Science.gov

Sample records for cyano-bridged trimers mn2miii-m-iiicn6

  1. Photomagnetism in cyano-bridged bimetal assemblies.

    PubMed

    Ohkoshi, Shin-ichi; Tokoro, Hiroko

    2012-10-16

    The study of photoinduced phase-transition materials has implications for the fields of inorganic chemistry, solid-state chemistry, and materials science. Cyano-bridged bimetal assemblies are promising photomagnetic materials. Because cyano-bridged bimetal assemblies possess various absorption bands in the visible light region, their electronic and spin states can be controlled by visible light irradiation. Moreover, the selection of magnetic metal ions and organic ligands provide a way of controlling spin-spin interactions through a cyano bridge. In this Account, we describe cyano-bridged bimetal assemblies developed in our laboratory. Cu(II)(2)[Mo(IV)(CN)(8)]·8H(2)O (CuMo), Rb(I)Mn(II)[Fe(III)(CN)(6)] (RbMnFe), and Co(II)(3)[W(V)(CN)(8)](2)·(pyrimidine)(4)·6H(2)O (CoW) induce photomagnetism via photoinduced metal-to-metal charge transfers (MM'CT), while Fe(II)(2)[Nb(IV)(CN)(8)]·(4-pyridinealdoxime)(8)·2H(2)O (FeNb) exhibits a photoinduced magnetization via a photoinduced spin crossover. Irradiation with 473 nm light causes the CuMo system to exhibit a spontaneous magnetization with a Curie temperature (T(C)) of 25 K, but irradiation with 532, 785, and 840 nm light reduces the magnetization. In this reversible photomagnetic process, excitation of the MM'CT from Mo(IV) to Cu(II) produces a ferromagnetic mixed-valence isomer of Cu(I)Cu(II)[Mo(V)(CN)(8)]·8H(2)O (CuMo'). CuMo' returns to CuMo upon irradiation in the reverse-M'MCT band. RbMnFe shows a charge transfer (CT)-induced phase transition from the Mn(II)-Fe(III) phase to the Mn(III)-Fe(II) phase. Irradiation with 532 nm light converts the Mn(III)-Fe(II) phase into the Mn(II)-Fe(III) phase, and we observe photodemagnetization. In contrast, irradiation of the Mn(II)-Fe(III) phase with 410 nm light causes the reverse phase transition. A CT-induced Jahn-Teller distortion is responsible for this visible light-induced reversible photomagnetic effect. In the CoW system, a CT-induced spin transition causes the

  2. Single-ion anisotropy and exchange interactions in the cyano-bridged trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) species incorporating [Mn(5-Brsalen)]+ units: an inelastic neutron scattering and magnetic susceptibility study.

    PubMed

    Tregenna-Piggott, Philip L W; Sheptyakov, Denis; Keller, Lukas; Klokishner, Sophia I; Ostrovsky, Sergei M; Palii, Andrei V; Reu, Oleg S; Bendix, Jesper; Brock-Nannestad, Theis; Pedersen, Kasper; Weihe, Høgni; Mutka, Hannu

    2009-01-01

    The electronic structures of the compounds K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)M(III)(CN)(6)].2H(2)O (M(III) = Co(III), Cr(III), Fe(III)) have been determined by inelastic neutron scattering (INS) and magnetic susceptibility studies, revealing the manganese(III) single-ion anisotropy and exchange interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1) established from AC susceptibility measurements for a spin-reversal barrier of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Cr(CN)(6)].2H(2)O may be readily rationalized in terms of the energy level diagram determined directly by INS. AC susceptibility measurements on samples of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Fe(CN)(6)].2H(2)O are contrary to those previously reported, exhibiting but the onset of peaks below temperatures of 1.8 K at oscillating frequencies in the range of 100-800 Hz. INS measurements reveal an anisotropic ferromagnetic manganese(III)-iron(III) exchange interaction, in accordance with theoretical expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical models that aim to inter-relate the electronic and molecular structure of molecular magnets should be tested. PMID:19035636

  3. Ligand dependent topology and spontaneous resolution in high-spin cyano-bridged Ni3W2 clusters.

    PubMed

    Nowicka, Beata; Reczyński, Mateusz; Rams, Michał; Wasiutyński, Tadeusz; Nitek, Wojciech; Sieklucka, Barbara

    2016-08-01

    Two high-spin pentanuclear NiW clusters with diimine blocking ligands have been obtained: {[Ni(4,4'-MeObpy)2]3[W(CN)8]2}·12H2O (1) and {[Ni(phen)2(H2O)][Ni(phen)2]2[W(CN)8]2}·7H2O (2) (4,4'-MeObpy = 4,4'-dimethoxy-2,2'-bipyridine, phen = 1,10-phenanthroline). Despite the similarity of the building blocks and synthetic conditions the compounds show different topologies of the cluster core: 1 is a trigonal bipyramid while 2 is a decorated square. Both cluster structures are chiral with either ΔΔΔ or ΛΛΛ configuration around all three Ni centres. In 1 spontaneous resolution occurs and it crystallises in the P212121 space group forming a conglomerate containing both types of enantiomorphic crystals. 1Δ and 1Λ are the first pair of enantiomorphic structures of cyano-bridged clusters of trigonal bipyramidal topology obtained with achiral bidentate blocking ligands. 2 crystallises as a racemic compound in a centrosymmetric space group P1[combining macron] with both enantiomers present in the structure. 2 is an exceptional square-motif containing structure with an identical stereoconfiguration of all complex cations within one cluster. Ferromagnetic interactions are present in both clusters resulting in the ground spin state S = 4. PMID:27431481

  4. Ligand dependent topology and spontaneous resolution in high-spin cyano-bridged Ni3W2 clusters.

    PubMed

    Nowicka, Beata; Reczyński, Mateusz; Rams, Michał; Wasiutyński, Tadeusz; Nitek, Wojciech; Sieklucka, Barbara

    2016-08-01

    Two high-spin pentanuclear NiW clusters with diimine blocking ligands have been obtained: {[Ni(4,4'-MeObpy)2]3[W(CN)8]2}·12H2O (1) and {[Ni(phen)2(H2O)][Ni(phen)2]2[W(CN)8]2}·7H2O (2) (4,4'-MeObpy = 4,4'-dimethoxy-2,2'-bipyridine, phen = 1,10-phenanthroline). Despite the similarity of the building blocks and synthetic conditions the compounds show different topologies of the cluster core: 1 is a trigonal bipyramid while 2 is a decorated square. Both cluster structures are chiral with either ΔΔΔ or ΛΛΛ configuration around all three Ni centres. In 1 spontaneous resolution occurs and it crystallises in the P212121 space group forming a conglomerate containing both types of enantiomorphic crystals. 1Δ and 1Λ are the first pair of enantiomorphic structures of cyano-bridged clusters of trigonal bipyramidal topology obtained with achiral bidentate blocking ligands. 2 crystallises as a racemic compound in a centrosymmetric space group P1[combining macron] with both enantiomers present in the structure. 2 is an exceptional square-motif containing structure with an identical stereoconfiguration of all complex cations within one cluster. Ferromagnetic interactions are present in both clusters resulting in the ground spin state S = 4.

  5. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future. PMID:27451778

  6. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  7. Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6]3-/d-mannitol as T1-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, Ch.; Zanca, M.; Garcia, M.; Basile, I.; Long, J.; de Lapuente, J.; Borras, M.; Guari, Y.

    2015-07-01

    Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity.Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. Electronic supplementary information (ESI) available: Experimental details and procedures, toxicological data, physical characterization. See DOI: 10.1039/c5nr01557j

  8. A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of cyano-bridged heteronuclear polymeric complex of triethylenetetramine

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Çetinkaya, Fulya; Arslan, Taner

    The cyano bridged complex of triethylenetetramine was characterized by FT-IR, Raman spectroscopy and X-ray single crystal diffraction analysis. The molecular geometry and vibrational frequencies of the complex in the ground state have been calculated by using B3LYP density functional method with LANL2DZ basis set. A good correlation was found via comparison of the experimental and theoretical vibrational frequencies of complex. The complex of the type [Zn(teta)Ni(μ-CN)2(CN)2]n has been studied in the 4000-250 cm-1 region and assignment of all the observed bands were made. The analysis of the FT-IR and Raman spectra indicates that there are some structure spectra correlations.

  9. Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing Fe(II) and Ru(II) Incorporated in Mesoporous Silica-Alumina.

    PubMed

    Aratani, Yusuke; Oyama, Kohei; Suenobu, Tomoyoshi; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-06-20

    Photocatalytic hydroxylation of benzene to phenol was achieved by using O2 as an oxidant as well as an oxygen source with a cyano-bridged polynuclear metal complex containing Fe(II) and Ru(II) incorporated in mesoporous silica-alumina ([Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41). An apparent turnover number (TON) of phenol production per the monomer unit of [Fe(H2O)3]2[Ru(CN)6] was 41 for 59 h. The cyano-bridged polynuclear metal complex, [Fe(H2O)3]2[Ru(CN)6], exhibited catalytic activity for thermal hydroxylation of benzene by H2O2 in acetonitrile (MeCN), where the apparent TON of phenol production reached 393 for 60 h. The apparent TON increased to 2500 for 114 h by incorporating [Fe(H2O)3]2[Ru(CN)6] in sAl-MCM-41. Additionally, [Fe(H2O)3]2[Ru(CN)6] acts as a water oxidation catalyst by using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) and Na2S2O8 as a photosensitizer and a sacrificial electron acceptor as evidenced by (18)O-isotope labeling experiments. Photoirradiation of an O2-saturated MeCN solution containing [Fe(H2O)3]2[Ru(CN)6]@sAl-MCM-41 and scandium ion provided H2O2 formation, where photoexcited [Ru(CN)6](4-) moiety reduces O2 as indicated by laser flash photolysis measurements. Thus, hydroxylation of benzene to phenol using molecular oxygen photocatalyzed by [Fe(H2O)3]2[Ru(CN)6] occurred via a two-step route; (1) molecular oxygen was photocatalytically reduced to peroxide by using water as an electron donor, and then (2) peroxide thus formed is used as an oxidant for hydroxylation of benzene. PMID:27265780

  10. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-01

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could open up new

  11. Trimerization of aromatic nitriles

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1977-01-01

    Triazine compounds and cross-linked polymer compositions were made by heating aromatic nitriles to a temperature in the range of about 100 C to about 700 C, in the presence of a catalyst or mixture of catalysts. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers were made which were trimerized with or without a filler by the aforementioned catalytic trimerization process.

  12. Metalloporphines: Dimers and Trimers.

    PubMed

    Jentzen, Walter; Shelnutt, John A; Scheidt, W Robert

    2016-06-20

    Procedures for the purification and subsequent crystallization of the slightly soluble four-coordinate metallporphines, the simplest possible porphyrin derivatives, are described. Crystals of the porphine derivatives of cobalt(II), copper(II), platinum(II), and two polymorphs of zinc(II) were obtained. Analysis of the crystal and molecular structures shows that all except the platinum(II) derivative form an unusual trimeric species in the solid state. The isomorphous cobalt(II), copper(II), and one zinc(II) polymorph pack in the unit cell to form dimers as well as the trimers. Interplanar spacings between porphine rings are similar in both the dimers and trimers and range between 3.24 and 3.37 Å. Porphine rings are strongly overlapped with lateral shifts between ring centers in both the dimers and trimers with values between 1.52 and 1.70 Å or in Category S as originally defined by Scheidt and Lee. Periodic trends in the M-Np bond distances parallel those observed previously for tetraphenyl- and octaethylporphyrin derivatives. PMID:27276239

  13. Dimerization, trimerization and quantum pumping

    NASA Astrophysics Data System (ADS)

    Guo, Huaiming

    2014-03-01

    We study one-dimensional topological models with dimerization and trimerization and show that these models can be generated using interaction or optical superlattice. The topological properties of these models are demonstrated by the appearance of edge states and the mechanism of dimerization and trimerization is analyzed. Then we show that a quantum pumping process can be constructed based on each one-dimensional topological model. The quantum pumping process is explicitly demonstrated by the instantaneous energy spectrum and local current. The result shows that the pumping is assisted by the gapless states connecting the bands and one charge is pumped during a cycle, which also defines a nonzero Chern number. Our study systematically shows the connection of one-dimensional topological models and quantum pumping, and is useful for the experimental studies on topological phases in optical lattices and photonic quasicrystals.

  14. Elusive structure of helium trimers

    NASA Astrophysics Data System (ADS)

    Stipanović, Petar; Vranješ Markić, Leandra; Boronat, Jordi

    2016-09-01

    Over the years many He–He interaction potentials have been developed, some very sophisticated, including various corrections beyond the Born–Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the potentials. We use diffusion Monte Carlo simulations at T = 0, which give within statistical noise exact results of the ground state properties. All models predict both trimers 4He3 and 4He{}2{}3He to be in a quantum halo state.

  15. Elusive structure of helium trimers

    NASA Astrophysics Data System (ADS)

    Stipanović, Petar; Vranješ Markić, Leandra; Boronat, Jordi

    2016-09-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond the Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the potentials. We use diffusion Monte Carlo simulations at T = 0, which give within statistical noise exact results of the ground state properties. All models predict both trimers 4He3 and 4He{}2{}3He to be in a quantum halo state.

  16. A New Approach to Produce HIV-1 Envelope Trimers

    PubMed Central

    AlSalmi, Wadad; Mahalingam, Marthandan; Ananthaswamy, Neeti; Hamlin, Christopher; Flores, Dalia; Gao, Guofen; Rao, Venigalla B.

    2015-01-01

    The trimeric envelope spike of HIV-1 mediates virus entry into human cells. The exposed part of the trimer, gp140, consists of two noncovalently associated subunits, gp120 and gp41 ectodomain. A recombinant vaccine that mimics the native trimer might elicit entry-blocking antibodies and prevent virus infection. However, preparation of authentic HIV-1 trimers has been challenging. Recently, an affinity column containing the broadly neutralizing antibody 2G12 has been used to capture recombinant gp140 and prepare trimers from clade A BG505 that naturally produces stable trimers. However, this antibody-based approach may not be as effective for the diverse HIV-1 strains with different epitope signatures. Here, we report a new and simple approach to produce HIV-1 envelope trimers. The C terminus of gp140 was attached to Strep-tag II with a long linker separating the tag from the massive trimer base and glycan shield. This allowed capture of nearly homogeneous gp140 directly from the culture medium. Cleaved, uncleaved, and fully or partially glycosylated trimers from different clade viruses were produced. Extensive biochemical characterizations showed that cleavage of gp140 was not essential for trimerization, but it triggered a conformational change that channels trimers into correct glycosylation pathways, generating compact three-blade propeller-shaped trimers. Uncleaved trimers entered aberrant pathways, resulting in hyperglycosylation, nonspecific cross-linking, and conformational heterogeneity. Even the cleaved trimers showed microheterogeneity in gp41 glycosylation. These studies established a broadly applicable HIV-1 trimer production system as well as generating new insights into their assembly and maturation that collectively bear on the HIV-1 vaccine design. PMID:26088135

  17. Weakly bound atomic trimers in ultracold traps

    SciTech Connect

    Yamashita, M. T.; Frederico, T.; Tomio, Lauro; Delfino, A.

    2003-09-01

    The experimental three-atom recombination coefficients of the atomic states {sup 23}Na|F=1,m{sub F}=-1>, {sup 87}Rb|F=1,m{sub F}=-1>, and {sup 85}Rb|F=2,m{sub F}=-2>, together with the corresponding two-body scattering lengths, allow predictions of the trimer bound-state energies for such systems in a trap. The recombination parameter is given as a function of the weakly bound trimer energies, which are in the interval 1, for a particular trap, is shown to be relatively small.

  18. Femtosecond excitation transfer processes in biliprotein trimers

    NASA Astrophysics Data System (ADS)

    Sharkov, A. V.; Khoroshilov, E. V.; Kryukov, I. V.; Palsson, Lars-Olof; Kryukov, P. G.; Fischer, R.; Scheer, Hella-Christin; Gillbro, Tomas

    1993-06-01

    Femtosecond processes in allophycocyanin, C-phycocyanin and phycoerythrocyanin trimers and monomers have been examined by means of polarization pump-probe technique. No femtosecond kinetics were observed in monomeric preparations. The isotropic absorption recovery kinetics with (tau) equals 440 +/- 50 fs which is not accompanied by anisotropy decay kinetics was obtained in allophycocyanin trimers at 612 nm. The conclusion about energy transfer between neighboring (alpha) 84 and (beta) 84 chromophores with different absorption spectra was made. The proposed model takes into account a stabilizing role of the linker peptide. Spectral and kinetic measurements were made in the 635 - 690 nm spectral region where the proposed acceptor should absorb. The bleaching of the 650-nm band occurs with a delay relative to the bleaching at 615 nm. Only a rise term was observed at 658 nm in consistence with the proposed model. Anisotropy values calculated around 650 nm at 3 ps after excitation are in the range 0.1 - 0.25 corresponding to an angle of 30 degree(s) - 45 degree(s) between the donor and acceptor transition dipole moments. A 500-fs absorption recovery and anisotropy decay process was obtained for C-phycocyanin trimers and explained by Forster energy transfer over 20.8 angstroms between neighboring (alpha) 84 and (beta) 84 chromophores of different monomeric subunits having similar absorption spectra and with a 65 degree(s) angle between their orientations. Energy transfer between violobilin ((alpha) 84) and phycocyanobilin ((beta) 84) chromophores was examined in donor and acceptor spectral regions of phycoerythrocyanin trimers, and was found to take 400 fs.

  19. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    NASA Astrophysics Data System (ADS)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  20. Functional colloidal trimers by quenched electrostatic assembly.

    PubMed

    McDermott, Joseph J; Chaturvedi, Neetu; Velegol, Darrell

    2010-10-14

    It is shown how to assemble three particles into a single "colloidal trimer". The particles may consist of different materials and be different sizes, and they can be assembled in a particular sequence (i.e. 1-2-3 or 2-1-3 or 2-3-1). Several trimer assemblies are demonstrated, including polystyrene-silica-polystyrene, gold-polystyrene-silver, and gold-silicon-silver. The gold-silicon-silver assembly operates as a catalytic motor, moving rapidly by autoelectrophoresis when placed in a hydrogen peroxide solution. The assemblies are made by allowing oppositely-charged particles to aggregate in a diffusion-limited manner for a time, and then quenching the aggregation by the addition of a nanoparticle coating on one of the particles. We call this method "Quenched Electrostatic Assembly", and it serves as a general, scalable method for synthesizing multi-component colloidal trimers, including those requiring a certain sequential order, but not requiring particular orientations. In addition, when polymer nanoparticles are used to quench the aggregation, they can be fused above their glass transition temperature to produce assemblies that are mechanically stable. PMID:20830380

  1. Experimental studies of magnetism of trimer chains

    NASA Astrophysics Data System (ADS)

    Hase, M.; Kohno, M.; Kitazawa, H.; Tsujii, N.; Suzuki, O.; Ozawa, K.; Kido, G.; Imai, M.; Hu, X.

    Trimer chains with J1- J2- J2 and J1- J1- J2 interactions exist in Cu 3(P 2O 6OH) 2 and ANi 3P 4O 14 (A=Ca, Sr, Ba, Pb), respectively, where J1 and J2 denote exchange interaction parameters in the first-shortest and second-shortest bonds, respectively. A 1/3 magnetization plateau was observed in the spin- {1}/{2} compound Cu 3(P 2O 6OH) 2. Experimental results of magnetic susceptibility and magnetization agree well with quantum Monte Carlo results for the trimer chain with the antiferromagnetic (AF) interactions whose values are J1=95 K and J2=28 K. Cu 3(P 2O 6OH) 2 is the first model compound of trimer chains with only AF interactions showing a magnetization plateau. In the spin-1 compound ANi 3P 4O 14, a magnetic phase transition occurs and a small spontaneous magnetization appears at low temperatures. Experimental results are explainable qualitatively by ferrimagnetic long-range order in chains with AF J1 and ferromagnetic J2 interactions and by imperfect cancellation of net magnetic moments of the chains. This is the first observation of ferrimagnetic long-range order whose origin is the periodicity of the exchange interactions in the chains.

  2. Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters

    PubMed Central

    Campos, Cristine G.; Byrd, Matthew S.

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent and the causative agent of melioidosis, a severe and often fatal disease with symptoms ranging from acute pneumonia and septic shock to a chronic infection characterized by abscess formation in the lungs, liver, and spleen. Autotransporters (ATs) are exoproteins belonging to the type V secretion system family, with many playing roles in pathogenesis. The genome of B. pseudomallei strain 1026b encodes nine putative trimeric AT proteins, of which only four have been described. Using a bioinformatic approach, we annotated putative domains within each trimeric AT protein, excluding the well-studied BimA protein, and found short repeated sequences unique to Burkholderia species, as well as an unexpectedly large proportion of ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight AT-encoding genes and evaluated the resulting strains for adherence to, invasion of, and plaque formation in A549 cells. The majority of the ATs (and/or the proteins encoded downstream) contributed to adherence to and efficient invasion of A549 cells. Using a BALB/c mouse model of infection, we determined the contributions of each AT to bacterial burdens in the lungs, liver, and spleen. At 48 h postinoculation, only one strain, Bp340::pDbpaC, demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC is required for wild-type virulence in this model. PMID:23716608

  3. What is the shape of the helium trimer? A comparison with the neon and argon trimers.

    PubMed

    Bressanini, Dario; Morosi, Gabriele

    2011-10-13

    Despite its apparent simplicity and extensive theoretical investigations, the issue of what is the shape of the helium trimer is still debated in the literature. After reviewing previous conflicting interpretations of computational studies, we introduce the angle-angle distribution function as a tool to discuss in a simple way the shape of any trimer. We compute this function along with many different geometrical distributions using variational and diffusion Monte Carlo methods. We compare them with the corresponding ones for the neon and argon trimers. Our analysis shows that while Ne(3) and Ar(3) fluctuate around an equilibrium structure that is an equilateral triangle, (4)He(3) shows an extremely broad angle-angle distribution function, and all kinds of three-atom configurations must be taken into account in its description. Classifying (4)He(3) as either equilateral or linear or any other particular shape, as was done in the past, is not sensible, because in this case the intuitive notion of equilibrium structure is ill defined. Our results could help the interpretation of future experiments aimed at measuring the geometrical properties of the helium trimer.

  4. Random sequential adsorption of trimers and hexamers.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2013-12-01

    Adsorption of trimers and hexamers built of identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Particles were adsorbed on a two-dimensional, flat and homogeneous surface. Numerical simulations allowed us to determine the maximal random coverage ratio, RSA kinetics as well as the available surface function (ASF), which is crucial for determining the kinetics of the adsorption process obtained experimentally. Additionally, the density autocorrelation function was measured. All the results were compared with previous results obtained for spheres, dimers and tetramers.

  5. Trimerization of monocyanate ester in nanopores.

    PubMed

    Koh, Yung P; Simon, Sindee L

    2010-06-17

    The effects of nanoconfinement on the reaction kinetics and properties of a monocyanate ester and the resulting cyanurate trimer are studied using differential scanning calorimetry (DSC). On the basis of both dynamic heating scans and isothermal reaction studies, the reaction rate is found to increase with decreasing nanopore size without a change in reaction mechanism. Both the monocyanate ester reactant and cyanurate product show reduced glass transition temperatures (T(g)s) as compared to the bulk; the T(g) depression increases with conversion and is more pronounced for the fully reacted product, suggesting that molecular stiffness influences the magnitude of nanoconfinement effects. Our results are consistent with the accelerated reaction and the T(g) depression found previously for the nanoconfined difunctional cyanate ester, supporting the supposition that intracyclization is not the origin of these effects. PMID:20496921

  6. A domain dictionary of trimeric autotransporter adhesins.

    PubMed

    Bassler, Jens; Hernandez Alvarez, Birte; Hartmann, Marcus D; Lupas, Andrei N

    2015-02-01

    Trimeric autotransporter adhesins (TAAs) are modular, highly repetitive outer membrane proteins that mediate adhesion to external surfaces in many Gram-negative bacteria. In recent years, several TAAs have been investigated in considerable detail, also at the structural level. However, in their vast majority, putative TAAs in prokaryotic genomes remain poorly annotated, due to their sequence diversity and changeable domain architecture. In order to achieve an automated annotation of these proteins that is both detailed and accurate we have taken a domain dictionary approach, in which we identify recurrent domains by sequence comparisons, produce bioinformatic descriptors for each domain type, and connect these to structural information where available. We implemented this approach in a web-based platform, daTAA, in 2008 and demonstrated its applicability by reconstructing the complete fiber structure of a TAA conserved in enterobacteria. Here we review current knowledge on the domain structure of TAAs.

  7. The nature of the bonding in the transition metal trimers

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Bauschlicher, Charles W., Jr.

    1986-01-01

    The electronic structure of the transition metal (TM) trimers was studied by comparing the bonding in the Ca3, Sc3, and Cu3 molecules. The complete active space SCF/externally contracted configuration interaction (CI) ratio for the low-lying states of Sc3 and Sc3(+) and the SCF/CI ratio for Ca3 and Cu3 trimers, all for near equilateral triangle geometries, were calculated. In addition, vertical excitation energies for Cu3 were computed, leading to a new assignment of the upper state in the resonant two-photon ionization spectrum. Based on these studies, bonding in other TM trimers was discussed.

  8. Analytic representation of the Efimov effect in the helium trimer

    SciTech Connect

    Lohr, Lawrence L.; Blinder, S.M.

    2004-06-01

    Exact solutions for the low-temperature helium dimer and trimer, {sup 4}He{sub 2} and {sup 4}He{sub 3}, are derived, based on our {delta} function model for the interatomic potential. For the trimer, the Faddeev equations are shown to be separable in hyperspherical coordinates, with the S-wave alone giving an exact solution. The parameters {lambda}{sub 0} and r{sub 0} are fitted to accurate computations on the dimer and trimer. Excited states of the trimer are shown to exhibit the Efimov effect, whereby artificially reducing the strength of the two-body potential causes an infinite number of weakly-bound levels to condense out of the continuum. All the features anticipated by Efimov are quantitatively reproduced within our model. Since short-range details of the intermolecular forces are not relevant, our results can be considered to be universally applicable.

  9. Gold nanoring trimers: a versatile structure for infrared sensing.

    PubMed

    Teo, Siew Lang; Lin, Vivian Kaixin; Marty, Renaud; Large, Nicolas; Llado, Esther Alarcon; Arbouet, Arnaud; Girard, Christian; Aizpurua, Javier; Tripathy, Sudhiranjan; Mlayah, Adnen

    2010-10-11

    In this work we report on the observation of surface plasmon properties of periodic arrays of gold nanoring trimers fabricated by electron beam lithography. It is shown that the localized surface plasmon resonances of such gold ring trimers occur in the infrared spectral region and are strongly influenced by the nanoring geometry and their relative positions. Based on numerical simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to surface plasmon states arising from the strong intra-trimer electromagnetic interaction. We show that the nanoring trimer configuration allows for generating infrared surface plasmon resonances associated with strongly localized electromagnetic energy, thus providing plasmonic nanoresonators well-suited for sensing and surface enhanced near-infrared Raman spectroscopy.

  10. HIV Neutralizing Antibodies Induced by Native-like Envelope Trimers

    PubMed Central

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; LaBranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is inducing neutralizing antibodies (NAbs) against neutralization-resistant (Tier-2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation (BG505 SOSIP.664) induced NAbs potently against the sequence-matched Tier-2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (Tier-1) viruses. Tier-2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas Tier-1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous Tier-2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for developing HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  11. Porcine parvovirus removal using trimer and biased hexamer peptides

    PubMed Central

    Heldt, Caryn L.; Gurgel, Patrick V.; Jaykus, Lee-Ann; Carbonell, Ruben G.

    2014-01-01

    Assuring the microbiological safety of biological therapeutics remains an important concern. Our group has recently reported small trimeric peptides that have the ability to bind and remove a model non-enveloped virus, porcine parvovirus (PPV), from complex solutions containing human blood plasma. In an effort to improve the removal efficiency of these small peptides, we created a biased library of hexamer peptides that contain two previously reported trimeric peptides designated WRW and KYY. This library was screened and several hexamer peptides were discovered that also removed PPV from solution, but there was no marked improvement in removal efficiency when compared to the trimeric peptides. Based on simulated docking experiments, it appeared that hexamer peptide binding is dictated more by secondary structure, whereas the binding of trimeric peptides is dominated by charge and hydrophobicity. This study demonstrates that trimeric and hexameric peptides may have different, matrix-specific roles to play in virus removal applications. In general, the hexamer ligand may perform better for binding of specific viruses, whereas the trimer ligand may have more broadly reactive virus-binding properties. PMID:21751387

  12. Fluorescence Spectral Dynamics of Single LHCII Trimers

    PubMed Central

    Krüger, Tjaart P.J.; Novoderezhkin, Vladimir I.; Ilioaia, Cristian; van Grondelle, Rienk

    2010-01-01

    Abstract Single-molecule spectroscopy was employed to elucidate the fluorescence spectral heterogeneity and dynamics of individual, immobilized trimeric complexes of the main light-harvesting complex of plants in solution near room temperature. Rapid reversible spectral shifts between various emitting states, each of which was quasi-stable for seconds to tens of seconds, were observed for a fraction of the complexes. Most deviating states were characterized by the appearance of an additional, red-shifted emission band. Reversible shifts of up to 75 nm were detected. By combining modified Redfield theory with a disordered exciton model, fluorescence spectra with peaks between 670 nm and 705 nm could be explained by changes in the realization of the static disorder of the pigment-site energies. Spectral bands beyond this wavelength window suggest the presence of special protein conformations. We attribute the large red shifts to the mixing of an excitonic state with a charge-transfer state in two or more strongly coupled chlorophylls. Spectral bluing is explained by the formation of an energy trap before excitation energy equilibration is completed. PMID:20550923

  13. Theoretical prediction of the vibrational spectra of group IB trimers

    PubMed Central

    Richtsmeier, Steven C.; Gole, James L.; Dixon, David A.

    1980-01-01

    The molecular structures of the group IB trimers, Cu3, Ag3, and Au3, have been determined by using the semi-empirical diatomics-in-molecules theory. The trimers are found to have C2v symmetry with bond angles between 65° and 80°. The trimers are bound with respect to dissociation to the asymptotic limit of an atom plus a diatom. The binding energies per atom for Cu3, Ag3, and Au3 are 1.08, 0.75, and 1.16 eV, respectively. The vibrational frequencies of the trimers have been determined for comparison with experimental results. The vibrational frequencies are characterized by low values for the bending and asymmetric stretch modes. The frequency of the symmetric stretch of the trimer is higher than the stretching frequency of the corresponding diatomic. A detailed comparison of the theoretical results with the previously measured Raman spectra of matrix isolated Ag3 is presented. PMID:16592885

  14. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.

    PubMed

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  15. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.

    PubMed

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.

  16. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    PubMed Central

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  17. Universal trimer in a three-component Fermi gas

    NASA Astrophysics Data System (ADS)

    Wenz, A. N.; Lompe, T.; Ottenstein, T. B.; Serwane, F.; Zürn, G.; Jochim, S.

    2009-10-01

    We show that the recently measured magnetic field dependence of three-body loss in a three-component mixture of ultracold L6i atoms [T. B. Ottenstein , Phys. Rev. Lett. 101, 203202 (2008); J. H. Huckans , Phys. Rev. Lett. 102, 165302 (2009)] can be explained by the presence of a universal trimer state. Previous work suggested a universal trimer state as a probable explanation, yet it failed to get good agreement between theory and experiment over the whole range of magnetic fields. For our description we adapt the theory of Braaten and Hammer [Phys. Rep. 428, 259 (2006)] for three identical bosons to the case of three distinguishable fermions by combining the three scattering lengths a12 , a23 , and a13 between the three components to an effective interaction parameter am . We show that taking into account a magnetic field variation in the lifetime of the trimer state is essential to obtain a complete understanding of the observed decay rates.

  18. Achiral flexible liquid crystal trimers exhibiting chiral conglomerates.

    PubMed

    Sasaki, Haruna; Takanishi, Yoichi; Yamamoto, Jun; Yoshizawa, Atsushi

    2016-04-14

    Chiral conglomerates of domains with opposite handedness have attracted much attention from researchers. We prepared a homologous series of achiral liquid crystal trimers in which two phenylpyrimidine units and one biphenyl unit were connected via flexible methylene spacers. We investigated their phase transition behaviour. Some trimers possessing odd-numbered spacers were found to exhibit a nematic phase and a dark chiral conglomerate phase possessing a layered structure. The chiral characteristics were confirmed by uncrossing the polarizers in opposite directions. The layer spacing detected using X-ray diffraction was about 80% of the molecular length. The structure-property relations indicate that intermolecular interactions cause a conformational change in the trimers possessing flexible odd-numbered methylene spacers to form helical conformers with axial chirality, which might induce chiral segregation and layer deformation to drive the chiral conglomerates.

  19. Enhanced Immunogenicity of Stabilized Trimeric Soluble Influenza Hemagglutinin

    PubMed Central

    Weldon, William C.; Wang, Bao-Zhong; Martin, Maria P.; Koutsonanos, Dimitrios G.; Skountzou, Ioanna; Compans, Richard W.

    2010-01-01

    Background The recent swine-origin H1N1 pandemic illustrates the need to develop improved procedures for rapid production of influenza vaccines. One alternative to the current egg-based manufacture of influenza vaccine is to produce a hemagglutinin (HA) subunit vaccine using a recombinant expression system with the potential for high protein yields, ease of cloning new antigenic variants, and an established safety record in humans. Methodology/Principal Findings We generated a soluble HA (sHA), derived from the H3N2 virus A/Aichi/2/68, modified at the C-terminus with a GCN4pII trimerization repeat to stabilize the native trimeric structure of HA. When expressed in the baculovirus system, the modified sHA formed native trimers. In contrast, the unmodified sHA was found to present epitopes recognized by a low-pH conformation specific monoclonal antibody. We found that mice primed and boosted with 3 µg of trimeric sHA in the absence of adjuvants had significantly higher IgG and HAI titers than mice that received the unmodified sHA. This correlated with an increased survival and reduced body weight loss following lethal challenge with mouse-adapted A/Aichi/2/68 virus. In addition, mice receiving a single vaccination of the trimeric sHA in the absence of adjuvants had improved survival and body weight loss compared to mice vaccinated with the unmodified sHA. Conclusions/Significance Our data indicate that the recombinant trimeric sHA presents native trimeric epitopes while the unmodified sHA presents epitopes not exposed in the native HA molecule. The epitopes presented in the unmodified sHA constitute a “silent face” which may skew the antibody response to epitopes not accessible in live virus at neutral pH. The results demonstrate that the trimeric sHA is a more effective influenza vaccine candidate and emphasize the importance of structure-based antigen design in improving recombinant HA vaccines. PMID:20824188

  20. Magnetic Hysteresis in Er Trimers on Cu(111).

    PubMed

    Singha, Aparajita; Donati, Fabio; Wäckerlin, Christian; Baltic, Romana; Dreiser, Jan; Pivetta, Marina; Rusponi, Stefano; Brune, Harald

    2016-06-01

    We report magnetic hysteresis in Er clusters on Cu(111) starting from the size of three atoms. Combining X-ray magnetic circular dichroism, scanning tunneling microscopy, and mean-field nucleation theory, we determine the size-dependent magnetic properties of the Er clusters. Er atoms and dimers are paramagnetic, and their easy magnetization axes are oriented in-plane. In contrast, trimers and bigger clusters exhibit magnetic hysteresis at 2.5 K with a relaxation time of 2 min at 0.1 T and out-of-plane easy axis. This appearance of magnetic stability for trimers coincides with their enhanced structural stability.

  1. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability

    NASA Astrophysics Data System (ADS)

    Kong, Leopold; He, Linling; de Val, Natalia; Vora, Nemil; Morris, Charles D.; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Zhu, Jiang

    2016-06-01

    The trimeric HIV-1 envelope glycoprotein (Env) is critical for host immune recognition and neutralization. Despite advances in trimer design, the roots of Env trimer metastability remain elusive. Here we investigate the contribution of two Env regions to metastability. First, we computationally redesign a largely disordered bend in heptad region 1 (HR1) of SOSIP trimers that connects the long, central HR1 helix to the fusion peptide, substantially improving the yield of soluble, well-folded trimers. Structural and antigenic analyses of two distinct HR1 redesigns confirm that redesigned Env closely mimics the native, prefusion trimer with a more stable gp41. Next, we replace the cleavage site between gp120 and gp41 with various linkers in the context of an HR1 redesign. Electron microscopy reveals a potential fusion intermediate state for uncleaved trimers containing short but not long linkers. Together, these results outline a general approach for stabilization of Env trimers from diverse HIV-1 strains.

  2. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability

    PubMed Central

    Kong, Leopold; He, Linling; de Val, Natalia; Vora, Nemil; Morris, Charles D.; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Zhu, Jiang

    2016-01-01

    The trimeric HIV-1 envelope glycoprotein (Env) is critical for host immune recognition and neutralization. Despite advances in trimer design, the roots of Env trimer metastability remain elusive. Here we investigate the contribution of two Env regions to metastability. First, we computationally redesign a largely disordered bend in heptad region 1 (HR1) of SOSIP trimers that connects the long, central HR1 helix to the fusion peptide, substantially improving the yield of soluble, well-folded trimers. Structural and antigenic analyses of two distinct HR1 redesigns confirm that redesigned Env closely mimics the native, prefusion trimer with a more stable gp41. Next, we replace the cleavage site between gp120 and gp41 with various linkers in the context of an HR1 redesign. Electron microscopy reveals a potential fusion intermediate state for uncleaved trimers containing short but not long linkers. Together, these results outline a general approach for stabilization of Env trimers from diverse HIV-1 strains. PMID:27349805

  3. Catalytic trimerization of aromatic nitriles for synthesis of polyimide matrix resins

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.

    1974-01-01

    Aromatic nitriles may be trimerized at moderate temperature and pressure with p-toluenesulfonic acid as catalyst. Studies were conducted to establish the effect of the reaction temperature, pressure, time, and catalyst concentration on yield of the trimerized product. Trimerization studies were also conducted to establish the effect of substituting electron donating or withdrawing groups on benzonitrile. Preliminary results of using the catalytic trimerization approach to prepare s-triazine cross-linked polyimide/graphite fiber composites are presented.

  4. Rotation assisted diffusion of water trimers on Pd{111}

    NASA Astrophysics Data System (ADS)

    Ranea, Víctor A.; de Andres, P. L.

    2016-06-01

    Diffusion barriers for a cluster of three water molecules on Pd{111} have been estimated from ab-initio Density Functional Theory. A model for the diffusion of a cluster of three water molecules (trimer) based in rotations yields a simple explanation of why the cluster can diffuse faster than a single water molecule by a factor ≈ 102 [1]. This model is based on the differences between the adsorption geometry for the three molecules forming the trimer. One member interacts strongly with the surface and sits closer to the surface (d) while the other two interact weakly and stay at a larger separation from the surface (u). The trimer rotates nearly freely around the axis determined by the d-like monomer. Translations of the whole trimer imply breaking the strong interaction of the d-like molecule with the surface with a high energy cost. Alternatively, thermal fluctuations can exchange the position of the molecule sitting closer to the surface with a lower energetic cost. Rotations around different axis yield a diffusion mechanism where the strong interaction is maintained along the diffusion path, therefore lowering the effective activation barrier.

  5. Soluble mimetics of human immunodeficiency virus type 1 viral spikes produced by replacement of the native trimerization domain with a heterologous trimerization motif: characterization and ligand binding analysis.

    PubMed

    Pancera, Marie; Lebowitz, Jacob; Schön, Arne; Zhu, Ping; Freire, Ernesto; Kwong, Peter D; Roux, Kenneth H; Sodroski, Joseph; Wyatt, Richard

    2005-08-01

    The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, mediates binding to the viral receptors and, along with the transmembrane glycoprotein gp41, is a major target for neutralizing antibodies. We asked whether replacing the gp41 fusion/trimerization domain with a stable trimerization motif might lead to a more stable gp120 trimer that would be amenable to structural and immunologic analysis. To obtain stable gp120 trimers, a heterologous trimerization motif, GCN4, was appended to the C terminus of YU2gp120. Biochemical analysis indicated that the gp120-GCN4 trimers were superior to gp140 molecules in their initial homogeneity, and trilobed structures were observable by electron microscopy. Biophysical analysis of gp120-GCN4 trimers by isothermal titration calorimetry (ITC) and ultracentrifugation analyses indicated that most likely two molecules of soluble CD4 could bind to one gp120-GCN4 trimer. To further examine restricted CD4 stoichiometric binding to the gp120-GCN4 trimers, we generated a low-affinity CD4 binding trimer by introducing a D457V change in the CD4 binding site of each gp120 monomeric subunit. The mutant trimers could definitively bind only one soluble CD4 molecule, as determined by ITC and sedimentation equilibrium centrifugation. These data indicate that there are weak interactions between the gp120 monomeric subunits of the GCN4-stabilized trimers that can be detected by low-affinity ligand sensing. By similar analysis, we also determined that removal of the variable loops V1, V2, and V3 in the context of the gp120-GCN4 proteins allowed the binding of three CD4 molecules per trimer. Interestingly, both the gp120-GCN4 variants displayed a restricted stoichiometry for the CD4-induced antibody 17b of one antibody molecule binding per trimer. This restriction was not evident upon removal of the variable loops V1 and V2 loops, consistent with conformational constraints in the wild-type gp120 trimers and similar to

  6. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes

    PubMed Central

    de Taeye, Steven W.; Ozorowski, Gabriel; de la Peña, Alba Torrents; Guttman, Miklos; Julien, Jean-Philippe; van den Kerkhof, Tom L.G.M.; Burger, Judith A.; Pritchard, Laura K.; Pugach, Pavel; Yasmeen, Anila; Crampton, Jordan; Hu, Joyce; Bontjer, Ilja; Torres, Jonathan L.; Arendt, Heather; DeStefano, Joanne; Koff, Wayne C.; Schuitemaker, Hanneke; Eggink, Dirk; Berkhout, Ben; Dean, Hansi; LaBranche, Celia; Crotty, Shane; Crispin, Max; Montefiori, David C.; Klasse, P. J.; Lee, Kelly K.; Moore, John P.; Wilson, Ian A.; Ward, Andrew B.; Sanders, Rogier W.

    2016-01-01

    Summary The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers, but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs. PMID:26687358

  7. Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes.

    PubMed

    de Taeye, Steven W; Ozorowski, Gabriel; Torrents de la Peña, Alba; Guttman, Miklos; Julien, Jean-Philippe; van den Kerkhof, Tom L G M; Burger, Judith A; Pritchard, Laura K; Pugach, Pavel; Yasmeen, Anila; Crampton, Jordan; Hu, Joyce; Bontjer, Ilja; Torres, Jonathan L; Arendt, Heather; DeStefano, Joanne; Koff, Wayne C; Schuitemaker, Hanneke; Eggink, Dirk; Berkhout, Ben; Dean, Hansi; LaBranche, Celia; Crotty, Shane; Crispin, Max; Montefiori, David C; Klasse, P J; Lee, Kelly K; Moore, John P; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W

    2015-12-17

    The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs. PMID:26687358

  8. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  9. Cerebrosides and tocopherol trimers from the seeds of Euryale ferox.

    PubMed

    Row, Lie-Ching; Ho, Jiau-Ching; Chen, Chiu-Ming

    2007-07-01

    Two new cerebrosides, ferocerebrosides A (1) [(2S,3R,4E,8E,2'R)-1-O-(beta-glucopyranosyl)-N-(2'-hydroxydocosanoyl)-4,8-sphingadienine] and B (2) [(2S,3R,4E,8E,2'R)-1-O-(beta-glucopyranosyl)-N-(2'-hydroxytetracosanoyl)-4,8-sphingadienine], two new tocopherol trimers, ferotocotrimers C (5) and D (6), and two known tocopherol trimers, IVb (3) and IVa (4), were isolated from the seeds of Euryale ferox. Their structures were determined on the basis of spectroscopic data, especially 1D and 2D NMR experiments. Compounds 1 and 2 showed cytotoxicity in the brine shrimp lethality bioassay, with LC50 values of 0.17 and 0.20 mM, respectively.

  10. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  11. Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers

    SciTech Connect

    Ying, L.; Sie, X.S.

    1998-12-10

    The authors report a study of the allophycocyanin trimer (APC), a light-harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories, and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed because of generation of long-lived exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible exciton trap formation within the three quasi-independent pairs of strong interacting {alpha}84 and {beta}84 chromophores in APC, as well as photobleaching of individual chromophores. Comparison experiments under continuous-wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into the spectroscopy, exciton dynamics, and photochemistry of light-harvesting complexes.

  12. The Trimeric Model: A New Model of Periodontal Treatment Planning

    PubMed Central

    Tarakji, Bassel

    2014-01-01

    Treatment of periodontal disease is a complex and multidisciplinary procedure, requiring periodontal, surgical, restorative, and orthodontic treatment modalities. Several authors attempted to formulate models for periodontal treatment that orders the treatment steps in a logical and easy to remember manner. In this article, we discuss two models of periodontal treatment planning from two of the most well-known textbook in the specialty of periodontics internationally. Then modify them to arrive at a new model of periodontal treatment planning, The Trimeric Model. Adding restorative and orthodontic interrelationships with periodontal treatment allows us to expand this model into the Extended Trimeric Model of periodontal treatment planning. These models will provide a logical framework and a clear order of the treatment of periodontal disease for general practitioners and periodontists alike. PMID:25177662

  13. Exact models for trimerization and tetramerization in spin chains

    NASA Astrophysics Data System (ADS)

    Rachel, Stephan; Greiter, Martin

    2008-10-01

    We present exact models for an antiferromagnetic S=1 spin chain describing trimerization as well as for an antiferromagnetic S=3/2 spin chain describing tetramerization. These models can be seen as generalizations of the Majumdar-Ghosh model. For both models, we provide a local Hamiltonian and its exact threefold or fourfold degenerate ground state wave functions, respectively. We numerically confirm the validity of both models using exact diagonalization and discuss the low-lying excitations.

  14. Dynamics of water trimer in femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Zhang, Fengshou; Xu, Xuefeng; Wang, Yanbiao; Qian, Chaoyi

    2016-07-01

    With the help of the time-dependent local-density approximation (TDLDA) coupled non-adiabatically to molecular dynamics (MD), we studied both the static properties and irradiation dynamics of water trimer subject to the short and intense femtosecond laser field. It is shown that the optimized geometry and the optical absorption strength of the water trimer accord well with results in literature. Three typical possible irradiated scenarios of water trimer which are “normal oscillation”, “dissociation and formation” and “pure OH dissociation” are exhibited by investigating the ionization and the level depletion related to electrons as well as the OH bonds, proton-transfer, the intermolecular distance and the kinetic energy connected with ions. In three scenarios, the behaviors of water trimer can be attributed to the sequential combination of responses of the electrons emission, the proton-transfer, OH vibration and rotation, OH dissociation and hydroxyl formation, respectively. The relevant time scales of the first proton-transfer and OH dissociation are identified as 13 fs and 10-20 fs, respectively. The study of kinetic energies of ions show that the kinetic energies of the remaining ions are all below 4.5 eV and outgoing hydrogen ions carry a kinetic energy about 5-12 eV. Furthermore, it is found that in the tunneling ionization situations the depletion is fairly shared between the various levels except the most deep occupied electronic level while in the multiphotonic ionization case the electron loss comes from all single-electron levels and the HOMO level contributes the most.

  15. Universal trimer in a three-component Fermi gas

    SciTech Connect

    Wenz, A. N.; Lompe, T.; Ottenstein, T. B.; Serwane, F.; Zuern, G.; Jochim, S.

    2009-10-15

    We show that the recently measured magnetic field dependence of three-body loss in a three-component mixture of ultracold {sup 6}Li atoms [T. B. Ottenstein et al., Phys. Rev. Lett. 101, 203202 (2008); J. H. Huckans et al., Phys. Rev. Lett. 102, 165302 (2009)] can be explained by the presence of a universal trimer state. Previous work suggested a universal trimer state as a probable explanation, yet it failed to get good agreement between theory and experiment over the whole range of magnetic fields. For our description we adapt the theory of Braaten and Hammer [Phys. Rep. 428, 259 (2006)] for three identical bosons to the case of three distinguishable fermions by combining the three scattering lengths a{sub 12}, a{sub 23}, and a{sub 13} between the three components to an effective interaction parameter a{sub m}. We show that taking into account a magnetic field variation in the lifetime of the trimer state is essential to obtain a complete understanding of the observed decay rates.

  16. Structural constraints determine the glycosylation of HIV-1 envelope trimers

    PubMed Central

    Pritchard, Laura K.; Vasiljevic, Snezana; Ozorowski, Gabriel; Seabright, Gemma E.; Cupo, Albert; Ringe, Rajesh; Kim, Helen J.; Sanders, Rogier W.; Doores, Katie J.; Burton, Dennis R.; Wilson, Ian A.; Ward, Andrew B.; Moore, John P.; Crispin, Max

    2015-01-01

    A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system but, paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity-purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles’ heel that can be exploited for bNAb recognition and vaccine design. PMID:26051934

  17. Nuclear localization of clathrin involves a labile helix outside the trimerization domain.

    PubMed

    Ybe, Joel A; Fontaine, Sarah N; Stone, Todd; Nix, Jay; Lin, Xiaoyan; Mishra, Sanjay

    2013-01-16

    Clathrin is a trimeric protein involved in receptor-mediated-endocytosis, but can function as a non-trimer outside of endocytosis. We have discovered that the subcellular distribution of a clathrin cysteine mutant we previously studied is altered and a proportion is also localized to nuclear spaces. MALS shows C1573A hub is a mixture of trimer-like and detrimerized molecules. The X-ray structure of the trimerization domain reveals that without light chains, a helix harboring cysteine-1573 is reoriented. We propose clathrin has a detrimerization switch, which suggests clathrin topology can be altered naturally for new functions.

  18. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging

    SciTech Connect

    Carnally, Stewart M.; Dev, Harveer S.; Stewart, Andrew P.; Barrera, Nelson P.; Van Bemmelen, Miguel X.; Schild, Laurent; Henderson, Robert M.; Edwardson, J.Michael

    2008-08-08

    There has been confusion about the subunit stoichiometry of the degenerin family of ion channels. Recently, a crystal structure of acid-sensing ion channel (ASIC) 1a revealed that it assembles as a trimer. Here, we used atomic force microscopy (AFM) to image unprocessed ASIC1a bound to mica. We detected a mixture of subunit monomers, dimers and trimers. In some cases, triple-subunit clusters were clearly visible, confirming the trimeric structure of the channel, and indicating that the trimer sometimes disaggregated after adhesion to the mica surface. This AFM-based technique will now enable us to determine the subunit arrangement within heteromeric ASICs.

  19. Hydrolytic polymerization of chromium (III). 2. A trimeric species

    SciTech Connect

    Finholt, J.E.; Thompson, M.E.; Connick, R.E.

    1981-12-01

    With use of an ion-exchange displacement elution, a green species was separated from mixtures of Cr(III) polymers and its absorption spectrum determined. The hydroxides per chromium atom were found to be 4/3, and the charge per chromium atom was shown to be consistent with this value. The degree of polymerization of freezing point depression was close to 3. Measurements are reported for the equilibrium quotient for the formation of the trimer from the monomer. The ESR spectrum and magnetic susceptibility were determined, and the results are discussed in terms of possible structures.

  20. On the tunneling splitting in a cyclic water trimer

    NASA Astrophysics Data System (ADS)

    Mandziuk, Margaret

    2016-09-01

    We propose an alternative explanation of the "bifurcation" splittings observed for the water trimer in the VRT experiments of Saykally's group [Chem. Rev. 103 (2003) 2533]. In our interpretation, the splittings originate from the quantum delocalization of hydrogen bonded protons in the mean field potential between two oxygen neighbors. The pattern and the order of our calculated splittings is in the range of experimentally observed values. Consequently, quantum delocalization of protons should be considered seriously as the origin of experimentally observed fine splittings. The presented model can be extended to a water pentamer and, hopefully, advance our understanding of liquid water.

  1. Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle Trimer

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Wang, Jinyong; Wang, Yi-Chung; Wei, Wei

    2013-07-01

    We present a combined experimental and theoretical study to investigate the spatial distribution of photoelectrons emitted from core-shell silver (Ag) nanoparticles. We use two-photon photoemission microscopy (2P-PEEM) to spatially resolve electron emission from a trimeric core-shell aggregate of triangular symmetry. Finite difference time domain (FDTD) simulations are performed to model the intensity distributions of the electromagnetic near-fields resulting from femtosecond (fs) laser excitation of localized surface plasmon oscillations in the triangular core-shell structure. We demonstrate that the predicted FDTD near-field intensity distribution reproduces the 2P-PEEM photoemission pattern.

  2. A monomer-trimer model supports intermittent glucagon fibril growth

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Cordsen, Pia; Kyrsting, Anders; Otzen, Daniel E.; Oddershede, Lene B.; Jensen, Mogens H.

    2015-03-01

    We investigate in vitro fibrillation kinetics of the hormone peptide glucagon at various concentrations using confocal microscopy and determine the glucagon fibril persistence length 60μm. At all concentrations we observe that periods of individual fibril growth are interrupted by periods of stasis. The growth probability is large at high and low concentrations and is reduced for intermediate glucagon concentrations. To explain this behavior we propose a simple model, where fibrils come in two forms, one built entirely from glucagon monomers and one entirely from glucagon trimers. The opposite building blocks act as fibril growth blockers, and this generic model reproduces experimental behavior well.

  3. A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene

    PubMed Central

    Pugach, Pavel; Ozorowski, Gabriel; Cupo, Albert; Ringe, Rajesh; Yasmeen, Anila; de Val, Natalia; Derking, Ronald; Kim, Helen J.; Korzun, Jacob; Golabek, Michael; de los Reyes, Kevin; Ketas, Thomas J.; Julien, Jean-Philippe; Burton, Dennis R.; Wilson, Ian A.; Sanders, Rogier W.; Klasse, P. J.

    2015-01-01

    ABSTRACT Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates. Here, we report on the production and in vitro properties of a new SOSIP.664 trimer derived from a subtype B env gene, B41, including how to make this protein in low-serum media without proteolytic damage (clipping) to the V3 region. We also show that nonclipped trimers can be purified successfully via a positive-selection affinity column using the bNAb PGT145, which recognizes a quaternary structure-dependent epitope at the trimer apex. Negative-stain electron microscopy imaging shows that the purified, nonclipped, native-like B41 SOSIP.664 trimers contain two subpopulations, which we propose represent an equilibrium between the fully closed and a more open conformation. The latter is different from the fully open, CD4 receptor-bound conformation and may represent an intermediate state of the trimer. This new subtype B trimer adds to the repertoire of native-like Env proteins that are suitable for immunogenicity and structural studies. IMPORTANCE The cleaved, trimeric envelope protein complex is the only neutralizing antibody target on the HIV-1 surface. Many vaccine strategies are based on inducing neutralizing antibodies. For HIV-1, one approach involves using recombinant, soluble protein mimics of the native trimer. At present, the only reliable way to make native-like, soluble trimers in practical amounts is via the introduction of specific sequence changes that confer stability on the cleaved form of Env. The resulting proteins are known as SOSIP.664 gp140 trimers, and the current paradigm is based on the BG505 subtype A env gene. Here, we describe the

  4. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.

    PubMed

    Yang, Teng-Chieh; Langford, Alex Jacob; Kumar, Sandeep; Ruesch, John Carl; Wang, Wei

    2016-08-01

    Opalescence, sometimes observed in antibody solutions, is thought to be mediated by light scattering of soluble oligomers or insoluble particulates. However, mechanistic features, such as stoichiometry and self-association affinity of oligomeric species related to opalescence, are poorly understood. Here, opalescence behavior of a monoclonal antibody (mAb-1) solution was studied over a wide range of solution conditions including different protein concentrations, pH, and in the presence or absence of salt. Hydrodynamic and thermodynamic properties of mAb-1 solutions were studied by analytical ultracentrifugation and dynamic light scattering. Opalescence in mAb-1 solutions is pH and concentration dependent. The degree of opalescence correlates with reversible monomer-trimer equilibrium detected by analytical ultracentrifugation. Increased trimer formation corresponds to increased opalescence in mAb-1 solutions at higher pH and protein concentrations. Addition of NaCl shifts this equilibrium toward monomer and reduces solution opalescence. This study demonstrates that opalescence in mAb-1 solutions does not arise from the light scattering of monomer or random molecular self-associations but is strongly correlated with a specific self-association stoichiometry and affinity. Importantly, at pH 5.5 (far below isoelectric point of mAb-1), the solution is not opalescent and with nonideal behavior. This study also dissects several parameters to describe the hydrodynamic and thermodynamic nonideality.

  5. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  6. Pre-fusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy

    PubMed Central

    Bartesaghi, Alberto; Merk, Alan; Borgnia, Mario J.; Milne, Jacqueline L. S.; Subramaniam, Sriram

    2014-01-01

    The activation of trimeric HIV-1 envelope glycoprotein (Env) by its binding to the cell surface receptor CD4 and co-receptors (CCR5 or CXCR4) represents the first of a series of events that lead to fusion between viral and target cell membranes. Here, we present the cryo-electron microscopic structure, at ~ 6 Å resolution, of the closed, pre-fusion state of trimeric HIV-1 Env in complex with the broadly neutralizing antibody VRC03. We show that three gp41 helices at the core of the trimer serve as an anchor around which the rest of Env is reorganized upon activation to the open quaternary conformation. The architecture of trimeric HIV-1 Env in pre-fusion and activated intermediate states resembles the corresponding states of influenza hemagglutinin trimers, providing direct evidence for the similarity in entry mechanisms employed by HIV-1, influenza and related enveloped viruses. PMID:24154805

  7. Instanton calculations of tunneling splittings for water dimer and trimer

    NASA Astrophysics Data System (ADS)

    Richardson, Jeremy O.; Althorpe, Stuart C.; Wales, David J.

    2011-09-01

    We investigate the ability of the recently developed ring-polymer instanton (RPI) method [J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011)], 10.1063/1.3530589 to treat tunneling in water clusters. We show that the RPI method is easy to extend to treat tunneling between more than two minima, using elementary graph theory. Tests of the method on water dimer and trimer yield a set of instanton periodic orbits which correspond to all known tunneling pathways in these systems. Splitting patterns obtained from the orbits are in good overall agreement with experiment. The agreement is closer for the deuterated than for the protonated clusters, almost certainly because the main approximation in the calculations is neglect of anharmonicity perpendicular to the tunneling path. All the calculations were performed on a desktop computer, which suggests that similar calculations will be possible on much larger clusters.

  8. Metal dimer and trimer within spherical carbon cage

    NASA Astrophysics Data System (ADS)

    Kato, Tatsuhisa

    2007-07-01

    C 80 fulleren cage can be used to realize confinement with the highest possible icosahedral ( Ih) symmetry. As examples, La 2@C 80 and Sc 3C 2@C 80 are molecules in which metal dimer and trimer are encapsulated within the C 80 cage. They are recently purified in the substantial amount by using a high performance liquid chromatograph (HPLC), and studied by spectroscopy and X-ray diffraction. The confinement of the metal cluster with the high symmetry ( Ih) cage is reflected in their specific potential of the intra-molecular rotation for the cluster. The result of electron spin resonance (ESR) measurements indicates that the intra-molecular potential is modified by the chemical modification of the C 80 cage as well as by the injection of an excess electron.

  9. Understanding Magnetic Trimer Interactions in (Cr,Mn)-Substituted Graphene

    NASA Astrophysics Data System (ADS)

    Haraldsen, Jason T.; Crook, Charles B.; Houchins, Gregory; Zhu, Jian-Xin; Constantin, Costel; Balatsky, Alexander V.

    We investigate the magnetic interactions within a graphene superlattice produced by three directly substituted transition-metal atoms (specifically chromium and manganese). Using a first principles approach, we calculate the electronic and magnetic properties for this system assuming an equilateral trimer configuration with varying atomic separations. Through an examination of the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, we find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are dependent on the spatial and magnetic characteristic between the magnetic atoms and the carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, we use magnetization mapping to show that the substituted atoms induce an overall magnetic moment in the graphene lattice, which may help guide the discussion on spintronic graphene. JTH, CBC, GH, and AVB acknowledge support from the Institute for Materials Science via the United States Basic Energy Sciences (E304).

  10. Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer

    NASA Astrophysics Data System (ADS)

    Wang, Hancong; Li, Zhipeng; Zhang, Han; Wang, Peijie; Wen, Shuangchun

    2015-02-01

    We investigated the near-field response in silver nanoparticle aggregates to the excitation of circular polarized light. In a right-angle trimer system, the local field intensity excited by right-hand circularly polarized light is almost one thousand times larger than the left-hand case. By analyzing the polarization and phase of the local field in plasmonic hotspots, we found this local circular dichroism is originated from the near-field interference excited by orthogonal polarized incident lights. The local circular dichroism can be tuned by the rotation of the third particle, the interparticle distance, and the dielectric environment. This phenomenon could also widely exist in more complicated nanoaggregates. These findings would benefit for resolving light handedness, and enhancing circular dichroism and optical activity.

  11. Influences on Trimerization and Aggregation of Soluble, Cleaved HIV-1 SOSIP Envelope Glycoprotein

    PubMed Central

    Klasse, Per Johan; Depetris, Rafael S.; Pejchal, Robert; Julien, Jean-Philippe; Khayat, Reza; Lee, Jeong Hyun; Marozsan, Andre J.; Cupo, Albert; Cocco, Nicolette; Korzun, Jacob; Yasmeen, Anila; Ward, Andrew B.; Wilson, Ian A.

    2013-01-01

    We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies. PMID:23824824

  12. Structure-Guided Redesign Increases the Propensity of HIV Env To Generate Highly Stable Soluble Trimers

    PubMed Central

    Guenaga, Javier; Dubrovskaya, Viktoriya; de Val, Natalia; Sharma, Shailendra K.; Carrette, Barbara; Ward, Andrew B.

    2015-01-01

    ABSTRACT Due to high viral diversity, an effective HIV-1 vaccine will likely require Envs derived from multiple subtypes to generate broadly neutralizing antibodies (bNAbs). Soluble Env mimics, like the native flexibly linked (NFL) and SOSIP trimers, derived from the subtype A BG505 Env, form homogeneous, stable native-like trimers. However, other Env sequences, such as JRFL and 16055 from subtypes B and C, do so to a lesser degree. The high-resolution BG505 SOSIP crystal structures permit the identification and redesign of Env elements involved in trimer stability. Here, we identified structure trimer-derived (TD) residues that increased the propensity of the subtype B JRFL and subtype C 16055 Env sequences to form well-ordered, homogenous, and highly stable soluble trimers. The generation of these spike mimics no longer required antibody-based selection, positive or negative. Using the redesigned subtype B and C trimer representatives as respective foundations, we further stabilized the NFL TD trimers by engineering an intraprotomer disulfide linkage in the prebridging sheet, I201C-A433C (CC), that locks the gp120 in the receptor nontriggered state. We demonstrated that this disulfide pair prevented CD4 induced-conformational rearrangements in NFL trimers derived from the prototypic subtype A, B, and C representatives. Coupling the TD-based design with the engineered disulfide linkage, CC, increased the propensity of Env to form soluble highly stable spike mimics that are resistant to CD4-induced changes. These advances will allow testing of the hypothesis that such stabilized immunogens will more efficiently elicit neutralizing antibodies in small-animal models and primates. IMPORTANCE HIV-1 displays unprecedented global diversity circulating in the human population. Since the envelope glycoprotein (Env) is the target of neutralizing antibodies, Env-based vaccine candidates that address such diversity are needed. Soluble well-ordered Env mimics, typified by NFL

  13. Gas field ion source current stability for trimer and single atom terminated W(111) tips

    SciTech Connect

    Urban, Radovan; Wolkow, Robert A.; Pitters, Jason L.

    2012-06-25

    Tungsten W(111) oriented trimer-terminated tips as well as single atom tips, fabricated by a gas and field assisted etching and evaporation process, were investigated with a view to scanning ion microscopy and ion beam writing applications. In particular, ion current stability was studied for helium and neon imaging gases. Large ion current fluctuations from individual atomic sites were observed when a trimer-terminated tip was used for the creation of neon ion beam. However, neon ion current was stable when a single atom tip was employed. No such current oscillations were observed for either a trimer or a single atom tip when imaged with helium.

  14. Trimerization and Triple Helix Stabilization of the Collagen XIX NC2 Domain*

    PubMed Central

    Boudko, Sergei P.; Engel, Jürgen; Bächinger, Hans Peter

    2008-01-01

    The mechanisms of chain selection and assembly of fibril-associated collagens with interrupted triple helices (FACITs) must differ from that of fibrillar collagens, since they lack the characteristic C-propeptide. We analyzed two carboxyl-terminal noncollagenous domains, NC2 and NC1, of collagen XIX as potential trimerization units and found that NC2 forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. In contrast, the NC1 domain requires formation of an adjacent collagen triple helix to form interchain disulfide bridges. The NC2 domain of collagen XIX and probably of other FACITs is responsible for chain selection and trimerization. PMID:18845531

  15. Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis.

    PubMed

    Shubin, V V; Tsuprun, V L; Bezsmertnaya, I N; Karapetyan, N V

    1993-11-01

    Oligomeric and monomeric forms of chlorophyll-protein complexes of photosystem I (PSI) have been isolated from the mesophilic cyanobacterium Spirulina [(1992) FEBS Lett. 309, 340-342]. Electron microscopic analysis of the complexes showed that the oligomeric form is a trimer of the shape and dimensions similar to those of the trimer from thermophilic cyanobacteria. The chlorophyl ratio in the isolated trimer and monomer was found to be 7:3. The trimeric form of PSI complex in contrast to the monomeric one contains the chlorophyll emitting at 760 nm (77K), which is also found in Spirulina membranes and therefore could be used as an intrinsic probe for the trimeric complex. The 77K circular dichroism spectrum of the trimeric form is much more similar to that of Spirulina membranes than the spectrum of the monomer. Thus, the trimeric PSI complexes exist and dominate in the Spirulina membranes. PMID:8224233

  16. Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C.

    PubMed

    Klasse, P J; LaBranche, Celia C; Ketas, Thomas J; Ozorowski, Gabriel; Cupo, Albert; Pugach, Pavel; Ringe, Rajesh P; Golabek, Michael; van Gils, Marit J; Guttman, Miklos; Lee, Kelly K; Wilson, Ian A; Butera, Salvatore T; Ward, Andrew B; Montefiori, David C; Sanders, Rogier W; Moore, John P

    2016-09-01

    We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period. Autologous, Tier-2 neutralizing antibody (NAb) responses were generated to the clade A and clade B trimers in the bivalent mixture. When delivered as boosting immunogens to rabbits immunized with the clade A and/or clade B trimers, the clade C trimers also generated autologous Tier-2 NAb responses, the CZA97 trimers doing so more strongly and consistently than the DU422 trimers. The clade C trimers also cross-boosted the pre-existing NAb responses to clade A and B trimers. We observed heterologous Tier-2 NAb responses albeit inconsistently, and with limited overall breath. However, cross-neutralization of the clade A BG505.T332N virus was consistently observed in rabbits immunized only with clade B trimers and then boosted with clade C trimers. The autologous NAbs induced by the BG505, B41 and CZA97 trimers predominantly recognized specific holes in the glycan shields of the cognate virus. The shared location of some of these holes may account for the observed cross-boosting effects and the heterologous neutralization of the BG505.T332N virus. These findings will guide the design of further experiments to determine whether and how multiple Env trimers can together induce more broadly neutralizing antibody responses. PMID:27627672

  17. Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C

    PubMed Central

    Klasse, P. J.; Ozorowski, Gabriel; Cupo, Albert; Pugach, Pavel; Ringe, Rajesh P.; Golabek, Michael; van Gils, Marit J.; Guttman, Miklos; Lee, Kelly K.; Wilson, Ian A.; Butera, Salvatore T.; Ward, Andrew B.; Montefiori, David C.; Sanders, Rogier W.; Moore, John P.

    2016-01-01

    We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period. Autologous, Tier-2 neutralizing antibody (NAb) responses were generated to the clade A and clade B trimers in the bivalent mixture. When delivered as boosting immunogens to rabbits immunized with the clade A and/or clade B trimers, the clade C trimers also generated autologous Tier-2 NAb responses, the CZA97 trimers doing so more strongly and consistently than the DU422 trimers. The clade C trimers also cross-boosted the pre-existing NAb responses to clade A and B trimers. We observed heterologous Tier-2 NAb responses albeit inconsistently, and with limited overall breath. However, cross-neutralization of the clade A BG505.T332N virus was consistently observed in rabbits immunized only with clade B trimers and then boosted with clade C trimers. The autologous NAbs induced by the BG505, B41 and CZA97 trimers predominantly recognized specific holes in the glycan shields of the cognate virus. The shared location of some of these holes may account for the observed cross-boosting effects and the heterologous neutralization of the BG505.T332N virus. These findings will guide the design of further experiments to determine whether and how multiple Env trimers can together induce more broadly neutralizing antibody responses. PMID:27627672

  18. Monte Carlo and Exact Diagonalization of Copper (II) Trimer Spin Frustrated Systems

    NASA Astrophysics Data System (ADS)

    Egido-Betancourt, Hailey X.; Ter Haar, Leonard W.; Varney, Christopher N.

    We discuss the use and importance of trimer-based systems because of the spin frustration that may arise within extended lattices comprised of trimers. The possible intra- and inter-trimer exchange pathways they posses due to interconnections are evaluated using density functional theory (DFT) to identify the optimal structures that may be used in designing extended lattices. As example, trinuclear Cu36+ cores with each pair of copper atoms bridged by carboxylate ligands have three-fold symmetry. As trimers these structures have the potential to be modeled as a frustrated quantum spin-1/2 system. To analyze the magnetic ground state and topological properties, we utilize exact diagonalization on small clusters and compare with Monte Carlo simulations for a range of system sizes. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  19. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.

  20. The Nature of Bonding between Argon and Mixed Gold-Silver Trimers.

    PubMed

    Shayeghi, Armin; Johnston, Roy L; Rayner, David M; Schäfer, Rolf; Fielicke, André

    2015-09-01

    The controversial nature of chemical bonding between noble gases and noble metals is addressed. Experimental evidence of exceptionally strong Au-Ar bonds in Ar complexes of mixed Au-Ag trimers is presented. IR spectra reveal an enormous influence of the attached Ar atoms on vibrational modes, particularly in Au-rich trimers, where Ar atoms are heavily involved owing to a relativistically enhanced covalency. In Ag-rich trimers, vibrational transitions of the metal framework predominate, indicating a pure electrostatic character of the Ag-Ar bonds. The experimental findings are analyzed by means of DFT calculations, which show how the relativistic differences between Au and Ag are manifested in stronger Au-Ar binding energies. Because of the ability to vary composition and charge distribution, the trimers serve as ideal model systems to study the chemical nature of the bonding of noble gases to closed-shell systems containing gold. PMID:26206667

  1. Surface diffusion modes for Pt dimers and trimers on Pt(001)

    SciTech Connect

    Kellogg, G.L.; Voter, A.F. Los Alamos National Laboratory, Los Alamos, New Mexico )

    1991-07-29

    Field-ion-microscope observations and molecular statics calculations using embedded-atom-method potentials have identified the surface diffusion modes for Pt dimers and trimers on Pt(001). Dimers migrate by a series of displacements involving exchange between one of the dimer atoms and a substrate atom and have a lower activation barrier for diffusion than monomers. Trimer diffusion involves both exchange and hopping displacements and has an activation barrier comparable to monomers.

  2. Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin.

    PubMed Central

    Sen, K; Nikaido, H

    1991-01-01

    Deep rought mutants, which produce very defective lipopolysaccharides, are unable to export normal levels of porins into the outer membrane. In this study, we showed that lipopolysaccharides from such mutants were also unable to facilitate the trimerization, in vitro, of monomeric OmpF porin secreted by spheroplasts of Escherichia coli B/r. In contrast, lipopolysaccharides containing most or all of the core oligosaccharides were able to facilitate trimerization. Images PMID:1702785

  3. Different Infectivity of HIV-1 Strains Is Linked to Number of Envelope Trimers Required for Entry

    PubMed Central

    Brandenberg, Oliver F.; Magnus, Carsten; Rusert, Peter; Regoes, Roland R.; Trkola, Alexandra

    2015-01-01

    HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. PMID:25569556

  4. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles

    PubMed Central

    He, Linling; de Val, Natalia; Morris, Charles D.; Vora, Nemil; Thinnes, Therese C.; Kong, Leopold; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Wilson, Ian A; Nemazee, David; Ward, Andrew B.; Zhu, Jiang

    2016-01-01

    Structures of BG505 SOSIP.664 trimer in complex with broadly neutralizing antibodies (bNAbs) have revealed the critical role of trimeric context for immune recognition of HIV-1. Presentation of trimeric HIV-1 antigens on nanoparticles may thus provide promising vaccine candidates. Here we report the rational design, structural analysis and antigenic evaluation of HIV-1 trimer-presenting nanoparticles. We first demonstrate that both V1V2 and gp120 can be presented in native-like trimeric conformations on nanoparticles. We then design nanoparticles presenting various forms of stabilized gp140 trimer based on ferritin and a large, 60-meric E2p that displays 20 spikes mimicking virus-like particles (VLPs). Particle assembly is confirmed by electron microscopy (EM), while antigenic profiles are generated using representative bNAbs and non-NAbs. Lastly, we demonstrate high-yield gp140 nanoparticle production and robust stimulation of B cells carrying cognate VRC01 receptors by gp120 and gp140 nanoparticles. Together, our study provides an arsenal of multivalent immunogens for HIV-1 vaccine development. PMID:27349934

  5. Associations of Escherichia coli K-12 OmpF trimers with rough and smooth lipopolysaccharides

    SciTech Connect

    Diedrich, D.L.; Stein, M.A.; Schnaitman, C.A. )

    1990-09-01

    The associations of both rough and smooth lipopolysaccharides (LPS) with the OmpF porin of Escherichia coli K-12 were examined in galE strains deleted for ompC. Transformation with pSS37 and growth with galactose conferred the ability to assemble a Shigella dysenteriae O antigen onto the core oligosaccharide of E. coli K-12 LPS. The association of LPS with OmpF trimers was assessed by staining, autoradiography of LPS specifically labeled with (1-14C)galactose, and Western immunoblotting with a monoclonal antibody specific for OmpF trimers. These techniques revealed that the migration distances and multiple banding patterns of OmpF porin trimers in sodium dodecyl sulfate-polyacrylamide gels were dictated by the chemotype of associated LPS. Expression of smooth LPS caused almost all of the trimeric OmpF to run in gels with a slower mobility than trimers from rough strains. The LPS associated with trimers from a smooth strain differed from the bulk-phase LPS by consisting almost exclusively of molecules with O antigen.

  6. Molecular beam magnetic deflection behavior of sodium trimers

    SciTech Connect

    George, A.R.

    1983-01-01

    The observation and characterization of the Stern-Gerlach magnetic deflection behavior of sodium trimers in a supersonic molecular beam is reported. As part of a program to apply molecular beam technique to the study of metal clusters, a molecular beam apparatus designed for magnetic deflection and resonance experiments on selected alkali metal cluster species has been developed and is described. Clusters are produced in a supersonic expansion of a pure metal vapor, and are detected mass selectively by photoionization, quadrupole mass analysis, and an ion counting detector. The deflection profiles reveal peaks corresponding to the one Bohr magneton of magnetic moment of the unpaired electron, but in addition show evidence of a distribution of effective magnetic moments extending the full range between the positive and negative one Bohr magneton peaks. In addition, experiments utilizing multiple magnets and trajectory selecting collimators show evidence for magnetic moment and molecular state changes during traversal through the apparatus. Information from time of flight velocity analysis is used in conjunction with the deflection data and with computer simulations to rule out experimental artifacts and to establish that the observed phenomena can be the result of magnetic moment changes and molecular state changes caused by adiabatic and non-adiabatic traversals of avoided level crossings in the Zeeman energy diagram of these molecules. The phenomena have implications for the application of molecular beam Electron Spin Resonance technique to polyatomic molecules.

  7. Optimal efficiency of quantum transport in a disordered trimer.

    PubMed

    Giusteri, Giulio G; Celardo, G Luca; Borgonovi, Fausto

    2016-03-01

    Disordered quantum networks, such as those describing light-harvesting complexes, are often characterized by the presence of peripheral ringlike structures, where the excitation is initialized, and inner structures and reaction centers (RCs), where the excitation is trapped and transferred. The peripheral rings often display distinguished coherent features: Their eigenstates can be separated, with respect to the transfer of excitation, into two classes of superradiant and subradiant states. Both are important to optimize transfer efficiency. In the absence of disorder, superradiant states have an enhanced coupling strength to the RC, while the subradiant ones are basically decoupled from it. Static on-site disorder induces a coupling between subradiant and superradiant states, thus creating an indirect coupling to the RC. The problem of finding the optimal transfer conditions, as a function of both the RC energy and the disorder strength, is very complex even in the simplest network, namely, a three-level system. In this paper we analyze such trimeric structure, choosing as the initial condition an excitation on a subradiant state, rather than the more common choice of an excitation localized on a single site. We show that, while the optimal disorder is of the order of the superradiant coupling, the optimal detuning between the initial state and the RC energy strongly depends on system parameters: When the superradiant coupling is much larger than the energy gap between the superradiant and the subradiant levels, optimal transfer occurs if the RC energy is at resonance with the subradiant initial state, whereas we find an optimal RC energy at resonance with a virtual dressed state when the superradiant coupling is smaller than or comparable to the gap. The presence of dynamical noise, which induces dephasing and decoherence, affects the resonance structure of energy transfer producing an additional incoherent resonance peak, which corresponds to the RC energy being

  8. Perinatal Toxicity and Carcinogenicity Studies of Styrene –Acrylonitrile Trimer, A Ground Water Contaminant

    PubMed Central

    Behl, Mamta; Elmore, Susan A.; Malarkey, David E.; Hejtmancik, Milton R.; Gerken, Diane K.; Chhabra, Rajendra S.

    2015-01-01

    Styrene Acrylonitrile (SAN) Trimer is a by-product in the production of acrylonitrile styrene plastics. Following a report of a childhood cancer cluster in the Toms River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site’s ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in F344/N rats were preceded by 7- and 18-week perinatal toxicity studies to determine the exposure concentrations for the 2-year studies. Subsequently, Fisher 344 pregnant dams were exposed to SAN Trimer containing diet at 400, 800, or 1600 ppm concentrations during gestation, nursing and weaning periods of offspring followed by two year of adult exposures to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were observed in males and to lesser extent in female rats. These incidences were considered within the range of historical background in the animal model used in the current studies. Therefore, the presence of a few rarely occurring CNS tumors in the treated groups were not judged to be associated with the SAN Trimer exposure. The major finding was a dose-related peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females thereby suggesting that SAN trimer is potentially a nervous system toxicant. PMID:24060431

  9. A Multivalent Clade C HIV-1 Env Trimer Cocktail Elicits a Higher Magnitude of Neutralizing Antibodies than Any Individual Component

    PubMed Central

    Bricault, Christine A.; Kovacs, James M.; Nkolola, Joseph P.; Yusim, Karina; Giorgi, Elena E.; Shields, Jennifer L.; Perry, James; Lavine, Christy L.; Cheung, Ann; Ellingson-Strouss, Katharine; Rademeyer, Cecelia; Gray, Glenda E.; Williamson, Carolyn; Stamatatos, Leonidas; Seaman, Michael S.; Korber, Bette T.; Chen, Bing

    2014-01-01

    ABSTRACT The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties. Among the single trimers tested, 459C elicited the most potent NAb responses in vaccinated guinea pigs. We evaluated the immunogenicity of various mixtures of clade C Env trimers and found that a quadrivalent cocktail of clade C trimers elicited a greater magnitude of NAbs against a panel of tier 1A and 1B viruses than any single clade C trimer alone, demonstrating that the mixture had an advantage over all individual components of the cocktail. These data suggest that vaccination with a mixture of clade C Env trimers represents a promising strategy to augment vaccine-elicited NAb responses. IMPORTANCE It is currently not known how to generate potent NAbs to the diverse circulating HIV-1 Envs by vaccination. One strategy to address this diversity is to utilize mixtures of different soluble HIV-1 envelope proteins. In this study, we generated and characterized three distinct, novel, acute clade C soluble trimers. We vaccinated guinea pigs with single trimers as well as mixtures of trimers, and we found that a mixture of four trimers elicited a greater magnitude of NAbs than any single trimer within the mixture. The results of this study suggest that further development of Env trimer cocktails is warranted. PMID:25540368

  10. Subunit constituent of the porin trimers that form the permeability channels in the outer membrane of Salmonella typhimurium.

    PubMed Central

    Ishii, J; Nakae, T

    1980-01-01

    The polypeptide composition of the functional porin trimers that produced the permeability channels in the outer membrane of Salmonella typhimurium was examined on two-dimensional slab gels. The results suggested that the majority of porin trimers from strains producing mixed species of porin polypeptides consisted of homologous subunit polypeptides. The present results do not exclude the possibility that a small fraction of porin trimer is constructed from heterologous subunit polypeptides. Images PMID:6246065

  11. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens

    PubMed Central

    Schiffner, Torben; de Val, Natalia; Russell, Rebecca A.; de Taeye, Steven W.; de la Peña, Alba Torrents; Ozorowski, Gabriel; Kim, Helen J.; Nieusma, Travis; Brod, Florian; Cupo, Albert; Sanders, Rogier W.; Moore, John P.; Ward, Andrew B.

    2015-01-01

    ABSTRACT Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative

  12. Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity

    PubMed Central

    Hu, Joyce K.; Crampton, Jordan C.; Cupo, Albert; Ketas, Thomas; van Gils, Marit J.; Sliepen, Kwinten; de Taeye, Steven W.; Sok, Devin; Ozorowski, Gabriel; Deresa, Isaiah; Stanfield, Robyn; Ward, Andrew B.; Burton, Dennis R.; Klasse, Per Johan; Sanders, Rogier W.; Moore, John P.

    2015-01-01

    ABSTRACT Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2) HIV-1 strains that are in circulation. The HIV-1 envelope glycoprotein (Env) spike is the only target for nAbs. To explore whether Tier-2 nAbs can be induced by Env proteins, we immunized conventional mice with soluble BG505 SOSIP.664 trimers that mimic the native Env spike. Here, we report that it is extremely difficult for murine B cells to recognize the Env epitopes necessary for inducing Tier-2 nAbs. Thus, while trimer-immunized mice raised Env-binding IgG Abs and had high-quality T follicular helper (Tfh) cell and germinal center (GC) responses, they did not make BG505.T332N nAbs. Epitope mapping studies showed that Ab responses in mice were specific to areas near the base of the soluble trimer. These areas are not well shielded by glycans and likely are occluded on virions, which is consistent with the lack of BG505.T332N nAbs. These data inform immunogen design and suggest that it is useful to obscure nonneutralizing epitopes presented on the base of soluble Env trimers and that the glycan shield of well-formed HIV Env trimers is virtually impenetrable for murine B cell receptors (BCRs). IMPORTANCE Human HIV vaccine efficacy trials have not generated meaningful neutralizing antibodies to circulating HIV strains. One possible hindrance has been the lack of immunogens that properly mimic the native conformation of the HIV envelope trimer protein. Here, we tested the first generation of soluble, native-like envelope trimer immunogens in a conventional mouse model. We attempted to generate neutralizing antibodies to neutralization-resistant circulating HIV strains. Various vaccine strategies failed to induce neutralizing antibodies to a neutralization

  13. Tunable trimers: Using temperature and pressure to control luminescent emission in gold(I) pyrazolate-based trimers

    DOE PAGES

    Woodall, Christopher H.; Fuertes, Sara; Beavers, Christine M.; Hatcher, Lauren E.; Parlett, Andrew; Shepherd, Helena J.; Christensen, Jeppe; Teat, Simon J.; Intissar, Mourad; Rodrigue-Witchel, Alexandre; et al

    2014-10-21

    A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au∙∙∙Au interactions in a series of pyrazolate-based gold(I) trimers; tris(μ2-pyrazolato-N,N')-tri-gold(I) (1), tris(μ2-3,4,5-trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(μ2-3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(μ2-3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au∙∙∙Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au∙∙∙Au contacts of between 0.04more » and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au∙∙∙Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm-1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au∙∙∙Au distance observed by diffraction.« less

  14. Tunable trimers: Using temperature and pressure to control luminescent emission in gold(I) pyrazolate-based trimers

    SciTech Connect

    Woodall, Christopher H.; Fuertes, Sara; Beavers, Christine M.; Hatcher, Lauren E.; Parlett, Andrew; Shepherd, Helena J.; Christensen, Jeppe; Teat, Simon J.; Intissar, Mourad; Rodrigue-Witchel, Alexandre; Suffren, Yan; Reber, Christian; Hendon, Christopher H.; Tiana, Davide; Walsh, Aron; Raithby, Paul R.

    2014-10-21

    A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au∙∙∙Au interactions in a series of pyrazolate-based gold(I) trimers; tris(μ2-pyrazolato-N,N')-tri-gold(I) (1), tris(μ2-3,4,5-trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(μ2-3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(μ2-3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au∙∙∙Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au∙∙∙Au contacts of between 0.04 and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au∙∙∙Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm-1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au∙∙∙Au distance observed by diffraction.

  15. Optically Isotropic Homochiral Structure Produced by Intercalation of Achiral Liquid Crystal Trimers.

    PubMed

    Yoshizawa, Atsushi; Kato, Yusuke; Sasaki, Haruna; Takanishi, Yoichi; Yamamoto, Jun

    2016-06-01

    Dark conglomerates of domains with opposite handedness, which are designated dark conglomerate phases (DC phases), have attracted much attention. We prepared an achiral liquid crystal trimer, 4,4'-bis{9-[4-(5-octyloxypyrimidin-2-yl)phenyloxy]nonyloxy}biphenyl (I-9), and investigated the physical properties. A droplet of trimer I-9 formed a conventional nematic phase on cooling from the isotropic liquid, and then changed to an optical isotropic phase with homochirality. X-ray diffraction measurements reveal that the isotropic phase has an intercalated layer structure with a correlation length of 95 nm. We prepared binary mixtures with a nematic liquid crystal, 4'-hexyloxy-4-cyanobiphenyl (6OCB). The mixtures containing 30-75 mol % of 6OCB exhibited smectic phases above the isotropic phase. We investigated mesogenic properties of trimer I-n (n = 5-9) depending on the parity of the linking group. Only trimer I-9 possessing the longest odd-numbered spacers showed the chiral isotropic phase, suggesting that a rigid bent structure is not necessary for the appearance of the isotropic phase. The experimental results reveal that trimer I-9 exhibits a soft crystalline DC phase representing a new modification of chiral symmetry breaking in lamellar liquid crystal phases.

  16. Unexpected Trimerization of Pyrazine in the Coordination Sphere of Low-Valent Titanocene Fragments.

    PubMed

    Jung, Thomas; Beckhaus, Rüdiger; Klüner, Thorsten; Höfener, Sebastian; Klopper, Wim

    2009-08-11

    The titanium mediated trimerization of pyrazine leads to the formation of a tris-chelate complex employing a 4a,4b,8a,8b,12a,12b-hexahydrodiyprazino[2,3-f:2',3'-h]quinoxaline ligand (HATH6, 3). The driving force in the formation of the (Cp*2Ti)3(HATH6) complex 2 is attributed to the formation of six Ti-N bonds. We show that density functional theory (DFT) fails to predict quantitatively correct results. Therefore, post-Hartree-Fock methods, such as second-order Møller-Plesset perturbation theory (MP2), in combination with coupled-cluster (CC) methods must be used. Both MP2 and CCSD(T) levels of theory provide endothermic trimerization energies, showing that the plain pyrazine trimer is not stable with respect to decomposition into its monomers. Complete basis set (CBS) results for the MP2 level of theory were computed using explicitly correlated wave functions. With these, we estimate the CCSD(T) CBS limit of the hypothetical trimerization energy to be +0.78 eV. Thus, the trimerization is facilitated by the formation of six Ti-N bonds with a calculated formation energy of -1.32 eV per bond.

  17. Is It Beneficial for the Major Photosynthetic Antenna Complex of Plants To Form Trimers?

    PubMed

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Sowinski, Karol; Luchowski, Rafal; Grudzinski, Wojciech; Gruszecki, Wieslaw I

    2015-07-01

    The process of primary electric charge separation in photosynthesis takes place in the reaction centers, but photosynthesis can operate efficiently and fluently due to the activity of several pigment-protein complexes called antenna, which absorb light quanta and transfer electronic excitations toward the reaction centers. LHCII is the major photosynthetic pigment-protein antenna complex of plants and appears in the trimeric form. Several recent reports point to trimeric organization of LHCII as a key factor responsible for the chloroplast architecture via stabilization of granal organization of the thylakoid membranes. In the present work, we address the question of whether such an organization could also directly influence the antenna properties of this pigment-protein complex. Chlorophyll fluorescence analysis reveals that excitation energy transfer in LHCII is substantially more efficient in trimers and dissipative energy losses are higher in monomers. It could be concluded that trimers are exceptionally well suited to perform the antenna function. Possibility of fine regulation of the photosynthetic antenna function via the LHCII trimer-monomer transition is also discussed, based on the fluorescence lifetime analysis in a single chloroplast. PMID:26085037

  18. Synthesis and optical properties of chlorin monomer, dimer and trimer on an amino nitrogen atom.

    PubMed

    Tamiaki, Hitoshi; Nagai, Tomoaki; Tanaka, Takuya; Tatebe, Tomohiro

    2015-09-01

    Naturally occurring chlorophyll-a was chemically modified to methyl 3-aminomethyl-pyropheophorbides-a including primary, secondary, and tertiary amines. Reductive amination of methyl pyropheophorbide-d possessing the 3-formyl group with ammonia efficiently gave a chlorin dimer covalently linked with CH2NHCH2 at the 3-position, which was transformed into a trimer through the substitution at the amino group. Conformational analyses by (1)H NMR spectroscopic observation and molecular modeling estimation indicated that the dimer and trimer were apt to form closely packed structures. Chlorin chromophores in the dimer and trimer were weakly interacted in dichloromethane to shift their Qy absorption bands to longer wavelengths by 4-6nm than the maxima of the corresponding monomer. In the red-shifted Qy region, the trimer gave an S-shaped circular dichroism band by exciton coupling of composite chlorin units. All the semi-synthetic chlorophyll derivatives were highly fluorescent and no intramolecular quenching was observed even in the trimer. The behaviors would be ascribable to the formation of compact conformers and suppression of intramolecular motion, which are important to construct light-harvesting antenna complexes in phototrophs and their model systems.

  19. Magnetic Properties of a Heisenberg Coupled-Trimer Molecular Magnet: General

    SciTech Connect

    Haraldsen, Jason T; Barnes, Ted {F E }; Sinclair IV, John W; Thompson, James R; Sacci, Robert L.; Turner, John F. C.

    2009-01-01

    We report predictions for the energy eigenstates and inelastic neutron scattering excitations of an isotropic Heisenberg hexamer consisting of general spin S and S′ trimers. Specializing to spin-1/2 ions, we give analytic results for the energy excitations, magnetic susceptibility, and inelastic neutron scattering intensities for this hexamer system. To examine this model further, we compare these calculations to the measured magnetic susceptibility of a vanadium material, which is considered to be well defined magnetically as an isolated S = 1/2 V4+ trimer model. Using our model, we determine the amount of inter-trimer coupling that can be accommodated by the measured susceptibility, and predict the inelastic neutron scattering spectrum for comparison with future measurements.

  20. High thermal stability and unique trimer formation of cytochrome c' from thermophilic Hydrogenophilus thermoluteolus.

    PubMed

    Fujii, Sotaro; Masanari, Misa; Inoue, Hiroki; Yamanaka, Masaru; Wakai, Satoshi; Nishihara, Hirofumi; Sambongi, Yoshihiro

    2013-01-01

    Sequence analysis indicated that thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) and its mesophilic homolog, Allochromatium vinosum cytochrome c' (AVCP), closely resemble each other in a phylogenetic tree of the cytochrome c' family, with 55% sequence identity. The denaturation temperature of PHCP was 87 °C, 35 °C higher than that of AVCP. Furthermore, PHCP exhibited a larger enthalpy change value during its thermal denaturation than AVCP. While AVCP was dimeric, as observed previously, PHCP was trimeric, and this was the first observation as a cytochrome c'. Dissociation of trimeric PHCP and its protein denaturation reversibly occurred at the same time in a two-state transition manner. Therefore, PHCP is enthalpically more stable than AVCP, perhaps due to its unique trimeric form, in addition to the lower number of Gly residues in its putative α-helical regions.

  1. Systematic study of antibonding modes in gold nanorod dimers and trimers.

    PubMed

    Osberg, Kyle D; Harris, Nadine; Ozel, Tuncay; Ku, Jessie C; Schatz, George C; Mirkin, Chad A

    2014-12-10

    Using on-wire lithography to synthesize well-defined nanorod dimers and trimers, we report a systematic study of the plasmon coupling properties of such materials. By comparing the dimer/trimer structures to discrete nanorods of the same overall length, we demonstrate many similarities between antibonding coupled modes in the dimers/trimers and higher-order resonances in the discrete nanorods. These conclusions are validated with a combination of discrete dipole approximation and finite-difference time-domain calculations and lead to the observation of antibonding modes in symmetric structures by measuring their solution-dispersed extinction spectra. Finally, we probe the effects of asymmetry and gap size on the occurrence of these modes and demonstrate that the delocalized nature of the antibonding modes lead to longer-range coupling compared to the stronger bonding modes. PMID:25411044

  2. Structural and magnetic studies on cyano-bridged rectangular Fe2M2 (M = Cu, Ni) clusters.

    PubMed

    Liu, Wei; Wang, Cai-Feng; Li, Yi-Zhi; Zuo, Jing-Lin; You, Xiao-Zeng

    2006-12-11

    Using the tricyano precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl) hydroborate) (1), four new tetranuclear clusters, [(Tp)Fe(CN)3Cu(Tp)]2.2H2O (2), [(Tp)Fe(CN)3Cu(bpca)]2.4H2O (3) (bpca = bis(2-pyridylcarbonyl)amidate anion), [(Tp)Fe(CN)3Ni(tren)]2(ClO4)2.2H2O (4) (tren = tris(2-amino)ethylamine), and [(Tp)Fe(CN)3Ni(bipy)2]2[(Tp)Fe(CN)3]2.6H2O (5) (bipy = 2,2'-bipyridine), have been synthesized and structurally characterized. The four clusters possess similar square structures, where FeIII and MII (M = CuII or NiII) ions alternate at the rectangle corners. There exist intermolecular - stacking interactions through pyrazolyl groups of Tp- ligands in complexes 2 and 4, which lead to 1D chain structures. Complex 5 shows a 3D network structure through the coexistence of - stacking effects and hydrogen-bonding interactions. Magnetic studies show intramolecular ferromagnetic interactions in all four clusters. The exchange parameters are +11.91 and +1.38 cm(-1) for clusters 2 and 3, respectively, while uniaxial molecular anisotropy can be detected in complex 3 due to the distorted core in its molecular structure. Complex 4 has a ground state of S = 3 and shows SMM behavior with an effective energy barrier of U = 18.9 cm(-1). Unusual spin-glass-like dynamic relaxations are observed for complex 5.

  3. Charge-Transfer Dynamics in Cyano-Bridged MA-Fe System (MA=Mn, Fe, and Co)

    NASA Astrophysics Data System (ADS)

    Kamioka, Hayato; Moritomo, Yutaka; Kosaka, Wataru; Ohkoshi, Shinichi

    2008-09-01

    Charge-transfer (CT) dynamics has been investigated for Prussian blue-type MA-Fe cyanides (MA=Mn, Fe, and Co) grown in hydrophilic cavities of a Nafion 117 film. In all the compounds, we observed the suppression of the original CT absorption between neighboring transition metals. We found that the spectral profile of the slow component for the Fe compound is similar to that for the Co compound, reflecting the photo created d6 state at the MA site.

  4. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin

    PubMed Central

    Sriwimol, Wilaiwan; Aroonkesorn, Aratee; Sakdee, Somsri; Kanchanawarin, Chalermpol; Uchihashi, Takayuki; Ando, Toshio; Angsuthanasombat, Chanan

    2015-01-01

    The insecticidal feature of the three-domain Cry δ-endotoxins from Bacillus thuringiensis is generally attributed to their capability to form oligomeric pores, causing lysis of target larval midgut cells. However, the molecular description of their oligomerization process has not been clearly defined. Here a stable prepore of the 65-kDa trypsin-activated Cry4Ba mosquito-specific toxin was established through membrane-mimetic environments by forming an ∼200-kDa octyl-β-d-glucoside micelle-induced trimer. The SDS-resistant trimer caused cytolysis to Sf9 insect cells expressing Aedes-mALP (a Cry4Ba receptor) and was more effective than a toxin monomer in membrane perturbation of calcein-loaded liposomes. A three-dimensional model of toxin trimer obtained by negative-stain EM in combination with single-particle reconstruction at ∼5 nm resolution showed a propeller-shaped structure with 3-fold symmetry. Fitting the three-dimensional reconstructed EM map with a 100-ns molecular dynamics-simulated Cry4Ba structure interacting with an octyl-β-d-glucoside micelle showed relative positioning of individual domains in the context of the trimeric complex with a major protrusion from the pore-forming domain. Moreover, high-speed atomic force microscopy imaging at nanometer resolution and a subsecond frame rate demonstrated conformational transitions from a propeller-like to a globularly shaped trimer upon lipid membrane interactions, implying prepore-to-pore conversion. Real-time trimeric arrangement of monomers associated with l-α-dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid bicelle membranes was also envisaged by successive high-speed atomic force microscopy imaging, depicting interactions among three individual subunits toward trimer formation. Together, our data provide the first pivotal insights into the structural requirement of membrane-induced conformational changes of Cry4Ba toxin monomers for the

  5. Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis

    PubMed Central

    Fee, Lanette; Tao, Yazhong; Redler, Rachel L.; Fay, James M.; Zhang, Yuliang; Lv, Zhengjian; Mercer, Ian P.; Deshmukh, Mohanish; Lyubchenko, Yuri L.; Dokholyan, Nikolay V.

    2016-01-01

    Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies. PMID:26719414

  6. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design

    PubMed Central

    Sharma, Shailendra Kumar; de Val, Natalia; Bale, Shridhar; Guenaga, Javier; Tran, Karen; Feng, Yu; Dubrovskaya, Viktoriya; Ward, Andrew B.; Wyatt, Richard T.

    2015-01-01

    Summary Viral glycoproteins mediate entry by pH-activated or receptor-engaged activation and exist in metastable pre-fusogenic states that may be stabilized by directed rational design. As recently reported, the conformationally fixed HIV-1 envelope glycoprotein (Env) trimers in the pre-fusion state (SOSIP) display molecular homogeneity and structural integrity at relatively high levels of resolution. However, the SOSIPs necessitate full Env precursor cleavage, which requires endogenous furin over-expression. Here, we developed an alternative strategy using flexible peptide covalent linkage of Env subdomains to produce soluble, homogeneous and cleavage-independent Env mimics, called native flexibly linked (NFL) trimers, as vaccine candidates. This simplified design avoids the need for furin co-expression and, in one case, antibody affinity purification to accelerate trimer scale-up for preclinical and clinical applications. We have successfully translated the NFL design to multiple HIV-1 subtypes, establishing the potential to become a general method of producing native-like, well-ordered Env trimers for HIV-1 or other viruses. PMID:25892233

  7. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design.

    PubMed

    Sharma, Shailendra Kumar; de Val, Natalia; Bale, Shridhar; Guenaga, Javier; Tran, Karen; Feng, Yu; Dubrovskaya, Viktoriya; Ward, Andrew B; Wyatt, Richard T

    2015-04-28

    Viral glycoproteins mediate entry by pH-activated or receptor-engaged activation and exist in metastable pre-fusogenic states that may be stabilized by directed rational design. As recently reported, the conformationally fixed HIV-1 envelope glycoprotein (Env) trimers in the pre-fusion state (SOSIP) display molecular homogeneity and structural integrity at relatively high levels of resolution. However, the SOSIPs necessitate full Env precursor cleavage, which requires endogenous furin overexpression. Here, we developed an alternative strategy using flexible peptide covalent linkage of Env subdomains to produce soluble, homogeneous, and cleavage-independent Env mimics, called native flexibly linked (NFL) trimers, as vaccine candidates. This simplified design avoids the need for furin co-expression and, in one case, antibody affinity purification to accelerate trimer scale-up for preclinical and clinical applications. We have successfully translated the NFL design to multiple HIV-1 subtypes, establishing the potential to become a general method of producing native-like, well-ordered Env trimers for HIV-1 or other viruses.

  8. Theory vs. experiment for molecular clusters: Spectra of OCS trimers and tetramers

    SciTech Connect

    Evangelisti, Luca; Perez, Cristobal; Seifert, Nathan A.; Pate, Brooks H.; Dehghany, M.; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2015-03-14

    All singly substituted {sup 13}C, {sup 18}O, and {sup 34}S isotopomers of the previously known OCS trimer are observed in natural abundance in a broad-band spectrum measured with a chirped-pulse Fourier transform microwave spectrometer. The complete substitution structure thus obtained critically tests (and confirms) the common assumption that monomers tend to retain their free structure in a weakly bound cluster. A new OCS trimer isomer is also observed, and its structure is determined to be barrel-shaped but with the monomers all approximately aligned, in contrast to the original trimer which is barrel-shaped with two monomers aligned and one anti-aligned. An OCS tetramer spectrum is assigned for the first time, and the tetramer structure resembles an original trimer with an OCS monomer added at the end with two sulfur atoms. Infrared spectra observed in the region of the OCS ν{sub 1} fundamental (≈2060 cm{sup −1}) are assigned to the same OCS tetramer, and another infrared band is tentatively assigned to a different tetramer isomer. The experimental results are compared and contrasted with theoretical predictions from the literature and from new cluster calculations which use an accurate OCS pair potential and assume pairwise additivity.

  9. Green's function Monte Carlo calculation for the ground state of helium trimers

    SciTech Connect

    Cabral, F.; Kalos, M.H.

    1981-02-01

    The ground state energy of weakly bound boson trimers interacting via Lennard-Jones (12,6) pair potentials is calculated using a Monte Carlo Green's Function Method. Threshold coupling constants for self binding are obtained by extrapolation to zero binding.

  10. The kinetics and mechanism of nanoconfined molten salt reactions: trimerization of potassium and rubidium dicyanamide.

    PubMed

    Yancey, Benjamin; Vyazovkin, Sergey

    2015-04-21

    This study highlights the effect of the aggregate state of a reactant on the reaction kinetics under the conditions of nanoconfinement. Our previous work (Phys. Chem. Chem. Phys., 2014, 16, 11409) has demonstrated considerable deceleration of the solid state trimerization of sodium dicyanamide in organically modified silica nanopores. In the present study we use FTIR, NMR, pXRD, TGA and DSC to analyze the kinetics and mechanism of the liquid state trimerization of potassium and rubidium dicyanamide under similar conditions of nanoconfinement. It is found that nanoconfinement accelerates dramatically the kinetics of the liquid state trimerization, whereas it does not appear to affect the reaction mechanism. Kinetic analysis indicates that the acceleration is associated with an increase in the preexponential factor. Although nanoconfinement has the opposite effects on the respective kinetics of solid and liquid state trimerization, both effects are linked to a change in the preexponential factor. The results obtained are consistent with our hypothesis that the effects differ because nanoconfinement may promote disordering of the solid and ordering of the liquid reaction media.

  11. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer

    PubMed Central

    Sliepen, Kwinten; van Montfort, Thijs; Ozorowski, Gabriel; Pritchard, Laura K.; Crispin, Max; Ward, Andrew B.; Sanders, Rogier W.

    2015-01-01

    Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry. PMID:26512709

  12. Polaronic atom-trimer continuity in three-component Fermi gases.

    PubMed

    Nishida, Yusuke

    2015-03-20

    Recently it has been proposed that three-component Fermi gases may exhibit a new type of crossover physics in which an unpaired Fermi sea of atoms smoothly evolves into that of trimers in addition to the ordinary BCS-BEC crossover of condensed pairs. Here we study its corresponding polaron problem in which a single impurity atom of one component interacts with condensed pairs of the other two components with equal populations. By developing a variational approach in the vicinity of a narrow Feshbach resonance, we show that the impurity atom smoothly changes its character from atom to trimer with increasing the attraction and eventually there is a sharp transition to dimer. The emergent polaronic atom-trimer continuity can be probed in ultracold atoms experiments by measuring the impurity spectral function. Our novel crossover wave function properly incorporating the polaronic atom-trimer continuity will provide a useful basis to further investigate the phase diagram of three-component Fermi gases in more general situations.

  13. Design, synthesis and optical properties of unsymmetrical subphthalocyanine trimer connected by phloroglucinol via axial positions.

    PubMed

    Mori, Satoru; Ogawa, Naoya; Tokunaga, Etsuko; Tsuzuki, Seiji; Shibata, Norio

    2016-01-21

    An unsymmetrical subphthalocyanine trimer consisting of three different subphthalocyanine units was synthesized. Its optical and physical properties were investigated by UV/Vis, fluorescence spectrometry, cyclic voltammetry and computations. Energy transfer from the non-substituted subphthalocyanine unit to the perfluorinated subphthalocyanine unit via a trifluoroethoxy substituted unit is suggested. PMID:26669435

  14. Unusual H-Bond Topology and Bifurcated H-bonds in the 2-Fluoroethanol Trimer.

    PubMed

    Thomas, Javix; Liu, Xunchen; Jäger, Wolfgang; Xu, Yunjie

    2015-09-28

    By using a combination of rotational spectroscopy and ab initio calculations, an unusual H-bond topology was revealed for the 2-fluoroethanol trimer. The trimer exhibits a strong heterochiral preference and adopts an open OH⋅⋅⋅OH H-bond topology while utilizing two types of bifurcated H-bonds involving organic fluorine. This is in stark contrast to the cyclic OH⋅⋅⋅OH H-bond topology adopted by trimers of water and other simple alcohols. The strengths of different H-bonds in the trimer were analyzed by using the quantum theory of atoms in molecules. The study showcases a remarkable example of a chirality-induced switch in H-bond topology in a simple transient chiral fluoroalcohol. It provides important insight into the H-bond topologies of small fluoroalcohol aggregates, which are proposed to play a key role in protein folding and in enantioselective reactions and separations where fluoroalcohols serve as a (co)solvent.

  15. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  16. Geometrically frustrated Fe2P-like systems: beyond the Fe-trimer approximation

    NASA Astrophysics Data System (ADS)

    Florez, J. M.; Negrete, O. A.; Vargas, P.; Ross, C. A.

    2015-07-01

    Fe2 P-like structures can be strongly frustrated magnets due to their Kagome/triangular intercalated-layer structure. A complete magnetic solution of the complex spin architecture, and hence the full potential of the magnetic phenomena in Fe2 P-like material prototypes, is yet to be found. A previous magnetic model for a representative FeCrAs-like system used a mean-field effective-spin to describe the 3g-Wyckoff located Fe-triangles. Such an approach demonstrated the outstanding magnetocaloric properties of the material but left the question of whether the intra-trimer interaction could lead to new physical phenomena and therefore more potentially useful properties. In this work Monte Carlo simulations are employed in order to understand both the influence of the additional degrees of freedom introduced by the Fe-trimers and the changes caused by all the possible exchange couplings between them. Complex scenarios arise, in which FM coupling in the trimers gives rise to both in-plane and out-of-plane inter-layer AFM states; whereas AFM exchange in the trimers gives rise to three distinct states, i.e. AFM-canted layers, a non-collinear superposition of ferromagnetic Kagome/triangular orderings, and tilted inter-planar AFM order. These last three configurations generate a double bifurcated magnetic phase diagram while the first one mimics the behavior seen in a model that treats the trimer as an effective-spin under an applied magnetic field.

  17. Geometrically frustrated Fe2P-like systems: beyond the Fe-trimer approximation.

    PubMed

    Florez, J M; Negrete, O A; Vargas, P; Ross, C A

    2015-07-22

    Fe(2)P-like structures can be strongly frustrated magnets due to their Kagome/triangular intercalated-layer structure. A complete magnetic solution of the complex spin architecture, and hence the full potential of the magnetic phenomena in Fe(2)P-like material prototypes, is yet to be found. A previous magnetic model for a representative FeCrAs-like system used a mean-field effective-spin to describe the 3g-Wyckoff located Fe-triangles. Such an approach demonstrated the outstanding magnetocaloric properties of the material but left the question of whether the intra-trimer interaction could lead to new physical phenomena and therefore more potentially useful properties. In this work Monte Carlo simulations are employed in order to understand both the influence of the additional degrees of freedom introduced by the Fe-trimers and the changes caused by all the possible exchange couplings between them. Complex scenarios arise, in which FM coupling in the trimers gives rise to both in-plane and out-of-plane inter-layer AFM states; whereas AFM exchange in the trimers gives rise to three distinct states, i.e. AFM-canted layers, a non-collinear superposition of ferromagnetic Kagome/triangular orderings, and tilted inter-planar AFM order. These last three configurations generate a double bifurcated magnetic phase diagram while the first one mimics the behavior seen in a model that treats the trimer as an effective-spin under an applied magnetic field.

  18. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study

    PubMed Central

    Rai, Nivedita; Ramaswamy, Amutha

    2015-01-01

    DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns) and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280) and left ( at 320 K) with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate. PMID:25987966

  19. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome

    PubMed Central

    Perera, Rajika L.; van Deursen, Frederick; Evrin, Cecile; Ivanova, Marina E.; Kilkenny, Mairi L.; Renault, Ludovic; Kjaer, Svend; Matak-Vinković, Dijana; Labib, Karim; Costa, Alessandro; Pellegrini, Luca

    2014-01-01

    Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks1, to avoid stalling of the replication machinery and consequent genomic instability2-4. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a β-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the N-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new paradigm for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of E. coli5-8. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork. PMID:24805245

  20. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  1. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

    SciTech Connect

    Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu; Petridis, Loukas; Heller, William T.; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Langan, Paul; Smith, Jeremy C.; Meiler, Jens; O’Neill, Hugh

    2015-11-10

    In a cellulose synthesis complex a "rosette" shape is responsible for the synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. Our work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. Moreover, the conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. Finally, this study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.

  2. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers.

    PubMed

    Vandavasi, Venu Gopal; Putnam, Daniel K; Zhang, Qiu; Petridis, Loukas; Heller, William T; Nixon, B Tracy; Haigler, Candace H; Kalluri, Udaya; Coates, Leighton; Langan, Paul; Smith, Jeremy C; Meiler, Jens; O'Neill, Hugh

    2016-01-01

    A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.

  3. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers

    DOE PAGES

    Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu; Petridis, Loukas; Heller, William T.; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Langan, Paul; et al

    2015-11-10

    In a cellulose synthesis complex a "rosette" shape is responsible for the synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. Our work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer inmore » solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. Moreover, the conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. Finally, this study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.« less

  4. Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates.

    PubMed

    Srivastava, Indresh K; Kan, Elaine; Sun, Yide; Sharma, Victoria A; Cisto, Jimna; Burke, Brian; Lian, Ying; Hilt, Susan; Biron, Zohar; Hartog, Karin; Stamatatos, Leonidas; Diaz-Avalos, Ruben; Cheng, R Holland; Ulmer, Jeffrey B; Barnett, Susan W

    2008-03-15

    We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140DeltaV2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV(SF162P4) virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140DeltaV2TV1 (subtype C DeltaV2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C DeltaV2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C DeltaV2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C DeltaV2 trimer binds to CD4 with an affinity comparable to o-gp140DeltaV2SF162 (subtype B DeltaV2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C DeltaV2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.

  5. Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates

    SciTech Connect

    Srivastava, Indresh K. Kan, Elaine; Sun Yide; Sharma, Victoria A.; Cisto, Jimna; Burke, Brian; Lian Ying; Hilt, Susan; Biron, Zohar; Hartog, Karin; Stamatatos, Leonidas; Cheng, R. Holland; Ulmer, Jeffrey B.; Barnett, Susan W.

    2008-03-15

    We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140{delta}V2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV{sub SF162P4} virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140{delta}V2TV1 (subtype C {delta}V2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C {delta}V2 trimer; however, we did not observe significant binding for the b12 mAb. The molecular mass of subtype C {delta}V2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C {delta}V2 trimer binds to CD4 with an affinity comparable to o-gp140{delta}V2SF162 (subtype B {delta}V2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C {delta}V2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.

  6. Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers

    PubMed Central

    Sliepen, Kwinten; Medina-Ramírez, Max; Yasmeen, Anila; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.

    2016-01-01

    HIV-1 envelope glycoproteins (Env) and Env-based immunogens usually do not interact efficiently with the inferred germline precursors of known broadly neutralizing antibodies (bNAbs). This deficiency may be one reason why Env and Env-based immunogens are not efficient at inducing bNAbs. We evaluated the binding of 15 inferred germline precursors of bNAbs directed to different epitope clusters to three soluble native-like SOSIP.664 Env trimers. We found that native-like SOSIP.664 trimers bind to some inferred germline precursors of bNAbs, particularly ones involving the V1/V2 loops at the apex of the trimer. The data imply that native-like SOSIP.664 trimers will be an appropriate platform for structure-guided design improvements intended to create immunogens able to target the germline precursors of bNAbs. PMID:26433050

  7. Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody

    PubMed Central

    Cheng, Cheng; Pancera, Marie; Bossert, Adam; Schmidt, Stephen D.; Chen, Rita E.; Chen, Xuejun; Druz, Aliaksandr; Narpala, Sandeep; Doria-Rose, Nicole A.; McDermott, Adrian B.

    2015-01-01

    ABSTRACT The HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies and is being explored as a vaccine candidate to elicit protective antibodies. One of the most promising antigenic and structural mimics of HIV-1 Env is the SOSIP.664-stabilized soluble trimer from the clade A strain BG505, which is preferentially recognized by broadly neutralizing antibodies. Trimer immunization elicits high-titer neutralization of the autologous tier 2 BG505 strain; however, breadth is limited, and substantial interest has focused on understanding and improving trimer immunogenicity. We sought to improve the antigenic specificity of BG505 SOSIP.664 by reducing recognition of the variable loop 3 (V3) region, which elicits only weakly neutralizing antibodies. To stabilize the trimer in its prefusion closed conformation, we complexed trimeric BG505 SOSIP.664 with the antigen-binding fragment (Fab) of PGT145, a broadly neutralizing quaternary-structure-specific antibody. Compared to the ligand-free trimer, the PGT145 Fab-BG505 SOSIP.664 complex displayed increased melting temperature stability and reduced V3 recognition. In guinea pigs, immunization with the PGT145 Fab-BG505 SOSIP.664 complex elicited ∼100-fold lower V3-directed binding and neutralization titers than those obtained with ligand-free BG505 SOSIP.664. Both complexed and ligand-free BG505 SOSIP.664 elicited comparable neutralization of the autologous BG505 virus, and in both cases, BG505 neutralization mapped to the outer domain of gp120 for some guinea pigs. Our results indicate that it is possible to reduce immune recognition of the V3 region of the trimer while maintaining the antigenic profile needed to induce autologous neutralizing antibodies. These data suggest that appropriate modifications of trimer immunogens could further focus the immune response on key neutralization epitopes. IMPORTANCE HIV-1 Env trimers have been proposed as preferred HIV-1 vaccine immunogens. One version, BG505

  8. Dynamics of Spatially Confined Bisphenol A Trimers in a Unimolecular Network on Ag(111).

    PubMed

    Lloyd, Julian A; Papageorgiou, Anthoula C; Fischer, Sybille; Oh, Seung Cheol; Saǧlam, Özge; Diller, Katharina; Duncan, David A; Allegretti, Francesco; Klappenberger, Florian; Stöhr, Martin; Maurer, Reinhard J; Reuter, Karsten; Reichert, Joachim; Barth, Johannes V

    2016-03-01

    Bisphenol A (BPA) aggregates on Ag(111) shows a polymorphism between two supramolecular motifs leading to formation of distinct networks depending on thermal energy. With rising temperature a dimeric pairing scheme reversibly converts into a trimeric motif, which forms a hexagonal superstructure with complex dynamic characteristics. The trimeric arrangements notably organize spontaneously into a self-assembled one-component array with supramolecular BPA rotors embedded in a two-dimensional stator sublattice. By varying the temperature, the speed of the rotors can be controlled as monitored by direct visualization. A combination of scanning tunneling microscopy and dispersion-corrected density-functional tight-binding (DFTB-vdW(surf)) based molecular modeling reveals the exact atomistic position of each molecule within the assembly as well as the driving force for the formation of the supramolecular rotors. PMID:26849384

  9. Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures.

    PubMed

    Barrow, Steven J; Collins, Sean M; Rossouw, David; Funston, Alison M; Botton, Gianluigi A; Midgley, Paul A; Mulvaney, Paul

    2016-09-27

    We present a combined scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) investigation into the mode symmetries of plasmonic nanoparticle trimer and tetramer structures. We obtain nanometer-resolved energy loss spectra for both trimer and tetramer structures and compare these to boundary element method simulations. We show that EELS, in conjunction with eigenmode simulations, offers a complete characterization of the individual superstructures, and we trace the evolution of both optically dark and bright modes and identify multipolar mode contributions. We then apply this technique to tetramer structures that exhibit an expanded range of mode symmetries for two-dimensional and three-dimensional self-assembled geometries. These findings provide a comprehensive experimental account of the available photonic states in self-assembled nanoparticle clusters.

  10. Two-dimensional vibronic spectroscopy of molecular aggregates: Trimers, dimers, and monomers.

    PubMed

    Keß, M; Worth, G; Engel, V

    2016-08-28

    The two-dimensional (2D) vibronic spectroscopy of molecular trimers is studied theoretically. The solution of the time-dependent Schrödinger equation is carried out with the multi-configurational time-dependent Hartree (MCTDH) method which allows for an efficient propagation of the multi-component wave functions. 2D-spectra are calculated for H- and J-type aggregates incorporating one or two vibrational modes for each monomer. In performing calculations for monomer, dimer, and trimer systems, it is documented how the vibronic structure of the 2D-spectrum changes upon aggregation. This is of importance for the characterization of aggregation behavior being influenced by experimental conditions such as temperature or concentration. PMID:27586920

  11. Trimers, Molecules, and Polarons in Mass-Imbalanced Atomic Fermi Gases

    SciTech Connect

    Mathy, Charles J. M.; Parish, Meera M.; Huse, David A.

    2011-04-22

    We consider the ground state of a single ''spin-down'' impurity atom interacting attractively with a ''spin-up'' atomic Fermi gas. By constructing variational wave functions for polarons, molecules, and trimers, we perform a detailed study of the transitions between these dressed bound states as a function of mass ratio r=m{sub {up_arrow}}/m{sub {down_arrow}} and interaction strength. Crucially, we find that the presence of a Fermi sea enhances the stability of the p-wave trimer, which can be viewed as a Fulde-Ferrell-Larkin-Ovchinnikov molecule that has bound an additional majority atom. For sufficiently large r, we find that the transitions lie outside the region of phase separation of the imbalanced Fermi gas and should thus be observable in experiment, unlike the well-studied equal-mass case.

  12. Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion

    PubMed Central

    Falson, Pierre; Bartosch, Birke; Alsaleh, Khaled; Tews, Birke Andrea; Loquet, Antoine; Ciczora, Yann; Riva, Laura; Montigny, Cédric; Montpellier, Claire; Duverlie, Gilles; Pécheur, Eve-Isabelle; le Maire, Marc; Cosset, François-Loïc

    2015-01-01

    ABSTRACT In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1–TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1

  13. Nitrogen Oxide Inhibitory Trimeric and Dimeric Carbazole Alkaloids from Murraya tetramera.

    PubMed

    Lv, Hai-Ning; Wen, Ran; Zhou, Ying; Zeng, Ke-Wu; Li, Jun; Guo, Xiao-Yu; Tu, Peng-Fei; Jiang, Yong

    2015-10-23

    Two new structurally unique trimeric carbazole alkaloids, murratrines A and B (1, 2), and 11 new carbazole dimers, murradines A-K (3-13), and four known analogues (14-17) were isolated from the leaves and stems of Murraya tetramera. The structures and relative configurations of 1-13 were elucidated on the basis of comprehensive 1D and 2D NMR spectroscopy, high-resolution mass spectrometry, and electronic circular dichroism (ECD) data analysis. Murratrines A and B (1, 2) both contain an unprecedented carbazole trimeric skeleton, and murradines A and D (3, 6) are the first natural C-1-C-3'-methyl-linked and C-6-C-3'-methyl-linked dimeric carbazole alkaloids, respectively. Compounds 4, 10, 14, 15, and 17 exhibited inhibition of nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells with IC50 values in the range of 11.2-19.3 μM.

  14. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer.

    PubMed

    Lee, Jeong Hyun; Ozorowski, Gabriel; Ward, Andrew B

    2016-03-01

    The envelope glycoprotein trimer (Env) on the surface of HIV-1 recognizes CD4(+) T cells and mediates viral entry. During this process, Env undergoes substantial conformational rearrangements, making it difficult to study in its native state. Soluble stabilized trimers have provided valuable insights into the Env structure, but they lack the hydrophobic membrane proximal external region (MPER, an important target of broadly neutralizing antibodies), the transmembrane domain, and the cytoplasmic tail. Here we present (i) a cryogenic electron microscopy (cryo-EM) structure of a clade B virus Env, which lacks only the cytoplasmic tail and is stabilized by the broadly neutralizing antibody PGT151, at a resolution of 4.2 angstroms and (ii) a reconstruction of this form of Env in complex with PGT151 and MPER-targeting antibody 10E8 at a resolution of 8.8 angstroms. These structures provide new insights into the wild-type Env structure. PMID:26941313

  15. Computational study of trimer self-assembly and fluid phase behavior

    SciTech Connect

    Hatch, Harold W. Shen, Vincent K.; Mittal, Jeetain

    2015-04-28

    The fluid phase diagram of trimer particles composed of one central attractive bead and two repulsive beads was determined as a function of simple geometric parameters using flat-histogram Monte Carlo methods. A variety of self-assembled structures were obtained including spherical micelle-like clusters, elongated clusters, and densely packed cylinders, depending on both the state conditions and shape of the trimer. Advanced simulation techniques were employed to determine transitions between self-assembled structures and macroscopic phases using thermodynamic and structural definitions. Simple changes in particle geometry yield dramatic changes in phase behavior, ranging from macroscopic fluid phase separation to molecular-scale self-assembly. In special cases, both self-assembled, elongated clusters and bulk fluid phase separation occur simultaneously. Our work suggests that tuning particle shape and interactions can yield superstructures with controlled architecture.

  16. Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica.

    PubMed

    Bumba, Ladislav; Prasil, Ondrej; Vacha, Frantisek

    2005-06-01

    Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called "prochlorophytes") that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.

  17. Universal Trimers Induced by Spin-Orbit Coupling in Ultracold Fermi Gases

    NASA Astrophysics Data System (ADS)

    Shi, Zhe-Yu; Cui, Xiaoling; Zhai, Hui

    2014-01-01

    In this Letter we address the issue of how synthetic spin-orbit (SO) coupling can strongly affect three-body physics in ultracold atomic gases. We consider a system which consists of three fermionic atoms, including two spinless heavy atoms and one spin-1/2 light atom subjected to an isotropic SO coupling. We find that SO coupling can induce universal three-body bound states with a negative s-wave scattering length at a smaller mass ratio, where no trimer bound state can exist if in the absence of SO coupling. The energies of these trimers are independent of the high-energy cutoff, and therefore they are universal ones. Moreover, the resulting atom-dimer resonance can be effectively controlled by SO coupling strength. Our results can be applied to systems like a Li6 and K40 mixture.

  18. Two-dimensional vibronic spectroscopy of molecular aggregates: Trimers, dimers, and monomers

    NASA Astrophysics Data System (ADS)

    Keß, M.; Worth, G.; Engel, V.

    2016-08-01

    The two-dimensional (2D) vibronic spectroscopy of molecular trimers is studied theoretically. The solution of the time-dependent Schrödinger equation is carried out with the multi-configurational time-dependent Hartree (MCTDH) method which allows for an efficient propagation of the multi-component wave functions. 2D-spectra are calculated for H- and J-type aggregates incorporating one or two vibrational modes for each monomer. In performing calculations for monomer, dimer, and trimer systems, it is documented how the vibronic structure of the 2D-spectrum changes upon aggregation. This is of importance for the characterization of aggregation behavior being influenced by experimental conditions such as temperature or concentration.

  19. Synthesis and biological activities of new di- and trimeric quinoline derivatives.

    PubMed

    Broch, Sidonie; Hénon, Hélène; Debaud, Anne-Laure; Fogeron, Marie-Laure; Bonnefoy-Bérard, Nathalie; Anizon, Fabrice; Moreau, Pascale

    2010-10-01

    The synthesis of non-peptidic helix mimetics based on a trimeric quinoline scaffold is described. The ability of these new compounds, as well as their synthetic dimeric intermediates, to bind to various members of the Bcl-2 protein anti-apoptotic group is also evaluated. The most interesting derivative of this new series (compound A) inhibited Bcl-x(L)/Bak, Bcl-x(L)/Bax and Bcl-x(L)/Bid interactions with IC(50) values around 25 μM.

  20. Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Perez, Cristobal; Seifert, Nathan A.; Pate, Brooks; Dehghany, Mehdi; Moazzen-Ahmadi, Nasser; McKellar, Bob

    2014-06-01

    Structure determination of weakly bound OCS clusters is a challenging problem due to many low energy isomers on the potential energy surface. The premier tool for studying these clusters is high-resolution infrared spectroscopy, as it can be used to analyze non-polar clusters. Following the analysis of high-resolution IR spectra of clusters formed in a molecular beam expansion of OCS there were some outstanding questions about the structures of the observed clusters. The chirped-pulse Fourier transform microwave spectrum in the 3-9 GHz frequency range was measured for a pulsed molecular beam of OCS in neon (1%). All 13C, 18O and 34S isotopologues of the previously detected OCS trimer have been observed in natural abundance in the 3-9 GHz band using chirped-pulse Fourier transform microwave spectroscopy. The structure of this trimer features a barrel-shaped structure with two aligned and one anti-aligned OCS monomers. A new OCS trimer is also observed for the first time, and its structure is consistent with a barrel-shaped structure with 3 aligned monomers. Using the infrared spectrum for guidance, a spectrum corresponding to a polar OCS tetramer has been assigned. This cluster has a similar barrel-like structure but with an additional tilted OCS monomer added to the top of the barrel. All 13C and 34S isotopologues have been assigned for the tetramer. However, due to sign ambiguities in Kraitchman's equations, and small rotational constant differences between aligned and anti-aligned combinations of OCS molecules in the trimer barrel, absolute structural assignment is indeterminate without additional constraints. Therefore a combinatoric approach was used to compute the most reasonable tetramer structure using distance and sign constraints between pairs of carbon and sulfur coordinates, assuming the experimental OCS monomer structure. Results of this approach will be presented, as well as a comparison of the experimental results with the most recent ab initio

  1. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.

    PubMed

    Stewart-Jones, Guillaume B E; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W; Davison, Jack R; Georgiev, Ivelin S; Joyce, M Gordon; Kwon, Young Do; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S; Shivatare, Vidya S; Lee, Chang-Chun D; Wu, Chung-Yi; Bewley, Carole A; Burton, Dennis R; Koff, Wayne C; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T; Wong, Chi-Huey; Mascola, John R; Kwong, Peter D

    2016-05-01

    The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.

  2. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers

    NASA Astrophysics Data System (ADS)

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon

    2012-02-01

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H-, CH3-/NH-, O-/NH2-, OH-, CN-, and Br- was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN- desorption. An increase in the yields of OH- is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2'-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.

  3. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.

    PubMed

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S; Le Brun, Anton P; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H

    2016-08-23

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion.

  4. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

    PubMed Central

    Frenz, Brandon; Rottier, Peter J.M.; DiMaio, Frank; Rey, Félix A.; Veesler, David

    2016-01-01

    The tremendous pandemic potential of coronaviruses was demonstrated twice in the last decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions1. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a murine coronavirus S trimer ectodomain determined at 4.0 Å resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins2,3, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains. PMID:26855426

  5. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.

    PubMed

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S; Le Brun, Anton P; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H

    2016-08-23

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion. PMID:27493217

  6. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers.

    PubMed

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon

    2012-02-21

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H(-), CH(3)(-)/NH(-), O(-)/NH(2)(-), OH(-), CN(-), and Br(-) was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN(-) desorption. An increase in the yields of OH(-) is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2(')-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.

  7. Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer*

    PubMed Central

    Jiang, Xuliang; Fischer, David; Chen, Xiaoyan; McKenna, Sean D.; Liu, Heli; Sriraman, Venkataraman; Yu, Henry N.; Goutopoulos, Andreas; Arkinstall, Steve; He, Xiaolin

    2014-01-01

    Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor, is an important drug target in the development of novel therapeutics for reproductive indications. The FSHR extracellular domains were observed in the crystal structure as a trimer, which enabled us to propose a novel model for the receptor activation mechanism. The model predicts that FSHR binds Asnα52-deglycosylated FSH at a 3-fold higher capacity than fully glycosylated FSH. It also predicts that, upon dissociation of the FSHR trimer into monomers, the binding of glycosylated FSH, but not deglycosylated FSH, would increase 3-fold, and that the dissociated monomers would in turn enhance FSHR binding and signaling activities by 3-fold. This study presents evidence confirming these predictions and provides crystallographic and mutagenesis data supporting the proposed model. The model also provides a mechanistic explanation to the agonist and antagonist activities of thyroid-stimulating hormone receptor autoantibodies. We conclude that FSHR exists as a functional trimer. PMID:24692546

  8. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers

    SciTech Connect

    Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Leon

    2012-02-21

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H{sup -}, CH{sub 3}{sup -}/NH{sup -}, O{sup -}/NH{sub 2}{sup -}, OH{sup -}, CN{sup -}, and Br{sup -} was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN{sup -} desorption. An increase in the yields of OH{sup -} is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2{sup '}-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.

  9. The Prototypical H+/Galactose Symporter GalP Assembles into Functional Trimers

    PubMed Central

    Zheng, Hongjin; Taraska, Justin; Merz, Alexey J.; Gonen, Tamir

    2010-01-01

    Glucose is a primary source of energy for human cells. Glucose transporters form specialized membrane channels for the transport of sugars into and out of cells. Galactose permease (GalP) is the closest bacterial homolog of human facilitated glucose transporters. Here, we report the functional reconstitution and 2D crystallization of GalP. Single particle electron microscopy analysis of purified GalP shows that the protein assembles as an oligomer with three distinct densities. Reconstitution assays yield 2D GalP crystals that exhibit a hexagonal array having p3 symmetry. The projection structure of GalP at 18 Å resolution shows that the protein is trimeric. Each monomer in the trimer forms its own channel, but an additional cavity (10~15 Å in diameter) is apparent at the 3-fold axis of the oligomer. We show that the crystalline GalP is able to selectively bind substrate, suggesting that the trimeric form is biologically active. PMID:20006622

  10. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly

    PubMed Central

    Dutta, Somnath; Yan, Lianying; Feng, YanRu; Wang, Lin-Fa; Skiniotis, Georgios; Lee, Benhur; Zhou, Z. Hong; Broder, Christopher C.; Aguilar, Hector C.; Nikolov, Dimitar B.

    2015-01-01

    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein. PMID:26646856

  11. Evaluation of ion mobility spectroscopy for determining charge-solvated versus salt-bridge structures of protonated trimers.

    PubMed

    Wong, Richard L; Williams, Evan R; Counterman, Anne E; Clemmer, David E

    2005-07-01

    The cross sections of five different protonated trimers consisting of two base molecules and trifluoroacetic acid were measured by using ion mobility spectrometry. The gas-phase basicities of these five base molecules span an 8-kcal/mol range. These cross sections are compared with those determined from candidate low-energy salt-bridge and charge-solvated structures identified by using molecular mechanics calculations using three different force fields: AMBER*, MMFF, and CHARMm. With AMBER*, the charge-solvated structures are all globular and the salt-bridge structures are all linear, whereas with CHARMm, these two forms of the protonated trimers can adopt either shape. Globular structures have smaller cross sections than linear structures. Conclusions about the structure of these protonated trimers are highly dependent on the force field used to generate low-energy candidate structures. With AMBER*, all of the trimers are consistent with salt-bridge structures, whereas with MMFF the measured cross sections are more consistent with charge-solvated structures, although the assignments are ambiguous for two of the protonated trimers. Conclusions based on structures generated by using CHARMm suggest a change in structure from charge-solvated to salt-bridge structures with increasing gas-phase basicity of the constituent bases, a result that is most consistent with structural conclusions based on blackbody infrared radiative dissociation experiments for these protonated trimers and theoretical calculations on the uncharged base-acid pairs.

  12. Effect of trimerization motifs on quaternary structure, antigenicity, and immunogenicity of a noncleavable HIV-1 gp140 envelope glycoprotein

    SciTech Connect

    Du, Sean X.; Idiart, Rebecca J.; Mariano, Ellaine B.; Chen, Helen; Jiang Peifeng; Xu Li; Ostrow, Kristin M.; Wrin, Terri; Phung, Pham; Binley, James M.; Petropoulos, Christos J.; Ballantyne, John A.; Whalen, Robert G.

    2009-12-05

    The external domains of the HIV-1 envelope glycoprotein (gp120 and the gp41 ectodomain, collectively known as gp140) contain all known viral neutralization epitopes. Various strategies have been used to create soluble trimers of the envelope to mimic the structure of the native viral protein, including mutation of the gp120-gp41 cleavage site, introduction of disulfide bonds, and fusion to heterologous trimerization motifs. We compared the effects on quaternary structure, antigenicity, and immunogenicity of three such motifs: T4 fibritin, a GCN4 variant, and the Escherichia coli aspartate transcarbamoylase catalytic subunit. Fusion of each motif to the C-terminus of a noncleavable JRCSF gp140(-) envelope protein led to enhanced trimerization but had limited effects on the antigenic profile and CD4-binding ability of the trimers. Immunization of rabbits provided no evidence that the trimerized gp140(-) constructs induced significantly improved neutralizing antibodies to several HIV-1 pseudoviruses, compared to gp140 lacking a trimerization motif. However, modest differences in both binding specificity and neutralizing antibody responses were observed among the various immunogens.

  13. Spin and orbital magnetism of coinage metal trimers (Cu{sub 3}, Ag{sub 3}, Au{sub 3}): A relativistic density functional theory study

    SciTech Connect

    Afshar, Mahdi; Sargolzaei, Mohsen

    2013-11-15

    We have demonstrated electronic structure and magnetic properties of Cu{sub 3}, Ag{sub 3} and Au{sub 3} trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21μ{sub B} was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.

  14. Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers

    PubMed Central

    Ringe, Rajesh P.; Yasmeen, Anila; Ozorowski, Gabriel; Go, Eden P.; Pritchard, Laura K.; Guttman, Miklos; Ketas, Thomas A.; Cottrell, Christopher A.; Wilson, Ian A.; Sanders, Rogier W.; Cupo, Albert; Crispin, Max; Lee, Kelly K.; Desaire, Heather; Ward, Andrew B.; Klasse, P. J.

    2015-01-01

    ABSTRACT We have investigated factors that influence the production of native-like soluble, recombinant trimers based on the env genes of two isolates of human immunodeficiency virus type 1 (HIV-1), specifically 92UG037.8 (clade A) and CZA97.012 (clade C). When the recombinant trimers based on the env genes of isolates 92UG037.8 and CZA97.012 were made according to the SOSIP.664 design and purified by affinity chromatography using broadly neutralizing antibodies (bNAbs) against quaternary epitopes (PGT145 and PGT151, respectively), the resulting trimers are highly stable and they are fully native-like when visualized by negative-stain electron microscopy. They also have a native-like (i.e., abundant) oligomannose glycan composition and display multiple bNAb epitopes while occluding those for nonneutralizing antibodies. In contrast, uncleaved, histidine-tagged Foldon (Fd) domain-containing gp140 proteins (gp140UNC-Fd-His), based on the same env genes, very rarely form native-like trimers, a finding that is consistent with their antigenic and biophysical properties and glycan composition. The addition of a 20-residue flexible linker (FL20) between the gp120 and gp41 ectodomain (gp41ECTO) subunits to make the uncleaved 92UG037.8 gp140-FL20 construct is not sufficient to create a native-like trimer, but a small percentage of native-like trimers were produced when an I559P substitution in gp41ECTO was also present. The further addition of a disulfide bond (SOS) to link the gp120 and gp41 subunits in the uncleaved gp140-FL20-SOSIP protein increases native-like trimer formation to ∼20 to 30%. Analysis of the disulfide bond content shows that misfolded gp120 subunits are abundant in uncleaved CZA97.012 gp140UNC-Fd-His proteins but very rare in native-like trimer populations. The design and stabilization method and the purification strategy are, therefore, all important influences on the quality of trimeric Env proteins and hence their suitability as vaccine components

  15. An Improved Chirped Pulse Ftmw Analysis of the Structures of Phenol Dimer and Trimer

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Perez, Cristobal; Steber, Amanda L.; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto

    2013-06-01

    With the recent improvements for chirped pulse FTMW (CP-FTMW) spectroscopy between 2-18 GHz, substitution structures of molecules and clusters with more than 10 heavy atoms are becoming routine. While previous CP-FTMW results for phenol dimer reported at this conference by Steber et al. necessitated reduced-band measurements in order to achieve the sensitivity to detect the carbon isotopologues, the latest improvements for the 2-8 GHz arrangement have enabled full band detection of all 12 ^{13}C and 2 ^{18}O isotopologues of phenol dimer in natural abundance, with improved fits for all detected species. In addition, the added sensitivity of this new 2-8 GHz configuration has enabled a full carbon substitution structure of phenol trimer. The experimental structure of phenol trimer, in agreement with the M06-2X/6-311++g(d,p) ab initio structure, is a C_{3} oblate symmetric top with 21 heavy atoms; however, all possible isotopic substitutions are off-symmetry axis, so the resulting detected isotopologues have been fit as c-type prolate asymmetric tops. Use of Kraitchman's equations for structural determination of a symmetric top molecule require some assumptions from the ab initio structure for the complete r_{s} structure of the trimer. A detailed summary of these methods, as well as the microwave results for both species, will be presented. A. L. Steber, J. L. Neill, D. P. Zaleski, B. H. Pate, A. Lesarri. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  16. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein

    SciTech Connect

    Lee, Jeffrey E.; Fusco, Marnie L.; Abelson, Dafna M.; Hessell, Ann J.; Burton, Dennis R.; Saphire, Erica Ollmann

    2009-11-01

    Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing of the trimeric ebolavirus glycoprotein are described. The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008 ▶), Nature (London), 454, 177–182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the

  17. Dimers and trimers of polycyclic aromatic hydrocarbons as models of graphene bilayers and trilayers: enhanced electron density at the edges

    NASA Astrophysics Data System (ADS)

    Yadav, Amarjeet; Mishra, P. C.

    2014-01-01

    Structures of dimers and trimers of polycyclic aromatic hydrocarbons (PAHs) having zig-zag edges, and continuous electron density and molecular electrostatic potential (MEP) distributions in these systems were studied in gas phase. Dimers of benzene and naphthalene for which high-accuracy results are available were used to test the reliability of four different functionals of density functional theory in combination with the 6-31G(d,p) basis set. The dispersion-corrected WB97XD functional was found to be distinctly superior to the other three functionals used and was employed to study PAH dimers and trimers. Electronic structures and geometries of dimers of a four benzene ring and a nine benzene ring systems and trimers of the four benzene ring system were investigated. The dimers and trimers of PAHs were found to be of parallel-displaced type, as observed experimentally for graphene. The enhanced electron density edge effect found in the PAH monomers earlier is found to exist in the dimers and trimers also.

  18. Trimers in the resonant (2+1)-fermion problem on a narrow Feshbach resonance: Crossover from Efimovian to hydrogenoid spectrum

    SciTech Connect

    Castin, Yvan; Tignone, Edoardo

    2011-12-15

    We study the quantum three-body free-space problem of two same-spin-state fermions of mass m interacting with a different particle of mass M, on an infinitely narrow Feshbach resonance with infinite s-wave scattering length. This problem is made interesting by the existence of a tunable parameter, the mass ratio {alpha}=m/M. By a combination of analytical and numerical techniques, we obtain a detailed picture of the spectrum of three-body bound states, within each sector of fixed total angular momentum l. For {alpha} increasing from 0, we find that the trimer states first appear at the l-dependent Efimovian threshold {alpha}{sub c}{sup (l)}, where the Efimov exponent s vanishes, and that the entire trimer spectrum (starting from the ground trimer state) is geometric for {alpha} tending to {alpha}{sub c}{sup (l)} from above, with a global energy scale that has a finite and nonzero limit. For further increasing values of {alpha}, the least bound trimer states still form a geometric spectrum, with an energy ratio exp(2{pi}/|s|) that becomes closer and closer to unity, but the most bound trimer states deviate more and more from that geometric spectrum and eventually form a hydrogenoid spectrum.

  19. In vitro trimerization of OmpF porin secreted by spheroplasts of Escherichia coli.

    PubMed Central

    Sen, K; Nikaido, H

    1990-01-01

    It is not yet clear how bacterial outer membrane proteins reach their correct destination after they are secreted across the cytoplasmic membrane. We show here that porin OmpF is secreted into the medium as a water-soluble monomeric protein by spheroplasts of Escherichia coli. Furthermore, this monomeric porin is taken up by cell envelope preparations or purified lipopolysaccharides in the presence of 0.03% Triton X-100 and is converted correctly into the mature trimeric conformation. These results appear to reproduce a part of the physiological export and targeting steps of this protein. Images PMID:1689050

  20. Evidence for universal four-body states tied to an Efimov trimer.

    PubMed

    Ferlaino, F; Knoop, S; Berninger, M; Harm, W; D'Incao, J P; Nägerl, H-C; Grimm, R

    2009-04-10

    We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our results obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant enhancement of losses and provide strong evidence for the existence of a pair of four-body states, which is strictly connected to Efimov trimers via universal relations. Our findings confirm recent theoretical predictions and demonstrate the enrichment of the Efimov scenario when a fourth particle is added to the generic three-body problem. PMID:19392415

  1. Discovery and Evaluation of PRL Trimer Disruptors for Novel Anticancer Agents.

    PubMed

    Bai, Yunpeng; Yu, Zhi-Hong; Zhang, Zhong-Yin

    2016-01-01

    Overexpression of PRL phosphatases (PRL1, PRL2, and PRL3) has been found in a variety of late-stage tumors and their distant metastatic sites. Therefore, the oncogenic PRL phosphatases represent intriguing targets for cancer therapy. There is considerable interest in identifying small molecule inhibitors targeting PRLs as novel anticancer agents. However, it has been difficult to acquire phosphatase activity-based PRL inhibitors due to the unusual wide and shallow catalytic pockets of PRLs revealed by crystal structure studies. Here, we present a novel method to identify PRL1 inhibitors by targeting the PRL1 trimer interface and the procedure to characterize their biochemical and cellular activity. PMID:27514804

  2. Discovery and Evaluation of PRL Trimer Disruptors for Novel Anticancer Agents.

    PubMed

    Bai, Yunpeng; Yu, Zhi-Hong; Zhang, Zhong-Yin

    2016-01-01

    Overexpression of PRL phosphatases (PRL1, PRL2, and PRL3) has been found in a variety of late-stage tumors and their distant metastatic sites. Therefore, the oncogenic PRL phosphatases represent intriguing targets for cancer therapy. There is considerable interest in identifying small molecule inhibitors targeting PRLs as novel anticancer agents. However, it has been difficult to acquire phosphatase activity-based PRL inhibitors due to the unusual wide and shallow catalytic pockets of PRLs revealed by crystal structure studies. Here, we present a novel method to identify PRL1 inhibitors by targeting the PRL1 trimer interface and the procedure to characterize their biochemical and cellular activity.

  3. Lewis acid promoted titanium alkylidene formation: off-cycle intermediates relevant to olefin trimerization catalysis.

    PubMed

    Sattler, Aaron; VanderVelde, David G; Labinger, Jay A; Bercaw, John E

    2014-07-30

    Two new precatalysts for ethylene and α-olefin trimerization, (FI)Ti(CH2SiMe3)2Me and (FI)Ti(CH2CMe3)2Me (FI = phenoxy-imine), have been synthesized and structurally characterized by X-ray diffraction. (FI)Ti(CH2SiMe3)2Me can be activated with 1 equiv of B(C6F5)3 at room temperature to give the solvent-separated ion pair [(FI)Ti(CH2SiMe3)2][MeB(C6F5)3], which catalytically trimerizes ethylene or 1-pentene to produce 1-hexene or C15 olefins, respectively. The neopentyl analogue (FI)Ti(CH2CMe3)2Me is unstable toward activation with B(C6F5)3 at room temperature, giving no discernible diamagnetic titanium complexes, but at -30 °C the following can be observed by NMR spectroscopy: (i) formation of the bis-neopentyl cation [(FI)Ti(CH2CMe3)2](+), (ii) α-elimination of neopentane to give the neopentylidene complex [(FI)Ti(═CHCMe3)](+), and (iii) subsequent conversion to the imido-olefin complex [(MeOAr2N═)Ti(OArHC═CHCMe3)](+) via an intramolecular metathesis reaction with the imine fragment of the (FI) ligand. If the reaction is carried out at low temperature in the presence of ethylene, catalytic production of 1-hexene is observed, in addition to the titanacyclobutane complex [(FI)Ti(CH(CMe3)CH2CH2)](+), resulting from addition of ethylene to the neopentylidene [(FI)Ti(═CHCMe3)](+). None of the complexes observed spectroscopically subsequent to [(FI)Ti(CH2CMe3)2](+) is an intermediate or precursor for ethylene trimerization, but notwithstanding these off-cycle pathways, [(FI)Ti(CH2CMe3)2](+) is a precatalyst that undergoes rapid initiation to generate a catalyst for trimerizing ethylene or 1-pentene.

  4. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers

    SciTech Connect

    Debreczeny, M.F.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.

  5. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly.

    PubMed Central

    Hill, C P; Worthylake, D; Bancroft, D P; Christensen, A M; Sundquist, W I

    1996-01-01

    The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus. Images Fig. 1 Fig. 2 Fig. 3 PMID:8610175

  6. Genetic engineering of trimers of hypoallergenic fragments of the major birch pollen allergen, Bet v 1, for allergy vaccination.

    PubMed

    Vrtala, Susanne; Fohr, Monika; Campana, Raffaela; Baumgartner, Christian; Valent, Peter; Valenta, Rudolf

    2011-03-01

    An immunotherapy trial performed in allergic patients with hypoallergenic recombinant fragments, comprising aa 1-74 and 75-160 of the major birch pollen allergen, Bet v 1, has indicated that the induction of allergen-specific IgG responses may be an important mechanism of this treatment. To investigate whether the immunogenicity of the rBet v 1 fragments can be increased, recombinant trimers of the fragments were produced. For this purpose, DNA trimers of rBet v 1 aa 1-74 as well as of rBet v 1 aa 75-160 were subcloned into expression plasmid pET 17b, expressed in Escherichia coli and purified. The fragments as well as the fragment trimers showed a reduced IgE-binding capacity and allergenic activity compared to rBet v 1 wildtype when tested in allergic patients. Both rBet v 1 aa 75-160 monomer and trimer induced high titers of allergen-specific IgG1 Abs in mice. Interestingly, rBet v 1 aa 1-74 trimer induced a much higher IgG(1) response to rBet v 1 than rBet v 1 aa 1-74 monomer. Consequently, IgG Abs induced with the rBet v 1 aa 1-74 trimer inhibited birch pollen allergic patients' IgE-binding 10-fold more efficiently than IgG Abs induced with the monomer. Our data show that the immunogenicity of allergy vaccines can be increased by oligomerization.

  7. Conformational Evaluation of HIV-1 Trimeric Envelope Glycoproteins Using a Cell-based ELISA Assay

    PubMed Central

    Veillette, Maxime; Désormeaux, Anik; Roger, Michel; Finzi, Andrés

    2014-01-01

    HIV-1 envelope glycoproteins (Env) mediate viral entry into target cells and are essential to the infectious cycle. Understanding how those glycoproteins are able to fuel the fusion process through their conformational changes could lead to the design of better, more effective immunogens for vaccine strategies. Here we describe a cell-based ELISA assay that allows studying the recognition of trimeric HIV-1 Env by monoclonal antibodies. Following expression of HIV-1 trimeric Env at the surface of transfected cells, conformation specific anti-Env antibodies are incubated with the cells. A horseradish peroxidase-conjugated secondary antibody and a simple chemiluminescence reaction are then used to detect bound antibodies. This system is highly flexible and can detect Env conformational changes induced by soluble CD4 or cellular proteins. It requires minimal amount of material and no highly-specialized equipment or know-how. Thus, this technique can be established for medium to high throughput screening of antigens and antibodies, such as newly-isolated antibodies. PMID:25286159

  8. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    SciTech Connect

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine; Drummer, Heidi E.; Poumbourios, Pantelis . E-mail: apoumbourios@burnet.edu.au

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.

  9. Synthesis of Trimeric Organozinc Compounds and their Subsequent Reaction with Oxygen

    PubMed Central

    Manzi, Joe A.; Knapp, Caroline E.; Parkin, Ivan P.

    2016-01-01

    Abstract A conventional solution‐based route to a cyclic trimeric organozinc compound [{Zn(Et)(β‐diketonate)}3] (β‐diketonate=OC(OMe)CHC(Me)O, 1) is described, with 1 structurally characterized for the first time. The ligand selection of bidentate β‐diketonates is shown to be key to isolating a cyclic trimer. Additional reaction of β‐diketonates with diethyl zinc were spectroscopically characterized as compounds of the type [{Zn(Et)(β‐diketonate)}n] (β‐diketonate=OC(Me)CHC(Me)O, 2, OC(OtBu)CHC(Me)O, 3). Further studies have shown that selective oxidation of these species produces cubanes of the general formula [{Zn(OC(R)CHC(Me)O)2Zn(Et)OEt}2] (R=OMe, 4; Me, 5; OtBu, 6), allowing a high oxygen content whilst remaining structurally suitable for use as precursors. The successful deposition of thin films of zinc oxide through aerosol‐assisted chemical vapor deposition (AACVD), using a novel precursor, is described and fully characterized. PMID:27547637

  10. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  11. Therapeutic TNF Inhibitors can Differentially Stabilize Trimeric TNF by Inhibiting Monomer Exchange

    PubMed Central

    van Schie, Karin A.; Ooijevaar-de Heer, Pleuni; Dijk, Lisanne; Kruithof, Simone; Wolbink, Gertjan; Rispens, Theo

    2016-01-01

    Tumor necrosis factor (TNF) is a homotrimeric cytokine that is a key mediator of inflammation. It is unstable at physiological concentrations and slowly converts into an inactive form. Here, we investigated the mechanism of this process by using a Förster resonance energy transfer (FRET) assay that allowed monitoring of monomeric subunit exchange in time. We observed continuous exchange of monomeric subunits even at concentrations of TNF high enough to maintain its bioactivity. The kinetics of this process closely corresponds with the appearance of monomeric subunits and disappearance of trimeric TNF in time at ng/ml concentrations as monitored by high-performance size-exclusion chromatography (HP-SEC). Furthermore, of the five therapeutic TNF inhibitors that are currently used in the clinic, three (adalimumab, infliximab, etanercept) were found to completely inhibit the monomer exchange reaction and stabilize TNF trimers, whereas golimumab and certolizumab could not prevent monomer exchange, but did slow down the exchange process. These differences were not correlated with the affinities of the TNF inhibitors, measured with both surface plasmon resonance (SPR) and in fluid phase using fluorescence-assisted HP-SEC. The stabilizing effect of these TNF inhibitors might result in prolonged residual TNF bioactivity under conditions of incomplete blocking, as observed in vitro for adalimumab. PMID:27605058

  12. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    SciTech Connect

    Backovic, Marija; Longnecker, Richard; Jardetzky, Theodore S

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  13. Fundamental mechanisms of DNA radiosensitization: damage induced by low-energy electrons in brominated oligonucleotide trimers.

    PubMed

    Park, Yeunsoo; Polska, Katarzyna; Rak, Janusz; Wagner, J Richard; Sanche, Léon

    2012-08-16

    The replacement of nucleobases with brominated analogs enhances DNA radiosensitivity. We examine the chemistry of low-energy electrons (LEEs) in this sensitization process by experiments with thin films of the oligonucleotide trimers TBrXT, where BrX = 5-BrU (5-bromouracil), 5-BrC (5-bromocytosine), 8-BrA (8-bromoadenine), or 8-BrG (8-bromoguanine). The products induced from irradiation of thin (∼ 2.5 nm) oligonucleotide films, with 10 eV electrons, under ultrahigh vacuum (UHV) are analyzed by HPLC-UV. The number of damaged brominated trimers ranges from about 12 to 15 × 10(-3) molecules per incident electron, whereas under the identical conditions, these numbers drop to 4-7 × 10(-3) for the same, but nonbrominated oligonucleotides. The results of HPLC analysis show that the main degradation pathway of trinucleotides containing brominated bases involve debromination (i.e., loss of the bromine atom and its replacement with a hydrogen atom). The electron-induced sum of products upon bromination increases by factors of 2.1 for the pyrimidines and 3.2 for the purines. Thus, substitution of any native nucleobase with a brominated one in simple models of DNA increases LEE-induced damage to DNA and hence its radiosensitivity. Furthermore, besides the brominated pyrimidines that have already been tested in clinical trials, brominated purines not only appear to be promising sensitizers for radiotherapy, but could provide a higher degree of radiosensitization.

  14. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    PubMed

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain.

  15. Visualization of the trimeric P2X2 receptor with a crown-capped extracellular domain.

    PubMed

    Mio, Kazuhiro; Kubo, Yoshihiro; Ogura, Toshihiko; Yamamoto, Tomomi; Sato, Chikara

    2005-11-25

    The P2X2 purinergic receptor permeates cationic ions in response to stimulation by ATP and mediates fast synaptic transmission. Here, we purified the P2X2 receptor using baculovirus-Sf9 cell expression system and observed its structure using electron microscopy. The FLAG-tagged P2X2 receptor, which has intact ion channel function, was purified to be a single peak by affinity purification and gel filtration chromatography. It was confirmed to be a trimer by introducing cross-linking. Negatively stained P2X2 protein images were homogeneous and picked up by automated pick-up programs, aligned, and classified using the modified growing neural gas network method. Similarly oriented projections were averaged to decrease the signal-to-noise ratio. These images demonstrate an inverted three-sided pyramid with the dimensions of 215 A in height and 200 A in side length. It is composed of a high-density trunk and a stain-permeable swollen extracellular domain of a crown-shaped structure. The internal cavities and constituent segments were clearly demonstrated in both the raw images and the averaged images. The threefold symmetrical top view demonstrates the first visual evidence of the trimeric composition of the P2X receptor family. PMID:16219297

  16. Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Hazen, Robert M.; Dworkin, Jason P.

    2007-10-01

    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  17. Synthesis of Trimeric Organozinc Compounds and their Subsequent Reaction with Oxygen.

    PubMed

    Manzi, Joe A; Knapp, Caroline E; Parkin, Ivan P; Carmalt, Claire J

    2016-08-01

    A conventional solution-based route to a cyclic trimeric organozinc compound [{Zn(Et)(β-diketonate)}3] (β-diketonate=OC(OMe)CHC(Me)O, 1) is described, with 1 structurally characterized for the first time. The ligand selection of bidentate β-diketonates is shown to be key to isolating a cyclic trimer. Additional reaction of β-diketonates with diethyl zinc were spectroscopically characterized as compounds of the type [{Zn(Et)(β-diketonate)} n ] (β-diketonate=OC(Me)CHC(Me)O, 2, OC(OtBu)CHC(Me)O, 3). Further studies have shown that selective oxidation of these species produces cubanes of the general formula [{Zn(OC(R)CHC(Me)O)2Zn(Et)OEt}2] (R=OMe, 4; Me, 5; OtBu, 6), allowing a high oxygen content whilst remaining structurally suitable for use as precursors. The successful deposition of thin films of zinc oxide through aerosol-assisted chemical vapor deposition (AACVD), using a novel precursor, is described and fully characterized. PMID:27547637

  18. Activation of trimeric P2X2 receptors by fewer than three ATP molecules.

    PubMed

    Stelmashenko, Olga; Lalo, Ulyana; Yang, Yue; Bragg, Laricia; North, R Alan; Compan, Vincent

    2012-10-01

    P2X receptors are trimeric membrane proteins. When they bind extracellular ATP, a conformational change occurs that opens a transmembrane ion channel. The ATP-binding pocket is formed in a cleft between two subunits, and a critical amino acid residue for ATP contact is Lys⁶⁹ (P2X2 numbering). In the present work, we sought to determine whether the binding of fewer than three ATP molecules could open the ion channel. We expressed eight concatenated cDNAs in human embryonic kidney cells, which encoded three serially joined, epitope-tagged, subunits with either Lys or Ala at position 69 (denoted as KKK, KKA, KAK, AKK, KAA, AKA, AAK, and AAA). Western blotting of surface-biotinylated proteins indicated that breakdown of concatemers to individual subunits was minimal. Recording of membrane currents in response to ATP (whole cell and excised outside-out patch) showed that all formed functional channels except AAK, AKA, and AAA. There was no difference in the kinetics of activation and deactivation among KKK, KKA, KAK, and AKK channels, and amplitude of the unitary conductances was in all cases not different from that found after expression of a single wild-type subunit. Currents through KKA and KAK receptors were larger than those observed for AKK receptors. The results indicate that trimeric P2X receptors containing only two intact binding sites can be readily activated by ATP.

  19. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  20. a Computational Study of the Vibrational - Stretching and - Bending Spectrum of the Water Trimer

    NASA Astrophysics Data System (ADS)

    Salmi, Teemu; Halonen, Lauri

    2011-06-01

    We have studied the vibrational O--H stretching and H--O--H angle bending spectrum of the water trimer computationally around the cyclic minimum energy structure. We obtain the energies and intensities of the fundamental and overtone transitions. Earlier we have modeled the water trimer as three individually vibrating monomer units. In this work we have improved our previous model by including the potential energy coupling between the three hydrogen bonded O--H stretching modes. An internal coordinate Hamiltonian is constructed for each water unit using a kinetic energy operator, which is exact within the Born-Oppenheimer approximation for a triatomic molecule. The potential energy coupling terms between the hydrogen bonded O--H stretching modes are added in the model. The O--H distances and the H--O--H bending angles are used as the vibrational coordinates. The potential energy grid is calculated using the coupled cluster method with single, double and perturbative triple excitations (CCSD(T)) with correlation consistent aug-cc-pVTZ basis set around the optimized geometry. The potential energy surface (PES) is obtained by fitting an analytical function to the potential energy grid. The dipole moment surface is calculated using the finite differences method. The vibrational problem has been solved with the variational method with a harmonic oscillator basis for all the vibrational coordinates. We calculate the transition intensities using the wavefunctions obtained from the variational calculation.

  1. Therapeutic TNF Inhibitors can Differentially Stabilize Trimeric TNF by Inhibiting Monomer Exchange.

    PubMed

    van Schie, Karin A; Ooijevaar-de Heer, Pleuni; Dijk, Lisanne; Kruithof, Simone; Wolbink, Gertjan; Rispens, Theo

    2016-01-01

    Tumor necrosis factor (TNF) is a homotrimeric cytokine that is a key mediator of inflammation. It is unstable at physiological concentrations and slowly converts into an inactive form. Here, we investigated the mechanism of this process by using a Förster resonance energy transfer (FRET) assay that allowed monitoring of monomeric subunit exchange in time. We observed continuous exchange of monomeric subunits even at concentrations of TNF high enough to maintain its bioactivity. The kinetics of this process closely corresponds with the appearance of monomeric subunits and disappearance of trimeric TNF in time at ng/ml concentrations as monitored by high-performance size-exclusion chromatography (HP-SEC). Furthermore, of the five therapeutic TNF inhibitors that are currently used in the clinic, three (adalimumab, infliximab, etanercept) were found to completely inhibit the monomer exchange reaction and stabilize TNF trimers, whereas golimumab and certolizumab could not prevent monomer exchange, but did slow down the exchange process. These differences were not correlated with the affinities of the TNF inhibitors, measured with both surface plasmon resonance (SPR) and in fluid phase using fluorescence-assisted HP-SEC. The stabilizing effect of these TNF inhibitors might result in prolonged residual TNF bioactivity under conditions of incomplete blocking, as observed in vitro for adalimumab. PMID:27605058

  2. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability.

    PubMed

    Wilson, Kirilee A; Maerz, Anne L; Bär, Séverine; Drummer, Heidi E; Poumbourios, Pantelis

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Bär, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function. PMID:17577584

  3. Calculated ground state potential surface and excitation energies for the copper trimer

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Laskowski, B. C.

    1986-01-01

    In the context of their relevance to catalysis and to materials science problems, transition metals and transition metal (TM) compounds are currently of considerable interest, and studies have been conducted of the copper trimer, Cu3. The present investigation is concerned with a study of the ground state surface and several groups of excited states in order to improve the understanding of the spectroscopy of Cu3. Differences of the current study from previous investigations are related to an employment of larger basis sets and a more extensive electron correlation. This was done with the objective to obtain a more accurate definition of the ground state surface. Features of the bonding in the copper dimer are considered to obtain a basis for an understanding of the copper trimer. Attention is given to calculational details, the ground state surface, and calculated vertical excitation energies. The results of SCF/SDCI calculations are reported for portions of the ground surface, for two groups of excited states, and for the ionization potential of Cu3.

  4. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer

    SciTech Connect

    Shegai, Timur; Li, Zhipeng; Zhang, Zhenyu; Xu, Hongxing; Haran, Gilad

    2008-01-01

    The interaction of light with metal nanoparticles leads to novel phenomena mediated by surface plasmon excitations. In this paper we use single molecules to characterize the interaction of surface plasmons with light, and show that such interaction can strongly modulate the polarization of the emitted light. The simplest nanostructures that enable such polarization modulation are asymmetric silver nanocrystal trimers, where individual Raman scattering molecules are located in the gap between two of the nanoparticles. The third particle breaks the dipolar symmetry of the two-particle junction, generating a wavelength-dependent polarization pattern. Indeed, the scattered light becomes elliptically polarized and its intensity pattern is rotated in the presence of the third particle. We use a combination of spectroscopic observations on single molecules, scanning electron microscope imaging, and generalized Mie theory calculations to provide a full picture of the effect of particles on the polarization of the emitted light. Furthermore, our theoretical analysis allows us to show that the observed phenomenon is very sensitive to the size of the trimer particles and their relative position, suggesting future means for precise control of light polarization on the nanoscale.

  5. Trimeric Glycosylphosphatidylinositol-Anchored HCDR3 of Broadly Neutralizing Antibody PG16 Is a Potent HIV-1 Entry Inhibitor

    PubMed Central

    Liu, Lihong; Wang, Weiming; Yang, Lifei; Ren, Huanhuan; Kimata, Jason T.

    2013-01-01

    PG9 and PG16 are two quaternary-structure-specific broadly neutralizing antibodies with unique HCDR3 subdomains. Previously, we showed that glycosylphosphatidylinositol (GPI)-anchored HCDR3 subdomains (GPI-HCDR3) can be targeted to lipid rafts of the plasma membrane, bind to the epitope recognized by HCDR3 of PG16, and neutralize diverse HIV-1 isolates. In this study, we further developed trimeric GPI-HCDR3s and demonstrated that trimeric GPI-HCDR3 (PG16) dramatically improves anti-HIV-1 neutralization, suggesting that a stoichiometry of recognition of 3 or 2 HCDR3 molecules (PG16) to 1 viral spike is possible. PMID:23152526

  6. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemic injury in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury including cell swelling, increased free radical production, ...

  7. The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy.

    PubMed

    Seifert, Nathan A; Steber, Amanda L; Neill, Justin L; Pérez, Cristóbal; Zaleski, Daniel P; Pate, Brooks H; Lesarri, Alberto

    2013-07-21

    The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure was determined by proper constraint of the M06-2X/6-311++g(d,p) ab initio structure. The structure of phenol dimer features a water dimer-like hydrogen bond, as well as a cooperative contribution from inter-ring dispersion. Comparisons between the experimental structure and previously determined experimental structures, as well as ab initio structures from various levels of theory, are discussed. For phenol trimer, a C3 symmetric barrel-like structure is found, and an experimental substitution structure was determined via measurement of the six unique (13)C isotopologues. The least-squares fit rm((1)) structure reveals a similar interplay between hydrogen bonding and dispersion in the trimer, with water trimer-like hydrogen bonding and C-H···π interactions.

  8. Triphenylene discotic liquid crystal trimers synthesized by Co2(CO)8-catalyzed terminal alkyne [2 + 2 + 2] cycloaddition

    PubMed Central

    Han, Bin; Hu, Ping; Wang, Bi-Qin; Redshaw, Carl

    2013-01-01

    Summary The synthesis of star-shaped discotic liquid crystal trimers using Co2(CO)8-catalyzed terminal alkyne [2 + 2 + 2] cycloaddition reaction is reported. The trimers consist of three triphenylene discotic units linked to a central 1,2,4-trisubstituted benzene ring via flexible spacers. The trimers were synthesized in the yields up to 70% by mixing the monomers with 10 mol % of Co2(CO)8 as the catalyst in refluxing 1,4-dioxane. The liquid crystalline properties were investigated by using polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Trimer 4 with an ester connecting group and a longer spacer exhibited a rectangular columnar mesophase, while 5b and 5c possessing an ether linkage and a shorter spacer display a hexagonal columnar mesophase. The connecting functional group and the length of the flexible spacer between the central benzene ring and the triphenylene units have pivotal influence on the mesomorphism. PMID:24367450

  9. Antigenic and 3D structural characterization of soluble X4 and hybrid X4-R5 HIV-1 Env trimers

    PubMed Central

    2014-01-01

    Background HIV-1 is decorated with trimeric glycoprotein spikes that enable infection by engaging CD4 and a chemokine coreceptor, either CCR5 or CXCR4. The variable loop 3 (V3) of the HIV-1 envelope protein (Env) is the main determinant for coreceptor usage. The predominant CCR5 using (R5) HIV-1 Env has been intensively studied in function and structure, whereas the trimeric architecture of the less frequent, but more cytopathic CXCR4 using (X4) HIV-1 Env is largely unknown, as are the consequences of sequence changes in and near V3 on antigenicity and trimeric Env structure. Results Soluble trimeric gp140 Env constructs were used as immunogenic mimics of the native spikes to analyze their antigenic properties in the context of their overall 3D structure. We generated soluble, uncleaved, gp140 trimers from a prototypic T-cell line-adapted (TCLA) X4 HIV-1 strain (NL4-3) and a hybrid (NL4-3/ADA), in which the V3 spanning region was substituted with that from the primary R5 isolate ADA. Compared to an ADA (R5) gp140, the NL4-3 (X4) construct revealed an overall higher antibody accessibility, which was most pronounced for the CD4 binding site (CD4bs), but also observed for mAbs against CD4 induced (CD4i) epitopes and gp41 mAbs. V3 mAbs showed significant binding differences to the three constructs, which were refined by SPR analysis. Of interest, the NL4-3/ADA construct with the hybrid NL4-3/ADA CD4bs showed impaired CD4 and CD4bs mAb reactivity despite the presence of the essential elements of the CD4bs epitope. We obtained 3D reconstructions of the NL4-3 and the NL4-3/ADA gp140 trimers via electron microscopy and single particle analysis, which indicates that both constructs inherit a propeller-like architecture. The first 3D reconstruction of an Env construct from an X4 TCLA HIV-1 strain reveals an open conformation, in contrast to recently published more closed structures from R5 Env. Exchanging the X4 V3 spanning region for that of R5 ADA did not alter the open

  10. Characterization of a trimeric MPER containing HIV-1 gp41 antigen

    SciTech Connect

    Hinz, Andreas; Schoehn, Guy; Quendler, Heribert; Hulsik, David Lutje; Stiegler, Gabi; Katinger, Hermann; Seaman, Michael S.; Montefiori, David; Weissenhorn, Winfried

    2009-08-01

    The membrane-proximal external region (MPER) of gp41 is considered as a prime target for the induction of neutralizing antibodies, since it contains the epitopes for three broadly neutralizing antibodies (2F5, 4E10 and Z13). Here we present a novel gp41 construct (HA-gp41) comprising gp41 HR2 and MPER fused to two triple-stranded coiled-coil domains at both ends. HA-gp41 is trimeric, has a high helical content in solution and forms rod-like structures as revealed by negative staining electron microscopy. Immunization of rabbits with HA-gp41 induced antibodies directed against MPER, which failed to exert significant neutralization capacity against envelopes from primary isolates. Thus trimerisation of MPER regions does not suffice to induce a potent neutralizing antibody response specific for conserved regions within gp41.

  11. Remarkable Structural and Electronic Features of the Complex Formed by Trimeric Copper Pyrazolate with Pentaphosphaferrocene.

    PubMed

    Filippov, Oleg A; Titov, Aleksei A; Guseva, Ekaterina A; Loginov, Dmitry A; Smol'yakov, Alexander F; Dolgushin, Fedor M; Belkova, Natalia V; Epstein, Lina M; Shubina, Elena S

    2015-09-14

    According to spectroscopic (NMR, IR, UV/Vis) study, the interaction of pentaphosphaferrocene [Cp*Fe(η(5) -P5 )] with trimeric copper pyrazolate [(Cu{3,5-(CF3 )2 Pz})3 ] yields a new compound that is astonishingly stable in solution. Single-crystal X-ray analysis reveals unprecedented structural changes in the interacting molecules and the unique type of coordination [Cp*Fe(μ3 -η(5) :η(2) ,η(2) -P5 ){Cu(3,5-(CF3 )2 Pz)}3 ]. As a result of the 90° macrocycle folding, the copper atoms are able to behave both as a Lewis acid and as a Lewis base in the interaction with the cyclo-P5 ligand. PMID:26332228

  12. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1985-01-01

    Small transition metal clusters at a high level of approximation i.e. including all the valence electrons in the calculation and also including extensive electron correlation were studied. Perhaps the most useful end result of these studies is the qualitative information about the electronic structure of these small metal clusters, including the nature of the bonding. The electronic structure studies of the small clusters are directly applicable to problems in catalysis. From comparison of dimers, trimers and possibly higher clusters, it is possible to extrapolate the information obtained to provide insights into the electronic structure of bulk transition metals and their interaction with other atoms and molecules at both surface and interior locations.

  13. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  14. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans

    PubMed Central

    Ujisawa, Tomoyo; Ohta, Akane; Uda-Yagi, Misato

    2016-01-01

    Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron. PMID:27788246

  15. Hetero-modification of TRAIL trimer for improved drug delivery and in vivo antitumor activities

    PubMed Central

    Pan, Li-Qiang; Zhao, Wen-Bin; Lai, Jun; Ding, Ding; Wei, Xiao-Yue; Li, Yang-Yang; Liu, Wen-Hui; Yang, Xiao-Yue; Xu, Ying-Chun; Chen, Shu-Qing

    2015-01-01

    Poor pharmacokinetics and resistance within some tumor cell lines have been the major obstacles during the preclinical or clinical application of TRAIL (tumor-necrosis-factor (TNF)-related apoptosis-inducing ligand). The half-life of TRAIL114-281 (114 to 281 amino acids) was revealed to be no more than 30 minutes across species. Therefore maleimido activated PEG (polyethylene glycol) and MMAE (Monomethyl Auristatin E) were applied to site-specifically conjugate with the mutated cysteines from different monomers of TRAIL successively, taking advantage of steric effects involved within TRAIL mutant conjugations. As a result, TRAIL trimer was hetero-modified for different purposes. And the resulting PEG-TRAIL-vcMMAE conjugate exhibited dramatically improved half-life (11.54 h), favourable in vivo targeting capability and antitumor activities while no sign of toxicity in xenograft models, suggesting it’s a viable therapeutic and drug delivery strategy. PMID:26445897

  16. Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis.

    PubMed

    Zhou, Xinyu; Lin, Peihui; Yamazaki, Daiju; Park, Ki Ho; Komazaki, Shinji; Chen, S R Wayne; Takeshima, Hiroshi; Ma, Jianjie

    2014-02-14

    Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K(+) permeation and Ca(2+) release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K(+) flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca(2+) release. TRIC-A and TRIC-B seem to have differential functions in Ca(2+) signaling in excitable and nonexcitable cells. Tric-a(-/-) mice display defective Ca(2+) sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor-mediated Ca(2+) release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca(2+) signaling in embryonic cardiomyocytes. Tric-a(-/-) and Tric-b(+/-) mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca(2+) release channel, which in turn controls store-overload-induced Ca(2+) release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca(2+) release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.

  17. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation

    PubMed Central

    Montagnoli, Alessia; Fiore, Francesca; Eytan, Esther; Carrano, Andrea C.; Draetta, Giulio F.; Hershko, Avram; Pagano, Michele

    1999-01-01

    The cellular abundance of the cyclin-dependent kinase (Cdk) inhibitor p27 is regulated by the ubiquitin–proteasome system. Activation of p27 degradation is seen in proliferating cells and in many types of aggressive human carcinomas. p27 can be phosphorylated on threonine 187 by Cdks, and cyclin E/Cdk2 overexpression can stimulate the degradation of wild-type p27, but not of a threonine 187-to-alanine p27 mutant [p27(T187A)]. However, whether threonine 187 phosphorylation stimulates p27 degradation through the ubiquitin–proteasome system or an alternative pathway is still not known. Here, we demonstrate that p27 ubiquitination (as assayed in vivo and in an in vitro reconstituted system) is cell-cycle regulated and that Cdk activity is required for the in vitro ubiquitination of p27. Furthermore, ubiquitination of wild-type p27, but not of p27(T187A), can occur in G1-enriched extracts only upon addition of cyclin E/Cdk2 or cyclin A/Cdk2. Using a phosphothreonine 187 site-specific antibody for p27, we show that threonine 187 phosphorylation of p27 is also cell-cycle dependent, being present in proliferating cells but undetectable in G1 cells. Finally, we show that in addition to threonine 187 phosphorylation, efficient p27 ubiquitination requires formation of a trimeric complex with the cyclin and Cdk subunits. In fact, cyclin B/Cdk1 which can phosphorylate p27 efficiently, but cannot form a stable complex with it, is unable to stimulate p27 ubiquitination by G1 extracts. Furthermore, another p27 mutant [p27(CK−)] that can be phosphorylated by cyclin E/Cdk2 but cannot bind this kinase complex, is refractory to ubiquitination. Thus throughout the cell cycle, both phosphorylation and trimeric complex formation act as signals for the ubiquitination of a Cdk inhibitor. PMID:10323868

  18. Trimeric autotransporter DsrA is a major mediator of fibrinogen binding in Haemophilus ducreyi.

    PubMed

    Fusco, William G; Elkins, Christopher; Leduc, Isabelle

    2013-12-01

    Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. In both natural and experimental chancroid, H. ducreyi colocalizes with fibrin at the base of the ulcer. Fibrin is obtained by cleavage of the serum glycoprotein fibrinogen (Fg) by thrombin to initiate formation of the blood clot. Fg binding proteins are critical virulence factors in medically important Gram-positive bacteria. H. ducreyi has previously been shown to bind Fg in an agglutination assay, and the H. ducreyi Fg binding protein FgbA was identified in ligand blotting with denatured proteins. To better characterize the interaction of H. ducreyi with Fg, we examined Fg binding to intact, viable H. ducreyi bacteria and identified a novel Fg binding protein. H. ducreyi bound unlabeled Fg in a dose-dependent manner, as measured by two different methods. In ligand blotting with total denatured cellular proteins, digoxigenin (DIG)-Fg bound only two H. ducreyi proteins, the trimeric autotransporter DsrA and the lectin DltA; however, only the isogenic dsrA mutant had significantly less cell-associated Fg than parental strains in Fg binding assays with intact bacteria. Furthermore, expression of DsrA, but not DltA or an empty vector, rendered the non-Fg-binding H. influenzae strain Rd capable of binding Fg. A 13-amino-acid sequence in the C-terminal section of the passenger domain of DsrA appears to be involved in Fg binding by H. ducreyi. Taken together, these data suggest that the trimeric autotransporter DsrA is a major determinant of Fg binding at the surface of H. ducreyi. PMID:24042118

  19. Biochemical, Conformational, and Immunogenic Analysis of Soluble Trimeric Forms of Henipavirus Fusion Glycoproteins

    PubMed Central

    Chan, Yee-Peng; Lu, Min; Dutta, Somnath; Yan, Lianying; Barr, Jennifer; Flora, Michael; Feng, Yan-Ru; Xu, Kai; Nikolov, Dimitar B.; Wang, Lin-Fa; Skiniotis, Georgios

    2012-01-01

    The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are paramyxoviruses discovered in the mid- to late 1990s that possess a broad host tropism and are known to cause severe and often fatal disease in both humans and animals. HeV and NiV infect cells by a pH-independent membrane fusion mechanism facilitated by their attachment (G) and fusion (F) glycoproteins. Here, several soluble forms of henipavirus F (sF) were engineered and characterized. Recombinant sF was produced by deleting the transmembrane (TM) and cytoplasmic tail (CT) domains and appending a glycosylphosphatidylinositol (GPI) anchor signal sequence followed by GPI-phospholipase D digestion, appending a trimeric coiled-coil (GCNt) domain (sFGCNt), or deleting the TM, CT, and fusion peptide domain. These sF glycoproteins were produced as F0 precursors, and all were apparent stable trimers recognized by NiV-specific antisera. Surprisingly, however, only the GCNt-appended constructs (sFGCNt) could elicit cross-reactive henipavirus-neutralizing antibody in mice. In addition, sFGCNt constructs could be triggered in vitro by protease cleavage and heat to transition from an apparent prefusion to postfusion conformation, transitioning through an intermediate that could be captured by a peptide corresponding to the C-terminal heptad repeat domain of F. The pre- and postfusion structures of sFGCNt and non-GCNt-appended sF could be revealed by electron microscopy and were distinguishable by F-specific monoclonal antibodies. These data suggest that only certain sF constructs could serve as potential subunit vaccine immunogens against henipaviruses and also establish important tools for further structural, functional, and diagnostic studies on these important emerging viruses. PMID:22915804

  20. Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 cells.

    PubMed

    Kłodawska, Kinga; Kovács, László; Várkonyi, Zsuzsanna; Kis, Mihály; Sozer, Özge; Laczkó-Dobos, Hajnalka; Kóbori, Ottilia; Domonkos, Ildikó; Strzałka, Kazimierz; Gombos, Zoltán; Malec, Przemysław

    2015-03-01

    In the thylakoid membranes of the mesophilic cyanobacterium Synechocystis PCC6803, PSI reaction centers (RCs) are organized as monomers and trimers. PsaL, a 16 kDa hydrophobic protein, a subunit of the PSI RC, was previously identified as crucial for the formation of PSI trimers. In this work, the physiological effects accompanied by PSI oligomerization were studied using a PsaL-deficient mutant (ΔpsaL), not able to form PSI trimers, grown at various temperatures. We demonstrate that in wild-type Synechocystis, the monomer to trimer ratio depends on the growth temperature. The inactivation of the psaL gene in Synechocystis grown phototropically at 30°C induces profound morphological changes, including the accumulation of glycogen granules localized in the cytoplasm, resulting in the separation of particular thylakoid layers. The carotenoid composition in ΔpsaL shows that PSI monomerization leads to an increased accumulation of myxoxantophyll, zeaxanthin and echinenone irrespective of the temperature conditions. These xanthophylls are formed at the expense of β-carotene. The measured H2O→CO2 oxygen evolution rates in the ΔpsaL mutant are higher than those observed in the wild type, irrespective of the growth temperature. Moreover, circular dichroism spectroscopy in the visible range reveals that a peak attributable to long-wavelength-absorbing carotenoids is apparently enhanced in the trimer-accumulating wild-type cells. These results suggest that specific carotenoids are accompanied by the accumulation of PSI oligomers and play a role in the formation of PSI oligomer structure. PMID:25520404

  1. Refolding of Escherichia coli outer membrane protein F in detergent creates LPS-free trimers and asymmetric dimers.

    PubMed

    Visudtiphole, Virak; Thomas, Matthew B; Chalton, David A; Lakey, Jeremy H

    2005-12-01

    The Escherichia coli OmpF (outer-membrane protein F; matrix porin) is a homotrimeric beta-barrel and a member of the bacterial porin superfamily. It is the best characterized porin protein, but has resisted attempts to refold it efficiently in vitro. In the present paper, we report the discovery of detergent-based folding conditions, including dodecylglucoside, which can create pure samples of trimeric OmpF. Whereas outer membrane LPS (lipopolysaccharide) is clearly required for in vivo folding, the artificially refolded and LPS-free trimer has properties identical with those of the outer-membrane-derived form. Thus LPS is not required either for in vitro folding or for structural integrity. Dimeric forms of OmpF have been observed in vivo and are proposed to be folding intermediates. In vitro, dimers occur transiently in refolding of trimeric OmpF and, in the presence of dodecylmaltoside, pure dimer can be prepared. This form has less beta-structure by CD and shows lower thermal stability than the trimer. Study of these proteins at the single-molecule level is possible because each OmpF subunit forms a distinct ion channel. Whereas each trimer contains three channels of equal conductance, each dimer always contains two distinct channel sizes. This provides clear evidence that the two otherwise identical monomers adopt different structures in the dimer and indicates that the asymmetric interaction, characteristic of C3 symmetry, is formed at the dimer stage. This asymmetric dimer may be generally relevant to the folding of oligomeric proteins with odd numbers of subunits such as aspartate transcarbamoylase.

  2. Orbitally driven trimerization in LiVO2 and LiVS2: a ``partial Mott transition''

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Khomskii, D. I.

    2011-03-01

    Layered triangular-lattice transition-metal compounds often display interesting magnetic and electronic properties. Here we studied the formation of the trimerized spin-singlet state of the V3+ (S = 1) in vanadates Li VO2 and Li VS2 and their electronic structure with a special orbital order, using constrained LSDA+ U calculations combined with lattice optimization. The obtained results show that the trimerization distortion in Li VO2 increases as the effective U decreases, and the calculated distortion of ~ 0.3 AA at the small U = 1 eV agrees well with the experiments, indicating that Li VO2 is close to a metal-insulator transition. The corresponding distortion in Li VS2 is even stronger, being ~ 0.4 AA at the U = 1 eV, which is due to enhanced electron delocalization via increased V-S covalency, in spite of a lattice expansion. This agrees with the experimental finding that Li VS2 has a metal-insulator transition. The calculated energy gain associated with the trimerization well accounts for the observed structural phase transition temperature in Li VO2 and Li VS2 . We conclude that the trimerization in Li VO2 and Li VS2 is due to a partial delocalization of the orbitally ordered electrons---a ``partial Mott transition,'' occurring not in the whole system but in small clusters (here in trimers). This situation is contrasted with that in Na VO2 , which is further away from the localized-itinerant crossover and thus remains insulating with different orbital ordering.

  3. Vibronic model for H/D isotopic “self-organization” effects in hydrogen bond cyclic trimeric systems: 4-Bromopyrazole crystal IR spectra

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Pyzik, Aleksandra

    2006-04-01

    In this paper, a theoretical model has been proposed, aiming to explain a new kind of H/D isotopic effects concerning hydrogen bond systems, i.e. the H/D isotopic "self-organization" effects, recently deduced from the IR spectra of molecular crystals. The problem of existence of these kinds of co-operative effects was considered in the limits of a vibronic model in the Herzberg-Teller approximation, for cyclic trimeric systems of hydrogen bonds. It was shown that non-conventional attraction forces between three identical hydrogen isotope atoms, resulting from the vibronic mechanism, are responsible for excess stabilization energy of cyclic hydrogen bond trimers. The H/D "self-organization" effects were deduced to be negligible in the case of non-symmetric HDD, or HHD-type trimers, containing both, hydrogen and deuterium bonds in one ring trimer. The symmetric trimers of the HHH and of the DDD-type should be more stable, when compared with the HDD, or the HHD-type trimer properties. This thermodynamic effect explains the IR spectral properties of molecular crystals containing cyclic trimers of hydrogen bonds in their lattices, accompanying to isotopic dilution. The results of the theoretical considerations were confronted with the IR spectra of 4-bromopyrazole crystals, which were measured in a wide temperature range (from 298 to 77 K), using polarized light, in the frequency ranges of the proton or deuterium stretching vibrations bands.

  4. Well-Ordered Trimeric HIV-1 Subtype B and C Soluble Spike Mimetics Generated by Negative Selection Display Native-like Properties

    PubMed Central

    Guenaga, Javier; de Val, Natalia; Tran, Karen; Feng, Yu; Satchwell, Karen; Ward, Andrew B.; Wyatt, Richard T.

    2015-01-01

    The structure of BG505 gp140 SOSIP, a soluble mimic of the native HIV-1 envelope glycoprotein (Env), marks the beginning of new era in Env structure-based immunogen design. Displaying a well-ordered quaternary structure, these subtype A-derived trimers display an excellent antigenic profile, discriminating recognition by broadly neutralizing antibodies (bNAbs) from non-broadly neutralizing antibodies (non-bNAbs), and provide a solid Env-based immunogenic platform starting point. Even with this important advance, obtaining homogeneous well-ordered soluble SOSIP trimers derived from other subtypes remains challenging. Here, we report the “rescue” of homogeneous well-ordered subtype B and C SOSIP trimers from a heterogeneous Env mixture using CD4 binding site-directed (CD4bs) non-bNAbs in a negative-selection purification process. These non-bNAbs recognize the primary receptor CD4bs only on disordered trimers but not on the native Env spike or well-ordered soluble trimers due to steric hindrance. Following negative selection to remove disordered oligomers, we demonstrated recovery of well-ordered, homogeneous trimers by electron microscopy (EM). We obtained 3D EM reconstructions of unliganded trimers, as well as in complex with sCD4, a panel of CD4bs-directed bNAbs, and the cleavage-dependent, trimer-specific bNAb, PGT151. Using bio-layer light interferometry (BLI) we demonstrated that the well-ordered trimers were efficiently recognized by bNAbs and poorly recognized by non-bNAbs, representing soluble mimics of the native viral spike. Biophysical characterization was consistent with the thermostability of a homogeneous species that could be further stabilized by specific bNAbs. This study revealed that Env trimers generate different frequencies of well-ordered versus disordered aberrant trimers even when they are genetically identical. By negatively selecting the native-like well-ordered trimers, we establish a new means to obtain soluble Env mimetics derived

  5. pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen

    SciTech Connect

    Matsumoto, Yasuyuki; Zhang, Qing; Akita, Kaoru; Nakada, Hiroshi; Hamamura, Kazunori; Tokuda, Noriyo; Tsuchida, Akiko; Matsubara, Takeshi; Hori, Tomoko; Okajima, Tetsuya; Furukawa, Keiko; Urano, Takeshi; Furukawa, Koichi

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer ppGalNAc-T13 was up-regulated in high metastatic sublines of Lewis lung cancer. Black-Right-Pointing-Pointer ppGalNAc-T13 expression enhanced cell invasion activity in low metastatic sublines. Black-Right-Pointing-Pointer Trimeric Tn antigen was induced in the transfectant cells of ppGalNAc-T13 cDNA. Black-Right-Pointing-Pointer A major protein carrying trimeric Tn structure was identified as Syndecan-1. Black-Right-Pointing-Pointer Silencing of ppGalNAc-T13 resulted in the reduction of invasion and of metastasis.. -- Abstract: In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. These sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated by

  6. Hydrolyzable tannins of tamaricaceous plants. V. Structures of monomeric-trimeric tannins and cytotoxicity of macrocyclic-type tannins isolated from Tamarix nilotica (1).

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Sakagami, Hiroshi; Yoshimura, Morio; Yoshida, Takashi; Hatano, Tsutomu

    2013-05-24

    Three new ellagitannin monomers, nilotinins M5-M7 (1-3), a dimer, nilotinin D10 (4), and a trimer, nilotinin T1 (5), together with three known dimers, hirtellin D (7) and tamarixinins B (8) and C (9), and a trimer, hirtellin T2 (6), were isolated from Tamarix nilotica dried leaves. The structures of the tannins were elucidated by intensive spectroscopic methods and chemical conversions into known tannins. The new trimer (5) is a unique macrocyclic type whose monomeric units are linked together by an isodehydrodigalloyl and two dehydrodigalloyl moieties. Additionally, dimeric and trimeric macrocyclic-type tannins isolated from T. nilotica in this study were assessed for possible cytotoxic activity against four human tumor cell lines. Tumor-selective cytotoxicities of the tested compounds were higher than those of synthetic and natural potent cytotoxic compounds, including polyphenols, and comparable with those of 5-fluorouracil and melphalan. PMID:23675651

  7. Direct measurement of excitation transfer dynamics between two trimers in C-phycocyanin hexamer from cyanobacterium Anabaena variabilis

    NASA Astrophysics Data System (ADS)

    Zhang, Jingmin; Zhao, Fuli; Zheng, Xiguang; Wang, Hezhou

    1999-05-01

    We provide the first experimental evidence for the excitation transfers between two trimers of an isolated C-phycocyanin hexamer (αβ) 6PCL RC27, at the end of the rod proximal to the core of PBS in cyanobacterium of Anabaena variabilis, with picosecond time-resolved fluorescence spectroscopy. Our results strongly suggest that the observed fluorescence decay constants around 20 and 10 ps time scales, shown in anisotropy decay, not in isotropic decay experiments arose from the excitation transfers between two trimers via two types of transfer pathways such as 1β 155↔6β 155 (2β 155↔5β 155 and 3β 155↔4β 155) and 2α 84↔5α 84 (3α 84↔6α 84 and 1α 84↔4α 84) channels and these could be described by Föster dipole-dipole resonance mechanism.

  8. Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens

    PubMed Central

    Julien, Jean-Philippe; Lee, Jeong Hyun; Ozorowski, Gabriel; Hua, Yuanzi; Torrents de la Peña, Alba; de Taeye, Steven W.; Nieusma, Travis; Cupo, Albert; Yasmeen, Anila; Golabek, Michael; Pugach, Pavel; Klasse, P. J.; Moore, John P.; Sanders, Rogier W.; Ward, Andrew B.; Wilson, Ian A.

    2015-01-01

    A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1. PMID:26372963

  9. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies

    PubMed Central

    Sanders, Rogier W.; Derking, Ronald; Cupo, Albert; Julien, Jean-Philippe; Yasmeen, Anila; de Val, Natalia; Kim, Helen J.; Blattner, Claudia; de la Peña, Alba Torrents; Korzun, Jacob; Golabek, Michael; de los Reyes, Kevin; Ketas, Thomas J.; van Gils, Marit J.; King, C. Richter; Wilson, Ian A.; Ward, Andrew B.; Klasse, P. J.; Moore, John P.

    2013-01-01

    A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens. PMID:24068931

  10. pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen.

    PubMed

    Matsumoto, Yasuyuki; Zhang, Qing; Akita, Kaoru; Nakada, Hiroshi; Hamamura, Kazunori; Tokuda, Noriyo; Tsuchida, Akiko; Matsubara, Takeshi; Hori, Tomoko; Okajima, Tetsuya; Furukawa, Keiko; Urano, Takeshi; Furukawa, Koichi

    2012-03-01

    In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. These sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated by subcutaneous injection of T13-KD clones showed lower coalescence to fascia and peritoneum, and significantly reduced lung metastasis than control clones. These data suggested that high expression of pp-GalNAc-T13 gene generated trimeric Tn antigen on Syndecan-1, leading to the enhanced metastasis.

  11. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-01

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  12. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  13. SecAAA trimer is fully functional as SecAA dimer in the membrane: Existence of higher oligomers?

    PubMed Central

    Wang, Hongyun; Ma, Yamin; Hsieh, Ying-Hsin; Yang, Hsiuchin; Li, Minyong; Wang, Binghe; Tai, Phang C.

    2014-01-01

    SecA is an essential ATPase in bacterial Sec-dependent protein translocation pathway, and equilibrates between monomers and dimers in solution. The question of whether SecA functions as monomers or dimers in membranes during the protein translocation is controversial. We previously constructed a tail-to-head SecAA tandem dimer, and showed it is fully functional by complementation in vivo and protein translocation in vitro, indicating that SecA can function at least as a dimer in the membrane without dissociating into monomers. In this study, we further constructed genetically a tail-to-head SecAAA trimer, which is functional in complementing a temperature-sensitive secA mutant. The purified SecAAA trimer per protomer is fully active as SecAA tandem dimers in ATPase activity, in protein translocation in vitro and in ion channel activities in the oocytes. With these functional tail-to-head trimer SecAAA and tandem SecAA, we examined their surface topology in the presence of liposomes using AFM. As expected, the soluble SecAAA without lipids are larger than SecAA. However, the ring/pore structures of SecAAA trimers were, surprisingly, almost identical to the SecA 2-monomers and SecAA dimers, raising the intriguing possibility that the SecA may exist and function as hexamer ring-structures in membranes. Cross-linking with formaldehyde showed that SecA, SecAA and SecAAA could form larger oligomers, including the hexamers. The molecular modeling simulation shows that both tail-to-head and tail-to-tail hexamers in the membranes are possible. PMID:24704204

  14. High Resolution Infrared Spectroscopy of the CO_2-CO Dimers and (CO_2)_2-CO Trimer

    NASA Astrophysics Data System (ADS)

    Barclay, A. J.; Sheybani-Deloui, S.; Michaelian, K. H.; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2016-06-01

    Infrared spectra in the carbon monoxide CO stretch region (≈2150 cm-1) are assigned to the previously unobserved O-bonded form of the CO_2-CO dimer ("isomer 2"), which has a planar T-shaped structure like that of the previously observed C-bonded form ("isomer 1"). Results will also be reported for both isomers of the 12C18O_2-substituted form of the dimer. In addition, we have observed two combination bands for each isomer yielding the first experimental determinations of intermolecular frequencies for the planar T-shaped structures. Within both of the fundamental bands, weak "satellite bands" are observed. These are tentatively assigned to the trimer He-CO_2-CO. To the higher side of the fundamental for "isomer 1", we have observed a weaker b-type band which we have assigned to (CO_2)_2-CO trimer. This trimer has a "pin wheel" structure with C2 symmetry and the derived experimental structural parameters match well with those obtained from ab initio calculations.

  15. Traveling waves in trimer granular lattice I: Bifurcation structure of traveling waves in the unit-cell model

    NASA Astrophysics Data System (ADS)

    Jayaprakash, K. R.; Shiffer, A.; Starosvetsky, Y.

    2016-09-01

    Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains.

  16. Fractional Mott insulator-to-superfluid transition of Bose-Hubbard model in a trimerized Kagomé optical lattice

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Hui; Li, Peng; Su, Haibin

    2016-06-01

    By generalizing the traditional single-site strong coupling expansion approach to a cluster one, we study the zero-temperature phase diagram of bosonic atoms in a trimerized Kagomé optical lattice. Some new features are present in this system. Due to the strong intra-trimer hopping interaction, there will be a new Mott insulator (MI), which is by definition incompressible but with a fractional filling per trimer. This is different from the traditional MI, which has an integral filling and originates only from the repulsive interaction between particles. We investigate the MI-to-superfluid transition and the nature of the fractional MI by calculating the critical exponents of phase transitions and the low-lying energy excitation spectra of quasiparticles (quasihole). We will show how the low-energy properties of this system can be understood qualitatively as a Bose-Hubbard model in triangular lattice from the point of view of the cluster strong coupling expansion. We also discuss how our results are related to experiment by studying the Bragg spectroscopy.

  17. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I

    PubMed Central

    Miyazono, Ken-ichi; Ishino, Sonoko; Tsutsumi, Kanae; Ito, Tomoko; Ishino, Yoshizumi; Tanokura, Masaru

    2015-01-01

    Nucleases play important roles in nucleic acid processes, such as replication, repair and recombination. Recently, we identified a novel single-strand specific 3′-5′ exonuclease, PfuExo I, from the hyperthermophilic archaeon Pyrococcus furiosus, which may be involved in the Thermococcales-specific DNA repair system. PfuExo I forms a trimer and cleaves single-stranded DNA at every two nucleotides. Here, we report the structural basis for the cleavage mechanism of this novel exonuclease family. A structural analysis of PhoExo I, the homologous enzyme from P. horikoshii OT3, showed that PhoExo I utilizes an RNase H-like active site and possesses a 3′-OH recognition site ∼9 Å away from the active site, which enables cleavage at every two nucleotides. Analyses of the heterotrimeric and monomeric PhoExo I activities showed that trimerization is indispensable for its processive cleavage mechanism, but only one active site of the trimer is required. PMID:26138487

  18. Fractional Mott insulator-to-superfluid transition of Bose–Hubbard model in a trimerized Kagomé optical lattice

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Hui; Li, Peng; Su, Haibin

    2016-06-01

    By generalizing the traditional single-site strong coupling expansion approach to a cluster one, we study the zero-temperature phase diagram of bosonic atoms in a trimerized Kagomé optical lattice. Some new features are present in this system. Due to the strong intra-trimer hopping interaction, there will be a new Mott insulator (MI), which is by definition incompressible but with a fractional filling per trimer. This is different from the traditional MI, which has an integral filling and originates only from the repulsive interaction between particles. We investigate the MI-to-superfluid transition and the nature of the fractional MI by calculating the critical exponents of phase transitions and the low-lying energy excitation spectra of quasiparticles (quasihole). We will show how the low-energy properties of this system can be understood qualitatively as a Bose–Hubbard model in triangular lattice from the point of view of the cluster strong coupling expansion. We also discuss how our results are related to experiment by studying the Bragg spectroscopy.

  19. HIV-1 Nef responsiveness is determined by Env variable regions involved in trimer association and correlates with neutralization sensitivity.

    PubMed

    Usami, Yoshiko; Göttlinger, Heinrich

    2013-11-14

    HIV-1 Nef and the unrelated murine leukemia virus glycoGag similarly enhance the infectivity of HIV-1 virions. We now show that the effects of Nef and glycoGag are similarly determined by variable regions of HIV-1 gp120 that control Env trimer association and neutralization sensitivity. Whereas neutralization-sensitive X4-tropic Env proteins conferred high responsiveness to Nef and glycoGag, particles bearing neutralization-resistant R5-tropic Envs were considerably less affected. The profoundly different Nef/glycoGag responsiveness of a neutralization-resistant and a neutralization-sensitive R5-tropic Env could be switched by exchanging their gp120 V1/V2 regions, which also switches their neutralization sensitivity. Within V1/V2, the same determinants governed Nef/glycoGag responsiveness and neutralization sensitivity, indicating that these phenotypes are mechanistically linked. The V1/V2 and V3 regions, which form an apical trimer-association domain, together determined the Nef and glycoGag responsiveness of an X4-tropic Env. Our results suggest that Nef and glycoGag counteract the inactivation of Env spikes with relatively unstable apical trimer-association domains.

  20. Quantifying Dimer and Trimer Formation by Tri-n-butyl Phosphates in n-Dodecane: Molecular Dynamics Simulations.

    PubMed

    Vo, Quynh N; Dang, Liem X; Nilsson, Mikael; Nguyen, Hung D

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous ligands, is an important extractant used in the solvent extraction process for the recovery of uranium and plutonium from spent nuclear fuel. Microscopic pictures of TBP isomerism and its behavior in n-dodecane diluent were investigated utilizing MD simulations with previously optimized force field parameters for TBP and n-dodecane. Potential mean force (PMF) calculations on a single TBP molecule show seven probable TBP isomers. Radial distribution functions (RDFs) of TBP suggest the existence of TBP trimers at high TBP concentrations in addition to dimers. 2D PMF calculations were performed to determine the angle and distance criteria for TBP trimers. The dimerization and trimerization constants of TBP in n-dodecane were obtained and match our own experimental values using the FTIR technique. The new insights into the conformational behaviors of the TBP molecule as a monomer and as part of an aggregate could greatly aid in the understanding of the complexation between TBP and metal ions in a solvent extraction system. PMID:27398866

  1. Quantifying Dimer and Trimer Formation of Tri-n-butyl Phosphates in Different Alkane Diluents: FTIR Study.

    PubMed

    Vo, Quynh N; Unangst, Jaclynn L; Nguyen, Hung D; Nilsson, Mikael

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous metal-ion-extracting reagents, is an important ligand used in solvent extraction processes for the recovery of uranium and plutonium from spent nuclear fuel, as well as other non-nuclear applications. Ligand-ligand and organic solvent-ligand interactions play an important role in these processes. The self-association behavior of TBP in various alkane diluents of different chain lengths (8, 12, and 16 carbons) and a branched alkane (iso-octane) was investigated by Fourier transform infrared spectroscopic measurements. By careful deconvolution of the spectra into multiple peaks, our results indicate that TBP self-associates to form not only dimers, as previous studies showed, but also trimers in the practical concentration range. Using a mathematical fitting procedure, the dimerization and trimerization constants were determined. As expected, these equilibrium constants are dependent on the solvent used. As the alkane chain for linear hydrocarbon solvents becomes longer, dimerization decreases whereas trimerization increases. For the more branched hydrocarbon, we observe a significantly higher dimerization constant. These effects are most likely due to the intermolecular van der Waals interactions between the butyl tails of each TBP molecule and the diluent hydrocarbon chain as all solvents in this study are relatively nonpolar. PMID:27399338

  2. Pump-probe anisotropies of Fenna-Matthews-Olson protein trimers from Chlorobium tepidum: a diagnostic for exciton localization?

    PubMed Central

    Savikhin, S; Buck, D R; Struve, W S

    1997-01-01

    Exciton calculations on symmetric and asymmetric Fenna-Matthews-Olson (FMO) trimers, combined with absorption difference anisotropy measurements on FMO trimers from the green bacterium Chlorobium tepidum, suggest that real samples exhibit sufficient diagonal energy disorder so that their laser-excited exciton states are noticeably localized. Our observed anisotropies are clearly inconsistent with 21-pigment exciton simulations based on a threefold-symmetric FMO protein. They are more consistent with a 7-pigment model that assumes that the laser-prepared states are localized within a subunit of the trimer. Differential diagonal energy shifts of 50 cm(-1) between symmetry-related pigments in different subunits are large enough to cause sharp localization in the stationary states; these shifts are commensurate with the approximately 95 cm(-1) inhomogeneous linewidth of the lowest exciton levels. Experimental anisotropies (and by implication steady-state linear and circular dichroism) likely arise from statistical averaging over states with widely contrasting values of these observables, in consequence of their sensitivity to diagonal energy disorder. PMID:9336204

  3. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection.

    PubMed

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-01-01

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370

  4. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection

    PubMed Central

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-01-01

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370

  5. Effect of Trimerization Motifs on Quaternary Structure, Antigenicity, and Immunogenicity of a Non-cleavable HIV-1 gp140 Envelope Glycoprotein

    PubMed Central

    Du, Sean X.; Idiart, Rebecca J.; Mariano, Ellaine B.; Chen, Helen; Jiang, Peifeng; Xu, Li; Ostrow, Kristin M.; Wrin, Terri; Phung, Pham; Binley, James M.; Petropoulos, Christos J.; Ballantyne, John A.; Whalen, Robert G.

    2009-01-01

    The external domains of the HIV-1 envelope glycoprotein (gp120 and the gp41 ectodomain, collectively known as gp140) contain all known viral neutralization epitopes. Various strategies have been used to create soluble trimers of the envelope to mimic the structure of the native viral protein, including mutation of the gp120-gp41 cleavage site, introduction of disulfide bonds, and fusion to heterologous trimerization motifs. We compared the effects on quaternary structure, antigenicity, and immunogenicity of three such motifs: T4 fibritin, a GCN4 variant, and the E. coli aspartate transcarbamoylase catalytic subunit. Fusion of each motif to the C-terminus of a non-cleavable JRCSF gp140(-) envelope protein led to enhanced trimerization but had limited effects on the antigenic profile and CD4 binding ability of the trimers. Immunization of rabbits provided no evidence that the trimerized gp140(-) constructs induced significantly improved neutralizing antibodies to several HIV-1 pseudoviruses, compared to gp140 lacking a trimerization motif. However, modest differences in both binding specificity and neutralizing antibody responses were observed among the various immunogens. PMID:19815247

  6. Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly

    PubMed Central

    Chen, Jing; Guo, Baolin; Eyster, Thomas W.; Ma, Peter X.

    2015-01-01

    Biomedical electroactive elastomers with a modulus similar to that of soft tissues are highly desirable for muscle, nerve, and other soft tissue replacement or regeneration, but have rarely been reported. In this work, superiorly stretchable electroactive polyurethane-urea elastomers were designed based on poly(lactide), poly(ethylene glycol), and aniline trimer (AT). A strain at break higher than 1600% and a modulus close to soft tissues was achieved from these copolymers. The mechanisms of super stretchability of the copolymer were systematically investigated. Crystallinity, chemical cross-linking, ionic cross-linking and hard domain formation were examined using differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) measurements and transmission electron microscopy (TEM). The sphere-like hard domains self-assembled from AT segments were found to provide the crucial physical interactions needed for the novel super elastic material formation. These super stretchable copolymers were blended with conductive fillers such as polyaniline nanofibers and nanosized carbon black to achieve a high electric conductivity of 0.1 S/cm while maintaining an excellent stretchability and a modulus similar to that of soft tissues (lower than 10 MPa). PMID:26692638

  7. Resonance Raman spectrum and excitation profile of mass-selected zirconium trimers

    NASA Astrophysics Data System (ADS)

    Haouari, Hanae; Wang, Huaiming; Craig, Robert; Lombardi, John R.; Lindsay, D. M.

    1995-12-01

    We present the resonance Raman and Raman excitation profile of mass-selected zirconium trimers in argon matrices. In the Raman spectra, two fundamentals and one overtone are observed. Average Raman shifts, along with standard deviations (in parentheses) are 176.7 (13) cm-1 (ν2), 258.0 (12) cm-1 (ν1), and 516.1 (8) cm-1 (2ν1). The ratio of the frequencies of the two lowest lines (ν1/ν2) is 1.46, which is very close to √2. This is indicative of a symmetrical equilateral geometry (D3h). In such a case we expect two normal frequencies, one for a totally symmetric stretch of symmetry a'1 (ν1) and a doubly degenerate bend of symmetry e'(ν2). The Raman excitation profiles of the ν1(a'1) line shows two broad maxima: one near 491 nm and the other near 614 nm. The ν2 (e') profile shows a broad region of intensity only near 614 nm. With the aid of theory we assign the 614 nm band to be 1A'1-1E' (x,y polarized) while the 491 nm band must be 1A'1-1A″2 (z polarized).

  8. Magnetic properties of linear trimers in fluoride analogs of tetragonal tungsten bronze

    SciTech Connect

    Hong, Yaw-Shun; Boo, William O.J.; Mattern, Daniell L.

    2010-08-15

    The compounds KZnTiF{sub 6}, KZnVF{sub 6}, KVScF{sub 6}, KCrScF{sub 6}, and KMnScF{sub 6} are fluoride analogs of Tetragonal Tungsten Bronze. M{sup 2+}-M{sup 3+} ionic ordering in these fluorides provided systems which contained linear trinuclear complexes of their respective paramagnetic ions. Magnetic coupling within these linear trimers occurred below 100 K in each of the five systems. Derived magnetic susceptibility equations were fitted to observed magnetic susceptibilities for each of the possible spin systems: KZnTiF{sub 6} (S=1/2), J/k=-114 K; KZnVF{sub 6} (S=1), J/k=-39 K; KVScF{sub 6} (S=3/2), J/k=-16 K; KCrScF{sub 6} (S=2), J/k=-4 K; and KMnScF{sub 6} (S=5/2), J/k=-7.5 K. - Graphical abstract: Five fluoride analogs of Tetragonal Tungsten Bronze (KZnTiF{sub 6}, KZnVF{sub 6}, KVScF{sub 6}, KCrScF{sub 6}, and KMnScF{sub 6}) underwent M{sup 2+}-M{sup 3+} ionic ordering below 100 K, providing linear trinuclear complexes of their respective paramagnetic ions.

  9. Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry.

    PubMed Central

    Blakey, Dan; Leech, Andrew; Thomas, Gavin H; Coutts, Graham; Findlay, Kim; Merrick, Mike

    2002-01-01

    The Amt family of high-affinity ammonium transporters is a family of integral membrane proteins that are found in archaea, bacteria, fungi, plants and animals. Furthermore, the family has recently been extended to humans with the recognition that both the erythroid and non-erythroid Rhesus proteins are also ammonium transporters. The Escherichia coli AmtB protein offers a good model system for the Amt family and in order to address questions relating to both its structure and function we have overproduced a histidine-tagged form of the protein (AmtB6H) and purified it to homogeneity. We examined the quaternary structure of AmtB6H (which is active in vivo) by SDS/PAGE, gel-filtration chromatography, dynamic light scattering and sedimentation ultracentrifugation. The protein was resistant to dissociation by SDS and behaved as a stable oligomer on SDS/PAGE. By equilibrium desorption chromatography we determined the mass ratio of dodecyl beta-D-maltoside to AmtB in the detergent-solubilized complex to be 1.03+/-0.03, and this allowed us to calculate, from analytical-ultracentrifugation data, that AmtB purifies as a trimer. PMID:12023896

  10. Cross-protection conferred by filovirus virus-like particles containing trimeric hybrid glycoprotein.

    PubMed

    Martins, Karen; Carra, John H; Cooper, Christopher L; Kwilas, Steven A; Robinson, Camenzind G; Shurtleff, Amy C; Schokman, Rowena D; Kuehl, Kathleen A; Wells, Jay B; Steffens, Jesse T; van Tongeren, Sean A; Hooper, Jay W; Bavari, Sina

    2015-02-01

    Filoviruses are causative agents of hemorrhagic fever, and to date no effective vaccine or therapeutic has been approved to combat infection. Filovirus glycoprotein (GP) is the critical immunogenic component of filovirus vaccines, eliciting high levels of antibody after successful vaccination. Previous work has shown that protection against both Ebola virus (EBOV) and Marburg virus (MARV) can be achieved by vaccinating with a mixture of virus-like particles (VLPs) expressing either EBOV GP or MARV GP. In this study, the potential for eliciting effective immune responses against EBOV, Sudan virus, and MARV with a single GP construct was tested. Trimeric hybrid GPs were produced that expressed the sequence of Marburg GP2 in conjunction with a hybrid GP1 composed EBOV and Sudan virus GP sequences. VLPs expressing these constructs, along with EBOV VP40, provided comparable protection against MARV challenge, resulting in 75 or 100% protection. Protection from EBOV challenge differed depending upon the hybrid used, however, with one conferring 75% protection and one conferring no protection. By comparing the overall antibody titers and the neutralizing antibody titers specific for each virus, it is shown that higher antibody responses were elicited by the C terminal region of GP1 than by the N terminal region, and this correlated with protection. These data collectively suggest that GP2 and the C terminal region of GP1 are highly immunogenic, and they advance progress toward the development of a pan-filovirus vaccine.

  11. Unconventional N-Linked Glycosylation Promotes Trimeric Autotransporter Function in Kingella kingae and Aggregatibacter aphrophilus

    PubMed Central

    Rempe, Katherine A.; Spruce, Lynn A.; Porsch, Eric A.; Seeholzer, Steven H.; Nørskov-Lauritsen, Niels

    2015-01-01

    ABSTRACT Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. In the present study, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C that are not encoded near a gene encoding an obvious acceptor protein. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild-type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function. PMID:26307167

  12. Time-Periodic Solutions of Driven-Damped Trimer Granular Crystals

    DOE PAGES

    Charalampidis, E. G.; Li, F.; Chong, C.; Yang, J.; Kevrekidis, P. G.

    2015-01-01

    We consider time-periodic structures of granular crystals consisting of alternate chrome steel (S) and tungsten carbide (W) spherical particles where each unit cell follows the pattern of a 2 : 1 trimer: S-W-S. The configuration at the left boundary is driven by a harmonic in-time actuation with given amplitude and frequency while the right one is a fixed wall. Similar to the case of a dimer chain, the combination of dissipation, driving of the boundary, and intrinsic nonlinearity leads to complex dynamics. For fixed driving frequencies in each of the spectral gaps, we find that the nonlinear surface modes and the statesmore » dictated by the linear drive collide in a saddle-node bifurcation as the driving amplitude is increased, beyond which the dynamics of the system becomes chaotic. While the bifurcation structure is similar for solutions within the first and second gap, those in the first gap appear to be less robust. We also conduct a continuation in driving frequency, where it is apparent that the nonlinearity of the system results in a complex bifurcation diagram, involving an intricate set of loops of branches, especially within the spectral gap. The theoretical findings are qualitatively corroborated by the experimental full-field visualization of the time-periodic structures.« less

  13. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry.

    PubMed

    Hill, Joseph L; Hammudi, Mustafa B; Tien, Ming

    2014-12-01

    Cellulose is the most abundant renewable polymer on Earth and a major component of the plant cell wall. In vascular plants, cellulose synthesis is catalyzed by a large, plasma membrane-localized cellulose synthase complex (CSC), visualized as a hexameric rosette structure. Three unique cellulose synthase (CESA) isoforms are required for CSC assembly and function. However, elucidation of either the number or stoichiometry of CESAs within the CSC has remained elusive. In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and (35)S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.

  14. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase.

    PubMed

    Cai, Xin; Yu, Jianan; Xu, Liman; Liu, Rui; Yang, Jun

    2015-05-01

    To examine the mechanisms in the interaction of sorghum procyanidins trimer (SPT) with porcine pancreatic α-amylase (PPA), fluorescence quenching, circular dichroism, and UV spectra methods were adopted. The procyanidins binding mode, binding constant and effect of procyanidins on protein stability and conformation were determined. The fluorescence spectroscopy results showed that the Stern-Volmer quenching constant K(SV) of SPT on PPA, bimolecular quenching constant k(q), and apparent static quenching constant K were 2639.5 M(-1), 2.6395 × 10(11) M(-1) s(-1), and 495.19 M(-1), respectively. In addition, binding constant KA and number of binding sites were 872.971 M(-1) and 1, respectively. Circular dichroism study revealed that PPA conformation was altered by SPT with a major reduction of β-sheet, increase of β-turn, minor change of random coil. UV spectra indicated that SPT influenced the micro-environment of aromatic amino acid residues in PPA. These findings directly elucidate the mechanisms of high molecular weight SPT in interaction with PPA. PMID:25529683

  15. Structures of monomeric, dimeric and trimeric PCNA: PCNA-ring assembly and opening

    SciTech Connect

    Hlinkova, V.; Xing, G.; Bauer, J.; Shin, Y.J.; Dionne, I.; Rajashankar, K.R.; Bell, S.D.; Ling, H.

    2008-08-15

    DNA sliding clamps form an oligomeric ring encircling DNA and serve as a moving platform for DNA-processing proteins. The opening and closing of a sliding-clamp ring is essential to load the clamp onto DNA in order to perform its functions. The molecular details of how clamp rings open and enclose DNA are still not clear. Three PCNA homologues have been found in Sulfolobus solfataricus which form a heterotrimer. Taking advantage of their hetero-oligomeric nature, the structures of the PCNAs in monomeric PCNA3, dimeric PCNA1-PCNA2 and trimeric PCNA1-PCNA2-PCNA3 forms were determined at resolutions of 2.6-1.9 {angstrom}. The distinct oligomeric structures represent different stages in ring formation, which were verified in solution by ultracentrifugation analysis. The heterodimer opens in a V-shape of 130{sup o}, while the heterotrimers form a ring with a 120{sup o} rotation between monomers. The association of a rigid PCNA3 monomer with an opened PCNA1-PCNA2 heterodimer closes the ring and introduces a spring tension in the PCNA1-PCNA2 interface, thus bending the nine-stranded intermolecular {beta}-sheet to fit the 120{sup o} rotation. The release of the spring tension as PCNA3 dissociates from the ring may facilitate ring opening. The structural features in different assemblies present a molecular model for clamp ring assembly and opening.

  16. Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants

    SciTech Connect

    Connelly, J.P.; Mueller, G.M.; Hucke, M.; Gatzen, G.; Holzwarth, A.R.; Mullineaux, C.W.; Ruban, A.V.; Horton, P.

    1997-03-06

    Time-resolved femtosecond transient absorption measurements have been carried out at room temperature on light-harvesting chlorophyll a/b protein complex of photosystem II (LHC II) trimers prepared from spinach. Exciting in the chlorophyll (Chl) b region at 650 nm with very low intensity, virtually annihilation-free two-color transient absorption measurement of the kinetics over 100 ps, between 645 and 690 nm, yield global lifetimes of 175 fs, 625 fs, and 5 ps and a long component (>=790 ps) where the three fastest lifetimes reflect Chl b to Chl a energy transfer. On the basis of these results and recent electron diffraction structural data, a preliminary three-pool Ch a, three-pool Chl b kinetic model is proposed. The possible influence of variable xanthophyll composition on quenching in LHC II preparations isolated from light- and dark-adapted leaves has been investigated using time-resolved picosecond fluorescence at room temperature. Global lifetimes of 5 ps and 3.6 ns, the lifetimes of the terminal LHC II excited state, were obtained. No discernable quenching effect due to the presence of zeaxanthin was observed. 38 refs., 6 figs., 3 tabs.

  17. Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin

    PubMed Central

    Leyme, Anthony; Marivin, Arthur; Perez-Gutierrez, Lorena; Nguyen, Lien T.

    2015-01-01

    Signal transduction via integrins and G protein–coupled receptors is critical to control cell behavior. These two receptor classes have been traditionally believed to trigger distinct and independent signaling cascades in response to extracellular cues. Here, we report a novel mechanism of integrin signaling that requires activation of the trimeric G protein Gαi by the nonreceptor guanine nucleotide exchange factor (GEF) GIV (also known as Girdin), a metastasis-associated protein. We demonstrate that GIV enhances integrin-dependent cell responses upon extracellular matrix stimulation and makes tumor cells more invasive. These responses include remodeling of the actin cytoskeleton and PI3K-dependent signaling, resulting in enhanced haptotaxis and invasion. We show that both GIV and its substrate Gαi3 are recruited to active integrin complexes and that tumor cells engineered to express GEF-deficient GIV fail to transduce integrin signals into proinvasive responses via a Gβγ-PI3K axis. Our discoveries delineate a novel mechanism by which integrin signaling is rewired during metastasis to result in increased tumor invasiveness. PMID:26391662

  18. Gas-chromatographic determination of 1,3-butadiene trimers in the atmosphere

    SciTech Connect

    Drugov, Yu.S.; Murav`eva, G.V.; Shlyakhov, A.F.

    1992-02-10

    In the catalytic polymerization of 1,3-butadiene during the manufacture of SKD-1 rubber (with titanium and aluminum compounds as catalysts) the toxic oligomers (1,3-butadiene trimers) t,t,t-1, 5,9-cyclododecatriene (I), t,t,c-1, 5,9-cyclododecatriene (II), n-2,4,6,10-dodecatetraene (III), n-1,3,6,10-dodecatertraine (IV), and others end up in the atmosphere and the manufacture of cyclododecane. In the content of the oligomers in the air used for drying the rubber was determined by passing it through active carbon and desorbing the trapped substances with water vapor. However, aspects of the concentration of the microimpurities during their determination in the atmosphere were not considered. The aim of the present work was to develop a gas-chromatographic procedure for the determination of small amounts of compounds in the atmosphere. The tentative safe level amounts to 0.008 mg/m{sup 3} for (I) and 0.01 mg/m{sup 3} for (II, III). In air these oligomers are present in the form of vapor and aerosols. 7 refs., 3 figs., 4 tabs.

  19. Quantum Dynamics through Conical Intersections in Heteronuclear Alkali-Metal Trimers

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander; Makrides, Constantinos; Kotochigova, Svetlana

    2016-05-01

    Multi-particle potential surfaces have a number of characteristics that are absent from the more familiar two-body potentials of their constituents. Specifically in the case of triatomic alkali systems, the lowest two doublet surfaces are degenerate at specific locations commonly known as conical intersections. The collection of these points of intersection form a ``seam'' that trace out a line in nuclear space. As the complex propagates along the reaction path, the degeneracy at the seam allows for a radiationless transition between the surfaces. Here we analyze the lower two doublet states of the KRbK trimer. First, we map out the seam of intersections throughout the nuclear space and determine branching vectors that provide an accurate description of spatial derivative couplings in the vicinity of conical intersections and characterize the subsequent dynamics in the immediate region. We also revisit classical simulations of the nuclear motion on multiple surfaces and investigate how chaotic motion on the complex surfaces affect the reaction in the ultracold domain. This work is supported by the ARO-MURI and NSF grants.

  20. Clustering of OB-fold domains of the partner protease complexed with trimeric stomatin from Thermococcales.

    PubMed

    Yokoyama, Hideshi; Matsui, Eriko; Hiramoto, Kana; Forterre, Patrick; Matsui, Ikuo

    2013-07-01

    The C-terminal soluble domain of stomatin operon partner protein (STOPP) of the hyperthermophilic archaeon Pyrococcus horikoshii has an oligonucleotide binding-fold (OB-fold). STOPP lacks the conserved surface residues necessary for binding to DNA/RNA. A tryptophan (W) residue is conserved instead at the molecular surface. Solvent-accessible W residues are often found at interfaces of protein-protein complexes, which suggested the possibility of self-assembling of STOPP. Protein-protein interactions among the C-terminal soluble domains of STOPP PH1510 (1510-C) were then analyzed by chemical linking and blue native polyacrylamide gel electrophoresis (BN-PAGE) methods. These results suggest that the soluble domains of STOPP could assemble into homo-oligomers. Since hexameric subcomplex I from archaeal proteasome consists of coiled-coil segments and OB-fold domains, molecular modeling of 1510-C was performed using hexameric subcomplex I as a template. Although 1510-C is a comparatively small polypeptide consisting of approximately 60 residues, numerous salt bridges and hydrophobic interactions were observed in the predicted hexamer of 1510-C, suggesting the stability of the homo-oligomeric structure. This oligomeric property of STOPP may be favorable for triplicate proteolysis of the trimer of prokaryotic stomatin. PMID:23587725

  1. Crystal Structure of Escherichia coli-Expressed Haloarcula marismortui Bacteriorhodopsin I in the Trimeric Form

    PubMed Central

    Round, Ekaterina; Borshchevskiy, Valentin; Utrobin, Petr; Popov, Alexander; Balandin, Taras; Büldt, Georg; Gordeliy, Valentin

    2014-01-01

    Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein's fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies. PMID:25479443

  2. The halogen atom/metal trimer CW laser-engineering concept overview

    NASA Astrophysics Data System (ADS)

    Emanuel, G.; Jacobs, T. A.

    1992-07-01

    A halogen atom/metal vapor laser is discussed in terms of CW power and performance. Fluorine and sodium represent surrogates for the halogen and metal species; other combinations are possible. Since lasing may occur from a variety of excited electronic states, operation is expected to be broadly dispersed over the visible and near UV wavelength regions. The device is a low pressure, supersonic mixing laser that resembles the HF/DF CW laser, e.g., separate plenums are utilized for the fluorine and sodium vapors, and each plenum feeds a nozzle array. Sodium trimer formation begins in the nozzle and continues inside the laser cavity. The design of this nozzle is particularly important; the concept of controlled condensation is introduced. Downstream of the nozzle bank, the two vapor streams mix and the F-Na3 reaction pumps several electronically excited states that have gain in the blue-green region. Estimates are given for power per unit mass flow rate and power per unit nozzle bank cross-sectional area.

  3. Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation.

    PubMed

    Coleman, Brantley D; Marivin, Arthur; Parag-Sharma, Kshitij; DiGiacomo, Vincent; Kim, Seongseop; Pepper, Judy S; Casler, Jason; Nguyen, Lien T; Koelle, Michael R; Garcia-Marcos, Mikel

    2016-03-01

    Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA-G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans. PMID:26659249

  4. Trimeric Form of Intracellular ATP Synthase Subunit β of Aggregatibacter actinomycetemcomitans Binds Human Interleukin-1β

    PubMed Central

    Paino, Annamari; Tuominen, Heidi; Jääskeläinen, Mari; Alanko, Jonna; Nuutila, Jari; Asikainen, Sirkka E.; Pelliniemi, Lauri J.; Pöllänen, Marja T.; Chen, Casey; Ihalin, Riikka

    2011-01-01

    Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation. PMID:21533109

  5. Interactions of cationic trimeric, gemini and monomeric surfactants with trianionic curcumin in aqueous solution.

    PubMed

    Wang, Meina; Wu, Chunxian; Tang, Yongqiang; Fan, Yaxun; Han, Yuchun; Wang, Yilin

    2014-05-21

    Interactions of trianionic curcumin (Cur(3-)) with a series of cationic surfactants, monomeric surfactant dodecyl trimethylammonium bromide (DTAB), dimeric surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD), have been investigated in aqueous solution of pH 13.0. Surface tension and spectral measurements indicate that the cationic surfactants display a similar surfactant concentration dependent interaction process with Cur(3-), involving three interaction stages. At first the three cationic surfactants electrostatically bind on Cur(3-) to form the surfactant-Cur(3-) complex. Then the bound and unbound cationic surfactants with Cur(3-) aggregate into surfactant-Cur(3-) mixed micelles through hydrophobic interactions above the critical micelle concentration of the surfactants (CMCC) in the presence of Cur(3-). Finally excess unbound surfactants self-assemble into micelles like those without Cur(3-). For all the three surfactants, the addition of Cur(3-) only decreases the critical micelle concentration of 12-6-12 but does not affect the critical micelle concentration of DTAB and DTAD. As the oligomeric degree of surfactants increases, the intermolecular interaction of the cationic surfactants with Cur(3-) increases and the surfactant amount needed for Cur(3-) encapsulation decreases. Compared with 12-6-12, either the weaker interaction of DTAB with Cur(3-) or stronger interaction of DTAD with Cur(3-) limits the stability or solubility of Cur(3-) in surfactant micelles. Therefore, gemini surfactant 12-6-12 is the best choice to effectively suppress Cur(3-) degradation at very low concentrations. Isothermal titration microcalorimetry, surface tension and (1)H NMR results reveal that 12-6-12 and Cur(3-) form a (12-6-12)2-Cur(3-) complex and start to form micelles at extremely decreased concentrations, where either 12-6-12 or Cur(3-) works as a bridge

  6. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier

    PubMed Central

    Miller, Keith D.; Roque, Richard; Clegg, Christopher H.

    2014-01-01

    Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH), we have synthesized a short trimeric coiled-coil peptide (TCC) that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg) from reaching the brain. PMID:25494044

  7. Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity.

    PubMed

    Ahmad, Shabbir; Thulasingam, Madhuranayaki; Palombo, Isolde; Daley, Daniel O; Johnson, Kenneth A; Morgenstern, Ralf; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2015-10-01

    Human microsomal glutathione transferase 2 (MGST2) is a trimeric integral membrane protein that belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family. The mammalian MAPEG family consists of six members where four have been structurally determined. MGST2 activates glutathione to form a thiolate that is crucial for GSH peroxidase activity and GSH conjugation reactions with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB). Several studies have shown that MGST2 is able to catalyze a GSH conjugation reaction with the epoxide LTA4 forming the pro-inflammatory LTC4. Unlike its closest homologue leukotriene C4 synthase (LTC4S), MGST2 appears to activate its substrate GSH using only one of the three potential active sites [Ahmad S, et al. (2013) Biochemistry. 52, 1755-1764]. In order to demonstrate and detail the mechanism of one-third of the sites reactivity of MGST2, we have determined the enzyme oligomeric state, by Blue native PAGE and Differential Scanning Calorimetry, as well as the stoichiometry of substrate and substrate analog inhibitor binding to MGST2, using equilibrium dialysis and Isothermal Titration Calorimetry, respectively. Global simulations were used to fit kinetic data to determine the catalytic mechanism of MGST2 with GSH and CDNB (1-chloro-2,4-dinitrobenzene) as substrates. The best fit was observed with 1/3 of the sites catalysis as compared with a simulation where all three sites were active. In contrast to LTC4S, MGST2 displays a 1/3 the sites reactivity, a mechanism shared with the more distant family member MGST1 and recently suggested also for microsomal prostaglandin E synthase-1.

  8. Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation

    PubMed Central

    Coleman, Brantley D.; Marivin, Arthur; Parag-Sharma, Kshitij; DiGiacomo, Vincent; Kim, Seongseop; Pepper, Judy S.; Casler, Jason; Nguyen, Lien T.; Koelle, Michael R.; Garcia-Marcos, Mikel

    2016-01-01

    Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA–G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans. PMID:26659249

  9. Structure of a eukaryotic SWEET transporter in a homo-trimeric complex

    PubMed Central

    Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B.; Feng, Liang

    2016-01-01

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use related proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter Family (SSF; only animal kingdom), and SWEETs1-5. SWEETs carry mono- and disaccharides6 across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion7, phloem loading for long distance translocation8, pollen nutrition9, and seed filling10. Plant SWEETs cause pathogen susceptibility by sugar leakage from infected cells3,11,12. The vacuolar AtSWEET2 sequesters sugars in root vacuoles; loss-of-function increases susceptibility to Pythium infection13. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice, consists of an asymmetrical pair of triple-helix-bundles (THBs), connected by an inversion linker helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first THB within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs is valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux. PMID:26479032

  10. Human Immunodeficiency Virus Type 1 Env Trimer Immunization of Macaques and Impact of Priming with Viral Vector or Stabilized Core Protein▿ †

    PubMed Central

    Mörner, Andreas; Douagi, Iyadh; Forsell, Mattias N. E.; Sundling, Christopher; Dosenovic, Pia; O'Dell, Sijy; Dey, Barna; Kwong, Peter D.; Voss, Gerald; Thorstensson, Rigmor; Mascola, John R.; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2009-01-01

    Currently there is limited information about the quality of immune responses elicited by candidate human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-based immunogens in primates. Here we describe a comprehensive analysis of neutralizing antibody and T-cell responses obtained in cynomolgus macaques by three selected immunization regimens. We used the previously described YU2-based gp140 protein trimers administered in an adjuvant, preceded by two distinct priming strategies: either alphavirus replicon particles expressing matched gp140 trimers or gp120 core proteins stabilized in the CD4-bound conformation. The rationale for priming with replicon particles was to evaluate the impact of the expression platform on trimer immunogenicity. The stable core proteins were chosen in an attempt to expand selectively lymphocytes recognizing common determinants between the core and trimers to broaden the immune response. The results presented here demonstrate that the platform by which Env trimers were delivered in the priming (either protein or replicon vector) had little impact on the overall immune response. In contrast, priming with stable core proteins followed by a trimer boost strikingly focused the T-cell response on the core sequences of HIV-1 Env. The specificity of the T-cell response was distinctly different from that of the responses obtained in animals immunized with trimers alone and was shown to be mediated by CD4+ T cells. However, this regimen showed limited or no improvement in the neutralizing antibody responses, suggesting that further immunogen design efforts are required to successfully focus the B-cell response on conserved neutralizing determinants of HIV-1 Env. PMID:19004960

  11. Insights into the Conformation of the Membrane Proximal Regions Critical to the Trimerization of the HIV-1 gp41 Ectodomain Bound to Dodecyl Phosphocholine Micelles.

    PubMed

    Louis, John M; Baber, James L; Ghirlando, Rodolfo; Aniana, Annie; Bax, Ad; Roche, Julien

    2016-01-01

    The transitioning of the ectodomain of gp41 from a pre-hairpin to a six-helix bundle conformation is a crucial aspect of virus-cell fusion. To gain insight into the intermediary steps of the fusion process we have studied the pH and dodecyl phosphocholine (DPC) micelle dependent trimer association of gp41 by systematic deletion analysis of an optimized construct termed 17-172 (residues 528 to 683 of Env) that spans the fusion peptide proximal region (FPPR) to the membrane proximal external region (MPER) of gp41, by sedimentation velocity and double electron-electron resonance (DEER) EPR spectroscopy. Trimerization at pH 7 requires the presence of both the FPPR and MPER regions. However, at pH 4, the protein completely dissociates to monomers. DEER measurements reveal a partial fraying of the C-terminal MPER residues in the 17-172 trimer while the other regions, including the FPPR, remain compact. In accordance, truncating nine C-terminal MPER residues (675-683) in the 17-172 construct does not shift the trimer-monomer equilibrium significantly. Thus, in the context of the gp41 ectodomain spanning residues 17-172, trimerization is clearly dependent on FPPR and MPER regions even when the terminal residues of MPER unravel. The antibody Z13e1, which spans both the 2F5 and 4E10 epitopes in MPER, binds to 17-172 with a Kd of 1 ± 0.12 μM. Accordingly, individual antibodies 2F5 and 4E10 also recognize the 17-172 trimer/DPC complex. We propose that binding of the C-terminal residues of MPER to the surface of the DPC micelles models a correct positioning of the trimeric transmembrane domain anchored in the viral membrane. PMID:27513582

  12. Insights into the Conformation of the Membrane Proximal Regions Critical to the Trimerization of the HIV-1 gp41 Ectodomain Bound to Dodecyl Phosphocholine Micelles

    PubMed Central

    Louis, John M.; Baber, James L.; Ghirlando, Rodolfo; Aniana, Annie; Bax, Ad; Roche, Julien

    2016-01-01

    The transitioning of the ectodomain of gp41 from a pre-hairpin to a six-helix bundle conformation is a crucial aspect of virus-cell fusion. To gain insight into the intermediary steps of the fusion process we have studied the pH and dodecyl phosphocholine (DPC) micelle dependent trimer association of gp41 by systematic deletion analysis of an optimized construct termed 17–172 (residues 528 to 683 of Env) that spans the fusion peptide proximal region (FPPR) to the membrane proximal external region (MPER) of gp41, by sedimentation velocity and double electron-electron resonance (DEER) EPR spectroscopy. Trimerization at pH 7 requires the presence of both the FPPR and MPER regions. However, at pH 4, the protein completely dissociates to monomers. DEER measurements reveal a partial fraying of the C-terminal MPER residues in the 17–172 trimer while the other regions, including the FPPR, remain compact. In accordance, truncating nine C-terminal MPER residues (675–683) in the 17–172 construct does not shift the trimer-monomer equilibrium significantly. Thus, in the context of the gp41 ectodomain spanning residues 17–172, trimerization is clearly dependent on FPPR and MPER regions even when the terminal residues of MPER unravel. The antibody Z13e1, which spans both the 2F5 and 4E10 epitopes in MPER, binds to 17–172 with a Kd of 1 ± 0.12 μM. Accordingly, individual antibodies 2F5 and 4E10 also recognize the 17–172 trimer/DPC complex. We propose that binding of the C-terminal residues of MPER to the surface of the DPC micelles models a correct positioning of the trimeric transmembrane domain anchored in the viral membrane. PMID:27513582

  13. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120

    SciTech Connect

    Beddows, Simon; Franti, Michael; Dey, Antu K.; Kirschner, Marc; Iyer, Sai Prasad N.; Fisch, Danielle C.; Ketas, Thomas; Yuste, Eloisa; Desrosiers, Ronald C.; Klasse, Per Johan; Maddon, Paul J.; Olson, William C.; Moore, John P. . E-mail: jpm2003@med.cornell.edu

    2007-04-10

    The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1{sub JR-FL}. Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140{sub UNC}), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1{sub JR-FL}. All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1{sub JR-FL} were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes.

  14. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters.

    PubMed

    Dreier, Birgit; Honegger, Annemarie; Hess, Christian; Nagy-Davidescu, Gabriela; Mittl, Peer R E; Grütter, Markus G; Belousova, Natalya; Mikheeva, Galina; Krasnykh, Victor; Plückthun, Andreas

    2013-03-01

    Adenoviruses (Ads) have shown promise as vectors for gene delivery in clinical trials. Efficient viral targeting to a tissue of choice requires both ablation of the virus' original tropism and engineering of an efficient receptor-mediated uptake by a specific cell population. We have developed a series of adapters binding to the virus with such high affinity that they remain fully bound for >10 d, block its natural receptor binding site and mediate interaction with a surface receptor of choice. The adapter contains two fused modules, both consisting of designed ankyrin repeat proteins (DARPins), one binding to the fiber knob of adenovirus serotype 5 and the other binding to various tumor markers. By solving the crystal structure of the complex of the trimeric knob with three bound DARPins at 1.95-Å resolution, we could use computer modeling to design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from the lambdoid phage 21. We arrived at a module which binds the knob like a trimeric clamp. When this clamp was fused with DARPins of varying specificities, it enabled adenovirus serotype 5-mediated delivery of a transgene in a human epidermal growth factor receptor 2-, epidermal growth factor receptor-, or epithelial cell adhesion molecule-dependent manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With these adapters, efficiently produced in Escherichia coli, Ad can be converted rapidly to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads with different payloads thus can be retargeted readily to many cell types of choice.

  15. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans.

    PubMed

    Abarca, Fernando; Gutierrez-Maldonado, Sebastian E; Parada, Pilar; Martinez, Patricio; Maass, Alejandro; Perez-Acle, Tomas

    2014-01-01

    Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm "Rosetta Fold-and-Dock". To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic's secondary and tertiary structure.

  16. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    PubMed Central

    Abarca, Fernando; Gutierrez-Maldonado, Sebastian E.; Parada, Pilar; Martinez, Patricio; Maass, Alejandro

    2014-01-01

    Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure. PMID:25165619

  17. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans.

    PubMed

    Abarca, Fernando; Gutierrez-Maldonado, Sebastian E; Parada, Pilar; Martinez, Patricio; Maass, Alejandro; Perez-Acle, Tomas

    2014-01-01

    Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm "Rosetta Fold-and-Dock". To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic's secondary and tertiary structure. PMID:25165619

  18. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers

    PubMed Central

    Blattner, Claudia; Lee, Jeong Hyun; Sliepen, Kwinten; Derking, Ronald; Falkowska, Emilia; de la Peña, Alba Torrents; Cupo, Albert; Julien, Jean-Philippe; van Gils, Marit; Lee, Peter S.; Peng, Wenjie; Paulson, James C.; Poignard, Pascal; Burton, Dennis R.; Moore, John P.; Sanders, Rogier W.

    2014-01-01

    Summary All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. As PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer. PMID:24768348

  19. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    PubMed Central

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E.; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I.; Quigley, James P.; Moestrup, Søren K.; Rudd, Pauline M.; Sagi, Irit; Opdenakker, Ghislain

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers, and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical, and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast to a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM), we generated a 3Dstructure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers versus monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1. PMID:25360794

  20. Light-harvesting chlorophyll a/b-binding protein inserted into isolated thylakoids binds pigments and is assembled into trimeric light-harvesting complex.

    PubMed Central

    Kuttkat, A; Grimm, R; Paulsen, H

    1995-01-01

    The light-harvesting chlorophyll a/b-binding protein (LHCP) is largely protected against protease (except for about 1 kD on the N terminus) in the thylakoid membrane; this protease resistance is often used to assay successful insertion of LHCP into isolated thylakoids in vitro. In this paper we show that this protease resistance is exhibited by trimeric light-harvesting complex of photosystem II (LHCII) but not by monomeric LHCII in which about 5 kD on the N terminus of LHCP are cleaved off by protease. When a mutant version of LHCP that is unable to trimerize in an in vitro reconstitution assay is inserted into isolated thylakoids, it gives rise to only the shorter protease digestion product indicative of monomeric LHCII. We conclude that more of the N-terminal domain of LHCP is shielded in trimeric than in monomeric LHCII and that this difference in protease sensitivity can be used to distinguish between LHCP assembled in LHCII monomers or trimers. The data presented prove that upon insertion of LHCP into isolated thylakoids at least part of the protein spontaneously binds pigments to form LHCII, which then is assembled in trimers. The dependence of the protease sensitivity of thylakoid-inserted LHCP on the oligomerization state of the newly formed LHCII justifies caution when using a protease assay to verify successful insertion of LHCP into the membrane. PMID:8539291

  1. Plaquette-triplon analysis of magnetic disorder and order in a trimerized spin-1 kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratyay; Verma, Akhilesh Kumar; Kumar, Brijesh

    2016-01-01

    A spin-1 Heisenberg model on trimerized kagome lattice is studied by doing a low-energy bosonic theory in terms of plaquette triplons defined on its triangular unit cells. The model considered has an intratriangle antiferromagnetic exchange interaction J (set to 1) and two intertriangle couplings J'>0 (nearest neighbor) and J″ (next nearest neighbor; of both signs). The triplon analysis performed on this model investigates the stability of the trimerized singlet ground state (which is exact in the absence of intertriangle couplings) in the J'-J″ plane. It gives a quantum phase diagram that has two gapless antiferromagnetically ordered phases separated by the spin-gapped trimerized singlet phase. The trimerized singlet ground state is found to be stable on J″=0 line (the nearest-neighbor case), and on both sides of it for J″≠0 , in an extended region bounded by the critical lines of transition to the gapless antiferromagnetic phases. The gapless phase in the negative J″ region has a coplanar 120∘ antiferromagnetic order with √{3 }×√{3 } structure. In this phase, all the magnetic moments are of equal length, and the angle between any two of them on a triangle is exactly 120∘. The magnetic lattice in this case has a unit cell consisting of three triangles. The other gapless phase, in the positive J″ region, is found to exhibit a different coplanar antiferromagnetic order with ordering wave vector q =(0 ,0 ) . Here, two magnetic moments in a triangle are of the same magnitude, but shorter than the third. While the angle between two short moments is 120∘-2 δ , it is 120∘+δ between a short and the long one. Only when J″=J' , their magnitudes become equal and the relative angles 120∘. The magnetic lattice in this q =(0 ,0 ) phase has the translational symmetry of the kagome lattice with triangular unit cells of reduced (isosceles) symmetry. This reduction in the point-group symmetry is found to show up as a difference in the intensities of

  2. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase.

    PubMed Central

    Knapp, J. E.; Carroll, D.; Lawson, J. E.; Ernst, S. R.; Reed, L. J.; Hackert, M. L.

    2000-01-01

    The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o. PMID:10739245

  3. Density-functional geometry optimization of the 150 000-atom photosystem-I trimer

    NASA Astrophysics Data System (ADS)

    Canfield, Peter; Dahlbom, Mats G.; Hush, Noel S.; Reimers, Jeffrey R.

    2006-01-01

    We present a linear-scaling method based on the use of density-functional theory (DFT) for the system-wide optimization of x-ray structural coordinates and apply it to optimize the 150 000 atoms of the photosystem-I (PS-I) trimer. The method is based on repetitive applications of a multilevel ONIOM procedure using the PW91/6-31G(d ) DFT calculations for the high level and PM3 for the lower level; this method treats all atoms in the structure equivalently, a structure in which the majority of the atoms can be considered as part of some internal "active site." To obtain a realistic single structure, some changes to the original protein model were necessary but these are kept to a minimum in order that the optimized structure most closely resembles the original x-ray one. Optimization has profound effects on the perceived electronic properties of the cofactors, with, e.g., optimization lowering the internal energy of the chlorophylls by on average 53kcalmol-1 and eliminates the enormous 115kcalmol-1 energy spread depicted by the original x-ray heavy-atom coordinates. A highly precise structure for PS-I results that is suitable for analysis of device function. Significant qualitative features of the structure are also improved such as correction of an error in the stereochemistry of one of the chlorophylls in the "special pair" of the reaction center, as well as the replacement of a water molecule with a metal cation in a critical region on the C3 axis. The method also reveals other unusual features of the structure, leading both to suggestions concerning device functionality and possible mutations between gene sequencing and x-ray structure determination. The optimization scheme is thus shown to augment the molecular modeling schemes that are currently used to add medium-resolution structural information to the raw scattering data in order to obtain atomically resolved structures. System-wide optimization is now a feasible process and its use within protein x-ray data

  4. Synthesis and structures of niobium(V) complexes stabilized by linear-linked aryloxide trimers.

    PubMed

    Matsuo, Tsukasa; Kawaguchi, Hiroyuki

    2002-11-18

    The preparation and characterization of a series of niobium(V) complexes that incorporate the linear-linked aryloxide trimers 2,6-bis(4,6-dimethylsalicyl)-4-tert-butylphenol [H3(Me-L)] and 2,6-bis(4-methyl-6-tert-butylsalicyl)-4-tert-butylphenol [H3(tBu-L)] are described. The chloride complex [Nb(Me-L)Cl2]2 (1) was prepared in high yield by reaction of NbCl5 with H3(Me-L) in toluene. In contrast, the analogous reaction with H3(tBu-L) gave a mixture of [Nb(tBu-L)Cl2]2 (2) and [Nb(de-tBu-L)Cl2]2 (3a). During the formation of 3a, one of tert-butyl groups at the ortho position in the tBu-L ligand was lost. When the NbCl5/H3(tBu-L) reaction was carried out in acetonitrile, Nb[H(tBu-L)]Cl3(NCMe) (4) was obtained. Heating a solution of 4 in toluene generated 2 and 3a. The isolated complex 4 underwent ligand redistribution in acetonitrile to produce Nb[H(tBu-L)]2Cl(NCMe) (5). Treatment of NbCl5 with Li3(tBu-L) in toluene afforded 2. The chloride ligands in 1 and 2 smoothly reacted with 4 equiv of MeMgI and LiStBu, resulting in [Nb(R-L)Me2]2 [R = Me (6), tBu (7)] and Nb(Me-L)(StBu)2 (8), respectively. A number of the above complexes have been characterized by X-ray crystallography. In the structures of 1, 2, and 6, the R-L ligand is bound to the metal center with a U-coordination mode, while an alternative S-conformation is adopted for 3a and 8. Complexes 4 and 5 contain a bidentate H(tBu-L) diphenoxide-monophenol ligand. PMID:12425637

  5. An N-terminal extension to the hepatitis B virus core protein forms a poorly ordered trimeric spike in assembled virus-like particles.

    PubMed

    McGonigle, Richard; Yap, Wei Boon; Ong, Swee Tin; Gatherer, Derek; Bakker, Saskia E; Tan, Wen Siang; Bhella, David

    2015-02-01

    Virus-like particles composed of the core antigen of hepatitis B virus (HBcAg) have been shown to be an effective platform for the display of foreign epitopes in vaccine development. Heterologous sequences have been successfully inserted at both amino and carboxy termini as well as internally at the major immunodominant epitope. We used cryogenic electron microscopy (CryoEM) and three-dimensional image reconstruction to investigate the structure of VLPs assembled from an N-terminal extended HBcAg that contained a polyhistidine tag. The insert was seen to form a trimeric spike on the capsid surface that was poorly resolved, most likely owing to it being flexible. We hypothesise that the capacity of N-terminal inserts to form trimers may have application in the development of multivalent vaccines to trimeric antigens. Our analysis also highlights the value of tools for local resolution assessment in studies of partially disordered macromolecular assemblies by cryoEM.

  6. Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? Simulation studies.

    PubMed

    Niramitranon, Jitti; Sansom, Mark S P; Pongprayoon, Prapasiri

    2016-04-01

    Porins are water-filled protein channels across the outer membrane of gram-negative bacteria. They facilitate the uptake of nutrients and essential ions. Solutes are filtered by a constriction loop L3 at the mid of a pore. Porins are heat-stable and resistant to toxic agents and detergents. Most porins are trimer, but no clear explanation why trimeric form is preferable. In this work, we thus studied effects of oligomerization on porin structure and function in microscopic detail. A well-studied OmpF (general porin from Escherichia coli) and well-characterised OprP (phosphate-specific pore from Pseudomonas aeruginosa) are used as samples from 2 types of porins found in gram-negative bacteria. MD simulations of trimeric and monomeric pores in pure water and 1M NaCl solution were performed. With a salt solution, the external electric field was applied to mimic a transmembrane potential. Expectedly, OprP is more stable than OmpF. Interestingly, being a monomer turns OmpF into an anion-selective pore. The dislocation of D113's side chain on L3 in OmpF causes the disruption of cation pathway resulting in the reduction of cation influx. In contrast, OprP's structure and function are less dependent on oligomeric states. Both monomeric and trimeric OprP can maintain their anion selectivity. Our findings suggest that trimerization is crucial for both structure and function of general porin OmpF, whereas being trimer in substrate-specific channel OprP supports a pore function.

  7. Venturing into the kinetics and mechanism of nanoconfined solid-state reactions: Trimerization of sodium dicyanamide in nanopores

    NASA Astrophysics Data System (ADS)

    Yancey, Benjamin; Vyazovkin, Sergey

    2014-03-01

    This study represents the first attempt to determine the effect of nanoconfinement on the kinetics and mechanism of solid-state reactions. FTIR, NMR, and DSC were employed to analyze the thermally initiated trimerization of sodium dicyanamide (NaC2N3) to sodium tricyanomelaminate (Na3C6N9) in bulk and organically modified nanopores. The trimerization occurred at a decelerated rate as evidenced by an increase in reaction temperature as measured by DSC. Nanoconfinement did not cause apparent changes in the reaction mechanism as the products of the reaction were the same in bulk and in nanopores. Kinetic analysis linked the deceleration to a dramatic decrease (several orders of magnitude) in the pre-exponential factor. This effect is especially significant in view of previous studies on nanoconfined liquid state reactions in which the effect is opposite: considerable acceleration due to an increase in the pre-exponential factor. We propose that the difference arises respectively from disordering of the solid and ordering of the liquid reaction media. Funding provided by the NSF under grant CHE 1052828. Ultrapure silica gel was provided by Silicycle Inc (Quebec City, Canada)

  8. H2O-mediated trimerization of H2SO4: A computational study and comparison with experimental data

    NASA Astrophysics Data System (ADS)

    Nadykto, A. B.; Nazarenko, K. M.; Jakovleva, M. V.; Uvarova, L. A.; Yu, F.

    2016-06-01

    In the present paper, the formation of stable hydrated (H2SO4)3(H2O)n clusters has been studied using the Density Functional Theory (DFT) at PW91PW91/6-311++(3df,3pd) level. We have found that the hydration of H2SO4 trimers is stronger than that of H2SO4 dimers and tends to decrease at large hydration numbers. We have shown that the affinity of H2SO4 to (H2SO4)2(H2O)n is much higher than that H2SO4 to (H2SO4) (H2O)n. We have compared the equilibrium constants of H2O-mediated trimerization of H2SO4 obtained using PW91PW91/6-311++(3df,3pd) method with experimental data and found that theory and experimentation are in good agreement. The new thermochemical data can be used in a wide range of nucleation studies and can be utilized for the development of quantum-based models of nucleation rates.

  9. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites*

    PubMed Central

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; Cort, John R.; Davin, Laurence B.; Lewis, Norman G.

    2015-01-01

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (−)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition. PMID:25411250

  10. Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres.

    PubMed

    Uchida, Takako; Yoshikawa, Takayasu; Tamura, Mamoru; Iida, Takuya; Imura, Kohei

    2016-09-15

    Optical properties of a gold nanoparticle trimer assembly coupled with gold-coated hexagonally close-packed polystyrene microspheres were investigated by linear and nonlinear spectroscopy. The observed reflection spectrum shows multiple peaks from the visible to near-infrared spectral regions. The spectroscopic properties were also examined by a finite-difference time-domain simulation. We found that the optical response of plasmons excited in the gold nanoparticle trimers was significantly modulated by strong coupling of the plasmons and the photonic mode induced in the gold-coated polystyrene assembly. Two-photon induced photoluminescence and Raman scattering from the sample were investigated, and both signals were significantly enhanced at the gold nanoparticle assembly. The simulations reveal that the electric fields can be enhanced site-selectively, not only at the interstitial sites in the nanoparticle assembly but also at the gaps between the particle and the gold film due to plasmonic interactions, by tuning the wavelength and are responsible for the strong optical responses.

  11. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites

    DOE PAGES

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; Cort, John R.; Davin, Laurence B.; Lewis, Norman G.

    2014-11-19

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcoholmore » radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (₋)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. We find DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.« less

  12. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites

    SciTech Connect

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; Cort, John R.; Davin, Laurence B.; Lewis, Norman G.

    2014-11-19

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (₋)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. We find DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.

  13. Magnetic Ordering of Antiferromagnetic Trimer System 2b·3CuCl2·2H2O

    NASA Astrophysics Data System (ADS)

    Sanda, M.; Kubo, K.; Asano, T.; Morodomi, H.; Inagaki, Y.; Kawae, T.; Wang, J.; Matsuo, A.; Kindo, K.; Sato, T. J.

    2012-12-01

    In this paper, we present the magnetic properties of 2b·3CuCl2·2H2O (b = betaine, C5H11NO2). 2b·3CuCl2·2H2O is the first model substance for a two-dimensional S = 1/2 orthogonal antiferromagnetic trimer system. We have performed magnetic susceptibility, magnetization curve, and specific heat under extreme conditions: low temperatures and high magnetic fields in this system. The experimental results indicate that this substance is a magnetically S = 1/2 antiferromagnetic trimer system. The magnetization also shows one-third of the saturation value (MS ~ 3.2μB/f.u.) between 5 and 14T The specific heat in a zero field shows a sharp peak at 1.38K corresponding to a long-range magnetic ordering, TN. As the magnetic field increases, the TN shifts remarkably to a lower temperature and is suppressed. Above 5T, the specific heat has no anomaly down to 150mK In the plateau region with an energy gap, the magnetic ordering seems to be disappeared.

  14. Ab initio and DFT studies on van der Waals trimers: the OCS.(CO2)2 complexes.

    PubMed

    Valdés, H; Sordo, J A

    2002-03-01

    Ab initio calculations [MP2, MP4SDTQ, and QCISD(T)] using different basis sets [6-31G(d,p), cc-pVXZ (X = D, T, Q), and aug-cc-pVDZ] and density functional theory [B3LYP/6-31G(d,p)] calculations were carried out to study the OCS.(CO2)2 van der Waals trimer. The DFT has proved inappropriate to the study of this type of systems where the dispersion forces are expected to play a relevant role. Three minima isomers (two noncyclic and one cyclic) were located and characterized. The most stable isomer exhibits a noncyclic barrel-like structure whose bond lengths, angles, rotational constants, and dipole moment agree quite well with the corresponding experimental values of the only structure observed in recent microwave spectroscopic studies. The energetic proximity of the three isomers, with stabilization energies of 1442, 1371, and 1307 cm-1, respectively, at the CBS-MP2/cc-pVXZ (X = D, T, Q) level, strongly suggests that the two unobserved structures should also be detected as in the case of the (CO2)3 trimer where both noncyclic and cyclic isomers have been reported to exist. The many-body symmetry-adapted perturbation theory is employed to analyze the nature of the interactions leading to the formation of the different structures. The three-body contributions are small and stabilizing for the two most stable structures and almost negligible for the cyclic isomer.

  15. Novel gold nanoparticle trimer reporter probe combined with dry-reagent cotton thread immunoassay device for rapid human ferritin test.

    PubMed

    Mao, Xun; Du, Ting-E; Meng, Lili; Song, Tingting

    2015-08-19

    We reported here for the first time on the use of cotton thread combined with novel gold nanoparticle trimer reporter probe for low-cost, sensitive and rapid detection of a lung cancer related biomarker, human ferritin. A model system comprising ferritin as an analyte and a pair of monoclonal antibodies was used to demonstrate the proof-of-concept on the dry-reagent natural cotton thread immunoassay device. Results indicated that the using of novel gold nanoparticle trimer reporter probe greatly improved the sensitivity comparing with traditional gold nanoparticle reporter probe on the cotton thread immunoassay device. The assay avoids multiple incubation and washing steps performed in most conventional protein analyses. Although qualitative tests are realized by observing the color change of the test zone, quantitative data are obtained by recording the optical responses of the test zone with a commercial scanner and corresponding analysis software. Under optimal conditions, the cotton thread immunoassay device was capable of measuring 10 ng/mL human ferritin under room temperature which is sensitive enough for clinical diagnosis. Moreover, the sample solution employed in the assays is just 8 μL, which is much less than traditional lateral flow strip based biosensors. PMID:26343440

  16. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains.

    PubMed

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIE(XVIII)) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIE(XVIII) trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIE(XVIII) modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  17. Trimeric structure of (+)-pinoresinol-forming dirigent protein at 1.95 Å resolution with three isolated active sites.

    PubMed

    Kim, Kye-Won; Smith, Clyde A; Daily, Michael D; Cort, John R; Davin, Laurence B; Lewis, Norman G

    2015-01-16

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (-)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.

  18. Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres.

    PubMed

    Uchida, Takako; Yoshikawa, Takayasu; Tamura, Mamoru; Iida, Takuya; Imura, Kohei

    2016-09-15

    Optical properties of a gold nanoparticle trimer assembly coupled with gold-coated hexagonally close-packed polystyrene microspheres were investigated by linear and nonlinear spectroscopy. The observed reflection spectrum shows multiple peaks from the visible to near-infrared spectral regions. The spectroscopic properties were also examined by a finite-difference time-domain simulation. We found that the optical response of plasmons excited in the gold nanoparticle trimers was significantly modulated by strong coupling of the plasmons and the photonic mode induced in the gold-coated polystyrene assembly. Two-photon induced photoluminescence and Raman scattering from the sample were investigated, and both signals were significantly enhanced at the gold nanoparticle assembly. The simulations reveal that the electric fields can be enhanced site-selectively, not only at the interstitial sites in the nanoparticle assembly but also at the gaps between the particle and the gold film due to plasmonic interactions, by tuning the wavelength and are responsible for the strong optical responses. PMID:27596630

  19. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

    PubMed Central

    Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M.; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J.; Alvarez-Vallina, Luis

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIEXVIII trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIEXVIII modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490

  20. HIV-1 MATRIX ORGANIZES AS A HEXAMER OF TRIMERS ON MEMBRANES CONTAINING PHOSPHATIDYLINOSITOL-(4,5)-BISPHOSPHATE

    PubMed Central

    Alfadhli, Ayna; Barklis, Robin Lid; Barklis, Eric

    2009-01-01

    The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P2. Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions. PMID:19327811

  1. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS.

    PubMed

    Sriwimol, Wilaiwan; Aroonkesorn, Aratee; Sakdee, Somsri; Kanchanawarin, Chalermpol; Uchihashi, Takayuki; Ando, Toshio; Angsuthanasombat, Chanan

    2015-08-21

    The insecticidal feature of the three-domain Cry δ-endotoxins from Bacillus thuringiensis is generally attributed to their capability to form oligomeric pores, causing lysis of target larval midgut cells. However, the molecular description of their oligomerization process has not been clearly defined. Here a stable prepore of the 65-kDa trypsin-activated Cry4Ba mosquito-specific toxin was established through membrane-mimetic environments by forming an ∼200-kDa octyl-β-D-glucoside micelle-induced trimer. The SDS-resistant trimer caused cytolysis to Sf9 insect cells expressing Aedes-mALP (a Cry4Ba receptor) and was more effective than a toxin monomer in membrane perturbation of calcein-loaded liposomes. A three-dimensional model of toxin trimer obtained by negative-stain EM in combination with single-particle reconstruction at ∼5 nm resolution showed a propeller-shaped structure with 3-fold symmetry. Fitting the three-dimensional reconstructed EM map with a 100-ns molecular dynamics-simulated Cry4Ba structure interacting with an octyl-β-D-glucoside micelle showed relative positioning of individual domains in the context of the trimeric complex with a major protrusion from the pore-forming domain. Moreover, high-speed atomic force microscopy imaging at nanometer resolution and a subsecond frame rate demonstrated conformational transitions from a propeller-like to a globularly shaped trimer upon lipid membrane interactions, implying prepore-to-pore conversion. Real-time trimeric arrangement of monomers associated with L-α-dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid bicelle membranes was also envisaged by successive high-speed atomic force microscopy imaging, depicting interactions among three individual subunits toward trimer formation. Together, our data provide the first pivotal insights into the structural requirement of membrane-induced conformational changes of Cry4Ba toxin monomers for the

  2. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS.

    PubMed

    Sriwimol, Wilaiwan; Aroonkesorn, Aratee; Sakdee, Somsri; Kanchanawarin, Chalermpol; Uchihashi, Takayuki; Ando, Toshio; Angsuthanasombat, Chanan

    2015-08-21

    The insecticidal feature of the three-domain Cry δ-endotoxins from Bacillus thuringiensis is generally attributed to their capability to form oligomeric pores, causing lysis of target larval midgut cells. However, the molecular description of their oligomerization process has not been clearly defined. Here a stable prepore of the 65-kDa trypsin-activated Cry4Ba mosquito-specific toxin was established through membrane-mimetic environments by forming an ∼200-kDa octyl-β-D-glucoside micelle-induced trimer. The SDS-resistant trimer caused cytolysis to Sf9 insect cells expressing Aedes-mALP (a Cry4Ba receptor) and was more effective than a toxin monomer in membrane perturbation of calcein-loaded liposomes. A three-dimensional model of toxin trimer obtained by negative-stain EM in combination with single-particle reconstruction at ∼5 nm resolution showed a propeller-shaped structure with 3-fold symmetry. Fitting the three-dimensional reconstructed EM map with a 100-ns molecular dynamics-simulated Cry4Ba structure interacting with an octyl-β-D-glucoside micelle showed relative positioning of individual domains in the context of the trimeric complex with a major protrusion from the pore-forming domain. Moreover, high-speed atomic force microscopy imaging at nanometer resolution and a subsecond frame rate demonstrated conformational transitions from a propeller-like to a globularly shaped trimer upon lipid membrane interactions, implying prepore-to-pore conversion. Real-time trimeric arrangement of monomers associated with L-α-dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid bicelle membranes was also envisaged by successive high-speed atomic force microscopy imaging, depicting interactions among three individual subunits toward trimer formation. Together, our data provide the first pivotal insights into the structural requirement of membrane-induced conformational changes of Cry4Ba toxin monomers for the

  3. Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro

    PubMed Central

    Sun, Peng; Wang, Ting; Chen, Lu; Yu, Bang-wei; Jia, Qi; Chen, Kai-xian; Fan, Hui-min; Li, Yi-ming; Wang, He-yao

    2016-01-01

    Aim: Cinnamon extracts rich in procyanidin oligomers have shown to improve pancreatic β-cell function in diabetic db/db mice. The aim of this study was to identify the active compounds in extracts from two species of cinnamon responsible for the pancreatic β-cell protection in vitro. Methods: Cinnamon extracts were prepared from Cinnamomum tamala (CT-E) and Cinnamomum cassia (CC-E). Six compounds procyanidin B2 (cpd1), (−)-epicatechin (cpd2), cinnamtannin B1 (cpd3), procyanidin C1 (cpd4), parameritannin A1 (cpd5) and cinnamtannin D1 (cpd6) were isolated from the extracts. INS-1 pancreatic β-cells were exposed to palmitic acid (PA) or H2O2 to induce lipotoxicity and oxidative stress. Cell viability and apoptosis as well as ROS levels were assessed. Glucose-stimulated insulin secretion was examined in PA-treated β-cells and murine islets. Results: CT-E, CC-E as well as the compounds, except cpd5, did not cause cytotoxicity in the β-cells up to the maximum dosage using in this experiment. CT-E and CC-E (12.5–50 μg/mL) dose-dependently increased cell viability in both PA- and H2O2-treated β-cells, and decreased ROS accumulation in H2O2-treated β-cells. CT-E caused more prominent β-cell protection than CC-E. Furthermore, CT-E (25 and 50 μg/mL) dose-dependently increased glucose-stimulated insulin secretion in PA-treated β-cells and murine islets, but CC-E had little effect. Among the 6 compounds, trimer procyanidins cpd3, cpd4 and cpd6 (12.5–50 μmol/L) dose-dependently increased the cell viability and decreased ROS accumulation in H2O2-treated β-cells. The trimer procyanidins also increased glucose-stimulated insulin secretion in PA-treated β-cells. Conclusion: Trimer procyanidins in the cinnamon extracts contribute to the pancreatic β-cell protection, thus to the anti-diabetic activity. PMID:27238208

  4. Theoretical study on nonlinear optical properties of the Li(+)[calix[4]pyrrole]Li(-)dimer, trimer and its polymer with diffuse excess electrons.

    PubMed

    Yu, Guang Tao; Chen, Wei; Gu, Feng Long; Aoki, Yuriko

    2010-03-01

    The static (hyper)polarizabilities of the dimer and trimer with diffuse excess electrons, [Li(+)[calix[4]pyrrole]Li(-)](n), are firstly investigated by the DFT(B3LYP) method in detail. For the dimer and trimer, a Li atom inside each calix[4]pyrrole unit is ionized to form a diffuse excess electron. The results show that the dimer and trimer containing two and three excess electrons, respectively, have very large first hyperpolarizablities as 2.3 x 10(4) and 4.0 x 10(4) au, which are 30 and 40 times larger than that of the corresponding [calix[4]pyrrole](n) (n = 2, 3) without Li atom. Also, beta values of dimer and trimer are twice and four times as large as that of monomer containing one excess electron. Obviously, not only excess electron but also the number of excess electron plays an important role in increasing the first hyperpolarizability. Moreover, the (hyper)polarizabilities of the [Li(+)[calix[4]pyrrole]Li(-)](n) polymer are investigated at ab initio level by using the elongation finite-field (elongation FF) method. All the oligomers of the [Li(+)[calix[4]pyrrole]Li(-)](n) with many excess electrons exhibit very large first hyperpolarizability and large second hyperpolarizability. The present investigation shows that by introducing several and more excess electrons into the nonlinear optical (NLO) materials will be an important strategy for improving their NLO properties, which will be helpful for design of NLO materials.

  5. A method of test for residual isophorone diisocyanate trimer in new polyester-polyurethane coatings on light metal packaging using liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Driffield, Malcolm; Bradley, Emma L; Castle, Laurence

    2007-02-01

    A method of test for residual isophorone diisocyanate (IPDI) trimer in experimental formulation polyester-polyurethane (PEPU) thermoset coatings on metal food packaging is described. The method involves extraction of coated panels using acetonitrile containing dibutylamine for concurrent derivatisation, and then high performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection (LC-MS/MS). Single laboratory validation was carried out using three different experimental PEPU-based coatings. The calibrations were linear, the analytical recovery was good, no interferences were seen, and substance identification criteria were met. The detection limit of the method is around 0.02 micro g/100 cm(2) of coating, which for a typical sized can and assuming complete migration of any residual IPDI trimer, corresponds to about 0.2 micro g/kg food or beverage. Separate studies indicated that, even if migration occurred at such low levels, the IPDI trimer would not be expected to persist in canned aqueous or fatty foodstuffs as it would hydrolyse to the corresponding aliphatic amine or react with food components to destroy the isocyanate moiety. The method of test developed here for residual IPDI trimer in thermoset polyester-polyurethane coatings should prove to be a valuable tool for investigating the cure kinetics of these novel coatings and help to guide the development of enhanced formulations. PMID:17178416

  6. Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR.

    PubMed

    Fehr, Niklas; Dietz, Carsten; Polyhach, Yevhen; von Hagens, Tona; Jeschke, Gunnar; Paulsen, Harald

    2015-10-23

    The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the "Velcro" hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919-928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound.

  7. Relative locations of the. beta. and delta chains of the acetylcholine receptor determined by electron microscopy of isolated receptor trimer. [Fishes, electric tissue

    SciTech Connect

    Wise, D.S.; Wall, J.; Karlin, A.

    1981-12-25

    The monomeric unit of the acetylcholine receptor of electric tissue of Torpedo californica has previously been shown to have a subunit composition of ..cap alpha../sub 2/..beta gamma..delta. Receptor in membrane isolated from Torpedo electric tissue occurs as both monomer and dimer. In the dimer, which is the predominant form, the monomeric units are cross-linked via a disulfide bond between delta chains. The addition of diamide to receptor-rich membrane causes the formation of trimer and higher oligomers in which the monomeric units are linked by disulfide bonds alternately between pairs of delta chains and between pairs ..beta.. chains. We have isolated receptor trimer and determined the relative locations of the monomeric units by scanning transmission electron microscopy of negatively stained preparations. In face view, the trimer appears as three approximately 90 angstrom disks, each with a central, densely staining pit. From the angles of the triangle formed by the lines connecting the centers of the monomers in the trimer, we infer that the ..beta..-..beta.. disulfide bond is separated from the delta-delta disulfide bond by an angle in the range of 50-80/sup 0/.

  8. A method of test for residual isophorone diisocyanate trimer in new polyester-polyurethane coatings on light metal packaging using liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Driffield, Malcolm; Bradley, Emma L; Castle, Laurence

    2007-02-01

    A method of test for residual isophorone diisocyanate (IPDI) trimer in experimental formulation polyester-polyurethane (PEPU) thermoset coatings on metal food packaging is described. The method involves extraction of coated panels using acetonitrile containing dibutylamine for concurrent derivatisation, and then high performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection (LC-MS/MS). Single laboratory validation was carried out using three different experimental PEPU-based coatings. The calibrations were linear, the analytical recovery was good, no interferences were seen, and substance identification criteria were met. The detection limit of the method is around 0.02 micro g/100 cm(2) of coating, which for a typical sized can and assuming complete migration of any residual IPDI trimer, corresponds to about 0.2 micro g/kg food or beverage. Separate studies indicated that, even if migration occurred at such low levels, the IPDI trimer would not be expected to persist in canned aqueous or fatty foodstuffs as it would hydrolyse to the corresponding aliphatic amine or react with food components to destroy the isocyanate moiety. The method of test developed here for residual IPDI trimer in thermoset polyester-polyurethane coatings should prove to be a valuable tool for investigating the cure kinetics of these novel coatings and help to guide the development of enhanced formulations.

  9. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies.

    PubMed

    McCoy, Laura E; van Gils, Marit J; Ozorowski, Gabriel; Messmer, Terrence; Briney, Bryan; Voss, James E; Kulp, Daniel W; Macauley, Matthew S; Sok, Devin; Pauthner, Matthias; Menis, Sergey; Cottrell, Christopher A; Torres, Jonathan L; Hsueh, Jessica; Schief, William R; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W; Burton, Dennis R

    2016-08-30

    A major advance in the search for an HIV vaccine has been the development of a near-native Envelope trimer (BG505 SOSIP.664) that can induce robust autologous Tier 2 neutralization. Here, potently neutralizing monoclonal antibodies (nAbs) from rabbits immunized with BG505 SOSIP.664 are shown to recognize an immunodominant region of gp120 centered on residue 241. Residue 241 occupies a hole in the glycan defenses of the BG505 isolate, with fewer than 3% of global isolates lacking a glycan site at this position. However, at least one conserved glycan site is missing in 89% of viruses, suggesting the presence of glycan holes in most HIV isolates. Serum evidence is consistent with targeting of holes in natural infection. The immunogenic nature of breaches in the glycan shield has been under-appreciated in previous attempts to understand autologous neutralizing antibody responses and has important potential consequences for HIV vaccine design.

  10. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry

    SciTech Connect

    Hill, Joseph L.; Hammudi, Mustafa B.; Tien, Ming

    2014-12-01

    In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and 35S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.

  11. Exposure of Epitope Residues on the Outer Face of the Chikungunya Virus Envelope Trimer Determines Antibody Neutralizing Efficacy

    PubMed Central

    Fong, Rachel H.; Banik, Soma S. R.; Mattia, Kimberly; Barnes, Trevor; Tucker, David; Liss, Nathan; Lu, Kai; Selvarajah, Suganya; Srinivasan, Surabhi; Mabila, Manu; Miller, Adam; Muench, Marcus O.; Michault, Alain; Rucker, Joseph B.; Paes, Cheryl; Simmons, Graham; Kahle, Kristen M.

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a reemerging alphavirus that causes a debilitating arthritic disease and infects millions of people and for which no specific treatment is available. Like many alphaviruses, the structural targets on CHIKV that elicit a protective humoral immune response in humans are poorly defined. Here we used phage display against virus-like particles (VLPs) to isolate seven human monoclonal antibodies (MAbs) against the CHIKV envelope glycoproteins E2 and E1. One MAb, IM-CKV063, was highly neutralizing (50% inhibitory concentration, 7.4 ng/ml), demonstrated high-affinity binding (320 pM), and was capable of therapeutic and prophylactic protection in multiple animal models up to 24 h postexposure. Epitope mapping using a comprehensive shotgun mutagenesis library of 910 mutants with E2/E1 alanine mutations demonstrated that IM-CKV063 binds to an intersubunit conformational epitope on domain A, a functionally important region of E2. MAbs against the highly conserved fusion loop have not previously been reported but were also isolated in our studies. Fusion loop MAbs were broadly cross-reactive against diverse alphaviruses but were nonneutralizing. Fusion loop MAb reactivity was affected by temperature and reactivity conditions, suggesting that the fusion loop is hidden in infectious virions. Visualization of the binding sites of 15 different MAbs on the structure of E2/E1 revealed that all epitopes are located at the membrane-distal region of the E2/E1 spike. Interestingly, epitopes on the exposed topmost and outer surfaces of the E2/E1 trimer structure were neutralizing, whereas epitopes facing the interior of the trimer were not, providing a rationale for vaccine design and therapeutic MAb development using the intact CHIKV E2/E1 trimer. IMPORTANCE CHIKV is the most important alphavirus affecting humans, resulting in a chronic arthritic condition that can persist for months or years. In recent years, millions of people have been infected

  12. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies.

    PubMed

    McCoy, Laura E; van Gils, Marit J; Ozorowski, Gabriel; Messmer, Terrence; Briney, Bryan; Voss, James E; Kulp, Daniel W; Macauley, Matthew S; Sok, Devin; Pauthner, Matthias; Menis, Sergey; Cottrell, Christopher A; Torres, Jonathan L; Hsueh, Jessica; Schief, William R; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W; Burton, Dennis R

    2016-08-30

    A major advance in the search for an HIV vaccine has been the development of a near-native Envelope trimer (BG505 SOSIP.664) that can induce robust autologous Tier 2 neutralization. Here, potently neutralizing monoclonal antibodies (nAbs) from rabbits immunized with BG505 SOSIP.664 are shown to recognize an immunodominant region of gp120 centered on residue 241. Residue 241 occupies a hole in the glycan defenses of the BG505 isolate, with fewer than 3% of global isolates lacking a glycan site at this position. However, at least one conserved glycan site is missing in 89% of viruses, suggesting the presence of glycan holes in most HIV isolates. Serum evidence is consistent with targeting of holes in natural infection. The immunogenic nature of breaches in the glycan shield has been under-appreciated in previous attempts to understand autologous neutralizing antibody responses and has important potential consequences for HIV vaccine design. PMID:27545891

  13. Unidirectional Threading into a Bowl-Shaped Macrocyclic Trimer of Boron-Dipyrrin Complexes through Multipoint Recognition.

    PubMed

    Nakamura, Takashi; Yamaguchi, Gento; Nabeshima, Tatsuya

    2016-08-01

    Bowl-shaped macrocycles have the distinctive feature that their two sides are differentiated, and thus can be developed into elaborate hosts that fix a target molecule in a controlled geometry through multipoint interactions. We now report the synthesis of a bowl-shaped macrocyclic trimer of the boron-dipyrrin (BODIPY) complex and its unidirectional threading of guest molecules. Six polarized B(δ+) -F(δ-) bonds are directed towards the center of the macrocycle, which enables strong recognition of cationic guests. Specifically, the benzylbutylammonium ion is bound in a manner in which the benzyl group is located at the convex face of the bowl and the butyl group at its concave face. Furthermore, adrenaline was strongly captured on the convex side of the bowl by hydrogen bonding, Coulomb forces, and C-H⋅⋅⋅π interactions. PMID:27351597

  14. The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity.

    PubMed

    Wang, Lei; Qin, Wanhai; Yang, Shuxin; Zhai, Ruidong; Zhou, Liang; Sun, Changjiang; Pan, Fengguang; Ji, Qun; Wang, Yu; Gu, Jingmin; Feng, Xin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-05-15

    Actinobacillus pleuropneumoniae is a causative agent of porcine pleuropneumonia, which is a highly contagious endemic disease of pigs. Adhesion is a critical first step in the infection process. Trimeric autotransporter adhesions (TAAs) have been identified as novel virulence factors; however, little is known on their roles in A. pleuropneumoniae pathogenicity. Here, our data show that YadA-like head region (Adh) of Apa1 was the optimal adhesion functional domain via segment expression and adhesion assays in vitro. Additionally, Adh induced partial protection against A. pleuropneumoniae 5b L20 and serotypes 1, 3, and 5a in mice. The deletion of Adh gene significantly decreased autoaggregation, biofilm formation and adherence to host cells in vitro. Furthermore, with delaying of clinical symptoms, reducing production of pro-inflammatory cytokines and lessening the lung injury after infection, Adh deletion strain (5bϕAdh) significantly reduced the pathogenicity to piglets. To elucidate the mechanism of lung injury, the differentially expressed genes in the lung tissues of piglets infected with the 5b L20 or 5bϕAdh strains were investigated using microarray analysis and validated by qRT-PCR. Compared with the 5b L20 infected piglets, 495 genes were differentially expressed in 5bϕAdh infected lung tissue (221 upregulated and 274 downregulated). Especially, the antigen processing and presentation gene IFI30 was increased following infection with the 5bϕAdh strain. Thus, Adh may enhance pathogenicity by depressing host immune recognition. We conclude that the head domain of the A. pleuropneumoniae trimeric autotransporter Apa1 regulates autoagglutination, biofilm formation, adhesion to host cells and pathogenicity.

  15. Association of High Light-Inducible HliA/HliB Stress Proteins with Photosystem 1 Trimers and Monomers of the Cyanobacterium Synechocystis PCC 6803.

    PubMed

    Akulinkina, D V; Bolychevtseva, Yu V; Elanskaya, I V; Karapetyan, N V; Yurina, N P

    2015-10-01

    Hlip (high light-inducible proteins) are important for protection of the photosynthetic apparatus of cyanobacteria from light stress. However, the interaction of these proteins with chlorophyll-protein complexes of thylakoids remains unclear. The association of HliA/HliB stress proteins with photosystem 1 (PS1) complexes of the cyanobacterium Synechocystis PCC 6803 was studied to understand their function. Western blotting demonstrated that stress-induced HliA/HliB proteins are associated with PS1 trimers in wild-type cells grown under moderate light condition (40 µmol photons/m(2) per sec). The content of these proteins increased 1.7-fold after light stress (150 µmol photons/m(2) per sec) for 1 h. In the absence of PS1 trimers (ΔpsaL mutant), the HliA/HliB proteins are associated with PS1 monomers and the PS2 complex. HliA/HliB proteins are associated with PS1 monomers but not with PS1 trimers in Synechocystis PS2-deficient mutant grown at 5 µmol photons/m(2) per sec; the content of Hli proteins associated with PS1 monomers increased 1.2-fold after light stress. The HliA/HliB proteins were not detected in wild-type cells of cyanobacteria grown in glucose-supplemented medium at 5 µmol photons/m(2) per sec, but light stress induces the synthesis of stress proteins associated with PS1 trimers. Thus, for the first time, the association of HliA/HliB proteins not only with PS1 trimers, but also with PS1 monomers is shown, which suggests a universal role of these proteins in the protection of the photosynthetic apparatus from excess light.

  16. DFT and experimental study of N, N'-bis(3'-carboxy,4'-aminophenyl)-1,4-quinonediimine, a carboxyl substituted aniline trimer

    NASA Astrophysics Data System (ADS)

    Sein, Lawrence T., Jr.; Lashua, Amanda F.

    2010-08-01

    Density functional calculations were performed on N, N'-bis(3'-carboxy,4'-aminophenyl)-1,4-quinonediimine, a carboxylic acid substituted aniline trimer. Results of the calculations were compared to experimental properties of the herein synthesized trimer, as well as to the properties of the anthranilic acid/aniline co-polymer reported in the literature. The calculated LUMO levels for isomers of the title compound range from -4.45 to -5.05 eV. The calculated electron affinities range from 75.93 kcal mol -1 to 89.04 kcal mol -1 (3.29-3.86 eV). Both the LUMO levels and electron affinities are greatest in magnitude for the anti, syn isomer. The HOMO levels, on the other hand, range from -5.32 eV (for the trans, trans isomer) to -5.36 eV (syn, syn inner). In acetonitrile solvent, the zwitterionic form is calculated to be energetically preferred to the non-zwitterion. Experimental UV-vis and near-IR studies in acetonitrile and ethanol show little evidence for zwitterion formation, but those in water show strong evidence. The predicted electronic transitions for the non-zwitterion in acetonitrile solvent correspond closely to those seen at 533 and 416 nm. The zwitterion present in solvent corresponds to a trimer with the capability to "self-dope", suggesting that the trimer would be effective at corrosion inhibition in the emeraldine base form, unlike other trimers which are only effective in the emeraldine salt form. This effectiveness in the emeraldine base form would enable the material to be utilized in corrosion inhibition applications in alkaline environments where standard oligo- and polyanilines fail.

  17. Modeling Transmembrane Domain Dimers/Trimers of Plexin Receptors: Implications for Mechanisms of Signal Transmission across the Membrane

    PubMed Central

    Zhang, Liqun; Polyansky, Anton; Buck, Matthias

    2015-01-01

    Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and –B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, –A3, -A4, -C1 and –D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 – trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures

  18. Preparation of a disulfide-linked precipitative soluble support for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks

    PubMed Central

    Molina, Alejandro Gimenez; Virta, Pasi; Lönnberg, Harri

    2015-01-01

    Summary The preparation of a disulfide-tethered precipitative soluble support and its use for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks is described. To obtain the building blocks, N-acyl protected 2´-deoxy-5´-O-(4,4´-dimethoxytrityl)ribonucleosides were phosphorylated with bis(benzotriazol-1-yl) 2-chlorophenyl phosphate. The “outdated” phosphotriester strategy, based on coupling of PV building blocks in conjunction with quantitative precipitation of the oligodeoxyribonucleotide with MeOH is applied. Subsequent release of the resulting phosphate and base-protected oligodeoxyribonucleotide trimer 3’-pTpdCBzpdGibu-5’ as its 3’-(2-chlorophenyl phosphate) was achieved by reductive cleavage of the disulfide bond. PMID:26664575

  19. On 3d bonding in the transition metal trimers - The electronic structure of equilateral triangle Ca3, Sc3, Sc3(+), and Ti3(+)

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Bauschlicher, C. W., Jr.

    1985-01-01

    It is pointed out that transition metals and transition metal (TM) compounds are currently of considerable interest because of their relevance to catalysis and to materials science problems such as hydrogen embrittlement and crack propagation in metals. The present paper is concerned with complete active space Self-Consistent Field (SCF) externally contracted configuration interaction (CASSCF/CCI) calculations for the low-lying states of Sc3 and Sc3(+). A comparison is conducted regarding the bonding in the Ca3, Sc3, and Cu3 molecules. This comparison makes it possible to predict general trends for the TM trimers. Attention is given to the qualitative features of the bonding in the TM trimers, the basis sets and other technical details of the calculations, the calculated results for Sc3 and Sc3(+), and conclusions from this work.

  20. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    SciTech Connect

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-03-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B.

  1. Structural Basis of HIV-1 Neutralization by Affinity Matured Fabs Directed against the Internal Trimeric Coiled-Coil of gp41

    SciTech Connect

    Gustchina, Elena; Li, Mi; Louis, John M.; Anderson, D.Eric; Lloyd, John; Frisch, Christian; Bewley, Carole A.; Gustchina, Alla; Wlodawer, Alexander; Clore, G.Marius

    2010-12-03

    The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naive human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing. The crystal structures reveal important differences in the conformations of the CDR-H2 loops in the complexes that propagate into other regions of the antigen-antibody interface, and suggest that both neutralization properties and affinity for the target can be attributed, at least in part, to the differences in the interactions of the CDR-H2 loops with the antigen. Furthermore, modeling of the complex of an N-HR trimer with three Fabs suggests that the CDR-H2 loop may be involved in close intermolecular contacts between neighboring antibody molecules, and that such contacts may hinder the formation of complexes between the N-HR trimer and more than one antibody molecule depending on the conformation of the bound CDR-H2 loop which is defined by its interactions with antigen. Comparison with the crystal structure of the complex of 5-Helix with another neutralizing monoclonal antibody known as D5, derived using an entirely different antibody library and panning procedure, reveals remarkable convergence in the optimal sequence and conformation of the CDR-H2 loop.

  2. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer.

    PubMed

    Kabanova, Anna; Marcandalli, Jessica; Zhou, Tongqing; Bianchi, Siro; Baxa, Ulrich; Tsybovsky, Yaroslav; Lilleri, Daniele; Silacci-Fregni, Chiara; Foglierini, Mathilde; Fernandez-Rodriguez, Blanca Maria; Druz, Aliaksandr; Zhang, Baoshan; Geiger, Roger; Pagani, Massimiliano; Sallusto, Federica; Kwong, Peter D; Corti, Davide; Lanzavecchia, Antonio; Perez, Laurent

    2016-06-06

    Human cytomegalovirus encodes at least 25 membrane glycoproteins that are found in the viral envelope(1). While gB represents the fusion protein, two glycoprotein complexes control the tropism of the virus: the gHgLgO trimer is involved in the infection of fibroblasts, and the gHgLpUL128L pentamer is required for infection of endothelial, epithelial and myeloid cells(2-5). Two reports suggested that gB binds to ErbB1 and PDGFRα (refs 6,7); however, these results do not explain the tropism of the virus and were recently challenged(8,9). Here, we provide a 19 Å reconstruction for the gHgLgO trimer and show that it binds with high affinity through the gO subunit to PDGFRα, which is expressed on fibroblasts but not on epithelial cells. We also provide evidence that the trimer is essential for viral entry in both fibroblasts and epithelial cells. Furthermore, we identify the pentamer, which is essential for infection of epithelial cells, as a trigger for the ErbB pathway. These findings help explain the broad tropism of human cytomegalovirus and indicate that PDGFRα and the viral gO subunit could be targeted by novel anti-viral therapies.

  3. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer.

    PubMed

    Kabanova, Anna; Marcandalli, Jessica; Zhou, Tongqing; Bianchi, Siro; Baxa, Ulrich; Tsybovsky, Yaroslav; Lilleri, Daniele; Silacci-Fregni, Chiara; Foglierini, Mathilde; Fernandez-Rodriguez, Blanca Maria; Druz, Aliaksandr; Zhang, Baoshan; Geiger, Roger; Pagani, Massimiliano; Sallusto, Federica; Kwong, Peter D; Corti, Davide; Lanzavecchia, Antonio; Perez, Laurent

    2016-01-01

    Human cytomegalovirus encodes at least 25 membrane glycoproteins that are found in the viral envelope(1). While gB represents the fusion protein, two glycoprotein complexes control the tropism of the virus: the gHgLgO trimer is involved in the infection of fibroblasts, and the gHgLpUL128L pentamer is required for infection of endothelial, epithelial and myeloid cells(2-5). Two reports suggested that gB binds to ErbB1 and PDGFRα (refs 6,7); however, these results do not explain the tropism of the virus and were recently challenged(8,9). Here, we provide a 19 Å reconstruction for the gHgLgO trimer and show that it binds with high affinity through the gO subunit to PDGFRα, which is expressed on fibroblasts but not on epithelial cells. We also provide evidence that the trimer is essential for viral entry in both fibroblasts and epithelial cells. Furthermore, we identify the pentamer, which is essential for infection of epithelial cells, as a trigger for the ErbB pathway. These findings help explain the broad tropism of human cytomegalovirus and indicate that PDGFRα and the viral gO subunit could be targeted by novel anti-viral therapies. PMID:27573107

  4. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time.

  5. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.

    PubMed

    Xie, Meihua; Wang, Ling; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-04-01

    Preparation of functional shape memory polymer (SMP) for tissue engineering remains a challenge. Here the synthesis of strong electroactive shape memory polymer (ESMP) networks based on star-shaped polylactide (PLA) and aniline trimer (AT) is reported. Six-armed PLAs with various chain lengths were chemically cross-linked to synthesize SMP. After addition of an electroactive AT segment into the SMP, ESMP was obtained. The polymers were characterized by (1)H NMR, GPC, FT-IR, CV, DSC, DMA, tensile test, and degradation test. The SMP and ESMP exhibited strong mechanical properties (modulus higher than GPa) and excellent shape memory performance: short recovery time (several seconds), high recovery ratio (over 94%), and high fixity ratio (almost 100%). Moreover, cyclic voltammetry test confirmed the electroactivity of the ESMP. The ESMP significantly enhanced the proliferation of C2C12 cells compared to SMP and linear PLA (control). In addition, the ESMP greatly improved the osteogenic differentiation of C2C12 myoblast cells compared to PH10 and PLA in terms of ALP enzyme activity, immunofluorescence staining, and relative gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). These intelligent SMPs and electroactive SMP with strong mechanical properties, tunable degradability, good electroactivity, biocompatibility, and enhanced osteogenic differentiation of C2C12 cells show great potential for bone regeneration.

  6. Nonadditive intermolecular forces from the spectroscopy of van der Waals trimers: A theoretical study of Ar[sub 2]-HF

    SciTech Connect

    Ernesti, A.; Hutson, J.M. )

    1995-01-01

    Calculations of vibrational energies and rotational constants are carried out for the van der Waals trimer Ar[sub 2]-HF. The calculations include all five intermolecular degrees of freedom. The different intramolecular vibrational states [ital v] of the HF molecule are separated out adiabatically, so that the calculations are carried out on effective intermolecular potentials for each HF vibrational state separately. Calculations are performed both on pairwise-additive potentials, derived from the well-known Ar-Ar and Ar-HF potentials, and on nonadditive potentials, incorporating various different contributions to the three-body forces. The results are compared with experimental results from high-resolution spectroscopy, and provide detailed information on the anisotropy of the nonadditive intermolecular forces. As in previous work on Ar[sub 2]-HCl, it is found that a very important nonadditive term arises from the interaction between the permanent multipoles of the HF molecule and the exchange quadrupole caused by distortion of the two Ar atoms as they overlap. An improved model of this term is described.

  7. Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation.

    PubMed

    Ovsyannikov, Sergey V; Bykov, Maxim; Bykova, Elena; Kozlenko, Denis P; Tsirlin, Alexander A; Karkin, Alexander E; Shchennikov, Vladimir V; Kichanov, Sergey E; Gou, Huiyang; Abakumov, Artem M; Egoavil, Ricardo; Verbeeck, Johan; McCammon, Catherine; Dyadkin, Vadim; Chernyshov, Dmitry; van Smaalen, Sander; Dubrovinsky, Leonid S

    2016-05-01

    Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below ∼150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature. PMID:27102685

  8. Towards a universal method for protein refolding: the trimeric beta barrel membrane Omp2a as a test case.

    PubMed

    Roussel, Guillaume; Perpète, Eric A; Matagne, André; Tinti, Emmanuel; Michaux, Catherine

    2013-02-01

    It has recently been reported that 2-methyl-2,4-pentanediol (MPD) can modulate the protein-binding properties of sodium dodecyl sulfate (SDS), turning it into a non-denaturing detergent. Indeed both alpha (the lysozyme) and beta (the carbonic anhydrase II) soluble enzymes, as well as a beta membrane protein (PagP) have been successfully refolded into their native form by using this amphiphatic alcohol. In order to support the universal character of our MPD-based technique, we have extended its transferability to the Omp2a trimeric membrane porin. The far-UV circular dichroism signature of Omp2a refolded with our original procedure is identical to that obtained by classical techniques, clearly indicating a proper refolding. Moreover, we show that the optimal SDS/MPD ratio for refolding Omp2a is similar to what has been observed for other types of proteins. While the protocol allows refolding at higher protein concentration (up to 4 mg/mL) and ionic strength (up to 1 M NaCl) than other refolding methods, it is also more efficient at basic pH values and medium temperature (20-40°C). Finally, the key role of the cosolvent was highlighted by a thorough study of the efficiency of MPD analogues, and a high variability was observed, as they can be able or unable to induce refolding at low or high salt concentrations.

  9. Amino-Terminal Extended Peptide Single-Chain Trimers are Potent Synthetic Agonists for Memory Human CD8+ T cells

    PubMed Central

    Carreno, Beatriz M.; Becker-Hapak, Michelle; Chan, Megan; Lie, Wen-Rong; Wang, Xiaoli; Hansen, Ted H.; Linette, Gerald P.

    2012-01-01

    Upon antigen exposure, most memory T cells undergo re-stimulation induced cell death. Here we describe a novel synthetic agonist, an amino-terminal extended decamer peptide expressed as a single chain trimer, the AT-SCT, that preferentially promotes the growth of memory human CD8+ T cells with minimal re-stimulation-induced cell death. Using the CMV pp65 and melanoma gp100 antigens, we observe the in vitro numerical expansion of a clonally diverse poly-functional population of antigen-specific CD8+ T cells from normal individuals and vaccinated melanoma patients, respectively. Memory CD8+ T cells stimulated with AT-SCT presented on MHC class I/II null cells show reduced cytokine production, slower kinetics of TCR down-regulation and decreased cell death when compared to native nonamer SCT-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC (p-MHC) complexes using fluorochrome-conjugated TCR multimers suggest that nonamer and decamer-linked peptides may be anchored differently to HLA-A2 peptide binding groove. Our findings demonstrate that modified p-MHC structures such as AT-SCT can be engineered as T cell agonists to promote the growth and expansion of memory human CD8+ T cells. PMID:22573808

  10. An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure

    PubMed Central

    Yoshimoto, Shogo; Nakatani, Hajime; Iwasaki, Keita; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA’s passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA’s higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA’s nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces. PMID:27305955

  11. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry[W

    PubMed Central

    Hill, Joseph L.; Hammudi, Mustafa B.; Tien, Ming

    2014-01-01

    Cellulose is the most abundant renewable polymer on Earth and a major component of the plant cell wall. In vascular plants, cellulose synthesis is catalyzed by a large, plasma membrane-localized cellulose synthase complex (CSC), visualized as a hexameric rosette structure. Three unique cellulose synthase (CESA) isoforms are required for CSC assembly and function. However, elucidation of either the number or stoichiometry of CESAs within the CSC has remained elusive. In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and 35S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties. PMID:25490917

  12. Preparation of trimers and tetramers of mixed sequence oligodeoxynucleoside methylphosphonates and assignment of configurations at the chiral phosphorus.

    PubMed Central

    Vyazovkina, E V; Rife, J P; Lebedev, A V; Wickstrom, E

    1993-01-01

    Synthesis of stereoregular DNA methylphosphonates has been accomplished for homo-oligomers, but remains a formidable problem for oligomers of a defined antisense target sequence. In this work, four trimer and tetramer deoxynucleoside methylphosphonates of mixed sequence (dACA, dCCAA, dAGGG, and dGCAT) were prepared by block coupling of diastereomerically pure dimers with either monomers or other diastereomerically pure dimers. These oligomers were separated chromatographically into individual diastereomers, and the configurations of the chiral methylphosphonate linkages were assigned. Three types of methods were used to assign configuration of a new methylphosphonate linkage: preparation of the same diastereomer through multiple synthetic pathways, base hydrolysis, and acid hydrolysis. Hydrolysis of the diastereomerically pure oligomers into component dimers and monomers was followed by chromatographic comparison with control dimers of known configuration. In all cases studied, oligomers with R configurations displayed faster elution from silica gel than did oligomers with the respective S configuration. NMR spectra of individual diastereomers of dACA were studied, revealing characteristic differences in chemical shifts which may prove useful in configurational assignments of longer oligomers. Thus, these data provide a methodological basis for synthesis and configurational assignment of longer methylphosphonate oligomers to use as antisense probes. PMID:8290358

  13. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. PMID:25722166

  14. Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, Sergey V.; Bykov, Maxim; Bykova, Elena; Kozlenko, Denis P.; Tsirlin, Alexander A.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Kichanov, Sergey E.; Gou, Huiyang; Abakumov, Artem M.; Egoavil, Ricardo; Verbeeck, Johan; McCammon, Catherine; Dyadkin, Vadim; Chernyshov, Dmitry; van Smaalen, Sander; Dubrovinsky, Leonid S.

    2016-05-01

    Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials’ properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below ∼150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.

  15. Structural Diversity in the Complexes of Trimeric Perfluoro- o -phenylene Mercury with Tetrathia- and Tetramethyltetraselenafulvalene

    SciTech Connect

    Castañeda, Raúl; Yakovenko, Andrey A.; Draguta, Sergiu; Fonari, Marina S.; Antipin, Mikhail Yu.; Timofeeva, Tatiana V.

    2015-03-04

    Five potential charge transfer complexes of trimeric perfluoro-o-phenylene mercury (I) with tetrathiafulvalene (TTF) and tetramethyltetraselenefulvalene (TMTSF) were grown from different solvent mixtures. The adducts (I)2·TTF (1) and I·TTF (2) were grown by slow evaporation from the 1:1 mixture of dichloromethane (CH2Cl2, DCM) and carbon disulfide (CS2). Use of the different 1:1 solvent mixtures of dichloromethane (CH2Cl2, DCM) and dichloroethane (C2H4Cl2, DCE) has led to the crystalline adducts I·TTF (3) and I·TTF·DCE (4). Adduct I.TMTSF (5) was grown by the interface crystallization on the border of two immiscible layers, ethyl acetate, and carbon disulfide. The cocrystals differ by the donor–acceptor ratio, molecular packing, and the solvent inclusion. The components in 1–5 form mixed donor–acceptor stacks. The stacks are stabilized by Hg···S and Hg···C short contacts, while the lateral interactions between stacks include F···F, CH···F, and S/Se···F short contacts.

  16. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B.

    PubMed

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Hernández Durán, Anna; Vollmer, Benjamin; White, Paul; Prasad Pandurangan, Arun; Siebert, C Alistair; Topf, Maya; Grünewald, Kay

    2016-04-12

    Many viruses are enveloped by a lipid bilayer acquired during assembly, which is typically studded with one or two types of glycoproteins. These viral surface proteins act as the primary interface between the virus and the host. Entry of enveloped viruses relies on specialized fusogen proteins to help merge the virus membrane with the host membrane. In the multicomponent herpesvirus fusion machinery, glycoprotein B (gB) acts as this fusogen. Although the structure of the gB ectodomain postfusion conformation has been determined, any other conformations (e.g., prefusion, intermediate conformations) have so far remained elusive, thus restricting efforts to develop antiviral treatments and prophylactic vaccines. Here, we have characterized the full-length herpes simplex virus 1 gB in a native membrane by displaying it on cell-derived vesicles and using electron cryotomography. Alongside the known postfusion conformation, a novel one was identified. Its structure, in the context of the membrane, was determined by subvolume averaging and found to be trimeric like the postfusion conformation, but appeared more condensed. Hierarchical constrained density-fitting of domains unexpectedly revealed the fusion loops in this conformation to be apart and pointing away from the anchoring membrane. This vital observation is a substantial step forward in understanding the complex herpesvirus fusion mechanism, and opens up new opportunities for more targeted intervention of herpesvirus entry. PMID:27035968

  17. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region.

    PubMed

    Habte, Habtom H; Banerjee, Saikat; Shi, Heliang; Qin, Yali; Cho, Michael W

    2015-12-01

    The membrane-proximal external region (MPER) of HIV-1 gp41 is an attractive target for vaccine development. Thus, better understanding of its immunogenic properties in various structural contexts is important. We previously described the crystal structure of a trimeric protein complex named gp41-HR1-54Q, which consists of the heptad repeat regions 1 and 2 and the MPER. The protein was efficiently recognized by broadly neutralizing antibodies. Here, we describe its immunogenic properties in rabbits. The protein was highly immunogenic, especially the C-terminal end of the MPER containing 4E10 and 10E8 epitopes ((671)NWFDITNWLWYIK(683)). Although antibodies exhibited strong competition activity against 4E10 and 10E8, neutralizing activity was not detected. Detailed mapping analyses indicated that amino acid residues critical for recognition resided on faces of the alpha helix that are either opposite of or perpendicular to the epitopes recognized by 4E10 and 10E8. These results provide critical information for designing the next generation of MPER-based immunogens. PMID:26454663

  18. Possible formation of mitochondrial-RNA containing chimeric or trimeric RNA implies a post-transcriptional and post-splicing mechanism for RNA fusion.

    PubMed

    Yang, Wei; Wu, Jian-min; Bi, An-ding; Ou-Yang, Yong-chang; Shen, Hai-hong; Chirn, Gung-wei; Zhou, Jian-hua; Weiss, Emily; Holman, Emily Pauline; Liao, D Joshua

    2013-01-01

    Human cells are known to express many chimeric RNAs, i.e. RNAs containing two genes' sequences. Wondering whether there also is trimeric RNA, i.e. an RNA containing three genes' sequences, we wrote simple computer code to screen human expression sequence tags (ESTs) deposited in different public databases, and obtained hundreds of putative trimeric ESTs. We then used NCBI Blast and UCSC Blat browsers to further analyze their sequences, and identified 61 trimeric and two tetrameric ESTs (one EST containing four different sequences). We also identified 57 chimeric, trimeric or teterameric ESTs that contained both mitochondrial (mt) RNA and nuclear RNA (nRNA), i.e. were mtRNA-nRNA fusions. In some trimeric ESTs, the downstream partner was fused to the poly-A tail of the upstream partner, which, together with the mtRNA-nRNA fusions, suggests a possible new mechanism for RNA fusion that occurs after both transcription and splicing have been terminated, and possibly outside the nucleus, in contrast to the two current hypothetical mechanisms, trans-splicing and transcriptional-slippage, that occur in the nucleus. The mt-sequences in the mtRNA-nRNA fusions had pseudogenes in the nucleus but, surprisingly, localized mainly in chromosomes 1 and 5. In some mtRNA-nRNA fusions, as well as in some ESTs that were derived only from mtRNA, the mt-sequences might be cis- or trans-spliced. Actually, we cloned a new cis-spliced mtRNA, coined as 16SrRNA-s. Hence, mtDNA may not always be intron-less. Fusion of three or more RNAs to one, fusion of nRNA to mtRNA, and cis- or trans-splicing of mtRNA should all enlarge the cellular RNA repertoire, in turn enlarging the cellular functions. Therefore, future experimental verification of the existence of these novel classes of fusion RNAs and spliced mtRNAs in human cells should significantly advance our understanding of biology and medicine. PMID:24204722

  19. Crystal structure of calf spleen purine nucleoside phosphorylase with two full trimers in the asymmetric unit: important implications for the mechanism of catalysis.

    PubMed

    Bzowska, Agnieszka; Koellner, Gertraud; Wielgus-Kutrowska, Beata; Stroh, Albrecht; Raszewski, Grzegorz; Holý, Antonin; Steiner, Thomas; Frank, Joachim

    2004-09-17

    The crystal structure of the binary complex of trimeric purine nucleoside phosphorylase (PNP) from calf spleen with the acyclic nucleoside phosphonate inhibitor 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine ((S)-PMPDAP) is determined at 2.3A resolution in space group P2(1)2(1)2(1). Crystallization in this space group, which is observed for the first time with a calf spleen PNP crystal structure, is obtained in the presence of calcium atoms. In contrast to the previously described cubic space group P2(1)3, two independent trimers are observed in the asymmetric unit, hence possible differences between monomers forming the biologically active trimer could be detected, if present. Such differences would be expected due to third-of-the-sites binding documented for transition-state events and inhibitors. However, no differences are noted, and binding stoichiometry of three inhibitor molecules per enzyme trimer is observed in the crystal structure, and in the parallel solution studies using isothermal titration calorimetry and spectrofluorimetric titrations. Presence of phosphate was shown to modify binding stoichiometry of hypoxanthine. Therefore, the enzyme was also crystallized in space group P2(1)2(1)2(1) in the presence of (S)-PMPDAP and phosphate, and the resulting structure of the binary PNP/(S)-PMPDAP complex was refined at 2.05A resolution. No qualitative differences between complexes obtained with and without the presence of phosphate were detected, except for the hydrogen bond contact of Arg84 and a phosphonate group, which is observed only in the former complex in three out of six independent monomers. Possible hydrogen bonds observed in the enzyme complexed with (S)-PMPDAP, in particular a putative hydrogen bonding contact N(1)-H cdots, three dots, centered Glu201, indicate that the inhibitor binds in a tautomeric or ionic form in which position N(1) acts as a hydrogen bond donor. This points to a crucial role of this hydrogen bond in defining

  20. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan.

    PubMed

    Ishikawa, Masahito; Yoshimoto, Shogo; Hayashi, Ayumi; Kanie, Junichi; Hori, Katsutoshi

    2016-08-01

    Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis. PMID:27074146

  1. A 3D Heterometallic Coordination Polymer Constructed by Trimeric {NiDy2} Single-Molecule Magnet Units.

    PubMed

    Zhang, Shaowei; Li, Han; Duan, Eryue; Han, Zongsu; Li, Leilei; Tang, Jinkui; Shi, Wei; Cheng, Peng

    2016-02-01

    The solvothermal reaction of DyCl3·6H2O, Ni(NO3)2·6H2O, and H4abtc ligands (H4abtc = 3,3',5,5'-azobenzene-tetracarboxylic acid) in the mixed DMF/H2O solvents (DMF = N,N-dimethylformamide) produced a three-dimensional (3D) Ni(II)-Dy(III) heterometallic coordination polymer (HCP) formulated as {[NH2(CH3)2]2[NiDy2(HCOO)2(abtc)2]}n (1). In 1, Dy(III) and Ni(II) ions interconnect through carboxylic O donors of abtc(4-) ligands to generate a linear trimer "Hourglass"-type {NiDy2} cluster, and the adjacent trinuclear {NiDy2} units are bridged by HCOO(-) groups to give a 1D "ladder" chain, which is further bridged by abtc(4-) ligands to form a new topology and named as "zsw3". Alternating-current magnetic susceptibility results indicate that 1 exhibits frequency-dependent out-of-phase signals with two relaxation processes, which suggests that it shows single-molecule magnet (SMM) behavior and represents the first example by using an SMM cluster as the building block to create a 3D Ni-Ln HCP, to the best of our knowledge. The energy barriers for 1 under a 1000 Oe applied direct current magnetic field are estimated from Arrhenius plots to be 40 and 42 K at higher and lower frequencies, respectively. Additionally, the crystalline structure of 1 could be stable to at least 310 °C, supported by thermogravimetric analyses and in situ variable-temperature powder X-ray diffraction patterns.

  2. NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer.

    PubMed

    González, Beatriz; Garrido, Francisco; Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A

    2012-01-01

    Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP(+) with a 1:1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP(+) binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells.

  3. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

    PubMed Central

    Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta

    2014-01-01

    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647

  4. A RabGAP Regulates Life-Cycle Duration via Trimeric G-protein Cascades in Dictyostelium discoideum

    PubMed Central

    Kuwayama, Hidekazu; Miyanaga, Yukihiro; Urushihara, Hideko; Ueda, Masahiro

    2013-01-01

    Background The life-cycle of cellular slime molds comprises chronobiologically regulated processes. During the growth phase, the amoeboid cells proliferate at a definite rate. Upon starvation, they synthesize cAMP as both first and second messengers in signalling pathways and form aggregates, migrating slugs, and fruiting bodies, consisting of spores and stalk cells, within 24 h. In Dictyostelium discoideum, because most growth-specific events cease during development, proliferative and heterochronic mutations are not considered to be interrelated and no genetic factor governing the entire life-cycle duration has ever been identified. Methodology/Principal Findings Using yeast 2-hybrid library screening, we isolated a Dictyostelium discoideum RabGAP, Dd Rbg-3, as a candidate molecule by which the Dictyostelium Gα2 subunit directs its effects. Rab GTPase-activating protein, RabGAP, acts as a negative regulator of Rab small GTPases, which orchestrate the intracellular membrane trafficking involved in cell proliferation. Deletion mutants of Dd rbg-3 exhibited an increased growth rate and a shortened developmental period, while an overexpression mutant demonstrated the opposite effects. We also show that Dd Rbg-3 interacts with 2 Gα subunits in an activity-dependent manner in vitro. Furthermore, both human and Caenorhabditis elegans rbg-3 homologs complemented the Dd rbg-3–deletion phenotype in D. discoideum, indicating that similar pathways may be generally conserved in multicellular organisms. Conclusions/Significance Our findings suggest that Dd Rbg-3 acts as a key element regulating the duration of D. discoideum life-span potentially via trimeric G-protein cascades. PMID:24349132

  5. Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3.

    PubMed

    Ch'ng, Lee C; Samanta, Amit K; Wang, Yimin; Bowman, Joel M; Reisler, Hanna

    2013-08-15

    We report a joint experimental-theoretical study of the predissociation dynamics of the water trimer following excitation of the hydrogen bonded OH-stretch fundamental. The bond dissociation energy (D0) for the (H2O)3 → H2O + (H2O)2 dissociation channel is determined from fitting the speed distributions of selected rovibrational states of the water monomer fragment using velocity map imaging. The experimental value, D0 = 2650 ± 150 cm(-1), is in good agreement with the previously determined theoretical value, 2726 ± 30 cm(-1), obtained using an ab initio full-dimensional potential energy surface (PES) together with Diffusion Monte Carlo calculations [ Wang ; Bowman . J. Chem. Phys. 2011 , 135 , 131101 ]. Comparing this value to D0 of the dimer places the contribution of nonpairwise additivity to the hydrogen bonding at 450-500 cm(-1). Quasiclassical trajectory (QCT) calculations using this PES help elucidate the reaction mechanism. The trajectories show that most often one hydrogen bond breaks first, followed by breaking and re-forming of hydrogen bonds (often with different hydrogen bonds breaking) until, after many picoseconds, a water monomer is finally released. The translational energy distributions calculated by QCT for selected rotational levels of the monomer fragment agree with the experimental observations. The product translational and rotational energy distributions calculated by QCT also agree with statistical predictions. The availability of low-lying intermolecular vibrational levels in the dimer fragment is likely to facilitate energy transfer before dissociation occurs, leading to statistical-like product state distributions.

  6. NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer

    PubMed Central

    Ortega, Rebeca; Martínez-Júlvez, Marta; Revilla-Guarinos, Ainhoa; Pérez-Pertejo, Yolanda; Velázquez-Campoy, Adrián; Sanz-Aparicio, Julia; Pajares, María A.

    2012-01-01

    Mammalian methionine adenosyltransferase II (MAT II) is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP+ with a 1∶1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells. PMID:23189196

  7. Competition between hydrogen bonding and dispersion interactions in the indole···pyridine dimer and (indole)2···pyridine trimer studied in a supersonic jet.

    PubMed

    Kumar, Sumit; Biswas, Partha; Kaul, Indu; Das, Aloke

    2011-07-01

    Structures of the indole···pyridine dimer and (indole)2···pyridine trimer have been investigated in a supersonic jet using resonant two-photon ionization (R2PI) and IR-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. R2PI spectra of the dimer and the trimer recorded by electronic excitation of the indole moiety show that the red-shift in the band origin of the dimer with respect to the 0(0)(0) band of the monomer is larger compared to that of the trimer. The presence of only one conformer in the case of both the dimer and the trimer has been confirmed from IR-UV hole-burning spectroscopy. The structures of the dimer and the trimer have been determined from resonant ion dip infrared (RIDIR) spectra combined with ab initio as well as DFT/M05-2X and DFT/M06-2X calculations. It has been found that the dimer, observed in the experiment, has a V-shaped geometry stabilized by N–H···N and C–H···N hydrogen bonding interactions, as well as C–H···π and π···π dispersion interactions. The geometry of the trimer has been found to be a cyclic one stabilized by N–H···N, N–H···π, C–H···π, and C–H···N interactions. The most important finding of this current study is the observation of the mixed dimer and trimer, which are stabilized by hydrogen bonding as well as dispersion interactions.

  8. Magnetic and dielectric properties of one-dimensional array of S = 1/2 linear trimer system Na{sub 2}Cu{sub 3}Ge{sub 4}O{sub 12}

    SciTech Connect

    Yasui, Yukio; Kawamura, Yuji; Kobayashi, Yoshiaki; Sato, Masatoshi

    2014-05-07

    Magnetic susceptibility χ, specific heat C, capacitance C{sub p}, and {sup 23}Na-NMR measurements have been carried out on polycrystalline samples of quantum spin linear trimer system Na{sub 2}Cu{sub 3}Ge{sub 4}O{sub 12}, which has the one-dimensional array of Cu{sub 3}O{sub 8} trimers formed of edge-sharing three CuO{sub 4} square planes. The exchange interactions between the Cu{sup 2+} (S = 1/2) spins have been determined by analyzing χ-T and C-T curves. By employing the isolated S = 1/2 Heisenberg trimer model above 70 K, the nearest-neighbor exchange couplings J{sub 1} and the second-neighbor one J{sub 2} in trimer have been evaluated to J{sub 1}/k{sub B} = 30 ± 20 K (antiferromagnetic) and J{sub 2}/k{sub B} = 340 ± 20 K. At low temperature region, two spins of the edge in the Cu{sub 3}O{sub 8} trimers form a nonmagnetic singlet by strong antiferromagnetic interaction J{sub 2}, and the spin left in the center of the Cu{sub 3}O{sub 8} trimer forms one-dimensional chains by the exchange interaction J{sub 3} between the trimers. By employing the S = 1/2 uniform Heisenberg chain model below 70 K, we have evaluated to J{sub 3}/k{sub B} = 18 ± 1 K. The mechanism of multiferroic behavior at T{sub c} = 2 K is discussed.

  9. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016.

  10. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    PubMed

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.

  11. β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+) pathway in xenopus gastrulation.

    PubMed

    Seitz, Katharina; Dürsch, Verena; Harnoš, Jakub; Bryja, Vitezslav; Gentzel, Marc; Schambony, Alexandra

    2014-01-01

    β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+) cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+) pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+) signaling cascade upstream of Protein Kinase C (PKC) and Ca(2+)/Calmodulin-dependent Protein Kinase II (CamKII). We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+) signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.

  12. An Evolutionarily Conserved Family of Virion Tail Needles Related to Bacteriophage P22 gp26: Correlation between Structural Stability and Length of the -Helical Trimeric Coiled Coil

    SciTech Connect

    Bhardwaj, A.; Walker-Kopp, N; Casjens, S; Cingolani, G

    2009-01-01

    Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution. All gp26-like factors contain an elongated {alpha}-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 {angstrom}. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 C. To determine how the structural stability of these phage fibers correlates with the length of the {alpha}-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the {alpha}-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the {alpha}-helical core.

  13. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. PMID:27016043

  14. Homo-trimeric Structure of the Type IVb Minor Pilin CofB Suggests Mechanism of CFA/III Pilus Assembly in Human Enterotoxigenic Escherichia coli.

    PubMed

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Yoshida, Takuya; Imai, Tomoya; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Iida, Tetsuya; Ohkubo, Tadayasu; Nakamura, Shota

    2016-03-27

    In gram-negative bacteria, the assembly of type IV pilus (T4P) and the evolutionally related pseudopilus of type II secretion system involves specialized structural proteins called pilins and pseudopilins, respectively, and is dynamically regulated to promote bacterial pathogenesis. Previous studies have suggested that a structural "tip"-like hetero-complex formed through the interaction of at least three minor (pseudo) pilins plays an important role in this process, while some members of the pathogenic type IVb subfamily are known to have only one such minor pilin subunit whose function is still unknown. Here, we determined the crystal structure of the type IVb minor pilin CofB of colonization factor antigen/III from human enterotoxigenic Escherichia coli at 1.88-Å resolution. The crystal structure, in conjunction with physicochemical analysis in solution, reveals a symmetrical homo-trimeric arrangement distinct from the hetero-complexes of minor (pseudo) pilins observed in other T4P and type II secretion systems. Each CofB monomer adopts a unique three-domain architecture, in which the C-terminal β-sheet-rich lectin domain can effectively initiate trimer association of its pilin-like N-terminal domain through extensive hydrophobic interactions followed by domain swapping at the central hinge-like domain. Deletion of cofB produces a phenotype with no detectable pili formation on the cell surface, while molecular modeling indicates that the characteristic homo-trimeric structure of CofB is well situated at the pilus tip of colonization factor antigen/III formed by the major pilin CofA, suggesting a role for the minor pilin in the efficient initiation of T4P assembly. PMID:26876601

  15. Homo-trimeric Structure of the Type IVb Minor Pilin CofB Suggests Mechanism of CFA/III Pilus Assembly in Human Enterotoxigenic Escherichia coli.

    PubMed

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Yoshida, Takuya; Imai, Tomoya; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Iida, Tetsuya; Ohkubo, Tadayasu; Nakamura, Shota

    2016-03-27

    In gram-negative bacteria, the assembly of type IV pilus (T4P) and the evolutionally related pseudopilus of type II secretion system involves specialized structural proteins called pilins and pseudopilins, respectively, and is dynamically regulated to promote bacterial pathogenesis. Previous studies have suggested that a structural "tip"-like hetero-complex formed through the interaction of at least three minor (pseudo) pilins plays an important role in this process, while some members of the pathogenic type IVb subfamily are known to have only one such minor pilin subunit whose function is still unknown. Here, we determined the crystal structure of the type IVb minor pilin CofB of colonization factor antigen/III from human enterotoxigenic Escherichia coli at 1.88-Å resolution. The crystal structure, in conjunction with physicochemical analysis in solution, reveals a symmetrical homo-trimeric arrangement distinct from the hetero-complexes of minor (pseudo) pilins observed in other T4P and type II secretion systems. Each CofB monomer adopts a unique three-domain architecture, in which the C-terminal β-sheet-rich lectin domain can effectively initiate trimer association of its pilin-like N-terminal domain through extensive hydrophobic interactions followed by domain swapping at the central hinge-like domain. Deletion of cofB produces a phenotype with no detectable pili formation on the cell surface, while molecular modeling indicates that the characteristic homo-trimeric structure of CofB is well situated at the pilus tip of colonization factor antigen/III formed by the major pilin CofA, suggesting a role for the minor pilin in the efficient initiation of T4P assembly.

  16. Effects of the I559P gp41 Change on the Conformation and Function of the Human Immunodeficiency Virus (HIV-1) Membrane Envelope Glycoprotein Trimer

    PubMed Central

    Sodroski, Joseph; Finzi, Andrés

    2015-01-01

    The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P

  17. A DFT study on the role of long range correlation interaction and solvent effects in homochiral and heterochiral cyclic trimerization of imidazole based heterocyclic amino acids.

    PubMed

    Kumar, N V Suresh

    2016-06-01

    Using B3LYP and B97D functionals of density functional theory (DFT), homochiral and heterochiral cyclic trimerization of imidazole based heterocyclic amino acids are studied in gas phase and solvent phase, i. e., Acetonitrile. Both the functionals show that formation of homochiral cyclic tripeptide is thermodynamically and kinetically favorable over its heterochiral counterpart in gas phase. The functional, B97D, decreases the height of reaction barriers significantly compared to those predicted by the functional B3LYP. The reaction pathways explored using PCM implicit solvent model show reduced kinetic favorability for formation of the homochiral cyclic tripeptide over its heterochiral counterpart. The results are substantiated by structural aspects. PMID:27221744

  18. Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3

    NASA Astrophysics Data System (ADS)

    Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.

    2015-06-01

    We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.

  19. The crystal structure of the calcium-bound con-G[Q6A] peptide reveals a novel metal-dependent helical trimer

    SciTech Connect

    Cnudde, Sara E.; Prorok, Mary; Jia, Xaofei; Castellino, Francis J.; Geiger, James H.

    2012-02-15

    The ability to form and control both secondary structure and oligomerization in short peptides has proven to be challenging owing to the structural instability of such peptides. The conantokin peptides are a family of {gamma}-carboxyglutamic acid containing peptides produced in the venoms of predatory sea snails of the Conus family. They are examples of short peptides that form stable helical structures, especially in the presence of divalent cations. Both monomeric and dimeric conantokin peptides have been identified and represent a new mechanism of helix association, 'the metallozipper motif' that is devoid of a hydrophobic interface between monomers. In the present study, a parallel/antiparallel three-helix bundle was identified and its crystal structure determined at high resolution. The three helices are almost perfectly parallel and represent a novel helix-helix association. The trimer interface is dominated by metal chelation between the three helices, and contains no interfacial hydrophobic interactions. It is now possible to produce stable monomeric, dimeric, or trimeric metallozippers depending on the peptide sequence and metal ion. Such structures have important applications in protein design.

  20. Experimental and theoretical study on gas-phase ion/molecule reactions of silver trimer cation, Ag{sub 3}{sup +}, with 12-crown-4

    SciTech Connect

    Kumondai, Kousuke; Toyoda, Michisato; Ishihara, Morio; Katakuse, Itsuo; Takeuchi, Takae; Ikeda, Mai; Iwamoto, Kenichi

    2005-07-08

    The reaction mechanisms of silver trimer cation, Ag{sub 3}{sup +}, with 12-crown-4 (12C4) were studied experimentally and theoretically. Using a cylindrical ion trap time-of-flight mass spectrometer, gas-phase ion/molecule reactions of Ag{sub 3}{sup +} with 12C4 were observed. Metal-ligand complexes of [Ag(12C4)]{sup +}, [Ag{sub 3}(12C4)]{sup +} and [Ag{sub 3}(12C4){sub 2}]{sup +}, and of [Ag(12C4){sub 2}]{sup +} and [Ag{sub 3}(12C4){sub 3}]{sup +}, were observed as the reaction intermediates and terminal products, respectively. The formations of the [Ag(12C4)]{sup +} and [Ag(12C4){sub 2}]{sup +} complexes indicated that the neutral dimer (Ag{sub 2}) had been eliminated from the trimer cation. From the results of ab initio calculations at the HF/LanL2DZ level of theory and the experiments, it is suggested that three 12C4 molecules can attach to Ag{sub 3}{sup +} through consecutive reactions and that neutral Ag{sub 2} can be easily eliminated from [Ag{sub 3}(12C4)]{sup +}.

  1. Femtosecond X-ray solution scattering reveals that bond formation mechanism of a gold trimer complex is independent of excitation wavelength.

    PubMed

    Kim, Kyung Hwan; Kim, Jong Goo; Oang, Key Young; Kim, Tae Wu; Ki, Hosung; Jo, Junbeom; Kim, Jeongho; Sato, Tokushi; Nozawa, Shunsuke; Adachi, Shin-Ichi; Ihee, Hyotcherl

    2016-07-01

    The [Au(CN)2 (-)]3 trimer in water experiences a strong van der Waals interaction between the d(10) gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S1 structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors. PMID:27191012

  2. Catalytic trimerization of aromatic nitriles and triaryl-s-triazine ring cross-linked high temperature resistant polymers and copolymers made thereby

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1979-01-01

    Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.

  3. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. 'Superior' white table grapes.

    PubMed

    González-Barrio, Rocío; Beltrán, David; Cantos, Emma; Gil, María I; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2006-06-14

    Postharvest treatment of seedless white table grapes (var. 'Superior') with different gas ozone concentrations (3.88 and 1.67 g/h) for 1, 3, and 5 h induced an increase in stilbenoid biosynthesis [trans-resveratrol, piceatannol, and viniferinas (resveratrol dehydrodimers and dehydrotrimers)] during storage at 22 degrees C and 95% relative humidity. The maximal resveratrol concentration was reached after 2 days of storage, and this amount was similar to that induced by optimized UV-C treatments (1 min, 510 W, 40 cm). Although similar resveratrol concentrations accumulated in grapes after both UV-C and O3 treatments (maximum ozone production and time), the ozone treatment was more efficient in inducing viniferins accumulation in grape berries. A sequence in the biosynthesis of stilbenoids was observed, starting with the resveratrol monomer, continuing with the resveratrol dehydrodimers epsilon-viniferin and delta-viniferin, and ending with four different resveratrol dehydrotrimers. These trimers were different from alpha-viniferin, a trimer previously reported to be induced in grapes after biotic and abiotic stresses. Two alpha-viniferin isomers were also detected in the ozone-treated grapes, although at very low concentrations that prevented their quantification. PMID:16756350

  4. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles.

    PubMed

    Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2015-02-14

    Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties. PMID:25559389

  5. X-ray Crystallographic Structures of a Trimer, Dodecamer, and Annular Pore Formed by an Aβ17-36 β-Hairpin.

    PubMed

    Kreutzer, Adam G; Hamza, Imane L; Spencer, Ryan K; Nowick, James S

    2016-04-01

    High-resolution structures of oligomers formed by the β-amyloid peptide Aβ are needed to understand the molecular basis of Alzheimer's disease and develop therapies. This paper presents the X-ray crystallographic structures of oligomers formed by a 20-residue peptide segment derived from Aβ. The development of a peptide in which Aβ17-36 is stabilized as a β-hairpin is described, and the X-ray crystallographic structures of oligomers it forms are reported. Two covalent constraints act in tandem to stabilize the Aβ17-36 peptide in a hairpin conformation: a δ-linked ornithine turn connecting positions 17 and 36 to create a macrocycle and an intramolecular disulfide linkage between positions 24 and 29. An N-methyl group at position 33 blocks uncontrolled aggregation. The peptide readily crystallizes as a folded β-hairpin, which assembles hierarchically in the crystal lattice. Three β-hairpin monomers assemble to form a triangular trimer, four trimers assemble in a tetrahedral arrangement to form a dodecamer, and five dodecamers pack together to form an annular pore. This hierarchical assembly provides a model, in which full-length Aβ transitions from an unfolded monomer to a folded β-hairpin, which assembles to form oligomers that further pack to form an annular pore. This model may provide a better understanding of the molecular basis of Alzheimer's disease at atomic resolution.

  6. Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party

    PubMed Central

    Maiques, Elisa; Quiles-Puchalt, Nuria; Donderis, Jorge; Ciges-Tomas, J. Rafael; Alite, Christian; Bowring, Janine Z.; Humphrey, Suzanne; Penadés, José R.; Marina, Alberto

    2016-01-01

    We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions. PMID:27112567

  7. Antiferromagnetic three-dimensional order induced by carboxylate bridges in a two-dimensional network of [Cu3(dcp)2(H2O)4] trimers.

    PubMed

    King, Philippa; Clérac, Rodolphe; Anson, Christopher E; Coulon, Claude; Powell, Annie K

    2003-06-01

    A new Cu(II) complex, [Cu(3)(dcp)(2)(H(2)O)(4)](n), with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H(3)dcp) has been prepared by hydrothermal synthesis, and it crystallizes in the monoclinic space group P2(1)/c with a = 11.633(2) A, b = 9.6005(14) A, c = 6.9230(17) A, beta = 106.01(2) degrees, and Z = 2. In the solid state structure of [Cu(3)(dcp)(2)(H(2)O)(4)](n), trinuclear [Cu(3)(dcp)(2)(H(2)O)(4)] repeating units in which two dcp(3-) ligands chelate the three Cu(II) ions with the central Cu(II) ion, Cu(1) (on an inversion center), link to form infinite 2D sheets via syn-anti equatorial-equatorial carboxylate bridges between Cu(2) atoms in adjacent trimers. These layers are further linked by syn-anti axial-equatorial carboxylate bridging between Cu(1) atoms in adjacent sheets resulting in the formation of a crystallographic 3D network. A detailed analysis of the magnetic properties of [Cu(3)(dcp)(2)(H(2)O)(4)](n) reveals that the dcp(3-) ligand acts to link Cu(II) centers in three different ways with coupling constants orders of magnitude apart in value. In the high temperature region above 50 K, the dominant interaction is strongly antiferromagnetic (J/k(B) = -32 K) within the trimer units mediated by the pyrazolate bridges. Below 20 K, the trimer motif can be modeled as an S = 1/2 unit. These units are coupled to their neighbors by a ferromagnetic interaction mediated by the syn-anti equatorial-equatorial carboxylate bridge. This interaction has been estimated at J(2D)/k(B) = +2.8 K on the basis of a 2D square lattice Heisenberg model. Finally, below 3.2 K a weak antiferromagnetic coupling (J(3D)/k(B) = -0.1 K) which is mediated by the syn-anti axial-equatorial carboxylate bridges between the 2D layers becomes relevant to describe the magnetic (T, H) phase diagram of this material.

  8. Magnetic Behavior of Volborthite Cu3 V2 O7 (OH )2.2 H2O Determined by Coupled Trimers Rather than Frustrated Chains

    NASA Astrophysics Data System (ADS)

    Janson, O.; Furukawa, S.; Momoi, T.; Sindzingre, P.; Richter, J.; Held, K.

    2016-07-01

    Motivated by recent experiments on volborthite single crystals showing a wide 1/3 -magnetization plateau, we perform microscopic modeling by means of density functional theory (DFT) with the single-crystal structural data as a starting point. Using DFT +U , we find four leading magnetic exchanges: antiferromagnetic J and J2, as well as ferromagnetic J' and J1. Simulations of the derived spin Hamiltonian show good agreement with the experimental low-field magnetic susceptibility and high-field magnetization data. The 1/3 -plateau phase pertains to polarized magnetic trimers formed by strong J bonds. An effective J →∞ model shows a tendency towards condensation of magnon bound states preceding the plateau phase.

  9. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Manakamana; Larsonneur, Fanny; Raks, Victoriia; Barras, Alexandre; Baumann, Jean-Sébastien; Martin, Fernando Ariel; Boukherroub, Rabah; Ghigo, Jean-Marc; Ortiz Mellet, Carmen; Zaitsev, Vladimir; Garcia Fernandez, Jose M.; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2015-01-01

    Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene ``click'' strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(i)-catalysed ``click'' reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding

  10. Mixed-stack architecture and solvatomorphism of trimeric perfluoro-ortho-phenylene mercury complexes with dithieno[3,2-b:2‧,3‧-d]thiophene

    NASA Astrophysics Data System (ADS)

    Castañeda, Raúl; Khrustalev, Victor N.; Fonari, Alexandr; Bredas, Jean-Luc; Getmanenko, Yulia A.; Timofeeva, Tatiana V.

    2015-11-01

    The formation of the mixed-stack donor-acceptor complex of dithieno [3,2-b:2‧,3‧-d]thiophene (1) and trimeric perfluoro-ortho-phenylene mercury (I) has been investigated under different conditions. Two solvatomorphs - mixed-stack complexes with a 1:1 donor-acceptor ratio and different solvent molecules in the solid state (dichloromethane (2) and dichloroethane (3)) have been obtained and characterized by experimental methods (FT-IR spectroscopy, differential thermogravimetric analysis, and X-ray crystallography) and quantum-chemical calculations at the density functional theory level. The differences in the solid state packing, thermal stability and potential charge-transfer properties of 2 and 3 are discussed.

  11. Intermolecular vibrational frequencies of the C-bonded CO2sbnd CO dimer and observation of Hesbnd CO2sbnd CO trimers

    NASA Astrophysics Data System (ADS)

    Barclay, A. J.; Sheybani-Deloui, S.; Michaelian, K. H.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2016-05-01

    Infrared spectra of the CO2sbnd CO dimer are observed in the carbon monoxide CO stretch region (≈2150 cm-1). Combination bands yield the first experimental determinations of intermolecular mode frequencies for the planar T-shaped C-bonded form ('isomer 1'): 24.34 cm-1 for the in-plane CO rock and 43.96 cm-1 for the out-of-plane CO rock. These values are significantly higher than the analogous modes of the O-bonded form ('isomer 2'), previously determined to be 14.19 and 22.68 cm-1, respectively. New results are also reported for both isomers of the 12C18O2-substituted form of the dimer. Weak 'satellite bands' observed for both isomers are tentatively assigned to the trimer Hesbnd CO2sbnd CO.

  12. The capsule polymerase CslB of Neisseria meningitidis serogroup L catalyzes the synthesis of a complex trimeric repeating unit comprising glycosidic and phosphodiester linkages.

    PubMed

    Litschko, Christa; Romano, Maria Rosaria; Pinto, Vittoria; Claus, Heike; Vogel, Ulrich; Berti, Francesco; Gerardy-Schahn, Rita; Fiebig, Timm

    2015-10-01

    Neisseria meningitidis is a human pathogen causing bacterial meningitis and sepsis. The capsular polysaccharide surrounding N. meningitidis is a major virulence factor. The capsular polysaccharide consists of polyhexosamine phosphates in N. meningitidis serogroups A and X. The capsule polymerases (CPs) of these serogroups are members of the Stealth protein family comprising d-hexose-1-phosphate transferases from bacterial and protozoan pathogens. CslA, one of two putative CPs of the pathophysiologically less relevant N. meningitidis serogroup L, is one of the smallest known Stealth proteins and caught our attention for structure-function analyses. Because the N. meningitidis serogroup L capsule polymer consists of a trimeric repeating unit ([→3)-β-d-GlcNAc-(1→3)-β-d-GlcNAc-(1→3)-α-d-GlcNAc-(1→OPO3→]n), we speculated that the two predicted CPs (CslA and CslB) work together in polymer production. Consequently, both enzymes were cloned, overexpressed, and purified as recombinant proteins. Contrary to our expectation, enzymatic testing identified CslB to be sufficient to catalyze the synthesis of the complex trimeric N. meningitidis serogroup L capsule polymer repeating unit. No polymerase activity was detected for CslA, although the enzyme facilitated the hydrolysis of UDP-GlcNAc. Bioinformatics analyses identified two glycosyltransferase (GT) domains in CslB. The N-terminal domain modeled with 100% confidence onto a number of GT-A folded proteins, whereas the C-terminal domain modeled with 100% confidence onto TagF, a GT-B folded teichoic acid polymerase from Staphylococcus epidermidis. Amino acid positions known to have critical catalytic functions in the template proteins were conserved in CslB, and their point mutation abolished enzyme activity. CslB represents an enzyme of so far unique complexity regarding both the catalyzed reaction and enzyme architecture.

  13. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure.

    PubMed

    Anand, Arvind; Luthra, Amit; Dunham-Ems, Star; Caimano, Melissa J; Karanian, Carson; LeDoyt, Morgan; Cruz, Adriana R; Salazar, Juan C; Radolf, Justin D

    2012-05-01

    Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.

  14. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer.

    PubMed

    Kong, Leopold; Torrents de la Peña, Alba; Deller, Marc C; Garces, Fernando; Sliepen, Kwinten; Hua, Yuanzi; Stanfield, Robyn L; Sanders, Rogier W; Wilson, Ian A

    2015-10-01

    The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody-gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design. PMID:26457433

  15. Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env

    PubMed Central

    Georgiev, Ivelin S.; Joyce, M. Gordon; Yang, Yongping; Sastry, Mallika; Zhang, Baoshan; Baxa, Ulrich; Chen, Rita E.; Druz, Aliaksandr; Lees, Christopher R.; Narpala, Sandeep; Schön, Arne; Van Galen, Joseph; Chuang, Gwo-Yu; Gorman, Jason; Harned, Adam; Pancera, Marie; Stewart-Jones, Guillaume B. E.; Cheng, Cheng; Freire, Ernesto; McDermott, Adrian B.; Mascola, John R.

    2015-01-01

    ABSTRACT Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. IMPORTANCE The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41

  16. Ferrimagnetic long-range order caused by periodicity of exchange interactions in the spin-1 trimer chain compounds ANi3P4O14 (A=Ca,Sr,Pb,Ba)

    NASA Astrophysics Data System (ADS)

    Hase, Masashi; Kitazawa, Hideaki; Tsujii, Naohito; Ozawa, Kiyoshi; Kohno, Masanori; Kido, Giyuu

    2006-07-01

    We report magnetic properties of ANi3P4O14 (A=Ca,Sr,Pb,Ba) . A spin-1 trimer chain with J1-J1-J2 interactions exists, where J1 and J2 denote two exchange interaction parameters. A magnetic phase transition occurs and a small spontaneous magnetization appears at low temperatures. The temperature dependence of magnetic susceptibility above the transition temperature and the magnetic-field dependence of magnetization in high magnetic fields are consistent with quantum Monte Carlo results for a spin model that consists of trimer chains with antiferromagnetic J1 and ferromagnetic J2 interactions. The small spontaneous magnetization is explainable qualitatively by ferrimagnetic long-range order in the chains and by imperfect cancellation of the net magnetic moments of the chains. To our knowledge, this is the first observation of ferrimagnetic long-range order whose origin is the periodicity of the exchange interactions in chains.

  17. Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys.

    PubMed Central

    Peeters, C C; Evenberg, D; Hoogerhout, P; Käyhty, H; Saarinen, L; van Boeckel, C A; van der Marel, G A; van Boom, J H; Poolman, J T

    1992-01-01

    Synthetic oligosaccharides derived from the capsular polysaccharide (PRP) of Haemophilus influenzae type b were conjugated to carrier proteins via a thioether linkage. Conjugates were made of trimeric and tetrameric ribose-ribitol-phosphate and tetanus toxoid or diphtheria toxin. All conjugates elicited anti-PRP antibody responses with an increasing immunoglobulin G/immunoglobulin M ratio in adult mice and monkeys. Trimer conjugates elicited lower anti-PRP antibody responses compared with tetramer conjugates. Adult monkeys responded equally well to the tetrameric oligosaccharide-tetanus toxoid conjugate as to the oligosaccharide-CRM197 conjugate (HbOC), which elicits protective levels of serum antibodies in human infants after two or three injections. PMID:1563770

  18. Cooperative binding of MgATP and MgADP in the trimeric P(II) protein GlnK2 from Archaeoglobus fulgidus.

    PubMed

    Helfmann, Sarah; Lü, Wei; Litz, Claudia; Andrade, Susana L A

    2010-09-10

    P(II)-like proteins, such as GlnK, found in a wide variety of organisms from prokaryotes to plants constitute a family of cytoplasmic signaling proteins that play a central regulatory role in the assimilation of nitrogen for biosyntheses. They specifically bind and are modulated by effector molecules such as adenosine triphosphate, adenosine diphosphate and 2-oxoglutarate. Their highly conserved, trimeric structure suggests that cooperativity in effector binding might be the basis for the ability to integrate and respond to a wide range of concentrations, but to date no direct quantification of this cooperative behavior has been presented. The hyperthermophilic archaeon Archaeoglobus fulgidus contains three GlnK proteins, functionally associated with ammonium transport proteins (Amt). We have characterized GlnK2 and its interaction with effectors by high-resolution X-ray crystallography and isothermal titration calorimetry. Binding of adenosine nucleotides resulted in distinct, cooperative behavior for ATP and ADP. While 2-oxoglutarate has been shown to interact with other GlnK proteins, GlnK2 was completely insensitive to this key indicator of a low level of intracellular nitrogen. These findings point to different regulation and modulation patterns and add to our understanding of the flexibility and versatility of the GlnK family of signaling proteins.

  19. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    NASA Astrophysics Data System (ADS)

    Bréchignac, Philippe; Garcia, Gustavo A.; Falvo, Cyril; Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony; Parneix, Pascal; Pino, Thomas; Pirali, Olivier; Mulas, Giacomo; Nahon, Laurent

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  20. A novel trimeric Zn (II) complex based on 8-hydroxyquinoline with trifluoromethylbenzene group: Synthesis, crystal structure, photophysical properties and DNA binding

    NASA Astrophysics Data System (ADS)

    Huo, Yanping; Wang, Chunquan; Lu, Jiguo; Hu, Sheng; Li, Xiaoyang; Zhang, Li

    2015-10-01

    A novel 2-substituted-8-hydroxyquinoline ligand (E)-2-[2-(4-trifluoromethylphenyl)ethenyl]-8-hydroxyquinoline (3, HL) was synthesized and characterized by ESI-MS, NMR spectroscopy and elemental analysis. Using solvothermal method, a trimeric complex [Zn3L6] (4) was fabricated by self-assembly of Zn(II) ions with 3. X-ray structural analysis shows that 4 exhibits a trinuclear core, which was bridged and encapsulated by six 8-hydroxyquinolinate-based ligands. The supramolecular structure of 4 features a lamellar solid constructed by aromatic stacking interactions and nonclassical C-H···F hydrogen bonds derived from 4-trifluoromethylphenyl group of the 3. The coordination behavior of zinc salt and 3 in solution was performed by 1H NMR, UV-vis and Photoluminescence (PL). The experimental results show that the complex 4 emits yellow luminescence in the solid state. To investigate its properties further, we also studied the thermal stability, photophysical properties (fluorescent emission, lifetime) of complex 4, and the interactions between 4 and C60 or EtBr-DNA system.

  1. The BtaF Trimeric Autotransporter of Brucella suis Is Involved in Attachment to Various Surfaces, Resistance to Serum and Virulence

    PubMed Central

    Ruiz-Ranwez, Verónica; Posadas, Diana M.; Estein, Silvia M.; Abdian, Patricia L.; Martin, Fernando A.; Zorreguieta, Angeles

    2013-01-01

    The adhesion of bacterial pathogens to host cells is an event that determines infection, and ultimately invasion and intracellular multiplication. Several evidences have recently shown that this rule is also truth for the intracellular pathogen Brucella. Brucella suis displays the unipolar BmaC and BtaE adhesins, which belong to the monomeric and trimeric autotransporter (TA) families, respectively. It was previously shown that these adhesins are involved in bacterial adhesion to host cells and components of the extracellular matrix (ECM). In this work we describe the role of a new member of the TA family of B. suis (named BtaF) in the adhesive properties of the bacterial surface. BtaF conferred the bacteria that carried it a promiscuous adhesiveness to various ECM components and the ability to attach to an abiotic surface. Furthermore, BtaF was found to participate in bacterial adhesion to epithelial cells and was required for full virulence in mice. Similar to BmaC and BtaE, the BtaF adhesin was expressed in a small subpopulation of bacteria, and in all cases, it was detected at the new pole generated after cell division. Interestingly, BtaF was also implicated in the resistance of B. suis to porcine serum. Our findings emphasize the impact of TAs in the Brucella lifecycle. PMID:24236157

  2. Recruitment of trimeric proliferating cell nuclear antigen by G1-phase cyclin-dependent kinases following DNA damage with platinum-based antitumour agents

    PubMed Central

    He, G; Kuang, J; Koomen, J; Kobayashi, R; Khokhar, A R; Siddik, Z H

    2013-01-01

    Background: In cycling tumour cells, the binary cyclin-dependent kinase Cdk4/cyclin D or Cdk2/cyclin E complex is inhibited by p21 following DNA damage to induce G1 cell-cycle arrest. However, it is not known whether other proteins are also recruited within Cdk complexes, or their role, and this was investigated. Methods: Ovarian A2780 tumour cells were exposed to the platinum-based antitumour agent 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) (DAP), which preferentially induces G1 arrest in a p21-dependent manner. The Cdk complexes were analysed by gel filtration chromatography, immunoblot and mass spectrometry. Results: The active forms of Cdk4 and Cdk2 complexes in control tumour cells have a molecular size of ∼140 kDa, which increased to ∼290 kDa when inhibited following G1 checkpoint activation by DAP. Proteomic analysis identified Cdk, cyclin, p21 and proliferating cell nuclear antigen (PCNA) in the inhibited complex, and biochemical studies provided unequivocal evidence that the increase in ∼150 kDa of the inhibited complex is consistent with p21-dependent recruitment of PCNA as a trimer, likely bound to three molecules of p21. Although p21 alone was sufficient to inhibit the Cdk complex, PCNA was critical for stabilising p21. Conclusion: G1 Cdk complexes inhibited by p21 also recruit PCNA, which inhibits degradation and, thereby, prolongs activity of p21 within the complex. PMID:24104967

  3. Evidence from studies with hepatocyte suspensions that store-operated Ca2+ inflow requires a pertussis toxin-sensitive trimeric G-protein.

    PubMed Central

    Fernando, K C; Barritt, G J

    1994-01-01

    The role of heterotrimeric GTP-binding proteins in the process of store-operated Ca2+ inflow in hepatocytes was investigated by testing the ability of pertussis toxin to inhibit thapsigargin- and 2,5-di-tert-butylhydroquinone (DBHQ)-induced bivalent cation inflow. Hepatocytes isolated from rats treated with pertussis toxin for 24 h exhibited markedly inhibited rates of both Ca2+ and Mn2+ inflow when these were stimulated by vasopressin, angiotension II, epidermal growth factor, thapsigargin and DBHQ. Pertussis toxin had little effect on the basal intracellular free Ca2+ concentration ([Ca2+]i), basal rates of Ca2+ and Mn2+ inflow, the abilities of vasopressin, angiotensin II, thapsigargin and DBHQ to induce the release of Ca2+ from intracellular stores, and the maximum value of [Ca2+]i reached following agonist-induced release of Ca2+ from intracellular stores. It is concluded that store-operated Ca2+ inflow in hepatocytes employs a slowly ADP-ribosylated trimeric GTP-binding protein and is the physiological mechanism, or one of the physiological mechanisms, by which vasopressin and angiotensin stimulate plasma membrane Ca2+ inflow in this cell type. PMID:7980392

  4. Preparation of Methylated Products of A-type Procyanidin Trimers in Cinnamon Bark and Their Protective Effects on Pancreatic β-Cell.

    PubMed

    Chen, Lu; Chen, Liang; Wang, Ting; Yuan, Pulong; Chen, Kaixian; Jia, Qi; Wang, Heyao; Li, Yiming

    2016-05-01

    Polyphenols are partial metabolized to methylated conjugations in vivo, and then could modify bioavailability and bioactivity related to the uptake of parent compounds. Our previous studies have found that the antidiabetic effects of cinnamon barks are mainly related to polyphenol components, particularly A-type procyanidin trimer cinnamtannin-1 (CT1). It is necessary to understand the antidiabetic activity of methylations of CT1, nevertheless, sufficient amounts of methylated CT1 are difficult to obtain from metabolites in vivo. In this study, O-methyl derivatives of CT1 were prepared through one-pot methyl iodide reaction and isolation via column chromatography and RP-HPLC semipreparation. The structures of O-methyl substituents were determined through NMR (Nuclear Magnetic Resonance) and HPLC-ESI-MS (High-performance liquid chromatography-electrospray ionization-mass spectrometry). Five purified O-methyl substituents and 2 isomers of CT1 were obtained. Their protective effects on a palmitic acid-induced pancreatic β-cell apoptosis model were then evaluated. Results showed that the protective effects on pancreatic β-cell of O-methyl substituents were weaker than those of CT1. The results suggested that the methylation of catechol groups could be a relevant factor contributing to the decline of protective effects on pancreatic β-cell of CT1 via obstructing quinone intermediate formation and affecting antioxidant abilities. The antidiabetic effects of O-methyl derivatives of CT1 should be further determined by other antidiabetic models. PMID:27074527

  5. Major and minor groove conformations of DNA trimers modified on guanine or adenine by 4-aminobiphenyl: Adenine adducts favor the minor groove

    SciTech Connect

    Shapiro, R.; Ellis, S.; Hingerty, B.E.

    1995-01-01

    We have studied the conformational effects of 4-aminobiphenyl modification at C-8 of guanine or adenine on double-stranded DNA trimers. We used sequences with the modified purine at the central base pair and all 16 possible neighboring sequences at the outer pairs. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to survey the conformation space of these adducts, using a total of 1280 starting structures both in the modified guanine series and in the modified adenine series. Conformer families in which the bound 4-aminobiphenyl was located in the DNA major groove, and in the minor groove, were located for both adenine and guanine modification. In the modified guanine series, the major and minor groove families were roughly comparable in energy, and the sequence context determined which was more stable in a particular case. In the modified adenine series, however, the minor groove structure was more that 10 kcal/mol more stable than the major groove for all sequences. As a result, minor groove adducts provided most of the global minima in the adenine-modified series. This result may be relevant to a previous mutagenesis study [Lasko et al. (1988) J. Biol. Chem. 263, 15429-15435] in which the hot spot of most frequent occurrence was located at an adenine, in the sequence GAT. 25 refs., 9 figs., 4 tabs.

  6. Low-lying electronic states in bismuth trimer Bi₃ as revealed by laser-induced NIR emission spectroscopy in solid Ne.

    PubMed

    Wakabayashi, Tomonari; Wada, Yoriko; Nakajima, Kyo; Morisawa, Yusuke; Kuma, Susumu; Miyamoto, Yuki; Sasao, Noboru; Yoshimura, Motohiko; Sato, Tohru; Kawaguchi, Kentarou

    2015-03-19

    Laser-induced near-infrared (NIR) emission spectra of neutral bismuth timer, Bi₃, embedded in solid neon matrixes at 3 K were recorded in a range 870-1670 nm. Using photoexcitation with low energy photons at 1064 nm, two emission band systems were newly identified by their origin bands at T₀ = 6600 and 8470 cm⁻¹. Accordingly, spectral assignment for three NIR emission band systems reported recently was partly revised for the one with its origin band at T₀ = 7755 cm⁻¹ and reconfirmed for the others at T₀ = 9625 and 11,395 cm⁻¹. Energy splitting by spin-orbit coupling between the pair of electronic energy levels in the ground state of bismuth trimer, Bi₃, both having a totally symmetric vibrational mode of frequency at ω(e)" = 150 cm⁻¹, was determined to be 1870 ± 1.5 cm⁻¹. Transitions from the pair of electronically excited states, locating at T₀ = 8470 and 9625 cm⁻¹ above the ground state and separated by spin–orbit coupling of 1155 cm⁻¹, have relatively long decay constants of τ ∼0.2 and ∼0.1 ms, respectively. PMID:25357154

  7. SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection ▿ †

    PubMed Central

    Raghunathan, Dhaarini; Wells, Timothy J.; Morris, Faye C.; Shaw, Robert K.; Bobat, Saeeda; Peters, Sarah E.; Paterson, Gavin K.; Jensen, Karina Tveen; Leyton, Denisse L.; Blair, Jessica M. A.; Browning, Douglas F.; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R.; Moraes, Claudia T. P.; Piazza, Roxane M. F.; Maskell, Duncan J.; Webber, Mark A.; May, Robin C.; MacLennan, Calman A.; Piddock, Laura J.; Cunningham, Adam F.; Henderson, Ian R.

    2011-01-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella. PMID:21859856

  8. Two new proanthocyanidin trimers isolated from Cistus incanus L. demonstrate potent anti-inflammatory activity and selectivity to cyclooxygenase isoenzymes inhibition.

    PubMed

    Mansoor, K A; Matalka, K Z; Qa'dan, F S; Awad, R; Schmidt, M

    2016-09-01

    Two new proanthocyanidin trimers have been isolated from Cistus incanus herb; gallocatechin-(4α→6)-gallocatechin-(4α→8)-gallocatechin (compound 1) and epigallocatechin-3-O-gallate-(4ß→8)-epigallocatechin-3-O-gallate-(4ß→8)-gallocatechin (compound 2). The structures were determined on the basis of 1D- and 2D-NMR (HSQC, HMBC) of their peracetylated derivatives, MALDI-TOF-MS and by acid-catalysed degradation with phloroglucinol. A more abundant proanthocyanidin oligomer was also isolated, purified and its chemical constitution studied by (13)C-NMR and phloroglucinol degradation. The mean molecular weight of the polymer was estimated to be about 7 to 8 flavan-3-ol-units with a ratio of procyanidin : prodelphinidin units at 1:5, some of which are derivatised by gallic acid. Water extract and higher oligomeric proanthocyanidin fractions of C. incanus significantly inhibited TPA-induced oedema when applied topically at doses of 0.5 and 1 mg/ear in mice. Furthermore, the extracts and the pure compounds inhibited COX-1 and COX-2 activities. In addition, compound 2 exhibited an IC50 of 4.5 μM against COX-2 indicating its high selectivity towards COX-2. PMID:26414773

  9. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    SciTech Connect

    Bréchignac, Philippe Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier; Garcia, Gustavo A.; Nahon, Laurent; Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony; Mulas, Giacomo

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  10. BtaE, an Adhesin That Belongs to the Trimeric Autotransporter Family, Is Required for Full Virulence and Defines a Specific Adhesive Pole of Brucella suis

    PubMed Central

    Ruiz-Ranwez, Verónica; Posadas, Diana M.; Van der Henst, Charles; Estein, Silvia M.; Arocena, Gastón M.; Abdian, Patricia L.; Martín, Fernando A.; Sieira, Rodrigo; De Bolle, Xavier

    2013-01-01

    Brucella is responsible for brucellosis, one of the most common zoonoses worldwide that causes important economic losses in several countries. Increasing evidence indicates that adhesion of Brucella spp. to host cells is an important step to establish infection. We have previously shown that the BmaC unipolar monomeric autotransporter mediates the binding of Brucella suis to host cells through cell-associated fibronectin. Our genome analysis shows that the B. suis genome encodes several additional potential adhesins. In this work, we characterized a predicted trimeric autotransporter that we named BtaE. By expressing btaE in a nonadherent Escherichia coli strain and by phenotypic characterization of a B. suis ΔbtaE mutant, we showed that BtaE is involved in the binding of B. suis to hyaluronic acid. The B. suis ΔbtaE mutant exhibited a reduction in the adhesion to HeLa and A549 epithelial cells compared with the wild-type strain, and it was outcompeted by the wild-type strain in the binding to HeLa cells. The knockout btaE mutant showed an attenuated phenotype in the mouse model, indicating that BtaE is required for full virulence. BtaE was immunodetected on the bacterial surface at one cell pole. Using old and new pole markers, we observed that both the BmaC and BtaE adhesins are consistently associated with the new cell pole, suggesting that, in Brucella, the new pole is functionally differentiated for adhesion. This is consistent with the inherent polarization of this bacterium, and its role in the invasion process. PMID:23319562

  11. Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer.

    PubMed

    Olsen, Jeppe

    2015-09-21

    A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing the CI-vector in a bi-orthonormal basis, thereby drastically reducing the computational complexity. A new non-orthogonal orbital optimization method that employs exponential mappings is also described. To allow non-orthogonal transformations of the orbitals, the standard exponential mapping using anti-symmetric operators is supplemented with an exponential mapping based on a symmetric operator in the active orbital space. Expressions are obtained for the orbital gradient and Hessian, which involve the calculation of at most two-body density matrices, thereby avoiding the time-consuming calculation of the three- and four-body density matrices of the previous approaches. An approach that completely avoids the calculation of any four-body terms with limited degradation of convergence is also devised. The novel methods for non-orthogonal configuration interaction and orbital optimization are applied to the chromium dimer and trimer. For internuclear distances that are typical for chromium clusters, it is shown that a reference configuration consisting of optimized singly occupied active orbitals is sufficient to give a potential curve that is in qualitative agreement with complete active space self-consistent field (CASSCF) calculations containing more than 500 × 10(6) determinants. To obtain a potential curve that deviates from the CASSCF curve by less than 1 mHartree, it is sufficient to add single and double excitations out from the reference configuration. PMID:26395682

  12. Binary supramolecular adduct based upon trimeric perfluoro-ortho-phenylenemercury and 4-chlorobenzaldehyde: Enumerating the strength of perfluorophenyl-perfluorophenyl interactions

    NASA Astrophysics Data System (ADS)

    Fisher, Steven P.; Krueger, Herman R.; Groeneman, Ryan H.; Reinheimer, Eric W.

    2016-01-01

    Due to its proximity of Hg(II) atoms, electron-withdrawing properties and inherent accessibility to electrophilic sites on the molecular surface, trimeric perfluoro-ortho-phenylenemercury, (o-C6F4Hg)3, has demonstrated a capacity to form supramolecular adducts with a variety of neutral and anionic substrates. Often within these complexes the Lewis acid, (o-C6F4Hg)3, interacts with a Lewis base rather than itself in the solid state via various supramolecular interactions. Among these, perfluorophenyl-perfluorophenyl interactions have been utilized in the construction of various supramolecular materials; however, within these molecular complexes, this category of non-covalent interaction is not often observed. Even though these perfluorophenyl-perfluorophenyl interactions have been used to produce new materials, their overall strength has not been generally reported in the literature. In this contribution, we highlight not only the synthesis, structural and spectroscopic properties of a novel binary supramolecular adduct between (o-C6F4Hg)3 and 4-chlorobenzaldehyde (4-ClBA) [(o-C6F4Hg)3(4-ClBA)] 1, but also report on the overall strength of the perfluorophenyl-perfluorophenyl interaction energies determined by means of computational chemistry. The carbonyl group of the 4-ClBA substrate was found to interact with all three mercury atoms within (o-C6F4Hg)3 via Hg⋯O contacts. An infrared spectroscopic analysis of 1 demonstrated a lower wavenumber for the carbonyl stretching frequency when compared to that for the free substrate confirming the presence of these Hg⋯O interactions.

  13. The catalytic effect of water, water dimers and water trimers on H2S + (3)O2 formation by the HO2 + HS reaction under tropospheric conditions.

    PubMed

    Zhang, Tianlei; Yang, Chen; Feng, Xukai; Kang, Jiaxin; Song, Liang; Lu, Yousong; Wang, Zhiyin; Xu, Qiong; Wang, Wenliang; Wang, Zhuqing

    2016-06-29

    In this article, the reaction mechanisms of H2S + (3)O2 formation by the HO2 + HS reaction without and with catalyst X (X = H2O, (H2O)2 and (H2O)3) have been investigated theoretically at the CCSD(T)/6-311++G(3df,2pd)//B3LYP/6-311+G(2df,2p) level of theory, coupled with rate constant calculations by using conventional transition state theory. Our results show that in the presence of catalyst X (X = H2O, (H2O)2 and (H2O)3) into the channel of H2S + (3)O2 formation, the reactions between the SH radical and HO2(H2O)n (n = 1-3) complexes are more favorable than the corresponding reactions of the HO2 radical with HS(H2O)n (n = 1-3) complexes due to the lower barrier of the former reactions and the higher concentrations of HO2(H2O)n (n = 1-3) complexes. Meanwhile, the catalytic effect of water, water dimers and water trimers is mainly taken from the contribution of a single water vapor molecule, since the total effective rate constant of HO2H2O + HS and H2OHO2 + HS reactions was, respectively, larger by 7-9 and 9-12 orders of magnitude than that of SH + HO2(H2O)2 and SH + HO2(H2O)3 reactions. Besides, the enhancement factor of water vapor is only 0.37% at 240 K, while at high temperatures, such as 425 K, the positive water vapor effect is enhanced up to 38.00%, indicating that at high temperatures the positive water effect is obvious under atmospheric conditions. Overall, these results show how water and water clusters catalyze the gas phase reactions under atmospheric conditions.

  14. Generation of a soluble recombinant trimeric form of bovine CD40L and its potential use as a vaccine adjuvant in cows.

    PubMed

    Pujol, Julien; Bouillenne, Fabrice; Farnir, Frédéric; Dufrasne, Isabelle; Mainil, Jacques; Galleni, Moreno; Lekeux, Pierre; Bureau, Fabrice; Fiévez, Laurence

    2015-11-15

    Vaccination is the most cost-effective way to control infectious diseases in cattle. However, many infectious diseases leading to severe economical losses worldwide still remain for which a really effective and safe vaccine is not available. These diseases are most often due to intracellular pathogens such as bacteria or viruses, which are, by their localization, protected from antibiotics and/or CD4(+) T cell-dependent humoral responses. We therefore postulated that strategies leading to induction of not only CD4(+) T cell responses but also CD8(+) cytotoxic T lymphocyte (CTL) responses against infected cells should be privileged in the development of new vaccines against problematic intracellular pathogens in bovines. CD40 signaling in antigen-presenting cells may lead to the induction of robust CD4-independent CTL responses and several studies, especially in mice, have used CD40 stimulation to promote CD8(+) T cell-mediated immunity. For example, we have recently shown that immunization of mice with heat-killed Staphylococcus aureus (HKSA) and agonistic anti-CD40 monoclonal antibodies elicits strong CTL responses capable of protecting mice from subsequent staphylococcal mastitis. Unfortunately, there is at present no tool available to efficiently stimulate CD40 in cattle. In this study, we therefore first produced a soluble recombinant trimeric form of the natural bovine CD40 ligand (sboCD40LT). We then observed that sboCD40LT was able to potently stimulate bovine cells in vitro. Finally, we provide evidence that immunization of cows with sboCD40LT combined with HKSA was able to significantly increase the number of both HKSA-specific CD4(+) and CD8(+) T cells in the draining lymph nodes. In conclusion, we suggest that this new molecular tool could help in the development of vaccine strategies against bovine diseases caused by intracellular pathogens.

  15. The procyanidin trimer C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes.

    PubMed

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sup; Byun, Eui-Baek; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Lee, Ju-Woon; Park, Sang-Hyun; Park, Hyun-Jin; Byun, Myung-Woo; Byun, Eui-Hong; Kim, Jae-Hun

    2013-08-15

    Numerous studies have shown various relationships between foods with a high nutritional value and a robust immune response, particularly studies that have focused on host protection and cytokine networks. This study aimed to clarify the role played by the procyanidin trimer C1 in innate and adaptive immunity. Procyanidin C1 did not exert cytotoxicity at concentrations ranging from 7.8 to 62.5 μg/ml in macrophage cells; therefore, concentration of 62.5 μg/ml was used as the maximum dose of procyanidin C1 throughout subsequent experiments. Procyanidin C1 enhanced inducible nitric oxide synthase-mediated nitric oxide production in a concentration-dependent manner. In addition, procyanidin C1 functionally induced macrophage activation by augmenting the expression of cell surface molecules (CD80, CD86, and MHC II) and proinflammatory cytokine production (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) via activation of mitogen-activated protein kinase (MAPK), e.g., p38, ERK, and JNK and nuclear factor (NF)-κB signaling pathways. Interestingly, procyanidin C1 effectively polarized T helper type 1 (Th1) by secreting Th1-mediated cytokines (interferon-γ, IL-12p70, and IL-2) and inducing splenocyte proliferation, indicating that procyanidin C1 contributes to Th1 polarization of the immune response. Accordingly, these findings confirms that the procyanidin C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes, which suggests that procyanidin C1 regulates innate and adaptive immunity by macrophage activation and Th1 polarization.

  16. Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain.

    PubMed

    Abrahamsen, Bjarke; Schneider, Nicole; Erichsen, Mette N; Huynh, Tri H V; Fahlke, Christoph; Bunch, Lennart; Jensen, Anders A

    2013-01-16

    In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain." PMID:23325245

  17. An evolutionarily conserved family of virion tail needles related to bacteriophage P22 gp26: correlation between structural stability and length of the α-helical trimeric coiled-coil

    PubMed Central

    Bhardwaj, Anshul; Walker-Kopp, Nancy; Casjens, Sherwood R.; Cingolani, Gino

    2009-01-01

    Bacteriophages of the Podoviridae family use short non-contractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and ejection of the packaged viral genome. Bio-informatic analysis of the N-terminal domain of gp26 (residues 1–60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6, HS1, and characterized these gene products in solution. All gp26-like factors contain an elongated α-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240Å to 300Å. Gp26-tail needles display high structural stability in solution, with Tm (temperature of melting) between 85–95°C. To determine how the structural stability of these phage fibers correlates with the length of the α-helical core, we investigated the effect of insertions and deletions in the helical core. In P22 tail needle, we identified an 85-residue long helical domain, termed MiCRU (Minimal Coiled-coil Repeat Unit), that can be inserted in frame inside gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of HS1 tail needle minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases non-linearly with the length of the α-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the α-helical core. PMID:19482036

  18. A many-body model for alcohols: applications to the cyclic methanol/water hetero trimers, and to the (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n=2-6)

    NASA Astrophysics Data System (ADS)

    Flament, Michel Masella Jean-Pierre

    The TCPE many-body model for water has been adapted to alcohols. As for water, the model parameters have been assigned to reproduce ab initio results at the MP2 level with the methanol/water hetero dimers and the methanol cyclic trimer. Model results have been shown to be in good agreement with available ab initio calculations on methanol/water hetero cyclic trimers and with experiment for (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n = 2-6). Cooperative effects estimated from this model have been shown to increase with cluster size (from about 15% for n = 3 to about 25% for n = 6, and even 33% in the case of t-butanol), and the polarization many-body effects shown to represent more than 70% (81% for t-butanol) of the total cooperative effects in such systems. All of these results suggest that the TCPE model is well suited to use in simulations of alcohol or alcohol/water systems.

  19. Mixed Cu-simple metal dimers and trimers - CuLi, CuLi2, CuNa, CuK, CuBe, CuBe2, Cu2Be, CuAl, and CuAl2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Walch, Stephen P.

    1987-01-01

    Theoretical studies of selected diatomic and triatomic molecules containing copper and the simple metals Li, Na, K, Be, and Al are presented, with emphasis on elucidating the nature of the bonding in mixed transition metal-simple metal systems. Large Gaussian basis sets are used in the diatomic calculations, and are used to calibrate the triatomic calculations, in which somewhat smaller Gaussian basis sets are employed. Electron correlation is incorporated using both the single-reference singles plus doubles configuration interaction and coupled pair functional methods. It is found that alkali atoms form very polar sigma bonds with copper, and that the ionicity increases with the inclusion of higher excitations because they improve the electron affinity of copper, which in turn allows a larger negative charge on copper. Aluminum is found to form stronger bonds than beryllium, since it does not have to undergo sp hybridization. Some of the trimers bond by forming three-center three-electron bonds. These multicenter bonds are quite strong even when compared to the two-electron bonds in the dimers or to other bonding mechanisms in the trimers.

  20. On the interplay between geometrical structure and magnetic anisotropy: a relativistic density-functional study of mixed Pt-Co and Pt-Fe trimers and tetramers in the gas-phase and supported on graphene.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2015-02-01

    The structural and magnetic properties of mixed Pt-Co and Pt-Fe trimers and tetramers in the gas-phase and supported on a free-standing graphene layer have been calculated using density-functional theory. The influence of the strong magnetic moments of the 3d atoms on the Pt atoms and the influence of the strong spin-orbit coupling contributed by the Pt atoms on the 3d atoms have been studied in detail. All mixed trimers form isocele triangles in the gas-phase. On a graphene layer the structure is influenced by the strong binding of the 3d atoms, leading to an asymmetric configuration for Pt-rich and more symmetric structures for 3d-rich clusters. The magnetic anisotropy energy defined as the energy difference for easy and hard magnetization directions varies between 5 and 13 meV/atom for the free trimers, but is strongly reduced to values between 0.7 and 6.6 meV/atom for the graphene-supported clusters. The saddle-point energy representing the barrier against magnetization reversal is on average 3 meV/atom for free trimers, it is reduced to 2 meV/atom for the more symmetric PtCo(Fe)(2) clusters, and to only about 0.3 meV/atom for the asymmetric Pt(2)Co(Fe) cluster on graphene. For the mixed tetramers the strong magnetism stabilizes a flat geometric structure, except for Pt(3)Co which forms a distorted trigonal pyramid. The geometry of the graphene-supported tetramers is very different due to the requirement of a good match to the substrate. Large magnetic anisotropy energies are found for free Pt(3)Co where the change of the magnetization direction also induces a transition from a high- to a low-moment magnetic isomer. For all other free tetramers the magnetic anisotropy energy ranges between 3 to 5 meV/atom only, it is further reduced to 0.4 to 3.8 meV/atom for the graphene-supported tetramers. The reduction is strongest for Pt(3)Fe/graphene because of the asymmetric structure of the adsorption complex. The barriers against magnetization reversal range between

  1. N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene).

    PubMed

    Guo, Sheng; Watson, Mark A; Hu, Weifeng; Sun, Qiming; Chan, Garnet Kin-Lic

    2016-04-12

    The strongly contracted variant of second-order N-electron valence state perturbation theory (NEVPT2) is an efficient perturbative method to treat dynamic correlation without the problems of intruder states or level shifts, while the density matrix renormalization group (DMRG) provides the capability to address static correlation in large active spaces. We present a combination of the DMRG and strongly contracted NEVPT2 (DMRG-SC-NEVPT2) that uses an efficient algorithm to compute high-order reduced-density matrices from DMRG wave functions. The capabilities of DMRG-SC-NEVPT2 are demonstrated on calculations of the chromium dimer potential energy curve at the basis set limit, and the excitation energies of a trimer model of poly(p-phenylenevinylene) (PPV(n = 3)). PMID:26914415

  2. Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV)

    PubMed Central

    Mitoraj, Mariusz P.; Kurczab, Rafał; Boczar, Marek

    2010-01-01

    In the present study we have analyzed hydrogen bonding in dimer and trimer of oxalic acid, based on a recently proposed charge and energy decomposition scheme (ETS-NOCV). In the case of a dimer, two conformations, α and β, were considered. The deformation density contributions originating from NOCV’s revealed that the formation of hydrogen bonding is associated with the electronic charge deformation in both the σ—(Δρσ) and π-networks (Δρπ). It was demonstrated that σ-donation is realized by electron transfer from the lone pair of oxygen on one monomer into the empty \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\rho_{H - O}^* $$\\end{document} orbital of the second oxalic acid fragment. In addition, a covalent contribution is observed by the density transfer from hydrogen of H-O group in one oxalic acid monomer to the oxygen atom of the second fragment. The resonance assisted component (Δρπ), is based on the transfer of electron density from the π—orbital localized on the oxygen of OH on one oxalic acid monomer to the oxygen atom of the other fragment. ETS-NOCV allowed to conclude that the σ(O---HO) component is roughly eight times as important as π (RAHB) contribution in terms of energetic estimation. The electrostatic factor (ΔEelstat) is equally as important as orbital interaction term (ΔEorb). Finally, comparing β-dimer of oxalic acid with trimer we found practically no difference concerning each of the O---HO bonds, neither qualitative nor quantitative. Figure The contours of deformation density σ- and π-contributions describing the hydrogen bonding between the monomers in the oxalic acid dimer, together with the corresponding ETS-NOCV-based orbital-interaction energies (in kcal/mol). PMID:20505966

  3. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host.

    PubMed

    Raghuraman, Kannan; Katti, Kavita K; Barbour, Leonard J; Pillarsetty, Nagavarakishore; Barnes, Charles L; Katti, Kattesh V

    2003-06-11

    Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).

  4. Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles

    PubMed Central

    Perdiguero, Beatriz; Gómez, Carmen Elena; Cepeda, Victoria; Sánchez-Sampedro, Lucas; García-Arriaza, Juan; Mejías-Pérez, Ernesto; Jiménez, Victoria; Sánchez, Cristina; Sorzano, Carlos Óscar S.; Oliveros, Juan Carlos; Delaloye, Julie; Roger, Thierry; Calandra, Thierry; Asbach, Benedikt; Wagner, Ralf; Kibler, Karen V.; Jacobs, Bertram L.; Pantaleo, Giuseppe

    2014-01-01

    ABSTRACT The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol

  5. Reaction of [TpRh(C2 H4 )2 ] with Dimethyl Acetylenedicarboxylate: Identification of Intermediates of the [2+2+2] Alkyne and Alkyne-Ethylene Cyclo(co)trimerizations.

    PubMed

    Bottari, Giovanni; Santos, Laura L; Posadas, Cristina M; Campos, Jesús; Mereiter, Kurt; Paneque, Margarita

    2016-09-12

    The reaction between the bis(ethylene) complex [TpRh(C2 H4 )2 ], 1, (Tp=hydrotris(pyrazolyl)borate), and dimethyl acetylenedicarboxylate (DMAD) has been studied under different experimental conditions. A mixture of products was formed, in which TpRh(I) species were prevalent, whereas the presence of trapping agents, like water or acetonitrile, allowed for the stabilization and isolation of octahedral TpRh(III) compounds. An excess of DMAD gave rise to a small amount of the [2+2+2] cyclotrimerization product hexamethyl mellitate (6). Although no catalytic application of 1 was achieved, mechanistic insights shed light on the formation of stable rhodium species representing the resting state of the catalytic cycle of rhodium-mediated [2+2+2] cyclo(co)trimerization reactions. Metallacyclopentene intermediate species, generated from the activation of one alkyne and one ethylene molecule from 1, and metallacyclopentadiene species, formed by oxidative coupling of two alkynes to the rhodium centre, are crucial steps in the pathways leading to the final organometallic and organic products.

  6. Reaction of [TpRh(C2 H4 )2 ] with Dimethyl Acetylenedicarboxylate: Identification of Intermediates of the [2+2+2] Alkyne and Alkyne-Ethylene Cyclo(co)trimerizations.

    PubMed

    Bottari, Giovanni; Santos, Laura L; Posadas, Cristina M; Campos, Jesús; Mereiter, Kurt; Paneque, Margarita

    2016-09-12

    The reaction between the bis(ethylene) complex [TpRh(C2 H4 )2 ], 1, (Tp=hydrotris(pyrazolyl)borate), and dimethyl acetylenedicarboxylate (DMAD) has been studied under different experimental conditions. A mixture of products was formed, in which TpRh(I) species were prevalent, whereas the presence of trapping agents, like water or acetonitrile, allowed for the stabilization and isolation of octahedral TpRh(III) compounds. An excess of DMAD gave rise to a small amount of the [2+2+2] cyclotrimerization product hexamethyl mellitate (6). Although no catalytic application of 1 was achieved, mechanistic insights shed light on the formation of stable rhodium species representing the resting state of the catalytic cycle of rhodium-mediated [2+2+2] cyclo(co)trimerization reactions. Metallacyclopentene intermediate species, generated from the activation of one alkyne and one ethylene molecule from 1, and metallacyclopentadiene species, formed by oxidative coupling of two alkynes to the rhodium centre, are crucial steps in the pathways leading to the final organometallic and organic products. PMID:27535720

  7. Immunization with the Haemophilus ducreyi trimeric autotransporter adhesin DsrA with alum, CpG or imiquimod generates a persistent humoral immune response that recognizes the bacterial surface.

    PubMed

    Samo, Melissa; Choudhary, Neelima R; Riebe, Kristina J; Shterev, Ivo; Staats, Herman F; Sempowski, Gregory D; Leduc, Isabelle

    2016-02-24

    The Ducreyi serum resistance A (DsrA) protein of Haemophilus ducreyi belongs to a large family of multifunctional outer membrane proteins termed trimeric autotransporter adhesins responsible for resistance to the bactericidal activity of human complement (serum resistance), agglutination and adhesion. The ability of DsrA to confer serum resistance and bind extracellular matrix proteins lies in its N-terminal passenger domain. We have previously reported that immunization with a recombinant form of the passenger domain of DsrA, rNT-DsrA, in complete/incomplete Freund's adjuvant, protects against a homologous challenge in swine. We present herein the results of an immunogenicity study in mice aimed at investigating the persistence, type of immune response, and the effect of immunization route and adjuvants on surrogates of protection. Our results indicate that a 20 μg dose of rNT-DsrA administered with alum elicited antisera with comparable bacterial surface reactivity to that obtained with complete/incomplete Freund's adjuvant. At that dose, high titers and bacterial surface reactivity persisted for 211 days after the first immunization. Administration of rNT-DsrA with CpG or imiquimod as adjuvants elicited a humoral response with similar quantity and quality of antibodies (Abs) as seen with Freund's adjuvant. Furthermore, intramuscular administration of rNT-DsrA elicited high-titer Abs with significantly higher reactivity to the bacterial surface than those obtained with subcutaneous immunization. All rNT-DsrA/adjuvant combinations tested, save CpG, elicited a Th2-type response. Taken together, these findings show that a 20 μg dose of rNT-DsrA administered with the adjuvants alum, CpG or imiquimod elicits high-quality Abs with reactivity to the bacterial surface that could protect against an H. ducreyi infection. PMID:26812077

  8. Synthesis and crystal structure of a new open-framework iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}]: Novel linear trimer of corner-sharing Fe(III) octahedra

    SciTech Connect

    Mi, Jin-Xiao; Wang, Cheng-Xin; Chen, Ning; Li, Rong; Pan, Yuanming

    2010-12-15

    A new iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P2{sub 1}/n (No. 14), a=6.2614(13) A, b=9.844(2) A, c=14.271(3) A, {beta}=92.11(1){sup o}, V=879.0(3) A{sup 3}). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO{sub 4}) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2}], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below T{sub N}=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5{sup o}. -- Graphical abstract: The three-dimensional open-framework structure of (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] is built from a novel isolated, linear (FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2} trimer of corner-sharing Fe(III) octahedra linked by PO{sub 4} tetrahedra. Display Omitted

  9. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles.

    PubMed

    Ratnayake, Punsisi U; Prabodha Ekanayaka, E A; Komanduru, Sweta S; Weliky, David P

    2016-01-01

    Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM.

  10. Affinity maturation by targeted diversification of the CDR-H2 loop of a monoclonal Fab derived from a synthetic naïve human antibody library and directed against the internal trimeric coiled-coil of gp41 yields a set of Fabs with improved HIV-1 neutralization potency and breadth

    PubMed Central

    Gustchina, Elena; Louis, John M.; Frisch, Christian; Ylera, Francisco; Lechner, Annette; Bewley, Carole A.; Clore, G. Marius

    2009-01-01

    Previously we reported a broadly HIV-1 neutralizing mini-antibody (Fab 3674) of modest potency that was derived from a human non-immune phage library by panning against the chimeric gp41-derived construct NCCG-gp41. This construct presents the N-heptad repeat of the gp41 ectodomain as a stable, helical, disulfide-linked trimer that extends in helical phase from the six-helix bundle of gp41. In this paper, Fab 3674 was subjected to affinity maturation against the NCCG-gp41 antigen by targeted diversification of the CDR-H2 loop to generate a panel of Fabs with diverse neutralization activity. Three affinity-matured Fabs selected for further study, Fabs 8060, 8066 and 8068, showed significant increases in both potency and breadth of neutralization against HIV-1 pseudotyped with envelopes of primary isolates from the standard subtypes B and C HIV-1 reference panels. The parental Fab 3674 is 10-20 fold less potent in monovalent than bivalent format over the entire B and C panels of HIV-1 pseudotypes. Of note is that the improved neutralization activity of the affinity-matured Fabs relative to the parental Fab 3674 was, on average, significantly greater for the Fabs in monovalent than bivalent format. This suggests that the increased avidity of the Fabs for the target antigen in bivalent format can be partially offset by kinetic and/or steric advantages afforded by the smaller monovalent Fabs. Indeed, the best affinity-matured Fab (8066) in monovalent format (∼50 kDa) was comparable in HIV-1 neutralization potency to the parental Fab 3674 in bivalent format (∼120 kDa) across the subtypes B and C reference panels. PMID:19695655

  11. Photoabsorption spectrum of helium trimer cation—Theoretical modeling

    SciTech Connect

    Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier

    2013-11-28

    The photoabsorption spectrum of He{sub 3}{sup +} is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He{sub 3}{sup +}, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He{sub 2}{sup +}. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He{sub 3}{sup +}.

  12. Structure of a trimeric nucleoporin complex reveals alternate oligomerization states

    SciTech Connect

    Nagy, Vivien; Hsia, Kuo-Chiang; Debler, Erik W.; Kampmann, Martin; Davenport, Andrew M.; Blobel, Günter; Hoelz, André

    2010-08-16

    The heptameric Nup84 complex constitutes an evolutionarily conserved building block of the nuclear pore complex. Here, we present the crystal structure of the heterotrimeric Sec13 {center_dot} Nup145C {center_dot} Nup84 complex, the centerpiece of the heptamer, at 3.2-{angstrom} resolution. Nup84 forms a U-shaped {alpha}-helical solenoid domain, topologically similar to two other members of the heptamer, Nup145C and Nup85. The interaction between Nup84 and Nup145C is mediated via a hydrophobic interface located in the kink regions of the two solenoids that is reinforced by additional interactions of two long Nup84 loops. The Nup84 binding site partially overlaps with the homo-dimerization interface of Nup145C, suggesting competing binding events. Fitting of the elongated Z-shaped heterotrimer into electron microscopy (EM) envelopes of the heptamer indicates that structural changes occur at the Nup145C {center_dot} Nup84 interface. Docking the crystal structures of all heptamer components into the EM envelope constitutes a major advance toward the completion of the structural characterization of the Nup84 complex.

  13. Maximally entangled states in a Bose-Hubbard trimer

    NASA Astrophysics Data System (ADS)

    Reyes, Sebastian; Morales-Molina, Luis; Orszag, Miguel

    2014-03-01

    We study the generation of entanglement for interacting cold atoms in a three-site Bose-Hubbard ring. We propose a scheme by which maximally entangled states (MES) between two distinct atomic species can be prepared. Depending on the choice of experimental parameters, we demonstrate that it is possible to obtain different types of MES. Furthermore, we show that these MES are highly protected against experimental noise, making them good candidates for potential applications. S. R. acknowledges the support of FONDECYT grant 11110537.

  14. Structure of a trimeric nucleoporin complex reveals alternate oligomerization states

    PubMed Central

    Nagy, Vivien; Hsia, Kuo-Chiang; Debler, Erik W.; Kampmann, Martin; Davenport, Andrew M.; Blobel, Günter; Hoelz, André

    2009-01-01

    The heptameric Nup84 complex constitutes an evolutionarily conserved building block of the nuclear pore complex. Here, we present the crystal structure of the heterotrimeric Sec13·Nup145C·Nup84 complex, the centerpiece of the heptamer, at 3.2-Å resolution. Nup84 forms a U-shaped α-helical solenoid domain, topologically similar to two other members of the heptamer, Nup145C and Nup85. The interaction between Nup84 and Nup145C is mediated via a hydrophobic interface located in the kink regions of the two solenoids that is reinforced by additional interactions of two long Nup84 loops. The Nup84 binding site partially overlaps with the homo-dimerization interface of Nup145C, suggesting competing binding events. Fitting of the elongated Z-shaped heterotrimer into electron microscopy (EM) envelopes of the heptamer indicates that structural changes occur at the Nup145C·Nup84 interface. Docking the crystal structures of all heptamer components into the EM envelope constitutes a major advance toward the completion of the structural characterization of the Nup84 complex. PMID:19805193

  15. Selective on/off switching at room temperature of a magnetic bistable {Fe2Co2} complex with single crystal-to-single crystal transformation via intramolecular electron transfer.

    PubMed

    Cao, Li; Tao, Jun; Gao, Qian; Liu, Tao; Xia, Zhengcai; Li, Dongfeng

    2014-02-18

    A cyano-bridged {Fe2Co2} complex shows reversible single crystal-to-single crystal transformation between diamagnetic and paramagnetic states switched specifically by losing and absorbing methanol at room temperature in the solid state. And the solvent loss form presents temperature- and pressure-induced intramolecular electron transfer behaviour.

  16. Research Results Ultra-fast Energy Transfer from Monomer to Dimer within a Trimeric Molecule New Progress in Heterogeneous Catalysis Research Key Progress in Research on Terrestrial Carbon Cycle in China A New Progress in Research on the Mechanism of Bio-Invasion New Findings in Anti-viral infection and Control of Inflammation Major Headway in Avian Origin Research New Progress in Gold-Nanoparticle-Based Biochips Topological Insulator Research Made Important Progress Major Progress in Biodiversity Achieved New Developments of Direct Methods in Protein Crystallography Major Progress in China-UK Collaboration on the Causal Relationship between Volcanic Activity and Biological Distinction News in Brief: NSFC set up "Research Fund for Young Foreign Scholars" How Often Does Human DNA Mutate? Research Progress on Colossal Anisotropic Magneto Resistive Effect

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Ultra-fast Energy Transfer from Monomer to Dimer within a Trimeric Molecule New Progress in Heterogeneous Catalysis Research Key Progress in Research on Terrestrial Carbon Cycle in China A New Progress in Research on the Mechanism of Bio-Invasion New Findings in Anti-viral infection and Control of Inflammation Major Headway in Avian Origin Research New Progress in Gold-Nanoparticle-Based Biochips Topological Insulator Research Made Important Progress Major Progress in Biodiversity Achieved New Developments of Direct Methods in Protein Crystallography Major Progress in China-UK Collaboration on the Causal Relationship between Volcanic Activity and Biological Distinction News in Brief: NSFC set up "Research Fund for Young Foreign Scholars" How Often Does Human DNA Mutate? Research Progress on Colossal Anisotropic Magneto Resistive Effect

  17. On nd bonding in the transition metal trimers: Comparison of Sc3 and Y3

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    CASSCF/CCI calculations are presented for the low-lying states of Y3. Comparison of the wave functions for Y3 and Sc3 indicates substantial 4d-5p hybridization in Y3, but little 3d-4p hybridization in Sc3. The increased 4d-5p hybridization leads to stabilization of 4dpi bonding with respect to 4dsigma bonding for equilateral triangle Y3, and also leads to 4d-5p bonding for linear geometries. These effects lead to a different ordering of states for equilateral triangle geometries and a smaller excitation energy to the linear configuration for Y3 as compared to Sc3.

  18. Resonant two-photon ionization electronic spectroscopy of the silver trimer

    NASA Astrophysics Data System (ADS)

    Cheng, P. Y.; Duncan, M. A.

    1989-10-01

    Silver metal clusters are produced by excimer lasers vaporization (308 nm) in a pulsed supersonic nozzle cluster source. The triatomic species is selectively ionized in a resonant two-photon absorption process via an excited electronic state with an origin at 26971±10 cm-1 (3.35 eV). Vibronic structure extending over 1500 cm-1 involves cleanly resolved bands at low energy merging to a quasi-continuum at higher energy. Vibronic analysis are considered for a triangular structure with or without Jahn-Teller interaction in the excited state. No simple analytic expression successfully fits the level structure. However, the spectrum is qualitatively consistent with a 2E` excited state with intermediate Jahn-Teller interaction.

  19. Synthesis, characterization, and alkyne trimerization catalysis of a heteroleptic two-coordinate fe(i) complex.

    PubMed

    Lipschutz, Michael I; Chantarojsiri, Teera; Dong, Yuyang; Tilley, T Don

    2015-05-20

    The synthesis of the first heteroleptic, two-coordinate Fe(I) complex IPr-Fe-N(SiMe3)DIPP (1) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; DIPP = 2,6-(i)Pr2-C6H3) is reported. Protonation of the Fe(II) bis(amido) complex Fe[N(SiMe3)DIPP]2 followed by addition of IPr and reduction by potassium graphite in a one-pot reaction results in good yields of 1. The redox activity of 1 and comparison between 1 and its reduction product by (57)Fe Mössbauer spectroscopy are discussed, and the reduction was found to be metal-based rather than ligand-based. The activity of 1 toward the catalytic cyclotrimerization of terminal and internal alkynes is described.

  20. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase

    PubMed Central

    Dohrmann, Paul R.; Correa, Raul; Frisch, Ryan L.; Rosenberg, Susan M.; McHenry, Charles S.

    2016-01-01

    There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome. PMID:26786318

  1. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1986-01-01

    The calculation of potential energy surfaces for chemical reactions was the focus of investigation. Two groups of reactions were considered: the subset of reactions important in H2 combustion, and high temperature air chemistry reactions (O + N yields NO + N and N + O2 yields NO + O).

  2. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer

    PubMed Central

    Fukushima, Tatsuya; Sia, Allyson K.; Allred, Benjamin E.; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N.; Raymond, Kenneth N.

    2012-01-01

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the Gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up 55Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (Kd) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization–mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations. PMID:23027976

  3. Fluid Shear Stress Sensitizes Cancer Cells to Receptor-Mediated Apoptosis via Trimeric Death Receptors

    PubMed Central

    Mitchell, Michael J.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor (TNF) apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer (NK) cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to receptor-mediated apoptosis has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlated with the application of fluid shear stress, and TRAIL-induced apoptosis increased in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis was not affected by the application fluid shear stress. Interestingly, fluid shear stress did not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments revealed that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear force can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents. PMID:25110459

  4. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    PubMed

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.

  5. Synthesis and physical properties of new coco-oleic dimer and trimer plus estolide branched esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides are a class of esters based on vegetable oils that are formed when the carboxylic acid functionality of one fatty acid reacts at the site of unsaturation of another fatty acid to form an ester linkage. The objective of this preliminary study was to separate coco-oleic estolide into two com...

  6. Synthesis of terpene and steroid dimers and trimers having cyclobutadienyl-Co and aromatic tethers.

    PubMed

    Sierra, Miguel A; Torres, M Rosario; Torre, María C de la; Alvaro, Elsa

    2007-05-25

    The reaction of natural product derived propargylic alcohols with CpCo(CO)2 produces three new types of natural product hybrids having two or three terpene or steroid fragments. The tether joining the natural product subunits is built during the reaction. Type 1 hybrids have two terpene or steroid moieties joined by a CpCo-cyclobutadiene tether, with the two units disposed in a 1,2-arrangement (9, 14, 22). Type 2 hybrids have a Co-cyclopentadienone tether (10). Type 3 has three units of terpene or steroid joined to a benzene ring (11, 12, 15). An unusual Co-mediated beta-carbon elimination pathway of propargylic alcohols leading to ketones (an unknown process in this chemistry) has been observed.

  7. MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis

    PubMed Central

    Graeff, Moritz; Straub, Daniel; Eguen, Tenai; Dolde, Ulla; Rodrigues, Vandasue; Brandt, Ronny; Wenkel, Stephan

    2016-01-01

    MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition. PMID:27015278

  8. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.

    PubMed

    Wustholz, Kristin L; Henry, Anne-Isabelle; McMahon, Jeffrey M; Freeman, R Griffith; Valley, Nicholas; Piotti, Marcelo E; Natan, Michael J; Schatz, George C; Van Duyne, Richard P

    2010-08-11

    Understanding the detailed relationship between nanoparticle structure and activity remains a significant challenge for the field of surface-enhanced Raman spectroscopy. To this end, the structural and optical properties of individual plasmonic nanoantennas comprised of Au nanoparticle assemblies that are coated with organic reporter molecules and encapsulated by a SiO(2) shell have been determined using correlated transmission electron microscopy (TEM), dark-field Rayleigh scattering microscopy, surface-enhanced Raman scattering (SERS) microscopy, and finite element method (FEM) calculations. The distribution of SERS enhancement factors (EFs) for a structurally and optically diverse set of nanoantennas is remarkably narrow. For a collection of 30 individual nanoantennas ranging from dimers to heptamers, the EFs vary by less than 2 orders of magnitude. Furthermore, the EFs for the hot-spot-containing nanoparticles are uncorrelated to aggregation state and localized surface plasmon resonance (LSPR) wavelength but are crucially dependent on the size of the interparticle gap. This study demonstrates that the creation of hot spots, where two particles are in subnanometer proximity or have coalesced to form crevices, is paramount to achieving maximum SERS enhancements.

  9. 12-Metal 36-membered ring based W(V)-Co(II) layers showing spin-glass behavior.

    PubMed

    Zhao, Liang; Duan, Ran; Zhuang, Peng-Fei; Zheng, Hui; Jiao, Cheng-Qi; Wang, Jun-Li; He, Cheng; Liu, Tao

    2015-07-28

    The present study describes the designed synthesis, X-ray structures, and magnetic properties of two 2D cyano bridged heterobimetallic W(V)-Co(II) networks, {[W(CN)8]2[Co(phpy)4]3}·2CH3OH·2H2O (1) and {[W(CN)8]2[Co(4-spy)4]3}·6H2O (2) (phpy = 4-phenylpyridine, 4-spy = 4-styrylpyridine). Both compounds consist of cyano-bridged 12-metal 36-membered ring units, Co6W6(CN)12, joined by organic linkers into a 2D plane. The layer presents a corrugated configuration in compound 1 and a plane configuration in compound 2 due to different π-π stacking interactions. Magnetic measurements reveal that both 1 and 2 have a transition to the spin glass-like phase due to competitive magnetic interactions. PMID:26076432

  10. The crystal structure of human glycosylation-inhibiting factor is a trimeric barrel with three 6-stranded beta-sheets.

    PubMed Central

    Kato, Y; Muto, T; Tomura, T; Tsumura, H; Watarai, H; Mikayama, T; Ishizaka, K; Kuroki, R

    1996-01-01

    Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different. Images Fig. 1 Fig. 3 PMID:8610159

  11. From gas-phase to liquid-water chemical reactions: the fluorine atom plus water trimer system.

    PubMed

    Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2015-09-14

    The potential energy profile for the F+(H2 O)3 →HF+(H2 O)2 OH reaction has been investigated using the "gold standard" CCSD(T) method with correlation-consistent basis sets up to cc-pVQZ. Four different reaction pathways have been found and these are related, both geometrically and energetically. The entrance complexes F⋅⋅⋅(H2 O)3 for all four reaction pathways are found lying ca. 7 kcal mol(-1) below the separated reactants F+(H2 O)3 . The four reaction barriers on their respective reaction coordinates lie ca. 4 kcal mol(-1) below the reactants. There are also corresponding exit complexes HF⋅⋅⋅(H2 O)2 OH, lying about 13 kcal mol(-1) below the separated products HF+(H2 O)2 OH. Compared with analogous F+(H2 O)2 and F+H2 O reactions, the F+(H2 O)3 reaction is somewhat similar to the former but qualitatively different from the latter. It may be reasonable to predict that the reactions between atomic fluorine and water tetramer (or even larger water clusters) may be similar to the F+(H2 O)3 reaction.

  12. Preparation, Characterization, and Catalytic Properties of Tungsten Trioxide Cyclic Trimers on FeO(111)/Pt(111)

    SciTech Connect

    Li, Shao-Chun; Li, Zhenjun; Zhang, Zhenrong; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2012-01-12

    The structure and catalytic activity of tungsten oxide clusters formed via sublimation of monodispersed cyclic (WO{sub 3}){sub 3} onto FeO(111)/Pt(111) surface has been studied by a combination of scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), temperature programmed desorption (TPD) and density function theory (DFT). After the (WO{sub 3}){sub 3} sublimation, STM images reveal new features composed of three bright maxima arranged in triangular configurations with the distances of {approx}10 {angstrom}. These distances are significantly larger compared to the size of (WO{sub 3}){sub 3} indicating that the clusters dissociated. This conclusion is corroborated by DFT calculations showing that the cluster dissociation into the surface-bound WO{sub 3} monomers is endothermic and kinetically feasible at 300 K. The dissociation is accompanied by significant FeO(111) rearrangements with the Fe ions being pulled on top of the surface and bonded to the WO{sub 3} fragments. Both surface spectroscopies (XPS and IRAS) and calculations indicate that the W ions in the WO{sub 3} monomers remain in (6+) oxidation state and possess terminal W=O groups. Our TPD studies show that this system do not efficiently catalyze alcohol dehydration. This inactivity is explained based on the reaction mechanism calculated by DFT.

  13. Filamentation of Escherichia coli K12 elicited by some monomeric, dimeric and trimeric complexes of ruthenium in various oxidation states.

    PubMed

    Gibson, J F; Hughes, M N; Poole, R K; Rees, J F

    1985-05-01

    A number of ruthenium complexes were tested for their ability to induce filamentation in Escherichia coli. These included monomeric and dimeric complexes with ruthenium in the II or III oxidation states, as well as mixed-valence complexes with ruthenium in the (II,III) oxidation states. In general, dimeric mixed-valence Ru(II,III) complexes were the most active class of compound, although some complexes of this type were relatively inactive. These were pyrazine- or bipyridyl-bridged complexes which are known to involve strong metal-ligand interaction, which stabilizes the Ru(II) oxidation state. Some Ru(III) complexes were also significantly active in induction of filamentous growth in E. coli. One of these was [Ru(NH3)5Cl]Cl2, which did not inhibit electron transport, Mg2+-ATPase activity or DNA synthesis in E. coli, but like [Ru2(NH3)6Br3]Br2 X H2O was a potent inhibitor of respiration-driven calcium transport in the organism. Filament-inducing activity of the complex was reduced in the presence of NaCl, but not in the presence of added Ca2+, ethanol, calcium pantothenate, or E. coli 'division promoting extract'. This behaviour is also similar to that of [Ru2(NH3)6Br3]Br2 X H2O. It is suggested that both complexes may induce filamentation in E. coli by a common mechanism, which may involve interference with calcium metabolism, or a wall or membrane target, rather than interaction with DNA. PMID:3159489

  14. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling

    PubMed Central

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. DOI: http://dx.doi.org/10.7554/eLife.07091.001 PMID:26126266

  15. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling.

    PubMed

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. PMID:26126266

  16. Theoretical study of the bonding of ammonia, carbon monoxide, and ethylene, to copper atom, dimer, and trimer

    NASA Astrophysics Data System (ADS)

    Fournier, René

    1995-04-01

    Kohn-Sham density functional theory (KS-DFT) calculations were performed for the association complexes Cun-L, with n=1, 2, 3 and L=NH3, CO, and C2H4. Two geometries for Cu2-L are considered; with the ligand bonded to a single copper atom (``atop,'' or A), and with the ligand bonded to both atoms (``bridge,'' or B). In addition to A and B, a third geometry was considered for Cu3-L, with the ligand bonded to all three copper atoms; in each case, no minimum was found for that third geometry. I report fully optimized equilibrium geometries and harmonic frequencies calculated within the local spin density (LSD) approximation for all the bound complexes and estimates of their binding energies obtained with a gradient-corrected exchange-correlation functional. Structure A is the most stable in all cases but, for Cu3CO and Cu3C2H4, structure B is only a few kcal/mol higher in energy. The energetic contribution from the geometrical relaxation of Cu3 ranges from essentially zero (Cu3NH3 B) to 3.4 kcal/mol (Cu3CO B). In agreement with previous calculations on Cun-C2H2 and with experiments, the calculated Cun-L binding energy is found to increase with n for all ligands. Although the bonding mechanism differs among the three ligands, repulsion of a filled ligand orbital with the half-filled 4s orbital of copper (or 4s-derived molecular orbitals of Cu2 and Cu3) always plays an important role and is responsible for the smaller binding energies in the CuL complexes. This repulsion decreases from Cu to Cu2 because of charge accumulation in Cu-Cu midbond region and of the greater polarizability of Cu2. The Cu3L binding energies are larger than those of Cu2L mostly because of the greater involvement of copper 4p orbitals in bonding to the ligand. The ligand vibrational frequency shifts relative to the free molecules are compared to experiment and discussed in relation to the nature of the metal-ligand interaction. In particular, an interesting correlation, between the frequency of the NH3 umbrella mode and the metal-NH3 binding energy, is likely due to the electrostatic nature of the bond.

  17. Supramolecular adducts based on weak interactions between the trimeric Lewis acid complex (perfluoro-ortho-phenylene)mercury and polypnictogen complexes.

    PubMed

    Fleischmann, Martin; Jones, James S; Balázs, Gábor; Gabbaï, François P; Scheer, Manfred

    2016-09-21

    Reactions of the trinuclear Lewis acid perfluoro-ortho-phenylene)mercury [(o-HgC6F4)3] (1) with the polypnictogen complex [CpMo(CO)2(η(3)-P3)] (2) containing a cyclo-P3 ligand and the series of E2 complexes [{CpMo(CO)2}2(μ,η(2):η(2)-E2)] (E = P(3a), As(3b), Sb(3c), Bi(3d)) are reported. In all cases, the reaction products show very weak interactions between the En ligand complexes and the Lewis acid 1, as evidenced by their highly dynamic behaviour in solution and the formation of adducts in the solid state showing HgE contacts below the respective sum of the van der Waals radii. The complexes 2 (P3), 3a (P2) and 3b (As2) show interactions of only one pnictogen atom with all three Hg atoms of 1. The complex 3c (Sb2) forms two adducts with 1 showing either a side-on coordination of the Sb2 dumbbell towards Hg or an end-on coordination of both Sb atoms towards two independent molecules of 1. The Bi2 complex 3d shows an almost parallel alignment of the Bi2 dumbbell situated above the center of the planar Lewis acid 1. The arrangements of the E2 complex series towards 1 are rationalized with the help of electrostatic potential maps obtained by DFT calculations. Finally the structural characterizations of a new modification of the free Sb2 complex 3c, the Bi2 complex 3d, the starting material of its preparation [Bi{CpMo(CO)3}3] (4) and an unprecedented 'Cr4As5' cluster 5 are presented. PMID:27461890

  18. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity.

    PubMed

    Can, Özge; Holland, Nolan B

    2013-12-01

    Antifreeze proteins (AFPs) are ice growth inhibitors that allow the survival of several species living at temperatures colder than the freezing point of their bodily fluids. AFP activity is commonly defined in terms of thermal hysteresis, which is the difference observed for the solution freezing and melting temperatures. Increasing the thermal hysteresis activity of these proteins, particularly at low concentrations, is of great interest because of their wide range of potential applications. In this study, we have designed and expressed one-, two-, and three-domain antifreeze proteins to improve thermal hysteresis activity through increased binding avidity. The three-domain type III AFP yielded significantly greater activity than the one- and two-domain proteins, reaching a thermal hysteresis of >1.6 °C at a concentration of <1 mM. To elucidate the basis of this increase, the data were fit to a multidomain protein adsorption model based on the classical Langmuir isotherm. Fits of the data to the modified isotherms yield values for the equilibrium binding constants for the adsorption of AFP to ice and indicate that protein surface coverage is proportional to thermal hysteresis activity.

  19. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    PubMed Central

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-­sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions. PMID:21821878

  20. Sequence Analysis and Molecular Characterization of Clonorchis sinensis Hexokinase, an Unusual Trimeric 50-kDa Glucose-6-Phosphate-Sensitive Allosteric Enzyme

    PubMed Central

    Chen, Tingjin; Ning, Dan; Sun, Hengchang; Li, Ran; Shang, Mei; Li, Xuerong; Wang, Xiaoyun; Chen, Wenjun; Liang, Chi; Li, Wenfang; Mao, Qiang; Li, Ye; Deng, Chuanhuan; Wang, Lexun; Wu, Zhongdao; Huang, Yan; Xu, Jin; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors of CsHK to interfere with glycolysis in C. sinensis. PMID:25232723

  1. Mutating a Conserved Proline Residue within the Trimerization Domain Modifies Na+ Binding to Excitatory Amino Acid Transporters and Associated Conformational Changes*

    PubMed Central

    Hotzy, Jasmin; Schneider, Nicole; Kovermann, Peter; Fahlke, Christoph

    2013-01-01

    Excitatory amino acid transporters (EAATs) are crucial for glutamate homeostasis in the mammalian central nervous system. They are not only secondary active glutamate transporters but also function as anion channels, and different EAATs vary considerably in glutamate transport rates and associated anion current amplitudes. A naturally occurring mutation, which was identified in a patient with episodic ataxia type 6 and that predicts the substitution of a highly conserved proline at position 290 by arginine (P290R), was recently shown to reduce glutamate uptake and to increase anion conduction by hEAAT1. We here used voltage clamp fluorometry to define how the homologous P259R mutation modifies the functional properties of hEAAT3. P259R inverts the voltage dependence, changes the sodium dependence, and alters the time dependence of hEAAT3 fluorescence signals. Kinetic analysis of fluorescence signals indicate that P259R decelerates a conformational change associated with sodium binding to the glutamate-free mutant transporters. This alteration in the glutamate uptake cycle accounts for the experimentally observed changes in glutamate transport and anion conduction by P259R hEAAT3. PMID:24214974

  2. Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides.

    PubMed

    Maeda, Chihiro; Taniguchi, Tomoya; Ogawa, Kanae; Ema, Tadashi

    2015-01-01

    Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h(-1) , respectively, for the magnesium catalyst, and 310 000 and 40 000 h(-1) , respectively, for the zinc catalyst. Results obtained with a zinc/free-base hybrid diporphyrin catalyst demonstrated that the Br(-) ions on the adjacent porphyrin moiety also function as nucleophiles.

  3. A Fine-Tuned Interaction between Trimeric Autotransporter Haemophilus Surface Fibrils and Vitronectin Leads to Serum Resistance and Adherence to Respiratory Epithelial Cells

    PubMed Central

    Singh, Birendra; Su, Yu-Ching; Al-Jubair, Tamim; Mukherjee, Oindrilla; Hallström, Teresia; Mörgelin, Matthias; Blom, Anna M.

    2014-01-01

    Haemophilus influenzae type b (Hib) escapes the host immune system by recruitment of the complement regulator vitronectin, which inhibits the formation of the membrane attack complex (MAC) by inhibiting C5b-C7 complex formation and C9 polymerization. We reported previously that Hib acquires vitronectin at the surface by using Haemophilus surface fibrils (Hsf). Here we studied in detail the interaction between Hsf and vitronectin and its role in the inhibition of MAC formation and the invasion of lung epithelial cells. The vitronectin-binding region of Hsf was defined at the N-terminal region comprising Hsf amino acids 429 to 652. Moreover, the Hsf recognition site on vitronectin consisted of the C-terminal amino acids 352 to 374. H. influenzae was killed more rapidly in vitronectin-depleted serum than in normal human serum (NHS), and increased MAC deposition was observed at the surface of an Hsf-deficient H. influenzae mutant. In parallel, Hsf-expressing Escherichia coli selectively acquired vitronectin from serum, resulting in significant inhibition of the MAC. Moreover, when vitronectin was bound to Hsf, increased bacterial adherence and internalization into epithelial cells were observed. Taking our findings together, we have defined a fine-tuned protein-protein interaction between Hsf and vitronectin that may contribute to increased Hib virulence. PMID:24664511

  4. Biochemical characterization of CK2alpha and alpha' paralogues and their derived holoenzymes: evidence for the existence of a heterotrimeric CK2alpha'-holoenzyme forming trimeric complexes.

    PubMed

    Olsen, Birgitte B; Rasmussen, Tine; Niefind, Karsten; Issinger, Olaf-Georg

    2008-09-01

    Altogether 2 holoenzymes and 4 catalytic CK2 constructs were expressed and characterized i.e. CK2alpha(2)1-335 beta2; CK2alpha'-derived holoenzyme; CK2alpha1-335; MBP-CK2alpha'; His-tagged CK2alpha and His-tagged CK2alpha'. The two His-tagged catalytic subunits were expressed in insect cells, all others in Escherichia coli. IC50 studies involving the established CK2 inhibitors DMAT, TBBt, TBBz, apigenin and emodin were carried out and the Ki values calculated. Although the differences in the Ki values found were modest, there was a general tendency showing that the CK2 holoenzymes were more sensitive towards the inhibitors than the free catalytic subunits. Thermal inactivation experiments involving the individual catalytic subunits showed an almost complete loss of activity after only 2 min at 45 degrees C. In the case of the two holoenzymes, the CK2alpha'-derived holoenzyme lost ca. 90% of its activity after 14 min, whereas CK2alpha2(1-335) beta2 only showed a loss of ca. 40% by this time of incubation. Gel filtration analyses were performed at high (500 mM) and low (150 mM) monovalent salt concentrations in the absence or presence of ATP. At 500 mM NaCl the CK2alpha'-derived holoenzyme eluted at a position corresponding to a molecular mass of 105 kDa which is significantly below the elution of the CK2alpha(2)1-335 beta2 holoenzyme (145 kDa). Calmodulin was not phosphorylated by either CK2alpha2(1-335) beta2 or the CK2alpha'-derived holoenzyme. However, in the presence of polylysine only the CK2alpha(2)1-335 beta2 holoenzyme could use calmodulin as a substrate such as the catalytic subunits, in contrast to the CK2alpha'-derived holoenzyme which only phosphorylated calmodulin weakly. This attenuation may be owing to a different structural interaction between the catalytic CK2alpha' subunit and non-catalytic CK2beta subunit.

  5. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    SciTech Connect

    Zamudio-Bayer, V.; Hirsch, K.; Langenberg, A.; Kossick, M.; Ławicki, A.; Lau, J. T.; Terasaki, A.; Issendorff, B. von

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  6. Development of a "First Principles" Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters.

    PubMed

    Babin, Volodymyr; Medders, Gregory R; Paesani, Francesco

    2014-04-01

    A full-dimensional potential energy function (MB-pol) for simulations of water from the dimer to bulk phases is developed entirely from "first principles" by building upon the many-body expansion of the interaction energy. Specifically, the MB-pol potential is constructed by combining a highly accurate dimer potential energy surface [J. Chem. Theory Comput. 2013, 9, 5395] with explicit three-body and many-body polarization terms. The three-body contribution, expressed as a combination of permutationally invariant polynomials and classical polarizability, is derived from a fit to more than 12000 three-body energies calculated at the CCSD(T)/aug-cc-pVTZ level of theory, imposing the correct asymptotic behavior as predicted from "first principles". Here, the accuracy of MB-pol is demonstrated through comparison of the calculated third virial coefficient with the corresponding experimental data as well as through analysis of the relative energy differences of small clusters.

  7. CDK-activating kinase (Ee;CDKF;1) of leafy spurge (Euphorbia esula) forms both homo-dimers and homo-trimers in its native state

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge is a deep rooted perennial weed that propagates both by seeds and underground adventitious buds located on the crown and roots (crown and root buds). As buds develop during the normal growing season, they are maintained in a quiescent state through correlative inhibition. To enhance our...

  8. Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1989-01-01

    The molecular structure of both the neutral and negatively charged diatomic and triatomic systems containing the Cu, Ag, and Au metals are determined from ab initio calculations. For the neutral triatomic systems, the lowest energy structure is found to be triangular. The relative stability of the 2A1 and 2B2 structures can be predicted simply by knowing the constituent diatomic bond distances and atomic electron affinities (EAs). The lowest energy structure is linear for all of the negative ions. For anionic clusters containing Au, the Au atom(s) preferentially occupy the terminal position(s). The EAs of the heteronuclear systems can be predicted relatively accurately from a weighted average of the corresponding homonuclear systems. Although the theoretical EAs are systematically too small, accurate predictions for the EAs of the triatomics are obtained by uniformly scaling the ab initio results using the accurate experimental EA values available for the atoms and homonuclear diatomics.

  9. Formation of a Trimeric Xpo1-Ran[GTP]-Ded1 Exportin Complex Modulates ATPase and Helicase Activities of Ded1

    PubMed Central

    Hauk, Glenn; Bowman, Gregory D.

    2015-01-01

    The DEAD-box RNA helicase Ded1, which is essential in yeast and known as DDX3 in humans, shuttles between the nucleus and cytoplasm and takes part in several basic processes including RNA processing and translation. A key interacting partner of Ded1 is the exportin Xpo1, which together with the GTP-bound state of the small GTPase Ran, facilitates unidirectional transport of Ded1 out of the nucleus. Here we demonstrate that Xpo1 and Ran[GTP] together reduce the RNA-stimulated ATPase and helicase activities of Ded1. Binding and inhibition of Ded1 by Xpo1 depend on the affinity of the Ded1 nuclear export sequence (NES) for Xpo1 and the presence of Ran[GTP]. Association with Xpo1/Ran[GTP] reduces RNA-stimulated ATPase activity of Ded1 by increasing the apparent KM for the RNA substrate. Despite the increased KM, the Ded1:Xpo1:Ran[GTP] ternary complex retains the ability to bind single stranded RNA, suggesting that Xpo1/Ran[GTP] may modulate the substrate specificity of Ded1. These results demonstrate that, in addition to transport, exportins such as Xpo1 also have the capability to alter enzymatic activities of their cargo. PMID:26120835

  10. Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes.

    PubMed

    Long, Jérôme; Asakura, Daisuke; Okubo, Masashi; Yamada, Atsuo; Guari, Yannick; Larionova, Joulia

    2016-08-01

    Discovery of novel compounds capable of electrochemical ion intercalation is a primary step toward development of advanced electrochemical devices such as batteries. Although cyano-bridged coordination polymers including Prussian blue analogues have been intensively investigated as ion intercalation materials, the solid-state electrochemistry of the octacyanotungstate-bridged coordination polymer has not been investigated. Here, we demonstrate that an octacyanotungstate-bridged coordination polymer Tb(H2O)5[W(CN)8] operates as a Li(+)-ion intercalation electrode material. The detailed magnetic measurements reveal that the tunable amount of intercalated Li(+) ion in the solid-state redox reaction between paramagnetic [W(V)(CN)8](3-) and diamagnetic [W(IV)(CN)8](4-) in the framework enables the electrochemical control of different magnetic regimes. While the initial ferromagnetic long-range ordering is irreversibly lost upon lithium insertion, electrochemical switching between paramagnetic and short-range ordering regimes can be achieved. PMID:27420412

  11. Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes.

    PubMed

    Long, Jérôme; Asakura, Daisuke; Okubo, Masashi; Yamada, Atsuo; Guari, Yannick; Larionova, Joulia

    2016-08-01

    Discovery of novel compounds capable of electrochemical ion intercalation is a primary step toward development of advanced electrochemical devices such as batteries. Although cyano-bridged coordination polymers including Prussian blue analogues have been intensively investigated as ion intercalation materials, the solid-state electrochemistry of the octacyanotungstate-bridged coordination polymer has not been investigated. Here, we demonstrate that an octacyanotungstate-bridged coordination polymer Tb(H2O)5[W(CN)8] operates as a Li(+)-ion intercalation electrode material. The detailed magnetic measurements reveal that the tunable amount of intercalated Li(+) ion in the solid-state redox reaction between paramagnetic [W(V)(CN)8](3-) and diamagnetic [W(IV)(CN)8](4-) in the framework enables the electrochemical control of different magnetic regimes. While the initial ferromagnetic long-range ordering is irreversibly lost upon lithium insertion, electrochemical switching between paramagnetic and short-range ordering regimes can be achieved.

  12. Beyond the Dimer and Trimer: Tetraspiro[2.1.2(5).1.2(9).1.2(13).1(3)] hexadecane-1,3,5,7-tetraone--the Cyclic Tetramer of Carbonylcyclopropane.

    PubMed

    Sedenkova, Kseniya N; Averina, Elena B; Grishin, Yuri K; Andriasov, Kristian S; Stepanova, Svetlana A; Roznyatovsky, Vitaly A; Kutateladze, Andrei G; Rybakov, Victor B; Albov, Dmitry V; Kuznetsova, Tamara S; Zefirov, Nikolay S

    2016-03-14

    Tetraspiro[2.1.2(5).1.2(9).1.2(13).1(3)]hexadecane-1,3,5,7-tetraone 4, a unique tetraketone containing a cyclooctane core and four spiroannelated cyclopropane moieties, represents the previously unknown cyclotetramer of carbonylcyclopropane. For this purpose oxidation of the parent polyspirocyclic hydrocarbon was examined under various oxidative conditions, and the reactivity of oxidants towards methylene groups of the eight-membered cycle, activated by adjacent spirocyclopropane rings, was evaluated and contrasted. Whereas the treatment of tetraspirohexadecane with ozone resulted in monooxidation, its reaction with methyl(trifluoromethyl)dioxirane afforded the product of four-fold oxidation, triketoalcohol 10. Subsequent oxidation of the latter with Dess-Martin periodinane gave the target tetraketone 4.

  13. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    PubMed

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  14. A radiographic, morphologic, biochemical and molecular analysis of a case of achondrogenesis type II resulting from substitution for a glycine residue (Gly691-->Arg) in the type II collagen trimer.

    PubMed

    Mortier, G R; Wilkin, D J; Wilcox, W R; Rimoin, D L; Lachman, R S; Eyre, D R; Cohn, D H

    1995-02-01

    The type II collagenopathies form a continuous spectrum of clinical severity, ranging from lethal achondrogenesis type II and hypochondrogenesis, through spondyloepiphyseal dysplasia, spondyloepimetaphyseal dysplasia and Kniest dysplasia to the Stickler syndrome and familial precocious osteoarthropathy at the mildest end of the spectrum. We have carried out a radiographic, morphologic, biochemical and molecular study in a case of achondrogenesis type II. Electron micrographs showed inclusion bodies of dilated rough endoplasmic reticulum in the chondrocytes and the presence of sparse collagen fibers in the cartilage matrix. Protein analysis of collagen from cartilage indicated posttranslational overmodification of the major cyanogen bromide peptides, and suggested a mutation near the carboxyl terminus of the type II collagen molecule. Analysis at the DNA level demonstrated that the phenotype was produced by a single base change (G-->C) that resulted in the substitution of glycine691 by arginine in the type II collagen triple helical domain. We confirm previous observations in three cases of hypochondrogenesis that glycine substitutions in the alpha 1(II) chain can result in a phenotype at the most severe end of the type II collagenopathy spectrum. PMID:7757081

  15. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries.

    PubMed

    Wu, Xianyong; Wu, Chenghao; Wei, Congxiao; Hu, Ling; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Wang, Jiulin; Yang, Hanxi

    2016-03-01

    Prussian blue and its analogues have received particular attention as superior cathodes for Na-ion batteries due to their potential 2-Na storage capacity (∼170 mAh g(-1)) and low cost. However, most of the Prussian blue compounds obtained from the conventional synthetic routes contain large amounts of Fe(CN)6 vacancies and coordinated water molecules, which leads to the collapse of cyano-bridged framework and serious deterioration of their Na-storage ability. Herein, we propose a facile citrate-assisted controlled crystallization method to obtain low-defect Prussian blue lattice with greatly improved Na-storage capacity and cycling stability. As an example, the as-prepared Na2CoFe(CN)6 nanocrystals demonstrate a reversible 2-Na storage reaction with a high specific capacity of 150 mAh g(-1) and a ∼ 90% capacity retention over 200 cycles, possibly serving as a low cost and high performance cathode for Na-ion batteries. In particular, the synthetic strategy described in this work may be extended to other coordination-framework materials for a wide range of energy conversion and storage applications.

  16. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity.

    PubMed

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A S; Carlos, Luis D; Trifonov, Alexander A; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.33(3+)Gdx3+/[Mo(CN)8]3- (Ln=Eu (x=0.34), Tb (x=0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0→7F0-4 (Eu3+) or the 5D4→7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.33(3+)Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.

  17. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds

    PubMed Central

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-01-01

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[CoII(3-Mepy)2.7(H2O)0.3WV(CN)8]·0.6H2O (1) and (Ph4As)[CoII(3-Mepy)3WV(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K. PMID:27071451

  18. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds

    NASA Astrophysics Data System (ADS)

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-04-01

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[CoII(3-Mepy)2.7(H2O)0.3WV(CN)8]·0.6H2O (1) and (Ph4As)[CoII(3-Mepy)3WV(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K.

  19. Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies

    PubMed Central

    Bale, Shridhar; Kumar, Shailendra; Guenaga, Javier; Wilson, Richard; de Val, Natalia; Arendt, Heather; DeStefano, Joanne; Ward, Andrew B.; Wyatt, Richard T.

    2016-01-01

    In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were “stress-tested” at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. PMID:27487086

  20. Coalescence of 3-phenyl-propynenitrile on Cu(111) into interlocking pinwheel chains

    NASA Astrophysics Data System (ADS)

    Luo, Miaomiao; Lu, Wenhao; Kim, Daeho; Chu, Eric; Wyrick, Jon; Holzke, Connor; Salib, Daniel; Cohen, Kamelia D.; Cheng, Zhihai; Sun, Dezheng; Zhu, Yeming; Einstein, T. L.; Bartels, Ludwig

    2011-10-01

    3-phenyl-propynenitrile (PPN) adsorbs on Cu(111) in a hexagonal network of molecular trimers formed through intermolecular interaction of the cyano group of one molecule with the aromatic ring of its neighbor. Heptamers of trimers coalesce into interlocking pinwheel-shaped structures that, by percolating across islands of the original trimer coverage, create the appearance of gear chains. Density functional theory aids in identifying substrate stress associated with the chemisorption of PPN's acetylene group as the cause of this transition.

  1. Universal clusters as building blocks of stable quantum matter

    NASA Astrophysics Data System (ADS)

    Endo, Shimpei; García-García, Antonio M.; Naidon, Pascal

    2016-05-01

    We present an exploratory study that suggests that Efimov physics, a leading research theme in few-body quantum physics, can also induce stable many-body ground states whose building blocks are universal clusters. We identify a range of parameters in a mass-and-density-imbalanced two-species fermionic mixture for which the ground state is a gas of Efimov-related universal trimers. An explicit calculation of the trimer-trimer interaction reveals that the trimer phase is an SU(3) Fermi liquid stable against recombination losses. We propose to experimentally observe this phase in a fermionic 53Cr-6Li mixture.

  2. ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice.

    PubMed

    Phan, Hoang T; Pohl, Julia; Floss, Doreen M; Rabenstein, Frank; Veits, Jutta; Le, Binh T; Chu, Ha H; Hause, Gerd; Mettenleiter, Thomas; Conrad, Udo

    2013-06-01

    Reducing the cost of vaccine production is a key priority for veterinary research, and the possibility of heterologously expressing antigen in plants provides a particularly attractive means of achieving this. Here, we report the expression of the avian influenza virus haemagglutinin (AIV HA) in tobacco, both as a monomer and as a trimer in its native and its ELPylated form. We firstly presented evidence to produce stabilized trimers of soluble HA in plants. ELPylation of these trimers does not influence the trimerization. Strong expression enhancement in planta caused by ELPylation was demonstrated for trimerized H5-ELP. ELPylated trimers could be purified by a membrane-based inverse transition cycling procedure with the potential of successful scale-up. The trimeric form of AIV HA was found to enhance the HA-specific immune response compared with the monomeric form. Plant-derived AIV HA trimers elicited potentially neutralizing antibodies interacting with both homologous virus-like particles from plants and heterologous inactivated AIV. ELPylation did not influence the functionality and the antigenicity of the stabilized H5 trimers. These data allow further developments including scale-up of production, purification and virus challenge experiments with the final goal to achieve suitable technologies for efficient avian flu vaccine production.

  3. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). Melamine-formaldehyde resin. 2,2′-Methylenebis(4-methyl-6-tert-butylphenol). Nylon 6/66, weight ratio 2/3... trioxane (cyclic trimer of formaldehyde) and ethylene oxide (CAS Reg. No. 24969-25-3) or the reaction product of trioxane (cyclic trimer of formaldehyde) and a maximum of 5 percent by weight of...

  4. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). Melamine-formaldehyde resin. 2,2′-Methylenebis(4-methyl-6-tert-butylphenol). Nylon 6/66, weight ratio 2/3... trioxane (cyclic trimer of formaldehyde) and ethylene oxide (CAS Reg. No. 24969-25-3) or the reaction product of trioxane (cyclic trimer of formaldehyde) and a maximum of 5 percent by weight of...

  5. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). Melamine-formaldehyde resin. 2,2′-Methylenebis(4-methyl-6-tert-butylphenol). Nylon 6/66, weight ratio 2/3... trioxane (cyclic trimer of formaldehyde) and ethylene oxide (CAS Reg. No. 24969-25-3) or the reaction product of trioxane (cyclic trimer of formaldehyde) and a maximum of 5 percent by weight of...

  6. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). Melamine-formaldehyde resin. 2,2′-Methylenebis(4-methyl-6-tert-butylphenol). Nylon 6/66, weight ratio 2/3... trioxane (cyclic trimer of formaldehyde) and ethylene oxide (CAS Reg. No. 24969-25-3) or the reaction product of trioxane (cyclic trimer of formaldehyde) and a maximum of 5 percent by weight of...

  7. U.S. EPA’s Technical Support for the Reich Farm (Toms River, NJ) Superfund Site Remediation

    EPA Science Inventory

    PowerPoint slide file that gives a brief history of the SAN Trimer contamination in Toms River, NJ as well as the EPA's provided technical support, specifically the development and application of the Provisional Peer-Reviewed Toxicity Value (PPRTV) assessment for SAN Trimer.

  8. Design of a modular tetrameric scaffold for the synthesis of membrane-localized D-peptide inhibitors of HIV-1 entry

    PubMed Central

    Francis, J. Nicholas; Redman, Joseph S.; Eckert, Debra M.; Kay, Michael S.

    2012-01-01

    The highly conserved HIV-1 gp41 “pocket” region is a promising target for inhibiting viral entry. PIE12-trimer is a protease-resistant trimeric D-peptide inhibitor that binds to this pocket and potently blocks HIV entry. PIE12-trimer also possesses a reserve of binding energy that provides it with a strong genetic barrier to resistance (“resistance capacitor”). Here we report the design of a modular scaffold employing PEGs of discrete lengths for the efficient optimization and synthesis of PIE12-trimer. This scaffold also allows us to conjugate PIE12-trimer to several membrane-localizing cargoes, resulting in dramatically improved potency and retention of PIE12-trimer’s ability to absorb the impact of resistance mutations. This scaffold design strategy should be of broad utility for the rapid prototyping of multimeric peptide inhibitors attached to potency- or pharmacokinetic-enhancing groups. PMID:22545664

  9. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env.

    PubMed

    Kwon, Young Do; Pancera, Marie; Acharya, Priyamvada; Georgiev, Ivelin S; Crooks, Emma T; Gorman, Jason; Joyce, M Gordon; Guttman, Miklos; Ma, Xiaochu; Narpala, Sandeep; Soto, Cinque; Terry, Daniel S; Yang, Yongping; Zhou, Tongqing; Ahlsen, Goran; Bailer, Robert T; Chambers, Michael; Chuang, Gwo-Yu; Doria-Rose, Nicole A; Druz, Aliaksandr; Hallen, Mark A; Harned, Adam; Kirys, Tatsiana; Louder, Mark K; O'Dell, Sijy; Ofek, Gilad; Osawa, Keiko; Prabhakaran, Madhu; Sastry, Mallika; Stewart-Jones, Guillaume B E; Stuckey, Jonathan; Thomas, Paul V; Tittley, Tishina; Williams, Constance; Zhang, Baoshan; Zhao, Hong; Zhou, Zhou; Donald, Bruce R; Lee, Lawrence K; Zolla-Pazner, Susan; Baxa, Ulrich; Schön, Arne; Freire, Ernesto; Shapiro, Lawrence; Lee, Kelly K; Arthos, James; Munro, James B; Blanchard, Scott C; Mothes, Walther; Binley, James M; McDermott, Adrian B; Mascola, John R; Kwong, Peter D

    2015-07-01

    As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.

  10. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, {sup 57}Fe Moessbauer spectroscopy and thermal studies

    SciTech Connect

    Travnicek, Zdenek; Herchel, Radovan; Mikulik, Jiri; Zboril, Radek

    2010-05-15

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, where L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.

  11. Design and characterization of ebolavirus GP prehairpin intermediate mimics as drug targets.

    PubMed

    Clinton, Tracy R; Weinstock, Matthew T; Jacobsen, Michael T; Szabo-Fresnais, Nicolas; Pandya, Maya J; Whitby, Frank G; Herbert, Andrew S; Prugar, Laura I; McKinnon, Rena; Hill, Christopher P; Welch, Brett D; Dye, John M; Eckert, Debra M; Kay, Michael S

    2015-04-01

    Ebolaviruses are highly lethal filoviruses that cause hemorrhagic fever in humans and nonhuman primates. With no approved treatments or preventatives, the development of an anti-ebolavirus therapy to protect against natural infections and potential weaponization is an urgent global health need. Here, we describe the design, biophysical characterization, and validation of peptide mimics of the ebolavirus N-trimer, a highly conserved region of the GP2 fusion protein, to be used as targets to develop broad-spectrum inhibitors of ebolavirus entry. The N-trimer region of GP2 is 90% identical across all ebolavirus species and forms a critical part of the prehairpin intermediate that is exposed during viral entry. Specifically, we fused designed coiled coils to the N-trimer to present it as a soluble trimeric coiled coil as it appears during membrane fusion. Circular dichroism, sedimentation equilibrium, and X-ray crystallography analyses reveal the helical, trimeric structure of the designed N-trimer mimic targets. Surface plasmon resonance studies validate that the N-trimer mimic binds its native ligand, the C-peptide region of GP2. The longest N-trimer mimic also inhibits virus entry, thereby confirming binding of the C-peptide region during viral entry and the presence of a vulnerable prehairpin intermediate. Using phage display as a model system, we validate the suitability of the N-trimer mimics as drug screening targets. Finally, we describe the foundational work to use the N-trimer mimics as targets in mirror-image phage display, which will be used to identify D-peptide inhibitors of ebolavirus entry. PMID:25287718

  12. Cage assembly of DegP protease is not required for substrate-dependent regulation of proteolytic activity or high-temperature cell survival.

    PubMed

    Kim, Seokhee; Sauer, Robert T

    2012-05-01

    DegP, a member of the highly conserved HtrA family, performs quality-control degradation of misfolded proteins in the periplasm of gram-negative bacteria and is required for high-temperature survival of Escherichia coli. Substrate binding transforms DegP from an inactive oligomer containing two trimers into active polyhedral cages, typically containing four or eight trimers. Although these observations suggest a causal connection, we show that cage assembly and proteolytic activation can be uncoupled. Indeed, DegP variants that remain trimeric, hexameric, or dodecameric in the presence or absence of substrate still display robust and positively cooperative substrate degradation in vitro and, most importantly, sustain high-temperature bacterial growth as well as the wild-type enzyme. Our results support a model in which substrate binding converts inactive trimers into proteolytically active trimers, and simultaneously leads to cage assembly by enhancing binding of PDZ1 domains in one trimer to PDZ2' domains in neighboring trimers. Thus, both processes depend on substrate binding, but they can be uncoupled without loss of biological function. We discuss potential coupling mechanisms and why cage formation may have evolved if it is not required for DegP proteolysis. PMID:22529381

  13. Pseudorevertants of a Semliki Forest Virus Fusion-Blocking Mutation Reveal a Critical Interchain Interaction in the Core Trimer▿

    PubMed Central

    Liu, Catherine Y.; Besanceney, Christen; Song, Yifan; Kielian, Margaret

    2010-01-01

    Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells by a low-pH-triggered membrane fusion reaction mediated by the viral E1 protein. E1 inserts into target membranes and refolds to a hairpin-like homotrimer containing a central core trimer and an outer layer composed of domain III and the juxtamembrane stem region. The key residues involved in mediating E1 trimerization are not well understood. We recently showed that aspartate 188 in the interface of the core trimer plays a critical role. Substitution with lysine (D188K) blocks formation of the core trimer and E1 trimerization and strongly inhibits virus fusion and infection. Here, we have isolated and characterized revertants that rescued the fusion and growth defects of D188K. These revertants included pseudorevertants containing acidic or polar neutral residues at E1 position 188 and a second-site revertant containing an E1 K176T mutation. Computational analysis using multiconformation continuum electrostatics revealed an important interaction bridging D188 of one chain with K176 of the adjacent chain in the core trimer. E1 K176 is completely conserved among the alphaviruses, and mutations of K176 to threonine (K176T) or isoleucine (K176I) produced similar fusion phenotypes as D188 mutants. Together, our data support a model in which a ring of three salt bridges formed by D188 and K176 stabilize the core trimer, a key intermediate of the alphavirus fusion protein. PMID:20826687

  14. Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic)2 in neutral media.

    PubMed

    Zhang, Biaobiao; Li, Fei; Zhang, Rong; Ma, Chengbing; Chen, Lin; Sun, Licheng

    2016-06-30

    A Ru(III)-O-Ru(IV)-O-Ru(III) type trinuclear species was crystallographically characterized in water oxidation by Ru(bda)(pic)2 (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; pic = 4-picoline) under neutral conditions. The formation of a ruthenium trimer due to the reaction of Ru(IV)[double bond, length as m-dash]O with Ru(II)-OH2 was fully confirmed by chemical, electrochemical and photochemical methods. Since the oxidation of the trimer was proposed to lead to catalyst decomposition, the photocatalytic water oxidation activity was rationally improved by the suppression of the formation of the trimer.

  15. Universal (1+2)-body bound states in planar atomic waveguides

    SciTech Connect

    Pricoupenko, Ludovic; Pedri, Paolo

    2010-09-15

    Shallow heteronuclear trimers are predicted for mixtures of two atomic species strongly trapped in a quasi-two-dimensional (2D) atomic waveguide. The binding energies are functions of the 2D scattering length and of the mass ratio and can be thus tuned by various ways. These universal trimers are composed of two identical noninteracting particles and of a third particle of the other species. Depending on the statistics of the two identical particles, the trimers have an odd (fermions) or even (bosons) internal angular momentum. These results permit one to draw conclusions on the stability issue for the quasi-2D gaseous phase of heteronuclear dimers.

  16. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex.

    PubMed

    Essen, L; Siegert, R; Lehmann, W D; Oesterhelt, D

    1998-09-29

    Heterogenous nucleation on small molecule crystals causes a monoclinic crystal form of bacteriorhodopsin (BR) in which trimers of this membrane protein pack differently than in native purple membranes. Analysis of single crystals by nano-electrospray ionization-mass spectrometry demonstrated a preservation of the purple membrane lipid composition in these BR crystals. The 2.9-A x-ray structure shows a lipid-mediated stabilization of BR trimers where the glycolipid S-TGA-1 binds into the central compartment of BR trimers. The BR trimer/lipid complex provides an example of local membrane thinning as the lipid head-group boundary of the central lipid patch is shifted by 5 A toward the membrane center. Nonbiased electron density maps reveal structural differences to previously reported BR structures, especially for the cytosolic EF loop and the proton exit pathway. The terminal proton release complex now comprises an E194-E204 dyad as a diffuse proton buffer.

  17. Electronic structure of acceptor-donor complexes in silicon

    NASA Astrophysics Data System (ADS)

    Atoro, E.; Ohama, Y.; Hayafuji, Y.

    2003-10-01

    The electronic structure of trimer acceptor-donor complexes in silicon Si clusters is studied using the ab initio discrete variational-Xα molecular-orbital (MO) method. The trimer complexes In2D (D=phosphorus P, arsenic As, antimony Sb, or bismuth Bi) consist of two indium In acceptor elements and a centered donor element D from the group V elements. Calculations are performed under the assumption that the three atoms are arranged in the nearest neighbor substitutional trimer configuration. Results indicate that the trimer complexes act as shallower acceptors having smaller ionization activation energies than In acceptor. The potential of In2D as an acceptor in Si is then discussed and In2D is proposed as a promising acceptor for the formation of channels and source/drains in ultralarge scaled integration.

  18. Synthesis and in vitro antiproliferative activities of quinoline derivatives.

    PubMed

    Broch, Sidonie; Aboab, Bettina; Anizon, Fabrice; Moreau, Pascale

    2010-04-01

    The synthesis of new di- and trimeric quinoline derivatives is described as well as their in vitro antiproliferative activities toward a human fibroblast primary culture and two human solid cancer cell lines (MCF-7 and PA 1).

  19. New type of trifunctional alcohol

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Hutchison, J. J.

    1972-01-01

    New type of trifunctional alcohol was synthesized from commercially available trimer acid. Trifunctional alcohol is hydrocarbon with widely separated terminal hydroxyl groups, and was expressly developed as crosslinking agent for preparation of polyurethane propellants, binders and case liners.

  20. The organic chemistry of conducting polymers. Annual technical report, February 1, 1993--May 31, 1994

    SciTech Connect

    Tolbert, L.M.

    1994-08-19

    This paper is divided into: solitons in a box (polyacetylene), cyanines as molecular switches/beyond the cyanine limit, low band-gap heteropolymers, ``dimeric`` and ``trimeric monomers,`` and electrically conductive polymeric interconnects.

  1. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase.

    PubMed Central

    Robey, E A; Schachman, H K

    1985-01-01

    Crystallographic studies of Escherichia coli aspartate transcarbamoylase (aspartate carbamoyltransferase, EC 2.1.3.2) in conjunction with chemical modification experiments have led to the suggestion that the active sites of the enzyme are at the interfaces between adjacent polypeptide chains of the catalytic trimers and involve joint participation of amino acid residues from the adjoining chains. However, the precise locations of the active sites and of the residues involved in catalysis are not known. To test the hypothesis that the active sites are shared between chains, we constructed hybrid trimers in which two chains were modified at one presumed active site residue and the third chain was altered at a different active site residue. One parental trimer was a reduced pyridoxal phosphate derivative in which lysine-84 was modified and the other was a mutant protein in which tyrosine-165 was converted to serine by site-directed mutagenesis. Incubating mixtures of these two virtually inactive derivatives under conditions promoting interchain exchange led to a large increase in enzyme activity corresponding approximately to the formation of one active site per trimer. The purified hybrid trimers, containing either two pyridoxylated and one mutant chain or vice versa, had 23% and 28%, respectively, the activity of native wild-type catalytic trimers, compared to 5% and 3% for the parental trimers. The most likely explanation for this large increase in activity is the formation of one "native" active site in each of the hybrid trimers. The results constitute strong evidence for shared active sites in aspartate transcarbamoylase. Images PMID:3881763

  2. Scaling limit of virtual states of triatomic systems

    SciTech Connect

    Yamashita, M.T.; Frederico, T.; Delfino, A.; Tomio, Lauro

    2002-11-01

    For a system with three identical atoms, the dependence of the s-wave virtual state energy on the weakly bound dimer and trimer binding energies is calculated in the form of a universal scaling function. The scaling function is obtained from a renormalizable three-body model with a pairwise Dirac-{delta} interaction. The threshold condition for the appearance of the trimer virtual state was also discussed.

  3. A Stable Prefusion Intermediate of the Alphavirus Fusion Protein Reveals Critical Features of Class II Membrane Fusion

    PubMed Central

    Martín, Claudia Sánchez-San; Sosa, Hernando

    2009-01-01

    Summary Alphaviruses infect cells via a low-pH-triggered membrane fusion reaction mediated by the class II virus fusion protein E1, an elongated molecule with three extramembrane domains (DI–III). E1 drives fusion by inserting its fusion peptide loop into the target membrane and refolding to a hairpin-like trimer in which DIII moves toward the target membrane and packs against the central trimer. Three-dimensional structures provide static pictures of prefusion and postfusion E1 but do not explain this transition. Using truncated forms of E1, we reconstituted a low-pH-dependent intermediate composed of trimers of DI/II. Unexpectedly, DI/II trimers were stable in the absence of DIII. Once formed at a low pH, DI/II trimers efficiently and specifically bound recombinant DIII through a pH-independent reaction. Even in the absence of DIII, DI/II trimers interacted to form hexagonal lattices and to cause membrane deformation and tubulation. These studies identify a prefusion intermediate in class II membrane fusion. PMID:19064260

  4. Magneto-transport and optical control of magnetization in organic systems: From polymers to molecule-based magnets

    NASA Astrophysics Data System (ADS)

    Bozdag, Kadriye Deniz

    Organic systems can be synthesized to have various impressive properties such as room temperature magnetism, electrical conductivity as high as conventional metals and magnetic field dependent transport. In this dissertation, we report comprehensive experimental studies in two different classes of organic systems, V-Cr Prussian blue molecule-based magnets and polyaniline nanofiber networks. The first system, V-Cr Prussian blue magnets, belongs to a family of cyano-bridged bi-metallic compounds which display a broad range of interesting photoinduced magnetic properties. A notable example for optically controllable molecule-based magnets is Co-Fe Prussian blue magnet (Tc ˜ 12 K), which exhibits light-induced changes in between magnetic states together with glassy behavior. In this dissertation, the first reports of reversible photoinduced magnetic phenomena in V-Cr Prussian blue analogs and the analysis of its AC and DC magnetization behavior are presented. Optical excitation of V-Cr Prussian blue, one of the few room temperature molecule-based magnets, with UV light (lambda = 350 nm) suppresses magnetization, whereas subsequent excitation with green light (lambda = 514 nm) increases magnetization. The partial recovery effect of green light is observed only when the sample is previously UV-irradiated. Moreover the photoinduced state has a long lifetime at low temperatures (tau > 106 s at T = 10 K) indicating that V-Cr Prussian blue reaches a hidden metastable state upon illumination with UV light. The effects of optical excitation are maintained up to 200 K and completely erased when the sample is warmed above 250 K. Results of detailed magnetic studies and the likely microscopic mechanisms for the photo illumination effects on magnetic properties are discussed. The second organic system, polyaniline nanofiber networks, was synthesized via dilute polymerization and studied at low and high electric and magnetic fields for temperatures 2 K--250 K for their magneto

  5. Synthesis and characterization of transition metal clusters: From the isolation of ligand-stabilized solid fragments to the tuning of magnetic anisotropy and host-guest selectivity, and, Approaches to science teaching: Development of an observation instrument with a measurement model based on item response theory

    NASA Astrophysics Data System (ADS)

    Hee, Allan George

    Part I. The work presented herein describes efforts to develop general techniques for the synthesis of transition metal clusters and the manipulation of their properties. In Chapter 2, it is demonstrated that a modified metal atom reactor allows for the vaporization, passivation, and isolation of metal-chalcogenide clusters from their parent binary solids. Among the clusters produced by this method were Cr6S8(PEt3)6, Fe4S 4(PEt3)4, Co6S8(PEt 3)6, Cu6S4(PEt3)6, Cu12S6(PEt3)8, and Cu26Se 13(PEt3)14. To create single-molecule magnets with higher demagnetization barriers, we are developing metal-cyanide systems which exhibit highly adjustable magnetic behavior. Chapter 3 reports an attempt to introduce magnetic anisotropy into a MnCr6 cluster. Replacement of CrIII with Mo III resulted in the assembly of K[(Me3tacn)6MnMo 6(CN)18](ClO4)3 (Me3tacn = N,N',N″ -trimethyl-1,4,7-triazacyclononane)---the first well-documented example of a cyano-bridged single-molecule magnet. Recently, it was demonstrated that replacing Me3tacn with the less sterically hindering tach (tach = cis,cis-1,3,5-triaminocyclohexane) in the face-centered cubic cluster [(tach)8Cr8Ni 6(CN)24]Br12 provides greater access to the cluster cavity. Chapter 4 describes my efforts to probe the selectivity of this cluster toward inclusion of various guests. Part II. Successful implementation of student-centered curricula reforms requires the creation of a measurement instrument for monitoring whether the curricula are being used as intended. The creation and development of an observation instrument would greatly contribute to this effort. To develop a theoretically sound construct map, it is necessary to review the literature and conduct our own investigations of approaches to science teaching. Chapter 2 presents the findings of these investigations and their contributions to our understanding of the construct. Using these findings, the Science Teaching Observation Protocol (STOP) was created and designed to

  6. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    PubMed

    Crooks, Ema T; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O'Dell, Sijy; LaBranche, Celia; Robinson, James E; Montefiori, David C; McKee, Krisha; Du, Sean X; Doria-Rose, Nicole; Kwong, Peter D; Mascola, John R; Zhu, Ping; Schief, William R; Wyatt, Richard T; Whalen, Robert G; Binley, James M

    2015-05-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  7. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site

    PubMed Central

    Crooks, Ema T.; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S.; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O’Dell, Sijy; LaBranche, Celia; Robinson, James E.; Montefiori, David C.; McKee, Krisha; Du, Sean X.; Doria-Rose, Nicole; Kwong, Peter D.; Mascola, John R.; Zhu, Ping; Schief, William R.; Wyatt, Richard T.; Whalen, Robert G.; Binley, James M.

    2015-01-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative “glycan fence” that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine. PMID:26023780

  8. The Crystallization of Canavalin as a Function of pH and NaCl Concentration

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Gorti, Sridhar; Pusey, Marc L.

    2004-01-01

    We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The crystalline protein can be readily dissolved by weakly basic solution, which has been proposed to result in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part of the crystal nucleation and growth path. Results are presented for crystallization experiments of CCAN over the pH 6.4 to 9.6 range. Fluorescence anisotropy, light scattering, and gel filtration experiments show that the solutions are primarily trimers, with association to form larger species occurring as a function of protein concentration.

  9. Structural changes of tumor necrosis factor alpha associated with membrane insertion and channel formation.

    PubMed Central

    Baldwin, R L; Stolowitz, M L; Hood, L; Wisnieski, B J

    1996-01-01

    Low pH enhances tumor necrosis factor alpha (TNF)-induced cytolysis of cancer cells and TNF-membrane interactions that include binding, insertion, and ion-channel formation. We have also found that TNF increases Na+ influx in cells. Here, we examined the structural features of the TNF-membrane interaction pathway that lead to channel formation. Fluorometric studies link TNF's acid-enhanced membrane interactions to rapid but reversible acquisition of hydrophobic surface properties. Intramembranous photolabeling shows that (i) protonation of TNF promotes membrane insertion, (ii) the physical state of the target bilayer affects the kinetics and efficiency of TNF insertion, and (iii) binding and insertion of TNF are two distinct events. Acidification relaxes the trimeric structure of soluble TNF so that the cryptic carboxyl termini, centrally located at the base of the trimer cone, become susceptible to carboxypeptidase Y. After membrane insertion, TNF exhibits a trimeric configuration in which the carboxyl termini are no longer exposed; however, the proximal salt-bridged Lys-11 residues as well as regional surface amino acids (Glu-23, Arg-32, and Arg-44) are notably more accessible to proteases. The sequenced cleavage products bear the membrane-restricted photoreactive probe, proof that surface-cleaved TNF has an intramembranous disposition. In summary, the trimer's structural plasticity is a major determinant of its channel-forming ability. Channel formation occurs when cracked or partially splayed trimers bind and penetrate the bilayer. Reannealing leads to a slightly relaxed trimeric structure. The directionality of bilayer penetration conforms with x-ray data showing that receptor binding to the monomer interfaces of TNF poises the tip of the trimeric cone directly above the target cell membrane. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8577707

  10. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus.

    PubMed

    Stewart-Jones, Guillaume B E; Thomas, Paul V; Chen, Man; Druz, Aliaksandr; Joyce, M Gordon; Kong, Wing-Pui; Sastry, Mallika; Soto, Cinque; Yang, Yongping; Zhang, Baoshan; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S; McLellan, Jason S; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Graham, Barney S; Kwong, Peter D

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen. PMID:26098893

  11. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus.

    PubMed

    Stewart-Jones, Guillaume B E; Thomas, Paul V; Chen, Man; Druz, Aliaksandr; Joyce, M Gordon; Kong, Wing-Pui; Sastry, Mallika; Soto, Cinque; Yang, Yongping; Zhang, Baoshan; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S; McLellan, Jason S; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R; Graham, Barney S; Kwong, Peter D

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen.

  12. A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus

    PubMed Central

    Stewart-Jones, Guillaume B. E.; Thomas, Paul V.; Chen, Lei; Chuang, Gwo-Yu; Georgiev, Ivelin S.; McLellan, Jason S.; Srivatsan, Sanjay; Zhou, Tongqing; Baxa, Ulrich; Mascola, John R.; Graham, Barney S.; Kwong, Peter D.

    2015-01-01

    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by “DS-Cav1” mutations and by an appended C-terminal trimerization motif or “foldon” from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide “rings”, with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen. PMID:26098893

  13. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7

    PubMed Central

    Rojas, Raul; van Vlijmen, Thijs; Mardones, Gonzalo A.; Prabhu, Yogikala; Rojas, Adriana L.; Mohammed, Shabaz; Heck, Albert J.R.; Raposo, Graça; van der Sluijs, Peter; Bonifacino, Juan S.

    2008-01-01

    The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes. PMID:18981234

  14. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  15. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein.

    PubMed Central

    Wahlberg, J M; Bron, R; Wilschut, J; Garoff, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction. Images PMID:1433520

  16. HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies.

    PubMed

    Steichen, Jon M; Kulp, Daniel W; Tokatlian, Talar; Escolano, Amelia; Dosenovic, Pia; Stanfield, Robyn L; McCoy, Laura E; Ozorowski, Gabriel; Hu, Xiaozhen; Kalyuzhniy, Oleksandr; Briney, Bryan; Schiffner, Torben; Garces, Fernando; Freund, Natalia T; Gitlin, Alexander D; Menis, Sergey; Georgeson, Erik; Kubitz, Michael; Adachi, Yumiko; Jones, Meaghan; Mutafyan, Andrew A; Yun, Dong Soo; Mayer, Christian T; Ward, Andrew B; Burton, Dennis R; Wilson, Ian A; Irvine, Darrell J; Nussenzweig, Michel C; Schief, William R

    2016-09-20

    Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.

  17. Activation and deactivation of vibronic channels in intact phycocyanin rods.

    PubMed

    Nganou, C; David, L; Meinke, R; Adir, N; Maultzsch, J; Mkandawire, M; Pouhè, D; Thomsen, C

    2014-02-28

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm(-1) is assigned to the C-C stretching vibration while the mode at 454 cm(-1) is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm(-1) does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm(-1) rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration. PMID:24588198

  18. Structural characteristics that stabilize or destabilize different assembly levels of phycocyanin by urea.

    PubMed

    Marx, Ailie; Adir, Noam

    2014-07-01

    Phycocyanin is one of the two phycobiliproteins always found in the Phycobilisome antenna complex. It is always situated at the ends of the peripheral rods, adjacent to the core cylinders composed of allophycocyanin. The basic phycocyanin monomer is an (αβ) dimer of globin-like subunits with three covalently linked phycocyanobilin cofactors. Monomers assemble further into trimers, hexamers, and rods which include non-pigmented linker proteins. Upon isolation in low ionic strength solution, rods quickly disintegrate into phycocyanin trimers, which lose contacts with other phycobiliproteins and with the linker proteins. The trimers, however, are quite stable and only the presence of high concentrations of chaotropic agents (such as urea), very acidic solutions, or elevated temperatures induces monomerization, followed by separation between the subunits. We have recently determined the crystal structures of phycocyanin from the thremophilic cyanobacterium Thermosynechococcus vulcanus in the presence of 2 or 4 M urea, and shown that 4 M urea monomerizes the phycocyanin trimers. In this paper, we will describe the phycocyanin structures in 2 and 4 M urea more completely. By mapping out the urea positions, we describe the structural elements within the trimeric interaction interface that may be interrupted by the presence of 4 M urea. In addition, we also identify what are the structural characteristics that prevent 4 M urea from inducing subunit dissociation. PMID:24687534

  19. Hemagglutinin Spatial Distribution Shifts in Response to Cholesterol in the Influenza Viral Envelope

    PubMed Central

    Domanska, Marta K.; Dunning, Rebecca A.; Dryden, Kelly A.; Zawada, Katarzyna E.; Yeager, Mark; Kasson, Peter M.

    2015-01-01

    Influenza virus delivers its genome to the host cytoplasm via a process of membrane fusion mediated by the viral hemagglutinin protein. Optimal fusion likely requires multiple hemagglutinin trimers, so the spatial distribution of hemagglutinin on the viral envelope may influence fusion mechanism. We have previously shown that moderate depletion of cholesterol from the influenza viral envelope accelerates fusion kinetics even though it decreases fusion efficiency, both in a reversible manner. Here, we use electron cryo-microscopy to measure how the hemagglutinin lateral density in the viral envelope changes with cholesterol extraction. We extract this information by measuring the radial distribution function of electron density in >4000 viral images per sample, assigning hemagglutinin density by comparing images with and without anti-HA Fab bound. On average, hemagglutinin trimers move closer together: we estimate that the typical trimer-trimer spacing reduces from 94 to 84 Å when ∼90% of cholesterol is removed from the viral membrane. Upon restoration of viral envelope cholesterol, this spacing once again expands. This finding can qualitatively explain the observed changes to fusion kinetics: contemporary models from single-virus microscopy are that fusion requires the engagement of several hemagglutinin trimers in close proximity. If removing cholesterol increases the lateral density of hemagglutinin, this should result in an increase in the rate of fusion. PMID:26536268

  20. Structural characteristics that stabilize or destabilize different assembly levels of phycocyanin by urea.

    PubMed

    Marx, Ailie; Adir, Noam

    2014-07-01

    Phycocyanin is one of the two phycobiliproteins always found in the Phycobilisome antenna complex. It is always situated at the ends of the peripheral rods, adjacent to the core cylinders composed of allophycocyanin. The basic phycocyanin monomer is an (αβ) dimer of globin-like subunits with three covalently linked phycocyanobilin cofactors. Monomers assemble further into trimers, hexamers, and rods which include non-pigmented linker proteins. Upon isolation in low ionic strength solution, rods quickly disintegrate into phycocyanin trimers, which lose contacts with other phycobiliproteins and with the linker proteins. The trimers, however, are quite stable and only the presence of high concentrations of chaotropic agents (such as urea), very acidic solutions, or elevated temperatures induces monomerization, followed by separation between the subunits. We have recently determined the crystal structures of phycocyanin from the thremophilic cyanobacterium Thermosynechococcus vulcanus in the presence of 2 or 4 M urea, and shown that 4 M urea monomerizes the phycocyanin trimers. In this paper, we will describe the phycocyanin structures in 2 and 4 M urea more completely. By mapping out the urea positions, we describe the structural elements within the trimeric interaction interface that may be interrupted by the presence of 4 M urea. In addition, we also identify what are the structural characteristics that prevent 4 M urea from inducing subunit dissociation.

  1. Structure of the HIV-1 gp41 Membrane-Proximal Ectodomain Region in a Putative Prefusion Conformation

    SciTech Connect

    Liu, J.; Deng, Y; Dey, A; Moore, J; Lu, M

    2009-01-01

    The conserved membrane-proximal external region (MPER) of the HIV-1 gp41 envelope protein is the established target for very rare but broadly neutralizing monoclonal antibodies (NAbs) elicited during natural human infection. Nevertheless, attempts to generate an HIV-1 neutralizing antibody response with immunogens bearing MPER epitopes have met with limited success. Here we show that the MPER peptide (residues 662-683) forms a labile ?-helical trimer in aqueous solution and report the crystal structure of this autonomous folding subdomain stabilized by addition of a C-terminal isoleucine zipper motif. The structure reveals a parallel triple-stranded coiled coil in which the neutralization epitope residues are buried within the interface between the associating MPER helices. Accordingly, both the 2F5 and 4E10 NAbs recognize the isolated MPER peptide but fail to bind the trimeric MPER subdomain. We propose that the trimeric MPER structure represents the prefusion conformation of gp41, preceding the putative prehairpin intermediate and the postfusion trimer-of-hairpins structure. As such, the MPER trimer should inform the design of new HIV-1 immunogens to elicit broadly neutralizing antibodies.

  2. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    SciTech Connect

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.; Bamford, Jaana K. H.; Bamford, Dennis H.; Stuart, David I.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtained in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.

  3. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Hyun; Leaman, Daniel P.; Kim, Arthur S.; Torrents de La Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W.; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R.; Nussenzweig, Michel C.; Poignard, Pascal; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.; Zwick, Michael B.; Wilson, Ian A.; Ward, Andrew B.

    2015-09-01

    The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120-gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.

  4. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env

    NASA Astrophysics Data System (ADS)

    Guttman, Miklos; Cupo, Albert; Julien, Jean-Philippe; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Lee, Kelly K.

    2015-02-01

    HIV’s envelope glycoprotein (Env) is the sole target for neutralizing antibodies. The structures of many broadly neutralizing antibodies (bNAbs) in complex with truncated Env subunits or components have been reported. However, their interaction with the intact Env trimer, and the structural determinants that underlie neutralization resistance in this more native context are less well understood. Here we use hydrogen/deuterium exchange to examine the interactions between a panel of bNAbs and native-like Env trimers (SOSIP.664 trimers). Highly potent bNAbs cause only localized effects at their binding interface, while the binding of less potent antibodies is associated with elaborate changes throughout the trimer. In conjunction with binding kinetics, our results suggest that poorly neutralizing antibodies can only bind when the trimer transiently samples an open state. We propose that the kinetics of such opening motions varies among isolates, with Env from neutralization-sensitive viruses opening more frequently than Env from resistant viruses.

  5. Potentiation of TRAIL killing activity by multimerization through isoleucine zipper hexamerization motif

    PubMed Central

    Han, Ji Hye; Moon, Ae Ran; Chang, Jeong Hwan; Bae, Jeehyeon; Choi, Jin Myung; Lee, Sung Haeng; Kim, Tae-Hyoung

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a homo-trimeric cytotoxic ligand. Several studies have demonstrated that incorporation of artificial trimerization motifs into the TRAIL protein leads to the enhancement of biological activity. Here, we show that linkage of the isoleucine zipper hexamerization motif to the N-terminus of TRAIL, referred as ILz(6):TRAIL, leads to multimerization of its trimeric form, which has higher cytotoxic activity compared to its native state. Size exclusion chromatography of ILz(6):TRAIL revealed possible existence of various forms such as trimeric, hexameric, and multimeric (possibly containing one-, two-, and multi-units of trimeric TRAIL, respectively). Increased number of multimerized ILz(6):TRAIL units corresponded with enhanced cytotoxic activity. Further, a high degree of ILz(6):TRAIL multimerization triggered rapid signaling events such as activation of caspases, tBid generation, and chromatin condensation. Taken together, these results indicate that multimerization of TRAIL significantly enhances its cytotoxic activity. [BMB Reports 2016; 49(5): 282-287] PMID:26674343

  6. Crystal structure, conformational fixation, and entry-related interactions of mature ligand-free HIV-1 Env

    PubMed Central

    Kwon, Young Do; Pancera, Marie; Acharya, Priyamvada; Georgiev, Ivelin S.; Crooks, Emma T.; Gorman, Jason; Joyce, M. Gordon; Guttman, Miklos; Ma, Xiaochu; Narpala, Sandeep; Soto, Cinque; Terry, Daniel S.; Yang, Yongping; Zhou, Tongqing; Ahlsen, Goran; Bailer, Robert T.; Chambers, Michael; Chuang, Gwo-Yu; Doria-Rose, Nicole A.; Druz, Aliaksandr; Hallen, Mark A.; Harned, Adam; Kirys, Tatsiana; Louder, Mark K.; O’Dell, Sijy; Ofek, Gilad; Osawa, Keiko; Prabhakaran, Madhu; Sastry, Mallika; Stewart-Jones, Guillaume B.E.; Stuckey, Jonathan; Thomas, Paul V.; Tittley, Tishina; Williams, Constance; Zhang, Baoshan; Zhao, Hong; Zhou, Zhou; Donald, Bruce R.; Lee, Lawrence K.; Zolla-Pazner, Susan; Baxa, Ulrich; Schön, Arne; Freire, Ernesto; Shapiro, Lawrence; Lee, Kelly K.; Arthos, James; Munro, James B.; Blanchard, Scott C.; Mothes, Walther; Binley, James M.; McDermott, Adrian B.; Mascola, John R.; Kwong, Peter D.

    2016-01-01

    As the sole viral antigen on the HIV-1-virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1-Env trimer, fix its conformation, and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies, but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C-433C (DS) variant, specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like particle and soluble formats providing a new generation of vaccine antigens. PMID:26098315

  7. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

    PubMed Central

    Lee, Jeong Hyun; Leaman, Daniel P.; Kim, Arthur S.; Torrents de la Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W.; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R.; Nussenzweig, Michel C.; Poignard, Pascal; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.; Zwick, Michael B.; Wilson, Ian A.; Ward, Andrew B.

    2015-01-01

    The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120–gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120–gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes. PMID:26404402

  8. Studies on the X-Ray and Solution Structure of FeoB from Escherichia coli BL21.

    PubMed

    Hagelueken, Gregor; Hoffmann, Jan; Schubert, Erik; Duthie, Fraser G; Florin, Nicole; Konrad, Lisa; Imhof, Diana; Behrmann, Elmar; Morgner, Nina; Schiemann, Olav

    2016-06-21

    The ferrous iron transporter FeoB is an important factor in the iron metabolism of many bacteria. Although several structural studies have been performed on its cytosolic GTPase domain (NFeoB), the full-length structure of FeoB remains elusive. Based on a crystal packing analysis that was performed on crystals of NFeoB, a trimeric structure of the FeoB channel was proposed, where the transport pore runs along the trimer axis. Because this trimer has not been observed in some subsequently solved structures of NFeoB homologs, it remains unclear whether or not the trimer is indeed functionally relevant. Here, pulsed electron-electron double resonance spectroscopy, negative stain electron microscopy, and native mass spectrometry are used to analyze the oligomeric state of different soluble and full-length FeoB constructs. The results show that the full-length protein is predominantly monomeric, whereas dimers and trimers are formed to a small percentage. Furthermore, the solution structure of the switch I region is analyzed by pulsed electron-electron double resonance spectroscopy and a new, to our knowledge, crystal structure of NFeoB from Escherichia coli BL21 is presented. PMID:27332122

  9. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike.

    PubMed

    Lee, Jeong Hyun; Leaman, Daniel P; Kim, Arthur S; Torrents de la Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R; Nussenzweig, Michel C; Poignard, Pascal; Moore, John P; Klasse, Per Johan; Sanders, Rogier W; Zwick, Michael B; Wilson, Ian A; Ward, Andrew B

    2015-01-01

    The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120-gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes. PMID:26404402

  10. Anionic Snieckus-Fries Rearrangement

    PubMed Central

    Riggs, Jason C.; Singh, Kanwal J.; Yun, Ma; Collum, David B.

    2009-01-01

    Lithiated aryl carbamates (ArLi) bearing methoxy or fluoro substituents in the meta position are generated from lithium diisopropylamide (LDA) in THF, n-BuOMe, Me2NEt, dimethoxyethane (DME), N,N,N’,N’-tetramethylethylenediamine (TMEDA), N,N,N’,N’-tetramethylcyclohexanediamine (TMCDA), and hexamethylphosphoramide (HMPA). The aryllithiums are shown with 6Li, 13C, and 15N NMR spectroscopies to be monomers, ArLi-LDA mixed dimers, and ArLi-LDA mixed trimers, depending on the choice of solvent. Subsequent Snieckus-Fries rearrangements afford ArOLi-LDA mixed dimers and trimers of the resulting phenolates. Rate studies of the rearrangement implicate mechanisms based on monomers, mixed dimers, and mixed trimers. PMID:18798619

  11. Three-body bound states in dipole-dipole interacting Rydberg atoms.

    PubMed

    Kiffner, Martin; Li, Wenhui; Jaksch, Dieter

    2013-12-01

    We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds R≈2 μm, and each configuration is twofold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells, and describe methods for their production and detection.

  12. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Buttrill, S. E., Jr.; Mayo, F. R.; Lan, B.; St.john, G. A.; Dulin, D.

    1982-01-01

    A practical fuel, home heating oil no. 2 (Fuel C), and the pure hydrocarbon, n-dodecane, were subjected to mild oxidation at 130 C and the resulting oxygenated reaction products, deposit precursors, were analyzed using field ionization mass spectrometry. Results for fuel C indicated that, as oxidation was initially extended, certain oxygenated reaction products of increasing molecular weights in the form of monomers, dimers and some trimers were produced. Further oxidation time increase resulted in further increase in monomers but a marked decrease in dimers and trimers. This suggests that these larger molecular weight products have proceeded to form deposit and separated from the fuel mixture. Results for a dodecane indicated that yields for dimers and trimers were very low. Dimers were produced as a result of interaction between oxygenated products with each other rather than with another fuel molecule. This occurred even though fuel molecule concentration was 50 times, or more greater than that for these oxygenated reaction products.

  13. Pair condensation and bound states in fermionic systems

    SciTech Connect

    Sedrakian, Armen; Clark, John W.

    2006-03-15

    We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T{sub c2} for the superfluid phase transition and the limiting temperature T{sub c3} for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T{sub c3}>T{sub c2}.

  14. Immunoadsorber for specific apheresis of autoantibodies in the treatment of bullous pemphigoid.

    PubMed

    Mersmann, Michael; Dworschak, Jenny; Ebermann, Kristin; Komorowski, Lars; Schlumberger, Wolfgang; Stöcker, Winfried; Zillikens, Detlef; Probst, Christian; Schmidt, Enno

    2016-01-01

    Bullous pemphigoid (BP) is an autoimmune blistering skin disease associated with autoantibodies against two hemidesmosomal proteins, BP180 (type XVII collagen) and BP230. As the pathogenic relevance of antibodies against the immunodominant NC16A domain of BP180 has been clearly demonstrated, specific removal of these antibodies should be a rational therapeutic approach. Here, we evaluated three recombinant forms of bacterially produced BP180 NC16A, a monomer, trimer, and tetramer, together with different matrices for their efficacy to specifically adsorb autoantibodies from BP plasma samples. An adsorber consisting of NC16A-trimer coupled to NHS-activated Sepharose 4 Fast Flow revealed satisfying adsorption rates and a high specificity. The NC16A-trimer adsorber was regenerable and autoclavable. It has the potential to be used for specific immunoadsorption to treat severe and refractory BP and other pemphigoid diseases associated with BP180 NC16A reactivity. PMID:26498290

  15. Structural basis for membrane anchoring of HIV-1 envelope spike.

    PubMed

    Dev, Jyoti; Park, Donghyun; Fu, Qingshan; Chen, Jia; Ha, Heather Jiwon; Ghantous, Fadi; Herrmann, Tobias; Chang, Weiting; Liu, Zhijun; Frey, Gary; Seaman, Michael S; Chen, Bing; Chou, James J

    2016-07-01

    HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We used nuclear magnetic resonance to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An amino-terminal coiled-coil and a carboxyl-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes, and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design. PMID:27338706

  16. Neutron diffraction on porin, a channel-forming protein in the outer membrane of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Mischel, Maja; Hentschel, Manfred; Rosenbusch, Jüirg P.; BÜldt, Georg

    1986-02-01

    It is known from planar lipid membrane experiments that matrix porin from E. coli outer membrane forms large channels of about 10 Å diameter which open and close dependent on the trans-membrane potential. Transmission electron microscopy on negatively stained two-dimensional porin lattices showed a trimer in the elementary cell. A 3D analysis of these membranes suggests that the three channels per trimer converge as they traverse the membrane. The aim of our neutron diffraction experiments was to locate the channels independently using H 2O/D 2O exchange experiments and model calculations. The common feature of the best fits shows that the main part of the channels is concentrated at the centre of the trimer, in agreement with the EM result.

  17. Signature Product Code for Predicting Protein-Protein Interactions

    SciTech Connect

    Martin, Shawn B.; Brown, William M.

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictions about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.

  18. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    SciTech Connect

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.

  19. Detection of DNA hybridizations using solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Balagurusamy, Venkat S. K.; Weinger, Paul; Ling, Xinsheng Sean

    2010-08-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  20. Association and dissociation of the cell puncturing complex of bacteriophage T4 is controlled by both pH and temperature.

    PubMed

    Kumar Sarkar, Subodh; Takeda, Yoko; Kanamaru, Shuji; Arisaka, Fumio

    2006-09-01

    The tail lysozyme, gp5, of bacteriophage T4 is a trimeric protein and all the subunits are nicked between Ser351 and Ala352 during assembly through processing. When subsequently heated, the resulting (gp5*)(3) (gp5C)(3) (the asterisk "*" denotes that the intact pre-gp5 trimer has been nicked) dissociates into three gp5* (three independent N-terminal monomeric peptides, that carry lysozyme moieties at the C-termini of gp5*), and a C-terminal trimeric beta-helical structure (gp5C)(3). The interaction between gp27 and gp5* during infection is sundered by reducing pH. This dissociation would be physiologically relevant because the lysozyme moieties should be free in the periplasm (where the pH is low) and would digest the peptidoglycan layer, thereby enabling the tail tube to contact the inner membrane, and probably help to form a pore for DNA injection.