-FIT, and 73 teachers (classrooms) assigned to the comparison group. Class-wide student on-task behavior improved over baseline levels in the intervention classes. Teachers were able to implement the intervention with high fidelity overall, as observed in adherence to 96% of the fidelity criteria on average. Teacher praise and attention to appropriate behaviors increased, and reprimands decreased. These effects were replicated in new classrooms each of the 4 years of the study, and for all years combined. PMID:26279616

  14. Study of effects of failure of beamline elements and their compensation in CW superconducting linac

    SciTech Connect

    Saini, A.; Ranjan, K.; Solyak, N.; Mishra, S.; Yakovlev, V.; /Fermilab

    2011-03-01

    Project-X is the proposed high intensity proton facility to be built at Fermilab, US. First stage of the Project-X consists of superconducting linac which will be operated in continuous wave (CW) mode to accelerate the beam from 2.5 MeV to 3 GeV. The operation at CW mode puts high tolerances on the beam line components, particularly on radiofrequency (RF) cavity. The failure of beam line elements at low energy is very critical as it results in mis-match of the beam with the following sections due to different beam parameters than designed parameter. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it could affect the reliability of the machine and may lead to the shutdown of the Linac to replace the failed elements. Thus, it is important to study these effects and their compensation to get smooth beam propagation in linac. This paper describes the results of study performed for the failure of RF cavity & solenoid in SSR0 section.

  15. Toward an integrated computational approach to CW-ESR spectra of free radicals.

    PubMed

    Barone, Vincenzo; Polimeno, Antonino

    2006-10-28

    Interpretation of structural properties and dynamic behaviour of molecules in solution is of fundamental importance to understand their stability, chemical reactivity and catalytic action. Information can be gained, in principle, by a variety of spectroscopic techniques, magnetic as well as optical. In particular, continuous wave electron spin resonance (CW-ESR) measurements are highly informative. However, the wealth of structural and dynamic information which can be extracted from ESR spectroscopy is, at present, limited by the necessity of employing computationally efficient models, which are increasingly complex as they need to take into account diverse relaxation processes affecting the spectrum. In this paper, we address the basic theoretical tools needed to predict, essentially ab initio, CW-ESR spectra observables according to the stochastic Liouville equation (SLE) approach, combined with quantum mechanical and hybrid methods for the accurate and efficient computation of structural, spectroscopic and magnetic properties of molecular systems. We shall discuss, on one hand, the quantum mechanical calculation of magnetic observables, via density functional theory (DFT), time-dependent DFT (TD-DFT) and application of the polarizable continuum model (PCM) for the description of environmental effects, including anisotropic environments and systems where different regions are characterized by different dielectric constants. One the other hand, the explicit evaluation of dynamical effects will be discussed based on the numerically exact treatment of the SLE in the presence of several relaxation processes, which has been proven to be a challenging task.

  16. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  17. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  18. CW RF system of the Project-X accelerator front end

    SciTech Connect

    Khabiboulline, T.; Barbanotti, S.; Gonin, I.; Solyak, N.; Terechkine, I.; Yakovlev, V.; /Fermilab

    2010-09-01

    Front end of a CW linac of the Project X contains an H{sup -} source, an RFQ, a medium energy transport line with the beam chopper, and a SC low-beta linac that accelerates H{sup -} from 2.5 MeV to 160 MeV. SC Single Spoke Resonators (SSR) will be used in the linac, because Fermilab already successfully developed and tested a SSR for beta = 0.21. Two manufactured cavities achieve 2.5 times more than design accelerating gradients. One of these cavities completely dressed, e.g. welded to helium vessel with integrated slow and fast tuners, and tested in CW regime. Successful tests of beta = 0.21 SSR give us a confidence to use this type of cavity for low beta (0.117) and for high-beta (0.4) as well. Both types of these cavities are under development. In present report the basic constrains, parameters, electromagnetic and mechanical design for all the three SSR cavities, and first test results of beta = 0.21 SSR are presented.

  19. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation

    NASA Astrophysics Data System (ADS)

    Peng, S. X.; Zhang, A. L.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observed during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.

  20. Development of photoinjector RF cavity for high-power CW FEL

    NASA Astrophysics Data System (ADS)

    Kurennoy, S. S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Rathke, J.

    2004-08-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high-power CW FEL. A preliminary design of the first, and the most challenging, section of a 700-MHz CW RF normal-conducting photoinjector—a 2.5-cell, pi-mode cavity with solenoidal magnetic field for emittance compensation—is completed. Beam dynamics simulations demonstrate that this cavity with an electric field gradient of 7 MV/m will produce an electron beam at 2.7 MeV with the transverse rms emittance 7 mm mrad at 3 nC of charge per bunch. Electromagnetic field computations combined with a thermal and stress analysis show that the challenging problem of cavity cooling can be successfully resolved. We are in the process of building a 100-mA (3 nC of bunch charge at 33.3 MHz bunch repetition rate) photoinjector for demonstration purposes. Its performance parameters will enable a robust 100-kW-class FEL operation with electron beam energy below 100 MeV. The design is scalable to higher power levels by increasing the electron bunch repetition rate and provides a path to a MW-class amplifier FEL.

  1. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. PMID:24968092

  2. Comparison of CW Nd:YAG contact transscleral cyclophotocoagulation with cyclocryopexy

    SciTech Connect

    Schubert, H.D.; Federman, J.L.

    1989-03-01

    The cyclodestructive and inflammatory effects of CW Nd:YAG contact laser were compared to those of conventional cryopexy. CW Nd:YAG light transmitted by fiber optic cable and sapphire crystal was applied transsclerally to the ciliary body of pigmented and albino rabbits. Cyclocryopexy was given to a comparable second group. The intraocular pressure (IOP), flare, iritis, cells and conjunctival hyperemia were monitored clinically up to 3 weeks. The breakdown of the blood-aqueous barrier and time course of ocular inflammation was similar for both modalities and IOP was -12.2 +/- 4.2 mm Hg for laser cyclopexy and -15.1 +/- 5.4 mm Hg for cyclocryopexy at 3 weeks. Ciliary body lesions were noted in both groups. Overall, albino rabbits showed less histological damage and faster recovery of IOP. Contact cyclophotocoagulation and cyclocryopexy can be considered models of ocular injury. The similarities in ocular irritative response suggest a similar pathophysiologic mechanism underlying the pressure behavior in both thermal mode injuries.

  3. The halogen atom/metal trimer CW laser-engineering concept overview

    NASA Astrophysics Data System (ADS)

    Emanuel, G.; Jacobs, T. A.

    1992-07-01

    A halogen atom/metal vapor laser is discussed in terms of CW power and performance. Fluorine and sodium represent surrogates for the halogen and metal species; other combinations are possible. Since lasing may occur from a variety of excited electronic states, operation is expected to be broadly dispersed over the visible and near UV wavelength regions. The device is a low pressure, supersonic mixing laser that resembles the HF/DF CW laser, e.g., separate plenums are utilized for the fluorine and sodium vapors, and each plenum feeds a nozzle array. Sodium trimer formation begins in the nozzle and continues inside the laser cavity. The design of this nozzle is particularly important; the concept of controlled condensation is introduced. Downstream of the nozzle bank, the two vapor streams mix and the F-Na3 reaction pumps several electronically excited states that have gain in the blue-green region. Estimates are given for power per unit mass flow rate and power per unit nozzle bank cross-sectional area.

  4. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

    NASA Technical Reports Server (NTRS)

    Awtry, A. R.; Miller, J. H.

    2002-01-01

    The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 micrometers is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated.

  5. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  6. Efficient heteronuclear decoupling in MAS solid-state NMR using non-rotor-synchronized rCW irradiation.

    PubMed

    Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr

    2014-09-01

    We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. PMID:25123538

  7. High-power efficient cw and pulsed lasers based on bulk Yb : KYW crystals with end diode pumping

    SciTech Connect

    Kim, G H; Yang, G H; Lee, D S; Kulik, Alexander V; Sall', E G; Chizhov, S A; Yashin, V E; Kang, U

    2012-04-30

    End-diode-pumped lasers based on one and two Yb : KYW crystals operating in cw and Q-switched regimes, as well as in the regime of mode-locking, are studied. The single-crystal laser generated stable ultrashort (shorter than 100 fs) laser pulses at wavelengths of 1035 and 1043 nm with an average power exceeding 1 W. The average output power of the two-crystal laser exceeded 18 W in the cw regime and 16 W in the Q-switched regime with a slope efficiency exceeding 30%.

  8. Toward improved software security training using a cyber warfare opposing force (CW OPFOR): the knowledge base design

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    2005-03-01

    "Train the way you will fight" has been a guiding principle for military training and has served the warfighter well as evidenced by numerous successful operations over the last decade. This need for realistic training for all combatants has been recognized and proven by the warfighter and continues to guide military training. However, to date, this key training principle has not been applied fully in the arena of cyberwarfare due to the lack of realistic, cost effective, reasonable, and formidable cyberwarfare opponents. Recent technological advances, improvements in the capability of computer-generated forces (CGFs) to emulate human behavior, and current results in research in information assurance and software protection, coupled with increasing dependence upon information superiority, indicate that the cyberbattlespace will be a key aspect of future conflict and that it is time to address the cyberwarfare training shortfall. To address the need for a cyberwarfare training and defensive testing capability, we propose research and development to yield a prototype computerized, semi-autonomous (SAF) red team capability. We term this capability the Cyber Warfare Opposing Force (CW OPFOR). There are several technologies that are now mature enough to enable, for the first time, the development of this powerful, effective, high fidelity CW OPFOR. These include improved knowledge about cyberwarfare attack and defense, improved techniques for assembling CGFs, improved techniques for capturing and expressing knowledge, software technologies that permit effective rapid prototyping to be effectively used on large projects, and the capability for effective hybrid reasoning systems. Our development approach for the CW OPFOR lays out several phases in order to address these requirements in an orderly manner and to enable us to test the capabilities of the CW OPFOR and exploit them as they are developed. We have completed the first phase of the research project, which

  9. HLA-Cw Allele Frequency in Definite Meniere’s Disease Compared to Probable Meniere’s Disease and Healthy Controls in an Iranian Sample

    PubMed Central

    Dabiri, Sasan; Ghadimi, Fatemeh; Firouzifar, Mohammadreza; Yazdani, Nasrin; Mohammad-Amoli, Mahsa; Vakili, Varasteh; Mahvi, Zahra

    2016-01-01

    Introduction Several lines of evidence support the contribution of autoimmune mechanisms in the pathogenesis of Meniere’s disease. The aim of this study was determining the association between HLA-Cw Alleles in patients with definite Meniere’s disease and patients with probable Meniere’s disease and a control group. Materials and Methods: HLA-Cw genotyping was performed in 23 patients with definite Meniere’s disease, 24 with probable Meniere’s disease, and 91 healthy normal subjects, using sequence specific primers polymerase chain reaction technique. The statistical analysis was performed using stata 8 software. Results: There was a significant association between HLA-Cw*04 and HLA-Cw*16 in both definite and probable Meniere’s disease compared to normal healthy controls. We observed a significant difference in HLA-Cw*12 frequencies between patients with definite Meniere’s disease compared to patients with probable Meniere’s disease (P=0.04). The frequency of HLA-Cw*18 is significantly higher in healthy controls (P=0.002). Conclusion: Our findings support the rule of HLA-Cw Alleles in both definite and probable Meniere’s disease. In addition, differences in HLA-Cw*12 frequency in definite and probable Meniere’s disease in our study’s population might indicate distinct immune and inflammatory mechanisms involved in each condition. PMID:27602337

  10. HLA-Cw Allele Frequency in Definite Meniere’s Disease Compared to Probable Meniere’s Disease and Healthy Controls in an Iranian Sample

    PubMed Central

    Dabiri, Sasan; Ghadimi, Fatemeh; Firouzifar, Mohammadreza; Yazdani, Nasrin; Mohammad-Amoli, Mahsa; Vakili, Varasteh; Mahvi, Zahra

    2016-01-01

    Introduction Several lines of evidence support the contribution of autoimmune mechanisms in the pathogenesis of Meniere’s disease. The aim of this study was determining the association between HLA-Cw Alleles in patients with definite Meniere’s disease and patients with probable Meniere’s disease and a control group. Materials and Methods: HLA-Cw genotyping was performed in 23 patients with definite Meniere’s disease, 24 with probable Meniere’s disease, and 91 healthy normal subjects, using sequence specific primers polymerase chain reaction technique. The statistical analysis was performed using stata 8 software. Results: There was a significant association between HLA-Cw*04 and HLA-Cw*16 in both definite and probable Meniere’s disease compared to normal healthy controls. We observed a significant difference in HLA-Cw*12 frequencies between patients with definite Meniere’s disease compared to patients with probable Meniere’s disease (P=0.04). The frequency of HLA-Cw*18 is significantly higher in healthy controls (P=0.002). Conclusion: Our findings support the rule of HLA-Cw Alleles in both definite and probable Meniere’s disease. In addition, differences in HLA-Cw*12 frequency in definite and probable Meniere’s disease in our study’s population might indicate distinct immune and inflammatory mechanisms involved in each condition.

  11. Stable 1.25 watts CW far infrared laser radiation at the 119 micron methanol line

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Pickett, Herbert M.

    1987-01-01

    Far-infrared CW radiation of 1.25 watts has been obtained at the 119 micron methanol line with a CO2 pump power of 125 watts, and the maximum frequency fluctuation of the free running laser is measured to be less than + or - 100 kHz per hour. Reflecting optics have been used, when possible, to minimize CO2 degradation, and the frequency stability is ensured by cooling the input and output couplers. The input and output assemblies within the lasing medium are enclosed to minimize the external effects on the cavity length and to eliminate the mechanical instabilities associated with the use of bellows. The vibrational bottle-neck is broken by cooling the resonator wall to 5 deg and adding He as the buffer gas.

  12. Analysis of a Four-Station Doppler Tracking Method Using a Simple CW Beacon

    NASA Technical Reports Server (NTRS)

    Fricke, Clifford L.; Watkins, Carl W. L.

    1961-01-01

    A Doppler tracking method is presented in which a very small, simple CW beacon transmitter is used with four Doppler receiving stations to obtain the position and velocity of a space research vehicle. The exact transmitter frequency need not be known, but an initial position is required, and Doppler frequencies must be measured with extreme accuracy. The errors in the system are analyzed and general formulas are derived for position and velocity errors. The proper location of receiving stations is discussed, a rule for avoiding infinite errors is given, and error charts for ideal station configurations are presented. The effect of the index of refraction is also investigated. The system is capable of determining transmitter position within 1,000 feet at a range of 200 miles.

  13. Tunable CW blue, green, orange and red upconversion fiber lasers at room temperature

    NASA Astrophysics Data System (ADS)

    Xie, Ping; Gosnell, T. R.

    The authors report tunable CW laser actions at 491-493nm, 517-540nm, 605-622nm and 635-637nm in Pr(3+)/Yb(3+) doped ZBLAN optical fibers. A tunable Ti:Al2O3 laser was used as the pump source to simulate diode laser pumping. With 60 nW launched power, the excitation wavelength of the lasers was in the range of 780nm to 880nm. 300mW Output power has been achieved at 635nm with 760mW launched power at 860nm. With the pump wavelength at 860nm, the authors have also demonstrated stimulated emissions of 45mW at 615 nm with 430mW launched power, 20mW at 520 and 4mW at 493nm with 200mW launched power.

  14. 2-kW cw fiber-coupled diode laser system

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Daiminger, Franz X.; Hennig, Petra; Bluemel, Veit

    2000-04-01

    We have developed a high-power laser system that is based on actively cooled GaAs diode laser stacks. Fast axis collimation and subsequent beam rearrangement generates a symmetric laser beam in respect to the beam parameter product along the two main axes. By polarization and wavelength coupling 100 diode laser elements can be coupled into one fiber at a beam parameter product of less than 200 mm*mrad in both directions and more than 2 kW cw output power at the workpiece. At a spot diameter of less than 1 mm the power density exceeds 250 kW/cm2. First material processing experiments show that deep welding at working speeds that meet industrial requirements in steel can be observed. High-power diode lasers show that they become suitable for industrial work.

  15. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  16. Operating experience and reliability improvements on the 5 kW CW klystron at Jefferson Lab

    SciTech Connect

    Nelson, R.; Holben, S.

    1997-06-01

    With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of reporting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator.

  17. Parametric amplification of broadband radiation of a cw superluminescent diode under picosecond pumping

    NASA Astrophysics Data System (ADS)

    Vereshchagin, K. A.; Il'chenko, S. N.; Morozov, V. B.; Olenin, A. N.; Tunkin, V. G.; Yakovlev, D. V.; Yakubovich, S. D.

    2016-09-01

    It is proposed to use cw superluminescent diodes with a spectral width of about 300 cm-1 and high spatial coherence as seed radiation sources in parametric amplifiers with picosecond pumping in order to form broadband picosecond pulses. A two-cascade parametric amplifier based on BaB2O4 (BBO) crystals is pumped by 20-ps pulses of the second harmonic of an Nd : YAG laser. For a superluminescent diode spectral width of 275 cm-1 (centre wavelength 790 nm), the spectral width of picosecond pulses at the parametric amplifier output is 203 cm-1. At a total pump energy of 7.2 mJ for BBO crystals, the energy of the enhanced emission of the superluminescent diode is found to be 0.6 mJ.

  18. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  19. He-Ne and CW CO2 laser long-path systems for gas detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1986-01-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  20. CW dual-frequency MOPA laser with frequency separation of 45 GHz.

    PubMed

    Hu, Miao; Zheng, Yaoyuan; Cai, Ju; Zhang, Guiju; Li, Qiliang; Zhou, Xuefang; Wei, Yizhen; Lu, Yang

    2015-04-20

    A CW dual-frequency master oscillator power amplifier (MOPA) laser system with dozens of gigahertz (GHz) frequency separation is presented. The MOPA system consists of a monolithic microchip seed laser and a double-end pumped traveling wave power amplifier. The short length of seed laser cavity guarantees the seed signal with a large frequency separation (above 53 GHz) but low output power (below 247.8 mW). By adding a long and low-doped active medium laser amplifier stage, a significant increase in laser power and an improvement in beam quality are obtained. After fine temperature tuning of seed laser cavity for "spectra matching", a 2.40 W dual-frequency laser signal with 45 GHz frequency separation is achieved.

  1. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  2. The Cornell Main Linac Cryomodule: A Full Scale, High Q Accelerator Module for cw Application

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Bullock, B.; Elmore, B.; Clasby, B.; Furuta, F.; He, Y.; Hoffstaetter, G.; Liepe, M.; O'Connell, T.; Conway, J.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V.

    Cornell University is in the process of building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/BPM section. In pushing the limits, a high quality factor of the cavities (2•1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners.

  3. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1988-01-01

    A proposed conceptual design to increase the output power of an existing X-band radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is described. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  4. Long wavelength PbSnTe lasers with CW operation above 77 K

    NASA Technical Reports Server (NTRS)

    Shinohara, K.; Yoshikawa, M.; Ito, M.; Ueda, R.

    1980-01-01

    Lead tin telluride diode lasers with emission wavelengths of 6 to 9 micrometers easily operate continuously at temperatures above 77K. These lasers have the Pb(1-y) Sn(y) TE/Pb(1-y) Te/Pb(1-y) Sn(y) Te/PbTe (substrate), (x y) double heterostructure. To prepare this structure by LPE, the growth temperature must be below 600 C to suppress diffusion of the tin during the epitaxial growth. When the heterojunctions are formed by the usual LPE method, the junction boundaries become irregular in the case for the lasers with wavelengths of over 10 micrometers at 77K. The mechanism by which the heterojunction boundaries become irregular is cleared and a new LPE method which prevents the irregularity is explained. The lasers prepared from the wafers grown by the new method have demonstrated CW operation at wavelengths longer than 10 micrometers above liquid nitrogen temperature.

  5. Nano-strip grating lines self-organized by a high speed scanning CW laser

    NASA Astrophysics Data System (ADS)

    Kaneko, Satoru; Ito, Takeshi; Akiyama, Kensuke; Yasui, Manabu; Kato, Chihiro; Tanaka, Satomi; Hirabayashi, Yasuo; Mastuno, Akira; Nire, Takashi; Funakubo, Hiroshi; Yoshimoto, Mamoru

    2011-04-01

    After a laser annealing experiment on Si wafer, we found an asymmetric sheet resistance on the surface of the wafer. Periodic nano-strip grating lines (nano-SGLs) were self-organized along the trace of one-time scanning of the continuous wave (CW) laser. Depending on laser power, the nano-trench formed with a period ranging from 500 to 800 nm with a flat trough between trench structures. This simple method of combining the scanning laser with high scanning speed of 300 m min - 1 promises a large area of nanostructure fabrication with a high output. As a demonstration of the versatile method, concentric circles were drawn on silicon substrate rotated by a personal computer (PC) cooling fan. Even with such a simple system, the nano-SGL showed iridescence from the concentric circles.

  6. A proposed multi-modal FM/CW aircraft radar for use during ground operations

    NASA Astrophysics Data System (ADS)

    Grimes, Craig A.; Grimes, Dale M.

    A proposed forward looking, relatively small and inexpensive, multimodal radar is described. The design objective is to determine range, range rate, and bearing to targets at 2-500 m, at operational speeds, and at +/-8.5 deg either side of boresite. For this open-loop, wide-angle, expanded monopulse-like, FM/CW radar, it is planned to time-share the transmitted power to TE10, TE20, and TE30 rectangular waveguide modes that, in turn, drive a small aperture horn antenna. By transmitting and receiving on the different modes, six independent views of the forward direction are obtained. Echoed returns into the transmitted mode are used to find range and range rate. Returns into all three modes are frequency integrated to reduce angle noise, then ratioed to obtain target angle. This inexpensive control radar, which is termed cradar, quickly obtains a two-dimensional forward plot of the protected pathway without moving parts.

  7. The Rhodotron, a new high-energy, high-power, CW electron accelerator

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Capdevila, J. M.; Defrise, D.; Genin, F.; NGuyen, A.

    1994-05-01

    Over the last years, a new kind of industrial electron accelerator has been conjointly developed by the French Atomic Energy Agency (CEA) and IBA (Ion Beam Applications) in Belgium. This accelerator, called the Rhodotron, is a recirculating accelerator, operated in CW. It uses low frequencies (metric waves), that make possible the generation of continuous high-energy high-power beams. The construction of the first industrial model of the Rhodotron began in January 1992. It is a 10 MeV, 100 kW beam power unit, with an additional beam exit at 5 MeV. A target is also being developed in order to allow an efficient conversion of the electrons into X-rays. The different subsystems of this machine are now being assembled and tested. The first beam tests are scheduled for the autumn of 1993. A complete report presenting the state of development of this prototype is included in this paper.

  8. Development of a powerful continuously tunable mid-infrared cw PPLN OPO for trace gas detection

    NASA Astrophysics Data System (ADS)

    van Herpen, Maarten; te Lintel Hekkert, Sacco; Bisson, Scott E.; Harren, Frans J. M.

    2002-08-01

    A new Optical Parametric Oscillator for the mid infrared wavelength region of 3-3.8 micrometer is developed with an idler output power of more than 1 Watt. The OPO is pumped with a 10 Watt, cw, Nd:YAG Laser and consists of a bowtie ring cavity (FSR 320 MHz) resonating at the signal wavelength. The wavelength is controlled with a fan-out PPLN crystal and a low finesse intracavity Fabry-Perot. The idler output could be tuned over more than 24 Ghz modehop-free, by tuning the pump laser and keep the OPO cavity fixed. Mode hop tuning over 100 Ghz could be obtained changing the length of the intracavity Fabry-Perot. This high power OPO is combined with photoacoustic spectroscopy in order to develop a sensitive trace gas detector for LifeScience applications.

  9. Rapid detection of CW residues on soil using an ion trap SIMS

    SciTech Connect

    Groenewold, G.S.; Ingram, J.C.; Dahl, D.A.; Appelhans, A.D.; Delmore, J.E.

    1997-08-01

    Technology for the rapid detection and identification of chemical warfare (CW) residues on soil samples is being developed at the Idaho National Engineering and Environmental Laboratory (INEEL). The development effort is being undertaken because of a need for rapid and specific characterization for possibly contaminated soils samples, preferably in the field. Secondary ion mass spectrometry (SIMS) is being pursued for these applications because SIMS combines rapid, specific and sensitive surface analyses with the potential for small instrument size. This latter attribute suggests that field characterization using SIMS is possible, and this avenue is being supported by the Army at the INEEL. This paper describes ongoing development efforts focused on the development of small-scale, transportable SIMS instrumentation, and on the application of the technology to likely contamination scenarios.

  10. Chi-square test on candidate events from CW signal coherent searches

    NASA Astrophysics Data System (ADS)

    Itoh, Y.; Papa, M. A.; Krishnan, B.; Siemens, X.

    2004-10-01

    In a blind search for continuous gravitational wave signals scanning a wide frequency band one looks for candidate events with significantly large values of the detection statistic. Unfortunately, a noise line in the data may also produce a moderately large detection statistic. In this paper, we describe how we can distinguish between noise line events and actual continuous wave (CW) signals, based on the shape of the detection statistic as a function of the signal's frequency. We will analyse the case of a particular detection statistic, the F statistic, proposed by Jaranowski, Królak and Schutz. We will show that for a broad-band 10 h search, with a false dismissal rate smaller than 10-6, our method rejects about 70% of the large candidate events found in a typical data set from the second science run of the Hanford LIGO interferometer.

  11. Induced crystallization in CW laser-irradiated sol-gel deposited titania films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J.

    1993-12-31

    Isothermal annealing of amorphous TiO{sub 2} films deposited from acidic sol-gel precursor solutions results in film densification and concomitant increase in refractive index. Subsequent heating above 300C leads to irreversible transformation to an anatase crystalline phase. Similar phenomena occur when such amorphous films are subjected to focused cw laser irradiation. Controlled variations in laser fluence are used to densify or crystallize selected regions of the film. Low fluence conditioning leads to the evolution of a subtle nanograin-size morphology, evident in AFM images, which appears to retard subsequent film crystallization when such regions are subjected to higher laser fluence. Time-resolved Raman spectroscopy has been used to characterize irradiated regions in order to follow the crystallization kinetics, assess phase homogeneity, and evaluate accompanying changes in residual film stress.

  12. Role of inflammation in CW Nd:YAG contact transscleral photocoagulation and cryopexy

    SciTech Connect

    Schubert, H.D.; Federman, J.L.

    1989-03-01

    Cyclodestructive modalities in humans have been shown to be effective when applied 3.5 mm or more posterior to the limbus. Therefore, CW Nd:YAG contact transscleral laser and cryopexy were applied 6 mm posterior to the limbus of pigmented rabbits. The intraocular pressure (IOP), flare, iritis, cells and conjunctival hyperemia were monitored clinically up to 3 weeks. The pressure lowering effect was -7.5 +/- 7.7 mm Hg for laser retinopexy and -14.2 +/- 6.0 mm Hg for retinocryopexy at 3 weeks and was comparable to application of the same modalities directly over the ciliary body. Similarly, induction of intraocular inflammation by injecting 10 micrograms of endotoxin intravitreally lowered IOP significantly. These findings suggest that hypotension may not be directly due to cyclodestruction but may be related to the ocular irritative response and extent of neuroepithelial defect, irrespective of its distance from the limbus.

  13. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    PubMed

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  14. Remote wind sensing with a CW diode laser lidar beyond the coherence regime.

    PubMed

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-08-15

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime. PMID:25121897

  15. A near-surface plasma in the beam of a CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Vasiltsov, V. V.; Zabelin, A. M.; Zakharkina, O. L.; Lebedev, F. V.; Minnebaev, K. F.

    1985-07-01

    The effect of CW radiation from a CO2 laser on the plasma forming near the surface of a heated metal has been investigated experimentally. The power density of the CO2 laser was 1 million W/sq cm and the metal samples included alloys of zinc, copper and aluminum. A stationary erosion flame was found forming on the surface of the metals in the absence of an optical test vapor. No ionization of the surrounding target air was observed when the power density of the laser was increased to 2 million W/sq cm, and the optical discharge did not move from the target along the path of the laser beam. The results are used to develop criteria for selecting the operating parameters of a laser-based metals processing system.

  16. Comprehensive numerical model for cw vertical-cavity surface-emitting lasers

    SciTech Connect

    Hadley, G.R.; Lear, K.L.; Warren, M.E.; Choquette, K.D.; Scott, J.W.; Corzine, S.W.

    1995-03-01

    The authors present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes effecting cw operation of axisymmetric devices. In particular, the model includes a description of the 2D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination processes of these carriers within the wells, the 2D transport of heat throughout the device, and a multi-lateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. They employ the model to predict the behavior of higher-order lateral modes in proton-implanted devices, and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

  17. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Masuhara, Hiroshi; Sugiyama, Teruki; Yuyama, Ken-ichi; Usman, Anwar

    2015-02-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid-liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  18. Distributed Sensor Particles for Remote Fluorescence Detection of Trace Analytes: UXO/CW

    SciTech Connect

    SINGH, ANUP K.; GUPTA, ALOK; MULCHANDANI, ASHOK; CHEN, WILFRED; BHATIA, RIMPLE B.; SCHOENIGER, JOSEPH S.; ASHLEY, CAROL S.; BRINKER, C. JEFFREY; HANCE, BRADLEY G.; SCHMITT, RANDAL L.; JOHNSON, MARK S.; HARGIS JR., PHILIP J.; SIMONSON, ROBERT J.

    2001-11-01

    This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT.

  19. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1990-01-01

    A proposed conceptual design to increase the output power of an existing X-band planetary radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is discussed. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  20. Cutting of fiber reinforced polymers with a CW CO-2 laser: An experimental study

    NASA Astrophysics Data System (ADS)

    Flaum, M.

    1984-01-01

    A 250 W CO2 CW laser cutter auxiliary equipment, especially the gas nozzle with novel features for the protection gas (air, nitrogen, argon, helium, or carbon dioxide) are described. Cutting results, e.g., the dependance of maximum cutting speed on different parameters, are reported. A simple thermic model is given for the description of the influence of anisotropy. A method for cut quality diagnosis is outlined and preliminary tests presented. Good cutting results are noted for aramid fibers/epoxy and glass fibers/epoxy composites while boron fibers/epoxy and carbon fibers/epoxy were hard to process. As protection gas, carbon dioxide is preferable for glass fibers, and helium for boron fibers.

  1. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  2. Solvent effect on librational dynamics of spin-labelled haemoglobin by ED- and CW-EPR.

    PubMed

    Scarpelli, Francesco; Bartucci, Rosa; Sportelli, Luigi; Guzzi, Rita

    2011-03-01

    Two-pulse, echo-detected electron paramagnetic resonance (ED-EPR) spectra and continuous-wave EPR (CW-EPR) spectra were used to investigate the solvent effect on the librational motion of human haemoglobin spin-labelled on cysteine β93 with the nitroxide derivative of maleimide, 6-MSL. Protein samples fully hydrated in phosphate buffer solution (PBS), in a 60% v/v glycerol/water mixture and in the lyophilized form were measured at cryogenic temperature in the frozen state. The protein librational motion was characterized by the amplitude-correlation time product, <α²>τ(c), deduced from the ED-EPR spectra. The librational amplitude, <α²>τ(c), was determined independently, from the motionally averaged hyperfine splitting in the CW-EPR spectra, and the librational correlation time, τ(c), was derived from the combination of the pulsed and conventional EPR data. Rapid librational motion of small amplitude was detected in all samples. In each case, the librational dynamics was restricted up to 180 K, beyond which it increased steeply for the hydrated protein in PBS and in the presence of glycerol. In contrast, in the dehydrated protein, the librational dynamics was hindered and less dependent on temperature up to ~240 K. In all samples, <α²> deviated from small values only for T > 200 K, where a rapid increase of <α²> was evident for the hydrated samples, whereas limited temperature variation was shown in the lyophilized samples. The librational correlation time was in the sub-nanosecond regime and weakly dependent on temperature. The results evidence that solvent favours protein dynamics.

  3. Operation of a cw rf driven ion source with hydrogen and deuterium gas{sup a}

    SciTech Connect

    Melnychuk, S.T.; Debiak, T.W.; Sredniawski, J.J.

    1996-04-01

    We will describe the operation of a cw rf driven multicusp ion source designed for extraction of high current hydrogen and deuterium beams. The source is driven at 2 MHz by a 2.5 turn induction antenna immersed in the plasma. Bare stainless-steel and porcelain-coated Cu antennas have been used. The plasma load is matched to the rf generator by a variable tap {ital N}:1 transformer isolated to 46 kV, and an LC network on the secondary. With H{sub 2} gas the source can be operated at pressures between 5 and 60 mT with power reflection coefficients {lt}0.01. The extracted ion current density with a porcelain-coated antenna is approximately given by 35 mA/cm{sup 2}/kW with an 80 G dipole filter field for input powers from 3.5 to 6.6 kW. The current density remained constant for operation with a 6 and an 8 mm aperture. The source has been operated for 260 h at 3.6 kW with a single-porcelain-coated antenna. Mass spectrometer measurements of the extracted beam at this power show a species mix for H{sup +}:H{sup +}{sub 2}:H{sup +}{sub 3}:OH{sup +} of 0.49: 0.04: 0.42: 0.04. The calculated beam divergence using the IGUN code is compared with the measured divergence from an electrostatic sweep emittance scanner designed for high-power cw beam diagnostics. Phase space measurements at 40 kV and 23 mA beam current result in a normalized rms emittance of 0.09 {pi}mmmrad. {copyright} {ital 1996 American Institute of Physics.}

  4. Discharge-pumped cw gas lasers utilizing ``dressed-atom'' gain media

    NASA Astrophysics Data System (ADS)

    Sorokin, P. P.; Glownia, J. H.; Hodgson, R. T.

    2005-05-01

    The possibility of realizing an efficient gaseous laser-beam-generating medium that utilizes Λ -type coherently phased (i.e., “dressed”) atoms for the active laser species, but that does not inherently require the use of external laser beams for pumping, is explored. Specifically, it is investigated if multiphoton stimulated hyper-Raman scattering (SHRS) processes driven by fluorescence radiation generated in a continuous electrical discharge present within the vapor-containing cell could produce continuous-wave (cw) optical gain at the Λ -atom resonance frequencies ωo and ωo' . It is deduced that such gain could result from n -photon (n⩾4) SHRS processes only if absorption of fluorescence pump light occurs in the first three transitions of the n -photon sequence representing the process unit step. Estimates of the amount of optical gain that could be produced in such a system indicate that it should be sufficient to allow multiwatt cw laser operation to occur on one set of Λ transitions connecting levels in a “double- Λ ” structure, with the pump light being discharge-produced fluorescence centered about the transitions of the other Λ pair. However, to initiate operation of such a device would require injection into the laser optical cavity of intense “starter” laser pulses at both lasing frequencies. What should be an optimal experimental configuration for determining feasibility of the proposed laser device is described. In the suggested configuration, Cs-atom 6S1/2-6P1/2 transitions form the double- Λ structure.

  5. Selected Bacterial Strains Protect Artemia spp. from the Pathogenic Effects of Vibrio proteolyticus CW8T2

    PubMed Central

    Verschuere, Laurent; Heang, Hanglamong; Criel, Godelieve; Sorgeloos, Patrick; Verstraete, Willy

    2000-01-01

    In this study Vibrio proteolyticus CW8T2 has been identified as a virulent pathogen for Artemia spp. Its infection route has been visualized with transmission electron microscopy. The pathogen affected microvilli and gut epithelial cells, disrupted epithelial cell junctions, and reached the body cavity, where it devastated cells and tissues. In vivo antagonism tests showed that preemptive colonization of the culture water with nine selected bacterial strains protected Artemia juveniles against the pathogenic effects. Two categories of the selected strains could be distinguished: (i) strains providing total protection, as no mortality occurred 2 days after the experimental infection with V. proteolyticus CW8T2, with strain LVS8 as a representative, and (ii) strains providing partial protection, as significant but not total mortality was observed, with strain LVS2 as a representative. The growth of V. proteolyticus CW8T2 in the culture medium was slowed down in the presence of strains LVS2 and LVS8, but growth suppression was distinctly higher with LVS8 than with LVS2. It was striking that the strains that gave only partial protection against the pathogen in the in vivo antagonism test showed also a restricted capability to colonize the Artemia compared to the strains providing total protection. The in vivo antagonism tests and the filtrate experiments showed that probably no extracellular bacterial compounds were involved in the protective action but that the living cells were required to protect Artemia against V. proteolyticus CW8T2. PMID:10698783

  6. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    SciTech Connect

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  7. Design and Operation of a 100 kW CW X-band Klystron for Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Balkcum, Adam; Mizuhara, Al; Stockwell, Brad; Begum, Rasheda; Cox, Lydia; Forrest, Scott; Perrin, Mark; Zitelli, Lou; Hoppe, Dan; Britcliffe, Mike; Vodonos, Yakov; Liou, R. Roland; Stone, Ernest

    2012-01-01

    A 7.19 GHz klystron producing 100 kW CW of output power over 90 MHz of bandwidth has been designed and three klystrons manufactured for use in a new JPL/NASA transmitter for spacecraft communications. The klystron was fully characterized including its phase pushing figures.

  8. Colour centre LiF:F{2/s-} passive Q-switch for cw pumped Nd:Yag laser

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Kubeček, V.; Sochor, V.; Kubelka, J.

    1987-06-01

    Operation of a cw pumped Nd:YAG laser Q-switched by a LiF crystal containing F{2/s-} centres is reported. Pulses of duration of 230 ns with a repetition rate of 1 3 kHz were generated. The colour centre Q-switch was used for the period of three months without any observable deterioration.

  9. Genomic full-length sequence of HLA-Cw*0103 and *0108, identified by cloning and sequencing.

    PubMed

    Xu, Y-P; Yang, B-C; Gao, S-Q; Deng, Z-H; Xie, Z

    2010-02-01

    Genomic full-length sequences of human leukocyte antigen (HLA)-Cw*0103 and *0108 were identified by cloning and sequencing from two Chinese donors. All introns, exons 4-8, 5'-promoter, and 3'-UTR were found to be identical between these two alleles.

  10. All solid-state cw passively mode-locked Ti:sapphire laser using a colored glass filter

    SciTech Connect

    Sarukura, N.; Ishida, Y.; Yanagawa, T.; Nakano, H. )

    1990-07-16

    All solid-state cw passive mode locking of a Ti:sapphire laser is accomplished using a colored glass filter, instead of an organic dye, as a saturable absorber. The tuning range is remarkably wide (785--855 nm), and 2.7 ps pulses are obtained directly from the cavity.

  11. Nb/Al-Al2O3/Nb junctions with inductive tuning elements for a very low noise 205-250 GHz heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Lichtenberger, Arthur W.; Lea, Dallas M.; Mattauch, Robert J.; Lloyd, Frances L.

    1992-01-01

    The superconductor-insulator-superconductor (SIS) junction is the most sensitive nonlinear element for millimeter-wave heterodyne detection. An Nb/Al-Al203/Nb junction fabrication process has been developed which allows the use of planar tuning circuits integrated with the junctions. These tuning elements permit the use of junctions with relatively large areas and small current densities with excellent results. Recent measurements have yielded a double sideband receiver noise temperature less than 50 K from 205 to 240 GHz and 44 K at 230 GHz. This Nb/Al-Al203/Nb trilayer technology is also being extended to the fabrication of sub-square-micron area planar junctions for submillimeter-wavelengths.

  12. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    SciTech Connect

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-23

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010.Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of {approx}0.2x10{sup 19} m{sup -3} causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1x10{sup 19} m{sup -3}, central electron temperature reached 8.6 keV.Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35x10{sup 19} m{sup -3}) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy.Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N{sub ||} clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N{sub ||}, and the highest EC-driven current reached up to 42 kA.

  13. Immunogenetic profile of psoriasis vulgaris: association with haplotypes A2,B13,Cw6,DR7,DQA1*0201 and A1,B17,Cw6,DR7,DQA1*0201.

    PubMed

    Ikaheimo, I; Silvennoinen-Kassinen, S; Karvonen, J; Jarvinen, T; Tiilikainen, A

    1996-02-01

    Psoriasis vulgaris is a skin disease with an immunological and genetic background present in 1-3% of the population. We studied the genetic susceptibility to psoriasis vulgaris in Finns with serological HLA typing and genomic HLA class II typing of the DQ and DP loci to evaluate the risk of developing psoriasis. The haplotypes most frequently distinguishing between psoriatics and controls were those that carried Cw6 (P < 10(-8)), DQA1*0201 (P = 9.3 x 10(-6)) and DR7 (P = 3.9 x 10(-5)). The two most frequent marker haplotypes were A2,B13,Cw6,DR7, DQA1*0201 and A1,B17,Cw6,DR7,DQA1*0201, which were not found among the control subjects. A deficit of haplotype B8,DR3,DQ2 (2 out of 124 in the patients versus 15 out of 106 in the controls, P = 1.5 x 10(-4)) was found, and this was in accordance with a slightly decreased frequency of DQA1*0501 (P = 3.1 x 10(-2)), which was usually linked with this haplotype. These results stimulate the research for a genetic resistance factor in psoriasis. Thus, this report sheds further light on the immunogenetic background of psoriasis in Finland. We conclude that the inheritance of psoriasis has a polygenic mode, in which the Cw6,DR7,DQA1*0201 combination seems to be important (P = 7.5 x 10(-7), relative risk 24.4, aetiological factor 0.29).

  14. Two-tier calibrated electro-optic sensing system for intense field characterization of high-power W-band gyrotron.

    PubMed

    Kim, Seok; Hong, Young-Pyo; Yang, Jong-Won; Lee, Dong-Joon

    2016-05-16

    We present a field-calibrated electro-optic sensing system for measurement of the electric field radiating from a high-power vacuum oscillator at ~95 GHz. The intense electric field is measured in absolute scale via two probe-calibration steps, associated with a photonic heterodyne scheme. First, a micro-electro-optic probe, fabricated to less than one-tenth the oscillation wavelength scale to minimize field-perturbation due to the probe, is placed on the aperture of a field-calculable WR-10 waveguide to calibrate the probe in V/m scale. Then, using this arrangement as a calibrated reference probe at the first-tier position, another probe-bulkier, and thus more robust and sensitive but not accessible to the aperture-is calibrated at the second-tier position away from the waveguide aperture. This two-tier calibrated probe was utilized to diagnose the sub-MV/m scale of intense electric fields and emissions from a high-power W-band gyrotron. The experimental results obtained proved consistent with calculated analytical results-verifying the efficacy of the developed system. PMID:27409877

  15. Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit

    SciTech Connect

    Du Chaohai; Liu Pukun

    2010-03-15

    The stability of the millimeter-wave gyrotron-traveling-wave-tube (gyro-TWT) amplifier can be effectively improved via controlling the propagation characteristics of the operating modes using lossy dielectric-lined (DL) waveguide. Self-consistent nonlinear theory of the electron cyclotron maser (ECM) interaction in lossy DL circuit is developed based on a full-wave study of the propagation characteristics of the DL waveguide. This nonlinear theory fully takes into consideration the waveguide structure and the lossy dielectric characteristics. It is capable of accurately calculating the ECM instability between a cyclotron harmonic and a circular polarized mode, and effectively predicting the nonlinear stability of the DL waveguide-based gyro-TWT. Systematic investigation of a Ka-band TE{sub 01} mode DL waveguide-based gyro-TWT is carried out, and numerical calculation reveals a series of interesting results. This work provides a basic theoretical tool for further exploring the application of the lossy DL waveguide in millimeter-wave gyro-TWTs.

  16. Production of High Intracavity UV Power From a CW Laser Source

    NASA Technical Reports Server (NTRS)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  17. ARBRES: light-weight CW/FM SAR sensors for small UAVs.

    PubMed

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  18. Z-scan measurements of single walled carbon nanotube doped acetylenedicarboxylic acid polymer under CW laser

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Allaf, A. W.; Allahham, A.; AL-Zier, A.

    2016-06-01

    Z-scan measurements of single walled carbon nanotube (SWCNT) doped with acetylenedicarboxylic acid (ADC) polymer are performed using a CW diode laser at 635 nm wavelength with 17 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the real and imaginary parts of the third-order nonlinear optical susceptibility (Re χ3), (Im χ3) of the investigated samples are calculated. It was found that the β values decrease with increase in on-axis input intensity I0. Also, these values are found to be proportional with sample concentrations. The excited-state absorption cross sections were calculated to be at σex=5.08×10-14 cm2 for the (SWCNT) and at 15.1×10-14 cm2 for the ADC polymer. It was found that the σex is larger than ground-state absorption cross sections, indicating that the reverse saturable absorption mechanism (RSA) is the dominating mechanism for the observed absorption nonlinearities.

  19. The beam commissioning of a CW high charge state heavy ion RFQ

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Lu, Y. R.; Yin, X. J.; Yang, Y. Q.; Gao, S. L.; Wang, Z.; He, Y.; Liu, G.; Zhang, X. H.; Yuan, Y. J.; Zhao, H. W.; Xia, J. W.; Chen, C. E.

    2015-09-01

    The SSC-LINAC project is launched at Institute of Modern Physics in China to develop one new linear accelerator (LINAC) injector for separated sector cyclotron (SSC). It includes a high charge state ion source, a CW RFQ and a DTL section, and is designed to accelerate ions up to 580 keV/u. Now the ion source and the RFQ cavity have been installed in the main hall and the beam commissioning has been carried out. Two kinds of ions have been tested, 16O5+ and 40Ar8+. The experiment result of 16O5+ is: the measured beam current is 180 μA at entrance of RFQ and 150 μA at exit of RFQ. The output energy of 16O5+ is 141.89 keV/u. The measured beam current is 210 μA at entrance of RFQ and 198 μA at exit of RFQ for 40Ar8+. The output energy of 40Ar8+ is 142.78 keV/u. The experiment results agree with the design parameters of RFQ very well. This paper presents: the design consideration of beam dynamics, RF and cooling structure design; measurement of the cold model; high power test of RFQ and beam commissioning result.

  20. Highly efficient high power CW and Q-switched Ho:YLF laser

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, J.

    2015-06-01

    An efficient operation of a Ho:YLF laser pumped by a Tm-doped fibre laser is reported. The research in a continuous-wave (CW) operation was done for two crystals of the same 0.5 at.%Ho dopant concentration and with different lengths (3×3×30 mm3 and 3×3×50 mm3). For an output coupling transmission of 20% and a crystal length of 50 mm, the maximum CWoutput power of 38.9 W for 81.4 W of incident pump power, corresponding to the slope efficiency of 52.3% and optical-to-optical conversion efficiency of 47.8% (determined with respect to the incident pump power) was achieved. The highest opti- cal-to-optical conversion efficiency of 70.2% with respect to the absorbed pump power was obtained. The influence of a heat-sink cooling water temperature on theCWlaser performance was studied. For a Q-switched operation the pulse repe- tition frequency (PRF) was changed from 2 to 10 kHz. The maximum average output power of 34.1 W at the PRF of 10 kHz was obtained for a 50 mm holmium crystal length. For 2 kHz PRF and 71.9 W of incident pump power, pulse energies of 13.7 mJ with a 21 ns FWHM pulse width corresponding to 652 kW peak power were recorded.