Sample records for cyanates

  1. A Novel Anoxic Pathway for Urea and Cyanate in Marine Oxygen Deficient Zones Revealed by Combined Microbiological and Biogeochemical Tools

    NASA Astrophysics Data System (ADS)

    Widner, B.; Fuchsman, C. A.; Babbin, A. R.; Ji, Q.; Mulholland, M. R.

    2016-02-01

    Urea and cyanate are reduced nitrogen compounds that can serve as nitrogen and carbon sources for marine microbes, and cyanate forms from decomposition of urea. Some marine bacteria, including cyanobacteria, possess genes encoding an ABC-type cyanate transporter and an intracellular cyanate hydratase, and genes for urea uptake and assimilation are widespread. To investigate cyanate distribution and availability in the ocean, we recently developed a nanomolar cyanate assay specific to seawater. In an oxygenated water column, urea and cyanate concentrations are generally low in surface waters and exhibit a concentration maximum near the base of the euphotic zone likely due to production from organic matter degradation. Below the euphotic zone, urea and cyanate concentrations decrease, likely due to oxidation reactions. It has been suggested that simple organic nitrogen compounds may support anaerobic ammonium oxidation (anammox) in oxygen deficient zones (ODZs). We mapped urea and cyanate distributions and used stable isotope-labeled urea and cyanate to measure their potential support of anammox and their uptake within the Eastern Tropical North and South Pacific ODZs. We also employed metagenomic techniques to determine the abundance and distribution of genes for the uptake and assimilation of urea and cyanate. The combined data indicate that, in ODZs, urea is used primarily as a nitrogen source while cyanate is used as both a nitrogen source and to generate energy.

  2. Cyanate - An overlooked energy and nitrogen source in soils?

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Palatinszky, Márton; Herbold, Craig; Han, Ping; Daims, Holger; Richter, Andreas; Wagner, Michael

    2016-04-01

    Cyanate (NCO-) is a reduced nitrogen compound that is toxic to organisms due to its reactivity with nucleophilic groups in proteins. To lower cyanate concentrations within cells, a wide range of microorganisms possess a cyanase, which catalyzes the conversion of cyanate to ammonium and carbon dioxide. However, cyanate can also be useful for microbes by serving as a nitrogen source for cyanase-encoding microorganism, such as marine cyanobacteria (Kamennaya et al., 2008). Unexpectedly, we could recently demonstrate that at least one ammonia-oxidizing thaumarchaeote as well as nitrite-oxidizers thriving in consortia with ammonia-oxidizers can grow aerobically on cyanate as only energy and nitrogen source (Palatinszky et al., 2015). Furthermore, published metagenomes revealed that cyanase-encoding genes closely related to those of nitrifiers (ammonia- and nitrite-oxidizers) are widespread in the environment and encompass also cyanases affiliated with anammox organisms. Therefore, cyanate presumably presents an alternative nitrogen and also energy source for many microorganisms in aquatic and terrestrial environments. Surprisingly, cyanate concentrations and fluxes in natural environments are largely unknown, and environmental cyanate concentrations have only been studied in seawater so far, where it occurs in the nanomolar-range (Widner et al. 2013). No information about the importance of cyanate in soils is available, although urea that spontaneously decomposes to cyanate is the most used agricultural fertilizer on a global scale. Cyanate can have many fates in soils - it can be (1) used as nitrogen and/or energy source by cyanase-encoding microorganisms, (2) abiotically hydrolysed to ammonium and carbon dioxide, (3) adsorbed to soil particles, or (4) complexed with other compounds. Here we present the first measurements of cyanate concentrations in natural soils and results of experiments designed to differentiate between biotic and abiotic degradation of cyanate in soils. We also introduce new cultivation and labelling-techniques that should allow us to study the importance of cyanate for microbial metabolism in terrestrial ecosystems. References Kamennaya, N. A., M. Chernihovsky, and A. F. Post (2008). The cyanate utilization capacity of marine unicellular cyanobacteria. Limnol Oceanogr 53:2485-2494. Palatinszky, M., C. Herbold, N. Jehmlich, M. Pogoda, P. Han, M. von Bergen, I. Lagkouvardos, S. M. Karst, A. Galushko, H. Koch, D. Berry, H. Daims, and M. Wagner (2015). Cyanate as energy source for nitrifiers. Nature 524:105-108. Widner, B., M. R. Mulholland, and K. Mopper (2013). Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Anal Chem 85:6661-6666.

  3. Proteomics Analysis of the Effects of Cyanate on Chromobacterium violaceum Metabolism

    PubMed Central

    Baraúna, Rafael A.; Ciprandi, Alessandra; Santos, Agenor V.; Carepo, Marta S.P.; Gonçalves, Evonnildo C.; Schneider, Maria P.C.; Silva, Artur

    2011-01-01

    Chromobacterium violaceum is a gram-negative betaproteobacterium that has been isolated from various Brazilian ecosystems. Its genome contains the cyn operon, which gives it the ability to metabolize highly toxic cyanate into ammonium and carbon dioxide. We used a proteomics approach to investigate the effects of cyanate on the metabolism of this bacterium. The proteome of cells grown with and without cyanate was compared on 2-D gels. Differential spots were digested and identified by mass spectrometry. The bacterium was able to grow at concentrations of up to 1 mM cyanate. Eighteen spots were differentially expressed in the presence of cyanate, of which 16 were downregulated and only two were upregulated. An additional 12 spots were detected only in extracts of cells unexposed to cyanate, and one was expressed only by the exposed cells. Fourteen spots were identified, corresponding to 13 different proteins. We conclude that cyanate promotes expression of enzymes that combat oxidative stress and represses enzymes of the citric acid cycle, strongly affecting the energetic metabolism of the cell. Other proteins that were under-expressed in bacteria exposed to cyanate are involved in amino-acid metabolism or are hypothetical proteins, demonstrating that cyanate also affects expression of genes that are not part of the cyn operon. PMID:24710289

  4. Method of making a cyanate ester foam

    DOEpatents

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  5. The urea decomposition product cyanate promotes endothelial dysfunction

    PubMed Central

    El-Gamal, Dalia; Rao, Shailaja Prabhakar; Holzer, Michael; Hallström, Seth; Haybaeck, Johannes; Gauster, Martin; Wadsack, Christian; Kozina, Andrijana; Frank, Saša; Schicho, Rudolf; Schuligoi, Rufina; Heinemann, Akos; Marsche, Gunther

    2014-01-01

    The dramatic cardiovascular mortality of chronic kidney disease patients is attributable in a significant proportion to endothelial dysfunction. Cyanate, a reactive species in equilibrium with urea, is formed in excess in chronic kidney disease. Cyanate is thought to have a causal role in promoting cardiovascular disease, but the underlying mechanisms remain unclear. Immunohistochemical analysis performed in the present study revealed that carbamylated epitopes associate mainly with endothelial cells in human atherosclerotic lesions. Cyanate treatment of human coronary artery endothelial cells reduced expression of endothelial nitric oxide synthase and increased tissue factor and plasminogen activator inhibitor-1 expression. In mice, administration of cyanate - promoting protein carbamylation at levels observed in uremic patients - attenuated arterial vasorelaxation of aortic rings in response to acetylcholine, without affecting sodium nitroprusside-induced relaxation. Total endothelial nitric oxide synthase and nitric oxide production were significantly reduced in aortic tissue of cyanate-treated mice. This coincided with a marked increase of tissue factor and plasminogen activator inhibitor-1 protein levels in aortas of cyanate-treated mice. These data provide evidence that cyanate compromises endothelial functionality in vitro and in vivo and may contribute to the dramatic cardiovascular risk of patients suffering from chronic kidney disease. PMID:24940796

  6. A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid.

    PubMed

    Guilloton, M; Karst, F

    1985-09-01

    A specific method has been devised for the assay of cyanate, based on the reaction with 2-aminobenzoic acid. Cyclization of the product in 6 N HCl results in the formation of 2,4(1H,3H)-quinazolinedione. Cyanate content of the samples can be measured by their absorbances at 310 nm. Alternatively, the second derivatives of the spectra can be recorded; the peak-to-peak height between the first maximum (330 nm) and the first minimum (317 nm) was shown to be proportional to the cyanate content. This method is suitable for the estimation of cyanate in aqueous solutions in the concentration range 0.01 to 2 mM. When added to blood plasma, cyanate could be detected down to 0.1 mM.

  7. A fluorescence-based method for cyanate analysis in ethanol/water media: correlation between cyanate presence and ethyl carbamate formation in sugar cane spirit.

    PubMed

    Ohe, Thiago Hideyuki Kobe; da Silva, Alexandre Ataide; Rocha, Thaís da Silva; de Godoy, Flávio Schutzer; Franco, Douglas Wagner

    2014-10-01

    Based on the fluorescence properties of 2,4-(1H,3H)-quinazolinedione, a product of the reaction between cyanate and 2-aminobenzoic acid, a simple, sensitive, selective, and reproducible method for the cyanate analysis in aqueous ethanolic media is proposed. In this method, λ(exc) and λ(em) are 310 and 410 nm, respectively, and the limits of detection and quantification are 2.2 × 10(-7) and 6.7 × 10(-7) mol/L, respectively. Under optimal conditions (pH = 4.5, 40% ethanol), a concentration of 5.0 × 10(-6) mol/L cyanate can be determined in a single measurement, at a 95% level of confidence, with an uncertainty of ± 0.13 × 10(-6) mol/L. Cyanide, thiocyanate, chloride, nitrate, and sulfate ions, as well as urea and urethane in concentrations 1 × 10(3) higher than that of cyanate do not interfere with the measurement. The methodology was applied to cyanate analyses in the different fractions of the sugarcane distillate and the data strongly suggest a correlation between the presence of urea in wine, and the cyanate and ethyl carbamate concentrations in the spirit. Based on the fluorescence properties of the reaction product between cyanate and 2-aminobenzoic acid, a method for assaying cyanate was devised. This procedure applied to the sugarcane distillate showed for the first time a correlation between cyanate presence and ethyl carbamate (EC) formation in the different fractions of the product. Therefore, the proposed methodology can be used to predict in freshly distillate sugar cane spirits the potential total concentration of EC to be formed. Therefore, these data could be used to advise about the necessity of implementing a procedure to reduce spirit EC concentration before the product reaches the market. © 2014 Institute of Food Technologists®

  8. Thermal decomposition of cyanate ester resins

    DOT National Transportation Integrated Search

    2001-09-01

    Polycyanurate networks were prepared by thermal polymerization of cyanate ester monomers containing two or more cyanate ester : (O-CN) functional groups. The thermal decomposition chemistry of nine different polycyanurates was studied by : ther...

  9. Additive manufacturing of short and mixed fibre-reinforced polymer

    DOEpatents

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  10. Synergistic Heterobimetallic Manifold for Expedient Manganese(I)-Catalyzed C-H Cyanation.

    PubMed

    Liu, Weiping; Richter, Sven C; Mei, Ruhuai; Feldt, Milica; Ackermann, Lutz

    2016-12-12

    The manganese-catalyzed cyanation of inert C-H bonds was achieved within a heterobimetallic catalysis regime. The manganese(I) catalysis proved widely applicable and enabled C-H cyanations on indoles, pyrroles and thiophenes by facile C-H manganesation. The robustness of the manganese catalyst set the stage for the racemization-free C-H cyanation of amino acids with excellent levels of positional and chemo selectivity by the new cyanating agent NCFS. Experimental and computational mechanistic studies provided strong support for a synergistic heterobimetallic activation mode, facilitating the key C-C formation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Copper-Catalyzed Cyanation of Heterocycle Carbon-Hydrogen Bonds

    PubMed Central

    Hien-Quang, Do; Daugulis, Olafs

    2010-01-01

    A method for regioselective cyanation of heterocycles has been developed. A number of aromatic heterocycles as well as azulene can be cyanated in reasonable to good yields by using a copper cyanide catalyst and an iodine oxidant. PMID:20441204

  12. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    PubMed

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  13. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space.

    PubMed

    Kolesniková, L; Alonso, J L; Bermúdez, C; Alonso, E R; Tercero, B; Cernicharo, J; Guillemin, J-C

    2016-07-01

    The recent discovery of methyl isocyanate (CH 3 NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH 3 OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A - E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 - 35 and [Formula: see text] and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided.

  14. Cyanate Ester Composite Resins Derived from Renewable Polyphenol Sources

    DTIC Science & Technology

    2011-03-16

    and Methods ................................................................................................................7 4.1 Chemical Synthesis ...10 4.1.16 Preparation of propyl 3, 5-bis(cyanato)benzoate (12) ...............................10 4.1.17 Preparation of trans 3,4’-5...Performance Cyanate Esters ...................................18 5.3 Synthesis of bis-Phenols and Corresponding Cyanate Esters

  15. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  16. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  17. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  18. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    DTIC Science & Technology

    2015-12-12

    Approved for public release.  Distribution is unlimited.   Cyanate Esters Around the Solar System 4 Images:  courtesy  NASA  (public release) • The...science decks on the Mars Phoenix lander are made from M55J/cyanate ester composites • The solar panel supports on the MESSENGER space probe use cyanate...thermonuclear fusion reactor Fusion reactor, photo  courtesy of Gerritse ((Wikimedia Commons) • Unique cyanate ester composites have been designed by NASA

  19. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space ⋆,⋆⋆

    PubMed Central

    Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2016-01-01

    Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514

  20. Effect of Silicon Substitution on the Crystal Properties of Cyanate Ester Monomers (Briefing Charts)

    DTIC Science & Technology

    2015-08-17

    unlimited.   Outline • Background / Motivation – Cyanate esters – Reasons for incorporating silicon into thermosetting resins • Cyanate esters with...Approved for public release; distribution is unlimited.   The Use of Si in Thermosetting Polymers • In addition to the expected increase in short

  1. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora.

    PubMed

    Elleuche, Skander; Pöggeler, Stefanie

    2008-11-01

    Cyanase degrades toxic cyanate to NH3 and CO2 in a bicarbonate-dependent reaction. High concentrations of cyanate are fairly toxic to organisms. Here, we characterize a eukaryotic cyanase for the first time. We have isolated the cyn1 gene encoding a cyanase from the filamentous ascomycete Sordaria macrospora and functionally characterized the cyn1 product after heterologous expression in Escherichia coli. Site-directed mutagenesis confirmed a predicted catalytic centre of three conserved amino-acids. A Deltacyn1 knockout in S. macrospora was totally devoid of cyanase activity and showed an increased sensitivity to exogenously supplied cyanate in an arginine-depleted medium, defects in ascospore germination, but no other obvious morphological phenotype. By means of real-time PCR we have demonstrated that the transcriptional level of cyn1 is markedly elevated in the presence of cyanate and down-regulated by addition of arginine. The putative functions of cyanase in fungi are discussed.

  2. Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources

    DTIC Science & Technology

    2013-04-11

    derived from lignin . These materials possess favorable thermal and water uptake properties with dry glass transition temperatures above 200°C and wet...distribution is unlimited. Creosol as a Monomer Source 7 • Input material cost is an important consideration for cyanate ester resins • Lignin is...from lignin • Oxidative and reductive coupling reactions lead to precursor phenols, which are then treated with cyanogen bromide to generate cyanate

  3. Effect of Chemical Structure and Network Formation on Physical Properties of Di(Cyanate Ester) Thermosets (Post Print)

    DTIC Science & Technology

    2012-02-06

    with glass or polyethylene reinforcements for use in radomes and antenna structures,4 where their unusually low dielectric constant and low moisture ...are prized for their elevated glass transition temperature, good adhesion to metals, resistance to degradation by moisture , and excellent flame...on the performance of cyanate ester resins and composites. Cyanate ester monomers, particularly when catalyzed, may react with adventitious moisture to

  4. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  5. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources.

    PubMed

    Wood, A P; Kelly, D P; McDonald, I R; Jordan, S L; Morgan, T D; Khan, S; Murrell, J C; Borodina, E

    1998-02-01

    The isolation and properties of a novel species of pink-pigmented methylotroph, Methylobacterium thiocyanatum, are described. This organism satisfied all the morphological, biochemical, and growth-substrate criteria to be placed in the genus Methylobacterium. Sequencing of the gene encoding its 16S rRNA confirmed its position in this genus, with its closest phylogenetic relatives being M. rhodesianum, M. zatmanii and M. extorquens, from which it differed in its ability to grow on several diagnostic substrates. Methanol-grown organisms contained high activities of hydroxypyruvate reductase -3 micromol NADH oxidized min-1 (mg crude extract protein)-1], showing that the serine pathway was used for methylotrophic growth. M. thiocyanatum was able to use thiocyanate or cyanate as the sole source of nitrogen for growth, and thiocyanate as the sole source of sulfur in the absence of other sulfur compounds. It tolerated high concentrations (at least 50 mM) of thiocyanate or cyanate when these were supplied as nitrogen sources. Growing cultures degraded thiocyanate to produce thiosulfate as a major sulfur end product, apparently with the intermediate formation of volatile sulfur compounds (probably hydrogen sulfide and carbonyl sulfide). Enzymatic hydrolysis of thiocyanate by cell-free extracts was not demonstrated. Cyanate was metabolized by means of a cyanase enzyme that was expressed at approximately sevenfold greater activity during growth on thiocyanate [Vmax 634 +/- 24 nmol NH3 formed min-1 (mg protein)-1] than on cyanate [89 +/- 9 nmol NH3 min-1 (mg protein)-1]. Kinetic study of the cyanase in cell-free extracts showed the enzyme (1) to exhibit high affinity for cyanate (Km 0.07 mM), (2) to require bicarbonate for activity, (3) to be subject to substrate inhibition by cyanate and competitive inhibition by thiocyanate (Ki 0.65 mM), (4) to be unaffected by 1 mM ammonium chloride, (5) to be strongly inhibited by selenocyanate, and (6) to be slightly inhibited by 5 mM thiosulfate, but unaffected by 0.25 mM sulfide or 1 mM thiosulfate. Polypeptides that might be a cyanase subunit (mol.wt. 17.9 kDa), a cyanate (and/or thiocyanate) permease (mol.wt. 25.1 and 27.2 kDa), and a putative thiocyanate hydrolase (mol.wt. 39.3 kDa) were identified by SDS-PAGE. Correlation of the growth rate of cultures with thiocyanate concentration (both stimulatory and inhibitory) and the kinetics of cyanase activity might indicate that growth on thiocyanate involved the intermediate formation of cyanate, hence requiring cyanase activity. The very high activity of cyanase observed during growth on thiocyanate could be in compensation for the inhibitory effect of thiocyanate on cyanase. Alternatively, thiocyanate may be a nonsubstrate inducer of cyanase, while thiocyanate degradation itself proceeds by a carbonyl sulfide pathway not involving cyanate. A formal description of the new species (DSM 11490) is given.

  6. Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION

    PubMed Central

    Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.

    1973-01-01

    Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047

  7. Room temperature decarboxylative cyanation of carboxylic acids using photoredox catalysis and cyanobenziodoxolones: a divergent mechanism compared to alkynylation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04907a Click here for additional data file.

    PubMed Central

    Le Vaillant, Franck; Wodrich, Matthew D.

    2017-01-01

    The one-step conversion of aliphatic carboxylic acids to the corresponding nitriles has been accomplished via the merger of visible light mediated photoredox and cyanobenziodoxolones (CBX) reagents. The reaction proceeded in high yields with natural and non-natural α-amino and α-oxy acids, affording a broad scope of nitriles with excellent tolerance of the substituents in the α position. The direct cyanation of dipeptides and drug precursors was also achieved. The mechanism of the decarboxylative cyanation was investigated both computationally and experimentally and compared with the previously developed alkynylation reaction. Alkynylation was found to favor direct radical addition, whereas further oxidation by CBX to a carbocation and cyanide addition appeared more favorable for cyanation. A concerted mechanism is proposed for the reaction of radicals with EBX reagents, in contrast to the usually assumed addition elimination process. PMID:28451301

  8. Pd-Metalated Conjugated Nanoporous Polycarbazoles for Additive-Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation

    DOE PAGES

    Ding, Shunmin; Tian, Chengcheng; Zhu, Xiang; ...

    2017-03-23

    Transition-metal-catalyzed cyanation of aryl halides is a common route to benzonitriles, which are integral to many industrial procedures. However, traditional homogeneous catalysts for such processes are expensive and suffer poor recyclability, so a heterogeneous analogue is highly desired. A novel spatial modulation approach has been developed in this paper to fabricate a heterogeneous Pd-metalated nanoporous polymer, which catalyzes the cyanation of aryl halides without need for ligands. Finally, the catalyst displays high activity in the synthesis of benzonitriles, including high product yields, excellent stability and recycling, and broad functional-group tolerance.

  9. Building ultramicropores within organic polymers based on a thermosetting cyanate ester resin.

    PubMed

    Zhang, Bufeng; Wang, Zhonggang

    2009-09-07

    Ultramicropores with high surface areas (>530 m(2) g(-1)) and narrow micropore size distribution (4-6 A) were engineered within a new cyanate ester resin, extending the microporous concept (<20 A) to general thermosetting resins in the area of polymer chemistry.

  10. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    PubMed

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  11. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  12. Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions.

    PubMed

    Aresta, M; Boscolo, M; Franco, D W

    2001-06-01

    The role of copper(II) species in the oxidation of inorganic cyanide to cyanate and in the conversion of cyanate or urea into ethyl carbamate was investigated. The oxidation process has been shown to be independent from the dissolved oxygen. Elemental analysis and infrared spectroscopy have shown the formation of a mixed copper carbonate/hydroxide in the process of oxidation of cyanide to cyanate in water/ethanol. The complexation to Cu(II) of cyanate formed upon cyanide oxidation makes the former more susceptible to nucleophilic attack from ethanol, with conversion into ethyl carbamate. Comparatively, urea has a minor role with respect to cyanide in the formation of ethyl carbamate. Therefore, the urea present in some samples of Brazilian sugar cane spirit (cachaça) has been shown to have almost no influence on the ethyl carbamate content of cachaças, which comes essentially from cyanide. Fe(II,III) affords results similar to those found with Cu(II). Some suggestions are presented to avoid ethyl carbamate formation in spirits during distillation.

  13. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  14. Carbamoylation correlates of cyanate neuropathy and cyanide poisoning: relevance to the biomarkers of cassava cyanogenesis and motor system toxicity.

    PubMed

    Kimani, Samuel; Moterroso, Victor; Lasarev, Mike; Kipruto, Sinei; Bukachi, Fred; Maitai, Charles; David, Larry; Tshala-Katumbay, Desire

    2013-01-01

    We sought to elucidate the protein carbamoylation patterns associated with cyanate neuropathy relative to cyanide poisoning. We hypothesized that under a diet deficient in sulfur amino acids (SAA), the carbamoylation pattern associated with cyanide poisoning is similar to that of cyanate neuropathy. Male rats (6-8 weeks old) were fed a diet with all amino acids (AAA) or 75%-deficiency in SAA and treated with 2.5 mg/kg/body weight (bw) NaCN, or 50 mg/kg/bw NaOCN, or 1 μl/g/bw saline, for up to 6 weeks. Albumin and spinal cord proteins were analyzed using liquid chromatography mass spectrometry (LC-MS/MS). Only NaOCN induced motor deficits with significant levels of carbamoylation. At Day 14, we found a diet-treatment interaction effect on albumin carbamoylation (p = 0.07). At Day 28, no effect was attributed to diet (p = 0.71). Mean number of NaCN-carbamoylated sites on albumin was 47.4% higher relative to vehicle (95% CI:16.7-86.4%). Only NaOCN carbamoylated spinal cord proteins, prominently, under SAA-restricted diet. Proteins targets included myelin basic and proteolipid proteins, neurofilament light and glial fibrillary acidic proteins, and 2', 3' cyclic-nucleotide 3'-phosphodiesterase. Under SAA deficiency, chronic but not acute cyanide toxicity may share biomarkers and pathogenetic similarities with cyanate neuropathy. Prevention of carbamoylation may protect against the neuropathic effects of cyanate.

  15. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  16. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of the order of a millimeter, that would satisfy the requirements for use in adaptive optics.

  17. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    USDA-ARS?s Scientific Manuscript database

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  18. Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system.

    PubMed

    Winkelmann, Kurt; Sharma, Virender K; Lin, Yekaterina; Shreve, Katherine A; Winkelmann, Catherine; Hoisington, Laura J; Yngard, Ria A

    2008-08-01

    The aqueous photocatalytic degradation of cyanate (NCO(-)), which is a long-lived neurotoxin formed during the remediation of cyanide in industrial waste streams, was studied in the ferrate(VI)-UV-TiO2-NCO(-) system. Kinetics measurements of the photocatalytic reduction of ferrate(VI) were carried out as a function of [NCO(-)], [ferrate(VI)], [O(2)], light intensity (I(o)), and amount of TiO2 in suspensions at pH 9.0. The photocatalytic reduction rate of ferrate(VI) in the studied system can be expressed as -d[Fe(VI)]/dt=kI(o)(0.5) [NCO(-)] [TiO2]. The rate of photocatalytic oxidation of cyanate with ferrate(VI) was greater than the rate in the analogous system without ferrate(VI). The possibility of involvement of reactive ferrate(V) species for this enhancement was determined by studying the reactivity of ferrate(V) with NCO(-) in a homogeneous solution using a premix pulse radiolysis technique. The rate constant for the reaction of ferrate(V) and NCO(-) in alkaline medium was estimated to be (9.60+/-0.07) x 10(2) M(-1) s(-1), which is much slower than the ferrate(VI) self-decomposition reaction (k approximately 10(7) M(-1) s(-1)). An analysis of the kinetic data in the Fe(VI)-UV-TiO2-NCO(-) system suggests that ferrate(V) is not directly participating in the oxidation of cyanate. Possible reactions in the system are presented to explain results of ferrate(VI) reduction and oxidation of cyanate.

  19. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.

    PubMed

    Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C

    2014-03-01

    Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.

  20. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents

    PubMed Central

    Kimani, S.; Sinei, K.; Bukachi, F.; Tshala-Katumbay, D.; Maitai, C.

    2014-01-01

    Background Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Methods Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Results Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F 2, 19 = 4.57 p <0.05), higher working memory errors (WME) (F 2, 19 = 5.09, p <0.05) and longer RAM navigation time (F2, 19 = 3.91, p <0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F 2, 19 = 7.45, p <0.01) and increased working memory errors (F 2, 19 = 9.35 p <0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Conclusion Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate. PMID:24293006

  1. Crystal structure of poly[[μ-4-(hy-droxy-meth-yl)pyridine-κ(2) N:O][4-(hy-droxy-meth-yl)pyridine-κN](μ-thio-cyanato-κ(2) N:S)(thio-cyanato-κN)cadmium].

    PubMed

    Werner, Julia; Jess, Inke; Näther, Christian

    2015-06-01

    The crystal structure of the title compound, [Cd(NCS)2(C6H7NO)2] n is made up of Cd(2+) cations that are coordinated by three thio-cyanate ligands and three 4-(hy-droxy-meth-yl)pyridine ligands within distorted N4OS octa-hedra. The asymmetric unit consists of one Cd(2+) cation, two thio-cyanate anions and two 4-(hy-droxy-meth-yl)pyridine ligands in general positions. Two Cd(2+) cations are linked by two μ-1,3 N- and S-bonding thio-ycanate anions into dimers which are further linked into branched chains along [100] by two μ-1,6 N- and O-bonding 4-(hy-droxy-meth-yl)pyridine ligands. One additional N-bonded 4-(hy-droxy-meth-yl)pyridine ligand and one additional N-bonded thio-cyanate anion are only terminally bonded to the metal cation. Inter-chain O-H⋯S hydrogen bonds between the hy-droxy H atoms and one of the thio-cyanate S atoms connect the chains into a three-dimensional network.

  2. Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: relevance to neurological disease in humans subsisting on cassava.

    PubMed

    Tor-Agbidye, J; Palmer, V S; Lasarev, M R; Craig, A M; Blythe, L L; Sabri, M I; Spencer, P S

    1999-08-01

    Neurological disorders have been reported from parts of Africa with protein-deficient populations and attributed to cyanide (CN-) exposure from prolonged dietary use of cassava, a cyanophoric plant. Cyanide is normally metabolized to thiocyanate (SCN-) by the sulfur-dependent enzyme rhodanese. However, in protein-deficient subjects where sulfur amino acids (SAA) are low, CN may conceivably be converted to cyanate (OCN-), which is known to cause neurodegenerative disease in humans and animals. This study investigates the fate of potassium cyanide administered orally to rats maintained for up to 4 weeks on either a balanced diet (BD) or a diet lacking the SAAs, L-cystine and L-methionine. In both groups, there was a time-dependent increase in plasma cyanate, with exponential OCN- increases in SAA-deficient rats. A strongly positive linear relationship between blood CN- and plasma OCN- concentrations was observed in these animals. These data are consistent with the hypothesis that cyanate is an important mediator of chronic cyanide neurotoxicity during protein-calorie deficiency. The potential role of thiocyanate in cassava-associated konzo is discussed in relationship to the etiology of the comparable pattern of motor-system disease (spastic paraparesis) seen in lathyrism.

  3. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lio, Wilber Yaote

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3)more » describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.« less

  4. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst

    PubMed Central

    Wang, Liang; Wang, Guoxiong; Zhang, Jian; Bian, Chaoqun; Meng, Xiangju; Xiao, Feng-Shou

    2017-01-01

    The synthesis of organic nitriles without using toxic cyanides is in great demand but challenging to make. Here we report an environmentally benign and cost-efficient synthesis of nitriles from the direct oxidative cyanation of primary carbon-hydrogen bonds with easily available molecular oxygen and urea. The key to this success is to design and synthesize manganese oxide catalysts fixed inside zeolite crystals, forming a manganese oxide catalyst with zeolite sheath (MnOx@S-1), which exhibits high selectivity for producing nitriles by efficiently facilitating the oxidative cyanation reaction and hindering the side hydration reaction. The work delineates a sustainable strategy for synthesizing nitriles while avoiding conventional toxic cyanide, which might open a new avenue for selective transformation of carbon-hydrogen bonds. PMID:28504259

  5. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  6. Enhanced Cyanate Ester Nanocomposites through Improved Nanoparticle Surface Interactions

    DTIC Science & Technology

    2013-05-01

    and a chemically active 3- aminopropyl surface. The cure behavior and thermal properties of the cyanate ester/modified silica nanocomposites were...area of 150 m 2 /g. Nanoparticles with a chemically active 3- aminopropyl surface were prepared by treating Aerosil 200 particles with 3...however, was visibly observed to severely undercure the nanocomposites with octyl and 3- aminopropyl surface moieties, providing a good initial

  7. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed

  8. A New Room-Temperature Liquid, High-Performance Tricyanate Ester

    DTIC Science & Technology

    2010-01-01

    addition of thermoplastic modifiers. Taken together, these results indicate that mono- mer 7 exhibits very favorable processing characteristics for a...significantly exceed those of epoxy resins with corresponding temperature-dependent monomer viscos- ity characteristics .4(a) In addition, cyanate ester...temperature, favorable solubility and viscos- ity characteristics for the addition of comonomers4(b) or toughening agents.4(c) Cyanate ester monomer systems

  9. Palladium-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids and Benzylthiocyanate. A Cyanide-Free Cyanation of Boronic Acids

    PubMed Central

    Zhang, Zhihui; Liebeskind, Lanny S.

    2008-01-01

    A new method for the synthesis of nitriles is described. As a complement to the classic cyanation of aryl halides using cyanide sources and a transition metal catalyst, the palladium-catalyzed cross-coupling of thiocyanates with boronic acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) affords nitriles in good to excellent yields. PMID:16956219

  10. Cyanate Ester Resin Modified with Nano-particles for Inclusion in Continuous Fiber Reinforced Composites

    DTIC Science & Technology

    2011-02-25

    custom built rotating oven, to prevent settling during cure. The filler content in the test specimen are verified by thermogravimetric analysis (TGA...using a Shimadzu SA-CP3 centrifugal particle size analyzer. The moisture absorption of the nanoparticles was studied using a Q50 thermogravimetric ...low viscosity bisphenol E cyanate ester resin (BECy) resin reinforced with macro scale carbon fibers and negative CTE nanoparticles . Polymer

  11. Crystal structure of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium cyanate 1.5-hydrate

    PubMed Central

    Tiritiris, Ioannis; Kantlehner, Willi

    2015-01-01

    The title hydrated salt, C7H18N3 +·OCN−.1.5H2O, was synthesized starting from N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium chloride by a twofold anion-exchange reaction. The asymmetric unit contains two cations, two cyanate anions and three water mol­ecules. One cation shows orientational disorder and two sets of N-atom positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6):0.148 (6). The C—N bond lengths in both guanidin­ium ions range from 1.329 (2) to 1.358 (10) Å, indicating double-bond character, pointing towards charge delocalization within the NCN planes. Strong O—H⋯N hydrogen bonds between the crystal water mol­ecules and the cyanate ions and strong O—H⋯O hydrogen bonds between the water mol­ecules are present, resulting in a two-dimensional hydrogen bonded network running parallel to the (001) plane. The hexa­methyl­guanidinium ions are packed in between the layers built up by water mol­ecules and cyanate ions. PMID:26870506

  12. Water Uptake Vs. Density and Conversion in Silicon Containing Cyanate Esters (Briefing Charts)

    DTIC Science & Technology

    2014-12-17

    known that cyanate ester networks decrease in density as conversion increases, and that moisture uptake increases as conversion increases at...Charts 3. DATES COVERED (From - To) Dec 2014- Dec 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House Water Uptake Vs. Density and...Polymers and Composites, San Diego, CA, 15 December, 2014. PA#14581 14. ABSTRACT A study was conducted which explored the density, percent water uptake by

  13. Cyanate Ester Resin Modified with Nano-particles for Inclusion in Continuous Fiber Reinforced Composites

    DTIC Science & Technology

    2011-02-25

    thermogravimetric analyzer (TGA) from TA Instruments upon heating at 20 oC/min under air purge. The structural features of the nanoparticles were...low viscosity bisphenol E cyanate ester resin (BECy) resin reinforced with macro scale carbon fibers and negative CTE nanoparticles . Polymer...developed to improve the compatibility of the ZrW2O8 nanoparticles with the polymer matrix. The hybrid composites were prepared with 30 wt

  14. Hydrolytic Network Structure Degradation in Multi-Component Polycyanurate Networks

    DTIC Science & Technology

    2016-07-28

    Approved for Public Release; Distribution Unlimited. PA# 16335 UNCLASSIFIED Cyanate Esters Around the Solar System Images:  courtesy  NASA  (public...release) • The science decks on the Mars Phoenix lander are made from M55J/cyanate ester composites • The solar panel supports on the MESSENGER space...designed by NASA for use as instrument holding structures aboard the James Webb Space Telescope Photo courtesy of  NASA 5Distribution A: Approved for

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Shunmin; Tian, Chengcheng; Zhu, Xiang

    Transition-metal-catalyzed cyanation of aryl halides is a common route to benzonitriles, which are integral to many industrial procedures. However, traditional homogeneous catalysts for such processes are expensive and suffer poor recyclability, so a heterogeneous analogue is highly desired. A novel spatial modulation approach has been developed in this paper to fabricate a heterogeneous Pd-metalated nanoporous polymer, which catalyzes the cyanation of aryl halides without need for ligands. Finally, the catalyst displays high activity in the synthesis of benzonitriles, including high product yields, excellent stability and recycling, and broad functional-group tolerance.

  16. catena-Poly[(E)-4,4′-(ethane-1,2-di­yl)dipyridinium [[bis­(thio­cyanato-κN)ferrate(II)]-di-μ-thio­cyanato-κ2 N:S;κ2 S:N

    PubMed Central

    Wöhlert, Susanne; Jess, Inke; Näther, Christian

    2011-01-01

    In the crystal structure of the title compound, {(C12H14N2)[Fe(NCS)4]}n, the iron(II) cation is coordinated by four N-bonded and two S-bonded thio­cyanate anions in a distorted octa­hedral coordination mode. The asymmetric unit consists of half an iron(II) cation and half a protonated (E)-4,4′-(ethane-1,2-di­yl)dipyridinium dication, each located on a centre of inversion. In addition, there are two thio­cyanate anions in general positions. The crystal structure consists of Fe—(NCS)2—Fe chains in which each iron(II) cation is additionally coordinated by two terminal N-bonded thio­cyanate anions. Non-coordinating dipyridinium dications are present between the thiocyanatoferrate(II) chains and are connected to the anions via N—H⋯N and N—H⋯S hydrogen-bond interactions. PMID:22219754

  17. catena-Poly[(E)-4,4′-(ethene-1,2-di­yl)dipyridinium [[bis­(thio­cyanato-κN)ferrate(II)]-di-μ-thio­cyanato-κ2 N:S;κ2 S:N

    PubMed Central

    Wöhlert, Susanne; Wriedt, Mario; Jess, Inke; Näther, Christian

    2010-01-01

    In the title compound, {(C12H12N2)[Fe(NCS)4]}n, each FeII cation is coordinated by four N-bonded and two S-bonded thio­cyanate anions in an octa­hedral coordination mode. The asymmetric unit consists of one FeII cation, located on a center of inversion, as well as one protonated (E)-4,4′-(ethene-1,2-di­yl)dipyridinium dication and two thio­cyanate anions in general positions. The crystal structure consists of Fe—(NCS)2—Fe chains extending along the a axis, in which two further thio­cyanate anions are only terminally bonded via nitro­gen. Non-coordinating (E)-4,4′-(ethene-1,2-di­yl)dipyrid­inium cations are found between the chains. PMID:21587404

  18. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages.

    PubMed

    Elmore, M Holly; McGary, Kriston L; Wisecaver, Jennifer H; Slot, Jason C; Geiser, David M; Sink, Stacy; O'Donnell, Kerry; Rokas, Antonis

    2015-02-06

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC's closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Phase Separation During the Curing of a Cyanate Ester Oligomer

    NASA Astrophysics Data System (ADS)

    Gurov, D. A.; Novikov, G. F.

    2018-07-01

    It is found during the curing of a cyanate ester oligomer that there are such features as a step and a maximum in the frequency dependences (in a range of 10-2-105 Hz) of the real parts of the complex electric conductivity and loss tangent, respectively. In the frequency range where these features are observed, the diagrams of complex electric modulus are semicircles with centers near the abscissas. Subsequent analysis shows these features are due to the formation of the microphase of the intermediate product, carbamate.

  20. Bis(2,3,5,6-tetra-2-pyridyl­pyrazine-κ3 N 2,N 1,N 6)nickel(II) dithio­cyanate dihydrate

    PubMed Central

    De la Pinta, Noelia; Fidalgo, M. Luz; Ezpeleta, José M.; Cortés, Roberto; Madariaga, Gotzon

    2011-01-01

    In the title compound, [Ni(C24H16N6)2](NCS)2·2H2O, the central NiII ion is octahedrally coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridyl­pyrazine ligands (tppz). Two thio­cyanate anions act as counter-ions and two water mol­ecules act as solvation agents. O—H⋯N hydrogen bonds are observed in the crystral structure. PMID:21522540

  1. Optimization and Validation of a Surface Wipe Method to Determine Cyanide and Cyanate: Application to the Emergency Destruction System

    DTIC Science & Technology

    2012-08-01

    NJ b WC-7 Grade 42, 55 mm filter paper Whatman, Piscataway, NJ b WC-8 Cellulose nitrate membrane filter, 47 mm Whatman, Piscataway, NJ b WC-9...density polypropylene plastic bottle. 2.5 Standards Sodium cyanide (NaCN, ≥97.0%, CAS no. 143-33-9) and potassium cyanate (KOCN, ≥97.0...Agilent Technologies model 3D CE system, with an ultraviolet (deuterium lamp) diode array detector, was used to determine the quantities of CN and OCN

  2. Crystal structure of tetra-kis-[μ2-2-(di-methyl-amino)-ethano-lato-κ(3) N,O:O]di-μ3-hydroxido-di-thio-cyanato-κ(2) N-dichromium(III)dilead(II) di-thio-cyanate aceto-nitrile monosolvate.

    PubMed

    Rusanova, Julia A; Semenaka, Valentyna V; Omelchenko, Irina V

    2016-04-01

    The tetra-nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The Cr(III) ion is coordinated in a distorted octa-hedron, which involves two N atoms of one bidentate ligand and one thio-cyanate anion, two μ2-O atoms of 2-(di-methyl-amino)-ethano-late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the Pb(II) ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter-actions involving the coordinating and non-coordinating thio-cyanate anions are observed. In the crystal, the complex cations are linked through the thio-cyanate anions via the Pb⋯S inter-actions and O-H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto-nitrile mol-ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9-18] procedure in PLATON. The solvent is included in the reported mol-ecular formula, weight and density.

  3. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmi, T.; Matsui, K.; Koizumi, N.

    2014-01-27

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricatedmore » using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.« less

  4. Multifunctional Properties of Cyanate Ester Composites with SiO2 Coated Fe3O4 Fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Weixing; Sun, Wuzhu; Kessler, Michael R

    2013-02-22

    SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 ?C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamicmore » mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.« less

  5. Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: A practical synthesis of unsymmetrical ureas

    PubMed Central

    Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.

    2012-01-01

    An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197

  6. Tris[4-(dimethyl­amino)­pyridinium] hexa­kis­(thio­cyanato-κN)ferrate(III) monohydrate

    PubMed Central

    Wöhlert, Susanne; Jess, Inke; Näther, Christian

    2013-01-01

    In the title compound, (C7H11N2)3[Fe(NCS)6]·H2O, the FeIII cation is coordinated by six terminal N-bonded thio­cyanate anions into a discrete threefold negatively charged complex. Charge balance is achieved by three protonated 4-(dimethyl­amino)­pyridine cations. The asymmetric unit consists of one FeIII cation, six thio­cyanate anions, three 4-(dimethyl­amino)­pyridinium cations and one water mol­ecule, all of them located in general positions. PMID:23476331

  7. Crystal structure of tetra­kis­[μ2-2-(di­methyl­amino)­ethano­lato-κ3 N,O:O]di-μ3-hydroxido-di­thio­cyanato-κ2 N-dichromium(III)dilead(II) di­thio­cyanate aceto­nitrile monosolvate

    PubMed Central

    Rusanova, Julia A.; Semenaka, Valentyna V.; Omelchenko, Irina V.

    2016-01-01

    The tetra­nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octa­hedron, which involves two N atoms of one bidentate ligand and one thio­cyanate anion, two μ2-O atoms of 2-(di­methyl­amino)­ethano­late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter­actions involving the coordinating and non-coordinating thio­cyanate anions are observed. In the crystal, the complex cations are linked through the thio­cyanate anions via the Pb⋯S inter­actions and O—H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto­nitrile mol­ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported mol­ecular formula, weight and density. PMID:27375871

  8. General and practical formation of thiocyanates from thiols.

    PubMed

    Frei, Reto; Courant, Thibaut; Wodrich, Matthew D; Waser, Jerome

    2015-02-02

    A new method for the cyanation of thiols and disulfides using cyanobenziodoxol(on)e hypervalent iodine reagents is described. Both aliphatic and aromatic thiocyanates can be accessed in good yields in a few minutes at room temperature starting from a broad range of thiols with high chemioselectivity. The complete conversion of disulfides to thiocyanates was also possible. Preliminary computational studies indicated a low energy concerted transition state for the cyanation of the thiolate anion or radical. The developed thiocyanate synthesis has broad potential for various applications in synthetic chemistry, chemical biology and materials science. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets

    NASA Astrophysics Data System (ADS)

    Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.

    2017-12-01

    The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ-ray irradiation is not obvious at 6.1 K.

  10. 4He permeation and H2O uptake of cyanate ester resins — an alternative to commonly used epoxy resins at low temperature

    NASA Astrophysics Data System (ADS)

    Nakamura, Sachiko; Fujii, Takenori; Matsukawa, Shoji; Katagiri, Masayuki; Fukuyama, Hiroshi

    2018-03-01

    Cyanate ester (CE) thermoset is a polymer with a high glass-transition temperature of ≈ 300 °C. CE is expected to be an alternative to Stycast 1266 as a sealing and casting glue for low temperature experiments, especially for adsorption experiments where baking of the substrate at T > 100 °C before cooling is required to eliminate surface contaminations. We experimentally confirmed that thermosets of CE monomers are non-porous and absorbs/desorbs water very little from measurements of (1) 4He permeation properties at temperatures from room temperature (RT) to 77 K and of (2) weight gains (δW) after storage for days in water and in air at RT. The 4He permeation is rather large at RT but negligibly small at T ⪅ 130 K where the diffusion constant of 4He in CE is vanishingly small. δW in water and air are 0.3–0.5% and 0.5–1.0%, respectively, which are much smaller than those of Stycast 1266. Therefore, cyanate ester is an excellent alternative to commonly used epoxy resins especially in surface-sensitive experiments at low temperature.

  11. A high-performance renewable thermosetting resin derived from eugenol.

    PubMed

    Harvey, Benjamin G; Sahagun, Christopher M; Guenthner, Andrew J; Groshens, Thomas J; Cambrea, Lee R; Reams, Josiah T; Mabry, Joseph M

    2014-07-01

    A renewable bisphenol, 4,4'-(butane-1,4-diyl)bis(2-methoxyphenol), was synthesized on a preparative scale by a solvent-free, Ru-catalyzed olefin metathesis coupling reaction of eugenol followed by hydrogenation. After purification, the bisphenol was converted to a new bis(cyanate) ester by standard techniques. The bisphenol and cyanate ester were characterized rigorously by NMR spectroscopy and single-crystal X-ray diffraction studies. After complete cure, the cyanate ester exhibited thermal stability in excess of 350 °C and a glass transition temperature (Tg ) of 186 °C. As a result of the four-carbon chain between the aromatic rings, the thermoset displayed a water uptake of only 1.8% after a four day immersion in 85 °C water. The wet Tg of the material (167 °C) was only 19 °C lower than the dry Tg , and the material showed no significant degradation as a result of the water treatment. These results suggest that this resin is well suited for maritime environments and provide further evidence that full-performance resins can be generated from sustainable feedstocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods.

    PubMed

    Dalbouha, S; Senent, M L; Komiha, N; Domínguez-Gómez, R

    2016-09-28

    Various astrophysical relevant molecules obeying the empirical formula C 2 H 3 NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH 3 NCO), methyl cyanate (CH 3 OCN), methyl fulminate (CH 3 ONC), and acetonitrile N-oxide (CH 3 CNO). A CH 3 CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH 3 CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C 3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  13. Structural and spectroscopic characterization of methyl isocyanate, methyl cyanate, methyl fulminate, and acetonitrile N-oxide using highly correlated ab initio methods

    NASA Astrophysics Data System (ADS)

    Dalbouha, S.; Senent, M. L.; Komiha, N.; Domínguez-Gómez, R.

    2016-09-01

    Various astrophysical relevant molecules obeying the empirical formula C2H3NO are characterized using explicitly correlated coupled cluster methods (CCSD(T)-F12). Rotational and rovibrational parameters are provided for four isomers: methyl isocyanate (CH3NCO), methyl cyanate (CH3OCN), methyl fulminate (CH3ONC), and acetonitrile N-oxide (CH3CNO). A CH3CON transition state is inspected. A variational procedure is employed to explore the far infrared region because some species present non-rigidity. Second order perturbation theory is used for the determination of anharmonic frequencies, rovibrational constants, and to predict Fermi resonances. Three species, methyl cyanate, methyl fulminate, and CH3CON, show a unique methyl torsion hindered by energy barriers. In methyl isocyanate, the methyl group barrier is so low that the internal top can be considered a free rotor. On the other hand, acetonitrile N-oxide presents a linear skeleton, C3v symmetry, and free internal rotation. Its equilibrium geometry depends strongly on electron correlation. The remaining isomers present a bend skeleton. Divergences between theoretical rotational constants and previous parameters fitted from observed lines for methyl isocyanate are discussed on the basis of the relevant rovibrational interaction and the quasi-linearity of the molecular skeleton.

  14. Transnitrilation from Dimethylmalononitrile to Aryl Grignard and Lithium Reagents: A Practical Method for Aryl Nitrile Synthesis.

    PubMed

    Reeves, Jonathan T; Malapit, Christian A; Buono, Frederic G; Sidhu, Kanwar P; Marsini, Maurice A; Sader, C Avery; Fandrick, Keith R; Busacca, Carl A; Senanayake, Chris H

    2015-07-29

    An electrophilic cyanation of aryl Grignard or lithium reagents, generated in situ from the corresponding aryl bromides or iodides, by a transnitrilation with dimethylmalononitrile (DMMN) was developed. DMMN is a commercially available, bench-stable solid. The transnitrilation with DMMN avoids the use of toxic reagents and transition metals and occurs under mild reaction conditions, even for extremely sterically hindered substrates. The transnitrilation of aryllithium species generated by directed ortho-lithiation enabled a net C-H cyanation. The intermediacy of a Thorpe-type imine adduct in the reaction was supported by isolation of the corresponding ketone from the quenched reaction. Computational studies supported the energetic favorability of retro-Thorpe fragmentation of the imine adduct.

  15. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: Novel pathways generating dysfunctional high-density lipoprotein

    PubMed Central

    Holzer, Michael; Zangger, Klaus; El-Gamal, Dalia; Binder, Veronika; Curcic, Sanja; Konya, Viktoria; Schuligoi, Rufina; Heinemann, Akos; Marsche, Gunther

    2013-01-01

    Aim Protein carbamylation through cyanate is thought to have a causal role in promoting cardiovascular disease. We recently observed that the phagocyte protein myeloperoxidase (MPO) specifically induces high-density lipoprotein carbamylation, rather than chlorination, in human atherosclerotic lesions, raising the possibility that MPO-derived chlorinating species are involved in cyanate formation. Results Here we show that MPO-derived chlorinating species rapidly decompose the plasma components thiocyanate and urea thereby promoting (lipo)protein carbamylation. Strikingly, the presence of physiologic concentrations of thiocyanate completely prevented MPO-induced 3-chlorotyrosine formation in HDL. Moreover, thiocyanate scavenged a 2.5-fold molar excess of hypochlorous acid, promoting HDL carbamylation, but not chlorination. Carbamylation of HDL resulted in a loss of anti-inflammatory and anti-oxidative properties. Cyanate significantly impaired (i) HDL’s ability to activate lecithin-cholesterol acyltransferase, (ii) the activity of paraoxonase, a major HDL-associated anti-inflammatory enzyme and (iii) the anti-oxidative activity of HDL. Innovation Here we report that MPO-derived chlorinating species preferentially induce protein carbamylation - rather than chlorination - in the presence of physiologically relevant thiocyanate concentrations. Carbamylation of HDL results in the loss of its anti-inflammatory and anti-oxidative activities. Conclusion MPO-mediated decomposition of thiocyanate and/or urea might be a relevant mechanism for generating dysfunctional HDL in human disease. PMID:22462773

  16. Crystal structure of octa-kis-(4-meth-oxy-pyridinium) bis-(4-meth-oxy-pyridine-κN)tetra-kis-(thio-cyanato-κN)ferrate(III) bis-[(4-meth-oxypyri-dine-κN)pentakis-(thio-cyanato-κN)ferrate(III)] hexa-kis-(thio-cyanato-κN)ferrate(III) with iron in three different octa-hedral coordination environments.

    PubMed

    Jochim, Aleksej; Jess, Inke; Näther, Christian

    2018-03-01

    The crystal structure of the title salt, (C 6 H 8 NO) 8 [Fe(NCS) 4 (C 6 H 7 NO) 2 ][Fe(NCS) 5 (C 6 H 7 NO)] 2 [Fe(NCS) 6 ], comprises three negatively charged octa-hedral Fe III complexes with different coordination environments in which the Fe III atoms are coordinated by a different number of thio-cyanate anions and 4-meth-oxy-pyridine ligands. Charge balance is achieved by 4-meth-oxy-pyridinium cations. The asymmetric unit consists of three Fe III cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio-cyanate anions, two 4-meth-oxy-pyridine ligands and 4-meth-oxy-pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter-actions between organic cations and the ferrate(III) anions, weak N-H⋯S hydrogen-bonding inter-actions involving the pyridinium N-H groups of the cations and the thio-cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.

  17. Crystal structure of trans-bis­(ethane-1,2-diamine-κ2 N,N′)bis­(thio­cyanato-κN)chromium(III) perchlorate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, [Cr(NCS)2(C2H8N2)2]ClO4, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric CrIII complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The CrIII ion is coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound thio­cyanate (NCS−) anions in a trans-axial arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) bond lengths are in the range 2.053 (16)–2.09 (2) Å, while the Cr—N(thio­cyanate) bond length is 1.983 (2) Å. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each ClO4 − anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 groups as donors and perchlorate O and thio­cyanate S atoms as acceptors. PMID:26090142

  18. Triptycene-Based Microporous Cyanate Resins for Adsorption/Separations of Benzene/Cyclohexane and Carbon Dioxide Gas.

    PubMed

    Deng, Gaoyang; Wang, Zhonggang

    2017-11-29

    Triptycene-based cyanate monomers 2,6,14-tricyanatotriptycene (TPC) and 2,6,14-tris(4-cyanatophenyl)triptycene (TPPC) that contain different numbers of benzene rings per molecule were synthesized, from which two microporous cyanate resins PCN-TPC and PCN-TPPC were prepared. Of interest is the observation that the two polymers have very similar porosity parameters, but PCN-TPPC uptakes considerably higher benzene (77.8 wt %) than PCN-TPC (17.6 wt %) at room temperature since the higher concentration of phenyl groups in PCN-TPPC enhances the π-π interaction with benzene molecules. Besides, the adsorption capacity of benzene in PCN-TPPC is dramatically 7 times as high as that of cyclohexane. Contrary to the adsorption of organic vapors, at 273 K and 1.0 bar, PCN-TPC with more heteroatoms in the network skeleton displays larger uptake of CO 2 and higher CO 2 /N 2 selectivity (16.4 wt %, 60) than those of PCN-TPPC (14.0 wt %, 39). The excellent and unique adsorption properties exhibit potential applications in the purification of small molecular organic hydrocarbons, e.g., separation of benzene from benzene/cyclohexane mixture as well as CO 2 capture from flue gas. Moreover, the results are helpful for deeply understanding the effect of porous and chemical structures on the adsorption properties of organic hydrocarbons and CO 2 gas.

  19. Bismaleimide and cyanate ester based sequential interpenetrating polymer networks for high temperature application

    NASA Astrophysics Data System (ADS)

    Geng, Xing

    2005-07-01

    A research area of high activity in connection with aerospace engineering has been the development of polymer thermosetting resins that can withstand temperature as high as 300°C while maintaining adequate toughness and providing ease of processing to enable low temperature and low cost composite fabrication methods. In order to meet such requirements, sequential interpenetrating polymer networks (IPNs) based on bismaleimide (BMI) and cyanate ester (CE) monomers were investigated. In these systems, a polycyanurate network is first formed in the presence of BMI and appropriate reactive diluent monomers and, in a second step, a network based on the BMI is created in the presence of a fully formed polycyanurate network. The materials developed can be processed at relatively low temperature (<150°C) and with the aid of electron beam (EB) curing. Of major importance to the success of this work was the identification of a reactive diluent that improves ease of processing and has tailored reactivity to allow for the controlled synthesis of CE-BMI sequential IPNs. Based on solubility and reactivity of a number of reactive diluents, N-acryloylmorpholine (AMP) was selected as a co-monomer for BMI copolymerization. A donor-acceptor reaction mechanism was suggested to explain the relative reactivity of a variety of reactive diluents towards maleimide functionality. The optimum processing parameters for the formation of the first network were determined through the study of metal catalyzed cure and hydrolysis of cyanate esters, whereas the reaction behavior for second network formation in terms of the influence of EB dose rate and temperature was elucidated through an in-situ kinetics study of maleimide and AMP copolymerization. Structure-property relationships were developed which allowed for the design of improved resin systems. In particular, an appropriate network coupler possessing cyanate ester and maleimide functionality was synthesized to link the polycyanurate first network to the BMI/AMP second network and thus form linked sequential IPNs (LIPNs). Consequently, Tg as high as 370°C was achieved and a fracture toughness of 120 J/m2 was obtained for resin systems that possess adequately low viscosity for processing using liquid molding techniques at low temperature.

  20. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z. X.; Huang, C. J.; Li, L. F.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical propertiesmore » of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.« less

  1. Tris{2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolate-κ2 O,O′}tris­(thio­cyanato-κN)europium(III)

    PubMed Central

    Liu, Jian-Feng; Liu, Jia-Lu; Zhao, Guo-Liang

    2009-01-01

    The metal center in the structure of the title compound, [Eu(NCS)3(C15H15NO2)3], is coordinated by three Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolate (L) ligands and three independent thio­cyanate ions. In the crystal structure, the acidic H atom is located on the Schiff base N atom and hydrogen bonded to the phenolate O atom. The coordination environment of the EuIII ion is nine-coordinate by three chelating methoxy­phenolate pairs of O atoms and three N-atom terminals of the thio­cyanate ions. The compound is isostructural with the CeIII analogue [Liu et al. (2009 ▶). Acta Cryst. E65, m650]. PMID:21578663

  2. Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens.

    PubMed

    Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel

    2017-12-01

    Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1 H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

  3. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thunga, Mahendra; Bauer, Amy; Obusek, Kristine

    2014-08-01

    Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-sectionmore » analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.« less

  4. Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens

    NASA Astrophysics Data System (ADS)

    Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel

    2017-02-01

    Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from 20 to 180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

  5. Nanoporous Cyanate Ester Resins: Structure-Gas Transport Property Relationships

    NASA Astrophysics Data System (ADS)

    Gusakova, Kristina; Fainleib, Alexander; Espuche, Eliane; Grigoryeva, Olga; Starostenko, Olga; Gouanve, Fabrice; Boiteux, Gisèle; Saiter, Jean-Marc; Grande, Daniel

    2017-04-01

    This contribution addresses the relationships between the structure and gas transport properties of nanoporous thermostable cyanate ester resins (CERs) derived from polycyclotrimerization of 1,1'-bis(4-cyanatophenyl)ethane in the presence of 30 or 50 wt% of inert high-boiling temperature porogens (i.e., dimethyl- or dibutyl phthalates), followed by their quantitative removal. The nanopores in the films obtained were generated via a chemically induced phase separation route with further porogen extraction from the densely crosslinked CERs. To ensure a total desorption of the porogen moieties from the networks, an additional short-term thermal annealing at 250 °C was performed. The structure and morphology of such nanoporous CER-based films were investigated by FTIR and SEM techniques, respectively. Further, the gas transport properties of CER films were analyzed after the different processing steps, and relationships between the material structure and the main gas transport parameters were established.

  6. Crystal structure of octa­kis­(4-meth­oxy­pyridinium) bis­(4-meth­oxy­pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III) bis­[(4-meth­oxypyri­dine-κN)pentakis­(thio­cyanato-κN)ferrate(III)] hexa­kis­(thio­cyanato-κN)ferrate(III) with iron in three different octa­hedral coordination environments

    PubMed Central

    Jochim, Aleksej; Jess, Inke; Näther, Christian

    2018-01-01

    The crystal structure of the title salt, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octa­hedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thio­cyanate anions and 4-meth­oxy­pyridine ligands. Charge balance is achieved by 4-meth­oxy­pyridinium cations. The asymmetric unit consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and 4-meth­oxy­pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter­actions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding inter­actions involving the pyridinium N—H groups of the cations and the thio­cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure. PMID:29765708

  7. Swimming Pools, Hot Rods, and Qualitative Analysis.

    ERIC Educational Resources Information Center

    Clyde, Dale D.

    1988-01-01

    Describes some reactions for the identification and application of cyanuric acid. Suggests students may find this applied chemistry interesting because of the use of cyanuric acid in swimming pools and diesel engines. Lists three tests for cyanate ion and two tests for cyanuric acid. (MVL)

  8. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.

    PubMed

    Wu, Hongchao; Kessler, Michael R

    2015-03-18

    Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications.

  9. Incorporating silica into cyanate ester-based network by sol-gel method: Structure and properties of subnano- and nanocomposites

    NASA Astrophysics Data System (ADS)

    Bershtein, V.; Fainleib, A.; Kirilenko, D.; Yakushev, P.; Gusakova, K.; Lavrenyuk, N.; Ryzhov, V.

    2016-05-01

    A series of Cyanate Ester Resins (CER)-based composites containing 0.01-10 wt. % silica, introduced by sol-gel method, was synthesized using tetraethoxysilane (TEOS) and γ-aminopropyltrimethoxysilane (APTMS), and their nanostructure and properties were characterized by means of STEM/EDXS, Far-IR spectroscopy, DMA and DSC methods. It was revealed that the most substantial positive impact on CER dynamics, thermal and mechanical properties is attained at ultra-low silica contents, e.g., at 0.1 wt. % silica where Tg and modulus increase, respectively, by 50° and 60%. In this case, silica nanoclusters are absent in the composite, and only chemically incorporated silica junctions of subnanometric size in the densely-crosslinked CER network could be implied. These composites can be designated as "polymer subnanocomposites". Contrarily, formation of silica nanoclusters and especially their aggregates of hundreds nanometers in size at silica contents of 2-10 wt. % led to the distinct negative impact on the matrix properties.

  10. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO−) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate. PMID:11157213

  11. Liebig-Wohler Controversy and the Concept of Isomerism

    ERIC Educational Resources Information Center

    Esteban, Soledad

    2008-01-01

    Very often controversies contribute to the development of science. An example is the conflict between Liebig and Wohler on the occasion of their analyses of fulminates and cyanates, which showed that compounds with different properties could have the same composition. Their results, together with other similar evidences, led Berzelius to recognize…

  12. Magnetic graphitic carbon nitride: its application in the C–H activation of amines

    EPA Science Inventory

    Magnetic graphitic carbon nitride, Fe@g-C3N4, has been synthesized by adorning graphitic carbon nitride (g-C3N4) support with iron oxide via non-covalent interaction. The magnetically recyclable catalyst showed excellent reactivity for expeditious C-H activation and cyanation of ...

  13. Qualification of a cyanate ester epoxy blend supplied by Japanese industry for the ITER TF coil insulation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.; Knaster, J.; Savary, F.

    2012-06-01

    During the last years, two cyanate ester epoxy blends supplied by European and US industry have been successfully qualified for the ITER TF coil insulation. The results of the qualification of a third CE blend supplied by Industrial Summit Technology (IST, Japan) will be presented in this paper. Sets of test samples were fabricated exactly under the same conditions as used before. The reinforcement of the composite consists of wrapped R-glass / polyimide tapes, which are vacuum pressure impregnated with the resin. The mechanical properties of this material were characterized prior to and after reactor irradiation to a fast neutron fluence of 2×1022m-2 (E>0.1 MeV), i.e. twice the ITER design fluence. Static and dynamic tensile as well as static short beam shear tests were carried out at 77 K. In addition, stress strain relations were recorded to determine the Young's modulus at room temperature and at 77 K. The results are compared in detail with the previously qualified materials from other suppliers.

  14. Static and Dynamic Performance of Newly Developed ITER Relevant Insulation Systems after Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2006-03-01

    Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.

  15. Mechanism and scope of the cyanide-catalyzed cross silyl benzoin reaction.

    PubMed

    Linghu, Xin; Bausch, Cory C; Johnson, Jeffrey S

    2005-02-16

    In this work, cross silyl benzoin addition reactions between acylsilanes (1) and aldehydes (2) catalyzed by metal cyanides are described. Unsymmetrical aryl-, heteroaryl-, and alkyl-substituted benzoin adducts can be generated in moderate to excellent yields with complete regiocontrol using potassium cyanide and a phase transfer catalyst. From a screen of transition metal cyanide complexes, lanthanum tricyanide was identified as an improved second-generation catalyst for the cross silyl benzoin reaction. A study of the influence of water on the KCN-catalyzed cross silyl benzoin addition revealed more practical reaction conditions using unpurified solvent under ambient conditions. A sequential silyl benzoin addition/cyanation/O-acylation reaction that resulted in two new C-C bonds was achieved in excellent yield. The mechanism of cross silyl benzoin addition is proposed in detail and is supported by crossover studies and a number of unambiguous experiments designed to ascertain the reversibility of key steps. No productive chemistry arises from cyanation of the more electrophilic aldehyde component. Formation of the carbon-carbon bond is shown to be the last irreversible step in the reaction.

  16. Comparison of the Effect of Curing on the Properties of E-Glass/Cyanate modified Epoxy Cross Plied Laminates

    NASA Astrophysics Data System (ADS)

    Nallayan, W. Andrew; Vijayakumar, K. R.; Rasheed, Usama Tariq

    2017-05-01

    High performance polymer composite laminates that are used in Aerospace and Electronics industries requires laminates that are structurally rigid besides exhibiting high stiffness and good di electrical properties. They are required to be transparent to EM waves in order to transmit the signal with almost zero transmission loss. Response of the laminates under different loadings could hence establish a potent material combination with high structural strengths that could be used in sectors dealing with Signal transmissions. The results thus acquired can be used as a database for choosing relatively better materials for Radome and their advanced versions in the coming decades. To augment this, thin laminates with 4 plies with simple stacking configurations of 0/90/0/90 degrees as applicable to a cross plied laminates were fabricated with cyanate ester modified epoxy resin and 1200GSM E glass unidirectional fiber. Flexural and Impact strength were the properties identified for the accessing the structural responses of the Laminate as against room and oven curing conditions. FESEM images were applied to validate the experimental findings.

  17. The binding of carbon dioxide by horse haemoglobin

    PubMed Central

    Kilmartin, J. V.; Rossi-Bernardi, L.

    1971-01-01

    1. Three modified horse haemoglobins have been prepared: (i) αc2βc2, in which both the α-amino groups of the α- and β-chains have reacted with cyanate, (ii) αc2β2, in which the α-amino groups of the α-chains have reacted with cyanate, and (iii) α2βc2, in which the two α-amino groups of the β-chain have reacted with cyanate. 2. The values of n (the Hill constant) for αc2βc2, α2βc2 and αc2β2 were (respectively) 2.5, 2.0 and 2.6, indicating the presence of co-operative interactions between the haem groups for all derivatives. 3. In the alkaline pH range (about pH8.0) all the derivatives show the same charge as normal haemoglobin whereas in the acid pH range (about pH6.0) αc2βc2 differs by four protonic charges and αc2β2, α2βc2 by two protonic charges from normal haemoglobin, indicating that the expected number of ionizing groups have been removed. 4. αc2β2 and αc2βc2 show a 25% decrease in the alkaline Bohr effect, in contrast with α2βc2, which has the same Bohr effect as normal haemoglobin. 5. The deoxy form of αc2βc2 does not bind more CO2 than the oxy form of αc2βc2, whereas αc2β2 and α2βc2 show intermediate binding. 6. The results reported confirm the hypothesis that, under physiological conditions, haemoglobin binds CO2 through the four terminal α-amino groups and that the two terminal α-amino groups of α-chains are involved in the Bohr effect. ImagesPLATE 1 PMID:5166592

  18. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for an infrared wavelength, possibly that used for the AO system of the Keck telescope, instead of 0.63 microns. We have polished a 55 cm diameter mandrel to better than 1/20th wave optical figure in the visible using centrifugal elutriation. CMA has just told us that it needs to retool to get optimum mirror faceplate quality in this size, so implementing the 55 cm AO mirror may be delayed somewhat. We expect to complete our 1/3 rd meter AO mirror on time using novel piezoelectric actuators with a throw of one micrometer per volt, as compared to 0.005 micrometers per volt for conventional piezoelectric actuators. We will then demonstrate its AO performance interferometrically.

  19. Silicon-Containing Tri- and Tetra-Functional Cyanate Esters: Synthesis, Cure Kinetics, and Network Properties

    DTIC Science & Technology

    2014-01-01

    24. Pollack, S. K.; Fu, Z. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1998, 39, 452-453. 25. Devaraju, S.; Vengatesan, M. R.; Selvi , M...Ganguli, S.; Dean, D.; Jordan, K.; Price, G.; Vaia, R. Polymer 2003, 44, 1315-1319. 54. Devaraju, S.; Vengatesan, M. R.; Selvi , M.; Kumar, A. A

  20. New materials drive high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.

    1992-01-01

    This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.

  1. Asphaltenes-based polymer nano-composites

    DOEpatents

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  2. Graphene Oxide and Thermally Exfoliated Graphene Cyanate Ester Resin Composites

    DTIC Science & Technology

    2013-05-01

    solution was cooled to 0 °C by placing the flask in an ice bath and 30 g of potassium permanganate was added slowly with stirring which caused the...suspension to turn to a thick paste. After the addition of potassium permanganate the solution was warmed to 35 °C and allowed to stir for 30 minutes. After

  3. Sodium cyanate-induced opening of calcium-activated potassium currents in hippocampal neuron-derived H19-7 cells.

    PubMed

    Huang, Chin-Wei; Huang, Chao-Ching; Huang, Mei-Han; Wu, Sheng-Nan; Hsieh, Yi-Jung

    2005-03-29

    We investigated the chemical toxic agent sodium cyanate (NaOCN) on the large conductance calcium-activated potassium channels (BK(Ca)) on hippocampal neuron-derived H19-7 cells. The whole-cell and cell-attach configuration of patch-clamp technique were applied to investigate the BK(Ca) currents in H19-7 cells in the presence of NaOCN (0.3 mM). NaOCN activated BK(Ca) channels on H19-7 cells. The single-channel conductance of BK(Ca) channels was 138+/-7pS. The presence of NaOCN (0.3 mM) caused an obvious increase in open probability of BK(Ca) channels. NaOCN did not exert effect on the slope of the activation curve and stimulated the activity of BK(Ca) channels in a voltage-dependent fashion in H19-7 cells. The presence of paxilline or EGTA significantly reduced the BK(Ca) amplitude, in comparison with the presence of NaOCN. These findings suggest that during NaOCN exposure, the activation of BK(Ca) channels in neurons could be one of the ionic mechanisms underlying the decreased neuronal excitability and neurological disorders.

  4. Influences of surface modification of nano-silica by silane coupling agents on the thermal and frictional properties of cyanate ester resin

    NASA Astrophysics Data System (ADS)

    Chuang, Wang; Geng-sheng, Jiao; Lei, Peng; Bao-lin, Zhu; Ke-zhi, Li; Jun-long, Wang

    2018-06-01

    The surface of nano-silicon dioxide (nano-SiO2) particles was modified by small molecular coupling agent KH-560 and macromolecular coupling agent SEA-171, respectively, to change the surface activity and structure. The modified nano-SiO2 was then used for reinforcing cyanate ester resin (CE). Influences of the content of nano-SiO2 and the interfacial structure over the thermal and frictional properties of nano-SiO2/CE composites were investigated. The mechanism of the surface modification of silicon dioxide by KH-560 and SEA-171 was discussed. The experimental results show that the addition of coupling agents increased the interfacial bonding between nano-SiO2 particles and the CE resin so that the heat resistance and friction properties of the composites were improved. After surface treatment of nano-SiO2 by SEA-171, the thermal decomposition temperature of the 3.0 wt% nano-SiO2/CE composites increased nearly by 75 °C and the frictional coefficient was reduced by 25% compared with that of the pure CE, and the wear resistance increased by 77%.

  5. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  6. Synthesis and Characterization of Tetranitraminocyclobutanes

    DTIC Science & Technology

    1994-09-01

    potassium cyanate in aqueous HCl yields urea acetal, 5, a white crystalline solid, which is dehydratively ring closed to imidazolidinone 6 in mild acid...dimerization produces exclusively the cis-trans-cis tetramine isomer as shown. Hydrolysis of the acetate groups is carried out in refluxing ethanol...there is some hydrolysis of the final product. Because nitramine 1 is under consideration as a potential replacement for pentaerythritol tetranitrate

  7. Examination of Treatment Methods for Cyanide Wastes.

    DTIC Science & Technology

    1979-05-15

    industry,is alkaline chlorination. This process oxidizes cyanide to cyanate followed by complete decomposition yielding carbon dioxide and nitrogen or...decomposition yielding carbon dioxide and nitrogen, or ammonium salts depending on final treatment methods. The major oxidizing agents that have been...2H20 (X represents a cation.) 29 NADC-78198-60 This liberates carbon dioxide and nitrogen gas as end products. Possible acid hydrolysis has been

  8. Predictive Methods for Dense Polymer Networks: Combating Bias with Bio-Based Structures

    DTIC Science & Technology

    2016-03-16

    Informatics Tools Acknowledgements: Air Force Office of Scientific Research, Air Force Research Laboratory, Office of Naval Research, Strategic...Sources and Methods • Bio-based cyanate esters have been made from anethole, resveratrol, eugenol, cresol, lignin, vanillin, and even creosote oils ...not large by informatics standards, it nonetheless represents a significant amount of synthetic effort. Because the data is limited, minimizing

  9. A Preliminary Investigation of the E-Beam Induced Polymerization of Maleimide and Norbornene End-capped Polyimides

    NASA Technical Reports Server (NTRS)

    Palmese, Giuseppe R.; Meador, Michael A. (Technical Monitor)

    2005-01-01

    A research area of high activity in connection with aerospace engineering has been the development of polymer thermosetting resins that can resist temperature as high as 300 C while maintaining adequate toughness, and providing ease of processing to enable low temperature and low cost composite fabrication methods. In order to meet such requirements, sequential interpenetrating polymer networks (IPNs) based on bismaleimide (BMI) and cyanate ester (CE) monomers were investigated. In these systems, a polycyanurate network is first formed in the presence of BMI and appropriate reactive diluent monomers and in a second step, a network based on the BMI is created in the presence of a fully formed polycyanurate network. The materials developed can be processed at relatively low temperature (less than 150 C) and with the aid of electron beam (EB) curing. Of major importance to the success of this work was the identification of a reactive diluent that improves ease of processing and has tailored reactivity to allow for the controlled synthesis of CE-BMI sequential IPNs. Based on solubility and reactivity of a number of reactive diluents, N-acryloylmorpholine (AMP) was selected as a comonomer for BMI copolymerization. A donor-acceptoreaction mechanism was suggested to explain the relative reactivity of a variety of reactive diluents towards maleimide functionality. The optimum processing parameters for the formation of the first network were determined through the study of metal catalyzed cure and hydrolysis of cyanate esters, whereas the reaction behavior for second network formation in terms of the influence of EB dose rate and temperature was elucidated through an in-situ kinetics study of maleimide and AMP copolymerization. Structure-property relationships were developed which allowed for the design of improved resin systems. In particular, appropriate network coupler possessing cyanate ester and maleimide functionality was synthesized to link the polycyanurate first network to the BMI/AMP second network and thus form linked sequential IPNs (LIPNs). Consequently, Tg as high as 370 C was achieved and a fracture toughness of 120 Joules per square meters was obtained for resin systems that possess adequately low viscosity for processing using liquid molding techniques at low temperature.

  10. Analysis of the Genes Involved in Thiocyanate Oxidation during Growth in Continuous Culture of the Haloalkaliphilic Sulfur-Oxidizing Bacterium Thioalkalivibrio thiocyanoxidans ARh 2T Using Transcriptomics

    PubMed Central

    Balkema, Cherel; Sorokin, Dimitry Y.

    2017-01-01

    ABSTRACT Thiocyanate (N=C−S−) is a moderately toxic, inorganic sulfur compound. It occurs naturally as a by-product of the degradation of glucosinolate-containing plants and is produced industrially in a number of mining processes. Currently, two pathways for the primary degradation of thiocyanate in bacteria are recognized, the carbonyl sulfide pathway and the cyanate pathway, of which only the former has been fully characterized. Use of the cyanate pathway has been shown in only 10 strains of Thioalkalivibrio, a genus of obligately haloalkaliphilic sulfur-oxidizing Gammaproteobacteria found in soda lakes. So far, only the key enzyme in this reaction, thiocyanate dehydrogenase (TcDH), has been purified and studied. To gain a better understanding of the other genes involved in the cyanate pathway, we conducted a transcriptomics experiment comparing gene expression during the growth of Thioalkalivibrio thiocyanoxidans ARh 2T with thiosulfate with that during its growth with thiocyanate. Triplicate cultures were grown in continuous substrate-limited mode, followed by transcriptome sequencing (RNA-Seq) of the total mRNA. Differential expression analysis showed that a cluster of genes surrounding the gene for TcDH were strongly upregulated during growth with thiocyanate. This cluster includes genes for putative copper uptake systems (copCD, ABC-type transporters), a putative electron acceptor (fccAB), and a two-component regulatory system (histidine kinase and a σ54-responsive Fis family transcriptional regulator). Additionally, we observed the increased expression of RuBisCO and some carboxysome shell genes involved in inorganic carbon fixation, as well as of aprAB, genes involved in sulfite oxidation through the reverse sulfidogenesis pathway. IMPORTANCE Thiocyanate is a moderately toxic and chemically stable sulfur compound that is produced by both natural and industrial processes. Despite its significance as a pollutant, knowledge of the microbial degradation of thiocyanate is very limited. Therefore, investigation of thiocyanate oxidation in haloalkaliphiles such as the genus Thioalkalivibrio may lead to improved biotechnological applications in wastewater remediation. PMID:29285524

  11. Environmentally Benign Repair of Composites Using High Temperature Cyanate Ester Nanocomposites

    DTIC Science & Technology

    2010-10-01

    temperature by magnetic stirring. Thermogravimetric analysis (TG) measurements were performed on a TG model Q50 (TA Instruments, Inc.) to determine the...standard 1259-85. These experiments were also compared with thermogravimetric analysis (TGA) in both dynamic heating and isothermal conditions. The...characterized with thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). For the TG, about 20 mg of sample was placed in

  12. Organic Crystal Engineering of Thermosetting Cyanate Ester Monomers: Influence of Structure on Melting Point

    DTIC Science & Technology

    2016-05-27

    often discussed in the field of thermosetting materials, crystal engineering1-4 plays a key role in facilitating the successful utilization of these...not to alter the desirable properties of the polymerized networks. Fortunately, the field of crystal engineering provides examples where even very...Chickos and Acree.26 For molecular modeling, methods ranging from atomistic simulations with semi-empirical force fields to density functional

  13. Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles

    NASA Astrophysics Data System (ADS)

    Hudson, R. L.; Moore, M. H.

    2004-12-01

    Motivated by detections of nitriles in Titan's atmosphere, cometary comae, and the interstellar medium, we report laboratory investigations of the low-temperature chemistry of acetonitrile, propionitrile, acrylonitrile, cyanoacetylene, and cyanogen (CH 3CN, CH 3CH 2CN, CH 2CHCN, HCCCN, and NCCN, respectively). A few experiments were also done on isobutyronitrile and trimethylacetonitrile ((CH 3) 2CHCN and (CH 3) 3CCN, respectively). Trends were sought, and found, in the photo- and radiation chemical products of these molecules at 12-25 K. In the absence of water, all of these molecules isomerized to isonitriles, and CH 3CN, CH 3CH 2CN, and (CH 3) 2CHCN also formed ketenimines. In the presence of H 2O, no isonitriles were detected but rather the cyanate ion (OCN -) was seen in all cases. Although isonitriles, ketenimines, and OCN - were the main focus of our work, we also describe cases of hydrogen loss, to make smaller nitriles, and hydrogen addition (reduction), to make larger nitriles. HCN formation also was seen in most experiments. The results are presented in terms of nitrile ice chemistry on Titan, in cometary ice, and in the interstellar medium. Possible connections to prebiotic chemistry are briefly discussed.

  14. 4-Bromo-N-(di-n-propyl-carbamothioyl)-benzamide.

    PubMed

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-02-04

    The synthesis of the title compound, C(14)H(19)BrN(2)OS, involves the reaction of 4-bromo-benzoyl chloride with potassium thio-cyanate in acetone followed by condensation of the resulting 4-bromo-benzoyl isothio-cyanate with di-n-propyl-amine. Typical thio-urea carbonyl and thio-carbonyl double bonds, as well as shortened C-N bonds, are observed in the title compound. The short C-N bond lengths in the centre of the mol-ecule reveal the effects of resonance in this part of the mol-ecule. The asymmetric unit of the title compound contains two crystallographically independent mol-ecules, A and B. There is very little difference between the bond lengths and angles of these mol-ecules. In mol-ecule B, one di-n-propyl group is twisted in a -anti-periplanar conformation with C-C-C-H = -179.1 (3)° and the other adopts a -synclinal conformation with C-C-C-H = -56.7 (4)°; in mol-ecule A the two di-n-propyl groups are twisted in + and -anti-periplanar conformations, with C-C-C-H = -179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol-ecules are linked into dimeric pairs via pairs of N-H⋯S hydrogen bonds.

  15. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  16. Biomolecules from HCN

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Ryan, T. J.; Lobo, A. P.; Donner, D. B.

    1974-01-01

    It has been suggested by Sanchez et al. (1967) that HCN might have been one of the more important precursors of biological molecules on the primitive earth. Studies were conducted to determine the mechanisms involved in HCN oligomerizations in dilute aqueous solutions and to identify the compounds which are produced in these oligomerization mixtures. Indirect evidence for the formation of cyanate was obtained along with direct evidence for the formation of citrulline, aspartic acid, and orotic acid.

  17. New and Simple Ways to Minimize Water Uptake and Hydrolytic Degradation in Cyanate Esters

    DTIC Science & Technology

    2016-01-27

    Photo by U.S. Navy photo by Photographer’s Mate 1st Class Anibal Rivera (public domain). Importance of Moisture Uptake in Composite Component... Moisture Uptake in Thermoset Resins • Increasing conversion joins together more "loose ends" in the network, eliminating free space where water can be...public release; distribution is unlimited. PA Clearance #16205 6 Proposed Role of Vitrification in Controlling Moisture Uptake • Increasing conversions

  18. Curing of a Bisphenol-E Based Cyanate Ester using Magnetic Nanoparticles as an Internal Heat Source through Induction Heating

    DTIC Science & Technology

    2013-11-01

    magnetic field as a heat source for the polymerization avoids some of these difficulties. EXPERIMENTAL SECTION Iron (III) chloride hexahydrate (ACS...reagent, 97%), iron (II) chloride tetrahydrate (ReagentPlus®, 98%), tetramethylammonium hydroxide solution (25 wt. % in water), and oleic acid (technical...Edwards Air Force Base and used without further purification. Preparation of Iron Oxide Magnetic Nanoparticles.51 Iron (III) chloride hexahydrate (11.75

  19. Formulation and Physical Properties of Cyanate Ester Nanocomposites Based on Graphene

    DTIC Science & Technology

    2014-03-01

    during cure. The addition of GO, and, to a lesser extent, TRGO, resulted in improved mechanical properties, particularly fracture toughness, with the...a lesser extent, TRGO, resulted in improved mechanical proper- ties, particularly fracture toughness, with the addition of TRGO having a modestly...LECy. However, the mechanism of fracture toughness improvement may be different with each form of graphene. In the case of GO, the high degree of oxi

  20. Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes.

    PubMed

    Kristensen, Steffan K; Eikeland, Espen Z; Taarning, Esben; Lindhardt, Anders T; Skrydstrup, Troels

    2017-12-01

    A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P( t Bu) 3 -Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13 C-labelled benzonitriles with ex situ generated 13 C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P( t Bu) 3 ) 2 with H 13 CN in THF provided two Pd-hydride complexes, (P( t Bu) 3 ) 2 Pd(H)( 13 CN), and [(P( t Bu) 3 )Pd(H)] 2 Pd( 13 CN) 4 , both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P( t Bu) 3 ) 2 Pd(H)( 13 CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P( t Bu) 3 )Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P( t Bu) 3 ) 2 Pd(H)(Br) and 13 C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

  1. New Insights into Structure-Property Relationships in Thermosetting Polymers from Studies of Co-Cured Polycyanurate Networks (Preprint)

    DTIC Science & Technology

    2011-12-19

    have shown through positron annihilation studies that a substantial amount of free volume develops during the final stages of cyanate ester cure...Polymers from 5b. GRANT NUMBER Studies of Co-Cured Polycyanurate Networks (preprint) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner...Macromolecules. 14. ABSTRACT Studies of the physical properties of the co-cured networks formed from three similar dicyanate ester monomers revealed a

  2. A New Silicon-Containing Bis(Cyanate) Ester Resin with Improved Thermal Oxidation and Moisture Resistance

    DTIC Science & Technology

    2006-05-23

    making it an ideal comparative material. Scheme 1 BnO Br Si R R OYYO Si R R NCO OCN 1. n- BuLi THF/-78 oC 2. Me2SiCl2 1; R = Me, Y= Bn H2...carbonate in DMF) was treated with n- BuLi (15.2 mL, 38 mmol) and allowed to react with stirring for 30 min. This mixture, now heterogeneous, was

  3. Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates (Briefing Charts)

    DTIC Science & Technology

    2015-03-24

    distribution is unlimited.  . Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates Presenter: Dr...Edwards AFB, CA 4 California State University, Long Beach, CA 90840 2 Outline: Basic Studies of Moisture Uptake in Cyanate Ester Networks • Background...Motivation • SOTA Theories of Moisture Uptake in Thermosetting Networks • New Tools and New Discoveries • Unresolved Issues and Ways to Address Them

  4. On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure.

    PubMed

    Kassa, Roman M; Kasensa, Nyamabo L; Monterroso, Victor H; Kayton, Robert J; Klimek, John E; David, Larry L; Lunganza, Kalala R; Kayembe, Kazadi T; Bentivoglio, Marina; Juliano, Sharon L; Tshala-Katumbay, Desire D

    2011-03-01

    Konzo is a self-limiting central motor-system disease associated with food dependency on cassava and low dietary intake of sulfur amino acids (SAA). Under conditions of SAA-deficiency, ingested cassava cyanogens yield metabolites that include thiocyanate and cyanate, a protein-carbamoylating agent. We studied the physical and biochemical modifications of rat serum and spinal cord proteins arising from intoxication of young adult rats with 50-200mg/kg linamarin, or 200mg/kg sodium cyanate (NaOCN), or vehicle (saline) and fed either a normal amino acid- or SAA-deficient diet for up to 2 weeks. Animals under SAA-deficient diet and treatment with linamarin or NaOCN developed hind limb tremors or motor weakness, respectively. LC/MS-MS analysis revealed differential albumin carbamoylation in animals treated with NaOCN, vs. linamarin/SAA-deficient diet, or vehicle. 2D-DIGE and MALDI-TOF/MS-MS analysis of the spinal cord proteome showed differential expression of proteins involved in oxidative mechanisms (e.g. peroxiredoxin 6), endocytic vesicular trafficking (e.g. dynamin 1), protein folding (e.g. protein disulfide isomerase), and maintenance of the cytoskeleton integrity (e.g. α-spectrin). Studies are needed to elucidate the role of the aformentioned modifications in the pathogenesis of cassava-associated motor-system disease. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  6. Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet.

    PubMed

    Kimani, S; Moterroso, V; Morales, P; Wagner, J; Kipruto, S; Bukachi, F; Maitai, C; Tshala-Katumbay, D

    2014-04-01

    We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5mg/kg bw) or NaOCN (50mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~80× faster in the nervous system (14 ms to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In M. fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~2× relative to that of rodents. The nervous system susceptibility to cyanide may result from a "multiple hit" by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cross-species and tissue variations in cyanide detoxification rates in rodents and non-human primates on protein-restricted diet

    PubMed Central

    Kimani, S.; Moterroso, V.; Morales, P.; Wagner, J.; Kipruto, S.; Bukachi, F.; Maitai, C.; Tshala-Katumbay, D.

    2014-01-01

    We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5 mg/kg bw) or NaOCN (50 mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~ 80X faster in the nervous system (14 milliseconds to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In macaca fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~ 2X relative to that of rodents. The nervous system susceptibility to cyanide may result from a “multiple hit” by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. PMID:24500607

  8. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization.

    PubMed

    Widner, Brittany; Mulholland, Margaret R; Mopper, Kenneth

    2013-07-16

    Recent studies suggest that cyanate (OCN(-)) is a potentially important source of reduced nitrogen (N) available to support the growth of aquatic microbes and, thus, may play a role in aquatic N cycling. However, aquatic OCN(-) distributions have not been previously described because of the lack of a suitable assay for measuring OCN(-) concentrations in natural waters. Previous methods were designed to quantify OCN(-) in aqueous samples with much higher reduced N concentrations (micromolar levels) than those likely to be found in natural waters (nanomolar levels). We have developed a method to quantify OCN(-) in dilute, saline environments. In the method described here, OCN(-) in aqueous solution reacts with 2-aminobenzoic acid to produce a highly fluorescent derivative, 2,4-quinazolinedione, which is then quantified using high performance liquid chromatography. Derivatization conditions were optimized to simultaneously minimize the reagent blank and maximize 2,4-quinazolinedione formation (>90% reaction yield) in estuarine and seawater matrices. A limit of detection (LOD) of 0.4 nM was achieved with only minor matrix effects. We applied this method to measure OCN(-) concentrations in estuarine and seawater samples from the Chesapeake Bay and coastal waters from the mid-Atlantic region. OCN(-) concentrations ranged from 0.9 to 41 nM. We determined that OCN(-) concentrations were stable in 0.2 μm filtered seawater samples stored at -80 °C for up to nine months.

  9. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite.

    PubMed

    Yuan, Wei; Li, Weifeng; Mu, Yuguang; Chan-Park, Mary B

    2011-05-01

    Three kinds of polymer, polyimide without side-chain (PI), polyimide-graft-glyceryl 4-nonylphenyl ether (PI-GNE), and polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA), have been synthesized and used to disperse single-walled carbon nanotubes (SWNTs) and to improve the interfacial bonding between SWNTs and cyanate ester (CE) matrix. Visual observation, UV-vis-near-IR (UV-vis-NIR) spectra, and atomic force microscopy (AFM) images show that both PI-GNE and PI-BDA are highly effective at dispersing and debundling SWNTs in DMF, whereas PI is less effective. Interaction between SWNTs and PI, PI-GNE or PI-BDA was confirmed by computer simulation and Raman spectra. A series of CE-based composite films reinforced with different loadings of SWNTs, SWNTs/PI, SWNTs/PI-GNE and SWNTs/PI-BDA were prepared by solution casting. It was found that, because of the unique side-chain structure of PI-BDA, SWNTs/PI-BDA disperse better in CE matrix than do SWNTs/PI-GNE, SWNTs/PI, and SWNTs. As a result, SWNTs/PI-BDA/CE composites have the greatest improvement in mechanical properties of the materials tested. These results imply that the choice of side-chain on a dispersant is very important to the dispersion of SWNTs in matrix and the filler/matrix interfacial adhesion, which are two key requirements for achieving effective reinforcement.

  10. Ferrate(VI) oxidation of zinc-cyanide complex.

    PubMed

    Yngard, Ria; Damrongsiri, Seelawut; Osathaphan, Khemarath; Sharma, Virender K

    2007-10-01

    Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.

  11. Uranium and thorium complexes of the phosphaethynolate ion

    DOE PAGES

    Camp, Clément; Settineri, Nicholas; Lefèvre, Julia; ...

    2015-06-20

    New tris-amidinate actinide (Th, U) complexes containing a rare O-bound terminal phosphaethynolate (OCP⁻) ligand were synthesized and fully characterized. The cyanate (OCN⁻) and thiocyanate (SCN⁻) analogs were prepared for comparison and feature a preferential N-coordination to the actinide metals. The Th(amid) 3(OCP) complex reacts with Ni(COD) 2 to yield the heterobimetallic adduct (amid) 3Th(μ-η 1(O):η 2(C,P)-OCP)Ni(COD) featuring an unprecedented reduced (OCP⁻) bent fragment bridging the two metals.

  12. Syntheses of organic compounds in the presence of the fused iron catalyst and their mechanisms and kinetics

    NASA Astrophysics Data System (ADS)

    Glebov, L. S.; Kliger, G. A.

    1989-10-01

    New synthetic possibilities of the reduced promoted fused iron catalyst in intermolecular and intramolecular amination, cyanation, hydrogenation-dehydrogenation, and hydrodeoxygenation reactions and intermolecular and intramolecular dehydration, polymerisation, and isotope exchange are examined. The mechanisms and kinetics of the reactions leading to the synthesis of amines, alcohols, hydrocarbons, and other organic compunds are discussed. A laser Raman spectroscopic method is described for the investigation of heterogeneous organic catalysis in situ. The bibliography includes 148 references.

  13. Glass Transition Temperature Measurement for Undercured Cyanate Ester Networks: Challenges, Tips, and Tricks (Briefing Charts)

    DTIC Science & Technology

    2014-01-29

    DISTRIBUTION A: Approved for public release; distribution is unlimited. Thermosetting Polymers Have a TG Envelope – Not Just a TG 4 • The glass transition...glass transition temperature of a thermosetting polymer can vary over a wide range of temperatures depending on how the polymer is processed • A... thermosetting polymer with only one kind of network formation and negligible side reactions, the conversion may be determined at every point in the scan. • By

  14. Multifunctional Macromolecules

    DTIC Science & Technology

    1993-10-01

    wash bottles. This converts the highly toxic HCN into relatively harmless sodium cyanate . Draege tube "sniffers" were used inside the hood to detect...thickness of 4 pm and metallized with a 100 nm thick gold electrode. Using a dc power supply and a picoammeter, steady state photoconduction...analyze the data obtained using P2ANS in this work. I An 8 pm sample of 50/50 P2ANS/MMA was metallized and poled at 100 V/pm for 5 minutes at 140*C. The

  15. Virtually Instantaneous, Room-temperature [11C]-Cyanation Using Biaryl Phosphine Pd(0) Complexes

    PubMed Central

    Lee, Hong Geun; Milner, Phillip J.; Placzek, Michael S.; Buchwald, Stephen L.; Hooker, Jacob M.

    2015-01-01

    A new radiosynthetic protocol for the preparation of [11C]aryl nitriles has been developed. This process is based on the direct reaction of in situ prepared L•Pd(Ar)X complexes (L=biaryl phosphine) with [11C]HCN. The strategy is operationally simple, exhibits a remarkably wide substrate scope with short reaction times, and demonstrates superior reactivity compared to previously reported systems. With this procedure, a variety of [11C]nitrile-containing pharmaceuticals were prepared with high radiochemical efficiency. PMID:25565277

  16. Cooperative dual catalysis: application to the highly enantioselective conjugate cyanation of unsaturated imides.

    PubMed

    Sammis, Glenn M; Danjo, Hiroshi; Jacobsen, Eric N

    2004-08-18

    Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.

  17. New Approaches to Maximizing Thermo-oxidation Resistance of Polycyanurate Networks

    DTIC Science & Technology

    2014-08-13

    Resveratrol -based CE Delivers Exceptional Thermal Stability and Fire Resistance Acknowledgements: Strategic Environmental Research and Development...CH2-CH2- (dihydro resveratrol ) OH OH HO R OCN OCN NCO R Char (65%) Cure at 250C N N N N N N O O O R N N N Resveratrol cyanate ester* Resveratrol ...triazine thermoset resin > 450C Fire ( resveratrol ) • Polyphenolic antioxidant used as a dietary supplement • Extracted from seaweed, red grapes, red wine

  18. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl–Group Channeling during [NiFe]–Hydrogenase Cofactor Generation

    PubMed Central

    Stripp, Sven T.; Lindenstrauss, Ute; Sawers, R. Gary; Soboh, Basem

    2015-01-01

    [NiFe]–hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so–called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP–dependent condensation reaction, the C–terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]–hydrogenase active site cofactor. We present a FT–IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF–catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro–electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (–N=C=S) rather than thiocyanate (–S–C≡N). This has important implications for cyanyl–group channeling during [NiFe]–hydrogenase cofactor generation. PMID:26186649

  19. Bicarbonate is a recycling substrate for cyanase.

    PubMed

    Johnson, W V; Anderson, P M

    1987-07-05

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.

  20. A second polymorph of catena-poly[[(1,10-phenanthroline-κ2 N,N′)copper(II)]-di-μ-thio­cyanato-κ2 N:S;κ2 S:N

    PubMed Central

    Zhang, Shi-Shen; Chen, Li-Jiang; Han, Yi-Feng

    2011-01-01

    In the title coordination polymer, [Cu(NCS)2(C12H8N2)]n, the CuII atom is situated on a twofold rotation axis and is coordinated by two N atoms from the bidentate 1,10-phenanthroline ligand and four thio­cyanate groups to confer a CuN4S2 octa­hedral geometry and resulting in a layer structure extending parallel to (100). PMID:21753934

  1. (4,5-Diaza­fluoren-9-one-κ2 N,N′)bis­(thio­cyanato-κS)mercury(II)

    PubMed Central

    Notash, Behrouz; Safari, Nasser; Amani, Vahid

    2011-01-01

    In the title compound, [Hg(NCS)2(C11H6N2O)], the HgII atom, lying on a twofold rotation axis, is four-coordinated in a distorted tetra­hedral geometry by an N,N′-bidentate diaza­fluoren-9-one ligand and two thio­cyanate anions. In the crystal, inter­molecular C—H⋯N and C—H⋯O hydrogen bonds are effective in the stabilization of the structure. PMID:21753948

  2. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin.

    PubMed

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N

    2016-10-04

    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  3. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    PubMed

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.

    2015-01-01

    The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time

  5. A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines.

    PubMed

    Maaoui, Houcem; Kumar, Pawan; Kumar, Anurag; Pan, Guo-Hui; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah; Jain, Suman L

    2016-10-05

    A Prussian blue/carbon dot (PB/CD) nanocomposite was synthesised and used as a visible-light active photocatalyst for the oxidative cyanation of tertiary amines to α-aminonitriles by using NaCN/acetic acid as a cyanide source and H 2 O 2 as an oxidant. The developed photocatalyst afforded high yields of products after 8 h of visible light irradiation at room temperature. The catalyst was recycled and reused several times without any significant loss in its activity.

  6. Evaluation of Pterin, a Promising Drug Candidate from Cyanide Degrading Bacteria.

    PubMed

    Mahendran, Ramasamy; Thandeeswaran, Murugesan; Kiran, Gopikrishnan; Arulkumar, Mani; Ayub Nawaz, K A; Jabastin, Jayamanoharan; Janani, Balraj; Anto Thomas, Thomas; Angayarkanni, Jayaraman

    2018-06-01

    Pterin is a member of the compounds known as pteridines. They have the same nucleus of 2-amino-4-hydroxypteridine (pterin); however, the side-chain is different at the position 6, and the state of oxidation of the ring may exist in different form viz. tetrahydro, dihydro, or a fully oxidized form. In the present study, the microorganisms able to utilize cyanide, and heavy metals have been tested for the efficient production of pterin compound. The soil samples contaminated with cyanide and heavy metals were collected from Salem steel industries, Tamil Nadu, India. Out of 77 isolated strains, 40 isolates were found to utilize sodium cyanate as nitrogen source at different concentrations. However, only 13 isolates were able to tolerate maximum concentration (60 mM) of sodium cyanate and were screened for pterin production. Among the 13 isolates, only 1 organism showed maximum production of pterin, and the same was identified as Bacillus pumilus SVD06. The compound was extracted and purified by preparative high-performance liquid chromatography and analyzed by UV/visible, FTIR, and fluorescent spectrum. The antioxidant property of the purified pterin compound was determined by cyclic voltammetry. In addition, antimicrobial activity of pterin was also studied which was substantiated by antagonistic activity against Escherichia coli, and Pseudomonas aeruginosa. Besides that the pterin compound was proved to inhibit the formation of biofilm. The extracted pterin compounds could be proposed further not only for antioxidant and antimicrobial but also for its potency to aid as anticancer and psychotic drugs in future.

  7. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  8. Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; Ward, Bess B.

    2017-02-01

    The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.

  9. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; ...

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  10. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  11. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  12. Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1,3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Khalaj, Mehdi

    2015-09-01

    In this paper, we report the preparation of Natrolite zeolite supported copper nanoparticles as a heterogeneous catalyst for 1,3-diploar cycloaddition and synthesis aryl nitriles from aryl iodides under ligand-free conditions. The catalyst was characterized using XRD, SEM, TEM, EDS and TG-DTA. The experimental procedure is simple, the products are formed in high yields and the catalyst can be recycled and reused several times without any significant loss of catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Three-dimensional {Co(3+)-Zn2+} and {Co(3+)-Cd2+} networks originated from carboxylate-rich building blocks: syntheses, structures, and heterogeneous catalysis.

    PubMed

    Kumar, Girijesh; Gupta, Rajeev

    2013-10-07

    The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.

  14. Ames Infusion Stories for NASA Annual Technology Report: Development of an Ablative 3D Quartz / Cyanate Ester Composite Multi-Functional Material for the Orion Spacecraft Compression Pad

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    Vehicles re-entering Earth's atmosphere require protection from the heat of atmospheric friction. The Orion Multi-Purpose Crew Vehicle (MPCV) has more demanding thermal protection system (TPS) requirements than the Low Earth Orbit (LEO) missions, especially in regions where the structural load passes through. The use of 2-dimensional laminate materials along with a metal insert, used in EFT1 flight test for the compression pad region, are deemed adequate but cannot be extended for Lunar return missions.

  15. Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance

    NASA Astrophysics Data System (ADS)

    Anthoulis, G. I.; Kontou, E.; Fainleib, A.; Bei, I.

    2009-03-01

    The outstanding improvement in the physical properties of cyanate esters (CEs) compared with those of competitor resins, such as epoxies, has attracted appreciable attention recently. Cyanate esters undergo thermal polycyclotrimerization to give polycyanurates (PCNs). However, like most thermo setting resins, the main draw back of CEs is brittleness. To over come this disadvan tage, CEs can be toughened by the introduction of polytetramethylene glycol (PTMG), a hydroxyl-terminated polyether. How ever, PTMG has a detrimental impact on Young's modulus. To simultaneously enhance both the ductility and the stiffness of CE, we added PTMG and an organoclay (mont morillonite, MMT) to it. A series of PCN/PTMG/MMT nanocomposites with a constant PTMG weight ratio was pre pared, and the resulting nanophase morphology, i.e., the degree of filler dispersion and distribution in the composite and the thermomechanical properties, in terms of glass-transition behaviour, Young's modulus, tensile strength, and elongation at break, were examined using the scanning elec tron micros copy (SEM), a dynamic mechanical analysis (DMA), and stress-strain measurements, re spectively. It was found that, at a content of MMT below 2 wt.%, MMT nanoparticles were distributed uniformly in the matrix, suggesting a lower degree of agglomeration for these materials. In the glassy state, the significant increase in the storage modulus revealed a great stiffening effect of MMT due to its high Young's modulus. The modification with PTMG led to a 233% greater elongation at break compared with that of neat PCN. The nanocomposites exhibited an invariably higher Young's modulus than PCN/PTMG for all the volume factors of organoclay examined, with the 2 wt.% material displaying the most pronounced in crease in the modulus, in agreement with micros copy results.

  16. Cyanate ester-nanoparticle composites as multifunctional structural capacitors

    NASA Astrophysics Data System (ADS)

    De Leon, J. Eliseo

    An important goal of engineering is to increase the energy density of electrical energy storage devices used to deliver power onboard mobile platforms. Equally important is the goal to reduce the overall mass of the vehicles transporting these devices to achieve increased fuel and cost efficiency. One approach to meeting both these objectives is to develop multifunctional systems that serve as both energy storage and load bearing structural devices. Multifunctional devices consist of constituents that individually perform a subset of the overall desired functions. However, the synergy achieved by the combination of each constituent's characteristics allows for system-level benefits that cannot be achieved by simply optimizing the separate subsystems. We investigated multifunctional systems consisting of light weight polymer matrix and high dielectric constant fillers to achieve these objectives. The monomer of bisphenol E cyanate ester exhibited excellent processing ability because of its low room temperature viscosity. Additionally, the fully cured thermoset demonstrated excellent thermal stability, specific strength and stiffness. Fillers, including multi-walled carbon nanotubes, nanometer scale barium titanate and nanometer scale calcium copper titanate, offer high dielectric constants that raised the effective dielectric constant of the polymer matrix composite. The combination of high epsilon'and high dielectric strength produce high energy density components exhibiting increased electrical energy storage. Mechanical (load bearing) improvements of the PMCs were attributed to covalently bonded nanometer and micrometer sized filler particles, as well as the continuous glass fiber, integrated into the resin systems which increased the structural characteristics of the cured composites. Breakdown voltage tests and dynamic mechanical analysis were employed to demonstrate that precise combinations of these constituents, under the proper processing conditions, can satisfy the needs presented by the aerospace industry and military forces.

  17. Date palm pollen allergoid: characterization of its chemical-physical and immunological properties.

    PubMed

    Mistrello, G; Harfi, H; Roncarolo, D; Kwaasi, A; Zanoni, D; Falagiani, P; Panzani, R

    2008-01-01

    Date palm (DP) pollen can cause allergic symptoms in people living in different countries. Specific immunotherapy with allergenic extracts by subcutaneous route is effective to cure allergic people. However, the risk of side effects has led to explore safer therapeutic modalities. The aim of our work was to evaluate IgE cross-reactivity between DP and autochthonous palm (European fan palm, EFP) pollen extracts, to chemically modify DP extract with potassium cyanate in order to obtain an allergoid, and to characterize it. By radioallergosorbent test inhibition, immunoblotting (IB) and skin prick test, in vitro and in vivo allergenic activities of native and modified DP extracts were compared. By SDS-PAGE and IB, we compared the protein profile and IgE-binding capacity of both native and modified DP, as well as of EFP extracts. By IB inhibition, IgE cross-reactivity of native DP and EFP extracts was evaluated. By ELISA, the capacity of modified DP-induced IgG to react with native DP extract was determined. Radioallergosorbent test inhibition, IB and skin prick test results demonstrated that modified DP was significantly less allergenic than native DP extract. The SDS-PAGE profile showed that potassium cyanate treatment of DP extract did not alter the molecular weight of its components. In addition, no difference was observed between native DP and EFP extracts. Subsequent IB inhibition data evidenced the existence of a strong IgE cross-reactivity between native DP and EFP extracts. ELISA results indicated that the administration of modified DP in mice was able to induce specific IgG also recognizing native DP extract. Modified DP extract (allergoid) seems to be a good candidate for immunotherapy of patients affected by specific allergy. 2007 S. Karger AG, Basel

  18. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.

    PubMed

    Durairaju Nisshanthini, S; Teresa Infanta S, Antony K; Raja, Duraisamy Senthil; Natarajan, Karuppannan; Palaniswamy, M; Angayarkanni, Jayaraman

    2015-04-01

    Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).

  19. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  20. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  1. 1-(1,3-Benzothia­zol-2-yl)-3-benzoyl­thio­urea

    PubMed Central

    Yunus, Uzma; Tahir, Muhammad Kalim; Bhatti, Moazzam Hussain; Ali, Saqib; Wong, Wai-Yeung

    2008-01-01

    The title compound, C15H11N3OS2, was synthesized from benzoyl thio­cyanate and 2-amino­benzothia­zole in dry acetone. The thio­urea group is in the thio­amide form. The mol­ecules are stabilized by two inter­molecular C—H⋯S and C—H⋯O hydrogen bonds. Intra­molecular N—H⋯O hydrogen bonding results in a pseudo-S(6) planar ring with dihedral angles of 11.23 and 11.91° with the benzothiazole ring system and the phenyl ring, respectively. PMID:21200765

  2. N-(2-Chloro­eth­yl)morpholine-4-carbox­amide

    PubMed Central

    Ujam, Oguejiofo T.; Asegbeloyin, Jonnie N.; Nicholson, Brian K.; Ukoha, Pius O.; Ukwueze, Nkechi N.

    2014-01-01

    The title compound, C7H13ClN2O2, synthesized by the reaction of 2-chloro­ethyl iso­cyanate and morpholine, crystallizes with four molecules in the asymmetric unit, which have similar conformations and comprise two pairs each related by approximate non-crystallographic inversion centres. Two of them have a modest orientational disorder of the 2-chloro­ethyl fragments [occupancy ratio of 0.778 (4):0.222 (4)]. In the crystal, mol­ecules are linked by N—H⋯O=C hydrogen bonds, forming three crystallographically different kinds of infinite hydrogen-bonded chains extending along [001]. PMID:24826162

  3. The effect of reactor geometry on the synthesis of graphene materials in plasma jets

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Shatalova, T. B.

    2017-05-01

    The possibility of synthesis of graphene and graphane (hydrogenated graphene) using the decomposition of hydrocarbons by thermal plasma has been investigated. Investigations of the influence of the plasma-forming gas on the efficiency of synthesis and the morphology of graphene materials were carried out. The synthesis products have been characterized by the methods of scanning microscopy, Raman spectroscopy and thermal analysis. It is found that the morphology of graphene materials is affected by the geometry of the reactor. It was demonstrated that the obtained graphene materials are uniformly distributed in the volume of plastic based on cyanate ester resins under mixing.

  4. Thermal-mechanical behavior of high precision composite mirrors

    NASA Technical Reports Server (NTRS)

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  5. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Wiggins-Camacho, Jaclyn D; Stevenson, Keith J

    2011-04-15

    Nitrogen-doped carbon nanotube (N-CNT) mat electrodes exhibit high catalytic activity toward O(2) reduction, which can be exploited for the remediation of free cyanide (CN(-)). During the electrochemical O(2) reduction process, the hydroperoxide anion (HO(2)(-)) is formed and then reacts to chemically oxidize cyanide (CN(-)) to form cyanate (OCN(-)). The proposed electrochemical-chemical (EC) mechanism for CN(-) remediation at N-CNTs is supported by cyclic voltammetry and bulk electrolysis, and the formation of OCN(-) is confirmed via spectroscopic methods and electrochemical simulations. Our results indicate that by exploiting their catalytic behavior for O(2) reduction, N-CNTs can efficiently convert toxic CN(-) to the nontoxic OCN(-).

  6. Feasibility study on the development of tough, moisture-resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1979-01-01

    The potential of cyanate resins as replacement for epoxy resins in composites with graphite fiber reinforcement was investigated in an effort to provide improved moisture resistance and toughness in laminating systems at a projected cost, handleability, and processing requirements equivalent to 400 K (260 F) curing epoxies. Monomer synthesis, formulation, blending, resin preparation, catalysis studies, prepreg preparation, laminate fabrication, and testing are discussed. A graphite fiber reinforced laminate was developed with 95 percent retention of the original 363 K (180 F) flexural strength and 70 percent retention of the 363 K (180 F) short beam shear strength after 500 hour exposure to 95 + 7 relative humidity at 324 K (120 F).

  7. Di(cyanate Ester) Networks Based on Alternative Fluorinated Bisphenols with Extremely Low Water Uptake

    DTIC Science & Technology

    2013-11-01

    radomes6  to magnet casings  for  thermonuclear  fusion  reactors7,8  and  support  structures   for  interplanetary  space  probes.9    These  properties...because  the  conversion  is  relatively  easy  to  quantify via methods such as FT‐IR spectroscopy,17 investiga‐ tions  of  structure ‐property...the  high‐temperature  resistance  and  mechanical  stiffness  associated with aromatic content, which  limits  their poten‐ tial  for high

  8. 1-(3-Cyano­phen­yl)-3-(2-furo­yl)thio­urea

    PubMed Central

    Theodoro, Jahyr E.; Mascarenhas, Yvonne; Ellena, Javier; Estévez-Hernández, Osvaldo; Duque, Julio

    2008-01-01

    The title compound, C13H9N3O2S, was synthesized from furoyl isothio­cyanate and 3-amino­benzonitrile in dry acetone. The thio­urea group is in the thio­amide form. The thio­urea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)° with the ketofuran group and the benzene ring, respectively. The mol­ecular geometry is stabilized by N—H⋯O hydrogen bonds. In the crystal structure, centrosymmetrically related mol­ecules are linked by two inter­molecular N—H⋯S hydrogen bonds to form dimers. PMID:21202835

  9. Ultraviolet-gas phase and -photocatalytic synthesis from CO and NH3. [photolysis products

    NASA Technical Reports Server (NTRS)

    Hubbard, J. S.; Voecks, G. E.; Hobby, G. L.; Ferris, J. P.; Williams, E. A.; Nicodem, D. E.

    1975-01-01

    Ammonium cyanate is identified as the major product of the photolysis of gaseous NH3-CO mixtures at 206.2 or 184.9 nm. Lesser amounts of urea, biurea, biuret semicarbazide, formamide and cyanide are observed. A series of 18 reactions underlying the formation of photolysis products is presented and discussed. Photocatalytic syntheses of C-14-urea, -formamide, and -formaldehyde are carried out through irradiation of (C-14)O and NH3 in the presence of Vycor, silica gel, or volcanic ash shale surfaces. The possible contributions of the relevant reactions to the abiotic synthesis of organic nitrogen compounds on Mars, the primitive earth, and in interstellar space are examined.

  10. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  11. METHOD FOR PREPARING NORMORPHINE

    DOEpatents

    Rapoport, H.; Look, M.

    1959-06-01

    An improved method is presented for producing normorphine from morphine. Morphine as the starting material is acetylated by treatment with acetylating agents to produce di-acetyl morphine (heroin). The acetylated compound is reacted with cyanating agents to produce di-acetyl-cyanonormorphine (cyanonorheroin). The di-acetyl-cyanonormorphine compound is then treated in accordance with the improved hydrolysis reactions of the present invention in which concentrated hydrochloric acid is employed for a limited time period to hydrolyze the acetyl group therefrom forming cyanonormorphine. Subsequently, the reaction mixture is diluted and hydrolysis of the cyano groups from the cyanonormorphine is effected with a longer contact time with dilute hydrochloric acid thereby producing normorphine. A high over-all conversion and production of a high purity product which may be radioactlvely labeled, if desired, is obtained by operation of the process.

  12. Exploration of Novel Chemical Space: Synthesis and in vitro Evaluation of N-Functionalized Tertiary Sulfonimidamides.

    PubMed

    Izzo, Flavia; Schäfer, Martina; Lienau, Philip; Ganzer, Ursula; Stockman, Robert; Lücking, Ulrich

    2018-05-04

    An unprecedented set of structurally diverse sulfonimidamides (47 compounds) has been prepared by various N-functionalization reactions of tertiary =NH sulfonimidamide 2 aa. These N-functionalization reactions of model compound 2 aa include arylation, alkylation, trifluoromethylation, cyanation, sulfonylation, alkoxycarbonylation (carbamate formation) and aminocarbonylation (urea formation). Small molecule X-ray analyses of selected N-functionalized products are reported. To gain further insight into the properties of sulfonimidamides relevant to medicinal chemistry, a variety of structurally diverse reaction products were tested in selected in vitro assays. The described N-functionalization reactions provide a short and efficient approach to structurally diverse sulfonimidamides which have been the subject of recent, growing interest in the life sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The influence of a residual group in low-molecular-weight allergoids of Artemisia vulgaris pollen on their allergenicity, IgE- and IgG-binding properties.

    PubMed

    Cirković, T; Gavrović-Jankulović, M; Prisić, S; Jankov, R M; Burazer, L; Vucković, O; Sporcić, Z; Paranos, S

    2002-11-01

    Reaction of epsilon-amino groups of lysine with potassium cyanate, maleic, or succinic anhydride leads to allergoids of low molecular weight. No study has been performed to compare their properties and investigate the influence of a residual group on allergenicity and human IgE- and IgG-binding of these derivatives. Allergoids of a pollen extract of Artemisia vulgaris were obtained by means of potassium cyanate, and succinic and maleic anhydride. Biochemical properties were investigated by determination of amino groups, enzyme activity, isoelectric focusing IEF and SDS-PAGE. IgE- and IgG-binding was determined using immunoblots and ELISA inhibition. Allergenicity was investigated by skin prick tests (SPT) on a group of 52 patients, of which 6 were control subjects, 30 were patients with no previous immunotherapy (IT), and 16 were patients undergoing immunotherapy. The same degree of amino-group modification (more than 85%), residual enzyme activity (less then 15%), IEF, and SDS-PAGE pattern were noted. In the immunoblots of IgE-binding, there was more pronounced reduction in the succinyl and maleyl derivatives than in the carbamyl one. IgG-binding was less affected by carbamylation than by acid anhydride modification. The SPT showed that the succinylated derivative had the most reduced allergenicity (98% showed a reduced wheal diameter when tested with the succinyl derivative, 87% with the maleyl allergoid, and 83% with the carbamyl allergoid). The most significant difference among allergoids could be seen in the group of patients with high skin reactivity (83% of patients showed no reaction to the succinyl derivative when compared to the value of 28% for the carbamyl derivative or 22% for the maleyl derivative). According to our results, all three modification procedures yielded allergoids with a similar extent of modification. No single biochemical parameter investigated in the study could predict the degree of reduced allergenicity in vivo. The most reduced allergenicity was seen in the succinyl derivative while the preservation of IgG binding epitopes was of the highest degree for the carbamyl derivative.

  14. Gold leaching by organic base polythionates: new non-toxic and secure technology.

    PubMed

    Smolyaninov, Vladislav; Shekhvatova, Galina; Vainshtein, Mikhail

    2014-01-01

    The article present a review on own experimental and some published data which are related with the gold leaching. It is well-known that the most common and usual process of the leaching with cyanide can be dangerous, needs a great water consumption, and additional costs for remediation of the poisoned and toxic sites. The experimental data described production of poythionates which are not toxic but perspective for the prosperous gold leaching. The paper dedicated to the safe gold leaching with thiosulfates and organic salts of polythionic acids (organic base polythionates). The method of production of these polythionates based on the Smolyaninov reaction is described in stages and in details for the first time. Possible application of the polythionates application in the gold leaching is discussed and its advantages are compared with the gold leaching by cyanation.

  15. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  16. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    NASA Astrophysics Data System (ADS)

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  17. METHOD FOR PREPARING NORMORPHINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapoport, H.; Look, M.

    1959-06-01

    An improved method is presented for producing normorphine from morphine. Morphine as the starting material is acetylated by treatment with acetylating agents to produce di-acetyl morphine (heroin). The acetylated compound is reacted with cyanating agents to produce di-acetyl-cyanonormorphine (cyanonorheroin). The di-acetyl-cyanonormorphine compound is then treated in accordance with the improved hydrolysis reactions of the present invention in which concentrated hydrochloric acid is employed for a limited time period to hydrolyze the acetyl group therefrom forming cyanonormorphine. Subsequently, the reaction mixture is diluted and hydrolysis of the cyano groups from the cyanonormorphine is effected with a longer contact time with dilutemore » hydrochloric acid thereby producing normorphine. A high over-all conversion and production of a high purity product which may be radioactlvely labeled, if desired, is obtained by operation of the process.« less

  18. Asymmetric counteranion-directed Lewis acid organocatalysis for the scalable cyanosilylation of aldehydes

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Bae, Han Yong; Guin, Joyram; Rabalakos, Constantinos; van Gemmeren, Manuel; Leutzsch, Markus; Klussmann, Martin; List, Benjamin

    2016-08-01

    Due to the high versatility of chiral cyanohydrins, the catalytic asymmetric cyanation reaction of carbonyl compounds has attracted widespread interest. However, efficient protocols that function at a preparative scale with low catalyst loading are still rare. Here, asymmetric counteranion-directed Lewis acid organocatalysis proves to be remarkably successful in addressing this problem and enabled a molar-scale cyanosilylation in quantitative yield and with excellent enantioselectivity. Also, the catalyst loading could be lowered to a part-per-million level (50 ppm: 0.005 mol%). A readily accessible chiral disulfonimide was used, which in combination with trimethylsilyl cyanide, turned into the active silylium Lewis acid organocatalyst. The nature of a peculiar phenomenon referred to as a ``dormant period'', which is mainly induced by water, was systematically investigated by means of in situ Fourier transform infrared analysis.

  19. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  20. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    PubMed

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  1. Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors

    NASA Astrophysics Data System (ADS)

    Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio

    2013-09-01

    The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.

  2. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  3. Ligands of low electronegativity in the vsepr model: molecular pseudohalides

    NASA Astrophysics Data System (ADS)

    Glidewell, Christopher; Holden, H. Diane

    Equilibrium structures and force constants at linearity, for the skeletal bending mode δ(RNX) have been calculated in the MNDO approximation for 67 isocyanates, isothio-cyanates and azides, RNXY (XY = CO, CS or N 2) and the corresponding structures and force constants, δ(RCN), for 12 fulminates RCNO. Fulminates all have linear skeletons, but for RNXY the molecular skeleton is linear at atom X only if it is linear at N also ; otherwise the skeleton RNXY has a trans planar structure. Bending force constants are large and negative for all azides studied, negative for methyl and substituted methyl isocyanates and isothiocyanates and very small and positive for silyl and substituted silyl isothiocyanates: for silyl and substituted silyl isocyanales, the force constant is small and positive when the R group has effective C2v symmetry, but small and negative when the R group has only effective Cs symmetry.

  4. KSC-08pd2650

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians clean contamination from the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd2651

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician cleans contamination from the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  6. KSC-08pd2648

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician cleans contamination from the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  7. KSC-08pd2649

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician cleans contamination from the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  8. KSC-08pd2647

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Super Lightweight Interchangeable Carrier, or SLIC, is uncovered so that technicians can clean contaminants found earlier. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  9. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.

    PubMed

    Ushakov, Dmitry B; Gilmore, Kerry; Kopetzki, Daniel; McQuade, D Tyler; Seeberger, Peter H

    2014-01-07

    Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable-temperature continuous-flow LED-photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α-Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α-aminonitriles. Primary α-aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at -50 °C. This atom-economic and protecting-group-free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert-leucine hydrochloride from neopentylamine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel matrix resins for composites for aircraft primary structures, phase 1

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  11. Structure-Property Relationships for Polycyanurate Networks Derived from Renewable Sources (Briefing Charts)

    DTIC Science & Technology

    2015-08-18

    Parameter Explanation OCN Additional ‐OCN groups per monomer (e.g. 1 for tricyanates) K “Kinked” ‐OCN groups (that is, ‐OCN groups ‐ ortho or ‐meta to bridge...rings in monomer (e.g. 0 for the typical 4,4’ – OCN substitution pattern in dicyanate monomers) Me‐mp Methyl groups in positions ‐meta or ‐ para  to ‐OCN...Methyl groups in positions ‐ ortho  to ‐OCN groups; counting / averaging rules are the  same as for Me‐mp. OCH3 Methoxy groups on cyanated aromatic rings

  12. Enantioselective Cyanation of Benzylic C–H Bonds via Copper-Catalyzed Radical Relay

    PubMed Central

    Zhang, Wen; Wang, Fei; McCann, Scott D.; Wang, Dinghai; Chen, Pinhong; Stahl, Shannon; Liu, Guosheng

    2017-01-01

    Direct methods for stereoselective functionalization of C(sp3)–H bonds in complex organic molecules could facilitate much more efficient preparation of therapeutics and agrochemicals. Here, we report a copper-catalyzed radical relay pathway for enantioselective conversion of benzylic C–H bonds into benzylic nitriles. Hydrogen-atom abstraction affords an achiral benzylic radical that undergoes asymmetric C(sp3)–CN bond upon reaction with a chiral copper catalyst. The reactions proceed efficiently at room temperature with the benzylic substrate as limiting reagent, exhibit broad substrate scope with high enantioselectivity (typically 90-99% enantiomeric excess), and afford products that are key precursors to important bioactive molecules. Mechanistic studies provide evidence for diffusible organic radicals and highlight the difference between these reactions and C–H oxidations mediated by enzymes and other catalysts that operate via radical rebound pathways. PMID:27701109

  13. Determination of Elastic Moduli of Fiber-Resin Composites Using an Impulse Excitation Technique

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.; Johnson, Jeffrey J.

    1996-01-01

    The elastic moduli of graphite/epoxy and graphite/cyanate ester composite specimens with various laminate lay-ups was determined using an impulse excitation/acoustic resonance technique and compared to those determined using traditional strain gauge and extensometer techniques. The stiffness results were also compared to those predicted from laminate theory using uniaxial properties. The specimen stiffnesses interrogated ranged from 12 to 30 Msi. The impulse excitation technique was found to be a relatively quick and accurate method for determining elastic moduli with minimal specimen preparation and no requirement for mechanical loading frames. The results of this investigation showed good correlation between the elastic modulus determined using the impulse excitation technique, strain gauge and extensometer techniques, and modulus predicted from laminate theory. The flexural stiffness determined using the impulse excitation was in good agreement with that predicted from laminate theory. The impulse excitation/acoustic resonance interrogation technique has potential as a quality control test.

  14. Core Perylene Diimide Designs via Direct Bay- and ortho-(Poly)trifluoromethylation: Synthesis, Isolation, X-Ray Structures, Optical and Electronic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Bukovsky, Eric V.; Wang, Xue-Bin

    2015-09-22

    We developed an efficient solvent- and catalyst-free direct polytrifluoromethylation of solid perylene-3,4,9,10-tetracarboxylic dianhydride that produced a new family of (poly)perfluoroalkyl bay- and ortho-substituted PDIs with two different imide substituents. Direct hydrogen substitution with CN group led to the synthesis of a cyanated perfluoroalkyl PDI derivative for the first time. Absorption, steady-state and time-resolved emission, X-ray diffraction, electrochemical, and gas-phase electron affinity data allowed for systematic studies of substitution effects at bay, ortho, and imide positions in the new PDIs. Solid-state packing showed remarkable variations in the intermolecular interactions that are important for charge transport and photophysical properties. Moreover, analysis ofmore » the electrochemical data for 143 electron poor PDIs, including newly reported compounds, revealed some general trends and peculiar effects from substituting electron-withdrawing groups at all three positions.« less

  15. Core Perylene Diimide Designs via Direct Bay and Ortho (Poly)trifluoromethylation: Synthesis, Isolation, X-ray Structures, Optical and Electronic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Bukovsky, Eric V.; Wang, Xue B.

    2015-09-22

    We developed an efficient solvent- and catalyst-free direct polytrifluoromethylation of solid perylene-3,4,9,10-tetracarboxylic dianhydride that produced a new family of (poly)perfluoroalkyl bay and ortho substituted PDIs with two different imide substituents. Direct hydrogen substitution with CN group led to the synthesis of a cyanated perfluoroalkyl PDI derivative for the first time. Absorption, steady-state and time-resolved emission, X-ray diffraction, electrochemical, and gas-phase electron affinity data allowed for systematic studies of substitution effects at bay, ortho, and imide positions in the new PDIs. Solid-state packing showed remarkable variations in the intermolecular interactions that are important for charge transport and photophysical properties. Analysis ofmore » the electrochemical data for 143 electron poor PDIs, including newly reported compounds, revealed some general trends and peculiar effects of electron withdrawing group substitution at all three positions.« less

  16. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets.

    PubMed

    Shi, Dashuang; Caldovic, Ljubica; Tuchman, Mendel

    2018-06-12

    Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N -acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.

  17. Role of Carbamylated Biomolecules in Human Diseases.

    PubMed

    Badar, Asim; Arif, Zarina; Alam, Khursheed

    2018-04-01

    Carbamylation (or carbamoylation) is a non-enzymatic modification of biomolecules mediated by cyanate, a dissociation product of urea. Proteins are more sensitive to carbamylation. Two major sites of carbamylation reaction are: N α -amino moiety of a protein N-terminus and the N ɛ -amino moiety of proteins' lysine residues. In kidney diseases, urea accumulates and the burden of carbamylation increases. This may lead to alteration in the structure and function of many important proteins relevant in maintenance of homeostasis. Carbamylated proteins namely, carbamylated-haemoglobin and carbamylated-low density lipoprotein (LDL) have been implicated in hypoxia and atherosclerosis, respectively. Furthermore, carbamylation of insulin, oxytocin, and erythropoietin have caused changes in the action of these hormones vis-à-vis the metabolic pathways they control. In this short review, authors have compiled the data on role of carbamylated proteins, enzymes, hormones, LDL, and so on, in human diseases. © 2018 IUBMB Life, 70(4):267-275, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  18. Hydroxyhomocitrulline Is a Collagen-Specific Carbamylation Mark that Affects Cross-link Formation.

    PubMed

    Taga, Yuki; Tanaka, Keisuke; Hamada, Chieko; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-10-19

    Carbamylation is a non-enzymatic post-translational modification that physiologically occurs during aging and is a risk factor for various diseases. The most common product of carbamylation is homocitrulline (HCit), where a lysine (Lys) amino group has reacted with urea-derived cyanate. HCit has recently been detected in collagen; however, given that 15%-90% of total Lys in collagen is hydroxylated, it is unclear how hydroxylation affects collagen carbamylation. Here, we identified a collagen-specific carbamylation product, hydroxyhomocitrulline (HHCit), and showed that high levels of HHCit are correlated with age in rat tissue collagen and in vivo carbamylation in mice, as well as with the decline of kidney function in the serum of dialysis patients. Proteomic analysis of the carbamylated collagens identified α2(I) Lys 933 , a major cross-linking site, as a preferential HHCit site. Furthermore, our results suggest that hydroxylysine carbamylation affects the mechanical properties of connective tissue by competitively inhibiting collagen cross-link formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications

    PubMed Central

    Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores

    2018-01-01

    Abstract Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed. PMID:29438505

  20. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  1. KSC-08pd2656

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians finish replacing the protective cover over the Super Lightweight Interchangeable Carrier, or SLIC. The cover was removed to clean the carrier of contaminants found Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  2. KSC-08pd2643

    NASA Image and Video Library

    2008-09-17

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician uncovers the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  3. KSC-08pd2646

    NASA Image and Video Library

    2008-09-17

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians inspect areas of the Super Lightweight Interchangeable Carrier, or SLIC, for contamination. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  4. KSC-08pd2641

    NASA Image and Video Library

    2008-09-17

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the payload canister is moved on the floor for loading of the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd2653

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the protective cover is being replaced on the Super Lightweight Interchangeable Carrier, or SLIC. The cover was removed to clean the carrier of contaminants found Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  6. KSC-08pd2645

    NASA Image and Video Library

    2008-09-17

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians inspect areas of the Super Lightweight Interchangeable Carrier, or SLIC, for contamination. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  7. KSC-08pd2655

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician works to replace the protective cover on the Super Lightweight Interchangeable Carrier, or SLIC. The cover was removed to clean the carrier of contaminants found Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  8. KSC-08pd2654

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician works to replace the protective cover on the Super Lightweight Interchangeable Carrier, or SLIC. The cover was removed to clean the carrier of contaminants found Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  9. KSC-08pd2657

    NASA Image and Video Library

    2008-09-18

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians finish replacing the protective cover over the Super Lightweight Interchangeable Carrier, or SLIC. The cover was removed to clean the carrier of contaminants found Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  10. KSC-08pd2642

    NASA Image and Video Library

    2008-09-17

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician begins uncovering the Super Lightweight Interchangeable Carrier, or SLIC. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd2644

    NASA Image and Video Library

    2008-09-17

    CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians inspect areas of the Super Lightweight Interchangeable Carrier, or SLIC, for contamination. Contamination discovered Sept. 17 during preparations to deliver NASA's Hubble Space Telescope servicing payload to Launch Pad 39A will be removed. Cleanliness is extremely important for space shuttle Atlantis’ STS-125 mission to Hubble, and the teams have insured that the SLIC is ready to fly. The SLIC, which holds battery module assemblies for servicing of the Hubble Space Telescope on the STS-125 mission, is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The carrier is one of four being transferred to Launch Pad 39A. At the pad, the carriers will be loaded into Atlantis’ payload bay. Launch of Atlantis is targeted for Oct. 10. Photo credit: NASA/Jack Pfaller

  12. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications.

    PubMed

    Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores

    2018-03-01

    Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.

  13. trans-Bis(thio­cyanato-κN)tetra­kis­(3,4,5-trimethyl-1H-pyrazole-κN 2)nickel(II)–3,4,5-trimethyl-1H-pyrazole (1/1)

    PubMed Central

    Hossaini Sadr, Moayad; Engle, James T.; Ziegler, Christopher J.; Soltani, Behzad; Mousavi, Zahra

    2011-01-01

    In the title compound, [Ni(NCS)2(C6H10N2)4]·C6H10N2, the asymmetric unit comprises a NiII complex and a co-crystallised mol­ecule of 3,4,5-trimethyl-1H-pyrazole (PzMe3). The NiII atom is coordinated by four PzMe3 mol­ecules and two thio­cyanate anions to define a trans N4S2 distorted octa­hedral geometry. A number of intra­molecular N—H⋯N, N—H⋯S and C—H⋯N inter­actions contribute to the stability of the complex. The crystal structure is stabilized by inter­molecular N—H⋯S inter­actions, which link neighbouring mol­ecules into chains along the a axis. PMID:22219831

  14. Electron-Poor Thiophene 1,1-Dioxides: Synthesis, Characterization, and Application as Electron Relays in Photocatalytic Hydrogen Generation.

    PubMed

    Tsai, Chia-Hua; Chirdon, Danielle N; Kagalwala, Husain N; Maurer, Andrew B; Kaur, Aman; Pintauer, Tomislav; Bernhard, Stefan; Noonan, Kevin J T

    2015-08-03

    The synthesis and characterization of electron-poor thiophene 1,1-dioxides bearing cyanated phenyl groups are reported. The electron-accepting nature of these compounds was evaluated by cyclic voltammetry, and highly reversible and facile reductions were observed for several derivatives. Moreover, some of the reduced thiophene dioxides form colorful anions, which were investigated spectroelectrochemically. Photoluminescence spectra of the electron-deficient sulfones were measured in CH2 Cl2, and they emit in the blue-green region with significant variation in the quantum yield depending on the aryl substituents. By expanding the degree of substitution on the phenyl rings, quantum yields up to 34 % were obtained. X-ray diffraction data are reported for two of the thiophene 1,1-dioxides, and the electronic structure was probed for all synthesized derivatives through DFT calculations. The dioxides were also examined as electron relays in a photocatalytic water reduction reaction, and they showed potential to boost the efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  16. Synthesis and evaluation of anticonvulsant activities of some new arylhexahydropyrimidine-2,4-diones.

    PubMed

    Caliş, U; Köksal, M

    2001-01-01

    In this study, some new 3-alkyl-6-arylhexahydropyrimidine-2,4-dione derivatives were synthesized as anticonvulsant agents. 6-Arylhexahydropyrimidine-2,4-diones which were used as starting materials in the synthesis of the compounds were prepared in acidic media by the cyclization of potassium cyanate and the appropriate ureido acids that were gained by the reaction of beta-aminoacids, malonic acid and ammonium acetate. The structures of the synthesized compounds were confirmed by UV, IR, 1H-NMR and elementary analysis. Their anticonvulsant activities were determined by maximal electroshock (MES), subcutaneous metrazol (scMet) and rotorod toxicity tests for neurological deficits. According to the activity studies, 3-arylalkyl-6-(p-chlorophenyl) derivatives were found to be protective against scMet, whereas 6-phenyl derivatives were not. 6-Phenyl-3-(2-morpholinoethyl)hexahydropyrimidine-2,4-dione was the only compound determined to be active against MES at 300 mg/kg dose at half an hour.

  17. Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs.

    PubMed

    Winger, A M; Heazlewood, J L; Chan, L J G; Petzold, C J; Permaul, K; Singh, S

    2014-11-01

    Thermomyces lanuginosus is a thermophilic fungus known for its ability to produce industrially important enzymes including large amounts of xylanase, the key enzyme in hemicellulose hydrolysis. The secretome of T. lanuginosus SSBP was profiled by shotgun proteomics to elucidate important enzymes involved in hemicellulose saccharification and to characterise the presence of other industrially interesting enzymes. This study reproducibly identified a total of 74 proteins in the supernatant following growth on corn cobs. An analysis of proteins revealed nine glycoside hydrolase (GH) enzymes including xylanase GH11, β-xylosidase GH43, β-glucosidase GH3, α-galactosidase GH36 and trehalose hydrolase GH65. Two commercially produced Thermomyces enzymes, lipase and amylase, were also identified. In addition, other industrially relevant enzymes not currently explored in Thermomyces were identified including glutaminase, fructose-bisphosphate aldolase and cyanate hydratase. Overall, these data provide insight into the novel ability of a cellulase-free fungus to utilise lignocellulosic material, ultimately producing a number of enzymes important to various industrial processes.

  18. NASA Tech Briefs, February 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics discussed include: Optical Measurement of Mass Flow of a Two-Phase Fluid; Selectable-Tip Corrosion-Testing Electrochemical Cell; Piezoelectric Bolt Breakers and Bolt Fatigue Testers; Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell; Measurements by a Vector Network Analyzer at 325 to 508 GHz; Using Light to Treat Mucositis and Help Wounds Heal; Increasing Discharge Capacities of Li-(CF)(sub n) Cells; Dot-in-Well Quantum-Dot Infrared Photodetectors; Integrated Microbatteries for Implantable Medical Devices; Oxidation Behavior of Carbon Fiber-Reinforced Composites; GIDEP Batching Tool; Generic Spacecraft Model for Real-Time Simulation; Parallel-Processing Software for Creating Mosaic Images; Software for Verifying Image-Correlation Tie Points; Flexcam Image Capture Viewing and Spot Tracking; Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells; Graphite/Cyanate Ester Face Sheets for Adaptive Optics; Atomized BaF2-CaF7 for Better-Flowing Plasma-Spray Feedstock; Nanophase Nickel-Zirconium Alloys for Fuel Cells; Vacuum Packaging of MEMS With Multiple Internal Seal Rings; Compact Two-Dimensional Spectrometer Optics; and Fault-Tolerant Coding for State Machines.

  19. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The serious scientific debate about spontaneous generation which raged for centuries reached a climax in the nineteenth century with the work of Spallanzani, Schwann, Tyndall, and Pasteur. These investigators demonstrated that spontaneous generation from dead organic matter does not occur. Although no aspects of these experiments addressed the issue of whether organic compounds could be synthesized abiotically, the impact of the experiments was great enough to cause many investigators to assume that life and its organic compounds were somehow fundamentally different than inorganic compounds. Meanwhile, other nineteenth-century investigators were showing that organic compounds could indeed be synthesized from inorganic compounds. In 1828 Friedrich Wohler synthesized urea in an attempt to form ammonium cyanate by heating a solution containing ammonia and cyanic acid. This experiment is generally recognized to be the first to bridge the artificial gap between organic and inorganic chemistry, but it also showed the usefulness of heat in organic synthesis. Not only does an increase in temperature enhance the rate of urea synthesis, but Walker and Hambly showed that equilibrium between urea and ammonium cyanate was attainable and reversible at 100 C. Wohler's synthesis of urea, and subsequent syntheses of organic compounds from inorganic compounds over the next several decades dealt serious blows to the 'vital force' concept which held that: (1) organic compounds owe their formation to the action of a special force in living organisms; and (2) forces which determine the behavior of inorganic compounds play no part in living systems. Nevertheless, such progress was overshadowed by Pasteur's refutation of spontaneous generation which nearly extinguished experimental investigations into the origins of life for several decades. Vitalism was dealt a deadly blow in the 1950's with Miller's famous spark-discharge experiments which were undertaken in the framework of the Oparin and Haldane hypotheses concerning the origin of life. These hypotheses were constructed on some basic assumptions which included a reduced atmosphere, and a low surface temperature for the early Earth. These ideas meshed well with the prevailing hypothesis of the 1940's and 50's that the Earth had formed through heterogeneous accretion of dust from a condensing solar nebula. Miller's experiments were extremely successful, and were followed by numerous other experiments by various investigators who employed a wide variety of energy sources for abiotic synthesis including spark discharges, ultra-violet radiation, heat, shock waves, plasmas, gamma rays, and other forms of energy. The conclusion reached from this body of work is that energy inputs can drive organic synthesis from a variety of inorganic starting materials.

  20. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less

  1. Studies on Automated Manufacturing of High Performance Composites

    NASA Technical Reports Server (NTRS)

    Cano, R. J.; Belvin, H. L.; Hulcher, A. B.; Grenoble, R. W.

    2001-01-01

    The NASA Langley Research Center fiber placement facility has proven to be a valuable asset for obtaining data, experience, and insights into the automated fabrication of high performance composites. The facility consists of two automated devices: an Asea Brown Boveri (ABB) robotic arm with a modified heated head capable of hot gas and focused infrared heating and a 7' x 17' gantry containing a feeder head, rotating platform, focused infrared lamp and e-beam gun. While uncured thermoset tow and tape, e.g., epoxy and cyanate prepreg, can be placed with a robot, the placement facility s most powerful attribute is the ability to place thermoplastic and e-beam curable material to net shape. In recent years, ribbonizing techniques have been developed to make high quality thermoplastic and thermoset dry material forms to the standards required for robotic placement. A variety of composites have been fabricated from these ribbons by heated head tow and tape placement including both flat plates and cylinders. Composite mechanical property values of the former were between 85 and 100 percent of those obtained by hand lay-up/autoclave processing.

  2. Kinetics of a Collagen-Like Polypeptide Fragmentation after Mid-IR Free-Electron Laser Ablation

    PubMed Central

    Zavalin, Andrey; Hachey, David L.; Sundaramoorthy, Munirathinam; Banerjee, Surajit; Morgan, Steven; Feldman, Leonard; Tolk, Norman; Piston, David W.

    2008-01-01

    Tissue ablation with mid-infrared irradiation tuned to collagen vibrational modes results in minimal collateral damage. The hypothesis for this effect includes selective scission of protein molecules and excitation of surrounding water molecules, with the scission process currently favored. In this article, we describe the postablation infrared spectral decay kinetics in a model collagen-like peptide (Pro-Pro-Gly)10. We find that the decay is exponential with different decay times for other, simpler dipeptides. Furthermore, we find that collagen-like polypeptides, such as (Pro-Pro-Gly)10, show multiple decay times, indicating multiple scission locations and cross-linking to form longer chain molecules. In combination with data from high-resolution mass spectrometry, we interpret these products to result from the generation of reactive intermediates, such as free radicals, cyanate ions, and isocyanic acid, which can form cross-links and protein adducts. Our results lead to a more complete explanation of the reduced collateral damage resulting from infrared laser irradiation through a mechanism involving cross-linking in which collagen-like molecules form a network of cross-linked fibers. PMID:18441025

  3. Synthesis of the antileukemic compound N,N(11)-[5-[bis(2-chloroethyl)amino]-1, 3-phenylene]bisurea.

    PubMed

    Denny, G H; Ryder, M A; DeMarco, A M; Babson, R D

    1976-03-01

    Conversion of 5-nitro-1, 3-benzenedicarboxylic acid (1) to the diamide 2 followed by hypochlorite rearrangement to the idamine 3 and subsequent reaction with acetic anhydride gave the bisacetamide 4. Reduction to the amine 5 followed by treatment with ethylene oxide formed the diol 6. The latter was converted to the bistosylate 7, which undrewent facile displacement with lithium chloride in acetone to give the mustard 8. Removal of the acetyl groups with hydrochloric acid gave 9, which reacted with potassium cyanate to provide the bisurea 10. In an alternative, but less satisfactory synthesis of 10, the compound (5-nitro-1, 3-phenylene) biscarbamic acid diphenyl ester (11), or the corresponding diethyl ester 12, was converted by ammonolysis to 13. The nitrodiurea 13 was next reduced to the amine 14, the hydrochloride of which reacted with ethylene oxide to give the diol 15. Treatment of the latter in dimethylformamide with N-chlorosuccinimide in the presence of triphenylphosphine gave 10 in low yield. The nitrogen mustards 8, 9 and 10 showed significant antitumor activities against P388 lymphocytic leukemia in mice.

  4. KSC-08pd2088

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center mate the Hubble vertical platform to the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  5. KSC-08pd2098

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center installs a pallet support strut on the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  6. KSC-08pd2097

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center installs a pallet support strut on the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  7. KSC-08pd2089

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center secure the Hubble vertical platform to the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  8. KSC-08pd2096

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center installs a pallet support strut on the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  9. KSC-08pd2094

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center install the pallet support struts on the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  10. KSC-08pd2087

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center move the Hubble vertical platform toward the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope, to which it will be mated. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  11. KSC-08pd2085

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope, elevated at left, is ready to be mated to the Hubble vertical platform, at right. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  12. KSC-08pd2086

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center move the Hubble vertical platform toward the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope, to which it will be mated. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  13. KSC-08pd2095

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. -- In the high bay of the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a worker from NASA's Goddard Space Flight Center documents the installation of a pallet support strut on the Super Lightweight Interchangeable Carrier for the Hubble Space Telescope. The Super Lightweight Interchangeable Carrier, or SLIC, is one of four carriers supporting hardware for space shuttle Atlantis' STS-125 mission to service the telescope. SLIC is built with state-of-the-art, lightweight, composite materials - carbon fiber with a cyanate ester resin and a titanium metal matrix composite. These composites have greater strength-to-mass ratios than the metals typically used in spacecraft design. The Orbital Replacement Unit Carrier, or ORUC, and the Flight Support System, or FSS, have also arrived at Kennedy. The Multi-Use Lightweight Equipment carrier will be delivered in early August. The carriers will be prepared for the integration of telescope science instruments, both internal and external replacement components, as well as the flight support equipment to be used by the astronauts during the Hubble servicing mission, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller

  14. Cyanide and the human brain: perspectives from a model of food (cassava) poisoning.

    PubMed

    Tshala-Katumbay, Desire D; Ngombe, Nadege N; Okitundu, Daniel; David, Larry; Westaway, Shawn K; Boivin, Michael J; Mumba, Ngoyi D; Banea, Jean-Pierre

    2016-08-01

    Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 μmol/l) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual-spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. © 2016 New York Academy of Sciences.

  15. Cyanide and the human brain: perspectives from a model of food (cassava) poisoning

    PubMed Central

    Tshala-Katumbay, Desire D.; Ngombe, Nadege N.; Okitundu, Daniel; David, Larry; Westaway, Shawn K.; Boivin, Michael J.; Mumba, Ngoyi D.; Banea, Jean-Pierre

    2016-01-01

    Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 µmol/L) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual–spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. PMID:27450775

  16. How alkyl halide structure affects E2 and SN2 reaction barriers: E2 reactions are as sensitive as SN2 reactions.

    PubMed

    Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E

    2014-02-07

    High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.

  17. Ionic Liquid-Modified Thermosets and Their Nanocomposites: Dispersion, Exfoliation, Degradation, and Cure

    NASA Astrophysics Data System (ADS)

    Throckmorton, James A.

    This dissertation explores the application of a room temperature ionic liquid (RTIL) to problems in the chemistry, processing, and modification of thermosetting polymers. In particular, the solution properties and reaction chemistry of 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-DCN) are applied to problems of nanoparticle dispersion and processing, graphite exfoliation, cyanate ester (CE) cure, and the environmental degradation of CEs. Nanoparticle Dispersion: Nanocomposite processing can be simplified by using the same compound as both a nanoparticle solvent and an initiator for polymerization. This dual-function molecule can be designed both for solvent potential and reaction chemistry. EMIM-DCN, previously shown by our lab to act as an epoxy initiator, is used in the synthesis of silica and acid expanded graphite composites. These composites are then characterized for particle dispersion and physical properties. Individual particle dispersion of silica nanocomposites is shown, and silica nanocomposites at low loading show individual particle dispersion and improved modulus and fracture toughness. GNP nanocomposites show a 70% increase in modulus along with a 10-order of magnitude increase in electrical conductivity at 6.5 vol%, and an electrical percolation threshold of 1.7 vol%. Direct Graphite Exfoliation By Laminar Shear: This work presents a laminar-shear alternative to chemical processing and chaotic flow-fields for the direct exfoliation of graphite and the single-pot preparation of nanocomposites. Additionally, we develop the theory of laminar flow through a 3-roll mill, and apply that theory to the latest developments in the theory of graphite interlayer shear. The resulting nanocomposite shows low electrical percolation (0.5 vol%) and low thickness (1-3 layer) graphite/graphene flakes. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. Cyanate Ester Cure: Dicyanamide-containing ionic liquids decrease the cure temperature of bi- and tri-functional CEs. During the cure reaction, the dicyanamide anion completely reacts and is incorporated into the triazine network. The cure effect was found in many dicyanamide-containing ionic liquids with diverse cations. This invention creates a novel, ionic thermoset polymer. The dicyanamide initiator provides an alternative to metal and hydroxyl catalysts (which have been shown to accelerate degradation and possess human and environmental toxicity). Additionally, the ionic character of the new polymer, rare among thermosets, lends itself to future research and novel applications. RTIL initiation also paves the way to new CE technologies, including RTIL-CE nanocomposites, prepared by graphite exfoliation and nanocomposite dispersion techniques developed herin.

  18. Mechanical Characterization of the Iter Mock-Up Insulation after Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    The ITER mock-up project was launched in order to demonstrate the feasibility of an industrial impregnation process using the new cyanate ester/epoxy blend. The mock-up simulates the TF winding pack cross section by a stainless steel structure with the same dimensions as the TF winding pack at a length of 1 m. It consists of 7 plates simulating the double pancakes, each of them is wrapped with glass fiber/Kapton sandwich tapes. After stacking the 7 plates, additional insulation layers are wrapped to simulate the ground insulation. This paper presents the results of the mechanical quality tests on the mock-up pancake insulation. Tensile and short beam shear specimens were cut from the plates extracted from the mock-up and tested at 77 K using a servo-hydraulic material testing device. All tests were repeated after reactor irradiation to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. Initial results show a high mechanical strength as expected from the high number of thin glass fiber layers, and an excellent homogeneity of the material.

  19. Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions.

    PubMed

    Tiwari, Diwakar; Kim, Hyoung-Uk; Choi, Bong-Jong; Lee, Seung-Mok; Kwon, Oh-Heung; Choi, Kyu-Man; Yang, Jae-Kyu

    2007-05-01

    The higher oxidation state of iron, i.e. Fe(VI), was employed for the oxidation of the important toxic ion cyanide in aqueous/waste waters. Cyanide was oxidized to cyanate, which is 1,000 times less toxic than cyanide, and can often be accepted for its ultimate disposal. It was noted that Fe(VI) is a very powerful oxidizing agent, and can oxidize most of the cyanide within a few minutes, ca 5 minutes, of contact. The extent of the reduction of Fe(VI) was obtained using the UV-Visible measurements. Further, the UV-Visible data was used to explain the reaction kinetics involved in the redox reaction between ferrate(VI) and cyanide. The pseudo-first-order rate constant was calculated by maintaining the cyanide concentration in excess, with the overall second order rate constant values obtained for initial Fe(VI) concentrations of 1.0 and 0.1 mmol/L. The oxidation of cyanide was again confirmed using a cyanide probe. Fe(VI) was further employed for its possible application in the treatment of industrial wastewaters containing cyanide, along with some heavy metals, such as those obtained from electroplating industries.

  20. Gas Evolution from Insulating Materials for Superconducting Coil of Iter by Gamma Ray Irradiation at Liquid Nitrogen Temperature

    NASA Astrophysics Data System (ADS)

    Idesaki, A.; Koizumi, N.; Sugimoto, M.; Morishita, N.; Ohshima, T.; Okuno, K.

    2008-03-01

    A laminated material composed of glass cloth/polyimide film/epoxy resin will be used as an insulating material for superconducting coil of International Thermonuclear Experimental Reactor (ITER). In order to keep safe and stable operation of the superconducting coil system, it is indispensable to evaluate radiation resistance of the material, because the material is exposed to severe environments such as high radiation field and low temperature of 4 K. Especially, it is important to estimate the amount of gases evolved from the insulating material by irradiation, because the gases affect on the purifying system of liquid helium in the superconducting coil system. In this work, the gas evolution from the laminated material by gamma ray irradiation at liquid nitrogen temperature (77 K) was investigated, and the difference of gas evolution behavior due to difference of composition in the epoxy resin was discussed. It was found that the main gases evolved from the laminated material by the irradiation were hydrogen, carbon monoxide and carbon dioxide, and that the amount of gases evolved from the epoxy resin containing cyanate ester was about 60% less than that from the epoxy resin containing tetraglycidyl-diaminophenylmethane (TGDDM).

  1. Fabrication and Thermo-Optical Properties of the MLS Composite Primary Reflector

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Dyer, Jack; Dummer, Sam

    2000-01-01

    The Microwave Limb Sounder (MLS) is a limb-sounding radiometer sensing emissions in the millimeter and sub-millimeter range. MLS will contribute to an understanding of atmospheric chemistry by assessing stratospheric and tropospheric ozone depletion, climate forcings and volcanic effects. The heart of the antenna is the primary reflector, constructed from graphite/cyanate composites in a facesheet/core construction. The reflector has an aperture of one square meter, a mass of 8.7 kilos and final figure accuracy of 4.37 microns rms. The surface is also modified to ensure RF reflectivity, prevent solar concentration and provide thermal balance to the spacecraft The surface is prepared by precision beadblasting, then coated with vapor deposited aluminum (VDA) and finally a layer of silicon suboxide (SiO(x)) to control the infrared emissivity. The resulting surface has a solar absorptance of 0.43 and an absorptance/emittance ratio of 1.3. BRDF analysis shows that 93% of the incident thermal energy is reflected outside a 10 degree angle of cone. For its mass and aperture, we believe this reflector to have the highest figure accuracy yet achieved in a composite antenna construction.

  2. A Multifunctional Bimetallic Molecular Device for Ultrasensitive Detection, Naked-Eye Recognition, and Elimination of Cyanide Ions.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Wong, Wing-Leung; Gong, Cheng-Bin

    2015-09-07

    A new bimetallic Fe(II) -Cu(II) complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked-eye recognition at the parts-per-million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high-selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN(-) , SO4 (2-) , HCO3 (-) , HPO4 (2-) , N3 (-) , CH3 COO(-) , NCS(-) , NO3 (-) , and Cl(-) ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl(-) from anodic oxidation.

    PubMed

    Tian, Shichao; Li, Yibing; Zeng, Huabin; Guan, Wei; Wang, Yan; Zhao, Xu

    2016-11-15

    Cyanide is widely present in electroplating wastewater or metallurgical effluents. In the present study, the electrochemical destruction of cyanide with various anode and cathode compositions under alkaline conditions was investigated. The results indicated that the electrochemical system using RuO2/Ti as anode and activated carbon fiber (ACF) as cathode in the presence of sodium chloride was efficient for the cyanide removal. In this system, in situ generation of HClO by anodic oxidation of Cl(-) at RuO2/Ti anode occurred with the H2O2 generation by O2 reduction at ACF cathode. As confirmed by the electron spin resonance technique, the reaction between HClO and H2O2 led to the generation of singlet oxygen, which was responsible for the cyanide removal. Further experiment indicated that the cyanide removal efficiency increased with the increase of the current density or the sodium chloride concentration. Cyanate was identified as main product in the system. Besides, the system exhibited good stability for the cyanide removal, which was beneficial to its practical application. Copyright © 2016. Published by Elsevier Inc.

  4. Protein carbamylation predicts mortality in ESRD.

    PubMed

    Koeth, Robert A; Kalantar-Zadeh, Kamyar; Wang, Zeneng; Fu, Xiaoming; Tang, W H Wilson; Hazen, Stanley L

    2013-04-01

    Traditional risk factors fail to explain the increased risk for cardiovascular morbidity and mortality in ESRD. Cyanate, a reactive electrophilic species in equilibrium with urea, posttranslationally modifies proteins through a process called carbamylation, which promotes atherosclerosis. The plasma level of protein-bound homocitrulline (PBHCit), which results from carbamylation, predicts major adverse cardiac events in patients with normal renal function, but whether this relationship is similar in ESRD is unknown. We quantified serum PBHCit in a cohort of 347 patients undergoing maintenance hemodialysis with 5 years of follow-up. Kaplan-Meier analyses revealed a significant association between elevated PBHCit and death (log-rank P<0.01). After adjustment for patient characteristics, laboratory values, and comorbid conditions, the risk for death among patients with PBHCit values in the highest tertile was more than double the risk among patients with values in the middle tertile (adjusted hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.5-3.9) or the lowest tertile (adjusted HR, 2.3; 95% CI, 1.5-3.7). Including PBHCit significantly improved the multivariable model, with a net reclassification index of 14% (P<0.01). In summary, serum PBHCit, a footprint of protein carbamylation, predicts increased cardiovascular risk in patients with ESRD, supporting a mechanistic link among uremia, inflammation, and atherosclerosis.

  5. Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans.

    PubMed

    Dedeoglu, Nurcan; De Luca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T

    2015-07-01

    The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 4-(Naphthalene-2-carboxamido)­pyridin-1-ium thio­cyanate–N-(pyridin-4-yl)naphthalene-2-carboxamide (1/1)

    PubMed Central

    Saeed, Sohail; Rashid, Naghmana; Butcher, Ray J.; Öztürk Yildirim, Sema; Hussain, Rizwan

    2012-01-01

    The asymmetric unit of the title compound, C16H13N2O+·NCS−·C16H12N2O, contains two N-(pyridin-4-yl)naphthalene-2-carboxamide mol­ecules, both are partially protonated in the pyridine moiety, i.e. the H atom attached to the pyridine N atom is partially occupied with an occupancy factor of 0.61 (3) and 0.39 (3), respectively. In the crystal, protonated and neutral N-(pyridin-4-yl)naphthalene-2-carboxamide mol­ecules are linked by N—H⋯N hydrogen bonding; the thio­cyanate counter-ion links with both protonated and neutral N-(pyridin-4-yl)naphthalene-2-carboxamide mol­ecules via N—H⋯S and N—H⋯N hydrogen bonding. The dihedral angles between the pyridine ring and naphthalene ring systems are 11.33 (6) and 9.51 (6)°, respectively. π–π stacking is observed in the crystal structure, the shortest centroid–centroid distance being 3.5929 (8) Å. The crystal structure was determined from a nonmerohedral twin {ratio of the twin components = 0.357 (1):0.643 (1) and twin law [-100 0-10 -101]}. PMID:23125774

  7. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  8. Ambient‐Temperature Synthesis of 2‐Phosphathioethynolate, PCS–, and the Ligand Properties of ECX– (E = N, P; X = O, S)

    PubMed Central

    Jupp, Andrew R.; Geeson, Michael B.; McGrady, John E.

    2015-01-01

    Abstract A synthesis of the 2‐phosphathioethynolate anion, PCS–, under ambient conditions is reported. The coordination chemistry of PCO–, PCS– and their nitrogen‐containing congeners is also explored. Photolysis of a solution of W(CO)6 in the presence of PCO– [or a simple ligand displacement reaction using W(CO)5(MeCN)] affords [W(CO)5(PCO)]– (1). The cyanate and thiocyanate analogues, [W(CO)5(NCO)]– (2) and [W(CO)5(NCS)]– (3), are also synthesised using a similar methodology, allowing for an in‐depth study of the bonding properties of this family of related ligands. Our studies reveal that, in the coordination sphere of tungsten(0), the PCO– anion preferentially binds through the phosphorus atom in a strongly bent fashion, while NCO– and NCS– coordinate linearly through the nitrogen atom. Reactions between PCS– and W(CO)5(MeCN) similarly afford [W(CO)5(PCS)]–; however, due to the ambidentate nature of the anion, a mixture of both the phosphorus‐ and sulfur‐bonded complexes (4a and 4b, respectively) is obtained. It was possible to establish that, as with PCO–, the PCS– ion also coordinates to the metal centre in a bent fashion. PMID:27134553

  9. Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7.

    PubMed

    Zhao, Xu; Zhang, Juanjuan; Qiao, Meng; Liu, Huijuan; Qu, Jiuhui

    2015-04-07

    Simultaneous photoelectrocatalytic (PEC) oxidation of cyanides and recovery of copper in a PEC reactor with a Bi(2)MoO(6) photoanode was investigated at alkaline conditions under visible light irradiation. The surface variation of the Bi(2)MoO(6) photoanode and titanium cathode was characterized. The Cu mass distribution onto the anode, in the solution, and onto the cathode was fully investigated. In the individual PEC oxidation of copper cyanides, the formation of a black copper oxide on the anode occurred. By keeping the initial cyanide concentration at 0.01 mM, the effect of EDTA/K(4)P(2)O(7) was examined at different molar ratios of EDTA/K(4)P(2)O(7) to cyanide. It was indicated that the oxidation of cyanides increased and simultaneous copper electrodeposition with zero value onto the cathode was feasible at pH 11. Under the optimal conditions, the total cyanide concentration was lowered from 250 to 5.0 mg/L, and the Cu recovery efficiency deposited onto the cathode was higher than 90%. Cyanate was the only product. The role of the photogenerated hole in the oxidation of cyanide ions was confirmed.

  10. Chlorination kinetics of glyphosate and its by-products: modeling approach.

    PubMed

    Brosillon, Stephan; Wolbert, Dominique; Lemasle, Marguerite; Roche, Pascal; Mehrsheikh, Akbar

    2006-06-01

    Chlorination reactions of glyphosate, glycine, and sodium cyanate were conducted in well-agitated reactors to generate experimental kinetic measurements for the simulation of chlorination kinetics under the conditions of industrial water purification plants. The contribution of different by-products to the overall degradation of glyphosate during chlorination has been identified. The kinetic rate constants for the chlorination of glyphosate and its main degradation products were either obtained by calculation according to experimental data or taken from published literature. The fit of the kinetic constants with experimental data allowed us to predict consistently the concentration of the majority of the transitory and terminal chlorination products identified in the course of the glyphosate chlorination process. The simulation results conducted at varying aqueous chlorine/glyphosate molar ratios have shown that glyphosate is expected to degrade in fraction of a second under industrial aqueous chlorination conditions. Glyphosate chlorination products are not stable under the conditions of drinking water chlorination and are degraded to small molecules common to the degradation of amino acids and other naturally occurring substances in raw water. The kinetic studies of the chlorination reaction of glyphosate, together with calculations based on kinetic modeling in conditions close to those at real water treatment plants, confirm the reaction mechanism that we have previously suggested for glyphosate chlorination.

  11. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  12. Anion inhibition profiles of the γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics.

    PubMed

    Del Prete, Sonia; Vullo, Daniela; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2017-01-15

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium responsible of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. A recombinant γ-CA (BpsγCA) identified in the genome of this bacterium was cloned and purified. Its catalytic activity and anion inhibition profiles were investigated. The enzyme was an efficient catalyst for the CO 2 hydration showing a k cat of 5.3×10 5 s -1 and k cat /K m of 2.5×10 7 M -1 ×s -1 . The best BpsγCA inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed K I in the range of 49-83μM (these inhibitors showed millimolar inhibition constant against hCA II), followed by diethyldithiocarbamate, selenate, tellurate, perrhenate, selenocyanate, trithiocarbonate, tetraborato, pyrophosphate, stannate, carbonate, bicarbonate, azide, cyanide, thiocyanate and cyanate with K I s in the range of 0.55-9.1mM. In our laboratories, work is in progress to resolve the X-ray crystal structures of BpsγCA, which may allow the development of small molecule inhibitors with desired properties for targeting and inhibiting specifically the bacterial over the human CAs, considering the fact that B. pseudomallei is involved in a serious bacterial disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Radiation Shielding Study of Advanced Data and Power Management Systems (ADPMS) Housing Using Geant4

    NASA Astrophysics Data System (ADS)

    Garcia, F.; Kurvinen, K.; Brander, T.; Orava, R.; Heino, J.; Virtanen, A.; Kettunen, H.; Tenhunen, M.

    2008-02-01

    A design goal for current space system is to reduce the mass used to enclose components of the spacecraft. One potential target is to reduce the mass of electronics and its housings. The use of composite materials, especially CFRP (Carbon Fiber Reinforced Plastic) is a well known and vastly used approach to mass reduction. A design goal, cost reduction, has increased the use of commercial (non-space qualified) electronics. These commercial circuits and other components cannot tolerate as high radiation levels as space qualified components. Therefore, the use of standard electronics components poses a challenge in terms of the radiation protection capability of the ADPMS housings. The main goal of this study is to provide insight on the radiation shielding protection produced by different configurations of CFRP tungsten laminates of epoxies and cyanate esters and then to compare them to the protection given by the commonly used aluminum. For a spacecraft operating in LEO and MEO orbits the main components of the space radiation environment are energetic electrons and protons, therefore in our study we will compare the experimental and simulation results of the radiation attenuation of different types of laminates for those particles. At the same time the experimental data has been used to validate the Geant4 model of the laminates, which can be used for future optimizations of the laminate structures.

  14. Catalyst displacement assay: a supramolecular approach for the design of smart latent catalysts for pollutant monitoring and removal† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05584b Click here for additional data file.

    PubMed Central

    Ho, Pui-Yu; Lu, Yu-Jing; Tang, Qian

    2017-01-01

    Latent catalysts can be tuned to function smartly by assigning a sensing threshold using the displacement approach for targeted analytes. Three cyano-bridged bimetallic complexes were synthesized as “smart” latent catalysts through the supramolecular assembly of different metallic donors [FeII(CN)6]4–, [FeII(tBubpy)(CN)4]2–, and FeII(tBubpy)2(CN)2 with a metallic acceptor [CuII(dien)]2+. The investigation of both their thermodynamic and kinetic properties on binding with toxic pollutants provided insight into their smart off–on catalytic capabilities, enabling us to establish a threshold-controlled catalytic system for the degradation of pollutants such as cyanide and oxalate. With these smart latent catalysts, a new catalyst displacement assay (CDA) was demonstrated and applied in a real wastewater treatment process to degrade cyanide pollutants in both domestic (level I, untreated) and industrial wastewater samples collected in Hong Kong, China. The smart system was adjusted to be able to initiate the catalytic oxidation of cyanide at a threshold concentration of 20 μM (the World Health Organization’s suggested maximum allowable level for cyanide in wastewater) to the less harmful cyanate under ambient conditions. PMID:28580114

  15. Reactions of the melatonin metabolite N(1)-acetyl-5-methoxykynuramine with carbamoyl phosphate and related compounds.

    PubMed

    Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia

    2010-01-01

    N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.

  16. High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7T, and emended description of the genus Halotalea

    DOE PAGES

    Ntougias, Spyridon; Lapidus, Alla; Copeland, Alex; ...

    2015-08-13

    Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7T are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp longmore » and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7T encodes the catechol and protocatechuate degradation to β-ketoadipate via the β-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. Lastly, an emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain.« less

  17. Radiation-induced preparation of core/shell gold/albumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Flores, Constanza Y.; Achilli, Estefania; Grasselli, Mariano

    2018-01-01

    Nanoparticles (NPs) are one of the most promising nanomaterials to be used in the biomedical field. Gold NPs (Au-NPs) have been covered with monolayers of many different molecules and macromolecules to prepare different kinds of biosensors. However, these coatings based on physisorption methods are not stable enough to prepare functional nanomaterials to be used in complex mixtures or in vivo applications. The aim of this work was to prepare a protein coating of Au-NPs based on a protein multilayer covering, stabilized by a novel radiation-induced crosslinking process. Albumins from human and bovine source were added to Au-NPs suspension and followed by ethanol addition to induce protein aggregation. Samples were irradiated with a gamma source at 10 kGy to induce a protein crosslinking according to recent findings. Samples containing 30%v/v ethanol showed a plasmon peak at about 532 nm, demonstrating the presence of non-aggregated Au-NPs. Using higher ethanol concentrations, the absorbance of plasmon peak showed NP aggregation. By Dynamic Light Scattering measurements, a new particle population with an average diameter of about 60 nm was found. Moreover, TEM images showed that the NPs had spherical shape and the presence of a low-density halo around the metal core confirmed the presence of the protein shell. An irradiation dose of one kGy was enough to show changes in the plasmon peak characteristics. The increase in the chemical stability of protein shell was demonstrated by the reduction in the NP dissolution kinetics in presence of cyanate.

  18. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    PubMed

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  19. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics.

    PubMed

    Moitinho-Silva, Lucas; Díez-Vives, Cristina; Batani, Giampiero; Esteves, Ana Is; Jahn, Martin T; Thomas, Torsten

    2017-07-01

    Despite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C. concentrica, belonging to the proteobacterial family Phyllobacteriaceae, the Nitrospira genus and the thaumarchaeal order Nitrosopumilales. Gene expression was estimated by mapping C. concentrica metatranscriptomic reads. Our analyses indicated that CcPhy is heterotrophic, while CcNi and CcThau are chemolithoautotrophs. CcPhy expressed many transporters for the acquisition of dissolved organic compounds, likely available through the sponge's filtration activity and symbiotic carbon fixation. Coupled nitrification by CcThau and CcNi was reconstructed, supported by the observed close proximity of the cells in fluorescence in situ hybridization. CcPhy facultative anaerobic respiration and assimilation by diatoms may consume the resulting nitrate. Transcriptional analysis of diatom and sponge functions indicated that these organisms are likely sources of organic compounds, for example, creatine/creatinine and dissolved organic carbon, for other members of the symbiosis. Our results suggest that organic nitrogen compounds, for example, creatine, creatinine, urea and cyanate, fuel the nitrogen cycle within the sponge. This study provides an unprecedented view of the metabolic interactions within sponge-microbe symbiosis, bridging the gap between cell- and community-level knowledge.

  20. Pyrimidine homoribonucleosides: synthesis, solution conformation, and some biological properties.

    PubMed

    Lassota, P; Kuśmierek, J T; Stolarski, R; Shugar, D

    1987-05-01

    Conversion of uridine and cytidine to their 5'-O-tosyl derivatives, followed by cyanation with tetraethylammonium cyanide, reduction and deamination, led to isolation of the hitherto unknown homouridine (1-(5'-deoxy-beta-D-allofuranosyl)uracil) and homocytidine (1-(5'-deoxy-beta-D-allofuranosyl)cytosine), analogues of uridine and cytidine in which the exocyclic 5'-CH2OH chain is extended by one carbon to CH2CH2OH. Homocytidine was also phosphorylated to its 6'-phosphate and 6'-pyrophosphate analogues. In addition, it was converted, via its 2,2'-anhydro derivative, to arahomocytidine, an analogue of the chemotherapeutically active araC. The structures of all the foregoing were established by various criteria, including 1H and 13C NMR spectroscopy, both of which were also applied to analyses of the solution conformations of the various compounds, particularly as regards the conformations of the exocyclic chains. The behaviour of the homo analogues was examined in several enzymatic systems. Homocytidine was a feeble substrate, without inhibitory properties, of E. coli cytidine deaminase. Homocytidine was an excellent substrate for wheat shoot nucleoside phosphotransferase; while homouridine was a good substrate for E. coli uridine phosphorylase. Although homoCMP was neither a substrate, nor an inhibitor, of snake venom 5'-nucleotidase, homoCDP was a potent inhibitor of this enzyme (Ki approximately 6 microM). HomoCDP was not a substrate for M. luteus polynucleotide phosphorylase. None of the compounds exhibited significant activity vs herpes simplex virus type 1, or cytotoxic activity in several mammalian cell lines.

  1. Properties of radiation stable insulation composites for fusion magnet

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng

    2017-09-01

    High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.

  2. Carbamylated low-density lipoprotein attenuates glucose uptake via a nitric oxide-mediated pathway in rat L6 skeletal muscle cells.

    PubMed

    Choi, Hye-Jung; Lee, Kyoung Jae; Hwang, Eun Ah; Mun, Kyo-Cheol; Ha, Eunyoung

    2015-07-01

    Carbamylation is a cyanate-mediated posttranslational modification. We previously reported that carbamylated low-density lipoprotein (cLDL) increases reactive oxygen species and apoptosis via a lectin-like oxidized LDL receptor mediated pathway in human umbilical vein endothelial cells. A recent study reported an association between cLDL and type 2 diabetes mellitus (T2DM). In the current study, the effects of cLDL on glucose transport were explored in skeletal muscle cells. The effect of cLDL on glucose uptake, glucose transporter 4 (GLUT4) translocation, and signaling pathway were examined in cultured rat L6 muscle cells using 2-deoxyglucose uptake, immunofluorescence staining and western blot analysis. The quantity of nitric oxide (NO) was evaluated by the Griess reaction. The effect of native LDL (nLDL) from patients with chronic renal failure (CRF-nLDL) on glucose uptake was also determined. It was observed that cLDL significantly attenuated glucose uptake and GLUT4 translocation to the membrane, which was mediated via the increase in inducible nitric oxide synthase (iNOS)-induced NO production. Tyrosine nitration of the insulin receptor substrate-1 (IRS‑1) was increased. It was demonstrated that CRF-nLDL markedly reduced glucose uptake compared with nLDL from healthy subjects. Collectively, these findings indicate that cLDL, alone, attenuates glucose uptake via NO-mediated tyrosine nitration of IRS‑1 in L6 rat muscle cells and suggests the possibility that cLDL is involved in the pathogenesis of T2DM.

  3. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  4. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  5. Semi- and thiosemicarbazide Mn(II) complexes: Characterization, DFT and biological studies

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Alduaij, O. K.; Ahmed, Sara F.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2016-09-01

    One NO and two NOS donor ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Mn (II) complexes were prepared from the chloride salt and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Mn(HPAPS)2], [Mn(HPAPT)Cl] and [Mn(HPABT)Cl(H2O)2], respectively. The IR study of ligands and their complexes shows that H2PAPS behaves as a mononegative tridentate via both CO of hydrazide moiety in keto and deprotonated enol form and CN (azomethine) due to enolization of CO cyanate moiety without deprotonation. H2PAPT behaves as mononegative tridentate via CO of hydrazide moiety, deprotonated thiol CS and NH group. Finally H2PABT behaves as mononegative tridentate via deprotonated enolized CO of hydrazide moiety, CO of benzoyl moiety and NH group. The IR spectra of ligands from DFT calculations are compared with those obtained experimentally. Also, HOMO, LUMO, the bond lengths, bond angles, and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. The binding energy values display the high stability of complexes. The kinetic and thermodynamic parameters were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against Bacillus subtilis and Escherichia coli bacteria. Finally, the antitumor activities of the Ligands and their Mn(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells.

  6. Resonance and Variable Temperature Raman Studies of Chloroperoxidase and Methemoglobin.

    NASA Astrophysics Data System (ADS)

    Remba, Ronald David

    1980-12-01

    Raman spectra of the heme proteins chloroperoxidase and methemoglobin, chemically and temperature modified, are obtained for laser excitation near the Soret absorption band. Numerous biochemical and physical results are obtained. The following observations for chloroperoxidase have been made. The scattered intensity for resonance (406.7 nm) excitation is at least twenty times that for near resonance (457.9 nm) excitation. In resonance only totally symmetric modes are enhanced. The positions of marker band I ((TURN) 1370 cm(' -1)) for both the native and reduced enzymes are lower than expected for high-spin heme proteins indicating a strongly electron donating axial ligand. From shifts in spin-sensitive Raman peaks as the temperature is lowered, a high-spin to low-spin transition of the heme iron is inferred. Raman spectra of chloroperoxidase liganded with small ions indicate that there is a second anion binding site near the heme. Photo-dissociation of CO from reduced chloroperoxidase is observed. The position of marker band I in the CO complex indicates that electron density is transferred from the heme onto the CO. The resonance Raman spectra of chloroperoxidase and cytochrome P-450 are nearly identical and are very different from those of horseradish peroxidase and cytochrome c. These results, particularly for the reduced enzymes, indicate that the heme sites in chloroperoxidase and P -450 are essentially the same. Raman spectra of a number of methemoglobins complexed with various small ions are obtained as a function of temperature in the region of spin-sensitive marker band (II) ((TURN) 1500 cm('-1)) for laser excitation near the Soret absorption band. For certain ligands, H(,2)O, N(,3)('-), OCN('-), OH('-) and SCN('-), the iron spin state changes from high spin to low spin with decreasing temperature. The relative spin concentrations are monitored by measuring the Raman intensity ratio, I(,h)/I(,1), of the high-spin and low -spin versions of marker band (II) as a function of temperature. This is the first study where the marker band technique is used to measure quantitatively spin transitions. For hydroxide and cyanate methemoglobin, log(I(,h)/I(,1)) varies linearly with 1/T, indicating a high-spin/low-spin thermal equilibrium. The data are analyzed to extract enthalpic and entropic changes. (DELTA)H values from Raman and static magnetic susceptibility techniques show good agreement. (DELTA)S values for horse hydroxide methemoglobin also agree. However, for cyanate methemoglobin, Raman and susceptibility (DELTA)S values differ substantially. Other evidence (ESR, optical, etc.) supports the Raman result. The discrepancy is probably due to the effects of freezing on the protein solution. Other methemoglobins show a discontinuity in the Raman intensity ratio at the freezing transition indicating a non-equilibrium situation where the freezing process drives the spin transition. Effects of freezing the protein solution on the spin transition are discussed. Both the high-spin and low-spin Raman frequencies are observed to remain constant (within (+OR-) 2 cm('-1)) when the temperature is varied. This is discussed in terms of core expansion and heme deformation. Experimental (DELTA)S values are much larger than the spin-only value. This is discussed in terms of a linear temperature dependence on the energy gap between the ('2)T(,2) ground state and the ('6)A(,1) first excited state. Variable temperature Raman data for carp azide methemoglobin with and without IHP indicate that the free energy for the spin transition decreases by 0.6 (+OR-) 0.3 kcal/mole when hemoglobin quaternary structure changes from R to T. Lack of any frequency shift in either the high-spin or low-spin Raman band upon addition of IHP is consistent with other evidence indicating no iron movement upon conversion of R to T quaternary forms.

  7. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of Class Ic ribonucleotide reductases.

    PubMed

    Zhou, Ang; Crossland, Patrick M; Draksharapu, Apparao; Jasniewski, Andrew J; Kleespies, Scott T; Que, Lawrence

    2018-01-01

    Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of Fe III -O-Cr III and Fe III -O-Mn III complexes is described herein. The latter complexes may serve as models for the Fe III -X-Mn III active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The Fe III -O-Cr III complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with Fe III -O-Fe III complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the Fe III -O-Mn III complexes resemble Fe III -O-Fe III complexes more closely. Resonance Raman characterization of the Fe III -O-M III complexes reveals an 18 O-sensitive vibration in the range of 760-890 cm -1 . This feature has been assigned to the asymmetric Fe III -O-M III stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the Fe III -O-Mn III complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.

  8. Synthesis of iron composites on nano-pore substrates: identification and its application to removal of cyanide.

    PubMed

    Do, Si-Hyun; Jo, Young-Hoon; Park, Ho-Dong; Kong, Sung-Ho

    2012-11-01

    Two types of nano-pore substrates, waste-reclaimed (WR) and soil mineral (SM) with the relatively low density, were modified by the reaction with irons (i.e. Fe(II):Fe(III)=1:2) and the applicability of the modified substrates (i.e. Fe-WR and Fe-SM) on cyanide removal was investigated. Modification (i.e. Fe immobilization on substrate) decreased the BET surface area and PZC of the original substrates while it increased the pore diameter and the cation exchange capacity (CEC) of them. XRD analysis identified that maghemite (γ-Fe(2)O(3)) and iron silicate composite ((Mg, Fe)SiO(3)) existed on Fe-WR, while clinoferrosilite (FeSiO(3)) was identified on Fe-SM. Cyanide adsorption showed that WR adsorbed cyanide more favorably than SM. The adsorption ability of both original substrates was enhanced by the modification, which increased the negative charges of the surfaces. Without the pH adjustment, cyanide was removed as much as 97% by the only application of Fe-WR, but the undesirable transfer to hydrogen cyanide was possible because the pH was dropped to around 7.5. With a constant pH of 12, only 54% of cyanide was adsorbed on Fe-WR. On the other hand, the pH was kept as 12 without adjustment in Fe-WR/H(2)O(2) system and cyanide was effectively removed by not only adsorption but also the catalytic oxidation. The observed first-order rate constant (k(obs)) for cyanide removal were 0.49 (± 0.081) h(-1). Moreover, the more cyanate production with the modified substrates indicated the iron composites, especially maghemite, on substrates had the catalytic property to increase the reactivity of H(2)O(2). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Understanding Strategy of Nitrate and Urea Assimilation in a Chinese Strain of Aureococcus anophagefferens through RNA-Seq Analysis

    PubMed Central

    Dong, Hong-Po; Huang, Kai-Xuan; Wang, Hua-Long; Lu, Song-Hui; Cen, Jing-Yi; Dong, Yue-Lei

    2014-01-01

    Aureococcus anophagefferens is a harmful alga that dominates plankton communities during brown tides in North America, Africa, and Asia. Here, RNA-seq technology was used to profile the transcriptome of a Chinese strain of A. anophagefferens that was grown on urea, nitrate, and a mixture of urea and nitrate, and that was under N-replete, limited and recovery conditions to understand the molecular mechanisms that underlie nitrate and urea utilization. The number of differentially expressed genes between urea-grown and mixture N-grown cells were much less than those between urea-grown and nitrate-grown cells. Compared with nitrate-grown cells, mixture N-grown cells contained much lower levels of transcripts encoding proteins that are involved in nitrate transport and assimilation. Together with profiles of nutrient changes in media, these results suggest that A. anophagefferens primarily feeds on urea instead of nitrate when urea and nitrate co-exist. Furthermore, we noted that transcripts upregulated by nitrate and N-limitation included those encoding proteins involved in amino acid and nucleotide transport, degradation of amides and cyanates, and nitrate assimilation pathway. The data suggest that A. anophagefferens possesses an ability to utilize a variety of dissolved organic nitrogen. Moreover, transcripts for synthesis of proteins, glutamate-derived amino acids, spermines and sterols were upregulated by urea. Transcripts encoding key enzymes that are involved in the ornithine-urea and TCA cycles were differentially regulated by urea and nitrogen concentration, which suggests that the OUC may be linked to the TCA cycle and involved in reallocation of intracellular carbon and nitrogen. These genes regulated by urea may be crucial for the rapid proliferation of A. anophagefferens when urea is provided as the N source. PMID:25338000

  10. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P.; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal−cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal−cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source. PMID:28253357

  11. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater.

    PubMed

    Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D

    2015-11-20

    Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS).

    PubMed

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal-cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source.

  13. Crystal structure of bis­[cis-(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne-κ4 N)bis(thio­cyanato-κN)chrom­ium(III)] dichromate monohydrate from synchrotron X-ray diffraction data

    PubMed Central

    Moon, Dohyun; Takase, Masahiro; Akitsu, Takashiro; Choi, Jong-Ha

    2017-01-01

    The structure of the complex salt, cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), has been determined from synchrotron data. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O7 2− anion (completed by inversion symmetry) and one half of a water mol­ecule (completed by twofold rotation symmetry). The CrIII ion is coordinated by the four cyclam N atoms and by two N atoms of cis-arranged thio­cyanate anions, displaying a distorted octa­hedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å while the average Cr—N(NCS) bond length is 1.985 (4) Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The bridging O atom of the dichromate anion is disordered around an inversion centre, leading to a bending of the Cr—O—Cr bridging angle [157.7 (3)°]; the anion has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the Cr2O7 2− anion and water mol­ecules as acceptor groups, giving rise to a three-dimensional network. PMID:28083140

  14. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  15. Oxygen-atom transfer reactivity of axially ligated Mn(V)-oxo complexes: evidence for enhanced electrophilic and nucleophilic pathways.

    PubMed

    Neu, Heather M; Yang, Tzuhsiung; Baglia, Regina A; Yosca, Timothy H; Green, Michael T; Quesne, Matthew G; de Visser, Sam P; Goldberg, David P

    2014-10-01

    Addition of anionic donors to the manganese(V)-oxo corrolazine complex Mn(V)(O)(TBP8Cz) has a dramatic influence on oxygen-atom transfer (OAT) reactivity with thioether substrates. The six-coordinate anionic [Mn(V)(O)(TBP8Cz)(X)](-) complexes (X = F(-), N3(-), OCN(-)) exhibit a ∼5 cm(-1) downshift of the Mn-O vibrational mode relative to the parent Mn(V)(O)(TBP8Cz) complex as seen by resonance Raman spectroscopy. Product analysis shows that the oxidation of thioether substrates gives sulfoxide product, consistent with single OAT. A wide range of OAT reactivity is seen for the different axial ligands, with the following trend determined from a comparison of their second-order rate constants for sulfoxidation: five-coordinate ≈ thiocyanate ≈ nitrate < cyanate < azide < fluoride ≪ cyanide. This trend correlates with DFT calculations on the binding of the axial donors to the parent Mn(V)(O)(TBP8Cz) complex. A Hammett study was performed with p-X-C6H4SCH3 derivatives and [Mn(V)(O)(TBP8Cz)(X)](-) (X = CN(-) or F(-)) as the oxidant, and unusual "V-shaped" Hammett plots were obtained. These results are rationalized based upon a change in mechanism that hinges on the ability of the [Mn(V)(O)(TBP8Cz)(X)](-) complexes to function as either an electrophilic or weak nucleophilic oxidant depending upon the nature of the para-X substituents. For comparison, the one-electron-oxidized cationic Mn(V)(O)(TBP8Cz(•+)) complex yielded a linear Hammett relationship for all substrates (ρ = -1.40), consistent with a straightforward electrophilic mechanism. This study provides new, fundamental insights regarding the influence of axial donors on high-valent Mn(V)(O) porphyrinoid complexes.

  16. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  17. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex

    NASA Astrophysics Data System (ADS)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella

    2017-07-01

    Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under mild conditions.

  18. Soil fate of agricultural fumigants in raised-bed, plasticulture systems in the southeastern United States.

    PubMed

    Chellemi, Dan O; Ajwa, Husein A; Sullivan, David A; Alessandro, Rocco; Gilreath, James P; Yates, Scott R

    2011-01-01

    Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Histochemical and biochemical studies of carbonic anhydrase activity in the opercular epithelium of the euryhaline teleost, Fundulus heteroclitus.

    PubMed

    Lacy, E R

    1983-01-01

    Carbonic anhydrase (CAH) activity was biochemically measured and histochemically localized (at both the light and electron microscope levels) in isolated opercular membranes from teleost fish, Fundulus heteroclitus, adapted to freshwater (FW), seawater (SW), and double-strength seawater (2 x SW). The normal morphology of this membrane showed that its epithelial portion consisted of five cell types: (1) chloride cells, which have been previously implicated as responsible for the active chloride transport across the epithelium; (2) mucous cells; (3) pavement cells, which formed the major portion of the free epithelial surface; (4) supportive cells, which had an abundance of intermediate (10 nm)-type filaments suggesting a structural role for these cells; and (5) vesicular cells, which were characterized by various types of membrane-bound vesicles, including lysosomes, and numerous free ribosomes. Vesicular cells may be stem cells and/or endocrine cells. Hansson's histochemical method for CAH revealed cobalt sulfide reaction product confined to the following structures in fish from each environment: (1) chloride cells: throughout the cytoplasm and some nuclear staining; (2) mucous cells: throughout the cytoplasm, some nuclear staining, and some in mucous granules; (3) vesicular cells: confined to lysosomes, some of the vesicles, and nucleoli; (4) a small portion of the intracellular space between adjacent vesicular cells and supportive cells; and (5) supportive cells: in nucleoli and occasionally in larger membrane-bound lysosomelike structures. Acetazolamide (10(-5) M) and potassium cyanate (KCNO) (10(-1) M) in Hansson's incubation medium completely inhibited the formation of reaction product. Biochemical determination of CAH activity on vascularly perfused, isolated opercular membranes showed no statistically significant difference in enzyme activity between environmental groups. The following units of activity/mg opercular membrane protein were measured: FW: 0.63 +/- 0.02; SW: 0.43 +/- 0.08; 2 x SW: 0.64 +/- 0.09.

  20. Laboratory Analysis Of Water, Hydrocarbon And Ammonia Ice Mixtures Exposed To High-energy Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Hand, Kevin P.; Carlson, R. W.; Tsapin, A. I.

    2006-09-01

    Irradiation of low temperature ices in the laboratory provides insight into processes that may be occurring on icy bodies in the solar system. Here we report on results from high-energy (10keV) electron irradiation of thin ice films at 1e-8 torr and 70-120K. Mixtures include water with CO2, C3H8, C3H6, C4H10 (butane and isobutane), C4H8,(1-butene and cis/trans-2-butene), and NH3. During irradiation of H2O + alkane films at 80K, CO2 and CH4 production is observed and both species are retained in the ice, possibly trapped in clathrates. The -CH3 infrared bands initially present are seen to decrease with increasing dose. Bands associated with -CH2- persist, indicating polymerization of the initial short-chain hydrocarbons. In alkenes a similar evolution toward polymerization is observed, however the first step appears to be the destruction of the C=C bond. Upon warming of the film, mass spectra data compliment the mid-infrared data and indicate the production of H2CO, however glycolic acid is not explicitly seen in the mass spectra. When warmed to 300K, residues remained for all irradiated films except that of the H2O + CO2 mixtures. Residues were analyzed with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI). Results show the production of large aliphatic, very refractory, hydrocarbons (with m/z up to 2500). Mid-infrared spectra of the residues indicate carbonyls and alcohols, likely due to polymerized aldehydes and carboxylic acids. Films of H2O + C3H8 + NH3 at 70K show the production of OCN- (cyanate ion), formamide, along with other possible amides and hydrocarbons. HPLC results indicate the production of racemic alanine. Finally, results of abiotic experiments are compared to results from the irradiation of bacterial spores in ice. The application to Europa and Enceladus is discussed.

  1. Inorganic chemistry of defensive peroxidases in the human oral cavity.

    PubMed

    Ashby, M T

    2008-10-01

    The innate host response system is comprised of various mechanisms for orchestrating host response to microbial infection of the oral cavity. The heterogeneity of the oral cavity and the associated microenvironments that are produced give rise to different chemistries that affect the innate defense system. One focus of this review is on how these spatial differences influence the two major defensive peroxidases of the oral cavity, salivary peroxidase (SPO) and myeloperoxidase (MPO). With hydrogen peroxide (H(2)O(2)) as an oxidant, the defensive peroxidases use inorganic ions to produce antimicrobials that are generally more effective than H(2)O(2) itself. The concentrations of the inorganic substrates are different in saliva vs. gingival crevicular fluid (GCF). Thus, in the supragingival regime, SPO and MPO work in unison for the exclusive production of hypothiocyanite (OSCN(-), a reactive inorganic species), which constantly bathes nascent plaques. In contrast, MPO is introduced to the GCF during inflammatory response, and in that environment it is capable of producing hypochlorite (OCl(-)), a chemically more powerful oxidant that is implicated in host tissue damage. A second focus of this review is on inter-person variation that may contribute to different peroxidase function. Many of these differences are attributed to dietary or smoking practices that alter the concentrations of relevant inorganic species in the oral cavity (e.g.: fluoride, F(-); cyanide, CN(-); cyanate, OCN(-); thiocyanate, SCN(-); and nitrate, NO(3)(-)). Because of the complexity of the host and microflora biology and the associated chemistry, it is difficult to establish the significance of the human peroxidase systems during the pathogenesis of oral diseases. The problem is particularly complex with respect to the gingival sulcus and periodontal pockets (where the very different defensive stratagems of GCF and saliva co-mingle). Despite this complexity, intriguing in vitro and in vivo studies are reviewed here that reveal the interplay between peroxidase function and associated inorganic chemistry.

  2. Study of a newly developed high-performance liquid chromatography analyser for glycosylated haemoglobin measurements in blood containing haemoglobin variants in the Japanese population.

    PubMed

    Miyashita, Tetsuo; Sugiyama, Takahiro; Yamadate, Shuukoh; Nagashima, Masaaki; Satomura, Atsushi; Nakayama, Tomohiro

    2014-09-01

    This study examined the new high-performance liquid chromatography analyser HLC-723GX (GX) and investigated its ability to both measure glycosylated haemoglobin (HbA1c) values and determine whether haemoglobin variants could cause interference with these measurements in the Japanese population. For the basic GX examination, the within- and between-run precision, linearity of measurements, correlation of HbA1c values with current systems and the interference of chemically modified haemoglobin were determined. GX interference caused by the haemoglobin variant was examined by analysing 39 clinical laboratory samples that contained haemoglobin variants. Good within- and between-run precision were found, with the coefficients of variation at ≤1.0%. A wide range of HbA1c measurement values were confirmed, with the HbA1c values strongly correlated with the results of the currently used HLC-723G8 system. Chemically modified haemoglobins were prepared by adding glucose, sodium cyanate, acetaldehyde or acetylsalicylic acid to normal blood samples. None of these samples had any influence on the HbA1c values determined by GX. GX analysis showed haemoglobin variants that eluted after HbA0 and were similar to HbD, or HbS had HbA1c values that were close to those measured by boronate affinity chromatography and immunoassay. GX found lower HbA1c values in blood that contained HbE or haemoglobin variants, which elute before or at nearly the same time as HbA0. GX is useful for the analysis of HbA1c samples that contain HbD, HbS, HbC and haemoglobin variants, even though the elution times are similar. However, a countermeasure is needed in order to avoid overlooking other haemoglobin variants in Japan. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues.

    PubMed

    Johns, Cameron; Shellie, Robert A; Potter, Oscar G; O'Reilly, John W; Hutchinson, Joseph P; Guijt, Rosanne M; Breadmore, Michael C; Hilder, Emily F; Dicinoski, Greg W; Haddad, Paul R

    2008-02-29

    Anions and cations of interest for the post-blast identification of homemade inorganic explosives were separated and detected by ion chromatographic (IC) methods. The ionic analytes used for identification of explosives in this study comprised 18 anions (acetate, benzoate, bromate, carbonate, chlorate, chloride, chlorite, chromate, cyanate, fluoride, formate, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate and thiosulfate) and 12 cations (ammonium, barium(II), calcium(II), chromium(III), ethylammonium, magnesium(II), manganese(II), methylammonium, potassium(I), sodium(I), strontium(II), and zinc(II)). Two IC separations are presented, using suppressed IC on a Dionex AS20 column with potassium hydroxide as eluent for anions, and non-suppressed IC for cations using a Dionex SCS 1 column with oxalic acid/acetonitrile as eluent. Conductivity detection was used in both cases. Detection limits for anions were in the range 2-27.4ppb, and for cations were in the range 13-115ppb. These methods allowed the explosive residue ions to be identified and separated from background ions likely to be present in the environment. Linearity (over a calibration range of 0.05-50ppm) was evaluated for both methods, with r(2) values ranging from 0.9889 to 1.000. Reproducibility over 10 consecutive injections of a 5ppm standard ranged from 0.01 to 0.22% relative standard deviation (RSD) for retention time and 0.29 to 2.16%RSD for peak area. The anion and cation separations were performed simultaneously by using two Dionex ICS-2000 chromatographs served by a single autoinjector. The efficacy of the developed methods was demonstrated by analysis of residue samples taken from witness plates and soils collected following the controlled detonation of a series of different inorganic homemade explosives. The results obtained were also confirmed by parallel analysis of the same samples by capillary electrophoresis (CE) with excellent agreement being obtained.

  4. Processing of analogues of plume fallout in cold regions of Enceladus by energetic electrons

    NASA Astrophysics Data System (ADS)

    Bergantini, A.; Pilling, S.; Nair, B. G.; Mason, N. J.; Fraser, H. J.

    2014-10-01

    Context. Enceladus, a small icy moon of Saturn, is one of the most remarkable bodies in the solar system. This moon is a geologically active object, and despite the lower temperatures on most of its surface, the geothermally heated south polar region presents geysers that spouts a plume made of water (~90%), carbon dioxide, methane, ammonia, and methanol, among other molecules. Most of the upward-moving particles do not have the velocity to escape from the gravitational influence of the moon and fall back to the surface. The molecules in the ice are continuously exposed to ionizing radiation, such as UV and X-rays photons, cosmic rays, and electrons. Over time, the ionizing radiation promotes molecular bond rupture, destroying and also forming molecules, radicals, and fragments. Aims: We analyse the processing of an ice mixture analogue to the Enceladus fallout ice in cold resurfaced areas (north pole) by 1 keV electrons. The main goal is to search for complex species that have not yet been detected in this moon, and to determine relevant physico-chemical parameters, such as destruction and formation cross-sections and the half-life of the studied molecules in the ice. Methods: The experiment consisted of the electron irradiation of an Enceladus-like ice mixture (H2O:CO2:CH4:NH3:CH3OH) in an ultra-high vacuum chamber at 20 K. The analysis was made by infrared spectrometry in the mid-infrared region (4000-800 cm-1 or 2.5-12.5 μm). Results: The absolute dissociation cross-sections of the parent molecules, the formation cross-section of daughter species, and the half-life of the parental species in a simulated Enceladus irradiation scenario were determined. Among the produced species, CO (carbon monoxide), OCN- (cyanate anion), HCONH2 (formamide), and H2CO (formaldehyde) were tentatively detected.

  5. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  6. Part 1. Synthetic approaches to indole/imidazole marine alkaloids. Part 2. 1-cyanobenzotriazole as a cyanating agent. Part 3. Synthesis of potential molecular rectifiers

    NASA Astrophysics Data System (ADS)

    Hughes, Terry Vincent

    1999-12-01

    This dissertation consists of four chapters. The first chapter details the progress toward a total synthesis of securine A (1). Securine A is an indole/imidazole containing marine alkaloid which contains a 2,3-disubstituted indole ring and a 4,5- disubstituted imidazole ring with a 12-membered lactam connecting the two. The approach into the securine A ring system utilized the opening of a pyrano[3,4-b]indol-3-one ring system with a modified histamine derivative. Efforts in the synthesis of securine A were not successful, but the synthesis of a similar analogue, compound 53, which contained a 13-membered ring was achieved. Chapter two deals with the total synthesis of the indole/maleimide/imidazole containing marine alkaloids: the didemnimides A-D (84- 87). The total syntheses of didemnimide A-D were successful and utilized a base catalyzed condensation reaction of methyl indolyl-3-glyoxylate (102) and 1-trityl-4-imidazoleacetamide (104). Chapter three details a new and convenient synthesis of 1-cyanobenzotriazole (123) and efforts to use it as a source of +CN in carbon-carbon forming reactions. The synthesis is safer than previously reported methods and allows for 123 to be made in multi-gram scale rather inexpensively. It was demonstrated that 1-cyanobenzotriazole (123) is a good source of +CN in carbon-carbon forming reactions by reacting with a variety of sp3, Sp 2, and sp carbanions. Chapter four details a new synthesis of hexadecylquinolinium tricyanoquinodimethanide (171) which has been shown to be a molecular rectifier. In search of additional molecular rectifiers, this new methodology was applied to the synthesis of Z- β-(N-n -hexadecyl-2-benzothiazolium)-α-cyano-4-styryldicyanomethanide (181) as well as its selenium and tellurium analogues 190 and 200; respectively. Additionally, the synthesis of other T- D+-π-A- types of molecules was explored in search for other molecular rectifiers. However, of all the compounds synthesized herein, only 171 has been shown to rectify.

  7. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism

    PubMed Central

    Zhang, Qi-cheng; Pan, Zhen-hua; Liu, Bo-ning; Meng, Zhao-wei; Wu, Xiang; Zhou, Qing-hua; Xu, Ke

    2017-01-01

    Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1–100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10–40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20–40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory action of BITC; the autophagy induction is mediated by the ER stress response. PMID:28112178

  8. Degradation mechanism of cyanide in water using a UV-LED/H2O2/Cu2+ system.

    PubMed

    Kim, Tae-Kyoung; Kim, Taeyeon; Jo, Areum; Park, Suhyun; Choi, Kyungho; Zoh, Kyung-Duk

    2018-06-01

    In this study, we developed a UV-LED/H 2 O 2 /Cu 2+ system to remove cyanide, which is typically present in metal electroplating wastewater. The results showed the synergistic effects of UV-LED, H 2 O 2 , and Cu 2+ ions on cyanide removal in comparison with UV-LED photolysis, H 2 O 2 oxidation, UV-LED/H 2 O 2 , and H 2 O 2 /Cu 2+ systems. Cyanide was removed completely in 30 min in the UV-LED/H 2 O 2 /Cu 2+ system, and its loss followed pseudo-first order kinetics. Statistically, both H 2 O 2 and Cu 2+ ions showed positive effects on cyanide removal, but Cu 2+ ions exhibited a greater effect. The highest cyanide removal rate constant (k = 0.179 min -1 ) was achieved at pH 11, but the lowest was achieved at pH 12.5 (k = 0.064 min -1 ) due to the hydrolysis of H 2 O 2 (pK a of H 2 O 2  = 11.75). The presence of dissolved organic matter (DOM) inhibited cyanide removal, and the removal rate constant exhibited a negative linear correlation with DOM (R 2  = 0.987). The removal rate of cyanide was enhanced by the addition of Zn 2+ ions (from 0.179 to 0.457 min -1 ), while the co-existence of Ni 2+ or Cr +6 ion with Cu 2+ ion reduced cyanide removal. The formation of OH radicals in the UV-LED/H 2 O 2 /Cu 2+ system was verified using an aminophenyl fluorescence (APF) probe. Cyanate ions and ammonia were detected as the byproducts of cyanide decomposition. Finally, an acute toxicity reduction of 64.6% was achieved in the system within 1 h, despite a high initial cyanide concentration (100 mg/L). In terms of removal efficiency and toxicity reduction, the UV-LED/H 2 O 2 /Cu 2+ system may be an alternative method of cyanide removal from wastewaters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Chemical structure of carbamoylating groups and their relationship to bone marrow toxicity and antiglioma activity of bifunctionally alkylating and carbamoylating nitrosoureas.

    PubMed

    Ali-Osman, F; Giblin, J; Berger, M; Murphy, M J; Rosenblum, M L

    1985-09-01

    Although the antitumor effects of chloroethylnitrosoureas have been shown to be due primarily to DNA-DNA cross-linking by the alkylating moieties of these agents, the basis of the often accompanying bone marrow toxicity has been more controversial. We report on the relative bone marrow toxicity of four model nitrosoureas with different alkylating and carbamoylating activities: 1,3-bis(2-chloroethyl)-1-nitrosourea; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea; chlorozotozin, (2-[3-(2-chloroethyl)-3 -nitrosoureido]-2-deoxy-D-glucopyranose); and -3-(beta-D-glucopyranosyl)-1-nitrosourea. Inhibitions of DNA, RNA, and protein synthesis in murine bone marrow cells and of colony growth of myeloid precursor cells (granulocyte-macrophage colony-forming units) were used as in vitro end points of myelotoxicity. Further, we determined the antiglioma activity of the four nitrosoureas on two human gliomas in a clonogenic tumor cell assay and studied the effect of the non-nitrosourea carbamoylators potassium cyanate, chloroethyl isocyanate, cyclohexyl isocyanate, ethyl isocyanate, and ethyl isothiocyanate on granulocyte-macrophage colony-forming units. The results show that, at equivalent drug exposures, clonogenic glioma cell kill was significant and comparative for 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea, and chlorozotocin; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea showed little activity. In contrast, granulocyte-macrophage colony-forming unit toxicity was low with chlorozotocin and 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea and very high with 1,3-bis(2-chloroethyl)-1-nitrosourea and 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea. Of the isocyanates, bone marrow toxicity was highest with chloroethyl isocyanate and cyclohexyl isocyanate, intermediate with ethyl isocyanate, and lowest with KOCN and ethyl isothiocyanate. Our results indicate that (a) bifunctional alkylation is essential for antiglioma activity of nitrosoureas and (b) myelosuppression is at least partly linked with carbamoylation but that structural entities in the carbamoylating isocyanate rather than a quantitative degree of carbamoylation determine the degree of potential myelotoxicity.

  10. Absolute Infrared Intensities and Interstellar Ice Abundances- From Neutrals to Ions

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry

    Infrared (IR) telescopes, such as Spitzer and SOFIA, have revealed a rich variety of chemical species trapped in interstellar ices. However, quantifying the abundances of these species has been difficult because some molecules, such as formaldehyde (H2CO), and some ions, such as ammonium (NH4+), have poorly-known IR optical parameters, such as band strengths and optical constants. In the case of NH4+, the most widely used band-intensity values are from a mere two measurements published over a decade ago. Those two experiments cannot be repeated or checked as the original publication provided no information on reaction temperature, heating rate, spectral resolution, and so forth, and the two authors are no longer active in the field. Moreover, neither kinetic data nor statistics on the two measurements were provided, clearly an unsatisfactory situation. Exacerbating the problem is that NH4+ is sometimes used as a check on the IR spectral intensities of other ions, such as OCN- (cyanate), which has its own checkered past. We propose to correct these problems associated with abundance determinations of selected interstellar ices. We will combine two recent successful efforts from our laboratory and measure band intensities for NH4+ and OCN-, as well as HCOO- (formate). To unravel the interstellar formate band requires that we also properly determine its spectral baseline to distinguish from co-absorbing species, primarily formaldehyde (H2CO). Since the latter also has, at best, poorly-determined IR absolute intensities, we will measure them at multiple temperatures and ice phases for this project. This work will build on our recent success in deriving optical constants from IR spectra for interstellar hydrocarbon and nitrile ices (Hudson et al., 2014a, 2014b), and in generating NH4+ in situ for a study of Jupiter's atmosphere (Loeffler and Hudson, 2015). As a bonus, the proposed measurements also will enable the determination of band-strengths for such ions as CN-, NO3-, HS-, and ClO4-. High-quality IR intensities of neutral covalently-bonded ice molecules have been measured and published by our team. We now propose to make the transition to ions.

  11. Microcracking of Materials for Space

    NASA Technical Reports Server (NTRS)

    Brown, Timothy L.

    1998-01-01

    The effect of thermal-cycling-induced microcracking in fiber-reinforced polymer matrix composites is studied. Specific attention is focused on microcrack density as a function of the number of thermal cycles, and the effect of microcracking on the dimensional stability of composite materials. Changes in laminate coefficient of thermal expansion (CTE) and laminate stiffness are of primary concern. Included in the study are materials containing four different Thornel fiber types: a PAN-based T50 fiber and three pitch-based fibers, P55, P75, and P120. The fiber stiffnesses range from 55 Msi to 120 Msi. The fiber CTE's range from -0.50 x 1O(exp -6)/degrees F to -0.80 x 10(exp -6)/degrees F. Also included are three matrix types: Fiberite's 934 epoxy, Amoco's ERL1962 toughened epoxy, and YLA's RS3 cyanate ester. The lamination sequences of the materials considered include a cross-ply configuration, [0/90](sub 2s), and two quasi-isotropic configurations, [0/+45/-45/90](sub s), and [0/+45/90/-45](sub s). The layer thickness of the materials range from a nominal 0.001 in. to 0.005 in. In addition to the variety of materials considered, three different thermal cycling temperature ranges are considered. These temperature ranges are +/-250 degrees F, +/-l5O degrees F, and +/-50 degrees F. The combination of these material and geometric parameters and temperature ranges, combined with thermal cycling to thousands of cycles, makes this one of the most comprehensive studies of thermal-cycling-induced microcracking to date. Experimental comparisons are presented by examining the effect of layer thickness, fiber type, matrix type, and thermal cycling temperature range on microcracking and its influence on the laminates. Results regarding layer thickness effects indicate that thin-layer laminates microcrack more severely than identical laminates with thick layers. For some specimens in this study, the number of microcracks in thin-layer specimens exceeds that in thick-layer specimens by more than a factor of two. Despite the higher number of microcracks in the thin-layer specimens, small changes in CTE after thousands of cycles indicate that the thin-layer specimens are relatively unaffected by the presence of these cracks compared to the thick-layer specimens. Results regarding fiber type indicate that the number of microcracks and the change in CTE after thousands of cycles in the specimens containing PAN-based fibers are less than in the specimens containing comparable stiffness pitch-based fibers. Results for specimens containing the different pitch-based fibers indicate that after thousands of cycles, the number of microcracks in the specimens does not depend on the modulus or CTE of the fiber. The change in laminate CTE does, however, depend highly on the stiffness and CTE of the fiber. Fibers with higher stiffness and more negative CTE exhibit the lowest change in laminate CTE as a result of thermal cycling. The overall CTE of these specimens is, however, more negative as a result of the more negative CTE of the fiber. Results regarding matrix type based on the +/-250 degree F temperature range indicate that the RS3 cyanate ester resin system exhibits the greatest resistance to microcracking and the least change in CTE, particularly for cycles numbering 3000 and less. Extrapolations to higher numbers of cycles indicate, however, that the margin of increased performance is expected to decrease with additional thermal cycling. Results regarding thermal cycling temperature range depend on the matrix type considered and the layer thickness of the specimens. For the ERL1962 resin system, microcrack saturation is expected to occur in all specimens, regardless of the temperature range to which the specimens are exposed. By contrast, the RS3 resin system demonstrates a threshold effect such that cycled to less severe temperature ranges, microcracking does not occur. For the RS3 specimens with 0.005 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between +/-150 degree F or +/- 50 degree F. For the RS3 specimens with 0.002 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between +/-50 degree F. Results regarding laminate stiffness indicate negligible change in laminate stiffness due to thermal cycling for the materials and geometries considered in this investigation. The study includes X-ray examination of the specimens, showing that cracks observed at the edge of the specimens penetrate the entire width of the specimen. Glass transition temperatures of the specimens are measured, showing that resin chemistry is not altered as a result of thermal cycling. Results are also presented based on a one-dimensional shear lag analysis developed in the literature. The analysis requires material property information that is difficult to obtain experimentally. Using limited data from the present investigation, material properties associated with the analysis are modified to obtain reasonable agreement with measured microcrack densities. Based on these derived material properties, the analysis generally overpredicts the change in laminate CTE. Predicted changes in laminate stiffness show reasonable correlation with experimentally measured values.

  12. Cyanate groups in higher oxidation state metal cluster chemistry: Mixed-valence (II/III) Mn 16 and Mn 18 clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandropoulos, Dimitris I.; Moushi, Eleni E.; Papatriantafyllopoulou, Constantina

    Here, the employment of cyanato (OCN -) group in high oxidation state manganese cluster chemistry, in conjunction with carboxylate ions and the organic chelating/bridging ligand 2-(hydroxymethyl)pyridine (hmpH), is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH) 2] (R = Me (1), Et (2)) and [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). The 2:1:1:1 reactions of Mn(O 2CMe) 2·4H 2O, hmpH, NaOCN and NEt 3 in solvent MeOH or EtOH afford the isostructural complexes [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH)more » 2] (R = Me (1), Et (2)). The [Mn 16(μ 4-O) 4(μ 3-O) 4(μ-OMe) 4(μ 3-OR) 6(μ-OR) 6] 10+ core of representative complex 1 comprises a Mn II 4Mn III 4 double-cubane subunit attached on either side to two symmetry-related Mn IIMn III 3 defective dicubanes. A similar reaction of Mn(O 2CR) 2·4H 2O, hmpH, NaOCN and NEt 3, but in solvent MeCN, led instead to the formation of [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). Compounds 3 and 4 are very similar to each other and can be described as a central [Mn III 4(μ-O) 6] rodlike subunit attached on either side to two symmetry-related [Mn 7O 9] subunits. Variable-temperature, solid-state dc and ac magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions in all compounds, and possible S = 2 or 1 (for 1 and 2) and S = 0 (for 3 and 4) ground state spin values. The combined results demonstrate the ability of cyanato groups to facilitate the formation of new polynuclear Mn II/III complexes with structures different than these obtained from the use of the related azides.« less

  13. Cyanate groups in higher oxidation state metal cluster chemistry: Mixed-valence (II/III) Mn 16 and Mn 18 clusters

    DOE PAGES

    Alexandropoulos, Dimitris I.; Moushi, Eleni E.; Papatriantafyllopoulou, Constantina; ...

    2015-12-02

    Here, the employment of cyanato (OCN -) group in high oxidation state manganese cluster chemistry, in conjunction with carboxylate ions and the organic chelating/bridging ligand 2-(hydroxymethyl)pyridine (hmpH), is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH) 2] (R = Me (1), Et (2)) and [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). The 2:1:1:1 reactions of Mn(O 2CMe) 2·4H 2O, hmpH, NaOCN and NEt 3 in solvent MeOH or EtOH afford the isostructural complexes [Mn 16O 8(OR) 4(OCN) 4(O 2CMe) 12(hmp) 6(ROH)more » 2] (R = Me (1), Et (2)). The [Mn 16(μ 4-O) 4(μ 3-O) 4(μ-OMe) 4(μ 3-OR) 6(μ-OR) 6] 10+ core of representative complex 1 comprises a Mn II 4Mn III 4 double-cubane subunit attached on either side to two symmetry-related Mn IIMn III 3 defective dicubanes. A similar reaction of Mn(O 2CR) 2·4H 2O, hmpH, NaOCN and NEt 3, but in solvent MeCN, led instead to the formation of [Mn 18O 14(O 2CR) 18(hmp) 4(hmpH) 2(H 2O) 2] (R = Me (3), Et (4)). Compounds 3 and 4 are very similar to each other and can be described as a central [Mn III 4(μ-O) 6] rodlike subunit attached on either side to two symmetry-related [Mn 7O 9] subunits. Variable-temperature, solid-state dc and ac magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions in all compounds, and possible S = 2 or 1 (for 1 and 2) and S = 0 (for 3 and 4) ground state spin values. The combined results demonstrate the ability of cyanato groups to facilitate the formation of new polynuclear Mn II/III complexes with structures different than these obtained from the use of the related azides.« less

  14. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    PubMed

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3-hydroxybutyrate and the mcl-PHAs were composed of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers. These results demonstrated, as proof of concept, that talented strains such as P. pseudoalcaligenes might be applied in bioremediation of industrial residues containing cyanide, while concomitantly generate by-products like polyhydroxyalkanoates. A customized optimization of the target bioremediation process is required to gain benefits of this type of approaches.

  15. Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode.

    PubMed

    Hutchinson, Joseph P; Evenhuis, Christopher J; Johns, Cameron; Kazarian, Artaches A; Breadmore, Michael C; Macka, Miroslav; Hilder, Emily F; Guijt, Rosanne M; Dicinoski, Greg W; Haddad, Paul R

    2007-09-15

    A commercial portable capillary electrophoresis (CE) instrument has been used to separate inorganic anions and cations found in postblast residues from improvised explosive devices (IEDs) of the type used frequently in terrorism attacks. The purpose of this analysis was to identify the type of explosive used. The CE instrument was modified for use with an in-house miniaturized light-emitting diode (LED) detector to enable sensitive indirect photometric detection to be employed for the detection of 15 anions (acetate, benzoate, carbonate, chlorate, chloride, chlorite, cyanate, fluoride, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate, thiosulfate) and 12 cations (ammonium, monomethylammonium, ethylammonium, potassium, sodium, barium, strontium, magnesium, manganese, calcium, zinc, lead) as the target analytes. These ions are known to be present in postblast residues from inorganic IEDs constructed from ammonium nitrate/fuel oil mixtures, black powder, and chlorate/perchlorate/sugar mixtures. For the analysis of cations, a blue LED (470 nm) was used in conjunction with the highly absorbing cationic dye, chrysoidine (absorption maximum at 453 nm). A nonaqueous background electrolyte comprising 10 mM chrysoidine in methanol was found to give greatly improved baseline stability in comparison to aqueous electrolytes due to the increased solubility of chrysoidine and its decreased adsorption onto the capillary wall. Glacial acetic acid (0.7% v/v) was added to ensure chrysoidine was protonated and to enhance separation selectivity by means of complexation with transition metal ions. The 12 target cations were separated in less than 9.5 min with detection limits of 0.11-2.30 mg/L (calculated at a signal-to-noise ratio of 3). The anions separation system utilized a UV LED (370 nm) in conjunction with an aqueous chromate electrolyte (absorption maximum at 371 nm) consisting of 10 mM chromium(VI) oxide and 10 mM sodium chromate, buffered with 40 mM tris(hydroxymethyl)aminomethane at pH 8.05. All 15 target anions were baseline separated in less than 9 min with limits of detection ranging from 0.24 to 1.15 mg/L (calculated at a signal-to-noise ratio of 3). Use of the portable instrumentation in the field was demonstrated by analyzing postblast residues in a mobile laboratory immediately after detonation of the explosive devices. Profiling the ionic composition of the inorganic IEDs allowed identification of the chemicals used in their construction.

  16. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    PubMed

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel-mediated decarbonylation process of esters and proposed a reaction mechanism involving a C(acyl)-O bond cleavage and a CO extrusion. Key nickel intermediates were isolated and characterized by Shi and co-workers, supporting the assumption of a nickel/ N-heterocyclic carbene-promoted C(acyl)-O bond activation and functionalization. Our combined experimental and computational study of a ligand-controlled chemoselective nickel-catalyzed cross-coupling of aromatic esters with alkylboron reagents provided further insight into the reaction mechanism. We demonstrated that nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step, resulting in decarbonylative alkylations, while nickel complexes with monodentate phosphorus ligands promote the activation of the C(acyl)-O bond, leading to the production of ketone products. Although more detailed mechanistic investigations need to be undertaken, the successful development of decarbonylative cross-coupling reactions can serve as a solid foundation for future studies. We believe that this type of decarbonylative cross-coupling reactions will be of significant value, in particularly in combination with the retrosynthetic analysis and synthesis of natural products and biologically active molecules. Thus, the presented ester substitution methods will pave the way for successful applications in the construction of complex frameworks by late-stage modification and functionalization of carboxylic acid derivatives.

  17. Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Paige, D. A.; Siegler, M. A.; Harju, E. R.; Schriver, D.; Johnson, R. E.; Travnicek, P.

    2017-01-01

    Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008-2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury's north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen organics that can persist over long geologic timescales and evolve under the influence of the Mercury space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles and induce ice chemistry. Mercury's magnetic field contains magnetic cusps, areas of focused field lines containing trapped magnetospheric charged particles that will be funneled onto the Mercury surface at very high latitudes. This magnetic highway will act to direct energetic protons, ions and electrons directly onto the polar ices. The radiation processing of the ices could convert them into higher-order organics and dark refractory materials whose spectral characteristics are consistent with low-albedo materials observed by MESSENGER Laser Altimeter (MLA) and RADAR instruments. Galactic cosmic rays (GCR), scattered UV light and solar energetic particles (SEP) also supply energy for ice processing. Cometary impacts will deposit H2O, CH4, CO2 and NH3 raw materials onto Mercury's surface which will migrate to the poles and be converted to more complex Csbnd Hsbnd Nsbnd Osbnd S-containing molecules such as aldehydes, amines, alcohols, cyanates, ketones, hydroxides, carbon oxides and suboxides, organic acids and others. Based on lab experiments in the literature, possible specific compounds produced may be: H2CO, HCOOH, CH3OH, HCO, H2CO3, CH3C(O)CH3, C2O, CxO, C3O2, CxOy, CH3CHO, CH3OCH2CH2OCH3, C2H6, CxHy, NO2, HNO2, HNO3, NH2OH, HNO, N2H2, N3, HCN, Na2O, NaOH, CH3NH2, SO, SO2, SO3, OCS, H2S, CH3SH, even BxHy. Three types of radiation processing mechanisms may be at work in the ices: (1) Impact/dissociation, (2) Ion implantation and (3) Nuclear recoil (hot atom chemistry). Magnetospheric energy sources dominate the radiation effects. Total energy fluxes of photons, SEPs and GCRs are all around two or more orders of magnitude less than the fluxes from magnetospheric energy sources (in the focused cusp particles). However, SEPs and GCRs cause chemical processing at greater depths than other particles leading to thicker organic layers. Processing of polar volatiles on Mercury would be somewhat different from that on the Moon because Mercury has a magnetic field while the Moon does not. The channeled flux of charged particles through these magnetospheric cusps is a chemical processing mechanism unique to Mercury as compared to other airless bodies.

  18. Iodine(III) Reagents in Radical Chemistry

    PubMed Central

    2017-01-01

    Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313

  19. Durability of polymer matrix composites for infrastructure: The role of the interphase

    NASA Astrophysics Data System (ADS)

    Verghese, Kandathil Nikhil Eapen

    1999-12-01

    As fiber reinforced polymer matrix composites find greater use in markets such as civil infrastructure and ground transportation, the expectations placed on these materials are ever increasing. The overall cost and reliability have become the drivers of these high performance materials and have led to the disappearance of resins such as bismaleimides (BMI). cyanate esters and other high performance polyimides and epoxys. In their place polymers, such polyester and vinylester have arisen. The reinforcing fiber scenario has also undergone changes from the high quality and performance assured IM7 and AS4 to cheaper and hybrid systems consisting of both glass and low cost carbon. Manufacturing processes have had their share of changes too with processes such as pultrusion and other mass production techniques replacing hand lay-up and resin transfer molding. All of this has however come with little or no concession on material performance. The motivation of the present research has therefore been to try to improve the properties of these low cost composites by better understanding the constituent materials (fiber and matrix) and the region that lies in-between them namely the interphase. In order to achieve this. working with controls is necessary and the present discourse therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester resin, Derakane 441-400 from The Dow Chemical Company. The following eight chapters sum up the work done thus far on composites made with sized fibers and the above mentioned resin and fiber systems. They are in the form of publications that have either been accepted. submitted or going to be submitted to various peer reviewed journals. The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether (Phenoxy) thermoplastic polymers and G' an industrial sizing material supplied by Hexcel. A number of issues have been addressed ranging from viscoelastic relaxation to enviro-mechanical durability. Chapter 1 deals with the influence of the sizing material on the fatigue response of cross ply composites made with the help of resin infusion molding. Chapter 2 describes the effects of a controlled set of interphase polymers that have the saine chemical structure but differ from each other in polarity. The importance of the atomic force microscope (AFM) to view and perform nano-indentations on the interphase regions has been demonstrated. Finally, it attempts to tie everything together with the help of the fatigue response of the different composites. Chapter 3 deals only with the vinyl ester resin and examines the influence of network structure on the molecular relaxation behavior (cooperativity) of the glassy polymer. It also tries to make connections between structural features of the glass and fracture toughness as measured in it's glassy state. Chapter 4 extends the results obtained in chapter 3 to examine the cooperativity of pultruded composites made with the different sizings. A correlation between strength and cooperativity is found to exist, with systems having greater cooperativity being stronger. Chapter 5 moves into the area of hygrothermal aging of Derakane 441-400 resin. It looks specifically at identifying a mechanism for the unusual moisture uptake behavior of the polymer subjected to a thermal-spiking environment. This it does by identifying the presence of hydrogen bonding in the resin. Finally, chapters 6 to 8 present experimental and analytical results obtained on PVP K90, Phenoxy and G' sized, AS4/Derakane 411-350 LI vinyl ester composites that were pultruded at Strongwell Inc., on their lab-scale pultruder in Bristol, Virginia.

  20. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions.

    PubMed

    Sharma, Virender K; Graham, Nigel J D; Li, Xiang-Zhong; Yuan, Bao-Ling

    2010-02-01

    Photocatalytic oxidation using UV irradiation of TiO(2) has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e(-)(cb)) with electron holes (h(vb)(+)) on the irradiated TiO(2) surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO(4)(2-)) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO(2) photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e(-)(cb) and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate. The paper reviews the published results of laboratory experiments designed to follow the photocatalytic degradation of selected contaminants of environmental significance and the influence of the experimental conditions (e.g. pH, reactant concentrations and dissolved oxygen). The specific compounds are as follows: ammonia, cyanate, formic acid, bisphenol-A, dibutyl- and dimethyl-phthalate and microcystin-LR. The principal focus in these studies has been on the rates of reaction rather than on reaction pathways and products. The presence of UV/TiO(2) accelerates the chemical reduction of ferrate, and the reduction rate decreases with pH owing to deprotonation of ferrate ion. For all the selected contaminant substances, the photocatalytic oxidation rate was greater in the presence of ferrate, and this was believed to be synergistic rather than additive. The presence of dissolved oxygen in solution reduced the degradation rate of dimethyl phthalate in the ferrate/photocatalysis system. In the study of microcystin-LR, it was evident that an optimal ferrate concentration exists, whereby higher Fe(VI) concentrations above the optimum leads to a reduction in microcystin-LR degradation. In addition, the rate of microcystin-LR degradation was found to be strongly dependent on pH and was greatest at pH 6. The initial rate of photocatalytic reduction under different conditions was analysed using a Langmuirian form. Decrease in rates in the presence of dissolved oxygen may be due to competition between oxygen and ferrate as electron scavengers and to non-productive radical species interactions. The reaction between ferrate(VI) and microcystins-LR in the pH range of 6.0-10.0 is most likely controlled by the protonated Fe(VI) species, HFeO(4)(-). The photocatalytic oxidation of selected, recalcitrant contaminants was found to be significantly greater in the presence of ferrate, arising from the role of ferrate in inhibiting the h(vb)(+)-e(-)(cb) pair recombination on TiO(2) surfaces and the corresponding generation of highly oxidative Fe(V) species. The performance of the ferrate/photocatalysis system is strongly influenced by the reaction conditions, particularly the pH and dissolved oxygen concentration, arising from the complex nature of the interactions between the catalyst and the solution. Overall, the treatment performance of the Fe(VI)-TiO(2)-UV system is generally superior to alternative chemical oxidation methods. The formation of intermediate Fe(V) species in the photocatalytic reduction of ferrate(VI) requires confirmation, and a method involving electron paramagnetic resonance spectroscopy could be applied for this. The reactivity of Fe(V) with the selected contaminants is required in order to better understand the role of ferrate in the Fe(VI)-TiO(2)-UV oxidation system. To increase the practical utility of the system, it is recommended that future studies involving the photocatalytic oxidation of pollutants in the presence of ferrate(VI) should focus on developing modified TiO(2) surfaces that are photocatalytic under visible light conditions.

  1. Co-conspirators: Space, Molecules and Life

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan

    2012-07-01

    The field of astrobiology is rapidly becoming a discipline in its own right as it seeks to answer the following questions: What are the conditions under which life can develop?; How widespread are these conditions in the Universe?; and What are the mechanisms by which life evolves from basic `building blocks' into self replicating systems? It is believed that some of the necessary organic molecules may have been formed in the specialised areas of space (namely dark molecular clouds, eg Horsehead nebula) and delivered on to the Earth during the early period of its history, approximately 4.0 x 109 years ago. These organic molecules may have played a pivotal role in the formation of life on Earth. In addition it is believed that life on Earth was formed within a very short geological time frame of only 200-300 million years. So it is not unreasonable to suppose that these molecules were initially made in space as this could be, metaphorically speaking a huge laboratory when compared to the Earth. Currently we have very little definite knowledge of `how life began on Earth?' or whether `there is life elsewhere in the Universe?' These two questions are inextricably interlinked in that, as life exists on Earth, it is quite feasible that it should also flourish elsewhere in the Universe. To answer these questions, mechanisms have to be found whereby `non-living chemicals' could be transformed into 3-dimensional `first' living organisms. This process is often termed `chemical evolution.'~ The research being presented at this conference focuses on the formation of molecules under a variety of simulated space conditions (eg different temperatures, levels of radiation energies and different types of impinging radiations). Results pertaining to irradiation of methyl cyanide ice at 15 K with 200 keV protons and 1:1 mixture of NH _{3}:CO _{2} ice at 30 K with 1 keV electrons, and 1:1 mixture of NH _{3}:CH _{3}OH ice also at 30 K with 1 keV electrons will be presented. These molecules were chosen because they present in the interstellar medium (ISM) and on other satellites -- for example carbon dioxide (CO _{2}), ammonium (NH _{3}) and methanol (CH _{3}OH) are second, third and 5th most commonest compounds present in the ISM after water (Roush TL, 2001); and methyl cyanide (CH _{3}CN) is the simplest of the organic nitriles found in space. It was first identified in the molecular clouds, Sagittarius Sgr A and Sgr B (Solomon, Jefferts et al. 1971) through its emission lines in the vicinity of 2.7 mm from the J = 6 → 5 transition. In addition, CH _{3}CN along with HCN, HCCCN and NCCN, has been identified in the atmosphere of Saturn's satellite, Titan (Raulin and Owen 2002; Raulin 2008). It has also been shown in a theoretical paper that cytosine can be formed from isocyanic acid and cyanate. Cytosine, a pyrimidine derivative, is one of the four main bases found in DNA and RNA (Shapiro). The significance of this work for astrobiology and future experiments will be discussed at the conference. References Raulin, F. (2008). "Astrobiology and habitability of Titan." Space Science Reviews 135(1-4): 37-48. Raulin, F. and T. Owen (2002). "Organic chemistry and exobiology on Titan." Space Science Reviews 104(1-2): 377-394. Roush, T. L. (2001). "Physical state of ices in the outer solar system." Journal of Geophysical Research-Planets 106(E12): 33315-33323. Shapiro, R. (1999). "Prebiotic cytosine synthesis: A critical analysis and implications for the origin of life." Proceedings of the Academy of Sciences of the United States of America 96(GrindEQ__8_): 4396-4401. Solomon, P. M., K. B. Jefferts, et al. (1971). "Detection of Millimeter Emission Lines from Interstellar Methyl Cyanide." Astrophysical Journal 168, L107.

Top