Sample records for cw laser based

  1. Experimental study of a quantum random-number generator based on two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  2. Applications of FM-CW laser radar to antenna contour mapping

    NASA Technical Reports Server (NTRS)

    Slotwinski, A. R.

    1989-01-01

    The FM-CW coherent laser radar concept, based on the FM radar principle which makes use of the coherence and lunability of injection laser diodes, is discussed. Laser radar precision/time tradeoffs, block diagrams, system performance, fiber optic system implantation, and receiver improvements are briefly described.

  3. Very compact and high-power CW self-Raman laser for ophthalmological applications

    NASA Astrophysics Data System (ADS)

    Ortega, Tiago A.; Mota, Alessandro D.; Rossi, Giuliano; C. de Castro, Guilherme; Fontes, Yuri C.; Costal, Glauco Z.; Yasuoka, Fatima M. M.; Stefani, Mario A.; Lee, Andrew; Pask, Helen; C. de Castro N., Jarbas

    2010-02-01

    In this work, we present a continuous-wave yellow laser operating at 586.5nm based on self-Raman conversion in Nd:GdVO4. We report more than 4.2W CW and 5.5W instantaneous output at a 50% duty cycle regime. This is the highest CW power of a self-Raman laser to be reported so far. We also demonstrate the integration of this laser cavity into a console for applications in ophthalmology, and more specifically for retinal photocoagulation therapies.

  4. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  5. CW Laser radar for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel; Aldén, Marcus; Bood, Joakim

    2018-04-01

    A CW-laser radar system developed for combustion diagnostics is described. The system is based on triangulation to attain range information. A portable system has been constructed and here we show some result from measurements in various flames, for example Rayleigh scattering thermometry and monitoring of particle distributions with high temporal and spatial resolution. The concept can equally well be based on pulsed lasers, allowing suppression of background emission through gated detection.

  6. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    NASA Astrophysics Data System (ADS)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  7. Tunable Single-Frequency Near IR Lasers for DIAL Applications

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.

    2000-01-01

    Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.

  8. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  9. 3 μm CW lasers for myringotomy and microsurgery.

    PubMed

    Linden, Kurt J; Pfeffer, Christian P; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S

    2013-03-08

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.

  10. 3-μm CW lasers for myringotomy and microsurgery

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D'Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.

    2013-03-01

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899.

  11. 3 μm CW lasers for myringotomy and microsurgery

    PubMed Central

    Linden, Kurt J.; Pfeffer, Christian P.; Sousa, John Gary; D’Alleva, Nicholas; Aslani, Arash; Gorski, Grzegorz; Kenna, Margaret; Poe, Dennis S.

    2013-01-01

    This paper describes the development and implementation of 3 μm lasers for myringotomy and microsurgery. Two different lasers were investigated. The first, an Er-doped, CW zirconate glass fiber laser optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.76 μm with concomitant green incoherent emission that served as a convenient visible illumination beam. The second, a 1 W CW Er:YAG solid-state laser also optically pumped by a 970 nm diode laser, emitted > 1 W of CW power at 2.94 μm, coincident with the strongest infrared water absorption peak. Running CW, both lasers are expected to avoid the loud acoustical shocks associated with pulsed lasers. Myringotomies were carried out with the Er:YAG laser on anaesthetized guinea pigs and the effects of the laser were documented. Laser ablated samples of tympanic membrane, soft tissue and bone were histologically examined. Histology results indicated that the CW Er:YAG laser is a potential candidate for a new myringotomy tool and possibly for otologic microsurgery, but deliverable power levels need to be increased to the 2 W (or higher) level. This work was funded under NIH SBIR Grant No. 5R44DC004899. PMID:24382990

  12. A model for a continuous-wave iodine laser

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Tabibi, Bagher M.

    1990-01-01

    A model for a continuous-wave (CW) iodine laser has been developed and compared with the experimental results obtained from a solar-simulator-pumped CW iodine laser. The agreement between the calculated laser power output and the experimental results is generally good for various laser parameters even when the model includes only prominent rate coefficients. The flow velocity dependence of the output power shows that the CW iodine laser cannot be achieved with a flow velocity below 1 m/s for the present solar-simulator-pumped CW iodine laser system.

  13. Endoluminal laser delivery mode and wavelength effects on varicose veins in an ex vivo model.

    PubMed

    Massaki, Ane B M N; Kiripolsky, Monika G; Detwiler, Susan P; Goldman, Mitchel P

    2013-02-01

    Endovenous laser ablation (EVLA) has been shown to be effective for the elimination of saphenous veins and associated reflux. Mechanism is known to be heat related, but precise way in which heat causes vein ablation is not completely known. This study aimed to determine the effects of various endovenous laser wavelengths and delivery modes on ex vivo human vein both macroscopically and microscopically. We also evaluated whether protected-tip fibers, consisting of prototype silica fibers with a metal tube over the distal end, reduced vein wall perforations compared with non-protected-tip fibers. An ex vivo EVLA model with human veins harvested during ambulatory phlebectomy procedures was used. Six laser fiber combinations were tested: 810 nm continuous wave (CW) diode laser with a flat tip fiber, 810 CW diode laser with a protected tip fiber, 1,320 nm pulsed Nd:YAG laser, 1,310 nm CW diode laser, 1,470 nm CW diode laser, and 2,100 nm pulsed Ho:YAG laser. Perforation or full thickness necrosis of a portion of the vein wall was observed in 5/11 (45%), 0/11 (0%), 3/22 (14%), 7/11 (64%), 4/6 (67%), and 5/10 (50%) of cross-sections of veins treated with the 810 nm CW diode laser with a flat tip fiber, the 810 CW diode laser with a protected tip fiber, the 1,320 nm pulsed Nd:YAG laser, the 1,310 nm CW diode laser, the 1,470 nm CW diode laser, and the 2,100 nm pulsed Ho:YAG laser, respectively. Our results have shown that the delivery mode, pulsed Nd:YAG versus CW, may be just as important as the wavelength. Therefore, the 1,310 nm CW laser may not be equivalent to the 1,320 nm pulsed laser. In addition, protected 810 nm fibers may be less likely to yield wall perforations than their non-protected counterparts. Copyright © 2012 Wiley Periodicals, Inc.

  14. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  15. CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating.

    PubMed

    Zhang, Jun; Peng, Hangyu; Fu, Xihong; Liu, Yun; Qin, Li; Miao, Guoqing; Wang, Lijun

    2013-02-11

    An external cavity structure based on the -1st transmission grating is introduced to spectral beam combining a 970 nm diode laser bar. A CW output power of 50.8 W, an electro-optical conversion efficiency of 45%, a spectral beam combining efficiency of 90.2% and a holistic M(2) value of 10.9 are achieved. This shows a way for a diode laser source with several KW power and diffraction-limited beam quality at the same time.

  16. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  17. Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric

    NASA Astrophysics Data System (ADS)

    Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya

    2018-02-01

    Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.

  18. Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.

    PubMed

    Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U

    2015-08-01

    Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.

  19. Diode-pumped cw Nd:YAG three-level laser at 869 nm.

    PubMed

    Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang

    2010-11-01

    We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.

  20. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

    NASA Technical Reports Server (NTRS)

    Awtry, A. R.; Miller, J. H.

    2002-01-01

    The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 micrometers is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated.

  1. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.

    PubMed

    Lim, Hyun Soo

    2012-12-01

    General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.

  2. Free space optical communication based on pulsed lasers

    NASA Astrophysics Data System (ADS)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  3. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  4. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers

    NASA Astrophysics Data System (ADS)

    Huang, Xiaohua; Kang, Bin; Qian, Wei; Mackey, Megan A.; Chen, Po C.; Oyelere, Adegboyega K.; El-Sayed, Ivan H.; El-Sayed, Mostafa A.

    2010-09-01

    We conduct a comparative study on the efficiency and cell death pathways of continuous wave (cw) and nanosecond pulsed laser photothermal cancer therapy using gold nanospheres delivered to either the cytoplasm or nucleus of cancer cells. Cytoplasm localization is achieved using arginine-glycine-aspartate peptide modified gold nanospheres, which target integrin receptors on the cell surface and are subsequently internalized by the cells. Nuclear delivery is achieved by conjugating the gold nanospheres with nuclear localization sequence peptides originating from the simian virus. Photothermal experiments show that cell death can be induced with a single pulse of a nanosecond laser more efficiently than with a cw laser. When the cw laser is applied, gold nanospheres localized in the cytoplasm are more effective in inducing cell destruction than gold nanospheres localized at the nucleus. The opposite effect is observed when the nanosecond pulsed laser is used, suggesting that plasmonic field enhancement of the nonlinear absorption processes occurs at high localization of gold nanospheres at the nucleus. Cell death pathways are further investigated via a standard apoptosis kit to show that the cell death mechanisms depend on the type of laser used. While the cw laser induces cell death via apoptosis, the nanosecond pulsed laser leads to cell necrosis. These studies add mechanistic insight to gold nanoparticle-based photothermal therapy of cancer.

  5. Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO(4) crystal.

    PubMed

    Castaing, Marc; Balembois, François; Georges, Patrick

    2008-09-01

    We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO(4) laser operating in a cw on the pure three-level laser line at 880 nm. We obtained 300 mW at 440 nm for 23 W of incident pump power at 808 nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9 W at the fundamental wavelength at 880 nm.

  6. Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi

    Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devicesmore » showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.« less

  7. Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers

    DOE PAGES

    Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; ...

    2017-03-24

    Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devicesmore » showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.« less

  8. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  9. CW and Q-switched GGG/Er:Pr:GGG/GGG composite crystal laser at 2.7 µm

    NASA Astrophysics Data System (ADS)

    You, Z. Y.; Wang, Y.; Sun, Y. J.; Xu, J. L.; Zhu, Z. J.; Li, J. F.; Wang, H. Y.; Tu, C. Y.

    2017-04-01

    We report the continuous-wave (CW) and passively Q-switched laser operations of a GGG/Er:Pr:GGG/GGG composite crystal at about 2.7 µm. Owing to the alleviation of the thermal lensing effect, the CW laser with a maximum output power of 463 mW was obtained with a slope efficiency of 15.5%. Based on the broadband saturable absorption property, a graphene saturable absorber (SA) mirror was fabricated and employed for realizing the Q-switched mid-infrared laser. Under an absorbed pump power of 2.47 W, an average output power of 186 mW was generated with a slope efficiency of 12.3%. The pulse width and the repetition rate of the laser were 360 ns and 120.5 kHz, respectively. These results indicate that the Er:Pr:GGG crystal, with the relatively lower upper-level lifetime, shows great promise for generating a short pulsed 2.7 µm mid-infrared laser using the graphene SA.

  10. Two-wavelength, passive self-injection-controlled operation of diode-pumped cw Yb-doped crystal lasers.

    PubMed

    Louyer, Yann; Wallerand, Jean-Pierre; Himbert, Marc; Deneva, Margarita; Nenchev, Marin

    2003-09-20

    We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023-1033-nm (1030-1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.

  11. All-solid-state cw frequency-doubling Nd:YLiF4/LBO blue laser with 4.33 W output power at 454 nm under in-band diode pumping at 880 nm.

    PubMed

    Lü, Yanfei; Zhang, Xihe; Cheng, Weibo; Xia, Jing

    2010-07-20

    We generated efficient blue laser output at 454 nm by intracavity frequency doubling of a continuous-wave (cw) diode-pumped Nd:YLiF(4) (Nd:YLF) laser at 908 nm based on the (4)F(3/2)-(4)I(9/2) transition. With 32.8 W of incident pump power at 880 nm and the frequency-doubling crystal LiB(3)O(5), a level as high as 4.33 W of cw output power at 454 nm is achieved, corresponding to an optical conversion efficiency of 13.2% with respect to the incident pump power. To the best of our knowledge, this is the first blue laser at 454 nm generated by intracavity frequency doubling of a diode-pumped Nd:YLF.

  12. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  13. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    PubMed

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  14. 1059 and 1328nm LD pumped Nd:S-FAP solid state laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Lianke; Zhang Shaojun; Zhao Shengzhi

    In this paper the authors introduce a new laser crystal--Nd{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F, Nd:S-FAP, and present its optical and physical characteristics. Based on the experiment lasing performance of CW LD pumped Nd:S-FAP crystal is reported here: the threshold and slope efficiency of 1059 nm Nd:S-FAP laser pumped by CW LD at 805nm are 7mW and 41%, and that of 1328nm Nd:S-FAP laser are 19mW and 35%. The comparison between experimental result and theoretical calculation is also discussed in this paper.

  15. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and their combination may provide an alternative to conventional Ho:YAG and KTP lasers for applications in urology and other surgical fields.

  16. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    PubMed

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  17. Nanosecond pulse lasers for retinal applications.

    PubMed

    Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J

    2011-08-01

    Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have important implications for the treatment of retinal disease. Copyright © 2011 Wiley-Liss, Inc.

  18. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    PubMed

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  19. Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.

  20. Modelling and experimental study of temperature profiles in cw laser diode bars

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Gordeev, V. P.; Krokhin, O. N.; Mikaelyan, G. T.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.

    2018-02-01

    Three-dimensional simulation is used to theoretically assess temperature profiles in proposed 10-mm-wide cw laser diode bars packaged in a standard heat spreader of the C - S mount type with the aim of raising their reliable cw output power. We obtain calculated temperature differences across the emitting aperture and along the cavity. Using experimental laser bar samples with up to 60 W of cw output power, the emission spectra of individual clusters are measured at different pump currents. We compare and discuss the simulation results and experimental data.

  1. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  2. Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs.

    PubMed

    Hansen, Michael G; Ernsting, Ingo; Vasilyev, Sergey V; Grisard, Arnaud; Lallier, Eric; Gérard, Bruno; Schiller, Stephan

    2013-11-04

    We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.2 µm by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 µm fiber laser. Both the 1.2 µm and the 1.5 µm waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.

  3. A compact, inexpensive infrared laser system for continuous-wave optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2014-03-01

    Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.

  4. Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; Magee, James R.

    1991-01-01

    Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.

  5. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang

    2001-10-01

    Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.

  6. Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding

    NASA Astrophysics Data System (ADS)

    Bilici, Temel; Tabakoğlu, Haşim Özgür; Topaloğlu, Nermin; Kalaycıoğlu, Hamit; Kurt, Adnan; Sennaroglu, Alphan; Gülsoy, Murat

    2010-05-01

    Our aim is to explore the welding capabilities of a thulium (Tm:YAP) laser in modulated and continuous-wave (CW) modes of operation. The Tm:YAP laser system developed for this study includes a Tm:YAP laser resonator, diode laser driver, water chiller, modulation controller unit, and acquisition/control software. Full-thickness incisions on Wistar rat skin were welded by the Tm:YAP laser system at 100 mW and 5 s in both modulated and CW modes of operation (34.66 W/cm2). The skin samples were examined during a 21-day healing period by histology and tensile tests. The results were compared with the samples closed by conventional suture technique. For the laser groups, immediate closure at the surface layers of the incisions was observed. Full closures were observed for both modulated and CW modes of operation at day 4. The tensile forces for both modulated and CW modes of operation were found to be significantly higher than the values found by conventional suture technique. The 1980-nm Tm:YAP laser system operating in both modulated and CW modes maximizes the therapeutic effect while minimizing undesired side effects of laser tissue welding. Hence, it is a potentially important alternative tool to the conventional suturing technique.

  7. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  8. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers

    NASA Astrophysics Data System (ADS)

    Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca

    2014-06-01

    We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.

  9. High-power CW laser using hydrogen-fluorine reaction

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1975-01-01

    Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.

  10. Fast and broadband detector for laser radiation

    NASA Astrophysics Data System (ADS)

    Scorticati, Davide; Crapella, Giacomo; Pellegrino, Sergio

    2018-02-01

    We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources. The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers. Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.

  11. Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm.

    PubMed

    Demirbas, Umit; Baali, Ilyes

    2015-10-15

    We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.

  12. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  13. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  14. Light Source Effects on Aerosol Photoacoustic Spectroscopy Measurements

    PubMed Central

    Radney, James G.; Zangmeister, Christopher D.

    2016-01-01

    Photoacoustic spectroscopy measurements of flame-generated soot aerosol coated with small amounts of water yielded absorption enhancements that were dependent on the laser used: quasi-continuous wave (Q-CW, ≈ 650 ps pulse duration and 78 MHz repetition rate) versus continuous wave (CW). Water coating thickness was controlled by exposing the aerosol to a set relative humidity (RH). At ≈ 85 % RH, the mass of the soot particles increased by an amount comparable to a monolayer of water being deposited and enhanced the measured absorption by 36 % and 15 % for the Q-CW and CW lasers, respectively. Extinction measurements were also performed using a cavity ring-down spectrometer (extinction equals the sum of absorption and scattering) with a CW laser and negligible enhancement was observed at all RH. These findings demonstrate that source choice can impact measurements of aerosols with volatile coatings and that the absorption enhancements at high RH previously measured by Radney and Zangmeister (2015) [1] are the result of laser source used (Q-CW) and not from an increase in the particle absorption cross section. PMID:28066027

  15. Ring laser having an output at a single frequency

    DOEpatents

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  16. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    PubMed

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this hypothesis. Pulsed lasers with higher peak powers provided better hemostatic effects than CW lasers. The degree of lipolysis depended on wavelength, laser power, and energy density. Subdermal laser irradiation can stimulate collagen deposition in subdermal tissue and reticular dermis.

  17. Reliable high-power diode lasers: thermo-mechanical fatigue aspects

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Gridish, Yaakov; Szafranek, Igor; Karni, Yoram

    2006-02-01

    High power water-cooled diode lasers are finding increasing demand in biomedical, cosmetic and industrial applications, where repetitive cw (continuous wave) and pulsed cw operation modes are required. When operating in such modes, the lasers experience numerous complete thermal cycles between "cold" heat sink temperature and the "hot" temperature typical of thermally equilibrated cw operation. It is clearly demonstrated that the main failure mechanism directly linked to repetitive cw operation is thermo-mechanical fatigue of the solder joints adjacent to the laser bars, especially when "soft" solders are used. Analyses of the bonding interfaces were carried out using scanning electron microscopy. It was observed that intermetallic compounds, formed already during the bonding process, lead to the solders fatigue both on the p- and n-side of the laser bar. Fatigue failure of solder joints in repetitive cw operation reduces useful lifetime of the stacks to hundreds hours, in comparison with more than 10,000 hours lifetime typically demonstrated in commonly adopted non-stop cw reliability testing programs. It is shown, that proper selection of package materials and solders, careful design of fatigue sensitive parts and burn-in screening in the hard pulse operation mode allow considerable increase of lifetime and reliability, without compromising the device efficiency, optical power density and compactness.

  18. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  19. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22  μm.

    PubMed

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory

    2017-11-01

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1  cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.

  20. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less

  1. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22 μm

    DOE PAGES

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...

    2017-10-18

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less

  2. CW laser pumped emerald laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  3. Time Dependent Pulse Amplification in a Three Level Gas.

    DTIC Science & Technology

    1980-12-01

    02912 I Accession For NTIS GRA&I DTIC TA January 1, 1980 - December 31, 1980 Utuiaouneed D • "" ~justiflteatl Jietributlio/ A’vailabilit- #odes...U. Huebner, and G. Schinn, Gain in CW Laser Pumped FIR Laser Gases, IEEE J. Quant. Electon., Vol. QE-16, p. 392, 1980 . 13. G. D. Willenberg, U...Huebner, and J. Heppner, Far-Infrared CW Lasing in NH3 , Optics Comm., Vol, 33, p. 193, 1980 . 14. J. Heppner and U. Huebner, Gain saturation of CW Laser

  4. 75 FR 3895 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... instrument must be able to perform using lasers with both continuous wave (CW) and pulsed mode. The use of picoseconds pulsed lasers is necessary to measure fluorescence lifetime. The use of CW lasers, so that the... controls the laser head provides user-selectable pulsed repetition rates. This instrument is unique in that...

  5. Continuous-wave Nd:GYSGG laser at 1.1 μm

    NASA Astrophysics Data System (ADS)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Copner, Nigel; Sun, Dong

    2018-02-01

    We demonstrated a compact and simple continuous-wave (CW) Nd:GYSGG laser with triple-wavelength lines at 1105, 1107 and 1110 nm based on R2 → Y6, R1 → Y5 and R1 → Y6 of the 4F3/2 → 4I11/2 transition. The total output power of the triple-wavelength lines was 480 mW. Moreover, we obtained an efficient CW Nd:GYSGG laser at 1110 nm with the output power of 1560 mW at the pump power of 11.05 W. Those lines at 1058 and 1062 nm were suppressed completely by the simple output mirror of high transmission at 1.06 μm.

  6. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    NASA Astrophysics Data System (ADS)

    Mezhenin, A. V.; Azyazov, V. N.

    2012-12-01

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio Π. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at τd <= 7. Efficient energy extraction from the OIL active medium is achieved in the case of τd = 5 - 7, Π = 4 - 8.

  7. DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Norbert; Schmidt, Berthold E.; Fily, Arnaud; Weiss, Stefan; Arlt, Sebastian; Pawlik, Susanne; Sverdlov, Boris; Muller, Jurgen; Harder, Christoph S.

    2004-06-01

    Diode-pumped solid state laser (DPSSL) and fiber laser (FL) are believed to become the dominant systems of very high power lasers in the industrial environment. Today, ranging from 100 W to 5 - 10 kW in light output power, their field of applications spread from biomedical and sensoring to material processing. Key driver for the wide spread of such systems is a competitive ratio of cost, performance and reliability. Enabling high power, highly reliable broad-area laser diodes and laser diode bars with excellent performance at the relevant wavelengths can further optimize this ratio. In this communication we present, that this can be achieved by leveraging the tremendous improvements in reliability and performance together with the high volume, low cost manufacturing areas established during the "telecom-bubble." From today's generations of 980-nm narrow-stripe laser diodes 1.8 W of maximum CW output power can be obtained fulfilling the stringent telecom reliability at operating conditions. Single-emitter broad-area lasers deliver in excess of 11 W CW while from similar 940-nm laser bars more than 160 W output power (CW) can be obtained at 200 A. In addition, introducing telecom-grade AuSn-solder mounting technology on expansion matched subassemblies enables excellent reliability performance. Degradation rates of less than 1% over 1000 h at 60 A are observed for both 808-nm and 940-nm laser bars even under harsh intermittent operation conditions.

  8. Low-threshold, CW, all-solid-state Ti:Al2O3 laser

    NASA Technical Reports Server (NTRS)

    Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.

    1991-01-01

    A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.

  9. Life problems of dc and RF-excited low-power CW CO2 waveguide lasers

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.; Haldemann, P. R.

    1986-01-01

    A number of different, RF-excited 3-W CW CO2 waveguide lasers have been built. Four of these lasers, after continuously working for 15,000-30,000 h, still yield about 70 percent of their original power output. The design variations cover N2and CO-bearing gas mixtures, as well as internal- and external-capacitively coupled excitation electrodes. A similar laser survived 50,000 5-min-ON/5-min-OFF cycles without significant mirror damage. It was not possible to find suitable cold cathodes that allow the building of longitudinally dc-excited CW CO2 waveguide lasers that work for such extended periods of time.

  10. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  11. Resonantly diode-pumped Er:YAG laser: 1470-nm versus 1530-nm CW pumping case

    NASA Astrophysics Data System (ADS)

    Kudryashov, Igor; Ter-Gabrielyan, Nikolai; Dubinskii, Mark

    2009-05-01

    Growing interest to high power lasers in the eye-safe spectral domain initiated a new wave of activity in developing solid-state lasers based on bulk Er3+-doped materials. The resonant pumping of SSL allows for shifting significant part of thermal load from gain medium itself to the pump diodes, thus greatly reducing gain medium thermal distortions deleterious to SSL power scaling with high beam quality. The two major resonant pumping bands in Er:YAG are centered around 1470 and 1532 nm. Pumping into each of these bands has its pros and contras. The best approach to resonant pumping of Er:YAG active media in terms of pump wavelength is yet to be determined. We report the investigation results of high power diode-pumped Er:YAG laser aimed at direct comparison of resonant pumping at 1470 and 1532 nm. Two sources used for pumping were: 1530-nm 10-diode bar stack (>300 W CW) and 1470-nm 10-diode bar stack (>650 W CW). Both pumps were spectrally narrowed by external volume Bragg gratings. The obtained spectral width of less than 1 nm allowed for 'in-line' pumping of Er3+ in either band. The obtained CW power of over 87 W is, to the best of our knowledge, the record high power reported for resonantly pumped Er:YAG DPSSL at room temperature.

  12. VCSEL Scaling, Laser Integration on Silicon, and Bit Energy

    DTIC Science & Technology

    2017-03-01

    need of high efficiency with high temperature operation eliminates essentially all laser diode technologies except VCSELs. Therefore scaling of the...CW laser diode and separate modulator. Lower diagram circuitry shows the case for a DML VCSEL. The small gain volume and high speed modulation...speed of the modulator. However the CW laser that is needed for the modulator appears to create a technological roadblock for laser diode platforms

  13. Highly efficient quantum dot-based photoconductive THz materials and devices

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  14. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  15. Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)

    2015-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  16. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Forman, Charles A.; Lee, SeungGeun; Young, Erin C.; Kearns, Jared A.; Cohen, Daniel A.; Leonard, John T.; Margalith, Tal; DenBaars, Steven P.; Nakamura, Shuji

    2018-03-01

    We have achieved continuous-wave (CW) operation of an optically polarized m-plane GaN-based vertical-cavity surface-emitting laser (VCSEL) with an ion implanted current aperture, a tunnel junction intracavity contact, and a dual dielectric distributed Bragg reflector design. The reported VCSEL has 2 quantum wells, with a 14 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 23 λ total cavity thickness. The thermal performance was improved by increasing the cavity length and using Au-In solid-liquid interdiffusion bonding, which led to lasing under CW operation for over 20 min. Lasing wavelengths under pulsed operation were observed at 406 nm, 412 nm, and 419 nm. Only the latter two modes appeared under CW operation due to the redshifted gain at higher temperatures. The peak output powers for a 6 μm aperture VCSEL under CW and pulsed operation were 140 μW and 700 μW, respectively. The fundamental transverse mode was observed without the presence of filamentary lasing. The thermal impedance was estimated to be ˜1400 °C/W for a 6 μm aperture 23 λ VCSEL.

  17. Low-cost, single-mode diode-pumped Cr:Colquiriite lasers.

    PubMed

    Demirbas, Umit; Li, Duo; Birge, Jonathan R; Sennaroglu, Alphan; Petrich, Gale S; Kolodziejski, Leslie A; Kaertner, Franz X; Fujimoto, James G

    2009-08-03

    We present three Cr3+:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with approximately 520 mW of absorbed pump power, up to 257, 269 and 266 mW of output power and slope efficiencies of 53%, 62% and 54% were demonstrated for Cr:LiSAF, Cr:LiSGaF and Cr:LiCAF, respectively. Record cw tuning ranges from 782 to 1042 nm for Cr:LiSAF, 777 to 977 nm for Cr:LiSGaF, and 754 to 871 nm for Cr:LiCAF were demonstrated. In cw mode-locking experiments using semiconductor saturable absorber mirrors at 800 and 850 nm, Cr:Colquiriite lasers produced approximately 50-100 fs pulses with approximately 1-2.5 nJ pulse energies at approximately 100 MHz repetition rate. Electrical-to-optical conversion efficiencies of 8% in mode-locked operation and 12% in cw operation were achieved.

  18. Photothermal therapy to damage PC3 cancer cells: in vitro studies of a pulsed laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zamora-Romero, Noe; Aguilar, Guillermo; Devia-Cruz, Luis F.; Banks, Darren; Zhang, Bin; Halaney, David L.

    2017-02-01

    Laser-nanoparticles interactions have been widely used for several years. In biomedicine, several in vitro and in vivo experiments have shown promising results for the detection and treatment of cancer. One of the techniques of interest to us, is the nanoparticle-assisted photothermal therapy (PTT), which consists of irradiating cancer cells incubated with nanoparticles with either a pulsed or continuous (cw) laser in order to damage the cells. However, there is still a debate over which type of laser is most effective for PTT for cancer treatment. On the one hand, cw lasers are minimally invasive and can be used for both detection and treatment of tumors. On the other hand, pulsed lasers offer great spatial precision and can deposit higher energy fluences than cw lasers, making them very efficient for inducing cavitation to damage cancer cells and tumors mechanically. The aim of this study is to investigate whether simultaneous application of cw and pulsed laser could offer a synergetic enhancement of PTT efficacy to damage cancer cells in vitro, compared to either laser applied individually. PTT efficacy is evaluated through cell viability tests following the irradiation of prostate cancer (PC3) cells incubated with gold nanorods (5.7 X10 10 p/ml). By irradiating the PC3-nanorod solution with the cw laser at 808 nm for 60 seconds, the temperature increases from 37.5 to 45°C, which damages some cancer cells via the heat shock response within the cells, and also could increase their sensitivity to the mechanical stress caused by the shock wave generated from inducing cavitation in the solution by the pulsed laser irradiation.

  19. Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2015-05-01

    Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.

  20. Analytical solution of the transient temperature profile in gain medium of passively Q-switched microchip laser.

    PubMed

    Han, Xiahui; Li, Jianlang

    2014-11-01

    The transient temperature evolution in the gain medium of a continuous wave (CW) end-pumped passively Q-switched microchip (PQSM) laser is analyzed. By approximating the time-dependent population inversion density as a sawtooth function of time and treating the time-dependent pump absorption of a CW end-pumped PQSM laser as the superposition of an infinite series of short pumping pulses, the analytical expressions of transient temperature evolution and distribution in the gain medium for four- and three-level laser systems, respectively, are given. These analytical solutions are applied to evaluate the transient temperature evolution and distribution in the gain medium of CW end-pumped PQSM Nd:YAG and Yb:YAG lasers.

  1. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  2. High repetition-rate Q-switched and intracavity doubled diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1992-01-01

    A Nd:YAG laser was end pumped with 2.2 W of continuous-wave (CW) diode laser output. Efficient operation of the laser at high repetition rates was emphasized. This laser provides 890 mW of TEM00 CW output at 1064 nm, and 340 mW of 532 nm average power at a Q-switched repetition rate of 25 kHz. Experimental data are compared with analysis.

  3. Low threshold CW Nc laser oscillator at 1060 nm study

    NASA Technical Reports Server (NTRS)

    Birnbaum, M.; Deshazer, L. G.

    1976-01-01

    A broad range of characteristics of neodymium/yag lasers were investigated. With Nd:YVO4 crystals, CW 1.06 mu lasers were operated with thresholds a factor of 2 lower than Nd:YAG and with greater slope efficiencies. Thus, the first step in the development of new oscillators suitable for application in high data rate laser communication systems which surpass the present performance of the Nd:YAG laser has been successfully demonstrated.

  4. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    NASA Technical Reports Server (NTRS)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  5. Study of pseudo noise CW diode laser for ranging applications

    NASA Technical Reports Server (NTRS)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  6. Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar

  7. Observation of the death process of cancer cells killed through surface plasmon resonance of gold nanoring with optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yang; He, Yulu; Hsieh, Cheng-Che; Hua, Wei-Hsiang; Low, Meng Chun; Tsai, Meng-Tsan; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    The use of a high-resolution optical coherence tomography (OCT) system with the operation wavelength around 800 nm to scan SCC4 cancer cells under different laser illumination conditions is demonstrated. The cancer cells are incubated with Au nanorings (NRIs), which are linked with photosensitizer, AlPcS, for them to be up-taken by the cells. Two Au NRI samples of different geometries for inducing localized surface plasmon (LSP) resonance around 1310 and 1064 nm are used. Four different lasers are utilized for illuminating the cells under OCT scanning, including 1310-nm continuous (cw) laser, 1064-nm cw laser, 1064-nm femtosecond (fs) laser, and 660-nm cw laser. The 1310- and 1064-nm cw lasers mainly produce the photothermal effect through the LSP resonance of Au NRIs for damaging the observed cells. Besides the photothermal effect, the 1064-nm fs laser can produce strong two-photon absorption through the assistance of the LSP resonance of Au NRI for exciting AlPcS to effectively generate singlet oxygen and damage the observed cells. The 660-nm laser can excite AlPcS through single-photon absorption for generating singlet oxygen and damaging the observed cells. With the photothermal effect, the observed cells can be killed through the process of necrosis. Through the generation of singlet oxygen, the cell membrane can be preserved and the interior substances are solidified to become a hard body of strong scattering. In this situation, the cells are killed through the apoptosis process. Illuminated by the 660-nm cw laser, a process of interior substance escape is observed through high-speed OCT scanning.

  8. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  9. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  10. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  11. 75 FR 9868 - University of Arkansas; Notice of Decision on Applications for Duty-Free Entry of Scientific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., 2010. Reasons: The instrument must be able to perform using lasers with both continuous wave (CW) and pulsed mode. The use of picoseconds pulsed lasers is necessary to measure fluorescence lifetime. The use of CW lasers, so that the fluorophores will be continuously excited, is necessary to measure...

  12. Intracavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Okishev, Andrey V.; Zuegel, Jonathan D.

    2006-12-01

    Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.

  13. A laser based frequency modulated NL-OSL phenomenon

    NASA Astrophysics Data System (ADS)

    Mishra, D. R.; Bishnoi, A. S.; Soni, Anuj; Rawat, N. S.; Bhatt, B. C.; Kulkarni, M. S.; Babu, D. A. R.

    2015-01-01

    The detailed theoretical and experimental approach to novel technique of pulse frequency modulated stimulation (PFMS) method has been described for NL-OSL phenomenon. This method involved pulsed frequency modulation with respect to time for fixed pulse width of 532 nm continuous wave (CW)-laser light. The linearly modulated (LM)-, non-linearly (NL)-stimulation profiles have been generated using fast electromagnetic optical shutter. The PFMS parameters have been determined for present experimental setup. The PFMS based LM-, NL-OSL studies have been carried out on dosimetry grade single crystal α-Al2O3:C. The photo ionization cross section of α-Al2O3:C has been found to be ∼9.97 × 10-19 cm2 for 532 nm laser light using PFMS LM-OSL studies under assumption of first order of kinetic. This method of PFMS is found to be a potential alternative to generate different stimulation profiles using CW-light sources.

  14. High-power AlGaInN lasers for Blu-ray disc system

    NASA Astrophysics Data System (ADS)

    Takeya, Motonubu; Ikeda, Shinroh; Sasaki, Tomomi; Fujimoto, Tsuyoshi; Ohfuji, Yoshio; Mizuno, Takashi; Oikawa, Kenji; Yabuki, Yoshifumi; Uchida, Shiro; Ikeda, Masao

    2003-07-01

    This paper describes an improved laser structure for AlGaInN based blue-violet lasers (BV-LDs). The design realizes a small beam divergence angle perpendicular to the junction plane and high characteristic temperature wihtout significant increase in threshold current density (Jth) by optimizing the position of the Mg-doped layer and introducing an undoped AlGaN layer between the active layer and the Mg-doped electron-blocking layer. The mean time to failure (MTTF) of devices based on this design was found to be closely related to the dislocation density of ELO-GaN basal layer. Under 50 mW CW operation at 70°C, a MTTF of over 5000 h was realized whenthe dark spot density (indicative of dislocation density) is less than ~5×106 cm-2. Power consumption under 50mW CW operation at 70°C was approximately 0.33 W, independent of the dislocation density.

  15. Two-photon transitions driven by a combination of diode and femtosecond lasers.

    PubMed

    Moreno, Marco P; Nogueira, Giovana T; Felinto, Daniel; Vianna, Sandra S

    2012-10-15

    We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P(3/2) state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D(2) lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D(3/2) and 5D(5/2) states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.

  16. Efficient second-harmonic conversion of CW single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler

    NASA Technical Reports Server (NTRS)

    Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.

    1991-01-01

    Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.

  17. Dual line CW fiber laser module based on FBG combination

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Hoshi, Masayuki; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We developed the dual line fiber laser module based on FBG combination. The proposed configuration has several advantages such as compact, simple, and inexpensive. The laser was composed pump LD (40W), two HR FBGs for 1053 nm and 1058 nm, Yb-doped fiber, two OC FBGs for 1053 nm and 1058 nm, and delivery fiber. All single mode fibers were polarization maintained with approximately 6 micron core. All FBGs were mounted on holders with TECs and their temperatures were controlled independently. The center wavelengths of HR and OC FBGs were temperature dependent and their shifts are approximately 7 nm/degree-C for all integrated FBG. By adjusting the temperature, it is possible to realize the resonant condition for only 1053 nm or only for 1058 nm. Based on this configuration, we demonstrated dual line CW fiber laser module. This module was compact with the size of 200 mm X 150 mm X 23 mm. By adjusting the FBG temperatures, we obtained the output power of more than 10 W at 1053 nm and 1058 nm with linear polarization.

  18. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser.

    PubMed

    Liu, Ying; Gao, Jie; Gao, Yan; Xu, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm(2); Group B: 2 W/CW (continuous mode), 166 J/cm(2); Group C: 3W/CW, 250 J/cm(2); and Group D: 4W/CW, 333 J/cm(2). Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm(2); and Group F: 2.0 W/CW, 166 J/cm(2). The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm(2)) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue.

  19. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser

    PubMed Central

    Liu, Ying; Gao, Jie; Gao, Yan; XU, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    Introduction: To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Methods: Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm2; Group B: 2 W/CW (continuous mode), 166 J/cm2; Group C: 3W/CW, 250 J/cm2; and Group D: 4W/CW, 333 J/cm2. Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm2; and Group F: 2.0 W/CW, 166 J/cm2. The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. Results: The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusions: Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm2) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue. PMID:25606318

  20. Comparison of lasers used in stapedotomy using specialized visualization techniques for mechanical and thermal effects in an inner ear model

    NASA Astrophysics Data System (ADS)

    Kamalski, Digna M. A.; Verdaasdonk, Rudolf M.; de Boorder, Tjeerd; Grolman, Wilko

    2011-03-01

    The outcome of stapedotomy depends on several surgical steps. Using laser light, the ossicular chain can be handled and the oval window can be punctured with a non-touch method. Various lasers are being used or considered, however, it is not clear which settings and characteristics will contribute to optimal or adverse effects (vestibule damage and loss hearing frequencies). Using a unique high speed thermal imaging setup based on Schlieren techniques, the mechanical and thermal effects during laser stapedotomy were studied in an inner ear model consisting of human, fresh frozen stapes positioned on a liquid filled cavity in a gel cast. The cw KTP (532 nm), cw CO2 (10.6 μm), cw Thulium (2.0 μm), pulsed Er,Cr;YSGG (2.78 μm) coupled to special fiber delivery systems were applied at typical clinical settings for comparison. The imaging techniques provided a good insight in the extent of heat conduction beneath the footplate and (explosive) vapour formation on both sides. For the pulsed laser modes, explosive vapour expansion can to be controlled with optimized pulse energies while for continuous wave lasers the thermal effects can be controlled with the pulse length and repetition rate. The fluence at the tip of the delivery system and the distance to the footplate has a major impact on the ablation effect. The pulsed IR lasers with fiber delivery show to be promising for a controlled stapedotomy.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    NASA Astrophysics Data System (ADS)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  2. Design and development of equipment for laser wire stripping

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1977-01-01

    Three laser wire strippers have been built for the stripping of Kapton-insulated wire, the baseline wire of the space shuttle orbiter. The strippers are: (1) a bench-model stripper powered with a cw CO2 10.6-micron laser, (2) a hand-held stripper powered with a cw 1.06-micron Nd-YAG laser with an output of 5-7 watts, and (3) a hand-held stripper with a five-inch-long CO2 laser inside the stripping head.

  3. Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  4. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  5. Efficient laser emission from cladding waveguide inscribed in Nd:GdVO(4) crystal by direct femtosecond laser writing.

    PubMed

    Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng

    2014-08-01

    We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.

  6. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-06

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

  7. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    NASA Astrophysics Data System (ADS)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  8. An efficient continuous-wave 591 nm light source based on sum-frequency mixing of a diode pumped Nd:GdVO4-Nd:CNGG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Y. D.; Liu, J. H.

    2013-08-01

    We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB3O5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm.

  9. Eye safe high power laser diode in the 1410-1550nm range

    NASA Astrophysics Data System (ADS)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  10. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    PubMed

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  11. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    PubMed

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  12. Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V A; Volkov, M V; Garanin, S G

    2013-09-30

    The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth ofmore » 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)« less

  13. Integrated numerical modeling of a laser gun injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Benson, S.; Bisognano, J.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ``conditioning for final bunching`` is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittancemore » and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source.« less

  14. Laterally Coupled Distributed-Feedback GaSb-Based Diode Lasers for Atmospheric Gas Detection at 2 Microns

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Franz, Kale J.; Bagheri, Mahmood; Forouhar, Siamak

    2012-01-01

    We demonstrate single-mode laterally coupled distributed-feedback diode lasers at 2.05 microns employing low-loss etched gratings. Single-facet CW output exceeds 50 mW near room temperature with linewidth below 1 MHz over 10-ms observation times

  15. Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.

    2011-02-01

    This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.

  16. Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles

    NASA Astrophysics Data System (ADS)

    Fassbender, Wilhelm; Lotz, Jens; Kissel, Heiko; Biesenbach, Jens

    2018-02-01

    Continuous wave (CW) and quasi-continuous wave (QCW) operated diode laser bars and arrays have found a wide range of industrial, medical, scientific, military and space applications with a broad variety in wavelength, pulse energy, pulse duration and beam quality. Recent applications require even higher power, duty cycles and power density. The heat loss will be dissipated by conductive cooling or liquid cooling close to the bars. We present the latest performance and reliability data of two novel high-brightness CW and QCW arrays of customized and mass-production modules, in compact and robust industry design for operation with high power and high duty cycles. All designs are based on single diode packages consisting of 10mm laser bars, soft or hard soldered between expansion matched submounts. The modular components cover a wide span of designs which differ basically in water/conduction (active/passive) cooled, single, linear (horizontal and vertical) arranged designs, as well as housed and unhoused modules. The different assembling technologies of active and passive cooled base plates affect the heat dissipation and therefore the reachable power at different QCW operating conditions, as well as the lifetime. As an example, a package consisting of 8 laser diodes, connected to a 28.8*13.5*7.0mm3 DCB (direct copper bonded) submount, passively or actively cooled is considered. This design is of particular interest for mobile applications seamless module to module building system, with an infinite number of laser bars at 1.7mm pitch. Using 940nm bars we can reach an optical output power per bar of 450W at 25°C base plate temperature with 10Hz, 1.2% duty cycle and 1.2ms pulse duration. As an additional example, micro channel coolers can be vertically stacked up to 50 diodes with a 1,15mm pitch. This design is suitable for all applications, demanding also compactness and light weight and high power density. Using near infrared bars and others, we can reach an optical output power of 250W per bar at 25°C coolant temperature at CW operation.

  17. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    PubMed

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  18. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study.

    PubMed

    Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza

    2016-08-01

    In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.

    PubMed

    Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio

    2005-03-01

    To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.

  20. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    PubMed

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  1. Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun

    2016-08-01

    We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.

  2. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  3. Investigative study of a diode-pumped continuous-wave Tm:YAP laser as an efficient 1.94 μm pump source

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Jacek; Zendzian, Waldemar; Jabczynski, Jan K.

    2016-12-01

    A detailed study of a Tm:YAP laser in continuous-wave (CW), single-pass end-pumped by a 793 nm diode laser is presented. The laser based on c-cut 3 at. % Tm:YAP crystal was experimentally examined and presented in the dependence on transmittance and radius of curvature of output coupling mirrors. A detailed spectral analysis was presented. The influence of a heat-sink cooling water temperature on the laser performance was studied. At room temperature, for an output coupling transmission of 19.5%, the maximum CW output power of 4.53 W was achieved, corresponding to a slope efficiency of 41.5% and an optical-to-optical conversion efficiency of 25.7% with respect to the incident pump power, respectively. We have shown that the output spectrum at a certain wavelength (e.g. 1940 nm) for a given pump power can be realized via the change of resonator parameters (OC transmittance, mode size).

  4. Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian

    2015-05-01

    A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.

  5. About possibilities of clearing near-Earth space from dangerous debris by a spaceborne laser system with an autonomous cw chemical HF laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avdeev, A V; Bashkin, A S; Katorgin, Boris I

    2011-07-31

    The possibility of clearing hazardous near-Earth space debris using a spaceborne laser station with a large autonomous cw chemical HF laser is substantiated and the requirements to its characteristics (i.e., power and divergence of laser radiation, pulse duration in the repetitively pulsed regime, repetition rate and total time of laser action on space debris, necessary to remove them from the orbits of the protected spacecrafts) are determined. The possibility of launching the proposed spaceborne laser station to the orbit with the help of a 'Proton-M' carrier rocket is considered. (laser applications)

  6. Characterization and modeling of the intrinsic properties of 1.5-micrometer gallium indium nitrogen arsenic antimonide/gallium arsenide laser

    NASA Astrophysics Data System (ADS)

    Goddard, Lynford

    2005-12-01

    Low cost access to optical communication networks is needed to satisfy the rapidly increasing demands of home-based high-speed Internet. Existing light sources in the low-loss 1.2--1.6mum telecommunication wavelength bandwidth are prohibitively expensive for large-scale deployment, e.g. incorporation in individual personal computers. Recently, we have extended the lasing wavelength of room-temperature CW GaInNAs(Sb) lasers grown monolithically on GaAs by MBE up to 1.52mum in an effort to replace the traditional, more expensive, InP-based devices. Besides lower cost wafers, GaInNAs(Sb) opto-electronic devices have fundamental material advantages over InP-based devices: a larger conduction band offset which reduces temperature sensitivity and enhances differential gain, a lattice match to a material with a large refractive index contrast, i.e. AlAs, which decreases the necessary number of mirror pairs in DBRs for VCSELs, and native oxide apertures for current confinement. High performance GaInNAs(Sb) edge-emitting lasers, VCSELs, and DFB lasers have been demonstrated throughout the entire telecommunication band. In this work, we analyze the intrinsic properties of the GaInNAsSb material system, e.g. recombination, gain, band structure and renormalization, and efficiency. Theoretical modeling is performed to calculate a map of the bandgap and effective masses for various material compositions. We also present device performance results, such as: room temperature CW threshold densities below 450A/cm2, quantum efficiencies above 50%, and over 425mW of total power from a SQW laser when mounted epi-up and minimally packaged. These results are generally 2--4x better than previous world records for GaAs based devices at 1.5mum. The high CW power and low threshold exhibited by these SQW lasers near 1.5mum make feasible many novel applications, such as broadband Raman fiber amplifiers and uncooled WDM at the chip scale. Device reliability of almost 500 hours at 200mW CW output power has also been demonstrated. Comparative experiments using innovative characterization techniques, such as: the multiple section absorption/gain method to explore the band structure, as well as the Z-parameter to analyze the dominant recombination processes, have identified the physical mechanisms responsible for improved performance. Also, by measuring the temperature dependence of relevant laser parameters, we have been able to simulate device operation while varying temperature and device geometry.

  7. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine.

    PubMed

    Morse, Kaitlyn; Kimizuka, Yoshifumi; Chan, Megan P K; Shibata, Mai; Shimaoka, Yusuke; Takeuchi, Shu; Forbes, Benjamin; Nirschl, Christopher; Li, Binghao; Zeng, Yang; Bronson, Roderick T; Katagiri, Wataru; Shigeta, Ayako; Sîrbulescu, Ruxandra F; Chen, Huabiao; Tan, Rhea Y Y; Tsukada, Kosuke; Brauns, Timothy; Gelfand, Jeffrey; Sluder, Ann; Locascio, Joseph J; Poznansky, Mark C; Anandasabapathy, Niroshana; Kashiwagi, Satoshi

    2017-08-15

    Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang + and CD11b - Lang - subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Design of a quasi-CW laser diode driver for space-based laser transmitter

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra; Dangwal, Nishma; Chandraprakash, .; Agrawal, Lalita; Pal, Suranjan; Kamlakar, J. A.

    2006-12-01

    LASTEC Delhi in a joint collaborative activity with LEOS, Bangalore is developing a space qualified diode array pumped Nd:YAG laser transmitter delivering 30 mJ @ 10 pps of 10 ns duration. For space applications laser diodes are preferred because of their excellent reliability with lifetimes exceeding 100,000 hours. However, they are extremely sensitive to electro-static discharge, excessive current levels, and current spikes and transients. Small variations in bias voltage may produce large fluctuations in the current causing instability and damage to the device. Hence instead of the traditional power supplies a current controlled laser diode driver is required. This paper presents the design of a Q-CW laser diode driver based on closed loop current regulator, capable of driving 24 QCW laser diode bars each with 75W peak power at 70 A. The driver can generate up to 100 Amp peak current and 200μsec pulse width operating at 10 Hz. The current source design includes special circuits for low noise operation, slow turn-on and turn-off, circuits for over voltage and transient current protection; and good regulation. Space qualified and radiation hardened components are required to be used to sustain stringent space environment requirements during mission life of two years.

  9. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  10. Measurement of aircraft wakes at 250-meter altitude with a 10.6-micron CW laser Doppler velocimeter

    DOT National Transportation Integrated Search

    1978-01-01

    The use of a CW laser Doppler velocimeter (LDV) to study aircraft wake vortices began in 1969 (Ref. 1). This early development of the techniques culminated in measurements on wakes of landing aircraft at the John F. Kennedy International Airport in 1...

  11. Pulsed and cw laser oscillations in LiF:F-2 color center crystal under laser diode pumping.

    PubMed

    Basiev, Tasoltan T; Vassiliev, Sergey V; Konjushkin, Vasily A; Gapontsev, Valentin P

    2006-07-15

    Continuous-wave laser oscillations in LiF:F-2 crystal optically pumped by a laser diode at 970 nm were demonstrated for what is believed to be the first time. The slope efficiency of 14% and conversion efficiency of 5.5% were achieved for 80 micros pump pulse duration and 5 Hz pulse repetition rate. An efficiency twice as low was measured at a 6.25 kHz pulse repetition rate (50% off-duty factor) and in cw mode of laser operation.

  12. Research on radiation induced laser plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Rowe, M. J.; Carter, B. D.; Walters, R. A.; Cox, J. D.; Liang, R.; Roxey, T.; Zapata, L.

    1979-01-01

    The development of high power nuclear pumped lasers is discussed. The excitation mechanism of continuous wave (CW) HeNe nuclear pumped lasers is studied and a CO2 nuclear pumped laser is used to demonstrate the CW output in the order of watts. The assumption that high power densities are only achievable by volume fission fragment sources is used to identify laser gases which are compatible with UF6 by excited states lifetime measurements. The examination of Xe2, XeF, and KrF under nuclear irradiation to determine if they are good candidates for nuclear-pumped lasers is described.

  13. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  14. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  15. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  16. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  17. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  18. A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser

    DTIC Science & Technology

    2014-03-01

    passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 16, no. 3, pp. 376–388, Mar. 1999...204 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 50, NO. 3, MARCH 2014 A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser Jonathan W. Evans, Patrick A...Berry, and Kenneth L. Schepler Abstract— We report the demonstration of high-average-power passively Q-switched laser oscillation from Fe2+ ions in zinc

  19. Optical and infrared lasers

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1978-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  20. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lihachev, A; Ferulova, I; Vasiljeva, K

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  1. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  2. Studies of single-mode injection lasers and of quaternary materials. Volume 1: Single-mode constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.

  3. Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers.

    PubMed

    Feng, T L; Zhao, S Z; Yang, K J; Li, G Q; Li, D C; Zhao, J; Qiao, W C; Hou, J; Yang, Y; He, J L; Zheng, L H; Wang, Q G; Xu, X D; Su, L B; Xu, J

    2013-10-21

    We have investigated the lasing characteristics of Tm:LSO crystal in three operation regimes: continuous wave (CW), wavelength tunable and passive Q-switching based on graphene. In CW regime, a maximum output power of 0.65 W at 2054.9 nm with a slope efficiency of 21% was achieved. With a quartz plate, a broad wavelength tunable range of 145 nm was obtained, corresponding to a FWHM of 100 nm. By using a graphene saturable absorber mirror, the passively Q-switched Tm:LSO laser produced pulses with duration of 7.8 μs at 2030.8 nm under a repetition rate of 7.6 kHz, corresponding to pulse energy of 14.0 μJ.

  4. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.

    PubMed

    Jelínková, Helena; Doroshenko, Maxim E; Jelínek, Michal; Sulc, Jan; Osiko, Vyacheslav V; Badikov, Valerii V; Badikov, Dmitrii V

    2013-08-15

    In this Letter, we demonstrate the pulsed and CW operation of the Dy:PbGa(2)S(4) laser directly pumped by the 1.7 μm laser diode. In the pulsed regime (pulse duration 5 ms; repetition rate 20 Hz), the maximum mean output power of 9.5 mW was obtained with the slope efficiency of 9.3% with respect to the absorbed pump power. The generated wavelength was 4.32 μm, and the laser beam cross section was approximately Gaussian on both axes. Stable CW laser generation was also successfully obtained with the maximum output power of 67 mW and the slope efficiency of 8%. Depopulation of the lower laser level by 1.7 μm pump radiation absorption followed by 1.3 μm upconversion fluorescence was demonstrated. These results show the possibility of construction of the compact diode-pumped solid-state pulsed or CW laser generating at 4.3 μm in the power level of tens mW operating at room temperature.

  5. Neoplasms treatment by diode laser with and without real time temperature control on operation zone

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.; Semyashkina, Yulia V.

    2016-04-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are presented. The collateral damage width and width of graze wound area around the collateral damage area were demonstrated. The total damage area width was calculated as sum of collateral damage width and graze wound area width. The mean width of total damage area reached 1.538+/-0.254 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.586+/-0.453 mm, dermatofibroma - 1.568+/-0.437 mm, and basal cell skin cancer - 1.603+/-0.613 mm. The mean width of total damage area reached 1.201+/-0.292 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.413+/-0.418 mm, dermatofibroma - 1.240+/-0.546 mm, and basal cell skin cancer - 1.204+/-0.517 mm. It was found that using APC mode decreases the total damage area width at removing of these nosological neoplasms of human skin, and decreases the width of graze wound area at removing of nevus and basal cell skin cancer. At the first time, the dynamic of output laser power and thermal signal during laser removal of nevus in CW and APC mode is presented. It was determined that output laser power during nevus removal for APC mode was 1.6+/-0.05 W and for CW mode - 14.0+/-0.1 W. This difference can explain the decrease of the total damage area width and width of graze wound area for APC mode in comparison with CW mode.

  6. Investigation of temperature feedback signal parameters during neoplasms treatment by diode laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Semyashkina, Yulia V.

    2016-04-01

    Dynamics of temperature signal in operation area and laser power at nevus, papilloma, and keratoma in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and with temperature feedback (APC) mode are presented. Feedback allows maintaining temperature in the area of laser treatment at a preset level by regulating power of diode laser radiation (automatic power control). Temperature in the area of laser treatment was controlled by measuring the amplitude of thermal radiation, which occurs when tissue is heated by laser radiation. Removal of neoplasm was carried out in CW mode with laser radiation average power of 12.5+/-0.5 W; mean temperature in the area of laser treatment was 900+/-10°C for nevus, 800+/-15°C for papilloma, and 850+/-20°C for keratoma. The same laser radiation maximal power (12.5 W) and targeted temperature (900°C) were set for nevus removal in APC mode. The results of investigation are real time oscillograms of the laser power and temperature in the area of laser treatment at neoplasms removal in two described above modes. Simultaneously with the measurement of laser power and the temperature in the area of laser treatment video recording of surgeon manipulations was carried out. We discuss the correlation between the power of the laser radiation, the temperature in the area of laser treatment and consistency of surgeon manipulation. It is shown that the method of removal (excision with or without traction, scanning) influences the temperature in the area of laser treatment. It was found, that at removal of nevus with temperature feedback (APC) mode to achieve comparable with CW mode temperature in the area of laser treatment (900+/-10°C) 20-50% less laser power is required. Consequently, removing these neoplasms in temperature feedback mode can be less traumatic than the removal in CW mode.

  7. Gold nanorod reshaping in vitro and in vivo using a continuous wave laser

    PubMed Central

    Zhou, Yu; Shah, Anant; Ruenraroengsak, Pakatip; Gallina, Maria Elena; Hanna, George B.; Cass, Anthony E. G.; Porter, Alexandra E.; Bamber, Jeffrey; Elson, Daniel S.

    2017-01-01

    Gold nanorods (GNRs) are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW) lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the peak optical absorption properties of GNRs following primary laser irradiation. PMID:29045438

  8. ARPA solid state laser and nonlinear materials program

    NASA Astrophysics Data System (ADS)

    Moulton, Peter F.

    1994-06-01

    The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.

  9. Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback

    NASA Technical Reports Server (NTRS)

    Maynard, William L.

    1989-01-01

    Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.

  10. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma.

    PubMed

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.

  11. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.

  12. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    PubMed

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  13. Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping

    NASA Astrophysics Data System (ADS)

    Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca

    2018-02-01

    Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.

  14. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    NASA Astrophysics Data System (ADS)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  15. CW molecular iodine laser pumped with a low power DPSSL

    NASA Astrophysics Data System (ADS)

    Luhs, W.; Wellegehausen, B.; Goyal, M.

    2017-04-01

    Cw oscillation of molecular iodine on many lines in the range of 557-802 nm pumped with a low power common diode pumped and frequency doubled solid state laser DPSSL is reported. The DPSSL is temperature stabilized, operates in single frequency and can be tuned by about 2 nm at 532 nm. Operation conditions of this simple and low cost iodine ring laser will be described and possible applications will be discussed.

  16. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-03-15

    C.W. Beckett, J. Res. Nat. Bur. Stand. (U.S.) 74A: 65 (1970). 3. F. Righini, A. Cibraria, and A. Rosso, Rappporto Interno 5/173, Instituto di...al., [1979], have indicated the utility of short pulse time, high power lasers (e.g., Nd/YAG) for controlled surface vaporization studies. The laser...using an estimated emissivity. This is one of the few graphite vaporization studies where controllable CW laser radia- tion was used and direct surface

  17. Miniature CW and active internally Q-switched Nd:MgO:LiNbO/sub 3/ lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordova-Plaza, A.; Digonnet, M.J.F.; Shaw, H.J.

    1987-02-01

    The authors report a 10 mW threshold mixture device in which internal Q-switching of a single Nd:MgO:LiNbO/sub 3/ crystal is achieved. Pulsewidths of 30 ns have been observed. Peak powers of 5 W have been attained with less than 60 mW of 598 nm pump power and with less than 1 percent output coupling. The switching voltage is lower than 300 V. The consequences of the elastooptic effect and the photoconductivity on device performance are investigated. A highly efficient CW laser and a low threshold CW laser made of the same material are also reported. Photorefractive damage due to themore » photovoltaic effect is found to be almost nonexistent in these lasers when pumped in the near-infrared.« less

  18. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    PubMed

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  19. CW deuterium fluoride chemical laser with reactant combination C2H4/NF3

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongfu; Hua, Weihong

    1998-05-01

    The characters of combustion driven cw deuterium fluoride (DF) chemical laser with C2H4/NF3 reactant were numerically investigated. The numerical simulation was carried out using compressibility scaling method--a finite difference technique for the numerical integration of the steady and unsteady Navier-stokes equations for reactive flow. The small signal gain and the flow field were calculated. The numerical results shown that active zone length of the cw DF chemical laser with C2H4/NF3 is very long, which is about 6 cm, and the average cavity pressure is about 7 torr as the combustion pressure is about 1.5 atm. These results shown that the DF chemical laser with C2H4/NF3 is suitable for high cavity pressure performance.

  20. Time Shifted PN Codes for CW Lidar, Radar, and Sonar

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor); Prasad, Narasimha S. (Inventor); Harrison, Fenton W. (Inventor); Flood, Michael A. (Inventor)

    2013-01-01

    A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.

  1. Beam shaping as an enabler for new applications

    NASA Astrophysics Data System (ADS)

    Guertler, Yvonne; Kahmann, Max; Havrilla, David

    2017-02-01

    For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).

  2. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.

  3. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  4. Diode-pumped DUV cw all-solid-state laser to replace argon ion lasers

    NASA Astrophysics Data System (ADS)

    Zanger, Ekhard; Liu, B.; Gries, Wolfgang

    2000-04-01

    The slim series DELTATRAINTM-worldwide the first integrated cw diode-pumped all-solid-state DUV laser at 266 nm with a compact, slim design-has been developed. The slim design minimizes the DUV DPSSL footprint and thus greatly facilitates the replacement of commonly used gas ion lasers, including these with intra-cavity frequency doubling, in numerous industrial and scientific applications. Such a replacement will result in an operation cost reduction by several thousands US$DLR each year for one unit. Owing to its unique geometry-invariant frequency doubling cavity- based on the LAS patent-pending DeltaConcept architecture- this DUV laser provides excellent beam-pointing stability of <2 (mu) rad/ degree(s)C and power stability of <2%. The newest design of the cavity block has adopted a cemented resonator with each component positioned precisely inside a compact monolithic metal block. The automatic and precise crystal shifter ensures long operation lifetime of > 5000 hours of whole 266 nm laser. The microprocessor controlled power supply provides an automatic control of the whole 266 nm laser, making this DUV laser a hands-off system which can meet tough requirements posed by numerous industrial and scientific applications. It will replace the commonplace ion laser as the future DUV laser of choice.

  5. Nonlinear optical response of nanocomposites based on KDP single crystal with incorporated Al2O3*nH2O nanofibriles under CW and pulsed laser irradiation at 532 nm

    NASA Astrophysics Data System (ADS)

    Popov, A. S.; Uklein, A. V.; Multian, V. V.; Dantec, R. Le; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.; Gayvoronsky, V. Ya.

    2016-11-01

    Optical properties and nonlinear optical response due to the CW and pulsed laser radiation self-action at 532 nm were studied in composites based on KDP single crystals with incorporated nanofibriles of nanostructured oxyhydroxide of aluminum (NOA). It was shown a high optical quality and structural homogeneity of nanocomposites KDP:NOA by the transmittance spectra, elastic optical scattering and XRD analysis. It was observed manifestation of the second harmonic generation efficiency enhancement in the KDP:NOA versus the nominally pure KDP (λ=1064 nm, τ=1 ns) that is correlated with efficient refractive index self-modulation Δn ∼10-4 (λ=532 nm, τ=30 ps). In the pyramidal and prismatic growth sectors of the nominally pure KDP crystal it was shown opposite signs of the photoinduced variations both of the refractive index and of the optical absorption/bleaching due to resonant excitation of the native defects at 532 nm. It should be considered for the wide-aperture laser frequency KDP family based convertors fabrication.

  6. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser.

    PubMed

    Cao, Yingchun; Sanchez, Nancy P; Jiang, Wenzhe; Griffin, Robert J; Xie, Feng; Hughes, Lawrence C; Zah, Chung-en; Tittel, Frank K

    2015-02-09

    A continuous wave (CW) quantum cascade laser (QCL) based absorption sensor system was demonstrated and developed for simultaneous detection of atmospheric nitrous oxide (N(2)O), methane (CH(4)), and water vapor (H(2)O). A 7.73-µm CW QCL with its wavelength scanned over a spectral range of 1296.9-1297.6 cm(-1) was used to simultaneously target three neighboring strong absorption lines, N(2)O at 1297.05 cm(-1), CH(4) at 1297.486 cm(-1), and H(2)O at 1297.184 cm(-1). An astigmatic multipass Herriott cell with a 76-m path length was utilized for laser based gas absorption spectroscopy at an optimum pressure of 100 Torr. Wavelength modulation and second harmonic detection was employed for data processing. Minimum detection limits (MDLs) of 1.7 ppb for N(2)O, 8.5 ppb for CH(4), and 11 ppm for H(2)O were achieved with a 2-s integration time for individual gas detection. This single QCL based multi-gas detection system possesses applications in environmental monitoring and breath analysis.

  7. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    NASA Astrophysics Data System (ADS)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  9. Mid-infrared 1  W hollow-core fiber gas laser source.

    PubMed

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  10. Study of LPE methods for growth of InGaAsP/InP CW lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Hawrylo, F. Z.; Smith, R. T.; Levin, E. R.

    1980-01-01

    Two methods for liquid phase growth of InGaAsP/InP lasers were studied. Single phase growth, based on saturated melts and 5 C supercooling, was compared to two phase growth excess InP and 20 C nominal supercooling. Substrates cut on the (100) plane were used, and morphology in both cases was excellent and comparable to that obtainable in AlGaAs materials. A high degree of reproducibility was obtained in the materials grown by the two phased method, which is therefore presently preferred for the preparation of laser material. A refractive index step of 0.28 and an index n = 3.46 were obtained for In.81Ga.19As,5P5 lasing at 1.3 microns. Oxide-stripe lasers with typical room temperature cw threshold currents of 180 mA were obtained and some of them showed single mode behavior without lateral cavity modifications. COntinuous operation of 800 h at room temperature was obtained without noticeable degradation.

  11. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  12. Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.

    PubMed

    He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing

    2009-10-12

    We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.

  13. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  14. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  15. CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser.

    PubMed

    Mateos, Xavier; Jambunathan, Venkatesan; Pujol, Maria Cinta; Carvajal, Joan Josep; Díaz, Francesc; Aguiló, Magdalena; Griebner, Uwe; Petrov, Valentin

    2010-09-27

    We demonstrate continuous wave (CW) room temperature laser operation of the monoclinic Ho(3+)-doped KLu(WO(4))(2) crystal using a diode-pumped Tm(3+):KLu(WO(4))(2) laser for in-band pumping. The slope efficiency achieved amounts to ~55% with respect to the absorbed power and the maximum output power of 648 mW is generated at 2078 nm.

  16. Closure of skin incision by dual wavelength (980 and 1064 nm) laser application.

    PubMed

    Uba, Abdullahi Ibrahim; Tabakoglu, Haşim Ozgur; Abdullahi, Umar Aliyu; Sani, Musbahu Muhammad

    2017-04-01

    Thermal effect of dual wavelength (980 and 1064 nm) laser application in skin incision closure was assessed on 18 male and female Wister rats. 1-cm-long incisions were made on the shaved dorsal region of 220-250 g animals. The incisions were closed by laser irradiation at 1 W and exposure time, 5 seconds in continuous-wave mode (CW) and 1 W and exposure time, 10 seconds in pulsed mode to deliver total energies of 5 J and 10 J per spot onto the incisions, respectively. Animals from each group were sacrificed at 0th, 4th, and 7th days and the skin samples of the weld area were excised for histological analysis using Hematoxylin and Eosin (H & E) stain. Mean thermally altered area (TAA) of CW-mode laser-treated groups was found to increase significantly (p < 0.05) compared with pulsed mode laser treated group at 0th and 4th days post-irradiation while no significant difference (p > 0.05) was statistically found at 7th day post-irradiation. Moreover, tighter closure was observed with CW group at 7th day post-irradiation. We thus conclude that 1 W, 5 J for 5 seconds CW mode laser application of 980 and 1064 nm combined beam form in skin incision closure was found to have absolute wound healing capability with minimal thermal alteration.

  17. Robust interferometric frequency lock between cw lasers and optical frequency combs.

    PubMed

    Benkler, Erik; Rohde, Felix; Telle, Harald R

    2013-02-15

    A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.

  18. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  19. Continuous-wave laser generated jets for needle free applications

    PubMed Central

    Visser, Claas Willem; Schlautmann, Stefan

    2016-01-01

    We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel which focuses and ejects the liquid jet through the exit. The bubble growth and the jet velocity were measured as a function of the devices geometry (channel diameter D and chamber width A). The fastest jets were those for relatively large chamber size with respect to the channel diameter. Elongated and focused jets up to 29 m/s for a channel diameter of 250 μm and chamber size of 700 μm were obtained. The proposed CW laser-based device is potentially a compact option for a practical and commercially feasible needle-free injector. PMID:26858816

  20. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canedy, C. L.; Kim, C. S.; Merritt, C. D.

    2015-09-21

    Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm{sup 2} for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electricalmore » to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers.« less

  1. Generation conditions of CW Diode Laser Sustained Plasma

    NASA Astrophysics Data System (ADS)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  2. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Bagaev, T. A.; Andreev, A. Yu.; Telegin, K. Yu.; Lobintsov, A. V.; Davydova, E. I.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Ivanova, E. B.; Simakov, V. A.

    2017-05-01

    The results of the development and fabrication of laser diode bars (λ = 800 - 810 nm) based on AlGaAs/GaAs quantum-well heterostructures with a high efficiency are presented. An increase in the internal quantum and external differential efficiencies together with a decrease in the working voltage and the series resistance allowed us to improve the output parameters of the semiconductor laser under quasi-cw pumping. The output power of the laser diode bars with a 5-mm transverse length reached 210 W, and the efficiency was ~70%.

  3. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    PubMed

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  4. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    PubMed

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  5. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  6. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    PubMed

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  7. Solid-state laser sources for remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Kane, T.; Eggleston, J.; Long, S. Y.

    1983-01-01

    Recent progress in slab-geometry and conventional rod Nd:YAG solid-state lasers for applications in remote sensing is presented. Developments in slab geometry lasers, which were aimed at improving pulse energy and tuning range, have been based on the use of a Nd:glass substrate with a zig-zag optical path, with selective Raman shifting in gases and harmonic generation in LiNbO3 and KDP to extend the tuning range into the UV and visible regions. The theoretically predicted advantages of the elimination of birefringence and thermal and stress-induced focusing in the slab-geometry laser have been confirmed in measurements on a test-bed Nd:glass system, and a CW lamp pumped Nd:YAG oscillator, which have also demonstrated an order of magnitude improvement in laser performance. A single axial mode Nd:YAG oscillator has also been designed which, operating in a 3-msec quasi-CW mode, has a chirp rate of 30 kHz/microsec and a free-running stability of + or - 20 MHz. With chirp compensation, this stability is adequate for wind velocity measurements by coherent lidar.

  8. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    NASA Astrophysics Data System (ADS)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Doppler backscattered-signal diagnostics of laser-induced surface hydrodynamic processes

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.

    1995-02-01

    A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.

  10. Modeling of cw OIL energy performance based on similarity criteria

    NASA Astrophysics Data System (ADS)

    Mezhenin, Andrey V.; Pichugin, Sergey Y.; Azyazov, Valeriy N.

    2012-01-01

    A simplified two-level generation model predicts that power extraction from an cw oxygen-iodine laser (OIL) with stable resonator depends on three similarity criteria. Criterion τd is the ratio of the residence time of active medium in the resonator to the O2(1Δ) reduction time at the infinitely large intraresonator intensity. Criterion Π is small-signal gain to the threshold ratio. Criterion Λ is the relaxation to excitation rate ratio for the electronically excited iodine atoms I(2P1/2). Effective power extraction from a cw OIL is achieved when the values of the similarity criteria are located in the intervals: τd=5-8, Π=3-8 and Λ<=0.01.

  11. Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser.

    PubMed

    Wang, Xiao-Lei; Dong, Jun; Wang, Xiao-Jie; Xu, Jie; Ueda, Ken-Ichi; Kaminskii, Alexander A

    2016-08-01

    Multi-wavelength continuous-wave (CW) Raman lasers in a laser diode pumped Yb:YAG/Nd3+:YVO4 microchip Raman laser have been demonstrated for the first time to our best knowledge. The multi-wavelength laser of the first Stokes radiation around 1.08 μm has been achieved with a Raman shift of 261  cm-1 for a-cut Nd:YVO4 crystal corresponding to the fundamental wavelength at 1.05 μm. Multi-wavelength laser operation simultaneously around 1.05 and 1.08 μm has been achieved under the incident pump power between 1.5 and 1.7 W. Multi-wavelength Raman laser with frequency separation of 1 THz around 1.08 μm has been obtained when the incident pump power is higher than 1.7 W. The maximum Raman laser output power of 260 mW at 1.08 μm is obtained and the corresponding optical-to-optical conversion efficiency is 4.2%. Elliptically polarized fundamental laser and linearly polarized Raman laser were observed in an Yb:YAG/Nd:YVO4 CW microchip Raman laser. The experimental results of linearly polarized, multi-wavelength Yb:YAG/Nd:YVO4 CW microchip Raman laser with adjustable frequency separation provide a novel approach for developing potential compact laser sources for Terahertz generation.

  12. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Norman, Justin; Kennedy, M. J.; Shang, Chen; Shin, Bongki; Wan, Yating; Gossard, Arthur C.; Bowers, John E.

    2017-09-01

    We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm-2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.

  13. THz based electron bunch length monitoring at the quasi-cw SRF accelerator ELBE

    NASA Astrophysics Data System (ADS)

    Green, Bertram; Kovalev, Sergey; Fisher, Alan; Bauer, Christian; Kuntzsch, Michael; Lehnert, Ulf; Schurig, Rico; Goltz, Torsten; Michel, Peter; Stojanovic, Nikola; Gensch, Michael

    2014-03-01

    In the past few years the quasi-cw SRF electron accelerator ELBE has been upgraded so that it now allows to compress electron bunches to the sub-picosecond regime. The actual optimization and control of the electron bunch form represents one of the largest challenges of the coming years. In particular with respect to the midterm goal to utilize the ultra-short electron bunches for Laser-Thomson scattering experiments or high field THz experiments. Current developments of THz based electron bunch diagnostic are discussed and an outlook into future developments is given.

  14. Experimental study of the dynamics of a ruby laser pumped by a CW argon-ion laser

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Lin, W. P.; Lawandy, N. M.

    1989-01-01

    A study of the dynamics of a ruby laser pumped by a CW argon-ion laser is presented. The ruby laser is predominantly stable but has two accessible unstable states. One state exhibits chaotic output, while the other results in regular self-pulsing. The conditions needed for instability are discussed and homodyne spectra and temporal maps of the phase-space attractors are obtained. In addition, a numerical simulation of nonlinear beam propagation in ruby is presented that shows that strong deviations from plane-wave behavior exist, and that transverse effects must be incorporated into theoretical models of the instability.

  15. Diode-pumped Nd:GAGG-LBO laser at 531 nm

    NASA Astrophysics Data System (ADS)

    Zou, J.; Chu, H.; Wang, L. R.

    2012-03-01

    We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.

  16. Pressure shift in the 170-micron emission of the CW optically pumped CH3OH laser

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Koepf, G. A.

    1980-01-01

    Pressure shifts of +15 MHz torr were observed in 16(8)-16(7) 170-micron CW CH3OH optically pumped laser emission. The experiments were performed using a harmonic mixing technique in a Schottky diode. The results are explained in terms of a second-order dipole-dipole interaction in a statistical formulation.

  17. Advanced development of Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.

    1977-01-01

    The technology was studied for producing Pb-salt diode lasers for the 8-51 micron spectral region suitable for use as local oscillators in a passive Laser Heterodyne Spectrometer (LHS). Consideration was given to long range NASA plans for the utilization of the passive LHS in a space shuttle environment. The general approach was to further develop the method of compositional interdiffusion (CID) recently reported, and used successfully at shorter wavelength. This technology was shown to provide an effective and reproducible method of producing a single-heterostructure (SH) diode of either the heterojunction or single-sided configuration. Performance specifications were exceeded in several devices, with single-ended CW power outputs as high as 0.88 milliwatts in a mode being achieved. The majority of the CID lasers fabricated had CW operating temperatures of over 60K; 30% of them operated CW above the boiling temperature of liquid nitrogen. CW operation above liquid nitrogen temperature was possible for wavelengths as long as 10.3 microns. Operation at 77K is significant with respect to space shuttle operations since its allows considerable simplification of cooling method.

  18. Visibility and aerosol measurement by diode-laser random-modulation CW lidar

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.

    1986-01-01

    Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.

  19. Optical pumping by CO/sub 2/ and N/sub 2/O lasers: new CW FIR emissions in 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourrier, M.; Belland, P.; Gastaud, C.

    1985-01-01

    Abstract-53 new CW FIR laser lines are reported in 1,1-difluoroethane optically pumped near 10 ..mu..m by CO/sub 2/ and N/sub 2/O lasers. The emission spectrum initially reported in the literature consisted of four lines between 770 and 458 ..mu..m and has now been extended to the 2.39 mm319 ..mu..m region. The reason for this extension, especially to the long wavelengths, is analyzed.

  20. Optical pumping by CO2 and n2O lasers - new CW FIR emissions in 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourrier, M.; Belland, P.; Redon, M.

    1985-01-01

    Fifty-three new CW FIR laser lines are reported in 1,1-difluoroethane optically pumped near 10 microns by CO2 and N2O lasers. The emission spectrum initially reported in the literature consisted of four lines between 770 and 458 microns and has now been extended to the 2.39 mm-319 micron region. The reason for this extension, especially to the long wavelengths, is analyzed. 12 references.

  1. Transient Infrared Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a very high sample speed would be required to attain a diffusion time of 100 μs. Accordingly, pulsed-laser TIRES generally produces spectra suffering from less self-absorption than cw-laser TIRES does, but the cw-laser technique is technically much simpler since no synchronization is required.

  2. Thin disk lasers: history and prospects

    NASA Astrophysics Data System (ADS)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  3. Tm:CaGdAlO4: spectroscopy, microchip laser and passive Q-switching by carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Mateos, Xavier; Choi, Sun Young; Rotermund, Fabian; Liebald, Christoph; Peltz, Mark; Vernay, Sophie; Rytz, Daniel; Wang, Yicheng; Kemnitzer, Matthias; Agnesi, Antonio; Vilejshikova, Elena; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin

    2017-02-01

    Absorption, stimulated-emission and gain cross-sections are determined for 3 at.% Tm:CaGdAlO4. This crystal is employed in a microchip laser diode-pumped at 802 nm. In the continuous-wave (CW) regime, this laser generates 1.16 W at 1883-1893 nm with a slope efficiency of 32% with respect to the absorbed pump power. Using a special "bandpass" output coupler, vibronic CW laser operation up to 2043 nm is achieved. For passive Q-switching of the Tm:CaGdAlO4 laser-saturable absorbers (SAs) based on CVD-grown graphene and randomly-oriented arc-discharge single-walled carbon nanotubes (SWCNTs) in a PMMA film. The SWCNT-SA demonstrates superior performance. The laser produced a maximum average output power of 245 mW at 1844 nm with a slope efficiency of 8%. The latter corresponds to a pulse energy and duration of 6 μJ and 138 ns, respectively, at a repetition rate of 41 kHz. Using the graphene-SA, 2.8 μJ, 490 ns pulses are obtained at a repetition rate of 86 kHz.

  4. Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy.

    PubMed

    Belletti, Silvana; Uggeri, Jacopo; Mergoni, Giovanni; Vescovi, Paolo; Merigo, Elisabetta; Fornaini, Carlo; Nammour, Samir; Manfredi, Maddalena; Gatti, Rita

    2015-01-01

    Low-level laser therapy (LLLT) is widely used in tissue regeneration and pain therapy. Mitochondria are supposed to be one of the main cellular targets, due to the presence of cytochrome C oxidase as photo-acceptor. Laser stimulation could influence mitochondria metabolism affecting mainly transmembrane mitochondrial potential (Δψm). The aim of our study is to evaluate "in vitro" the early mitochondrial response after irradiation with a 915 GaAs laser. Since some evidences suggest that cellular response to LLLT can be differently modulated by the mode of irradiation, we would like to evaluate whether there are changes in the mitochondrial potential linked to the use of the laser treatments applied with continuous wave (CW) in respect to those applied with pulsed wave (PW). In this study, we analyzed effects of irradiation with a 915-nm GaAs diode laser on human dermal fibroblast. We compared effects of irradiation applied with either CW or PW at different fluences 45-15-5 J/cm(2) on Δψm. Laser scanning microscopy (LSM) was used in living cells to detect ROS (reactive oxygen species) using calcein AM and real-time changes of and Δψm following distribution of the potentiometric probe tetramethylrhodamine methyl ester (TMRM). At higher doses (45-15 J/cm(2)), fibroblasts showed a dose-dependent decrement of Δψm in either the modalities employed, with higher amplitudes in CW-treated cells. This behavior is transient and not followed by any sign of toxicity, even if reactive oxygen species generation was observed. At 5 J/cm(2), CW irradiation determined a little decrease (5%) of the baseline level of Δψm, while opposite behavior was shown when cells were irradiated with PW, with a 10% increment. Our results suggest that different responses observed at cellular level with low doses of irradiation, could be at the basis of efficacy of LLLT in clinical application, performed with PW rather than CW modalities.

  5. Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4

    NASA Technical Reports Server (NTRS)

    Chen, W.; Mouret, G.; Boucher, D.; Tittel, F. K.

    2001-01-01

    A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4-4.5 micrometers region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal. DFG power levels of 10 microW were generated at approximately 4 micrometers in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of 12 cm-1 and a temperature tuning rate of 1.02 cm-1/degree C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described.

  6. Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad

    2014-11-01

    In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.

  7. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  8. Statistical study of the reliability of oxide-defined stripe cw lasers of (AlGa)As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettenberg, M.

    1979-03-01

    In this report, we describe a statistical study of the reliability of oxide-defined stripe-contact cw injection lasers of (AlGa)As. These devices have one facet coated with Al/sub 2/O/sub 3/ and one facet coated with an Al/sub 2/O/sub 3//Si dichroic reflector; the lasers are optimized for cw low-threshold currents at room temperature, with values typically about 50 mA. Lifetests were carried out at 70 /sup 0/C ambient, in the cw mode of operation with about 5 mW output. Previous lifetests showed that the degradation rate followed a 0.95-eV activation energy so the 70 /sup 0/C environment provides a degradation acceleration factormore » of 190 over that at room temperature. We have found that the device failures follow a log-normal distribution, characterized by a mean time before failure of 4200 h and a standard deviation of 1.3. This corresponds to a mean time to failure (MTTF) of 10/sup 6/ h at room temperature. Failure is defined here as the inability of the device to emit 1 mW of stimulated cw output at 70 /sup 0/C, and assumes that optical feedback will be employed to adjust the laser current during operation. If a constant-current drive is envisioned, the failures for a 3-dB drop in light output also follow a log-normal distribution with a similar slope (standard deviation=1.1) and a MTTF of 2000 h at 70 /sup 0/C (500 000 h at room temperature). The failures were found to be mainly due to bulk gradual degradation and not facet or contact failure. Careful study of lasers before and after lifetest showed a significant increase in contact thermal resistance. However, this increase accounts for only a small portion of the nearly 70% increase in room-temperature cw threshold after failure at 70 /sup 0/C. After failure at 70 /sup 0/C, we also noted a degradation in the near-field and associated far-field pattern of the laser.« less

  9. Continuous wave external-cavity quantum cascade laser-based high-resolution cavity ring-down spectrometer for ultrasensitive trace gas detection.

    PubMed

    De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Pal, Mithun; Pradhan, Manik

    2016-05-01

    A high-resolution cavity ring-down spectroscopic (CRDS) system based on a continuous wave (cw) mode-hop-free (MHF) external-cavity quantum cascade laser (EC-QCL) operating at λ∼5.2  μm has been developed for ultrasensitive detection of nitric oxide (NO). We report the performance of the high-resolution EC-QCL based cw-CRDS instrument by measuring the rotationally resolved Λ-doublet e and f components of the P(7.5) line in the fundamental band of NO at 1850.169  cm-1 and 1850.179  cm-1. A noise-equivalent absorption coefficient of 1.01×10-9  cm-1  Hz-1/2 was achieved based on an empty cavity ring-down time of τ0=5.6  μs and standard deviation of 0.11% with averaging of six ring-down time determinations. The CRDS sensor demonstrates the advantages of measuring parts per billion NO concentrations in N2, as well as in human breath samples with ultrahigh sensitivity and specificity. The CRDS system could also be generalized to measure simultaneously many other trace molecular species within the broad tuning range of cw EC-QCL, as well as for studying the rotationally resolved hyperfine structures.

  10. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    NASA Astrophysics Data System (ADS)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  11. Development of a miniaturized optical viscosity sensor with an optical surface tracking system

    NASA Astrophysics Data System (ADS)

    Abe, H.; Nagamachi, R.; Taguchi, Y.; Nagasaka, Y.

    2010-02-01

    A new viscosity sensor enabling non-contact measurement at high speed, with less sample volume and high stability is required in a broad field. For example, in the industrial field, process control by real time monitoring of viscosity can enhance the quality of coating films and the process yield such as conductive films and optical films. Therefore, we have developed a new miniaturized optical viscosity sensor, namely MOVS (Miniaturized Optical Viscosity Sensor), based on a laser-induced capillary wave (LiCW) method which can meet the requirements above. In the MOVS, viscosity is estimated by observing the damping oscillation of LiCW, which is generated by an interference of two excitation laser beams on a liquid surface. By irradiating a probing laser on LiCW, a first order diffracted beam containing information of sample viscosity, is generated. The intensity of the reflected beam is utilized to control the distance between liquid-level and the sensor. The newly integrated optical surface tracking system makes possible the stable viscosity measurement in the presence of disturbance such as evaporation and external vibration. MOVS consists of five U-grooves fabricated by MEMS (Micro Electro Mechanical Systems) process to possess the optical fibers (photonic crystal fibers and fusion-spliced lensed fibers). In this study, by integrating the optical surface tracking system on the chip, nanosecond order damping oscillation of LiCW is successfully observed in the presence of external forced vibration, high speed evaporation (speed of 1 micrometer per second) and drying process of a liquid film (thickness of hundreds micrometer order).

  12. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Zhou, B.; Kane, T. J.; Dixon, G. J.; Byer, R. L.

    1985-01-01

    One of the main goals of the study was to demonstrate a low-power efficient Nd:YAG laser oscillator for applications in remote coherent Doppler anemometry. An electrical-to-optical slope efficiency of 6.5 percent has been achieved by using commercially available CW laser diodes of up to 100 mW to pump monolithic Nd:YAG rod lasers. The observed Nd:YAG oscillation threshold is at 2.3 mW of laser-diode output power, i.e., a small fraction of the rated output power. The highest Nd:YAG CW output power reached is 4.4 mW at an overall electrical-to-optical efficiency of 1.5 percent. The frequency jitter is less than 10 kHz in 0.3 s.

  13. Polarization switching of sodium guide star laser for brightness enhancement

    NASA Astrophysics Data System (ADS)

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-07-01

    The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.

  14. Remote wind sensing with a CW diode laser lidar beyond the coherence regime.

    PubMed

    Hu, Qi; Rodrigo, Peter John; Pedersen, Christian

    2014-08-15

    We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.

  15. Efficient Ho:LuLiF4 laser diode-pumped at 1.15 μm.

    PubMed

    Wang, Sheng-Li; Huang, Chong-Yuan; Zhao, Cheng-Chun; Li, Hong-Qiang; Tang, Yu-Long; Yang, Nan; Zhang, Shuai-Yi; Hang, Yin; Xu, Jian-Qiu

    2013-07-15

    We report the first laser operation based on Ho(3+)-doped LuLiF(4) single crystal, which is directly pumped with 1.15-μm laser diode (LD). Based on the numerical model, it is found that the "two-for-one" effect induced by the cross-relaxation plays an important role for the laser efficiency. The maximum continuous wave (CW) output power of 1.4 W is produced with a beam propagation factor of M(2) ~2 at the lasing wavelength of 2.066 μm. The slope efficiency of 29% with respect to absorbed power is obtained.

  16. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.

    PubMed

    Schulze, Philipp; Ludwig, Martin; Belder, Detlev

    2008-12-01

    A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.

  17. Shear Bond Strength of Intraoral Laser Welding and its Effect on Intrapulpal Temperature Rise in Primary Teeth: An in Vitro Study.

    PubMed

    Aglarci, Cahide; Yildiz, Esma; Isman, Eren; Kazak, Mine

    2016-03-01

    This study compared the shear bond strength (SBS) of conventional welding (CW) and intraoral laser welding (LW) on fixed space maintainers (SMs), and investigated the intrapulpal temperature change (ITC) during LW. Lasers have been used for intraoral welding. The SBS test used 26 molar bands divided into two groups, CW and LW. Stainless steel wires were welded to the middle of the buccal and lingual aspects of all the bands, using an Nd:YAG laser for the LW group and silver solder and flux soldering media for the CW group. The samples, fixed to acrylic resin blocks, were subjected to shear testing. In the ITC test, 25 exfoliated primary second molar teeth were used to adapt molar bands. J-type thermocouple wire was positioned in the pulp chamber. ITCs were determined during Nd:YAG laser welding of stainless steel wires to the bands. Mann-Whitney U test was used to determine differences in SBS between the groups. ITCs were analyzed by paired t test. The SBS between groups showed significant differences (LW: 489.47 ± 135.70; CW: 49.71 ± 17.76; p < 0.001). The mean ITC during LW was 3.64 ± 0.79 (min: 2.4; max: 5.10). None of the samples' ITCs exceeded the critical threshold value (5.5 °C). LW obtained a higher-strength joint than CW. ITCs during LW do not present a thermal risk to primary teeth. The intraoral use of LW for SMs in primary teeth is recommended in terms of strength and ITCs.

  18. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  19. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    PubMed

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  20. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Injection lasers based on the AlGaAsSb system emitting at 1.6 μm

    NASA Astrophysics Data System (ADS)

    Virro, A. L.; Eliseev, P. G.; Lyuk, P. A.; Fridental, Ya K.; Khaller, Yu E.

    1988-11-01

    An experimental dependence of the threshold current density jth on the thickness of the active region was used to find the reduced threshold current density for AlGaAsSb (λ = 1.59μm, T = 295K) lasers: this density was 8 kA·cm-2·μm-1. The minimum threshold current was jth = 1.8 kA/cm2. Wide-contact lasers exhibited cw operation down to 175 K.

  1. Computational simulation of laser heat processing of materials

    NASA Astrophysics Data System (ADS)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  2. SRS modeling in high power CW fiber lasers for component optimization

    NASA Astrophysics Data System (ADS)

    Brochu, G.; Villeneuve, A.; Faucher, M.; Morin, M.; Trépanier, F.; Dionne, R.

    2017-02-01

    A CW kilowatt fiber laser numerical model has been developed taking into account intracavity stimulated Raman scattering (SRS). It uses the split-step Fourier method which is applied iteratively over several cavity round trips. The gain distribution is re-evaluated after each iteration with a standard CW model using an effective FBG reflectivity that quantifies the non-linear spectral leakage. This model explains why spectrally narrow output couplers produce more SRS than wider FBGs, as recently reported by other authors, and constitute a powerful tool to design optimized and innovative fiber components to push back the onset of SRS for a given fiber core diameter.

  3. CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.

    PubMed

    Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P

    2010-03-15

    We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.

  4. Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.

    2012-05-01

    We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.

  5. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  6. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  7. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  8. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  9. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  μm.

    PubMed

    Nie, Hongkun; Zhang, Peixiong; Zhang, Baitao; Yang, Kejian; Zhang, Lianhan; Li, Tao; Zhang, Shuaiyi; Xu, Jianqiu; Hang, Yin; He, Jingliang

    2017-02-15

    A diode-end-pumped continuous-wave (CW) and passively Q-switched Ho, Pr:LiLuF4 (Ho, Pr:LLF) laser operation at 2.95 μm was demonstrated for the first time, to the best of our knowledge. The maximum CW output power was 172 mW. By using a monolayer graphene as the saturable absorber, the passively Q-switched operation was realized, in which regimes with the highest output power, the shortest pulse duration, and the maximum repetition rate were determined to be 88 mW, 937.5 ns, and 55.7 kHz, respectively. The laser beam quality factor M2 at the maximum CW output power were measured to be Mx2=1.48 and My2=1.47.

  10. Continuous-wave organic dye lasers and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuouslymore » so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.« less

  11. Thermal effects on cavity stability of chromium- and neodymium-doped gadolinium scandium gallium garnet laser under solar-simulator pumping

    NASA Technical Reports Server (NTRS)

    Kim, Kyong H.; Venable, Demetrius D.; Brown, Lamarr A.; Lee, Ja H.

    1991-01-01

    Results are presented on testing a Cr- and Nd-codoped Gd-Sc-Ga-garnet (Cr:Nd:GSGG) crystal and a Nd:YAG crystal (both of 3.2 mm diam and 76-mm long) for pulsed and CW laser operations using a flashlamp and solar simulator as pumping sources. Results from experiments with the flashlamp show that, at pulse lengths of 0.11, 0.28, and 0.90 ms, the slope efficiency of the Cd:Nd:GSGG crystal was higher than that of the Nd:YAG crystal and increased with pulse width. With the solar simulator, however, the CW laser operation of the Cr:Nd:GSGG crystal was limited to intensities not greater than 1500 solar constants, while the Nd:YAG laser successfully performed for all pump beam intensities available. It was found that the exposure for several minutes of the Cr:Nd:GSGG crystal to pump beam intensity of 3000 solar constants led to its damage by thermal cracking, indicating that a better solar-pumped CW laser performance may be difficult to realize with rod geometry.

  12. Continuous Wave Potassium Titanyl Phosphate Laser Treatment is Safe and Effective for Xanthelasma Palpebrarum.

    PubMed

    Greijmans, Ellen; Luiting-Welkenhuyzen, Hedwig; Luijks, Harriet; Bovenschen, H Jorn

    2016-07-01

    Although not an accepted standard treatment, the 532-nm continuous wave potassium titanyl phosphate (CW-KTP) laser might be a powerful device to treat xanthelasma palpebrarum (XP). To determine the safety and efficacy of CW-KTP laser treatment for XP. Between January 2013 and January 2015, 30 consecutive patients with XP were treated with a 532-nm CW-KTP laser (spot size: 0.9 mm, power: 5.0 W, fluence: 36-38 J/cm, pulse width: 46 milliseconds, frequency: 2.0 Hz, passes per session: 3). In a retrospective study design, safety and efficacy data were collected and analyzed. Overall, 29/30 (97%) of patients had an excellent cosmetical result. Downtime was 1 week with crusted lesions. Although slight hypopigmentation was common, only 1/30 (3%) patients had hypopigmentation that was more than expected. Recurrences (13/30; 43%) were frequent, so that yearly maintenance therapy was warranted. No major side effects were noticed. Continuous wave KTP laser therapy is safe and highly effective for XP, although regular follow-up treatments are often necessary to maintain the achieved cosmetic results.

  13. Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Sun, D. L.; Wang, S. Z.; Luo, J. Q.; Li, X. L.; Huang, L.; Hu, A. L.; Tang, Y. Q.; Guo, Q.

    2013-05-01

    We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance.

  14. Standoff analysis of laser-produced plasmas using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less

  15. Sub-Doppler two-photon absorption induced by the combination of a single-mode laser and a frequency comb

    NASA Astrophysics Data System (ADS)

    Moreno, Marco P.; Nogueira, Giovana T.; Felinto, Daniel; Vianna, Sandra S.

    2017-08-01

    The two-photon transition 5 S -5 P -5 D in rubidium vapor is investigated by detecting the fluorescence from the 6 P3 /2 state when the atomic system is excited by the combined action of a cw diode laser and a frequency comb. The cw laser plays a role as a velocity-selective filter and allows for sub-Doppler spectroscopy over a large spectral range including the 5 D3 /2 and 5 D5 /2 states. For a counterpropagating beam configuration, the response of each atomic velocity group is well characterized within the Doppler profile and the excited hyperfine levels are clearly resolved. The contribution of the optical pumping to the direct two-photon process is also revealed. The results are well described in a frequency domain picture by considering the interaction of each velocity group with the cw laser and the modes of the frequency comb.

  16. Plate-shaped Yb:LuPO4 crystal for efficient CW and passively Q-switched microchip lasers

    NASA Astrophysics Data System (ADS)

    Liu, Junhai; Wang, Lisha; Han, Wenjuan; Xu, Honghao; Zhong, Degao; Teng, Bing

    2016-10-01

    It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.

  17. GaInNAsSb/GaAs vertical cavity surface-emitting lasers (VCSELs): current challenges and techniques to realize multiple-wavelength laser arrays at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Gobet, Mathilde; Bae, Hopil P.; Sarmiento, Tomas; Harris, James S.

    2008-02-01

    Multiple-wavelength laser arrays at 1.55 μm are key components of wavelength division multiplexing (WDM) systems for increased bandwidth. Vertical cavity surface-emitting lasers (VCSELs) grown on GaAs substrates outperform their InP counterparts in several points. We summarize the current challenges to realize continuous-wave (CW) GaInNAsSb VCSELs on GaAs with 1.55 μm emission wavelength and explain the work in progress to realize CW GaInNAsSb VCSELs. Finally, we detail two techniques to realize GaInNAsSb multiple-wavelength VCSEL arrays at 1.55 μm. The first technique involves the incorporation of a photonic crystal into the upper mirror. Simulation results for GaAs-based VCSEL arrays at 1.55 μm are shown. The second technique uses non-uniform molecular beam epitaxy (MBE). We have successfully demonstrated 1x6 resonant cavity light-emitting diode arrays at 850 nm using this technique, with wavelength spacing of 0.4 nm between devices and present these results.

  18. Continuous-wave and actively Q-switched resonantly dual-end-pumped Er : YAG ceramic laser emitting at 1.6 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, T Y; Deng, Yu; Ju, Y-L

    2015-12-31

    We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)

  19. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    NASA Astrophysics Data System (ADS)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  20. Intracavity doubling of cw LD pumped Nd:S-FAP laser with KTP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shaojun; Sun Lianke; Wang Qingpu

    In this paper the lasing performance of a intracavity doubling of CW diode-laser end-pumped Nd{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F, Nd:S-FAP, laser with KTP crystal was reported. The authors measured the single output performance of the green laser: the pumping threshold was 8mW; when the pumping light of 210mW was absorbed, the maximum single output at 529.7nm was 4.4mW (TEM{sub 00} mode), corresponding to a total conversion efficiency 2.1%. The comparison between experimental results and theoretical calculation was also discussed in this paper.

  1. Power degradation and reliability study of high-power laser bars at quasi-CW operation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu; Fan, Yong; Liu, Hui; Wang, Jingwei; Zah, Chungen; Liu, Xingsheng

    2017-02-01

    The solid state laser relies on the laser diode (LD) pumping array. Typically for high peak power quasi-CW (QCW) operation, both energy output per pulse and long term reliability are critical. With the improved bonding technique, specially Indium-free bonded diode laser bars, most of the device failures were caused by failure within laser diode itself (wearout failure), which are induced from dark line defect (DLD), bulk failure, point defect generation, facet mirror damage and etc. Measuring the reliability of LD under QCW condition will take a rather long time. Alternatively, an accelerating model could be a quicker way to estimate the LD life time under QCW operation. In this report, diode laser bars were mounted on micro channel cooler (MCC) and operated under QCW condition with different current densities and junction temperature (Tj ). The junction temperature is varied by modulating pulse width and repetition frequency. The major concern here is the power degradation due to the facet failure. Reliability models of QCW and its corresponding failures are studied. In conclusion, QCW accelerated life-time model is discussed, with a few variable parameters. The model is compared with CW model to find their relationship.

  2. 980 nm diode laser with automatic power control mode for dermatological applications

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.

    2015-07-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are compared. It was demonstrated that using APC mode decreases the width of collateral damage at removing of these nosological neoplasms of human skin. The mean width of collateral damage reached 0.846+/-0.139 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.443+/-0.312 mm, dermatofibroma - 0.923+/-0.271 mm, and basal cell skin cancer - 0.787+/-0.325 mm. The mean width of collateral damage reached 0.592+/-0.197 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.191+/-0.162 mm, dermatofibroma - 0.476+/-0.366 mm, and basal cell skin cancer - 0.517+/-0.374 mm. It was found that the percentage of laser wounds with collateral damage less than 300 μm of quantity of removed nosological neoplasms in APC mode is 50%, that significantly higher than the percentage of laser wounds obtained using CW mode (13.4%).

  3. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    NASA Astrophysics Data System (ADS)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  4. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  5. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents.

    PubMed

    Gökhan Demir, Ali; Previtali, Barbara

    2014-06-01

    Magnesium alloys constitute an interesting solution for cardiovascular stents due to their biocompatibility and biodegradability in human body. Laser microcutting is the industrially accepted method for stent manufacturing. However, the laser-material interaction should be well investigated to control the quality characteristics of the microcutting process that concern the surface roughness, chemical composition, and microstructure of the final device. Despite the recent developments in industrial laser systems, a universal laser source that can be manipulated flexibly in terms of process parameters is far from reality. Therefore, comparative studies are required to demonstrate processing capabilities. In particular, the laser pulse duration is a key factor determining the processing regime. This work approaches the laser microcutting of AZ31 Mg alloy from the perspective of a comparative study to evaluate the machining capabilities in continuous wave (CW), ns- and fs-pulsed regimes. Three industrial grade machining systems were compared to reach a benchmark in machining quality, productivity, and ease of postprocessing. The results confirmed that moving toward the ultrashort pulse domain the machining quality increases, but the need for postprocessing remains. The real advantage of ultrashort pulsed machining was the ease in postprocessing and maintaining geometrical integrity of the stent mesh after chemical etching. Resultantly, the overall production cycle time was shortest for fs-pulsed laser system, despite the fact that CW laser system provided highest cutting speed.

  6. Soviet chemical laser research: pulsed lasers. Report for 1963--1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ksander, Y.

    1971-11-01

    The document reviews Soviet work on pulsed chemical lasers published in the open litarature in 1963-1970. Whereas U. S. research combines the approaches of physics, quantum electrodynamics, and aerodynamics, Soviet laser research is heavily (and expertly) oriented to understanding the chemical reactions. They prefer pulsed to cw systems, concentrating on kinetics of vibrationally excited diatomic systems. The documents describe gas lasers with discharge, photolytic, and other initiation and includes research on HN/sub 3/ + CO/sub 2/ mixtures, and means of controlling reaction rates by resonant coupling and selective heating. The report also proposes a laser based on photorecombination of atoms.

  7. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    NASA Astrophysics Data System (ADS)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  8. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery.

    PubMed

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin

    2017-12-01

    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R 2  = 0.963, P < 0.01 for both). The temperature on film FOTCs increases exponentially with adjusted R 2  = 0.959 in continuous wave mode, while in pulsed mode with adjusted R 2  = 0.934. The temperature was elevated up to about 210 °C and eventually to be a stable state. Film FOTCs centralized approximately 50% of laser energy on the fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  9. Long-wavelength (1.3-1.5 micron) quantum dot lasers based on GaAs

    NASA Astrophysics Data System (ADS)

    Kovsh, Alexey R.; Ledentsov, Nikolai N.; Mikhrin, Sergei S.; Zhukov, Alexey E.; Livshits, Daniil A.; Maleev, Nikolay A.; Maximov, Mikhail V.; Ustinov, Victor M.; Gubenko, Alexey E.; Gadjiev, Igor M.; Portnoi, Efim L.; Wang, Jyh Shyang; Chi, Jim Y.; Ouyang, Donald N.; Bimberg, Dieter; Lott, James A.

    2004-06-01

    The molecular beam epitaxy of self-assembled quantum dots (QDs) has reached a level such that the principal advantages of QD lasers can now be fully realized. We overview the most important recent results achieved to date including excellent device performance of 1.3 μm broad area and ridge waveguide lasers (Jth<150A/cm2, Ith=1.4 mA, differential efficiency above 70%, CW 300 mW single lateral mode operation), suppression of non-linearity of QD lasers, which results to improved beam quality, reduced wavelength chirp and sensitivity to optical feedback. Effect of suppression of side wall recombination in QD lasers is also described. These effects give a possibility to further improve and simplify processing and fabrication of laser modules targeting their cost reduction. Recent realization of 2 mW single mode CW operation of QD VCSEL with all-semiconductor DBR is also presented. Long-wavelength QD lasers are promising candidate for mode-locking lasers for optical computer application. Very recently 1.7-ps-wide pulses at repetition rate of 20 GHz were obtained on mode-locked QD lasers with clear indication of possible shortening of pulse width upon processing optimization. First step of unification of laser technology for telecom range with QD-lasers grown on GaAs has been done. Lasing at 1.5 μm is achieved with threshold current density of 0.8 kA/cm2 and pulsed output power 7W.

  10. Continuous-wave modulation of a femtosecond oscillator using coherent molecules.

    PubMed

    Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D

    2018-03-01

    We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.

  11. Comparison of high-intensity pulsed and continuous-wave irradiation on benzoporphyrin derivative-induced photosensitization of bladder cancer cells

    NASA Astrophysics Data System (ADS)

    Diddens, Heyke C.; Gillies, Robert; Hasan, Tayyaba

    1994-08-01

    Benzoporphyrin derivative, monoacid ring A (BPD-MA) is a second generation porphyrin photosensitizer, with a significant absorption at 692 nm. The ability of two different lasers (a high-intensity pulsed ruby laser, and a continuous wave (cw) argon-ion laser pumped dye laser) in producing photodynamic damage to human bladder carcinoma cells in vitro under similar conditions was compared. Cells incubated in 0.14 (mu) M BPD-MA for 3 hours were irradiated with 1 or 3 J/cm2 with either pulsed or cw irradiation at 694 nm. Cell survival was determined using an MTT assay. With the ruby laser essentially no phototoxicity was observed at the high intensity pulsed irradiances used, whereas 38% and 6% survival rates were observed for 1 and 3 J/cm2, respectively, using cw irradiation. Possible explanations for the lack of BPD-MA phototoxicity using the ruby laser are: rapid photodegradation, saturation and excitation into higher excited states of the sensitizer. No BPD-MA photodegradation was observed in 1.4 (mu) M BPD-MA in 10% fetal calf serum solutions using the ruby laser. However, an oxygen-dependent photodegradation with the formation of a chlorin-type photoproduct was observed in these solutions using cw irradiation. A simple calculation indicated that the high pulse irradiances used in this study (4.4 X 107 W/cm2) were approximately 3 orders of magnitude greater than required for the onset of saturation. If higher excited states (Sn or Tn) are populated, they do not undergo any photochemistry resulting in phototoxicity or in photoproduct formation. These results show that with the low saturation threshold of BPD-MA, the choice of source and irradiance are important considerations in planning a therapeutic regime.

  12. Synchronization of pulses from mode-locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, G.T.

    A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less

  13. Solar-Pumped TEM₀₀ Mode Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2013-10-21

    Here we show a significant advance in solar-pumped laser beam brightness by utilizing a 1.0 m diameter Fresnel lens and a 3 mm diameter Nd:YAG single-crystal rod. The incoming solar radiation is firstly focused by the Fresnel lens on a solar tracker. A large aspheric lens and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation along the thin laser rod within a V-shaped pumping cavity. 2.3 W cw TEM₀₀ (M² ≤ 1.1) solar laser power is finally produced, attaining 1.9 W laser beam brightness figure of merit, which is 6.6 times higher than the previous record. For multimode operation, 8.1 W cw laser power is produced, corresponding to 143% enhancement in collection efficiency.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Emission of charged particles from the surface of a moving target acted on by cw CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Petrov, A. L.; Shadrin, A. N.

    1990-06-01

    An experimental investigation was made of the emission of charged particles due to the irradiation of moving steel and graphite targets with cw CO2 laser radiation. The characteristics of the emission current signals were determined for different laser irradiation regimes. The maximum emission current density from the surface of a melt pool ( ~ 1.1 × 10 - 2 A/cm2) and the average temperature of the liquid metal (~ 2040 K) were measured for an incident radiation power density of 550 W and for horizontal and vertical target velocities of respectively ~ 1.5 mm/s and ~ 0.17 mm/s. The authors propose to utilize this phenomenon for monitoring the laser processing of materials.

  15. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.

    PubMed

    Marshall, Craig P; Olcott Marshall, Alison

    2015-09-01

    Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and nondestructively with little to no sample preparation, thus making it an ideal instrument for Mars rover missions. The ESA ExoMars planetary mission scheduled for launch in 2018 will contain a miniaturized Raman spectrometer (RLS) as part of the Pasteur payload operating with a continuous wave (CW) laser emitting at 532 nm. In addition, NASA is independently developing two miniaturized Raman spectrometers for the upcoming Mars 2020 rover mission, one of which is a remote (stand-off) Raman spectrometer that uses a pulse-gated 532 nm excitation system (SuperCam). The other is an in situ Raman spectrometer that employs a CW excitation laser emitting at 248.6 nm (SHERLOC). Recently, it has been shown with analyses by Curiosity that Gale Crater contains significantly elevated concentrations of transition metals such as Cr and Mn. Significantly, these transition metals are known to undergo fluorescence emission in the visible portion of the electromagnetic spectrum. Consequently, samples containing these metals could be problematic for the successful acquisition of fluorescence-free Raman spectra when using a CW 532 nm excitation source. Here, we investigate one analog environment, with a similar mineralogy and sedimentology to that observed in martian environments, as well as elevated Cr contents, to ascertain the best excitation wavelength to successfully collect fluorescence-free spectra from Mars-like samples. Our results clearly show that CW near-infrared laser excitation emitting at 785 nm is better suited to the collection of fluorescence-free Raman spectra than would be a CW laser emitting at 532 nm.

  16. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.

  17. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  18. Dual-wavelength, continuous-wave Yb:YAG laser for high-resolution photothermal common-path interferometry.

    PubMed

    Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge

    2013-07-20

    We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.

  19. Continuous Wave Ring-Down Spectroscopy Diagnostic for Measuring Argon Ion and Neutral Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl

    2013-10-01

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.

  20. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    NASA Astrophysics Data System (ADS)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  1. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique.

    PubMed

    Mei, Liang; Guan, Peng; Kong, Zheng

    2017-10-02

    Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.

  2. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm.

    PubMed

    Kryzhanovskaya, Natalia; Moiseev, Eduard; Polubavkina, Yulia; Maximov, Mikhail; Kulagina, Marina; Troshkov, Sergey; Zadiranov, Yury; Guseva, Yulia; Lipovskii, Andrey; Tang, Mingchu; Liao, Mengya; Wu, Jiang; Chen, Siming; Liu, Huiyun; Zhukov, Alexey

    2017-09-01

    High-performance injection microdisk (MD) lasers grown on Si substrate are demonstrated for the first time, to the best of our knowledge. Continuous-wave (CW) lasing in microlasers with diameters from 14 to 30 μm is achieved at room temperature. The minimal threshold current density of 600  A/cm 2 (room temperature, CW regime, heatsink-free uncooled operation) is comparable to that of high-quality MD lasers on GaAs substrates. Microlasers on silicon emit in the wavelength range of 1320-1350 nm via the ground state transition of InAs/InGaAs/GaAs quantum dots. The high stability of the lasing wavelength (dλ/dI=0.1  nm/mA) and the low specific thermal resistance of 4×10 -3 °C×cm 2 /W are demonstrated.

  3. 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers

    NASA Astrophysics Data System (ADS)

    Deninger, Anselm J.; Roggenbuck, A.; Schindler, S.; Preu, S.

    2015-03-01

    To date, exploiting the full bandwidth of state-of-the-art InGaAs photomixers for generation and detection of continuous-wave (CW) THz radiation (typ. ~50 GHz to ~3 THz) required complex and costly external-cavity diode lasers with motorized resonator control. Distributed feedback (DFB) lasers, by contrast, are compact and inexpensive, but the tuning range per diode is limited to ~600 GHz at 1.5 μm. In this paper, we show that a combination of three DFB diodes covers the complete frequency range from 0 - 2750 GHz without any gaps. In combination with InGaAs-based photomixers for terahertz generation and detection, the system achieves a dynamic range of > 100 dB at 56 GHz, 64 dB at 1000 GHz, and 26 dB at 2500 GHz. A field-programmable gate array (FPGA)-based lock-in amplifier permits a flexible adjustment of the integration time from 0.5 ms to 600 ms. Employing an optimized "fast scan" mode, a spectrum of ~1200 GHz - the bandwidth of each subset of two lasers - and 40 MHz steps is acquired in less than one minute, still maintaining a reasonable dynamic range. To the best of our knowledge, the bandwidth of 2.75 THz presents a new record for DFB-based CW-terahertz systems.

  4. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Masuhara, Hiroshi; Sugiyama, Teruki; Yuyama, Ken-ichi; Usman, Anwar

    2015-02-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid-liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  5. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  6. Evaluation of laser bacterial anti-fouling of transparent nanocrystalline yttria-stabilized-zirconia cranial implant.

    PubMed

    Damestani, Yasaman; De Howitt, Natalie; Halaney, David L; Garay, Javier E; Aguilar, Guillermo

    2016-10-01

    The development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers. A drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment. Analysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth. Our results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  8. High-temperature CW and pulsed operation in constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.; Gilbert, D. B.

    1981-01-01

    The behavior of constricted double-heterojunction (CDH) diode lasers has been investigated up to 170 C CW and 270 C pulsed. It is found that the temperature-dependent current concentration effect responsible for low threshold-current sensitivity and temperature-invariant external differential quantum efficiency in CDH lasers saturates at about 100 C. It is also found that over a wide temperature interval (180-280 C) the threshold current density has a To value of 40-50 C and that the spontaneous emission becomes increasingly sublinear above 220 C. Both effects are believed to reflect Auger recombination.

  9. Resonantly pumped high efficiency Ho:YAG laser.

    PubMed

    Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu

    2012-11-20

    High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.

  10. Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling.

    PubMed

    Shao, Guodong; Song, Yufeng; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan

    2015-10-05

    We report on the experimental observation of soliton-dark pulse pair formation in a birefringent cavity fiber laser. Temporal cavity solitons are formed in one polarization mode of the cavity. It is observed that associated with each of the cavity solitons a dark pulse is induced on the CW background of the orthogonal polarization mode. We show that the dark pulse formation is a result of the incoherent cross polarization coupling between the soliton and the CW beam and has a mechanism similar to that of the polarization domain formation observed in the fiber lasers.

  11. A radiatively pumped CW CO2 laser

    NASA Technical Reports Server (NTRS)

    Insuik, R. J.; Christiansen, W. H.

    1984-01-01

    A proof of principle experiment to demonstrate the physics of a radiatively pumped laser has been carried out. For the first time, a blackbody cavity has optically pumped a CW CO2 laser. Results are presented from a series of experiments using mixtures of CO2, He, and Ar in which maximum output power was obtained with a 20 percent CO2-15 percent He-65 percent Ar mixture. The dependence of the output power on the blackbody temperature and the cooling gas flow rate is also discussed. By appropriately varying these parameters, continuous output powers of 8-10 mW have been achieved.

  12. CW and passively Q-switched laser performance of Nd:Lu2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-01-01

    We demonstrated an efficient and controllable dual-wavelength continuous-wave (CW) laser of Nd:Lu2SiO5 (Nd:LSO) crystal. The maximum output power was 3.02 W at wavelength of 1075 nm and 1079 nm, and with increasing of absorbed pump power, the ratio of 1079 nm laser rose. The slope efficiency of 65.6% and optical-to-optical conversion efficiency of 63.3% were obtained. The passively Q-switched laser properties of Nd:LSO were investigated for the first time. The shortest pulse, maximum pulse energy and peak power were 11.58 ns, 29.05 μJ and 2.34 kW, respectively.

  13. Room-temperature Q-switched Tm:BaY2F8 laser pumped by CW diode laser

    NASA Astrophysics Data System (ADS)

    Coluccelli, Nicola; Galzerano, Gianluca; Laporta, Paolo; Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro

    2006-02-01

    We report on the realization of CW diode-pumped Tm:BaY2F8 Q-switched laser at 1.93 µm. Active Q-switching was obtained by means of an intracavity Pockels cell. A functional characterization of the laser performance is presented with particular attention to output energy, pulse duration, pulse stability, and wavelength tunability. Pulses with time duration as short as 170 ns were demonstrated at the minimum repetition rate of 5 Hz with an energy of 3.2 mJ (corresponding to a peak power of 19 kW). A wavelength tunability range from 1905 nm to 1990 nm has been observed.

  14. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  15. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  16. Versatile monolithic 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.

    2018-02-01

    To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.

  17. Design investigation of solar-powered lasers for space applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of using solar powered continuous wave (CW) lasers for space power transmission was investigated. Competing conceptual designs are considered. Optical pumping is summarized. Solar pumped Lasant type lasers are outlined. Indirect solar pumped lasers are considered.

  18. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  19. Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon.

    PubMed

    Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru

    2009-09-09

    We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.

  20. A Comparison of Laser Induced Florescence and Continuous Wave Ring Down Spectroscopy Measurements of Argon Ion and Neutral VDFs in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl

    2012-10-01

    In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.

  1. Site-selective nitrogen isotopic ratio measurement of nitrous oxide using a TE-cooled CW-RT-QCL based spectrometer.

    PubMed

    Li, Jingsong; Zhang, Lizhu; Yu, Benli

    2014-12-10

    The feasibility of laser spectroscopic isotopic composition measurements of atmospheric N2O was demonstrated, although making them useful will require further improvements. The system relies on a thermoelectrically (TE) cooled continuous-wave (CW) room temperature (RT) quantum cascade laser source emitting wavelength of around 4.6μm, where strong fundamental absorption bands occur for the considered specie and its isotopomers. The analysis technique is based on wavelength modulation spectroscopy with second-harmonic detection and the combination of long-path absorption cell. Primary laboratory tests have been performed to estimate the achievable detection limits and the signal reproducibility levels in view of possible measurements of (15)N/(14)N and (18)O/(16)O isotope ratios. The experiment results showed that the site-selective (15)N/(14)N ratio can be measured with a precision of 3‰ with 90s averaging time using natural-abundance N2O sample of 12.7ppm. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of a plasma formed by a surface optical-discharge in a metal vapour interacting with a cw CO2 laser beam

    NASA Astrophysics Data System (ADS)

    Zaikin, A. E.; Levin, A. V.; Petrov, A. L.

    1995-02-01

    A surface optical-discharge plasma was formed in a metal vapour under normal conditions by steady-state irradiation with a cw CO2 laser delivering radiation of moderate (2-4.5 MW cm-2) intensity. This plasma strongly screened the irradiated surface. Under the selected experimental conditions the optical discharge was not a continuous (steady-state) process. The plasma cloud was displaced along the beam out of the waist to a region where the laser radiation intensity was almost an order of magnitude less than the threshold for excitation of the optical-discharge plasma in the vapour. A strong screening of the metal surface, which could even completely stop evaporation of the metal, was observed. Self-oscillations of the optical-discharge plasma were observed for the first time in a vapour interacting with cw CO2 radiation: this was attributed to screening of the target surface. Within one period of the self-oscillations there were additional hf plasma pulsations which led to stratification of the plasma cloud. The results obtained were interpreted.

  3. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  4. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  5. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polulyakh, Valeriy; Poutivski, Iouri

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t∼30psec) and low energy (E∼200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P∼30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and amore » scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.« less

  7. Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level

    NASA Astrophysics Data System (ADS)

    Liu, J. H.

    2012-10-01

    We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubov, F. I.; Kryzhanovskaya, N. V.; Moiseev, E. I.

    The spectral, threshold, and power characteristics of a microdisk laser 31 μm in diameter with an active region based on InAs/InGaAs quantum dots, operating in the continuous-wave (cw) mode at room temperature are studied. The minimum threshold current density is 0.58 kA/cm{sup 2}, the subthreshold linewidth of the whispering-gallery mode is 50 pm at a wavelength lying in the range of 1.26–1.27 μm. The total power emitted into free space reaches ~0.1 mW in the cw mode, whereas the radiation power of the whispering-gallery modes is ~2.8%.

  9. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    PubMed

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  10. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission

    NASA Astrophysics Data System (ADS)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-01

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li+ F- and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  11. Red laser-diode pumped 806 nm Tm3+: ZBLAN fibre laser

    NASA Astrophysics Data System (ADS)

    Juárez-Hernández, M.; Mejía, E. B.

    2017-06-01

    A Tm3+-doped fluorozirconate (ZBLAN) fibre laser operating CW at 806 nm when diode-pumped at 687 nm is described for the first time. This device is based on the 3F4  →  3H6 transition, and is suitable for first telecom window and sensing applications. A slope efficiency of 50.3% and low threshold pump-power of 11.6 mW were obtained. Maximum output power of 15 mW for 40 mW coupled pump was achieved.

  12. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiessling, J.; Breunig, I.; Schunemann, P. G.; Buse, K.; Vodopyanov, K. L.

    2013-10-01

    We report a diffraction-limited photonic terahertz (THz) source with linewidth <10 MHz that can be used for nonlinear THz studies in the continuous wave (CW) regime with uninterrupted tunability in a broad range of THz frequencies. THz output is produced in orientation-patterned (OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near λ = 2 μm. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 μm was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved >25 μW of single-frequency tunable CW THz output power scalable to >1 mW with proper choice of pump laser wavelength.

  13. High temperature heat source generation with a very low power level quasi-cw(continuous wave) semiconductor laser for medical use

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Fujioka, Tomoo; Yamaguchi, Shigeru

    2013-03-01

    In most of medical and dental laser treatments, high power pulsed laser have been used as desirable light sources employing with an optical fiber delivery system. The treatment process involves high temperature thermal effect associated with direct laser absorption of the materials such as hard and soft tissues, tooth, bones and so on. Such treatments sometimes face technical difficulties suffering from their optical absorption properties. We investigate a new technology to create high temperature heat source on the tip surface of the glass fiber proposed for the medical surgery applications. Using a low power level (4 6W) semiconductor laser at a wavelength of 980nm, a laser coupled fiber tip was pre-processed to contain certain amount of TiO2 powder with a depth of 400μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus the laser treatment can be performed without suffering from any optical characteristic of the material. Semiconductor laser was operated quasi-CW mode pulse time duration of 180ms and more than 95% of the laser energy was converted to thermal energy in the fiber tip. by Based on twocolor thermometry by using a gated optical multichannel analyzer with 0.25m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be approximately 3000K. Demonstration of laser processing employing this system was successfully carried out drilling through holes in ceramic materials simulating bone surgery.

  14. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  15. Intensity-Modulated Continuous-Wave Laser Absorption Spectrometer at 1.57 Micrometer for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Lin, Bing

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.

  16. 300 mW of coherent light at 488 nm using a generic approach

    NASA Astrophysics Data System (ADS)

    Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter

    2008-02-01

    We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.

  17. Single-shot spectroscopy of broadband Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  18. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    PubMed

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  19. 700 W blue fiber-coupled diode-laser emitting at 450 nm

    NASA Astrophysics Data System (ADS)

    Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.

    2018-02-01

    A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.

  20. Reliability of constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.; Ettenberg, M.; Gilbert, D. B.; Hughes, J. J.

    1983-01-01

    Constricted double-heterojunction diode lasers have been life tested at 70 C heatsink temperature and 3-4 mW/facet in CW operation. A median life of 7800 h is obtained at 70 C, which extrapolates to 400,000 h median life at room temperature. The extrapolated mean time to failure at room temperature is in excess of 1,000,000 h. Single-longitudinal-mode CW operation is maintained after 10,000 h of accelerated aging at 70 C.

  1. Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Guandalini, Annalisa; Tomaselli, Alessandra; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro

    2004-07-01

    Continuous-wave mode locking (CW-ML) of a diode-pumped Nd3+:BaY2F8 laser is reported for the first time to our knowledge. Pulses as short as 4.8 ps were measured with a total output power of almost equal to 1 W at 1049 nm, corresponding to 3.4 W of absorbed power from the pump diode at 806 nm. A novel technique for passive stabilization of CW-ML has been demonstrated.

  2. Development of Advanced Laser Diode Sources

    NASA Technical Reports Server (NTRS)

    Coleman, J. J.; Papen, G. C.

    1998-01-01

    The design and operation of InGaAs-GaAs-AlGaAs asymmetric cladding ridge waveguide distributed Bragg reflector lasers is presented. Targeted for the remote sensing of water vapor with absorption lines in the lambda approximately 930 nm region, these devices operate CW with threshold currents as low as 11 MA and slope efficiencies as high as 0.37 W/A. Tbey also operate with over 30-dB side-mode suppression, and the typical CW characteristic temperature, T(sub o), is 95 K.

  3. Frequency conversion of cw chemical HF laser radiation in nonlinear crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement'ev, V.M.; Kolpakov, Y.G.; Pecherskii, Y.Y.

    1977-07-01

    A description is given of a cw chemical HF laser and its characteristics. The results are reported of investigations of the efficiency of conversion of the HF laser radiation into second harmonics and combination frequencies in LiNbO/sub 3/, LiIO/sub 3/, and Ag/sub 3/AsS/sub 3/ crystals. The most efficient conversion was achieved in proustite (Ag/sub 3/AsS/sub 3/) when the second-harmonic power was approx.3..mu..W and the fundamental-frequency power was approx.100 mW. Twenty-one emission lines were obtained in the 1.39--1.49 ..mu.. range. The HF laser radiation was converted to the visible range (0.522--0.516 ..mu..).

  4. Dual quantum cascade laser-based sensor for simultaneous NO and NO2 detection using a wavelength modulation-division multiplexing technique

    NASA Astrophysics Data System (ADS)

    Yu, Yajun; Sanchez, Nancy P.; Yi, Fan; Zheng, Chuantao; Ye, Weilin; Wu, Hongpeng; Griffin, Robert J.; Tittel, Frank K.

    2017-05-01

    A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan-Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.

  5. The broad applicability of the disk laser principle: from CW to ps

    NASA Astrophysics Data System (ADS)

    Killi, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Kleinbauer, Jochen; Schad, Sven; Brockmann, Rüdiger; Weiler, Sascha; Neuhaus, Jörg; Kalfhues, Steffen; Mehner, Eva; Bauer, Dominik; Schlueter, Holger; Schmitz, Christian

    2009-02-01

    The quasi two-dimensional geometry of the disk laser results in conceptional advantages over other geometries. Fundamentally, the thin disk laser allows true power scaling by increasing the pump spot diameter on the disk while keeping the power density constant. This scaling procedure keeps optical peak intensity, temperature, stress profile, and optical path differences in the disk nearly unchanged. The required pump beam brightness - a main cost driver of DPSSL systems - also remains constant. We present these fundamental concepts and present results in the wide range of multi kW-class CW-sources, high power Q-switched sources and ultrashort pulsed sources.

  6. Holmium Doped Solid State Laser Resonantly Pumped and Q-Switched by Novel GaSb-Based Photonic Devices

    DTIC Science & Technology

    2011-08-31

    dominant role of inter valence band absorption [7]. Details of the conduction band structure of the particular 0 20 40 60 80 100 0 10 20 30 CW 30s...here the n-cladding composition resulted into material with three valleys in conduction band to have almost the same energy minimum so no inter...emitting GaSb -based diode lasers was improved by utilization of the waveguide structure with asymmetric claddings. The AlGaAsSb p-cladding contained

  7. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier

    NASA Astrophysics Data System (ADS)

    Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.

    2013-06-01

    We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.

  8. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  9. Flexible carbon micro-supercapacitors prepared by direct cw-laser writing

    NASA Astrophysics Data System (ADS)

    Cai, Jinguang; Watanabe, Akira

    2016-03-01

    Micro-/nano-scale power supply units with high energy and high power densities are critical components for the development of compact miniaturized portable electronic devices. Supercapacitors have attracted many research attentions due to their high power density, robust cycle performance, pollution-free operation, and maintenance-free features. Besides, the properties of small size, light weight, and flexibility are also required. On-chip microsupercapacitors (MSCs) have the potential acting as power supply units in portable devices, due to their simplified packaging processes and compatibility to the integrated circuits. However, the fabrication methods and materials should be cost-effective, scalable, and compatible to current electronic industry. Carbon materials own high specific surface areas, electrochemical stability, and high electrical conductivity, which are critical parameters for high-power supercapacitors. Moreover, the high mechanical tolerance makes them good candidates for flexible wearable devices. Therefore, MSCs based on carbon materials would satisfy the requirements of portable electronics. In this work, we demonstrated the fabrication of carbon MSCs by laser direct writing on commercial polyimide sheets in Ar with lowcost semiconductor cw-laser with a wavelength of 405nm. The obtained structures are macro-nanostructures comprising graphitized and amorphous carbon with relatively smooth surfaces and low resistance, in compared with the structures obtained by laser writing in air. As-prepared micro-supercapacitors show a high capacitance of about 14.9 mF/cm2 at a scanning rate of 10 mV/s, which is comparable to the reported highest capacitance of carbon-based supercapacitors fabricated by pulse-laser writing.

  10. AlGaAs heterojunction lasers

    NASA Technical Reports Server (NTRS)

    Goldstein, B.; Pultz, G. N.; Carlin, D. B.; Slavin, S. E.; Ettenberg, M.

    1988-01-01

    The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures.

  11. Hardness variation of welded boron steel using continuous wave (CW) and pulse wave (PW) mode of fiber laser

    NASA Astrophysics Data System (ADS)

    Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.

    2017-09-01

    Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.

  12. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  13. Fiber Optical Parametric Oscillator for High Power, High Efficiency Short-Wavelength Generation

    DTIC Science & Technology

    2010-12-05

    the spectral region about 1550 nm, this project has explored the possibility of using ytterbium - doped fiber lasers (YDFL) and amplifiers (YDFA) as...integration. From this point of view, an ytterbium - doped fiber -based pump source looks most attractive. Of particular interest is the master- oscillator... ytterbium - doped fiber amplifiers (YDFA). The MOPA constructed for this work is shown in Figure 1. It consists of a CW fiber ring-laser centered at

  14. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    PubMed

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  15. The generation of a continuous-wave Nd:YVO4/LBO laser at 543 nm by direct in-band diode pumping at 888 nm

    NASA Astrophysics Data System (ADS)

    Fu, S. C.; Wang, X.; Chu, H.

    2013-02-01

    We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.

  16. All-solid-state continuous-wave frequency doubling Nd:LuVO4/LBO laser with 2.17 W output power at 543 nm

    NASA Astrophysics Data System (ADS)

    Li, B.; Zhao, L.; Zhang, Y. B.; Zheng, Q.; Zhao, Y.; Yao, Y.

    2013-03-01

    Efficient and compact green-yellow laser output at 543 nm is generated by intracavity frequency doubling of a CW diode-pumped Nd:LuVO4 laser at 1086 nm under the condition of suppressing the higher gain transition near 1064 nm. With 16 W of diode pump power and the frequency-doubling crystal LBO, as high as 2.17 W of CW output power at 543 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 13.6% and the output power stability over 8 hours is better than 2.86%. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by intracavity frequency doubling of a diode pumped Nd:LuVO4 laser at 1086 nm.

  17. Broadband tunable mid-IR Cr2+:CdSe lasers for medical applications

    NASA Astrophysics Data System (ADS)

    Tarabrin, Mikhail K.; Lasarev, Vladimir A.; Tomilov, Sergey M.; Karasik, Valery E.; Tuchin, Valery V.

    2018-04-01

    Currently, lasers are widely used for surgery, medical diagnostics and oncology research. Unfortunately, most of the used laser sources have a significant drawback - the lack of operating wavelength tuning possibility, which imposes significant limitations on the investigation of biological tissues spectral properties and searching for the optimal mode of their treatment. Comparison between different promising mid-IR sources was made. We report on development of mid-infrared (mid-IR) tunable lasers based on the Cr2+:CdSe single-crystals. These lasers operate in CW mode with the maximum output power of up to 2 W and possible tuning range from 2.2 to 3.6 μm.

  18. Physiological Monitoring of Optically Trapped Cells: Studying the Effects of Confinement by 1064 NM Lazer Tweezers Using Microfluorometry

    NASA Astrophysics Data System (ADS)

    Liu, Yagang

    A novel technique that combines microfluorometric detection and optical laser trapping has been developed for in-situ assessing the physiological state of an optically trapped biological sample. This optical diagnostic technique achieves high sensitivity (>30 dB signal -to-noise ratio) and high spatial resolution (~ 1 μm) over a broad spectral range (>400 nm). The fluorescence spectra derived from exogenous fluorescent probes, including laurdan, acridine orange, propidium iodide and Snarf, are used to assess the effects of optical confinement with respect to temperature, DNA structure, cell viability, and intracellular pH, respectively. In the latter three cases, fluorescence is excited via a two-photon absorption process, using the cw laser trap itself as the fluorescence excitation source. This enables the cw near infrared laser trapping beam to be used simultaneously as an optical diagnostic probe as well as an optical micromanipulator. Using microfluorometry, a temperature increase of less than several degrees centigrade was measured for test samples, including liposomes, Chinese hamster ovary (CHO) cells and human sperm cells that were held stationary by 1064 nm optical tweezers having a power density of ~10^7 W/cm^2. Additional physiological monitoring experiments indicated that there is no observable denaturation of DNA, or change of intracellular pH under typical continuous wave laser trapping conditions (P <= 400 mW). Under some circumstances, however, it was possible to achieve a decrease in cell viability with cw trapping, as monitored by a live/dead vital stain. In comparison, significant DNA denaturation and cellular physiological changes (e.g. cell death) were observed when a Q-switched pulsed laser at a threshold of ~30mu J/pulse was used as trapping source. These results generally support the conclusion that cw laser trapping at 1064 nm wavelength is a safe, non-invasive process and should prove to be of great value for understanding the mechanisms of laser microirradiation effects on living cells held stationary in a near-infrared trapping beam.

  19. Nd3+, Y3+-codoped SrF2 laser ceramics

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-09-01

    0.15 at.% Nd3+, 5 at.% Y3+-codoped SrF2 laser ceramic based on single crystal was prepared by extensive plastic deformation. Microstructure, optical and laser properties of the Nd3+, Y3+:SrF2 ceramic were investigated. The lasing of Nd3+, Y3+-codoped SrF2 ceramics with diode pumping have been observed and true CW laser operation around 1057 nm and 1050 nm was obtained with a slope efficiency of 31.9%. In particular, the fracture toughness of the ceramic is 0.98 MPa m1/2, which is approximately two times higher than that of single crystal.

  20. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser.

    PubMed

    Wood, John P M; Shibeeb, O'Sam; Plunkett, Malcolm; Casson, Robert J; Chidlow, Glyn

    2013-03-28

    To determine detailed effects to retinal cells and, in particular, neurons following laser photocoagulation using a conventional 532 nm Nd:YAG continuous wave (CW) laser. Furthermore, to determine whether a novel 3 ns pulse laser (retinal regeneration therapy; 2RT) could specifically ablate retinal pigment epithelium (RPE) cells without causing collateral damage to other retinal cells. Adult Dark Agouti (DA) rats were separated into four groups: control, CW laser (12.7 J/cm(2)/pulse, 100 ms pulse duration), or 3 ns pulse 2RT laser at one of two energy settings ("High," 2RT-H, 163 mJ/cm(2)/pulse; "Low," 2RT-L, 109 mJ/cm(2)/pulse). Animals were treated and killed after 6 hours to 7 days, and retina/RPE was analyzed by histologic assessment, Western blot, polymerase chain reaction, and immunohistochemistry. Both lasers caused focal loss of RPE cells with no destruction of Bruch's membrane; RPE cells were present at lesion sites again within 7 days of treatments. CW and 2RT-H treatments caused extensive and moderate damage, respectively, to the outer retina. There were no obvious effects to horizontal, amacrine, or ganglion cells, as defined by immunolabeling, but an activation of PKCα within bipolar cells was noted. There was little discernible damage to any cells other than the RPE with the 2RT-L treatment. Conventional laser photocoagulation caused death of RPE cells with associated widespread damage to the outer retina but little influence on the inner retina. The novel 3 ns 2RT laser, however, was able to selectively kill RPE cells without causing collateral damage to photoreceptors. Potential benefits of this laser for clinical treatment of diabetic macular edema are discussed.

  1. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma.

    PubMed

    McCarren, D; Scime, E

    2015-10-01

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10(9) cm(-3) < plasma density <10(13) cm(-3)) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  2. Performance of a CW double electric discharge for supersonic CO lasers

    NASA Technical Reports Server (NTRS)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    The results of an experimental investigation of a CW double discharge in supersonic CO mixtures are reported. Stable discharges in CO/N2 and CO/Ar mixtures, with a maximum energy loading of 0.5 eV/CO molecule, were achieved in a small-scale continuous-flow supersonic channel. Detailed measurements of the discharge characteristics were performed, including electrostatic probe measurements of floating potential and electron number density and spectroscopic measurements of the CO vibrational population distributions. The results of these measurements indicate that the vibrational excitation efficiency of the discharge is approximately 60%, for moderate levels of main discharge current. These experiments, on a small scale, demonstrate that the double-discharge scheme provides adequate vibrational energy loading for efficient CO laser operation under CW supersonic flow conditions.

  3. Skin welding using pulsed laser radiation and a dye

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T., Jr.

    1998-07-01

    Previous skin welding studies have used continuous wave (CW) delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage to surrounding tissue. This damage may prevent normal wound healing. Strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a pulsed mode. Two-cm-long, full-thickness incisions were made in guinea pig skin. India ink was used as an absorber, and egg white albumin was used as an adhesive. A 5-mm-diameter spot of CW, 1.06-micrometer Nd:YAG laser radiation was scanned over the weld site, producing 100 millisecond pulses. The cooling time between scans and number of scans was varied. Thermal damage zones were measured using a transmission polarizing microscope to identify birefringence changes in tissue. Tensile strengths were measured using a tensiometer. For pulsed welding and long cooling times, weld strengths of 2.4 kg/cm2 were measured, and thermal damage to the epidermis was limited to approximately 500 micrometers. With CW welding, comparable weld strengths resulted in approximately 2700 micrometer of thermal damage. CW laser radiation weld strengths were only 0.6 kg/cm2 when thermal damage in the epidermis was limited to approximately 500 micrometers.

  4. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    PubMed

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  5. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    PubMed

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  6. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  7. Primary investigation the impacts of the external memory (DDR3) failures on the performance of Xilinx Zynq-7010 SoC based system (MicroZed) using laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Shuhuan; Du, Xuecheng; Du, Xiaozhi; Zhang, Yao; Mubashiru, Lawal Olarewaju; Luo, Dongyang; yuan, Yuan; Deng, Tianxiang; Li, Zhuoqi; Zang, Hang; Li, Yonghong; He, Chaohui; Ma, Yingqi; Shangguan, Shipeng

    2017-09-01

    The impacts of the external dynamic memory (DDR3) failures on the performance of 28 nm Xilinx Zynq-7010 SoC based system (MicroZed) were investigated with two sets of 1064 nm laser platforms. The failure sensitive area distributionsons on the back surface of the test DDR3 were primarily localized with a CW laser irradiation platform. During the CW laser scanning on the back surface of the DDR3 of the test board system, various failure modes except SEU and SEL (MBU, SEFI, data storage address error, rebooting, etc) were found in the testing embedded modules (ALU, PL, Register, Cache and DMA, etc) of SoC. Moreover, the experimental results demonstrated that there were 16 failure sensitive blocks symmetrically distributed on the back surface of the DDR3 with every sensitive block area measured was about 1 mm × 0.5 mm. The influence factors on the failure modes of the embedded modules were primarily analyzed and the SEE characteristics of DDR3 induced by the picoseconds pulsed laser were tested. The failure modes of DDR3 found were SEU, SEFI, SEL, test board rebooting by itself, unknown data, etc. Furthermore, the time interval distributions of failure occurrence in DDR3 changes with the pulsed laser irradiation energy and the CPU operating frequency were measured and compared. Meanwhile, the failure characteristics of DDR3 induced by pulsed laser irradiation were primarily explored. The measured results and the testing techniques designed in this paper provide some reference information for evaluating the reliability of the test system or other similar electronic system in harsh environment.

  8. Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2017-02-01

    A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.

  9. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    NASA Astrophysics Data System (ADS)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  10. Ultra-low input power long-wavelength GaSb type-I laser diodes at 2.7-3.0 μm

    NASA Astrophysics Data System (ADS)

    Vizbaras, Augustinas; Greibus, Mindaugas; Dvinelis, Edgaras; Trinkūnas, Augustinas; Kovalenkovas, Deividas; Šimonytė, Ieva; Vizbaras, Kristijonas

    2014-02-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, environmental and defense applications. Major requirement for these applications is the availability of laser sources in this spectral window. Type-I GaSb-based laser diodes are ideal candidates for these applications being compact, electrically pumped, power efficient and able to operate at room temperature in continuous-wave. Moreover, due to the nature of type-I transition; these devices have a characteristic low operation voltage, typically below 1 V, resulting in low power consumption, and high-temperature of operation. In this work, we present recent progress of 2.7 μm - 3.0 μm wavelength single-spatial mode GaSb type-I laser diode development at Brolis Semiconductors. Experimental device structures were grown by solid-source multi-wafer MBE, consisting of an active region with 2 compressively strained (~1.3 %-1.5 %) GaInAsSb quantum wells with GaSb barriers for 2.7 μm devices and quinternary AlGaInAsSb barriers for 3.0 μm devices. Epi-wafers were processed into a narrow-ridge (2-4 μm) devices and mounted p-side up on CuW heatsink. Devices exhibited very low CW threshold powers of < 100 mW, and single spatial mode (TE00) operation with room-temperature output powers up to 40 mW in CW mode. Operating voltage was as low as 1.2 V at 1.2 A. As-cleaved devices worked CW up to 50 deg C.

  11. Diode-pumped continuous wave and passively Q-switched Tm, Mg: LiTaO₃ lasers.

    PubMed

    Feng, T; Li, T; Zhao, S; Li, Q; Yang, K; Zhao, J; Qiao, W; Hang, Y; Zhang, P; Wang, Y; Xu, J

    2014-02-24

    We have demonstrated the continuous wave and passively Q-switched Tm, Mg: LiTaO3 lasers for the first time. In continuous wave (CW) regime, a maximum CW output power of 1.03 W at 1952 nm was obtained, giving a slope efficiency of 9.5% and a beam quality M2 = 2.2. In passive Q-switching regime, a single walled carbon nanotube (SWCNT) was employed as saturable absorber (SA). The Tm,Mg:LiTaO3 laser has yielded a pulse of 560 ns under repetition rate of 34.2 kHz at 1926 nm, corresponding to a single pulse energy of 10.1 μJ. The results indicate a promising potential of nonlinear crystals in the applications for laser host materials.

  12. Rectangular pulsed LD pumped saturable output coupler (SOC) Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Wang, Yan-biao; Wang, Sha; Feng, Guo-ying; Zhou, Shou-huan

    2017-02-01

    We studied the cw LD and rectangular pulsed LD pumped saturable output coupler (SOC) passively Q-switched Nd:YVO4 transmission microchip laser experimentally. We demonstrated that the SOC passively Q-switched Nd:YVO4 transmission microchip laser pumped by a highly stabilized narrow bandwidth pulsed LD has a much lower timing jitter than pumped by a continuous wave (CW) LD, especially at low output frequency regime. By changing the pump beam size in the rectangular shape pulsed pump scheme, the output frequency can be achieved from 333.3 kHz to 71.4 kHz, while the relative timing jitter decreased from 0.09865% to 0.03115% accordingly. Additionally, the microchip laser has a good stability of output power, the power fluctuation below 2%.

  13. Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes.

    PubMed

    Han, Jung Woo; Choi, Juhye; Kim, Young Shin; Kim, Jina; Brinkmann, Ralf; Lyu, Jungmook; Park, Tae Kwann

    2018-02-01

    This study investigated microglia and inflammatory cell responses after selective retina therapy (SRT) with microsecond-pulsed laser in comparison to continuous-wave laser photocoagulation (cwPC). Healthy C57BL/6 J mice were treated with either a train of short pulses (SRT; 527-nm, Q-switched, 1.7-μs pulse) or a conventional thermal continuous-wave (532-nm, 100-ms pulse duration) laser. The mice were sacrificed and their eyes were enucleated 1, 3, 7, and 14 days after both laser treatments. Pattern of cell death on retinal section was evaluated by TUNEL assay, and the distribution of activated inflammatory cells and glial cells were observed under immunohistochemistry. Consecutive changes for the expression of cytokines such as IL-1β, TNF-α, and TGF-β were also examined using immunohistochemistry, and compared among each period after quantification by Western blotting. The numbers of TUNEL-positive cells in the retinal pigment epithelium (RPE) layer did not differ in SRT and cwPC lesions, but TUNEL-positive cells in neural retinas were significantly less on SRT. Vague glial cell activation was observed in SRT-treated lesions. The population of inflammatory cells was also significantly decreased after SRT, and the cells were located in the RPE layer and subretinal space. Proinflammatory cytokines, including IL-1β and TNF-α, showed significantly lower levels after SRT; conversely, the level of TGF-β was similar to the cwPC-treated lesion. SRT resulted in selective RPE damage without collateral thermal injury to the neural retina, and apparently produced negligible glial activation. In addition, SRT showed a markedly less inflammatory response than cwPC, which may have important therapeutic implications for several macular diseases.

  14. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    NASA Astrophysics Data System (ADS)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  15. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  16. Optical isolators for 2-micron fibre lasers

    NASA Astrophysics Data System (ADS)

    Stevens, Gary; Legg, Thomas H.; Shardlow, Peter

    2015-02-01

    We report on the development and testing of optical isolators for use in 2-micron fiber laser systems. A variety of potential Faraday rotator materials were characterised to identify the most suitable materials for use in the 1700-2100nm wavelength range. Isolators based on the three best performing materials were then developed and packaged as fiber-in, fiber-out and fiber-in, beam-out devices. The isolators were then tested in CW, pulsed and ultrafast laser systems. The three different designs produced different performance characteristics, but all designs demonstrated isolation >25dB and insertion losses of <1.2 dB.

  17. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  18. Single-grain growth in Si film by chevron-shaped cw laser beam scanning

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang; Yamazaki, Satoki; Ishimoto, Akihisa; Morito, Shigekazu

    2016-02-01

    A single grain with a length of 450 µm and a width of 5-6 µm was grown in a 60 nm Si film on SiO2 by scanning a chevron-shaped cw laser beam, which was formed by passing a linear laser beam through a novel one-sided Dove prism. The crystal did not have any dominant orientations in both the growth and normal directions. The orientation rotated about the transverse direction at a rate of 0.47-0.51°/µm in the forward direction, which suggests that the lattice constant at the film surface was 0.049-0.053% larger than that at the film bottom.

  19. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Fiber-optic interferometers: control of spectral composition of the radiation and formation of high-intensity optical pulses

    NASA Astrophysics Data System (ADS)

    Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.

    1990-05-01

    A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.

  20. FIBER OPTICS: Nonclassical states of light in tunnel-coupled optical fibers and possibilities for experimental realization in the beams of low-power high-coherence cw lasers

    NASA Astrophysics Data System (ADS)

    Alodzhants, A. P.; Dzheĭranyan, G. A.; Gevorkyan, L. P.; Arakelyan, S. M.

    1993-08-01

    The creation of nonclassical states of light in tunnel-coupled optical fibers is analyzed. It is possible to achieve a 40% suppression of quantum (vacuum) fluctuations in one quadrature of the field of a standard cw He-Ne laser with an intensity as low as 1 kW/cm2 (i.e., a power of ~ 1 mW). The possibility of experimental implementation of this scheme for generating squeezed quantum states is discussed.

  1. High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).

    PubMed

    Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M

    2008-12-15

    We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.

  2. Discharge-pumped cw gas lasers utilizing 'dressed-atom' gain media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, P.P.; Glownia, J.H.; Hodgson, R.T.

    The possibility of realizing an efficient gaseous laser-beam-generating medium that utilizes {lambda}-type coherently phased (i.e., 'dressed') atoms for the active laser species, but that does not inherently require the use of external laser beams for pumping, is explored. Specifically, it is investigated if multiphoton stimulated hyper-Raman scattering (SHRS) processes driven by fluorescence radiation generated in a continuous electrical discharge present within the vapor-containing cell could produce continuous-wave (cw) optical gain at the {lambda}-atom resonance frequencies {omega}{sub o} and {omega}{sub o}{sup '}. It is deduced that such gain could result from n-photon (n{>=}4) SHRS processes only if absorption of fluorescence pumpmore » light occurs in the first three transitions of the n-photon sequence representing the process unit step. Estimates of the amount of optical gain that could be produced in such a system indicate that it should be sufficient to allow multiwatt cw laser operation to occur on one set of {lambda} transitions connecting levels in a 'double-{lambda}' structure, with the pump light being discharge-produced fluorescence centered about the transitions of the other {lambda} pair. However, to initiate operation of such a device would require injection into the laser optical cavity of intense 'starter' laser pulses at both lasing frequencies. What should be an optimal experimental configuration for determining feasibility of the proposed laser device is described. In the suggested configuration, Cs-atom 6S{sub 1/2}-6P{sub 1/2} transitions form the double-{lambda} structure.« less

  3. Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime

    NASA Astrophysics Data System (ADS)

    Kucherik, A. O.; Kutrovskaya, S. V.; Arakelyan, S. M.; Ryabchikov, Y. V.; Al-Kattan, A.; Kabashin, A. V.; Itina, T. E.

    2016-03-01

    Gold nanoparticles (Au NPs) attract particular attention because of their unique size-dependent chemical, physicochemical and optical properties and, hence, their potential applications in catalysis, nanoelectronics, photovoltaics and medicine. In particular, laser-produced colloidal nanoparticles are not only biocompatible, but also reveal unique chemical properties. Different laser systems can be used for synthesis of these colloids, varying from continuous wave (CW) to ultra-short femtosecond lasers. The choice of an optimum laser system is still a challenge in application development. To bring more light at this issue, we investigate an influence of laser parameters on nanoparticle formation from a gold target immersed in deionized water. First, an optical diagnostics of laser-induced hydrodynamic processes taking place near the gold surface is performed. Then, gold nanoparticle colloids with average particle sizes smaller than 10 nm and a very narrow dispersion are shown to be formed by CW laser ablation. The obtained results are compared with the ones obtained by using the second harmonics and with previous results obtained by using femtosecond laser systems.

  4. Effect of Heat Treatment on Liquation Cracking in Continuous Fiber and Pulsed Nd:YAG Laser Welding of HASTELLOY X Alloy

    NASA Astrophysics Data System (ADS)

    Pakniat, M.; Ghaini, F. Malek; Torkamany, M. J.

    2017-11-01

    Laser welding of HASTELLOY X is highly feasible; however, hot cracking can be a matter of concern. The objective of this study is to assess the effect of solution heat treatment on susceptibility to liquation cracking in welding of a 2-mm-thick HASTELLOY X plate. In addition, Nd-YAG pulsed laser (400 W) and continuous wave (CW) fiber laser (600 W) were compared with each other in this respect. Results revealed that performing the prewelding solution heat treatment reduces the tendency for occurrence of liquation cracking. Furthermore, it was established that by increasing pulse frequency, there was a significant reduction in the tendency for liquation cracking. With CW laser welding of HASTELLOY X in the solution-heat-treated condition, the tendency for heat-affected zone (HAZ) cracking was found to be minimized.

  5. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    PubMed Central

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-01-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively. PMID:28181571

  6. Long wavelength PbSnTe lasers with CW operation above 77 K

    NASA Technical Reports Server (NTRS)

    Shinohara, K.; Yoshikawa, M.; Ito, M.; Ueda, R.

    1980-01-01

    Lead tin telluride diode lasers with emission wavelengths of 6 to 9 micrometers easily operate continuously at temperatures above 77K. These lasers have the Pb(1-y) Sn(y) TE/Pb(1-y) Te/Pb(1-y) Sn(y) Te/PbTe (substrate), (x y) double heterostructure. To prepare this structure by LPE, the growth temperature must be below 600 C to suppress diffusion of the tin during the epitaxial growth. When the heterojunctions are formed by the usual LPE method, the junction boundaries become irregular in the case for the lasers with wavelengths of over 10 micrometers at 77K. The mechanism by which the heterojunction boundaries become irregular is cleared and a new LPE method which prevents the irregularity is explained. The lasers prepared from the wafers grown by the new method have demonstrated CW operation at wavelengths longer than 10 micrometers above liquid nitrogen temperature.

  7. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  8. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    PubMed

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  9. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-02-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively.

  10. A diode-pumped Tm:CaYAlO4 laser at 1851 nm

    NASA Astrophysics Data System (ADS)

    Lan, Jinglong; Guan, Xiaofeng; Xu, Bin; Moncorgé, Richard; Xu, Huiying; Cai, Zhiping

    2017-07-01

    Laser emission at ~1850 nm is of great interest for neural stimulation applications. In this letter, we report on the diode-pumped continuous-wave (CW) and Q-switched (QS) laser operation of Tm:CaYAlO4 at 1851 nm, for the first time to our knowledge. In the CW regime, a maximum output power up to 0.62 W is obtained with a laser slope efficiency of about 18.0%. Using a Cr:ZnSe saturable absorber, QS laser operation is achieved with a maximum average output power of 0.25 W, the narrowest pulse width of 107 ns and the highest repetition rate of 5.85 kHz. The corresponding pulse peak power and pulse energy are about 388 W and 42.8 µJ, respectively. In this Q-switched mode, wavelength tuning is also realized over about 3 nm by slightly tilting the saturable absorber.

  11. Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser.

    PubMed

    Yu, Haohai; Wang, Shuxian; Han, Shuo; Wu, Kui; Su, Liangbi; Zhang, Huaijin; Wang, Zhengping; Xu, Jun; Wang, Jiyang

    2014-03-15

    We report a laser-diode pumped continuous-wave (cw) and passively Q-switched eye-safe laser at about 1.42 μm with the neodymium-doped yttrium gallium garnet (Nd:YGG) crystal for the first time to our knowledge. The composite Nd:YGG crystal was developed originally. A systematic comparison of laser performance between the homogeneously doped and composite Nd:YGG crystal was made, which showed that the composite Nd:YGG manifested less thermally induced effects. Cw output power of 2.06 W was obtained with the slope efficiency of 20.7%. With a V:YAG as a saturable absorber, the passive Q-switching at 1.42 μm was gotten with the pulse width, pulse energy, and peak power of 34 ns, 46.7 μJ, and 1.4 kW, respectively. The present work should provide a potential candidate for the generation of eye-safe lasers.

  12. Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique.

    PubMed

    Song, Hajun; Hwang, Sejin; Song, Jong-In

    2017-05-15

    This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.

  13. Vertical-cavity surface-emitting lasers come of age

    NASA Astrophysics Data System (ADS)

    Morgan, Robert A.; Lehman, John A.; Hibbs-Brenner, Mary K.

    1996-04-01

    This manuscript reviews our efforts in demonstrating state-of-the-art planar, batch-fabricable, high-performance vertical-cavity surface-emitting lasers (VCSELs). All performance requirements for short-haul data communication applications are clearly established. We concentrate on the flexibility of the established proton-implanted AlGaAs-based (emitting near 850 nm) technology platform, focusing on a standard device design. This structure is shown to meet or exceed performance and producibility requirements. These include > 99% device yield across 3-in-dia. metal-organic vapor phase epitaxy (MOVPE)-grown wafers and wavelength operation across a > 100-nm range. Recent progress in device performance [low threshold voltage (Vth equals 1.53 V); threshold current (Ith equals 0.68 mA); continuous wave (CW) power (Pcw equals 59 mW); maximum and minimum CW lasing temperature (T equals 200 degree(s)C, 10 K); and wall-plug efficiencies ((eta) wp equals 28%)] should enable great advances in VCSEL-based technologies. We also discuss the viability of VCSELs in cryogenic and avionic/military environments. Also reviewed is a novel technique, modifying this established platform, to engineer low-threshold, high-speed, single- mode VCSELs.

  14. In vivo study of partial liver resection on pigs using a 1.9 μm thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Theisen-Kunde, D.; Wolken, H.; Danicke, V.; Brinkmann, R.; Bruch, H.; Kleemann, M.

    2011-07-01

    Dissection of liver tissue can be performed by different techniques (ultrasound, mono and bipolar dissection, water jet dissection and by stapler). In this animal study the potential of a Thulium fiber laser system was investigated for open parenchyma dissection. Based on a cw Thulium fiber laser (IPG laser GmbH, Burbach, Germany), emitting a wavelength at 1.9 μm and a maximal power at 50 W, a surgical dissection device was developed at the Medical Laser Centre Luebeck. Cw laser radiation (40 Watt) was transmitted via a 365 μm fiber with a polished distal fiber tip. Procedure was performed in contact mode; irradiance at the distal fiber tip was 38.2 kW/cm2. After general anesthesia and a median laparotomy an atypical laser resection of the liver was performed in 3 pigs. Healing process was controlled after 2-3 weeks by histological analysis (H&E staining). The final evaluation data included total resection time, blood loss, bile leakage and mass of dissected tissue. All animals treated in this study were cared for in accordance to the European convention on animal care. In general the dissection with the 1.9 μm laser radiation was easily performed. Hemostasis was highly sufficient so blood loss and bile leakage was negligible. Total resection time including hemostasis of the remaining tissue was 26 +/- 12 min. Weight of resected tissue was 17 +/- 8 g. During survival period no complications (bleeding or inflammation) occurred. After 2 weeks histology showed ongoing scar formation about 1 - 2 mm in depth of the dissected area.

  15. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarren, D.; Lockheed Martin, Palmdale, California 93599; Scime, E., E-mail: earl.scime@mail.wvu.edu

    2015-10-15

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  16. Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-05-01

    Efficient dual-wavelength continuous-wave (CW) and passively Q-switched laser operation of Nd:(Gd0.3Y0.7)2SiO5 crystal were investigated for the first time to our knowledge. Maximum CW output power of 2.3 W was obtained under the absorbed pump power of 4.6 W, corresponding to the slope efficiency of 55%. Dual-wavelength CW laser with respective wavelengths around 1074 nm and 1078 nm were achieved. With Cr4+:YAG as the saturable absorber, passive Q-switched performance was obtained. The slope efficiency of passively Q-switched operation was 45%. The shortest pulse width, the corresponding pulse energy and peak power were calculated to be 13.1 ns, 50.2 μJ and 3.8 kW, respectively.

  17. An overview of DREV's activities on pulsed CO2 laser transmitters: Frequency stability and lifetime aspects

    NASA Technical Reports Server (NTRS)

    Cruickshank, James; Pace, Paul; Mathieu, Pierre

    1987-01-01

    After introducing the desired features in a transmitter for laser radar applications, the output characteristics of several configurations of frequency-stable TEA-CO2 lasers are reviewed. Based on work carried out at the Defence Research Establishment Valcartier (DREV), output pulses are examined from short cavity lasers, CW-TEA hybrid lasers, and amplifiers for low power pulses. It is concluded that the technique of injecting a low-power laser beam into a TEA laser resonator with Gaussian reflectivity mirrors should be investigated because it appears well adapted to producing high energy, single mode, low chirp pulses. Finally, a brief report on tests carried out on catalysts composed of stannic oxide and noble metals demonstrates the potential of these catalysts, operating at close to room temperature, to provide complete closed-cycle laser operation.

  18. Nonlinear absorption enhancement of AuNPs based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.

    2018-07-01

    Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.

  19. Continuous wave operation of quantum cascade lasers with frequency-shifted feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826

    2016-01-15

    Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.

  20. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard, "Contineous-wave differential absorption lidar," Submitted to Laser and Photonics Reviews, 2014.

  1. Transparent layered YAG ceramics with structured Yb doping produced via tape casting

    NASA Astrophysics Data System (ADS)

    Hostaša, Jan; Piancastelli, Andreana; Toci, Guido; Vannini, Matteo; Biasini, Valentina

    2017-03-01

    The flexibility of the ceramic production process, in particular in terms of shaping and spatial control of distribution of active ions, is one of the strong points in favor of transparent ceramics. In high power lasers in particular, where thermal management is a critical issue, the finely controlled design of spatial distribution of the doping ions within the laser gain media can reduce undesired thermally induced effects and large temperature gradients, and thus enhance the efficiency and laser beam quality especially under increased thermal load. In the present work transparent structured YAG ceramics with Yb doping were produced by tape casting followed by thermal compression of assembled tapes and sintered under high vacuum. The thermal compression of variously doped tape cast layers is a very promising method because it allows a high precision and good control over dopant distribution in the sintered material. After sintering, the distribution of Yb across the layers was characterized by SEM-EDX and the thickness of Yb diffusion zones between the layers with different Yb content was measured. Optical homogeneity was assessed by means of optical transmittance mapping of the samples and by 2D scanning of laser output. The effect of structured dopant distribution on laser performance was measured in quasi-CW and CW regime with different duty factors. Slope efficiency values higher than 50% were measured both in quasi-CW and in CW lasing conditions. The results are in good agreement with previously calculated predictions, confirming the beneficial effect of structured doping on laser performances and enlightening the impact of the residual scattering losses. Compared to other processing methods, such as the pressing of granulated powders, tape casting followed by thermal compression leads to straight and narrow interfaces between layers with different composition and allows to build structures composed of extremely thin layers with defined dopant content.

  2. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal.

    PubMed

    Su, Liangbi; Guo, Xinsheng; Jiang, Dapeng; Wu, Qinghui; Qin, Zhipeng; Xie, Guoqiang

    2018-03-05

    3 at.% Er:SrF 2 laser crystals with high optical quality were successfully grown using the temperature gradient technique (TGT). The intense mid-infrared emission was observed around 2.7 μm with excitation by a 970 nm LD. Based on the Judd-Ofelt theory, the emission cross-sections of the 4 I 13/2 - 4 I 11/2 transition were calculated by using the Fuchtbauer-Ladenburg (FL) method. Efficient continuous-wave laser operation at 2.8 µm was achieved with the lightly-doped 3 at.% Er:SrF 2 crystal pumped by a 970 nm laser diode. The laser output power reached up to 1.06 W with a maximum slope efficiency of 26%.

  3. Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials

    NASA Astrophysics Data System (ADS)

    Kolev, V. Z.; Duering, M. W.; Luther-Davies, B.; Rode, A. V.

    2006-12-01

    We propose a novel tuneable table-top optical source as an alternative to the free electron laser currently used for resonant infrared pulsed laser deposition of polymers. It is based on two-stage pulsed optical parametric amplification using MgO doped periodically poled lithium niobate crystals. Gain in excess of 106 in the first stage and pump depletion of 58% in the second stage were achieved when the system was pumped by a high-power Nd:YVO4 picosecond laser source at 1064 nm and seeded by a CW tuneable diode laser at 1530 nm. An average power of 2 W was generated at 3.5 µm corresponding to 1.3 µJ pulse energy.

  4. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  5. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.

    PubMed

    Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W

    2007-01-01

    Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.

  6. Portable hyperspectral imager with continuous wave green laser for identification and detection of untreated latent fingerprints on walls.

    PubMed

    Nakamura, Atsushi; Okuda, Hidekazu; Nagaoka, Takashi; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Ichikawa, Fumihiko; Torao, Akira; Sota, Takayuki

    2015-09-01

    Untreated latent fingerprints are known to exhibit fluorescence under UV laser excitation. Previously, the hyperspectral imager (HSI) has been primarily evaluated in terms of its potential to enhance the sensitivity of latent fingerprint detection following treatment by conventional chemical methods in the forensic science field. In this study however, the potential usability of the HSI for the visualization and detection of untreated latent fingerprints by measuring their inherent fluorescence under continuous wave (CW) visible laser excitation was examined. Its potential to undertake spectral separation of overlapped fingerprints was also evaluated. The excitation wavelength dependence of fluorescent images was examined using an untreated palm print on a steel based wall, and it was found that green laser excitation is superior to blue and yellow lasers' excitation for the production of high contrast fluorescence images. In addition, a spectral separation method for overlapped fingerprints/palm prints on a plaster wall was proposed using new images converted by the division and subtraction of two single wavelength images constructed based on measured hyperspectral data (HSD). In practical tests, the relative isolation of two overlapped fingerprints/palm prints was successful in twelve out of seventeen cases. Only one fingerprint/palm print was extracted for an additional three cases. These results revealed that the feasibility of overlapped fingerprint/palm print spectral separation depends on the difference in the temporal degeneration of each fluorescence spectrum. The present results demonstrate that a combination of a portable HSI and CW green laser has considerable potential for the identification and detection of untreated latent fingerprints/palm prints on the walls under study, while the use of HSD makes it practically possible for doubly overlapped fingerprints/palm prints to be separated spectrally. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. kW-class diode laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, S. G.; Erbert, G.; Meissner-Schenk, A. H.; Lommel, M.; Schmidt, B.; Kaul, T.; Karow, M.; Crump, P.

    2017-02-01

    Progress will be presented on ongoing research into the development of ultra-high power and efficiency bars achieving significantly higher output power, conversion efficiency and brightness than currently commercially available. We combine advanced InAlGaAs/GaAs-based epitaxial structures and novel lateral designs, new materials and superior cooling architectures to enable improved performance. Specifically, we present progress in kilowatt-class 10-mm diode laser bars, where recent studies have demonstrated 880 W continuous wave output power from a 10 mm x 4 mm laser diode bar at 850 A of electrical current and 15°C water temperature. This laser achieves < 60% electro-optical efficiency at 880 W CW output power.

  8. Composite Yb:YAG/SiC-prism thin disk laser.

    PubMed

    Newburgh, G A; Michael, A; Dubinskii, M

    2010-08-02

    We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

  9. Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.

    PubMed

    Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu

    2016-12-12

    We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

  10. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  11. Continuous Wave Ring-Down Spectroscopy for Velocity Distribution Measurements in Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin W.

    Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (VDFs) of the absorbing species, can be measured. Measurements of VDFs can be made using established techniques such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density and that the excitation scheme fluoresces at an easily detectable wavelength. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. Also, as a direct absorption technique, CW-CRDS measurements only need to be concerned with the species' absorption wavelength and provide an absolute measure of the line integrated initial state density. Presented in this work are measurements of argon ion and neutral VDFs in a helicon plasma using CW-CRDS and LIF.

  12. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  13. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less

  14. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  15. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    PubMed

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  16. He-Ne and CW CO2 laser long-path systems for gas detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1986-01-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  17. High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.

    PubMed

    Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2016-03-15

    We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.

  18. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  19. Ultrastructural analysis of root canal dentine irradiated with 980-nm diode laser energy at different parameters.

    PubMed

    Marchesan, Melissa Andréia; Brugnera-Junior, Aldo; Souza-Gabriel, Aline Evangelista; Correa-Silva, Silvio Rocha; Sousa-Neto, Manoel D

    2008-06-01

    The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.

  20. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations.

    PubMed

    Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi

    2016-08-10

    A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8  mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.

  1. Continuous-wave and passively Q-switched laser performance of Nd:(LaxGd1-x)3Ga5O12 crystal at 1062 nm CW and PQS laser performance of Nd:LaGGG crystal at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Fu, X.-W.; Jia, Z.-T.; He, J.-L.; Yang, X.-Q.; Zhang, B.-T.; Wang, R.-H.; Liu, X.-M.; Hou, J.; Lou, F.; Wang, Z.-W.; Yang, Y.

    2012-10-01

    The performance of diode-pumped continuous-wave (CW) and passively Q-switched (PQS) Nd:(LaxGd1-x)3Ga5O12 lasers at 1062 nm were demonstrated for the first time to our knowledge. The highest CW output power of 9.9 W was obtained, corresponding to an optical-to-optical efficiency of 42.9%. For the passive Q-switching operation, when the output coupler of Toc = 27% was adopted, the maximum output power of 3.97 W was obtained by a Cr4+:YAG saturable absorber with the initial transmission of T0 = 89.9%.While at T0 = 81.4% and Toc = 27%, the output power of 2.83 W, with pulse width of 7.4 ns and the repetition rate of 13.87 kHz, was obtained, corresponding to the maximum peak power of 27.6 kW and single pulse energy of 0.2 mJ, respectively.

  2. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    NASA Astrophysics Data System (ADS)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  3. Widely tunable 11 GHz femtosecond fiber laser based on a nonmode-locked source [Widely tunable 11 GHz femtosecond fiber laser based on a non-modelocked source

    DOE PAGES

    Prantil, Matthew A.; Cormier, Eric; Dawson, Jay W.; ...

    2013-08-19

    An 11 GHz fiber laser built on a modulated CW platform is described and characterized. This compact, vibrationinsensitive, fiber based system can be operated at wavelengths compatible with high energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micro-pulses produced at a macro-pulse rate of 83 kHz where the macro-pulse and micro-pulse energies are 1.8 μJ and 3.2 nJ respectively. Micro-pulse durations of 850 fs are demonstrated. Finally, we discuss extensions to shortermore » duration.« less

  4. Titanium-doped sapphire laser research and design study

    NASA Technical Reports Server (NTRS)

    Moulton, Peter F.

    1987-01-01

    Three main topics were considered in this study: the fundamental laser parameters of titanium-doped sapphire, characterization of commercially grown material, and design of a tunable, narrow-linewidth laser. Fundamental parameters investigated included the gain cross section, upper-state lifetime as a function of temperature and the surface-damage threshold. Commercial material was found to vary widely in the level of absorption of the laser wavelength with the highest absorption in Czochralski-grown crystals. Several Yi:sapphire lasers were constructed, including a multimode laser with greater than 50mJ of output energy and a single-transverse-mode ring laser, whose spectral and temporal characteristics were completely characterized. A design for a narrow-linewidth (single-frequency) Ti:sapphire laser was developed, based on the results of the experimental work. The design involves the use of a single-frequency, quasi-cw master oscillator, employed as an injection source for a pulsed ring laser.

  5. CW injection locking for long-term stability of frequency combs

    NASA Astrophysics Data System (ADS)

    Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.

    2009-05-01

    Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).

  6. Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm

    NASA Astrophysics Data System (ADS)

    Lu, Jie

    2014-04-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.

  7. Internal optical losses in very thin CW heterojunction laser diodes

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for CW room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 micron. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane.

  8. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE PAGES

    Backus, Sterling; Durfee, Charles; Lemons, Randy; ...

    2017-02-10

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  9. Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling; Durfee, Charles; Lemons, Randy

    Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Phase locking of stimulated emission from arrays of stripe GaAIAs/GaAs lasers using active directional couplers

    NASA Astrophysics Data System (ADS)

    Bazarov, A. E.; Goldobin, I. S.; Eliseev, P. G.; Kobilzhanov, O. A.; Pak, G. T.; Petrakova, T. V.; Pushkina, T. N.; Semenov, A. T.

    1987-04-01

    An experimental study was made of the characteristics of radiation emitted by arrays of stripe injection lasers in the form of coupled symmetric active Y couplers. An output power of 300 mW in one direction was achieved under cw emission conditions. The periodicity of lobes in the angular distribution corresponded to diffraction of radiation from phase-locked sources and the presence of a peak in the direction of the normal to the emitting surface indicated that the radiation from the individual sources was in phase. An output power of 72.5 mW was obtained in the case of single-frequency cw emission (in an external dispersive resonator).

  11. Yb fiber laser pumped mid-IR source based on difference frequency generation and its application to ammonia detection

    NASA Technical Reports Server (NTRS)

    Matsuoka, N.; Yamaguchi, S.; Nanri, K.; Fujioka, T.; Richter, D.; Tittel, F. K.

    2001-01-01

    A Yb fiber laser pumped cw narrow-linewidth tunable mid-IR source based on a difference frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal for trace gas detection was demonstrated. A high power Yb fiber laser and a distributed feedback (DFB) laser diode were used as DFG pump sources. This source generated mid-IR at 3 microns with a powers of 2.5 microW and a spectral linewidth of less than 30 MHz. A frequency tuning range of 300 GHz (10 cm-1) was obtained by varying the current and temperature of the DFB laser diode. A high-resolution NH3 absorption Doppler-broadened spectrum at 3295.4 cm-1 (3.0345 microns) was obtained at a cell pressure of 27 Pa from which a detection sensitivity of 24 ppm m was estimated.

  12. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  13. Enhancing Surface Finish of Additively Manufactured Titanium and Cobalt Chrome Elements Using Laser Based Finishing

    NASA Astrophysics Data System (ADS)

    Gora, Wojciech S.; Tian, Yingtao; Cabo, Aldara Pan; Ardron, Marcus; Maier, Robert R. J.; Prangnell, Philip; Weston, Nicholas J.; Hand, Duncan P.

    Additive manufacturing (AM) offers the possibility of creating a complex free form object as a single element, which is not possible using traditional mechanical machining. Unfortunately the typically rough surface finish of additively manufactured parts is unsuitable for many applications. As a result AM parts must be post-processed; typically mechanically machined and/or and polished using either chemical or mechanical techniques (both of which have their limitations). Laser based polishing is based on remelting of a very thin surface layer and it offers potential as a highly repeatable, higher speed process capable of selective area polishing, and without any waste problems (no abrasives or liquids). In this paper an in-depth investigation of CW laser polishing of titanium and cobalt chrome AM elements is presented. The impact of different scanning strategies, laser parameters and initial surface condition on the achieved surface finish is evaluated.

  14. Nanosecond electrical and optical pulses and self phase conjugation from photorefractive lithium niobate fibers and crystals

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.

    2007-09-01

    We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.

  15. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell

    DOE PAGES

    Dong, Lei; Yu, Yajun; Li, Chunguang; ...

    2015-07-27

    A ppb-level formaldehyde (H 2CO) sensor was developed using a thermoelectrically cooled (TEC), continuous-wave (CW) room temperature interband cascade laser (ICL) emitting at 3.59 μm and a miniature dense pattern multipass gas cell with >50 m optical path length. Performance of the sensor was investigated with two measurement schemes: direct absorption (DAS) and wavelength modulation spectroscopy (WMS). With an integration time of less than 1.5 second, a detection limit of ~3 ppbv for H 2CO measurement with precision of 1.25 ppbv for DAS and 0.58 ppbv for WMS, respectively, was achieved without zero air based background subtraction. An Allan-Werle variancemore » analysis indicated that the precisions can be further improved to 0.26 ppbv @ 300s for DAS and 69 pptv @ 90 s for WMS, respectively. Finally, a side-by-side comparison between two measurement schemes is also discussed in detail.« less

  16. Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm

    NASA Astrophysics Data System (ADS)

    Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang

    2017-12-01

    We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.

  17. High single-spatial-mode pulsed power from 980 nm emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro

    2012-11-01

    Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.

  18. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure - Application to solar cell interconnect welding

    NASA Astrophysics Data System (ADS)

    Oh, J. E.; Ianno, N. J.; Ahmed, A. U.

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO2 laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained.

  19. Nd:YAG-laser-Q-switching with a photo-elastic modulator and applications

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Petkovšek, R.; Dominguez, H.; Liedl, G.

    2010-05-01

    We present a rod-Nd:YAG-Laser, side-pumped with eight 50W-laser diode bars at 808nm, and Q-switched with a Single Crystal Photo-Elastic Modulator at 95.1 kHz. The latter is made of a z-cut LiNbO3-crystal, which is electrically y-excited on the mechanical resonance frequency of the x-longitudinal oscillation. With a voltage amplitude of 3 V the crystal shows a strong oscillation such that due to the photo-elastic effect a high polarization modulation is achieved, which, together with a polarizer, can be used as a simple optical switch. With this inside the laser resonator the average power is 47.8W in cw-mode and 45.5W in pulsed mode, with pulse peak powers of 4 kW and pulse widths of 100ns. This kind of operation is similar to cw-operation but offers due to the high peak powers different interaction physics with matter. The source is therefore suited for micro-welding of metals, LIDAR, rapid prototyping of plastics, marking/engraving/cutting of plastics, marking of glasses. In cases where high precision and a small heat affected zone are necessary this simple kind of pulsed operation may be advantageous, when compared to cw-operation.

  20. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    PubMed

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  1. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    PubMed

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  2. Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers.

    PubMed

    Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-02

    In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5 o and 1.94 o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.

  3. Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5o and 1.94o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.

  4. A portable lidar using a diode-pumped YAG laser

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.

    1992-01-01

    A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.

  5. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    PubMed Central

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-01-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994

  6. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.

    PubMed

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-04

    The spectral properties and laser performance of Er:SrF 2 single crystals were investigated and compared with Er:CaF 2 . Er:SrF 2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er 3+ : 4 I 11/2 level) than those of Er:CaF 2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF 2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF 2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  7. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  8. Room temperature high power mid-IR diode laser bars for atmospheric sensing applications

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Patterson, Steve; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Zhang, Shiguo; Elim, Sandrio; Bougher, Mike; Patterson, Jason; Das, Suhit; Wise, Damian; Matson, Triston; Balsley, David; Bell, Jake; DeVito, Mark; Martinsen, Rob

    2007-04-01

    Peak CW optical power from single 1-cm diode laser bars is advancing rapidly across all commercial wavelengths and the available range of emission wavelengths also continues to increase. Both high efficiency ~ 50% and > 100-W power InP-based CW bars have been available in bar format around 1500-nm for some time, as required for eye-safe illuminators and for pumping Er-YAG crystals. There is increasing demand for sources at longer wavelengths. Specifically, 1900-nm sources can be used to pump Holmium doped YAG crystals, to produce 2100-nm emission. Emission near 2100-nm is attractive for free-space communications and range-finding applications as the atmosphere has little absorption at this wavelength. Diode lasers that emit at 2100-nm could eliminate the need for the use of a solid-state laser system, at significant cost savings. 2100-nm sources can also be used as pump sources for Thulium doped solid-state crystals to reach even longer wavelengths. In addition, there are several promising medical applications including dental applications such as bone ablation and medical procedures such as opthamology. These long wavelength sources are also key components in infra-red-counter-measure systems. We have extended our high performance 1500-nm material to longer wavelengths through optimization of design and epitaxial growth conditions and report peak CW output powers from single 1-cm diode laser bars of 37W at 1910-nm and 25W at 2070-nm. 1-cm bars with 20% fill factor were tested under step-stress conditions up to 110-A per bar without failure, confirming reasonable robustness of this technology. Stacks of such bars deliver high powers in a collimated beam suitable for pump applications. We demonstrate the natural spectral width of ~ 18nm of these laser bars can be reduced to < 3-nm with use of an external Volume Bragg Grating, as required for pump applications. We review the developments required to reach these powers, latest advances and prospects for longer wavelength, higher power and higher efficiency.

  9. Intercomparison of six fast-response sensors for the eddy-covariance flux measurement of nitrous oxide over agricultural grassland

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Famulari, Daniela; Ibrom, Andreas; Vermeulen, Alex; Hensen, Arjan; van den Bulk, Pim; Loubet, Benjamin; Laville, Patricia; Mammarella, Ivan; Haapanala, Sami; Lohila, Annalea; Laurila, Tuomas; Eva, Rabot; Laborde, Marie; Cowan, Nicholas; Anderson, Margaret; Helfter, Carole

    2015-04-01

    Nitrous oxide (N2O) is the third most important greenhouse gas and its terrestrial budget remains poorly constraint, with bottom up and top down estimates of country emissions often disagreeing by more than a factor of two. Whilst the measurements of the biosphere / atmosphere exchange of CO2 with micrometeorological methods is commonplace, emissions of CH4 and N2O are more commonly measured with enclosure techniques due to limitations in fast-response sensors with good signal-to-noise characteristics. Recent years have seen the development of a range of instruments based on optical spectroscopy. This started in the early 1990s with instruments based on lead salt lasers, which had temperamental long-term characteristics. More recent developments in quantum cascade lasers has lead to increasingly stable instruments, initially based on pulsed, later on continuous wave lasers. Within the context of the European FP7 Infrastructure Project InGOS ('Integrated non-CO2 Greenhouse gas Observing System'), we conducted an intercomparison of six fast response sensors for N2O: three more or less identical instruments based on off-axis Integrated Cavity Optical Spectrocopy (ICOS) (Los Gatos Research Inc.) and three instruments based on quantum cascade laser absorption spectrometry (Aerodyne Research Inc.): one older generation pulsed instrument (p-QCL) and two of the latest generation of compact continuous wave instruments (cw-QCL), operating at two different wavelengths. One of the ICOS instruments was operated with an inlet drier. In addition, the campaign was joined by a relaxed eddy-accumulation system linked to a FTIR spectrometer (Ecotech), a gradient system based on a home-built slower QCL (INRA Orleans) and a fast chamber system. Here we present the results of the study and a detailed examination of the various corrections and errors of the different instruments. Overall, with the exception of the older generation QCL, the average fluxes based on the different fast-response instruments agreed within +/- 7.4%, although fluxes were moderate. The cw-QCL systems showed somewhat better signal-to-noise characteristics and a lower flux detection limit than the ICOS analysers. Intriguingly, there seemed to be some minor differences between the ICOS instruments which showed cross sensitivities to CO to varying degree. Overall the study demonstrates, that, while not cheap, both the ICOS-based instruments and the cw-QCLs are suitable for the measurement of even moderate N2O fluxes.

  10. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  11. Applications of picosecond lasers and pulse-bursts in precision manufacturing

    NASA Astrophysics Data System (ADS)

    Knappe, Ralf

    2012-03-01

    Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.

  12. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    PubMed

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  13. Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers

    NASA Astrophysics Data System (ADS)

    Moglia, Francesca; Müller, Sebastian; Reichert, Fabian; Metz, Philip W.; Calmano, Thomas; Kränkel, Christian; Heumann, Ernst; Huber, Günter

    2015-04-01

    We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation. We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%. To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.

  14. Constricted double-heterojunction AlGaAs diode lasers - Structures and electrooptical characteristics

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1981-01-01

    Constricted double-heterojunction (CDH) diode lasers are presented as a class of nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various CDH structures are discussed while treating such topics as liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers with positive-index lateral mode confinement provides single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C, while exhibiting light-current characteristics with second-harmonic distortions as low as -57 dB below the fundamental level. Semileaky guide CDH lasers with an asymmetric leaky cavity provide single-mode operation to 15-20 mW/facet CW, and to 50 mW/facet at 50% duty cycle.

  15. Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter

    NASA Astrophysics Data System (ADS)

    Stutzki, Fabian; Jauregui, Cesar; Voigtländer, Christian; Thomas, Jens U.; Limpert, Jens; Nolte, Stefan; Tünnermann, Andreas

    2010-02-01

    We report on the development of a high power monolithic CW fiber oscillator with an output power of 215 W in a 20μm core diameter few-mode Large Mode Area fiber (LMA). The key parameters for stable operation are reviewed. With these optimizations the root mean square of the output power fluctuations can be reduced to less than 0.5 % on a timescale of 20 s, which represents an improvement of more than a factor 5 over a non-optimized fiber laser. With a real-time measurement of the mode content of the fiber laser it can be shown that the few-mode nature of LMA fibers is the main factor for the residual instability of our optimized fiber laser. The root of the problem is that Fiber Bragg Gratings (FBGs) written in multimode fibers exhibit a multi-peak reflexion spectrum in which each resonance corresponds to a different transversal mode. This reflectivity spectrum stimulates multimode laser operation, which results in power and pointing instabilities due to gain competition between the different transversal modes . To stabilize the temporal and spatial behavior of the laser output, we propose an innovative passive in-fiber transversal mode filter based on modified FBG-Fabry Perot structure. This structure provides different reflectivities to the different transversal modes according to the transversal distribution of their intensity profile. Furthermore, this structure can be completely written into the active fiber using fs-laser pulses. Moreover, this concept scales very well with the fiber core diameter, which implies that there is no performance loss in fibers with even larger cores. In consequence this structure is inherently power scalable and can, therefore, be used in kW-level fiber laser systems.

  16. A Solid State Ultraviolet Lasers Based on Cerium-Doped LiCaAIF(sub 6) Crystal Resonator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Le, Thanh; Schowalter, Steven J.; Rellergert, Wade; Jeet, Justin; Lin, Guoping; Hudson, Eric

    2012-01-01

    We report the first demonstration of a UV laser using a high-Q whispering gallery mode (WGM) resonator of Ce+: LiCaAlF6. We show that WGM resonators from LiCaAlF6 can achieve a Q of 2.6 x 10(sup 7) at UV. We demonstrated a UV laser at 290 nm with a pulsed pump laser at 266 nm. The experiments showed the low pump threshold intensity of 7.5 x 10(sup 9) W/m(sup 2) and slope efficiency of 25%. We have also observed lasing delay dynamics. These results are consistent with our modeling and theoretical estimates, and pave the way for a low threshold cw UV laser using WGM resonator cavity.

  17. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  18. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-02-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.

  19. Possibilities of improving the performance of an autonomous cw chemical DF laser by replacing the slot nozzles by the ramp ones in the nozzle array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkin, A S; Gurov, L V; Kurdyukov, M V

    2011-08-31

    The results of a comparative numerical study of the performance of an autonomous cw chemical DF laser are obtained by simulating the processes in the nozzles and laser cavity where several configurations of slot and ramp nozzle arrays are employed. Three-dimensional Navier-Stokes equations solved with the Ansys CFX software are used to describe the reacting multicomponent flow in the nozzles and laser cavity. To investigate lasing characteristics, a supplementary code is developed and is used to calculate the radiation intensity in the Fabry-Perot resonator, taking into account its nonuniform distribution along the aperture width and height. It is shown thatmore » the use of the nozzle array consisting of ramp nozzles, which, in contrast to the slot nozzles, provide enhanced mixing of the reactants makes it possible to improve the laser performance in the case of a high-pressure (more than 15 Torr) active medium. (control of radiation parameters)« less

  20. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  1. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  2. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers.

    PubMed

    Bharathan, Gayathri; Woodward, Robert I; Ams, Martin; Hudson, Darren D; Jackson, Stuart D; Fuerbach, Alex

    2017-11-27

    We report the development of a widely tunable all-fiber mid-infrared laser system based on a mechanically robust fiber Bragg grating (FBG) which was inscribed through the polymer coating of a Ho 3+ -Pr 3+ co-doped double clad ZBLAN fluoride fiber by focusing femtosecond laser pulses into the core of the fiber without the use of a phase mask. By applying mechanical tension and compression to the FBG while pumping the fiber with an 1150 nm laser diode, a continuous wave (CW) all-fiber laser with a tuning range of 37 nm, centered at 2870 nm, was demonstrated with up to 0.29 W output power. These results pave the way for the realization of compact and robust mid-infrared fiber laser systems for real-world applications in spectroscopy and medicine.

  3. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.

    PubMed

    Xu, B; Starecki, F; Pabœuf, D; Camy, P; Doualan, J L; Cai, Z P; Braud, A; Moncorgé, R; Goldner, Ph; Bretenaker, F

    2013-03-11

    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr(3+)-doped KYF(4) single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF(4) crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time.

  4. Fine wavelength control in 1.3 μm Nd:YAG lasers by electro-optical crystal lens

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhang, Jing; Liu, Huilong; Xia, Jing; Fu, Xihong; Zhang, Anfeng

    2014-02-01

    A diode-pumped tunable and multi-wavelength continuous-wave Nd:YAG laser based on the 4F3/2-4I13/2 transition has been demonstrated for the first time. The combination of the glass plane positioned at the Brewster angle and the electro-optical crystal KH2PO4 (KDP) lens formed a Lyot filter in the cavity and compressed the available gain bandwidth. With an adjustable voltage applied to the KDP crystal lens, the laser wavelength could be tuned from 1333.8 to 1338.2 nm. Moreover, we can also realize cw dual-wavelength and triple-wavelength lasers with smaller wavelength separation by adjusting the free spectral range of the Lyot filter.

  5. Raman background photobleaching as a possible method of cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Brandt, Nikolai B.; Chikishev, Andrey Y.; Gangardt, Mihail G.; Karyakina, Nina F.

    2001-06-01

    Kinetics of photobleaching of background in Raman spectra of aqueous solutions of plant toxins ricin and ricin agglutinin, ricin binding subunit, and normal and malignant human blood serum were measured. For the excitation of the spectra cw and pulsed laser radiation were used. The spectra of Raman background change upon laser irradiation. Background intensity is lower for the samples with small molecular weight. The cyclization of amino acid residues in the toxin molecules as well as in human blood serum can be a reason of the Raman background. The model of the background photobleaching is proposed. The differences in photobleaching kinetics in the cases of cw and pulsed laser radiation are discussed. It is shown that Raman background photobleaching can be very informative for cancer diagnostics.

  6. High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao

    2017-03-01

    An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.

  7. Compact intra-cavity pumped low-threshold passively Q-switched Ho:Sc2SiO5 laser by a LD-pumped Tm:YAP laser at room temperature

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-tao; Xie, Wen-qiang; Liu, Long; Li, Lin-jun

    2017-08-01

    A compact intra-cavity pumped low-threshold passively Q-switched (PQS) Ho:Sc2SiO5 (Ho:SSO) laser is reported for the first time. The Tm:YAlO3 (Tm:YAP) crystal and the Ho:SSO crystal are placed in the same laser cavity. A laser diode with a central wavelength of 793 nm is used to realize the output of the Ho:SSO laser. Both the continuous wave (CW) and PQS operation are investigated. A Cr2+:ZnSe is used as the saturable absorber in the PQS Ho:SSO laser. For the CW mode, the laser threshold is only 750 mW, which is 980 mW in the PQS mode. A maximum pulse energy of 699 µJ is primarily obtained, corresponding to the pulse width of 96 ns. The maximum repetition frequency is 1.46 kHz. The maximum pulse peak power can be calculated to be 7.28 kW. The beam quality factor M 2 is calculated to be 1.4 with the maximum output power.

  8. Wavelength and energy dependent absorption of unconventional fuel mixtures

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.

  9. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillman, Karl A.; Thapa, Rajesh; Knabe, Kevin

    2009-12-20

    The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of {approx}2x10{sup -11} at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3x10{sup -12} for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamicsmore » of the carrier-envelope offset to pump power changes confirm the observed linewidths.« less

  10. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  11. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  12. Study of high-power GaAs-based laser diodes operation and failure by cross-sectional electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Ankudinov, A.; Titkov, A. N.; Evtikhiev, Vadim P.; Kotelnikov, Eugeny Y.; Bazhenov, N.; Zegrya, Georgy G.; Huhtinen, H.; Laiho, R.

    2003-06-01

    One of the important factors that restricts the power limit of semiconductor lasers is a catastrophic optical mirror damage. This process is significantly suppressed through decreasing the optical power density due to its redistribution over the broad transverse waveguide (BW). Recently it was shown that record-breaking values of the quasicontinuous and continuous-wave (QWC and CW) output power for 100-μm-wide-aperture devices can be achieved by incorporating a broad transverse waveguide into 0.97 μm emitting Al-free InGaAs(P)/InGaP/GaAs and Al-containing InGaAs/AlGaAs/GaAs separate confinement heterostructure quantum-well lasers (SCH-QWL). Another important factor limiting the CW output power is the Joule overheating of a laser diode due to an extra serial resistance. Traditionally, a decrease in the resistance is achieved by development of the contacts, whereas a voltage distribution across the device structure is not analyzed properly. At high operating currents the applied voltage can drop not only across the n-p-junction, but also at certain additional regions of the laser structure depending on a particular design of the device. Electrostatic force microscopy (EFM) provides a very promising method to study the voltage distribution across an operating device with a nanometer space resolution. An application of EFM for diagnostics of III-V laser diodes without and under applied biases have been recently demonstrated. However, the most interesting range of the biases, the lazing regime, has not been studied yet.

  13. Attenuation of laser radiation by the flame of burning hydrocarbons and efficiency of remote cutting of metals

    NASA Astrophysics Data System (ADS)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.

    2017-12-01

    Mobile laser technological complex MLTC-20 with radiation power 20 kW and radiation wavelength 1.07 μm created in SRC RF TRINITI on the base of a three cw fiber Yb lasers is used successfully at remote cutting of the metalworks at carrying out of the emergency-reduction works on the out of control gas wells. In this work the results of the investigation of the possibility and the efficiency of laser radiation application for remote cutting of metals on the emergency oil wells have been presented. Measurements of the mean absorption coefficient of the radiation of a cw fiber Yb laser under its propagation in a flame of burning oil in dependence on radiation intensity have been carried out. It was shown that at the intensity ~104 W/cm2 the absorption coefficient traverses the maximum where its value is equal to ~0.1 cm-1, and at the intensity increasing to the values 105 - 106 W/cm2 it stabilizes on a small level ~5·10-3 - 10-2 cm-1. It is established that the maximal velocity and the efficiency of remote cutting of the steel plates with a thickness up to 10 mm by the radiation with the intensity 106 W/cm2 exceed these factors at the intensity 104 W/cm2. The possibility of the efficient remote cutting of steel plate with a thickness of 60 mm by laser radiation having the power 7.5 kW and the intensity 105 W/cm2 has been demonstrated.

  14. Support to a Wireless Power System Design

    DTIC Science & Technology

    2011-12-01

    refractive index which is the cause of turbulence. Turbulence effects can also have a serious impact on laser power beaming tests. The blooming effects...is mounted beside it. This aiming laser is a Hercules 375 CW laser made by Laserglow Technologies, 5 Adrian Avenue, Toronto, ON, M6N 5G4, Canada. Its

  15. Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team

    NASA Technical Reports Server (NTRS)

    Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.

  16. Crude Oil Remote Sensing, Characterization and Cleaning with CW and Pulsed Lasers

    NASA Technical Reports Server (NTRS)

    Kukhtareva, Tatiana; Chirita, Arc; Gallegos, Sonia C.

    2014-01-01

    For detection, identification and characterization of crude oil we combine several optical methods of remote sensing of crude oil films and emulsions (coherent fringe projection illumination (CFP), holographic in-line interferometry (HILI), and laser induced fluorescence). These methods allow the three-dimensional characterization of oil spills, important for practical applications. Combined methods of CFP and HILI are described in the frame of coherent superposition of partial interference patterns. It is shown, that in addition to detection/identification laser illumination in the green-blue region can also degrade oil slicks. Different types of surfaces contaminated by oil spills are tested: oil on the water, oil on the flat solid surfaces and oil on the curved surfaces of pipes. For the detection and monitoring of the laser-induced oil degradation in pipes, coherent fiber bundles were used. Both continuous-wave (CW) and pulsed lasers are tested using pump-probe schemes. This finding suggests that properly structured laser clean-up can be an alternative environmentally-friendly method of decontamination, as compared to the currently used chemical methods that are dangerous to environment.

  17. Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Martin-Lopez, S.; Carrasco-Sanz, A.; Corredera, P.; Abrardi, L.; Hernanz, M. L.; Gonzalez-Herraez, M.

    2006-12-01

    The development of high-power cw fiber lasers has triggered a great interest in the phenomena of nonlinear pump spectral broadening and cw supercontinuum generation. These effects have very convenient applications in Raman amplification, optical fiber metrology, and fiber sensing. In particular, it was recently shown that pump incoherence has a strong impact in these processes. We study experimentally the effect of pump incoherence in nonlinear pump spectral broadening and cw supercontinuum generation in optical fibers. We show that under certain experimental conditions an optimum degree of pump incoherence yields the best performance in the broadening process. We qualitatively explain these results, and we point out that these results may have important implications in cw supercontinuum optimization.

  18. Simultaneous dual-wavelength laser operation at 937 and 1062 nm in Nd3+:Gd3Ga5O12

    NASA Astrophysics Data System (ADS)

    Gao, F.; Sun, G. C.; Li, Y. D.; Dong, Y.; Li, S. T.

    2013-08-01

    Diode-end-pumped continuous-wave (cw) simultaneous dual-wavelength laser operation at 937 and 1062 nm in a single Nd3+:Gd3Ga5O12 (Nd:GGG) crystal was demonstrated. A total output power of 1.12 W at the two fundamental wavelengths was achieved at incident pump power of 17.6 W. The optical-to-optical conversion was up to 6.4% with respect to the incident pump power. To the best of our knowledge, this is first work on cw simultaneous dual-wavelength operation at 937 and 1062 nm in Nd:GGG crystal.

  19. Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser.

    PubMed

    Kisel, V E; Gorbachenya, K N; Yasukevich, A S; Ivashko, A M; Kuleshov, N V; Maltsev, V V; Leonyuk, N I

    2012-07-01

    We report, for the first time to our knowledge, a diode-pumped cw and passively Q-switched microchip Er, Yb:YAl(3)(BO(3))(4) laser. A maximal output power of 800 mW at 1602 nm in the cw regime was obtained at an absorbed pump power of 7.7 W. By using Co(2+):MgAl(2)O(4) as a saturable absorber, a TEM(00)-mode Q-switched average output power of 315 mW was demonstrated at 1522 nm, with pulse duration of 5 ns and pulse energy of 5.25 μJ at a repetition rate of 60 kHz.

  20. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    PubMed

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the initial stages of the irradiation. The temperature rise due to pulsed and CW laser irradiation converged as the time of irradiation increased. A similar trend was observed when comparing the thermal dose for pulsed and CW laser irradiation in the vascular model. Finite element models (continuum and vascular) were developed that can be used to predict temperature rise and quantify the thermal dose resulting from laser irradiation of excised rat skin samples and live anesthetized mouse tissue. The vascular model incorporating blood perfusion effects predicted temperature rise better in the live animal tissue. The models developed demonstrated that pulsed lasers caused greater temperature rise and delivered a greater thermal dose than CW lasers of equal average power, especially during the initial transients of irradiation. This analysis will be beneficial for thermal therapy applications where maximum delivery of thermal dose over a short period of time is important. © 2015 Wiley Periodicals, Inc.

  1. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation.

    PubMed

    Iwata, Koichi; Terazima, Masahide; Masuhara, Hiroshi

    2018-02-01

    Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017. Published by Elsevier B.V.

  2. 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator.

    PubMed

    Bosenberg, W R; Drobshoff, A; Alexander, J I; Myers, L E; Byer, R L

    1996-09-01

    We report two cw, singly resonant optical parametric oscillator (OPO) configurations based on periodically poled lithium niobate that result in significantly higher efficiency and output power than in previous studies. Using four-mirror OPO cavities and pumping with a 1.064-microm Nd:YAG laser, we observe 93% pump depletion and obtain ~86% of the converted pump photons as useful idler output. The single-beam, in-the-bucket idler output power of 3.55 W at 3.25 microm corresponds to ~80% of quantum-limited performance. We measure and compare the amplitude noise and spectral bandwidth of the two configurations. We also demonstrate >1 W of tunable cw output over the 3.3-3.9-microm spectral range.

  3. High-power CO(2) laser with a Gauss-core resonator for high-speed cutting of thin metal sheets.

    PubMed

    Takenaka, Y; Nishimae, J; Tanaka, M; Motoki, Y

    1997-01-01

    A novel resonator, the Gauss-core resonator, based on a stable resonator configuration designed to yield a highly focusing beam operating in a large-volume TEM(00) mode, is presented. A 6.2 kW linearly polarized output beam with an M(2) factor of 1.7 is obtained experimentally for a high-power cw CO(2) laser. The capability of the Gauss-core resonator to process laser materials is also studied. We can cut 1-mm-thick mild (soft) steel with a maximum cutting speed of 58 m/min at 5.6 kW and 0.2-mm-thick steel 145 m/min at 2.8 kW.

  4. Tunable vertical cavity surface emitting lasers for use in the near infrared biological window

    NASA Astrophysics Data System (ADS)

    Kitsmiller, Vincent J.; Dummer, Matthew; Johnson, Klein; O'Sullivan, Thomas D.

    2018-02-01

    We present a near-infrared tunable vertical cavity surface emitting laser (VCSEL) based upon a unique electrothermally tunable microelectromechanical systems (MEMS) topside mirror designed for tissue imaging and sensing. At room temperature, the laser is tunable from 769-782nm with single mode CW output and a peak output power of 1.3mW. We show that the tunable VCSEL is suitable for use in frequency domain diffuse optical spectroscopy by measuring the optical properties of a tissue-simulating phantom over the tunable range. These results indicate that tunable VCSELs may be an attractive choice to enable high spectral resolution optical sensing in a wearable format.

  5. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao

    2013-11-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.

  6. Radiation energy conversion in space; Conference, 3rd, NASA Ames Research Center, Moffett Field, Calif., January 26-28, 1978, Technical Papers

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1978-01-01

    Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.

  7. Mode Medium Interaction. A Theoretical Study.

    DTIC Science & Technology

    1980-09-01

    Report) 10. SUPPLEMENTARY NOTES I9. KEY WORDS (Conrlfnue on reverse side II necessary mnd Identify by block rumber) CO, Laser Transfer Function...Chemical Laser Unstable Resonator Brillouin Scattering Instability Supersonic Laser Modes Acoustic Noise Acoustic Instability Perturbed Resonator Gain...end Identify by block number) An instability in the output of a high-power unstable-resonator cw CO2 laser is analyzed in terms of the perturbative

  8. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  9. Optical Fier Based System for Multiple Thermophysical Properties for Glove Box, Hot Cell and In-Pile Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Heng

    Thermal diffusivity of materials is of interest in nuclear applications at temperatures in excess of 2000°C. Commercial laser flash apparatus (LFA) that heats samples with a furnace typically do not reach these elevated temperatures nor are they easily adapted to a glove-box or hot cell environment. In this research, we performed work on an experimental technique using single laser surface heating, i.e. heating the disk sample only at its front surface with the continuous wave (CW) laser, to allow measurement of thermal diffusivity at very high temperatures within a small chamber. Thermal diffusivity is measured using a separate pulsed lasermore » on the front side and IR detector on the rear side. The new way of heating provides easy operation in comparison to other heating methods. The measurement of sample reference temperature is needed for the measured thermal diffusivity. A theoretical model was developed to describe transient heat transfer across the sample due to the laser pulse, starting from the steady state temperature of the sample heated by the CW laser. The experimental setup was established with a 500W CW laser and maximum 50 Joule pulse laser irradiated at the front surface of the sample. The induced temperature rise at the rear surface, along with the steady-state temperature at the front surface, was recorded for the determination of thermal diffusivity and the sample temperature. Three samples were tested in vacuum over a wide temperature range of 500°C to 2100°C, including graphite, Inconel 600 and tungsten. The latter two samples were coated with sprayed graphite on their front surfaces in order to achieve surface absorption/emission needs, i.e. high absorptivity of the front surface against relatively low emissivity of the rear surface. Thermal diffusivity of graphite determined by our system are within a 5% difference of the commercial LFA data at temperatures below 1300°C and agree well with its trend at higher temperatures. Good agreement would also exist for Inconel 600 and tungsten. Despite large uncertainty of measuringthe sample temperature, the uncertainties of thermal diffusivity are less than 6% for all samples at elevated temperatures. The results indicate that single laser surface heating could be convenient and practical for the application of the LFA measurements without extra uncertainty, as temperature dependence of thermal diffusivity is usually negligible in the sample. Moreover, it is concluded that unequal surface treatment, i.e., high absorption on the front side and low emission on the rear side, greatly improves the measurement in serval aspects: less power requirement of the CW laser, less uncertainty of measured thermal diffusivity, and more uniform temperature distribution in the sample. The result of this research can be used as a general guideline for the design of this type of measurement system for nuclear applications. It can also be used directly to design and build a system similar to the one implemented in this project.« less

  10. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.

    PubMed

    Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J

    2013-06-17

    We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

  11. Efficient 2-μm Tm:YAP Q-switched and CW lasers

    NASA Astrophysics Data System (ADS)

    Hays, A. D.; Cole, Brian; King, Vernon; Goldberg, Lew

    2018-02-01

    Highly efficient, diode pumped Tm:YAP lasers generating emission in the 1.85-1.94 μm range are demonstrated and characterized. Laser optical efficiencies of 51% and 45%, and electrical efficiencies of 31% and 25% are achieved under CW and Q-switched operation, respectively. Laser performance was characterized for maximum average powers up to 20W with various cavity configurations, all using an intra-cavity lens to compensate for thermal lensing in the Tm:YAP crystal. Q-switched lasers incorportating a Cr:ZnS saturable absorber (SA), resonant mechanical mirror scanner, or acousto-optic modulator were characterized. To enable higher average output powers, measurements of the thermal lens were conducted for the Tm:YAP crystal as a function of pump power and were compared to values predicted by a finiteelement- analysis (FEA) thermal-optical model of the Tm:YAP crystal. A resonator model is developed to incorporate this calculated thermal lens and its effect on laser performance. This paper will address approaches for improving the performance of Tm:YAP lasers, and means for achieving increased average output powers while maintaining high optical efficiency for both SA and mechanical Q-switching.

  12. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  13. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    NASA Astrophysics Data System (ADS)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  14. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  15. Photonic Applications Using Electrooptic Optical Signal Processors

    DTIC Science & Technology

    2011-11-16

    analog-to-digital conversion using a continuous wave multiwavelength source and phase modulation Author(s): Bortnik, B.J.; Fetterman, H.R. Source... multiwavelength source and phase modulation Bartosz J. Bortnik* and Harold R. Fetterman Department of Electrical Engineering, University of California Los...utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwave- length source

  16. Gain anisotropy and simultaneous bidirectional emission of a Doppler-broadened MIR optically-pumped ammonia ring laser

    NASA Astrophysics Data System (ADS)

    Wazen, P.; Bourdet, G. L.

    1991-01-01

    The authors studied the Doppler-broadened 11.76-micron N-15H3 emission line optically pumped in a ring resonator by a CW CO2 laser operating on the 10R(42) line. Behavior related to the optical pumping of gas Doppler-broadened lines is found and shown to be very dependent on the laser parameters. For instance, the laser emission can occur in one direction or two directions simultaneously. A local gain model based on the interaction of two laser fields with a three-level molecular system is used to clarify the emission characteristics of this laser. Basically, the two-photon or Raman process and the Rabi splitting generate a gain anisotropy and an anomalous dispersion curve. The effects lead to a different optical path for the two directions of propagation and, consequently, a simultaneous bidirectional emission with unequal emission frequency.

  17. 2 Micrometers InAsSb Quantum-dot Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David; Keo, Sam

    2004-01-01

    InAsSb quantum-dot lasers near 2 micrometers were demonstrated in cw operation at room temperature with a threshold current density of 733 A,/cm(sup 2), output power of 3 mW/facet and a differential quantum efficiency of 13%.

  18. Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates

    NASA Technical Reports Server (NTRS)

    Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.

    2011-01-01

    We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.

  19. In-vitro ablation of fibrocartilage by XeCl excimer laser

    NASA Astrophysics Data System (ADS)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  20. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  1. The stability of the active medium of RF-exited CO2 lasers with gold as catalyst

    NASA Astrophysics Data System (ADS)

    Cherezov, V. M.; Novgorodov, M. Z.; Ochkin, V. N.; Samorodov, V. G.; Shishkanov, E. F.; Stepanov, V. A.; Witteman, W. J.

    Using mass-spectrometric investigations the gas composition of the active medium of sealed-off cw RF-excited CO2 waveguide lasers have been studied. It has been found that a low degree of CO2 dissociation and a laser power improvement can be achieved by means of a gold catalyst in the laser discharge volume. The conditions for long operational lifetimes of these lasers are described.

  2. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    PubMed

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  3. CW YVO4:Er Laser with Resonant Pumping

    NASA Astrophysics Data System (ADS)

    Gorbachenya, K. N.; Kisel, V. E.; Yasukevich, A. S.; Matrosov, V. N.; Tolstik, N. A.; Kuleshov, N. V.

    2015-05-01

    The lasing characteristics of a YVO4:Er laser with resonant pumping in the 1.5-1.6 μm range are studied. Lasing is obtained at λ = 1603 nm with a differential efficiency of up to 61%. YVO4:Er crystals are found to offer promise for use in efficient resonantly (in-band) pumped lasers.

  4. Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode

    NASA Astrophysics Data System (ADS)

    Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali

    2016-10-01

    We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.

  5. High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo

    2017-04-01

    Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.

  6. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    PubMed Central

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.

    2015-01-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730

  7. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.

    PubMed

    Yao, B C; Rao, Y J; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W

    2015-12-21

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.

  8. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    NASA Astrophysics Data System (ADS)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  9. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  10. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-01

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  11. CO 2 laser cutting of MDF . 2. Estimation of power distribution

    NASA Astrophysics Data System (ADS)

    Ng, S. L.; Lum, K. C. P.; Black, I.

    2000-02-01

    Part 2 of this paper details an experimentally-based method to evaluate the power distribution for both CW and PM cutting. Variations in power distribution with different cutting speeds, material thickness and pulse ratios are presented. The paper also provides information on both the cutting efficiency and absorptivity index for MDF, and comments on the beam dispersion characteristics after the cutting process.

  12. Digital approach to stabilizing optical frequency combs and beat notes of CW lasers

    NASA Astrophysics Data System (ADS)

    Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef

    2013-10-01

    In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.

  13. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.

    PubMed

    Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues

    2018-05-28

    We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.

  14. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs

    NASA Astrophysics Data System (ADS)

    Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues

    2018-05-01

    We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency shifting loop seeded with a CW monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.

  15. Intensity-Modulated Continuous-Wave Lidar at 1.57 Micrometer for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Ismail, Syed; Browell, Edward; Meadows, Byron; Nehrir, Amin; Harrison, Wallace F.; Dobler, Jeremy; Obland, Michael

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc proposes to use the intensity-modulated, continuous-wave (IM-CW) lidar approach for the ASCENDS mission. Prototype instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space lidar systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW lidar system for the active space CO2 mission ASCENDS.

  16. CW and tunable performances of Yb3+:LuAG transparent ceramics with different doping concentrations

    NASA Astrophysics Data System (ADS)

    Ma, Chaoyang; Zhu, Jiangfeng; Liu, Kai; Wen, Zicheng; Ma, Ran; Long, Jiaqi; Yuan, Xuanyi; Cao, Yongge

    2017-07-01

    We report the CW laser operation and wavelength tunability of 10 at%, 15 at% and 20 at% Yb3+-doping LuAG ceramics pumped at 970 nm. The absorption saturation effects were taken into account herein. For 10 at% Yb3+-doping sample, the maximum slop efficiency and output power was 60.7% and 1.8 W, respectively. Furthermore, the slop efficiencies of 52.3% (15 at%) and 46.5% (20 at%) were reported. What's more, the maximum optical-to-optical efficiency for our samples was determined to be 40.1%, 36.8%, and 33.1% at the incident pump power of 4 W, respectively. The round-trip cavity loss of the laser system based on our Yb3+:LuAG ceramics were evaluated. The tuning curve of a 20 at% Yb3+:LuAG ceramic extended from 1018 nm up to 1062 nm, and that of 10 at% and 15 at% samples became much more broader, making Yb3+:LuAG ceramics possible candidates for ultrashort pulse generation.

  17. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE PAGES

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...

    2016-01-05

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less

  18. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less

  19. All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates.

    PubMed

    Serak, Svetlana V; Hakobyan, Rafael S; Nersisyan, Sarik R; Tabiryan, Nelson V; White, Timothy J; Bunning, Timothy J; Steeves, Diane M; Kimball, Brian R

    2012-02-27

    Pairs of cycloidal diffractive waveplates can be used to doubly diffract or collinearly propagate laser radiation of the appropriate wavelength. The use of a dynamic phase retarder placed in between the pair can be utilized to switch between the two optical states. We present results from the implementation of an azo-based retarder whose optical properties can be modulated using light itself. We show fast and efficient switching between the two states for both CW and single nanosecond laser pulses of green radiation. Contrasts greater than 100:1 were achieved. The temporal response as a function of light intensity is presented and the optical switching is shown to be polarization independent.

  20. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  1. Compact and efficient blue laser sheet for measurement

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia

    2017-10-01

    Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.

  2. A low cost hermetic packaging for high power industry fiber lasers

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    For water-cooled fiber lasers, humidity and the resulting water-condensation has always been the biggest threat for laser reliability or power degradation, especially when used in harsh industrial environment. Here we present an innovative fiber laser packaging method featuring cast aluminum frame and an almost screw-free exterior packaging. A CW fiber laser with 1.5KW laser output power in such a compact and light-weight package has been demonstrated with an excellent beam quality and power stability for industry applications.

  3. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide

    NASA Astrophysics Data System (ADS)

    Kuramoto, Masaru; Kobayashi, Seiichiro; Akagi, Takanobu; Tazawa, Komei; Tanaka, Kazufumi; Saito, Tatsuma; Takeuchi, Tetsuya

    2018-03-01

    We have achieved a high output power of 6 mW from a 441 nm GaN-based vertical-cavity surface-emitting laser (VCSEL) under continuous wave (CW) operation, by reducing both the internal loss and the reflectivity of the front cavity mirror. A preliminary analysis of the internal loss revealed an enormously high transverse radiation loss in a conventional GaN-based VCSEL without lateral optical confinement (LOC). Introducing an LOC structure enhanced the slope efficiency by a factor of 4.7, with a further improvement to a factor of 6.7 upon reducing the front mirror reflectivity. The result was a slope efficiency of 0.87 W/A and an external differential quantum efficiency of 32% under pulsed operation. A flip-chip-bonded VCSEL also exhibited a high slope efficiency of 0.64 W/A and an external differential quantum efficiency of 23% for the front-side output under CW operation. The reflectivity of the cavity mirror was adjusted by varying the number of AlInN/GaN distributed Bragg reflector pairs from 46 to 42, corresponding to reflectivity values from 99.8% to 99.5%. These results demonstrate that a combination of internal loss reduction and cavity mirror control is a very effective way of obtaining a high output GaN-based VCSEL.

  4. Induced dark solitary pulse in an anomalous dispersion cavity fiber laser.

    PubMed

    Shao, Guodong; Song, Yufeng; Guo, Jun; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan

    2015-11-02

    We report on the formation of induced dark solitary pulses in a net anomalous dispersion cavity fiber laser. In a weak birefringence cavity fiber laser simultaneous laser oscillation along the two orthogonal polarization directions of the cavity could be achieved. Under suitable conditions bright cavity solitons could be formed along one polarization direction while CW emission occurs along the orthogonal polarization direction. In a previous paper we have shown that under incoherent polarization coupling a bright soliton always induces a broad dark pulse on the CW beam. In the paper we further show that under coherent polarization coupling a bright soliton could further induce either a weak bright or a dark solitary pulse on the bottom of the broad dark pulse. Numerical simulations have also well reproduced the experimental observations, and further show whether a weak dark or bright solitary pulse is induced is determined by the presence or absence of a phase jump in the induced pulse.

  5. Theoretical evaluation of a continues-wave Ho3+:BaY2F8 laser with mid-infrared emission

    NASA Astrophysics Data System (ADS)

    Rong, Kepeng; Cai, He; An, Guofei; Han, Juhong; Yu, Hang; Wang, Shunyan; Yu, Qiang; Wu, Peng; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-01-01

    In this paper, we build a theoretical model to study a continues-wave (CW) Ho3+:BaY2F8 laser by considering both energy transfer up-conversion (ETU) and cross relaxation (CR) processes. The influences of the pump power, reflectance of an output coupler (OC), and crystal length on the output features are systematically analyzed for an end-pumped configuration, respectively. We also investigate how the processes of ETU and CR in the energy-level system affect the output of a Ho3+:BaY2F8 laser by use of the kinetic evaluation. The simulation results show that the optical-to-optical efficiency can be promoted by adjusting the parameters such as the reflectance of an output coupler, crystal length, and pump power. It has been theoretically demonstrated that the threshold of a Ho3+:BaY2F8 laser is very high for the lasing operation in a CW mode.

  6. Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, N. K.; Dibua, O. G.; Cullinan, M. A.

    2018-03-01

    Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.

  7. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    PubMed

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  8. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David

    2012-03-01

    The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.

  9. Linear lesions in heart tissue using diffused laser radiation

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Lardo, Albert C.; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.

    2000-05-01

    Transmural, continuous, and linear lesions may be necessary for successful catheter ablation of cardiac arrythmias such as atrial fibrillation. Laser ablation was studied as an alternative to radiofrequency ablation, which is noted to produce superficial and discontinuous lesions as well as tissue charring and vaporization. Samples of canine myocardium were placed in a saline bath and irradiated with an 1.06- micrometer Nd:YAG laser operated in either pulsed or continuous mode. For pulsed mode, the laser pulse duration was 10 s with 10 s cooling between pulses. Laser radiation was delivered radially through diffusing optical fiber tips oriented parallel to the endocardial surface. In CW mode, transmural (6-mm-deep), linear (16-mm-long), and continuous lesions were produced using a laser power of 30 W and an irradiation time of 180 s. Peak tissue temperatures measured 51 plus or minus 1 degree Celsius at the endocardial surface, 61 plus or minus 6 degrees Celsius in the mid-myocardium, and 55 plus or minus 6 degree Celsius at the epicardial surface. There was no evidence of tissue charring or vaporization. Pulsed laser irradiation produced comparable lesion depths to CW irradiation with more uniform heating of the subsurface myocardium, but at the expense of longer operation times. Further in vivo study of laser ablation is warranted for possible clinical applications.

  10. 808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.

    2015-09-01

    Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.

  11. Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2018-05-01

    This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.

  12. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    PubMed

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  13. Laser reflector with an interference coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-10-31

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd{sup 3+}:YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  14. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  15. High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser

    NASA Astrophysics Data System (ADS)

    Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.

    2013-05-01

    In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).

  16. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  17. Initial evaluation of commercially available InGaAsP DFB laser diodes for use in high-speed digital fiber optic transceivers

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L.; Hendricks, Herbert D.

    1990-01-01

    NASA has been pursuing the development of high-speed fiber-optic transceivers for use in a number of space data system applications. Current efforts are directed toward a high-performance all-integrated-circuit transceiver operating up to the 3-5 Gb/s range. Details of the evaluation and selection of candidate high-speed optical sources to be used in the space-qualified high-performance transceiver are presented. Data on the performance of commercially available DFB (distributed feedback) lasers are presented, and their performance relative to each other and to their structural design with regard to their use in high-performance fiber-optic transceivers is discussed. The DFB lasers were obtained from seven commercial manufacturers. The data taken on each laser included threshold current, differential quantum efficiency, CW side mode suppression radio, wavelength temperature coefficient, threshold temperature coefficient, natural linewidth, and far field pattern. It was found that laser diodes with buried heterostructures and first-order gratings had, in general, the best CW operating characteristics. The modulated characteristics of the DFB laser diodes are emphasized. Modulated linewidth, modulated side mode suppression ratio, and frequency response are discussed.

  18. Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

    NASA Astrophysics Data System (ADS)

    Tabassum, Aasma; Zhou, Jie; Han, Bing; Ni, Xiao-wu; Sardar, Maryam

    2017-07-01

    The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.

  19. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  20. CW Performance of an InGaAs-GaAs-AlGaAs Laterally-Coupled Distributed Feedback (LC-DFB) Ridge Laser Diode

    NASA Technical Reports Server (NTRS)

    Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.

    1995-01-01

    Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.

Top