Sample records for cyanoferrates

  1. [Reduction of 137caesium contamination in wild boars by supplementing offered food with ammonium-iron-hexa-cyanoferrate].

    PubMed

    Morfeld, P; Reddemann, J; Schungel, P; Kienzle, E

    2014-01-01

    This replication study investigated whether the 137caesium (137Cs) contamination of wild boars could be relevantly reduced under field conditions by adding ammonium-iron-hexa-cyanoferrate (AFCF; Prussian blue) to the food. In 285 wild boars that had been shot in six Bavarian hunting territories during the season (November until May) between 01 November 2010 and 10 December 2011 137Cs contamination was analysed. Thirty-five animals originated from two hunting territories in which offered food had been supplemented with 1250 mg AFCF per kilogram food. The control animals showed a mean 137Cs contamination of 522 Bq/kg lean skeletal muscle meat. Direct (univariable) comparisons of the two experimental territories with the four control territories yielded a mean reduction in 137Cs contamination due to Prussian bluefeeding by -211 Bq/kg (p < 0.001). Multivariable models that took potential confounders into account (age, weight, sex, hunting date, territory) estimated the effect to be -344 Bq/kg (p < 0.05). This replication study confirmed the finding of Kienzle et al. (12) who described a statistically significant reduction in 137Cs contamination by -380 Bq/kg due to the feeding of Prussian blue in other territories.

  2. Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials

    DOE PAGES

    Yue, Yanfeng; Zhang, Zhiyong; Binder, Andrew J.; ...

    2014-11-10

    Hierarchically superstructured Prussian blue analogues (hexa- conventional hybrid graphene/MnO 2 nanostructured textiles. cyanoferrate, M = Ni II, Co II and Cu II) are synthesized through Because sodium or potassium ions are involved in energy stor- a spontaneous assembly technique. In sharp contrast to mac- age processes, more environmentally neutral electrolytes can roporous-only Prussian blue analogues, the hierarchically su- be utilized, making the superstructured porous Prussian blue perstructured porous Prussian blue materials are demonstrated analogues a great contender for applications as high-per- to possess a high capacitance, which is similar to those of the formance pseudocapacitors.

  3. The coordination chemistry of nitrosyl in cyanoferrates. An exhibit of bioinorganic relevant reactions.

    PubMed

    Olabe, José A

    2008-07-28

    Sodium nitroprusside (SNP, Na(2)[Fe(CN)(5)(NO)].2H(2)O) is a widely used NO-donor hypotensive agent, containing the formally described nitrosonium (NO(+)) ligand, which may be redox-interconverted to the corresponding one-electron (NO) and two-electron (NO(-)/HNO) reduced bound species. Thus, the chemistry of the three nitrosyl ligands may be explored with adequate, biologically relevant substrates. The nitrosonium complex, [Fe(CN)(5)(NO)](2-), is formed through a reductive nitrosylation reaction of [Fe(III)(CN)(5)(H(2)O)](2-) with NO, or, alternatively, through the coordination of NO(2)(-) to [Fe(II)(CN)(5)(H(2)O)](3-) and further proton-assisted dehydration. It is extremely inert toward NO(+)-dissociation, and behaves as an electrophile toward different bases: OH(-), amines, thiolates, etc. Also, SNP releases NO upon UV-vis photo-activation, with formation of [Fe(III)(CN)(5)(H(2)O)](2-). The more electron rich [Fe(CN)(5)(NO)](3-) may be prepared from [Fe(II)(CN)(5)(H(2)O)](3-) and NO, and is also highly inert toward the dissociation of NO (k = 1.6 x 10(-5) s(-1), 25.0 degrees C, pH 10.2). It reacts with O(2) leading to SNP, with the intermediacy of a peroxynitrite adduct. The [Fe(CN)(5)(NO)](3-) ion is labile toward the release of trans-cyanide, forming the [Fe(CN)(4)(NO)](2-) ion. Both complexes exist in a pH-dependent equilibrium, and decompose thermally in the hours time scale, releasing cyanides and NO. The latter may further bind to [Fe(CN)(4)(NO)](2-) with formation of a singlet dinitrosyl species, [Fe(CN)(4)(NO)(2)](2-), which in turn is unstable toward disproportionation into SNP and N(2)O, and toward the parallel formation of a tetrahedral paramagnetic dinitrosyl compound, [Fe(CN)(2)(NO)(2)]. Emerging studies with the putative nitroxyl complex, [Fe(CN)(5)(HNO)](3-), should allow for a complete picture of the three nitrosyl ligands in the same pentacyano fragment. The present Perspective, based on an adequate characterization of structural and spectroscopic properties, will focus on the kinetic and mechanistic description of the above mentioned reactions, which display a versatile scenario, fundamentally related to the biologically relevant processes associated with NO reactivity.

Top