CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis
Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.
2015-01-01
A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252
Fernández-Hernández, Rita; Rafel, Marta; Fusté, Noel P; Aguayo, Rafael S; Casanova, Josep M; Egea, Joaquim; Ferrezuelo, Francisco; Garí, Eloi
2013-01-01
The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with β1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased β1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation. PMID:23839032
Qi, Ruhu; John, Peter Crook Lloyd
2007-07-01
The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.
Li, Zhichao; He, Chaoying
2015-01-01
Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. PMID:25305759
Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta
2015-11-01
The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.
Modulation of CycD3;1-CDK complexes by phytohormones and sucrose during maize germination.
Garza-Aguilar, Sara M; Lara-Núñez, Aurora; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M
2017-05-01
Maize CycD3;1 associates to CDKA or CDKB1;1 proteins during germination and the complexes formed develop kinase activity. These complexes appear to vary in size as germination proceeds, suggesting association to different sets of proteins. CycD3;1 and associated CDK proteins respond to phytohormones and sucrose. Results revealed a reduction in the CycD3;1 protein amount along germination in the presence of indoleacetic acid (IAA) or abscisic acid (ABA), although in the latter protein levels recover at the end of germination. While the levels of CDKA increase with IAA, they decrease with ABA. Both phytohormones, IAA and ABA, increase levels of CDKB1;1 only during the early germination times. CycD3;1 associated kinase activity is only reduced by both phytohormones towards the end of the germination period. On the other hand, lack of sucrose in the imbibition medium strongly reduces CycD3;1 protein levels without affecting the levels of neither CDKA nor CDKB1;1. The corresponding CycD3;1 associated kinase activity is also severely decreased. The presence of sucrose in the medium appears to stabilize the CycD3;1 protein levels. © 2016 Scandinavian Plant Physiology Society.
Ahn, Joon-Woo; Kim, Moonil; Lim, Jeong Hwa; Kim, Gyung-Tae; Pai, Hyun-Sook
2004-06-01
Calpain, a calcium-dependent cysteine protease, plays an essential role in basic cellular processes in animal cells, including cell proliferation, apoptosis, and differentiation. NbDEK encodes the calpain homolog of N. benthamiana. In this study, virus-induced gene silencing (VIGS) of NbDEK resulted in arrested organ development and hyperplasia in all the major plant organs examined. The epidermal layers of the leaves and stems were covered with hyperproliferating cell masses, and stomata and trichome development was severely inhibited. During flower development, a single dome-like structure was grown from the flower meristem to generate a large cylinder-shaped flower lacking any floral organs. At the cellular level, cell division was sustained in tissues that were otherwise already differentiated, and cell differentiation was severely hampered. NbDEK is ubiquitously expressed in all the plant tissues examined. In the abnormal organs of the NbDEK VIGS lines, protein levels of D-type cyclins (CycD)2, CycD3, and proliferating cell nuclear antigen (PCNA) were greatly elevated, and transcription of E2F (E2 promoter binding factor), E2F-regulated genes, retinoblastoma (Rb), and KNOTTED1 (KN1)-type homeobox genes was also stimulated. These results suggest that phytocalpain is a key regulator of cell proliferation and differentiation during plant organogenesis, and that it acts partly by controlling the CycD/Rb pathway.
Boron deficiency inhibits root growth by controlling meristem activity under cytokinin regulation.
Poza-Viejo, Laura; Abreu, Isidro; González-García, Mary Paz; Allauca, Paúl; Bonilla, Ildefonso; Bolaños, Luis; Reguera, María
2018-05-01
Significant advances have been made in the last years trying to identify regulatory pathways that control plant responses to boron (B) deficiency. Still, there is a lack of a deep understanding of how they act regulating growth and development under B limiting conditions. Here, we analyzed the impact of B deficit on cell division leading to root apical meristem (RAM) disorganization. Our results reveal that inhibition of cell proliferation under the regulatory control of cytokinins (CKs) is an early event contributing to root growth arrest under B deficiency. An early recovery of QC46:GUS expression after transferring B-deficient seedlings to control conditions revealed a role of B in the maintenance of QC identity whose loss under deficiency occurred at later stages of the stress. Additionally, the D-type cyclin CYCD3 overexpressor and triple mutant cycd3;1-3 were used to evaluate the effect on mitosis inhibition at the G1-S boundary. Overall, this study supports the hypothesis that meristem activity is inhibited by B deficiency at early stages of the stress as it does cell elongation. Likewise, distinct regulatory mechanisms seem to take place depending on the severity of the stress. The results presented here are key to better understand early signaling responses under B deficiency. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.
Díaz-Triviño, Sara; Long, Yuchen; Scheres, Ben; Blilou, Ikram
2017-01-01
In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.
Wang, Ming; Yang, Kezhen; Le, Jie
2015-03-01
In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. © 2014 Institute of Botany, Chinese Academy of Sciences.
Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin
Tong, Tao; Kim, Nahyun; Park, Taesun
2015-01-01
We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936
NASA Astrophysics Data System (ADS)
Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos
2016-01-01
Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.
Marsch-Martinez, Nayelli; Greco, Raffaella; Becker, Jörg D; Dixit, Shital; Bergervoet, Jan H W; Karaba, Aarati; de Folter, Stefan; Pereira, Andy
2006-12-01
The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leaves.
Pholo, Motlalepula; Coetzee, Beatrix; Maree, Hans J; Young, Philip R; Lloyd, James R; Kossmann, Jens; Hills, Paul N
2018-05-17
Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.
Li, Ai; Zhou, Yanan; Jin, Chuan; Song, Wenqin; Chen, Chengbin; Wang, Chunguo
2013-11-01
In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.
Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A
2016-05-01
Aluminum oxide nanoparticles (Al2 O3 -NPs) are important ceramic materials that have been used in a variety of commercial and industrial applications. However, the impact of acute and chronic exposure to Al2 O3 -NPs on the environment and on human health has not been well studied. In this investigation, we evaluated the cytotoxic effects of Al2 O3 -NPs on human mesenchymal stem cells (hMSCs) by using a cell viability assay and observing cellular morphological changes, analyzing cell cycle progression, and monitoring the expression of cell cycle response genes (PCNA, EGR1, E2F1, CCND1, CCNC, CCNG1, and CYCD3). The Al2 O3 -NPs reduced hMSC viability in a dose- and time-dependent manner. Nuclear condensation and fragmentation, chromosomal DNA fragmentation, and cytoplasmic vacuolization were observed in Al2 O3 -NP-exposed cells. The nuclear morphological changes indicated that Al2 O3 -NPs alter cell cycle progression and gene expression. The cell cycle distribution revealed that Al2 O3 -NPs cause cell cycle arrest in the sub-G0-G1 phase, and this is associated with a reduction in the cell population in the G2/M and G0/G1 phases. Moreover, Al2 O3 -NPs induced the upregulation of cell cycle response genes, including EGR1, E2F1, and CCND1. Our results suggested that exposure to Al2 O3 -NPs could cause acute cytotoxic effects in hMSCs through cell cycle regulatory genes. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka
2014-05-01
Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.
Fong, Clifford W
2016-08-01
Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.
García-Cruz, Karla V.; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A.; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R.
2016-01-01
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. PMID:27474508
Bergougnoux, Véronique; Zalabák, David; Jandová, Michaela; Novák, Ondřej; Wiese-Klinkenberg, Anika; Fellner, Martin
2012-01-01
Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis. PMID:23049779
Rudolf, Emil; Rudolf, Kamil
2017-01-01
Zinc (Zn) is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry), as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry) along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed non-fuorescent substrate). Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells' mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis. © 2017 The Author(s). Published by S. Karger AG, Basel.
García-Cruz, Karla V; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R
2016-07-29
Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Costantini, Todd W; Dang, Xitong; Yurchyshyna, Maryana V; Coimbra, Raul; Eliceiri, Brian P; Baird, Andrew
2015-01-01
The human genome contains a variant form of the α7-nicotinic acetylcholine receptor (α7nAChR) gene that is uniquely human. This CHRFAM7A gene arose during human speciation and recent data suggests that its expression alters ligand tropism of the normally homopentameric human α7-AChR ligand-gated cell surface ion channel that is found on the surface of many different cell types. To understand its possible significance in regulating inflammation in humans, we investigated its expression in normal human leukocytes and leukocyte cell lines, compared CHRFAM7A expression to that of the CHRNA7 gene, mapped its promoter and characterized the effects of stable CHRFAM7A overexpression. We report here that CHRFAM7A is highly expressed in human leukocytes but that the levels of both CHRFAM7A and CHRNA7 mRNAs were independent and varied widely. To this end, mapping of the CHRFAM7A promoter in its 5′-untranslated region (UTR) identified a unique 1-kb sequence that independently regulates CHRFAM7A gene expression. Because overexpression of CHRFAM7A in THP1 cells altered the cell phenotype and modified the expression of genes associated with focal adhesion (for example, FAK, P13K, Akt, rho, GEF, Elk1, CycD), leukocyte transepithelial migration (Nox, ITG, MMPs, PKC) and cancer (kit, kitL, ras, cFos cyclinD1, Frizzled and GPCR), we conclude that CHRFAM7A is biologically active. Most surprisingly however, stable CHRFAM7A overexpression in THP1 cells upregulated CHRNA7, which, in turn, led to increased binding of the specific α7nAChR ligand, bungarotoxin, on the THP1 cell surface. Taken together, these data confirm the close association between CHRFAM7A and CHRNA7 expression, establish a biological consequence to CHRFAM7A expression in human leukocytes and support the possibility that this human-specific gene might contribute to, and/or gauge, a human-specific response to inflammation. PMID:25860877
Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia
Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Robb, Merlin L.; Michael, Nelson L.; Bolton, Diane
2015-01-01
ABSTRACT CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are important for our understanding of HIV immunopathology. PMID:25972560
van den Brom, Rob R H; van der Geest, Kornelis S M; Brouwer, Elisabeth; Hospers, Geke A P; Boots, Annemieke M H
2018-06-01
The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA-FOXP3 high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3 low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.
Regulation of Cell Diameter, For3p Localization, and Cell Symmetry by Fission Yeast Rho-GAP Rga4p
Das, Maitreyi; Wiley, David J.; Medina, Saskia; Vincent, Helen A.; Larrea, Michelle; Oriolo, Andrea
2007-01-01
Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4Δ cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a “corset” pattern, and to the nongrowing cell tips. Additionally, rga4Δ cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth. PMID:17377067
Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus
2018-01-01
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D.; Ndung'u, Thumbi
2017-01-01
ABSTRACT Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4+ T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4+ T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4+ T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections. PMID:28077659
Tanaskovic, Sara; Price, Patricia; French, Martyn A; Fernandez, Sonia
2017-02-01
HIV patients beginning antiretroviral therapy (ART) with advanced immunodeficiency often retain low CD4 + T cell counts despite virological control. We examined proliferative responses and upregulation of costimulatory molecules, following anti-CD3 stimulation, in HIV patients with persistent CD4 + T cell deficiency on ART. Aviremic HIV patients with nadir CD4 + T cell counts <100 cells/μL and who had received ART for a median time of 7 (range 1-11) years were categorized into those achieving low (<350 cells/μL; n = 13) or normal (>500 cells/μL; n = 20) CD4 + T cell counts. Ten healthy controls were also recruited. CD4 + T cell proliferation (Ki67) and upregulation of costimulatory molecules (CD27 and CD28) after anti-CD3 stimulation were assessed by flow cytometry. Results were related to proportions of CD4 + T cells expressing markers of T cell senescence (CD57), activation (HLA-DR), and apoptotic potential (Fas). Expression of CD27 and/or CD28 on uncultured CD4 + T cells was similar in patients with normal CD4 + T cell counts and healthy controls, but lower in patients with low CD4 + T cell counts. Proportions of CD4 + T cells expressing CD27 and/or CD28 correlated inversely with CD4 + T cell expression of CD57, HLA-DR, and Fas. After anti-CD3 stimulation, induction of CD27 hi CD28 hi expression was independent of CD4 + T cell counts, but lower in HIV patients than in healthy controls. Induction of CD27 hi CD28 hi expression correlated with induction of Ki67 expression in total, naïve, and CD31 + naïve CD4 + T cells from patients. In HIV patients responding to ART, impaired induction of CD27 and CD28 on CD4 + T cells after stimulation with anti-CD3 is associated with poor proliferative responses as well as greater CD4 + T cell activation and immunosenescence.
In ovo injection of anti-chicken CD25 monoclonal antibodies depletes CD4+CD25+ T cells in chickens.
Shanmugasundaram, Revathi; Selvaraj, Ramesh K
2013-01-01
The CD4(+)CD25(+) cells have T regulatory cell properties in chickens. This study investigated the effect of in ovo injection of anti-chicken CD25 monoclonal antibodies (0.5 mg/egg) on CD4(+)CD25(+) cell depletion and on amounts of interleukin-2 mRNA and interferon-γ mRNA in CD4(+)CD25(-) cells posthatch. Anti-chicken CD25 or PBS (control) was injected into 16-d-old embryos. Chicks hatched from eggs injected with anti-chicken CD25 antibodies had a lower CD4(+)CD25(+) cell percentage in the blood until 25 d posthatch. The anti-chicken CD25 antibody injection nearly depleted CD4(+)CD25(+) cells in the blood until 16 d posthatch. At 30 d posthatch, the CD4(+)CD25(+) cell percentage in the anti-CD25-antibody-injected group was comparable with the percentage in the control group. At 16 d posthatch, the anti-chicken CD25 antibody injection decreased CD4(+)CD25(+) cell percentages in the thymus, spleen, and cecal tonsils. Chickens hatched from anti-CD25-antibody-injected eggs had approximately 25% of CD4(+)CD25(+) cells in the cecal tonsils and thymus compared with those in the cecal tonsils and thymus of the control group. The CD4(+)CD25(-) cells from the spleen and cecal tonsils of chicks hatched from anti-chicken-CD25-injected eggs had higher amounts of interferon-γ and interleukin-2 mRNA than CD4(+)CD25(-) cells from the control group. It could be concluded that injecting anti-chicken CD25 antibodies in ovo at 16 d of incubation nearly depleted the CD4(+)CD25(+) cells until 25 d posthatch.
Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung
2017-02-01
Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Visser, J; Blauw, B; Hinloopen, B; Brommer, E; de Kloet, E R; Kluft, C; Nagelkerken, L
1998-02-01
A disturbed hypothalamus-pituitary-adrenal gland axis and alterations at the immune system level have been observed in patients with chronic fatigue syndrome (CFS). Glucocorticoids are known to modulate T cell responses; therefore, purified CD4 T cells from CFS patients were studied to determine whether they have an altered sensitivity to dexamethasone (DEX). CD4 T cells from CFS patients produced less interferon-gamma than did cells from controls; by contrast, interleukin-4 production and cell proliferation were comparable. With CD4 T cells from CFS patients (compared with cells from controls), a 10- to 20-fold lower DEX concentration was needed to achieve 50% inhibition of interleukin-4 production and proliferation, indicating an increased sensitivity to DEX in CFS patients. Surprisingly, interferon-gamma production in patients and controls was equally sensitive to DEX. A differential sensitivity of cytokines or CD4 T cell subsets to glucocorticoids might explain an altered immunologic function in CFS patients.
Carbo, Adria; Hontecillas, Raquel; Kronsteiner, Barbara; Viladomiu, Monica; Pedragosa, Mireia; Lu, Pinyi; Philipson, Casandra W.; Hoops, Stefan; Marathe, Madhav; Eubank, Stephen; Bisset, Keith; Wendelsdorf, Katherine; Jarrah, Abdul; Mei, Yongguo; Bassaganya-Riera, Josep
2013-01-01
Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa. PMID:23592971
Spagnuolo, Vincenzo; Travi, Giovanna; Galli, Laura; Cossarini, Francesca; Guffanti, Monica; Gianotti, Nicola; Salpietro, Stefania; Lazzarin, Adriano; Castagna, Antonella
2013-08-01
The objective of this study was to compare immunologic, virologic, and clinical outcomes between living human immunodeficiency virus (HIV)-infected individuals who had a diagnosis of lymphoma versus outcomes in a control group of cancer-free, HIV-infected patients. In this matched cohort study, patients in the case group were survivors of incident lymphomas that occurred between 1997 and June 2010. Controls were living, cancer-free, HIV-infected patients who were matched to cases at a 4:1 ratio by age, sex, nadir CD4 cell count, and year of HIV diagnosis. The date of lymphoma diagnosis served as the baseline in cases and in the corresponding controls. In total, 62 patients (cases) who had lymphoma (20 with Hodgkin disease [HD] and 42 with non-Hodgkin lymphoma [NHL]) were compared with 211 controls. The overall median follow-up was 4.8 years (interquartile range, 2.0-7.9 years). The CD4 cell count at baseline was 278 cells/mm³ (interquartile range, 122-419 cells/mm³) in cases versus 421 cells/mm³ (interquartile range, 222-574 cells/mm³) in controls (P = .003). At the last available visit, the CD4 cell count was 412 cells/mm³ (range, 269-694 cells/mm³) in cases versus 518 cells/mm³ (interquartile range, 350-661 cells/mm³) in controls (P = .087). The proportion of patients who achieved virologic success increased from 30% at baseline to 74% at the last available visit in cases (P = .008) and from 51% to 81% in controls (P = .0286). Patients with HD reached higher CD4 cell counts at their last visit than patients with NHL (589 cells/mm³ [range, 400-841 cells/mm³] vs 332 cells/mm³ [interquartile range, 220-530 cells/mm³], respectively; P = .003). Virologic success was similar between patients with HD and patients with NHL at the last visit. Forty cases (65%) and 76 controls (36%) experienced at least 1 clinical event after baseline (P < .0001); cases were associated with a shorter time to occurrence of the first clinical event compared with controls (P < .0001). HIV-infected lymphoma survivors experienced more clinical events than controls, especially during the first year of follow-up, but they reached similar long-term immunologic and virologic outcomes. © 2013 American Cancer Society.
Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M
2017-04-01
Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4 + T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4 + T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4 + T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections. Copyright © 2017 American Society for Microbiology.
Singleterry, Will L; Henderson, Harold; Cruse, Julius M
2012-02-01
In this present investigation, flow cytometry was utilized to evaluate 13 healthy controls and 31 HIV-1 infected patients who had advanced to the AIDS stage of infection (CD4 count below 200 cells/mm(3)), for the expression of CD161 on CD3(+) double negative (DN) (CD3(+)CD4(-)CD8(-)) T cells, CD4(+) T cells, CD8(+) T cells and γδ T cells. The observed depletion of CD161(+) T cells from peripheral circulation was due primarily to the loss of CD4(+)CD161(+) T cells; as these cells represented 8.67±0.74% of the total healthy control peripheral T cell population, while the CD4(+)CD161(+) T cells of the AIDS group represented only 3.35±0.41% (p=<0.0001) of the total peripheral T cell population. We have also shown here that the DN T cell population was more than doubled in the AIDS group, with the DN T cell population expanding from 3.29±0.45% of the healthy control peripheral T cell population to 8.64±1.16% (p=0.0001) of the AIDS group peripheral T cell population. By evaluating the expression of CD161 on the surface of the DN T cells we showed that within the healthy control group, 47.4±4.99% of the DN T cells were positive for the expression of CD161, while only 26.4±3.54% (p=0.002) of the AIDS group's DN T cells expressed CD161. Despite CD161 expression being halved on the DN T cells of the AIDS group, when we compared the total peripheral T cell percentage of CD161(+) DN T cells between the healthy control group and the AIDS group, there was no statistical difference. Even though only 26.4% DN T cells within the AIDS group were positive for CD161(+), the overall DN T cell population had expanded to such an extent that there was no statistical difference between the groups with regard to CD161(+) DN T cells as a percentage of the total peripheral T cell population. Furthermore, we showed that within the DN T cell population, there was an approximate 2:1 ratio of γδ to αβ T cells, and this ratio was maintained in both the healthy control group and the AIDS group. While evaluating γδ T cells we also discovered that CD8(+) γδ T cells were expanded from 0.62±.09% of the healthy control peripheral T cell population to 5.01±.88% (p=<0.0001) of the peripheral T cell population of the AIDS group; and that this population of CD8(+) γδ T cells underwent the same reduction in percentage of cells expressing CD161(+), further demonstrated that the phenomenon of CD161(+) percentage reduction and compensatory increase in total cell population was affecting the entire circulating γδ T cell population. Copyright © 2011 Elsevier Inc. All rights reserved.
Graf, Erin H.; Pace, Matthew J.; Peterson, Bennett A.; Lynch, Lindsay J.; Chukwulebe, Steve B.; Mexas, Angela M.; Shaheen, Farida; Martin, Jeffrey N.; Deeks, Steven G.; Connors, Mark; Migueles, Stephen A.; O’Doherty, Una
2013-01-01
Resting CD4+ T cells infected with HIV persist in the presence of suppressive anti-viral therapy (ART) and are barriers to a cure. One potential curative approach, therapeutic vaccination, is fueled by recognition of the ability of a subset of elite controllers (EC) to control virus without therapy due to robust anti-HIV immune responses. Controllers have low levels of integrated HIV DNA and low levels of replication competent virus, suggesting a small reservoir. As our recent data indicates some reservoir cells can produce HIV proteins (termed GPR cells for Gag-positive reservoir cells), we hypothesized that a fraction of HIV-expressing resting CD4+ T cells could be efficiently targeted and cleared in individuals who control HIV via anti-HIV cytotoxic T lymphocytes (CTL). To test this we examined if superinfected resting CD4+ T cells from EC express HIV Gag without producing infectious virus and the susceptibility of these cells to CTL. We found that resting CD4+ T cells expressed HIV Gag and were cleared by autologous CD8+ T cells from EC. Importantly, we found the extent of CTL clearance in our in vitro assay correlates with in vivo reservoir size and that a population of Gag expressing resting CD4+ T cells exists in vivo in patients well controlled on therapy. PMID:23951263
Simonetti, Giorgia; Carette, Amanda; Silva, Kathryn; Wang, Haowei; De Silva, Nilushi S.; Heise, Nicole; Siebel, Christian W.; Shlomchik, Mark J.
2013-01-01
The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity. PMID:24323359
Rapid reconstitution of CMV-specific T-cells after stem-cell transplantation.
Widmann, Thomas; Sester, Urban; Schmidt, Tina; Gärtner, Barbara C; Schubert, Jörg; Pfreundschuh, Michael; Sester, Martina
2018-04-13
As reconstitution of virus-specific T-cells is critical to control cytomegalovirus (CMV)-viremia following stem-cell transplantation (SCT), we characterized the dynamics in CMV-specific T-cell reconstitution after SCT. Cytomegalovirus-specific T-cells from 51 SCT-recipients were prospectively quantified and phenotypically characterised by intracellular cytokine-staining after specific stimulation and HLA class-I-specific pentamers using flow cytometry. Cytomegalovirus-specific CD4 T-cells reconstituted after a median of 2.3 (IQR, 2.0-3.0) weeks following autografting, and 4.0 (IQR, 3.0-5.6) weeks after allografting, with CMV-specific T-cells originating from donors and/or recipients. The time for reconstitution of CMV-specific CD4 and CD8 T-cells did not differ (P = .58). Factors delaying the time to initial reconstitution of CMV-specific CD4 T-cells included a negative recipient serostatus (P = .016) and CMV-viremia (P = .026). Percentages of CMV-specific CD4 T-cells significantly increased over time and reached a plateau after 90 days (P = .043). Relative CMV-specific CD4 T-cell levels remained higher in long-term transplant recipients compared with those in controls (P < .0001). However, due to persisting lymphopenia, absolute numbers of CMV-specific T-cells were similar as in controls. Cytomegalovirus-specific T-cells rapidly reconstitute after SCT and their percentages remain high in the long term. In the face of persistent lymphopenia, this results in similar absolute numbers of CMV-specific T-cells as in controls to ensure sufficient pathogen control. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clinical significance of Tim3-positive T cell subsets in patients with multiple sclerosis.
Feng, Xuemei; Feng, Juan
2016-12-01
The present study evaluated associations between the percentages of T cell immunoglobulin and mucin domain 3 (Tim3)-positive T cells and related cytokines and multiple sclerosis (MS). We collected peripheral blood samples from 30 MS patients and 30 healthy controls. Flow cytometry was used to determine the proportions of CD3 + Tim3 + , CD4 + Tim3 + , and CD4 + CD25 + Tim3 + in peripheral blood mononuclear cells (PBMCs) and related cell subsets. The serum concentrations of galectin-9, IL-17, and IFN-γ also were determined using enzyme-linked immunosorbent assays (ELISA). The percentages of Tim3-positive T cells in CD4 + and CD4 + CD25 + T cell subsets were significantly lower among MS patients than among controls. This difference was particularly evident in the CD4 + CD25(high) T cell subset. The proportions of CD4 + Tim3 + and CD4 + CD25 + Tim3 + cells in PBMCs were significantly lower in the MS group than in the control group, whereas no significant differences were detected regarding the percentages of CD3 + Tim3 + in PBMCs and T cell subsets. The serum concentrations of galectin-9, IL-17, and IFN-γ all were increased in MS patients compared with healthy controls. Our results support that Tim3 and related cytokines may be involved in the onset of MS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dominguez-Molina, Beatriz; Tarancon-Diez, Laura; Hua, Stephane; Abad-Molina, Cristina; Rodriguez-Gallego, Esther; Machmach, Kawthar; Vidal, Francesc; Tural, Cristina; Moreno, Santiago; Goñi, María José; Ramírez de Arellano, Elena; del Val, Margarita; Gonzalez-Escribano, María Francisca; Del Romero, Jorge; Rodriguez, Carmen; Capa, Laura; Viciana, Pompeyo; Alcamí, José; Yu, Xu G.; Walker, Bruce D.; Leal, Manuel; Lichterfeld, Mathias
2017-01-01
Abstract Background. Human immunodeficiency virus type 1 (HIV-1) controllers maintain HIV-1 viremia at low levels (normally <2000 HIV-RNA copies/mL) without antiretroviral treatment. However, some HIV-1 controllers have evidence of immunologic progression with marked CD4+ T-cell decline. We investigated host genetic factors associated with protection against CD4+ T-cell loss in HIV-1 controllers. Methods. We analyzed the association of interferon-lambda 4 (IFNL4)–related polymorphisms and human leukocyte antigen (HLA)-B haplotypes within long-term nonprogressor HIV-1 controllers (LTNP-Cs; defined by maintaining CD4+ T-cells counts >500 cells/mm3 for more than 7 years after HIV-1 diagnosis) vs non-LTNP-Cs who developed CD4+ T-cell counts <500 cells/mm3. Both a Spanish study cohort (n = 140) and an international validation cohort (n = 914) were examined. Additionally, in a subgroup of individuals, HIV-1–specific T-cell responses and soluble cytokines were analyzed. Results. HLA-B*57 was independently associated with the LTNP-C phenotype (odds ratio [OR], 3.056 [1.029–9.069]; P = .044 and OR, 1.924 [1.252–2.957]; P = .003) while IFNL4 genotypes represented independent factors for becoming non-LTNP-C (TT/TT, ss469415590; OR, 0.401 [0.171–0.942]; P = .036 or A/A, rs12980275; OR, 0.637 [0.434–0.934]; P = .021) in the Spanish and validation cohorts, respectively, after adjusting for sex, age at HIV-1 diagnosis, IFNL4-related polymorphisms, and different HLA-B haplotypes. LTNP-Cs showed lower plasma induced protein 10 (P = .019) and higher IFN-γ (P = .02) levels than the HIV-1 controllers with diminished CD4+ T-cell numbers. Moreover, LTNP-Cs exhibited higher quantities of interleukin (IL)2+CD57- and IFN-γ +CD57- HIV-1–specific CD8+ T cells (P = .002 and .041, respectively) than non-LTNP-Cs. Conclusions. We defined genetic markers able to segregate stable HIV-1 controllers from those who experience CD4+ T-cell decline. These findings allow for identification of HIV-1 controllers at risk for immunologic progression and provide avenues for personalized therapeutic interventions and precision medicine for optimizing clinical care of these individuals. PMID:27986689
Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function
Mackroth, Maria Sophia; Abel, Annemieke; Steeg, Christiane; Schulze zur Wiesch, Julian; Jacobs, Thomas
2016-01-01
In acute Plasmodium falciparum (P. falciparum) malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections. PMID:27802341
Increased numbers of CD4+ and CD8+ T cells in lesional skin of cats with allergic dermatitis.
Roosje, P J; van Kooten, P J; Thepen, T; Bihari, I C; Rutten, V P; Koeman, J P; Willemse, T
1998-07-01
The aim of this study was to characterize T cells in the skin of cats with an allergic dermatitis histologically compatible with atopic dermatitis, since T cells play an important role in the pathogenesis of atopic dermatitis in humans. We observed a significantly greater number of T cells in lesional skin of domestic short-haired cats with allergic dermatitis (n = 10; median age 5.8 years) than in the skin of healthy control animals (n = 10; median age 5.0 years). In the skin of the healthy control animals, one or two CD4+ cells and no CD8+ cells were found. A predominant increase of CD4+ T cells and a CD4+/CD8+ ratio (mean +/- SD: 3.9 +/- 2.0) was found in the lesional skin of 10 cats with allergic dermatitis. The CD4+/CD8+ cell ratio in the skin of healthy control animals could not be determined because of the absence of CD8+ cells. The CD4+/CD8+ cell ratio in the peripheral blood of 10 cats with allergic dermatitis (mean +/- SD: 1.9 +/- 0.4) did not differ significantly from that in 10 healthy control animals (2.2 +/- 0.4). The CD4+/CD8+ cell ratio and predominance of CD4+ T cells in the lesional skin of cats with allergic dermatitis is comparable to that found in atopic dermatitis in humans. In addition, the observed increase of CD4+ T cells in the nonlesional skin of cats with allergic dermatitis compared to the skin of healthy cats is similar to what is seen in humans. Cytokines produced by T cells and antigen-specific T cells are important mediators in the inflammatory cascade resulting in atopic dermatitis in humans. This study is a first step to investigate their role in feline allergic dermatitis.
T-cell-dependent control of acute Giardia lamblia infections in mice.
Singer, S M; Nash, T E
2000-01-01
We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.
Yabe, Idalia; Morris, Sheldon; Cowley, Siobhan
2016-01-01
Earlier studies aimed at defining protective immunity induced by Mycobacterium bovis BCG immunization have largely focused on the induction of antituberculosis CD4+ and CD8+ T cell responses. Here we describe a vaccine consisting of a BCGΔmmaA4 deletion mutant formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with d-(+)-trehalose 6,6′-dibehenate (TDB) (DDA/TDB) adjuvant (A4/Adj) that protected TCRδ−/− mice depleted of CD4+, CD8+, and NK1.1+ T cells against an aerosol challenge with M. tuberculosis. These mice were significantly protected relative to mice immunized with a nonadjuvanted BCGΔmmaA4 (BCG-A4) mutant and nonvaccinated controls at 2 months and 9 months postvaccination. In the absence of all T cells following treatment with anti-Thy1.2 antibody, the immunized mice lost the ability to control the infection. These results indicate that an unconventional T cell population was mediating protection in the absence of CD4+, CD8+, NK1.1+, and TCRγδ T cells and could exhibit memory. Focusing on CD4− CD8− double-negative (DN) T cells, we found that these cells accumulated in the lungs postchallenge significantly more in A4/Adj-immunized mice and induced significantly greater frequencies of pulmonary gamma interferon (IFN-γ)-producing cells than were seen in the nonvaccinated or nonadjuvanted BCG control groups. Moreover, pulmonary DN T cells from the A4/Adj group exhibited significantly higher IFN-γ integrated median fluorescence intensity (iMFI) values than were seen in the control groups. We also showed that enriched DN T cells from mice immunized with A4/Adj could control mycobacterial growth in vitro significantly better than naive whole-spleen cells. These results suggest that formulating BCG in DDA/TDB adjuvant confers superior protection in immunocompromised mice and likely involves the induction of long-lived memory DN T cells. PMID:27226281
Wang, Chung-Ching; Chen, Wei-Liang; Hsiung, Chia-Ni; Chiang, Sheng-Ta; Wang, Ying-Chuan; Loh, Ching-Hui; Lin, I-Shen; Chen, Hong-I; Liou, Saou-Hsing
2017-01-01
We investigated the relationship between 4,4'-methylene-bis(2-chloroaniline) (MBOCA) exposure and micronucleus (MN) frequency, and how this association was affected by genetic polymorphism of the cytochrome P450 enzyme (CYP3A4). We divided the study population into an exposed group (n=44 with total urine MBOCA ≥20 μg/g creatinine) and a control group (n=47 with total urine MBOCA <20 μg/g creatinine). Lymphocyte MN frequency (MNF) and micronucleated cell (MNC) frequency were measured by the cytokinesis-block MN assay method. MNF reported as the number of micronuclei in binucleated cells per 1000 cells, and MNC reported as the number of binucleated cells with the presence of MN per 1000 cells. CYP3A4 alleles were measured by PCR-based restriction fragment length polymorphism (PCR-RFLP). The mean MNF (6.11 vs 4.46 MN/1000 cells, p<0.001) and MNC (5.75 vs 4.15 MN/1000 cells, p<0.001) in the exposed workers was significantly higher than that in the controls. The CYP3A4 polymorphism A/A+A/G influenced the difference in the mean MNF (5.97 vs 4.38 MN/1000 cells, p<0.001) and MNC (5.60 vs 4.15 MN/1000 cells, p<0.001) between the MBOCA-exposed and control groups. After adjusting risk factors, the MNF level in the MBOCA-exposed workers was 0.520 MN cells/1000 cells (p<0.001) higher than the control group among the CYP3A4 A/A+A/G genotype. Similarly, the MNC level in the MBOCA-exposed workers was 0.593 MN/1000 cells (p<0.001) higher than the control group among the CYP3A4 A/A+A/G genotype. However, the difference in adjusted MNF and MNC between the exposed and control groups was not significant for the CYP3A4 polymorphism with the G/G genotype. We recommend that lymphocytes MNF and MNC are good indicators to evaluate MBOCA genotoxicity. Individuals with the CYP3A4 polymorphism A/A and A/G genotypes appear to be more susceptible to MBOCA genotoxicity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhang, Han-Xian; Zhu, Bin; Fu, Xiao-Xia; Zeng, Jin-Cheng; Zhang, Jun-Ai; Wang, Wan-Dang; Kong, Bin; Xiang, Wen-Yu; Zhong, Jixin; Wang, Cong-Yi; Zheng, Xue-Bao; Xu, Jun-Fa
2015-01-01
Ulcerative colitis (UC) is an inflammatory bowel disease, and its pathogenesis involves a variety of genetic, environmental, and immunological factors such as T helper cells and their secreted cytokines. B and T lymphocyte attenuator (BTLA) is an immunoregulatory receptor that has a strong suppressive effect on T-cell function. However the role of BTLA in UC remains poorly understood. Here we demonstrated that the frequency of BTLA-expressing CD3(+) T cells, especially CD4(+) T cells, increased in blood and mucosa in mice with DSS-induced colitis. The frequency of Foxp3-expressing cells in BTLA+ CD4(+) T cell from lamina propria mononuclear cells (LPMCs) was much higher in DSS-treated mice than that in controls. Similarly, the proportion of IL-17+ cells in BTLA+ CD4(+) T cells from LPMCs in DSS-treated mice is much higher than that in controls, while no perceptible difference for the proportion of IFN-γ+ cells in BTLA+ CD4(+) T cells was noted between DSS-treated mice and controls. Treatment of mesalazine, an anti-ulcerative colitis drug, down-regulated Foxp3 and IL-17 expression in BTLA positive T cells along with attenuated severity for colitis. Our findings indicate that BTLA may be involved in the control of inflammatory responses through increasing Foxp3 expression, rather than attenuating IL-17 production, in DSS-induced colitis.
Zhu, Zheng-Feng; Meng, Kai; Zhong, Yu-Cheng; Qi, Liang; Mao, Xiao-Bo; Yu, Kun-Wu; Zhang, Wei; Zhu, Peng-Fei; Ren, Ze-Peng; Wu, Bang-Wei; Ji, Qin-Wei; Wang, Xiang; Zeng, Qiu-Tang
2014-01-01
CD4(+) latency-associated peptide (LAP)(+) regulatory T cells (Tregs) are a newly discovered T cell subset in humans and the role of these cells in patients with acute coronary syndrome (ACS) has not been explored. We designed to investigate whether circulating frequency and function of CD4(+)LAP(+) Tregs are defective in ACS. One hundred eleven ACS patients (acute myocardial infarction and unstable angina) and 117 control patients were enrolled in the study. The control patients consisted of chronic stable angina (CSA) and chest pain syndrome (CPS). The frequencies of circulating CD4(+)LAP(+) Tregs and the expression of the transmembrane protein glycoprotein-A repetitions predominant (GARP) on CD4(+) T cells were determined by flow cytometry. The function of CD4(+)LAP(+) Tregs was detected using thymidine uptake. Serum interleukin-10 (IL-10) and transforming growth factor-β protein (TGF-β) levels were detected using ELISA and expression of GARP mRNA in peripheral blood mononuclear cells (PBMCs) was measured by real time-polymerase chain reaction. We found ACS patients had a significantly lower frequency of circulating CD4(+)LAP(+) Tregs, and the function of these cells was reduced compared to controls. The expression of GARP in CD4(+) T cells and the serum levels of TGF-β in ACS patients were lower than those of control patients. The serum levels of IL-10 were similar between the two cohorts. A novel regulatory T cell subset, defined as CD4(+)LAP(+) T cells is defective in ACS patients.
Normal T-cell activation in elite controllers with preserved CD4+ T-cell counts.
Bansal, Anju; Sterrett, Sarah; Erdmann, Nathan; Westfall, Andrew O; Dionne-Odom, Jodie; Overton, Edgar T; Goepfert, Paul A
2015-11-01
HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group. Since CD4% is among the best predictors of AIDS-related events, in the current study, we assessed whether this marker can be used to stratify elite controllers needing ART. Sixteen elite controllers were divided into two groups based on CD4% (EC > 40% and EC ≤40%), and T-cell subsets were analyzed for markers of memory/differentiation (CD45RA, CCR7, CD28), activation (CD38/HLA-DR), immunosenescence (CD57), costimulation (CD73, CD28) and exhaustion (PD-1, CD160, Tim-3). Monocyte subsets (CD14, CD16) were also analyzed and sCD14 levels were quantified using ELISA. In the EC group, expression of activation, exhaustion, and immunosensescence markers on T cells were significantly reduced compared with the EC group and similar to the seronegative controls. The EC group expressed higher levels of costimulatory molecules CD28 and CD73 and had lower levels of monocyte activation (HLA-DR expression) with a reduced frequency of inflammatory monocyte (CD14 CD16) subset. Furthermore, the EC group maintained a stable CD4% during a median follow-up of 6 years. Elite controllers with preserved CD4T cells (EC) have normal T-cell and monocyte phenotypes and therefore may have limited benefit from ART. CD4% can be an important marker for evaluating future studies aimed at determining the need for ART in this group of individuals.
van Panhuys, Nicholas
2016-01-01
The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor-induced activation of CD4+ T cells, both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naive CD4+ T cells in addition to co-stimulatory and cytokine-based signals. Recently, advances in two-photon microscopy and tetramer-based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review, we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T–DC interactions and the implications for this in mediating the downstream signaling events, which influence the transcriptional and epigenetic regulation of effector differentiation. PMID:26834747
Richardson, Max W.; Ellebrecht, Christoph T.; Glover, Joshua A.; Secreto, Anthony J.; Kulikovskaya, Irina; Yi, Yanjie; Wang, Jianbin; Dufendach, Keith A.; Holmes, Michael C.; Collman, Ronald G.
2017-01-01
HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR) that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy. PMID:29023549
Vacchio, Melanie S.; Bosselut, Rémy
2016-01-01
MHC-restricted CD4+ and CD8+ T cell are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. While the transcriptional control of CD4+-CD8+ lineage choice in the thymus is now better understood, less was known about what maintains the CD4+- and CD8+-lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in post-thymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4+-CD8+ lineage commitment in the thymus, is critical for CD4+ T cell helper functions. PMID:27260768
Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.
2000-01-01
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628
Khanizadeh, Sayyad; Ravanshad, Mehrdad; Hosseini, SeyedYounes; Davoodian, Parivash; Nejati Zadeh, Azim; Sarvari, Jamal
2015-01-01
In this study, to clarify the SMAD4 blocking impact on fibrosis process, we investigated its down-regulation by shRNA on activated human LX-2 cell, in vitro. Liver fibrosis is a critical consequence of chronic damage to the liver that can progress toward advanced diseases, liver cirrhosis and hepatocellular carcinoma (HCC). Different SMAD proteins play as major mediators in the fibrogenesis activity of hepatic stellate cells through TGF-β pathways, but the extent of SMAD4 as a co-SMAD protein remained less clear. vector expressing verified shRNA targeting human SMAD4 gene was transfected into LX-2 cells. The GFP expressing plasmid was transfected in the same manner as a control group while leptin treated cells were employed as positive controls. Subsequently, total RNA was extracted and real-time PCR was performed to measure the mRNA levels of SMAD4, COL-1A1, α-SMA, TGF-β and TIMP-1. Furthermore, trypan blue exclusion was performed to test the effect of plasmid transfection and SMAD4 shutting-down on cellular viability. The results indicated that the expression of SMAD4was down-regulated following shRNA transfection intoLX-2 cells (P<0.001). The gene expression analysis of fibrotic genes in LX-2 cells showed that SMAD4 blocking by shRNA significantly reduced the expression level of fibrotic genes when compared to control plasmids (P<0.001). Vector expressing SMAD4-shRNA induced no significant cytotoxic or proliferative effects on LX-2 cells as determined by viability assay (P<0.05). The results of this study suggested that knockdown of SMAD4 expression in stellate cell can control the progression of fibrogenesis through TGF-β pathway blocking.
Veazey, Ronald S; Acierno, Paula M; McEvers, Kimberly J; Baumeister, Susanne H C; Foster, Gabriel J; Rett, Melisa D; Newberg, Michael H; Kuroda, Marcelo J; Williams, Kenneth; Kim, Eun-Young; Wolinsky, Steven M; Rieber, E Peter; Piatak, Michael; Lifson, Jeffrey D; Montefiori, David C; Brown, Charles R; Hirsch, Vanessa M; Schmitz, Jörn E
2008-06-01
Previously we have shown that CD8(+) T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4(+) T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8(+) T-cell responses on the magnitude of the CD4(+) T-cell depletion, we investigated the effect of CD8(+) lymphocyte depletion during primary SIV infection on CD4(+) T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8(+) lymphocyte-depletion changed the dynamics of CD4(+) T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4(+) T cells were restored to baseline levels. These CD4(+) T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8(+) lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5(+) CD45RA(-) CD4(+) T cells in CD8(+) lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4(+) T cells were eliminated more efficiently in CD8(+) lymphocyte-depleted animals. Also, CD8(+) lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4(+) T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8(+) T-cell responses are absolutely critical to initiate at least partial control of SIV infection.
Wang, Meiyao; Misakian, Martin; He, Hua-Jun; Bajcsy, Peter; Abbasi, Fatima; Davis, Jeffrey M; Cole, Kenneth D; Turko, Illarion V; Wang, Lili
2014-01-01
In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells. Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry. The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 10(5) and (0.85 ± 0.11) × 10(5), respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC. Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.
Lammi, A; Arikoski, P; Vaarala, O; Kinnunen, T; Ilonen, J
2012-01-01
T cell recognition of gliadin from dietary gluten is essential for the pathogenesis of coeliac disease (CD). The aim of the present study was to analyse whether gliadin-specific T cells are detectable in the circulation of children with newly diagnosed coeliac disease by using a sensitive carboxfluorescein diacetate succinimidyl ester (CFSE) dilution method. Peripheral blood CD4+ T cell responses were analysed in 20 children at diagnosis of CD and compared to those in 64 healthy control children carrying the CD-associated human leucocyte antigen (HLA)-DQ2 or -DQ8 alleles. Deamidated gliadin (gTG)-specific T cells were detectable in the peripheral blood of more than half the children with CD (11 of 20, 55%) compared to 15 of 64 (23·4%) of the control children (P = 0·008). Proliferative responses to gTG were also significantly stronger in children with CD than in controls (P = 0·01). In contrast, T cells specific to native gliadin were detectable at comparable frequencies in children with CD (two of 19, 10·5%) and controls (13 of 64, 20·3%). gTG-specific T cells had a memory phenotype more often than those specific to native gliadin in children with CD (P = 0·02), whereas controls had similar percentages of memory cells in both stimulations. Finally, gTG-specific CD4+ T cells had a higher expression of the gut-homing molecule β7 integrin than those specific to the control antigen tetanus toxoid. Collectively, our current results demonstrate that the frequency of circulating memory CD4+ T cells specific to gTG but not native gliadin is increased in children with newly diagnosed CD. PMID:22471282
Lammi, A; Arikoski, P; Vaarala, O; Kinnunen, T; Ilonen, J
2012-05-01
T cell recognition of gliadin from dietary gluten is essential for the pathogenesis of coeliac disease (CD). The aim of the present study was to analyse whether gliadin-specific T cells are detectable in the circulation of children with newly diagnosed coeliac disease by using a sensitive carboxfluorescein diacetate succinimidyl ester (CFSE) dilution method. Peripheral blood CD4(+) T cell responses were analysed in 20 children at diagnosis of CD and compared to those in 64 healthy control children carrying the CD-associated human leucocyte antigen (HLA)-DQ2 or -DQ8 alleles. Deamidated gliadin (gTG)-specific T cells were detectable in the peripheral blood of more than half the children with CD (11 of 20, 55%) compared to 15 of 64 (23.4%) of the control children (P = 0.008). Proliferative responses to gTG were also significantly stronger in children with CD than in controls (P = 0.01). In contrast, T cells specific to native gliadin were detectable at comparable frequencies in children with CD (two of 19, 10.5%) and controls (13 of 64, 20.3%). gTG-specific T cells had a memory phenotype more often than those specific to native gliadin in children with CD (P = 0.02), whereas controls had similar percentages of memory cells in both stimulations. Finally, gTG-specific CD4(+) T cells had a higher expression of the gut-homing molecule β7 integrin than those specific to the control antigen tetanus toxoid. Collectively, our current results demonstrate that the frequency of circulating memory CD4(+) T cells specific to gTG but not native gliadin is increased in children with newly diagnosed CD. © 2012 The Authors;Clinical and Experimental Immunology © 2012 British Society for Immunology.
Sakai, Shunsuke; Kauffman, Keith D; Schenkel, Jason M; McBerry, Cortez C; Mayer-Barber, Katrin D; Masopust, David; Barber, Daniel L
2014-04-01
Th1 cells are critical for containment of Mycobacterium tuberculosis infection, but little else is known about the properties of protective CD4 T cell responses. In this study, we show that the pulmonary Th1 response against M. tuberculosis is composed of two populations that are either CXCR3(hi) and localize to lung parenchyma or are CX3CR1(hi)KLRG1(hi) and are retained within lung blood vasculature. M. tuberculosis-specific parenchymal CD4 T cells migrate rapidly back into the lung parenchyma upon adoptive transfer, whereas the intravascular effectors produce the highest levels of IFN-γ in vivo. Importantly, parenchymal T cells displayed greater control of infection compared with the intravascular counterparts upon transfer into susceptible T cell-deficient hosts. Thus, we identified a subset of naturally generated M. tuberculosis-specific CD4 T cells with enhanced protective capacity and showed that control of M. tuberculosis correlates with the ability of CD4 T cells to efficiently enter the lung parenchyma rather than produce high levels of IFN-γ.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger
2013-01-01
Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984
T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency.
Walton, Senta M; Torti, Nicole; Mandaric, Sanja; Oxenius, Annette
2011-08-01
CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CD28 T-cell costimulatory molecule expression in pemphigus vulgaris.
Alecu, M; Ursaciuc, C; Surcel, M; Coman, G; Ciotaru, D; Dobre, M
2009-03-01
CD28 superfamily of immune costimulatory molecules could play an important role in autotolerance control. CD28 costimulation seems to be necessary for regulatory T cell (Treg) activation and successive suppressive activities involved in autoimmunity protection. This study investigates CD28 expression, especially inducible costimulator fraction, on T lymphocytes in pemphigus vulgaris (PV) patients. CD28 expression on T lymphocytes was assessed in 16 PV patients during acute attack. All patients and 10 healthy control subjects were tested for lymphocyte populations, T-cell subpopulations (T-CD4+, T-CD8+), Treg and CD28 expression on T-cell subpopulations. T, B and natural killer cells average values in PV patients were close to the control group values. Compared with control group, PV values showed lower Treg (2.2% compared with 4.7%), slightly decreased CD4+ CD28+ T cells (91% compared with 95%), higher CD4+ CD28- T cells (9% compared with 5%), decreased CD8+ CD28+ T cells (57% and 73%, respectively) and significantly enhanced CD8+ CD28- T cells (43% compared with 27%). These data suggest that Treg-mediated suppressor T-cell effects could be diminished in PV, together with an abnormal or ineffective subsequent helper T-cell suppression. CD28 high expression on helper T cells and low expression on suppressor T cells are arguments for a potential CD28 role in PV autoimmune response mechanism.
Ramos, Ana Raquel; Elong Edimo, William's; Erneux, Christophe
2018-01-01
Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Masson, Jesse J R; Murphy, Andrew J; Lee, Man K S; Ostrowski, Matias; Crowe, Suzanne M; Palmer, Clovis S
2017-01-01
Metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and mitochondrial biogenesis in subpopulations of CD4+ and CD8+ T cells from 18 virologically-suppressed HIV-positive individuals on combination antiretroviral therapy (cART; median CD4+ cell count: 728 cells/μl) and 13 HIV seronegative controls. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production were also analysed in total CD4+ and CD8+ T cells. Among HIV+/cART individuals, expression of glucose transporter (Glut1) and mitochondrial density were highest within central memory and naïve CD4+ T cells, and lowest among effector memory and transitional memory T cells, with similar trends in HIV-negative controls. Compared to HIV-negative controls, there was a trend towards higher percentage of circulating CD4+Glut1+ T cells in HIV+/cART participants. There were no significant differences in mitochondrial dynamics between subject groups. Glut1 expression was positively correlated with mitochondrial density and MMP in total CD4+ T cells, while MMP was also positively correlated with ROS production in both CD4+ and CD8+ T cells. Our study characterizes specific metabolic features of CD4+ and CD8+ T cells in HIV-negative and HIV+/cART individuals and will invite future studies to explore the immunometabolic consequences of HIV infection.
McClellan, Kelly B; Gangappa, Shivaprakash; Speck, Samuel H; Virgin, Herbert W.
2006-01-01
B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL)-specific B cells can contribute to the control of murine γ-herpesvirus 68 (γHV68) latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell−/− mice during the early phase of γHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell−/− mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of γ-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection. PMID:16789842
A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool.
Schiller, Annemarie; Zhang, Ting; Li, Ruliang; Duechting, Andrea; Sundararaman, Srividya; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V
2017-12-07
Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus , Mycoplasma , Lactobacillus , Neisseria , Candida , Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.
11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS ...
11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer
Chen, Xiaohong; Zhong, Qi; Huang, Junwei; Zhang, Yang; Guo, Wei; Yang, Zheng; Ding, Shuo; Chen, Ping
2016-01-01
Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor). Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4) derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM) model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group) and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4) was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN. PMID:27078157
Li, Chuan-gang; Li, Mo-lin; Shu, Xiao-hong; Jia, Yu-jie; Liu, Yong-ji; Li, Ming
2007-06-12
To study the relationship of the sensitivity of tumor cells to chemotherapeutic agent between in vivo and in vitro. Mouse lymphoma cells of the line E14 were cultured and melphalan resistant EL4 cell line (EL4/melphalan) was established by culturing EL4 cells with continuous low-concentration and intermittent gradually-increasing-concentration of melphalan in vitro. MTT assay was used to evaluate the drug sensitivity and the resistance index of the EL4/melphalan cells to melphalan was calculated. EL4/melphalan and EL4 cells of the concentration of 5 x 10(8)/L were inoculated separately into 20 C57BL/6 mice subcutaneously. 12 days later, the EL4 and EL4/melphalan tumor-bearing mice were randomly divided into 2 groups respectively, 5 mice in each group. Treatment groups were given 7.5 mg/kg melphalan intraperitoneally, and control groups were given the same volume of normal saline. The tumor size was observed every other day. Compared with the EL4 cells, the EL4/melphalan cells had no obvious changes morphologically. They could grow in RPMI 1640 medium containing 5 mg/ml melphalan. The resistance index was 2.87 against melphalan. After the treatment of melphalan of the dose 7.5 mg/kg, the tumor sizes of the treatment groups and control groups inoculated with both EL4 cells and the EL4/melphalan cells gradually decreased at the similar speed, and about one week later all tumors disappeared. However, the tumors of the control groups grew progressively and all the mice died at last. The chemotherapeutic effects of tumors in vivo have nothing to do with the effects of the chemotherapeutic agents on tumor cells in vitro. The tumor cells resistant to melphalan in vitro remain sensitive to the drug in vivo.
Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells
Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo
2015-01-01
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC. PMID:26517679
Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.
Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo
2015-11-24
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.
de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles
2015-12-01
Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.
Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H
2016-04-01
The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.
Panetta, J C; Evans, W E; Cheok, M H
2006-01-01
The antimetabolite mercaptopurine (MP) is widely used to treat childhood acute lymphoblastic leukaemia (ALL). To study the dynamics of MP on the cell cycle, we incubated human T-cell leukaemia cell lines (Molt-4 sensitive and resistant subline and P12 resistant) with 10 μM MP and measured total cell count, cell cycle distribution, percent viable, percent apoptotic, and percent dead cells serially over 72 h. We developed a mathematical model of the cell cycle dynamics after treatment with MP and used it to show that the Molt-4 sensitive controls had a significantly higher rate of cells entering apoptosis (2.7-fold, P<0.00001) relative to the resistant cell lines. Additionally, when treated with MP, the sensitive cell line showed a significant increase in the rate at which cells enter apoptosis compared to its controls (2.4-fold, P<0.00001). Of note, the resistant cell lines had a higher rate of antimetabolite incorporation into the DNA of viable cells (>1.4-fold, P<0.01). Lastly, in contrast to the other cell lines, the Molt-4 resistant subline continued to cycle, though at a rate slower relative to its control, rather than proceed to apoptosis. This led to a larger S-phase block in the Molt-4 resistant cell line, but not a higher rate of cell death. Gene expression of apoptosis, cell cycle, and repair genes were consistent with mechanistic dynamics described by the model. In summary, the mathematical model provides a quantitative assessment to compare the cell cycle effects of MP in cells with varying degrees of MP resistance. PMID:16333308
Modulation of Endoplasmic Reticulum Stress Controls CD4+ T-cell Activation and Antitumor Function.
Thaxton, Jessica E; Wallace, Caroline; Riesenberg, Brian; Zhang, Yongliang; Paulos, Chrystal M; Beeson, Craig C; Liu, Bei; Li, Zihai
2017-08-01
The endoplasmic reticulum (ER) is an energy-sensing organelle with intimate ties to programming cell activation and metabolic fate. T-cell receptor (TCR) activation represents a form of acute cell stress and induces mobilization of ER Ca 2+ stores. The role of the ER in programming T-cell activation and metabolic fate remains largely undefined. Gp96 is an ER protein with functions as a molecular chaperone and Ca 2+ buffering protein. We hypothesized that the ER stress response may be important for CD4 + T-cell activation and that gp96 may be integral to this process. To test our hypothesis, we utilized genetic deletion of the gp96 gene Hsp90b1 in a CD4 + T cell-specific manner. We show that gp96-deficient CD4 + T cells cannot undergo activation-induced glycolysis due to defective Ca 2+ mobilization upon TCR engagement. We found that activating naïve CD4 + T cells while inhibiting ER Ca 2+ exchange, through pharmacological blockade of the ER Ca 2+ channel inositol trisphosphate receptor (IP 3 R), led to a reduction in cytosolic Ca 2+ content and generated a pool of CD62L high /CD44 low CD4 + T cells compared with wild-type (WT) matched controls. In vivo IP 3 R-inhibited CD4 + T cells exhibited elevated tumor control above WT T cells. Together, these data show that ER-modulated cytosolic Ca 2+ plays a role in defining CD4 + T-cell phenotype and function. Factors associated with the ER stress response are suitable targets for T cell-based immunotherapies. Cancer Immunol Res; 5(8); 666-75. ©2017 AACR . ©2017 American Association for Cancer Research.
Slobodin, Gleb; Ahmad, Mohammad Sheikh; Rosner, Itzhak; Peri, Regina; Rozenbaum, Michael; Kessel, Aharon; Toubi, Elias; Odeh, Majed
2010-01-01
The role and function of T regulatory (Treg) cells have not been fully investigated in patients with systemic sclerosis (SSc). Ten patients with SSc donated 20ml of peripheral blood. Activity (Valentini) and severity (Medsger) scores for SSc were calculated for all patients. Healthy volunteers (controls) were matched to each patient by gender and age. CD4(+) cells were separated using the MACS system. The numbers of Treg cells were estimated by flow cytometry after staining for CD4, CD25, and FoxP3 and calculated as patient-to-control ratio separately for each experiment. Correlations with activity and severity indices of the disease were performed. Twenty-four-hour production of TGF-beta and IL-10 by activated CD4(+) cells was measured by ELISA in culture supernatants. The numbers of Treg cells, expressed as patient-to-control ratio, correlated significantly with both activity and severity indices (r=0.71, p=0.034 and r=0.67, p=0.044, respectively). ELISA-measured production of TGF-beta and IL-10 by CD4(+) cells was similar in patients and controls. Increased numbers of Treg cells are present in patients with SSc, correlating with activity and severity of the disease. This expansion of Treg cells was not accompanied, however, by heightened TGF-beta or IL-10 production. Further studies to elaborate the causes and functional significance of Treg cell expansion in SSc are needed. 2010 Elsevier Inc. All rights reserved.
Effects of compost biocovers on gas flow and methane oxidation in a landfill cover.
Abichou, Tarek; Mahieu, Koenraad; Yuan, Lei; Chanton, Jeffery; Hater, Gary
2009-05-01
Previous publications described the performance of biocovers constructed with a compost layer placed on select areas of a landfill surface characterized by high emissions from March 2004 to April 2005. The biocovers reduced CH(4) emissions 10-fold by hydration of underlying clay soils, thus reducing the overall amount of CH(4) entering them from below, and by oxidation of a greater portion of that CH(4). This paper examines in detail the field observations made on a control cell and a biocover cell from January 1, 2005 to December 31, 2005. Field observations were coupled to a numerical model to contrast the transport and attenuation of CH(4) emissions from these two cells. The model partitioned the biocover's attenuation of CH(4) emission into blockage of landfill gas flow from the underlying waste and from biological oxidation of CH(4). Model inputs were daily water content and temperature collected at different depths using thermocouples and calibrated TDR probes. Simulations of CH(4) transport through the two soil columns depicted lower CH(4) emissions from the biocover relative to the control. Simulated CH(4) emissions averaged 0.0gm(-2)d(-1) in the biocover and 10.25gm(-2)d(-1) in the control, while measured values averaged 0.04gm(-2)d(-1) in the biocover and 14gm(-2)d(-1) in the control. The simulated influx of CH(4) into the biocover (2.7gm(-2)d(-1)) was lower than the simulated value passing into the control cell (29.4gm(-2)d(-1)), confirming that lower emissions from the biocover were caused by blockage of the gas stream. The simulated average rate of biological oxidation predicted by the model was 19.2gm(-2)d(-1) for the control cell as compared to 2.7gm(-2)d(-1) biocover. Even though its V(max) was significantly greater, the biocover oxidized less CH(4) than the control cell because less CH(4) was supplied to it.
Rogers, M B
1996-01-01
The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.
Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.
Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S
2018-07-01
Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.
Tobolowsky, F A; Wada, N; Martinez-Maza, O; Magpantay, L; Koletar, S L; Palella, F J; Brown, T T; Lake, J E
2018-01-01
Lymphoid tissue fibrosis may contribute to incomplete immune reconstitution on antiretroviral therapy (ART) via local CD4+ T lymphocyte (CD4) depletion. Hyaluronic acid (HA) increases with fibrotic burden. CXCL4 concentrations increase in response to pro-fibrotic stimuli, but lower CXCL4 concentrations in HIV-infected individuals may reflect successful immune evasion by HIV. We investigated relationships between circulating HA and CXCL4 concentrations and immune reconstitution on ART in HIV-infected Multicenter AIDS Cohort Study participants. HIV-infected men on ART for >1 year with cryopreserved plasma samples and suppressed post-ART HIV-1 RNA were included. Men with post-ART CD4 <200 cells/mm3 were defined as immunologic non-responders (n = 25). Age-/race-matched men with post-ART CD4 >500 cells/mm3 served as controls (n = 49). HA and CXCL4 concentrations were measured via ELISA. Median pre-ART CD4 was 297 cells/mm3 for non-responders vs 386 cells/mm3 for controls. Median post-ART CD4 was 141 cells/mm3 for non-responders and 815 cells/mm3 for controls. HIV infection duration was 23 years, with median time on ART 13 years for non-responders vs 11 years for controls. Pre-ART HA and CXCL4 concentrations did not vary by eventual immune reconstitution status. Post-ART HA concentrations tended to be higher (85 vs 36 ng/mL, p = 0.07) and CXCL4 concentrations were lower (563 vs 1459 ng/mL, p = 0.01) among non-responders. Among men with paired pre-/post-ART samples, non-responders had greater HA increases and CXCL4 decreases than controls (HA: 50 vs 12 ng/mL, p = 0.04; CXCL4: -1258 vs -405 ng/mL, p = 0.01). Higher circulating concentrations of HA and lower concentrations of CXCL4 are associated with failure of immune reconstitution on ART.
Wada, N.; Martinez-Maza, O.; Magpantay, L.; Koletar, S. L.; Palella, F. J.; Brown, T. T.; Lake, J. E.
2018-01-01
Introduction Lymphoid tissue fibrosis may contribute to incomplete immune reconstitution on antiretroviral therapy (ART) via local CD4+ T lymphocyte (CD4) depletion. Hyaluronic acid (HA) increases with fibrotic burden. CXCL4 concentrations increase in response to pro-fibrotic stimuli, but lower CXCL4 concentrations in HIV-infected individuals may reflect successful immune evasion by HIV. We investigated relationships between circulating HA and CXCL4 concentrations and immune reconstitution on ART in HIV-infected Multicenter AIDS Cohort Study participants. Methods HIV-infected men on ART for >1 year with cryopreserved plasma samples and suppressed post-ART HIV-1 RNA were included. Men with post-ART CD4 <200 cells/mm3 were defined as immunologic non-responders (n = 25). Age-/race-matched men with post-ART CD4 >500 cells/mm3 served as controls (n = 49). HA and CXCL4 concentrations were measured via ELISA. Results Median pre-ART CD4 was 297 cells/mm3 for non-responders vs 386 cells/mm3 for controls. Median post-ART CD4 was 141 cells/mm3 for non-responders and 815 cells/mm3 for controls. HIV infection duration was 23 years, with median time on ART 13 years for non-responders vs 11 years for controls. Pre-ART HA and CXCL4 concentrations did not vary by eventual immune reconstitution status. Post-ART HA concentrations tended to be higher (85 vs 36 ng/mL, p = 0.07) and CXCL4 concentrations were lower (563 vs 1459 ng/mL, p = 0.01) among non-responders. Among men with paired pre-/post-ART samples, non-responders had greater HA increases and CXCL4 decreases than controls (HA: 50 vs 12 ng/mL, p = 0.04; CXCL4: -1258 vs -405 ng/mL, p = 0.01). Conclusions Higher circulating concentrations of HA and lower concentrations of CXCL4 are associated with failure of immune reconstitution on ART. PMID:29381717
Campanoni, Prisca; Nick, Peter
2005-01-01
During exponential phase, the tobacco (Nicotiana tabacum) cell line cv Virginia Bright Italia-0 divides axially to produce linear cell files of distinct polarity. This axial division is controlled by exogenous auxin. We used exponential tobacco cv Virginia Bright Italia-0 cells to dissect early auxin signaling, with cell division and cell elongation as physiological markers. Experiments with 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated that these 2 auxin species affect cell division and cell elongation differentially; NAA stimulates cell elongation at concentrations that are much lower than those required to stimulate cell division. In contrast, 2,4-D promotes cell division but not cell elongation. Pertussis toxin, a blocker of heterotrimeric G-proteins, inhibits the stimulation of cell division by 2,4-D but does not affect cell elongation. Aluminum tetrafluoride, an activator of the G-proteins, can induce cell division at NAA concentrations that are not permissive for division and even in the absence of any exogenous auxin. The data are discussed in a model where the two different auxins activate two different pathways for the control of cell division and cell elongation. PMID:15734918
Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf
2013-02-01
The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.
LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.
Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan
2018-06-01
This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.
Fischer, Anika; Zundler, Sebastian; Atreya, Raja; Rath, Timo; Voskens, Caroline; Hirschmann, Simon; López-Posadas, Rocío; Watson, Alastair; Becker, Christoph; Schuler, Gerold; Neufert, Clemens; Atreya, Imke; Neurath, Markus F
2016-01-01
Objective Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in IBDs. We aimed to analyse the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4β7 and G protein receptor GPR15. Design We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanised mouse model in dextran sodium sulfate-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Results Expression of GPR15 and α4β7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with UC as compared with Crohn’s disease and controls. In vivo analysis in a humanised mouse model showed augmented gut homing of UC Treg cells as compared with controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4β7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. Conclusions α4β7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff cell homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic Teff cell expansion. PMID:26209553
Yang, Shi-feng; Xue, Wu-jun; Lu, Wan-hong; Xie, Li-yi; Yin, Ai-ping; Zheng, Jin; Sun, Ji-ping; Li, Yang
2015-10-01
Syngeneic or autologous hematopoietic stem cells transplantation (HSCT) has been proposed to treat autoimmune diseases because of its immunosuppressive and immunomodulatory effects, which can also contribute to posttransplant antirejection therapy. In this study, we explored the tolerogenic effect of syngeneic HSCT on prolonging islet allograft survival. C57BL/6 mice received syngeneic HSCT plus preconditioning with sublethal irradiation. Then islets of BALB/c mice were transplanted into the renal subcapsular of C57BL/6 mice after chemically induced into diabetes. HSCT mice exhibited improved islet allograft survival and increased serum insulin compared to control mice. Islet allografts of HSCT mice displayed lower level lymphocyte infiltration and stronger insulin staining than control mice. T cells of HSCT mice proliferated poorly in response to allogeneic splenocytes compared to control mice. Mice appeared reversed interferon-γ (IFN-γ)/interleukin-4 (IL-4) ratio to a Th2 immune deviation after syngeneic HSCT. The percentage of CD8(+) T cells was lower, while percentage of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) was higher in HSCT mice than control mice. HSCT mice showed higher percentage of CTLA-4(+) T cells and expression of CTLA-4 mRNA than control mice. Targeting of CTLA-4 by intraperitoneal injection of anti-CTLA-4 mAb abrogated the effect of syngeneic HSCT on prolonging islet allograft survival, inhibiting activity of T cells in response to alloantigen, promoting Th1 to Th2 immune deviation and up regulating CD4(+)CD25(+)Foxp3(+) Tregs. Syngeneic HSCT plus preconditioning of sublethal irradiation induces tolerance and improves islet allograft survival in fully mismatched mice model. Th1 to Th2 immune deviation, increased CD4(+)CD25(+)Foxp3(+) Tregs and up-regulation of CTLA-4 maybe contribute to the tolerogenic effect induced by syngeneic HSCT. Copyright © 2015 Elsevier B.V. All rights reserved.
Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.
2018-01-01
Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (p<0.01), particularly NKdim (CD56lo) cells (p<0.01), but fewer CD4+ T cells (p<0.01) than healthy controls. NTHi challenge significantly increased the proportion of activated (CD107a+) NK cells in otitis-prone and non-otitis-prone children (p<0.01), suggesting that NK cells from otitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (p<0.05) but similar proportions of IFNγ+ NK cells. Otitis-prone children had more circulating IFNγ-producing NK cells (p<0.05) and more IFNγ-producing CD4+ (p<0.01) or CD8+ T-cells (p<0.05) than healthy controls. In response to SEB, more CD107a-expressing CD8+ T cells were present in cases than controls (p<0.01). Despite differences in PBMC composition, PBMC from otitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281
Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan
2017-03-01
Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P <0.05), albeit decreasing to low levels in pre-treated patients. In conclusion, chronic lymphocytic leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.
High Levels of IL-10 and CD4+CD25hi+ Treg Cells in Endemic Burkitt’s Lymphoma Patients
Futagbi, Godfred; Gyan, Ben; Nunoo, Harriet; Tetteh, John K.A.; Welbeck, Jennifer E.; Renner, Lorna Awo; Ofori, Michael; Dodoo, Daniel; Edoh, Dominic A.; Akanmori, Bartholomew D.
2015-01-01
Background: The interplay between Epstein-Barr virus infection, malaria, and endemic Burkitt’s Lymphoma is not well understood. Reports show diminished EBV-specific Th1 responses in children living in malaria endemic areas and deficiency of EBNA1-specific IFN-γ T cell responses in children with endemic Burkitt’s Lymphoma (eBL). This study, therefore, examined some factors involved in the loss of EBNA-1-specific T cell responses in eBL. Methods: T-cell subset frequencies, activation, and IFN-γ- or IL-4-specific responses were analyzed by flow-cytometry. Plasma cytokine levels were measured by ELISA. Results: CD4+ and CD8+ cells in age- and sex-matched healthy controls (n = 3) expressed more IFN-γ in response to all immunostimulants than in pediatric endemic BL (eBL) patients (n = 4). In healthy controls, IFN-γ expression was higher than IL-4 expression, whereas in eBL patients the expression of IL-4 by CD4+ cells to EBNA-1 was slightly higher than IFN-γ. Moreover, the blood levels of TNF-α was significantly lower (p = 0.004) while IL-10 was significantly higher (p = 0.038), in eBL patients (n = 21) compared to controls (n = 16). Additionally, the frequency of CD4+CD25hi+ T cells was higher in both age-matched acute uncomplicated malaria (n = 26) and eBL (n = 14) patients compared to healthy controls (n = 19; p = 0.000 and p = 0.027, respectively). Conclusion: The data suggest that reduced Th1 response in eBL might be due to increased levels of IL-10 and T reg cells. PMID:28536409
High Levels of IL-10 and CD4+CD25hi+ Treg Cells in Endemic Burkitt's Lymphoma Patients.
Futagbi, Godfred; Gyan, Ben; Nunoo, Harriet; Tetteh, John K A; Welbeck, Jennifer E; Renner, Lorna Awo; Ofori, Michael; Dodoo, Daniel; Edoh, Dominic A; Akanmori, Bartholomew D
2015-08-04
The interplay between Epstein-Barr virus infection, malaria, and endemic Burkitt's Lymphoma is not well understood. Reports show diminished EBV-specific Th1 responses in children living in malaria endemic areas and deficiency of EBNA1-specific IFN-γ T cell responses in children with endemic Burkitt's Lymphoma (eBL). This study, therefore, examined some factors involved in the loss of EBNA-1-specific T cell responses in eBL. T-cell subset frequencies, activation, and IFN-γ- or IL-4-specific responses were analyzed by flow-cytometry. Plasma cytokine levels were measured by ELISA. CD4+ and CD8+ cells in age- and sex-matched healthy controls ( n = 3) expressed more IFN-γ in response to all immunostimulants than in pediatric endemic BL (eBL) patients ( n = 4). In healthy controls, IFN-γ expression was higher than IL-4 expression, whereas in eBL patients the expression of IL-4 by CD4+ cells to EBNA-1 was slightly higher than IFN-γ. Moreover, the blood levels of TNF-α was significantly lower ( p = 0.004) while IL-10 was significantly higher ( p = 0.038), in eBL patients ( n = 21) compared to controls ( n = 16). Additionally, the frequency of CD4+CD25hi+ T cells was higher in both age-matched acute uncomplicated malaria ( n = 26) and eBL ( n = 14) patients compared to healthy controls ( n = 19; p = 0.000 and p = 0.027, respectively). The data suggest that reduced Th1 response in eBL might be due to increased levels of IL-10 and T reg cells.
Miyamoto, Maristela; Pessoa, Silvana D; Ono, Erika; Machado, Daisy M; Salomão, Reinaldo; Succi, Regina C de M; Pahwa, Savita; de Moraes-Pinto, Maria Isabel
2010-12-01
Lymphocyte subsets, activation markers and apoptosis were assessed in 20 HIV-exposed noninfected (ENI) children born to HIV-infected women who were or not exposed to antiretroviral (ARV) drugs during pregnancy and early infancy. ENI children and adolescents were aged 6-18 years and they were compared to 25 age-matched healthy non-HIV-exposed children and adolescents (Control). ENI individuals presented lower CD4(+) T cells/mm(3) than Control group (control: 1120.3 vs. ENI: 876.3; t-test, p = 0.030). ENI individuals had higher B-cell apoptosis than Control group (Control: 36.6%, ARV exposed: 82.3%, ARV nonexposed: 68.5%; Kruskal-Wallis, p < 0.05), but no statistical difference was noticed between those exposed and not exposed to ARV. Immune activation in CD4(+) T, CD8(+) T and in B cells was comparable in ENI and in Control children and adolescents. Subtle long-term immune alterations might persist among ENI individuals, but the clinical consequences if any are unknown, and these children require continued monitoring.
Rallón, Norma; Sempere-Ortells, José M; Soriano, Vincent; Benito, José M
2013-11-01
It is unclear to what extent T cell reconstitution may be possible in HIV-1-infected individuals on continuous successful highly active antiretroviral therapy (HAART). Herein, we analysed distinct phenotypic markers of immune recovery in patients with undetectable viraemia for 8 years, taking as reference untreated patients and healthy controls. Seventy-two subjects were examined: 28 HIV-1+ patients on successful long-term HAART, 24 HIV-1+ untreated viraemic patients and 20 age-matched healthy controls. Analysis of naive and memory CD4 and CD8 T cells was combined with measurements of activation status (expression of CD38) and with thymic function (expression of CD31). Statistical significance was determined by non-parametric tests. After long-term HAART, the majority of parameters were normalized compared with age-matched control values, including T cell activation and thymic function. However, absolute counts of naive and central memory CD4 T cells remained below normal levels. The only parameters significantly associated with CD4 counts at the end of follow-up were the pre-HAART CD4 count ( β ± SD = 0.54 ± 0.16, P = 0.003) and the level of CD4 central memory cells at the end of follow-up (β ± SD = 1.18 ± 0.23, P < 0.0001). Only patients starting HAART with CD4 counts >350 cells/mm(3) reached a complete normalization of CD4 counts. Even after long-term successful HAART, complete CD4 restoration may be attainable only in patients starting therapy with moderately high CD4 counts, prompting early initiation of antiretroviral therapy. Incomplete CD4 restoration may be associated with a defective restoration of central memory CD4 T cells, a cell subset with a pivotal role in T cell homeostasis.
A magnetic switch for the control of cell death signalling in in vitro and in vivo systems
NASA Astrophysics Data System (ADS)
Cho, Mi Hyeon; Lee, Eun Jung; Son, Mina; Lee, Jae-Hyun; Yoo, Dongwon; Kim, Ji-Wook; Park, Seung Woo; Shin, Jeon-Soo; Cheon, Jinwoo
2012-12-01
The regulation of cellular activities in a controlled manner is one of the most challenging issues in fields ranging from cell biology to biomedicine. Nanoparticles have the potential of becoming useful tools for controlling cell signalling pathways in a space and time selective fashion. Here, we have developed magnetic nanoparticles that turn on apoptosis cell signalling by using a magnetic field in a remote and non-invasive manner. The magnetic switch consists of zinc-doped iron oxide magnetic nanoparticles (Zn0.4Fe2.6O4), conjugated with a targeting antibody for death receptor 4 (DR4) of DLD-1 colon cancer cells. The magnetic switch, in its On mode when a magnetic field is applied to aggregate magnetic nanoparticle-bound DR4s, promotes apoptosis signalling pathways. We have also demonstrated that the magnetic switch is operable at the micrometre scale and that it can be applied in an in vivo system where apoptotic morphological changes of zebrafish are successfully induced.
Hoving, Jennifer C.; Nieuwenhuizen, Natalie; McSorley, Henry J.; Ndlovu, Hlumani; Bobat, Saeeda; Kimberg, Matti; Kirstein, Frank; Cutler, Anthony J.; DeWals, Benjamin; Cunningham, Adam F.; Brombacher, Frank
2013-01-01
In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection. PMID:24204255
How PI3K-derived lipids control cell division.
Campa, Carlo C; Martini, Miriam; De Santis, Maria C; Hirsch, Emilio
2015-01-01
To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by the presence of the phosphatidylinositol lipid members (PtdIns), like PtdIns(3,4,5)P 3,PtdIns(4,5)P 2, and PtdIns(3)P. These PtdIns represent a minor component of cell membranes, defining membrane domain identity, ultimately controlling cytoskeleton and membrane dynamics during mitosis. The coordinated presence of PtdIns(3,4,5)P 3 at the cell poles and PtdIns(4,5)P 2 at the cleavage furrow controls the polarity of the actin cytoskeleton leading to symmetrical cell division. In the endosomal compartment, the trafficking of PtdIns(3)P positive vesicles allows the recruitment of the protein machinery required for the abscission.
McLane, Laura M.; Steblyanko, Maria; Anikeeva, Nadia; Ablanedo-Terrazas, Yuria; Demers, Korey; Eller, Michael A.; Streeck, Hendrik; Jansson, Marianne; Sönnerborg, Anders; Canaday, David H.; Naji, Ali; Wherry, E. John; Robb, Merlin L.; Reyes-Teran, Gustavo; Sykulev, Yuri; Betts, Michael R.
2018-01-01
CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. PMID:29652923
IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates.
Picker, Louis J; Reed-Inderbitzin, Edward F; Hagen, Shoko I; Edgar, John B; Hansen, Scott G; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Axthelm, Michael K; Villinger, Francois
2006-06-01
HIV infection selectively targets CD4+ effector memory T (T EM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the T EM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ T EM cells with little effect on the naive or central memory T (T CM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. T EM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2'-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ T EM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4 + T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets.
IL-15 induces CD4+ effector memory T cell production and tissue emigration in nonhuman primates
Picker, Louis J.; Reed-Inderbitzin, Edward F.; Hagen, Shoko I.; Edgar, John B.; Hansen, Scott G.; Legasse, Alfred; Planer, Shannon; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Axthelm, Michael K.; Villinger, Francois
2006-01-01
HIV infection selectively targets CD4+ effector memory T (TEM) cells, resulting in dramatic depletion of CD4+ T cells in mucosal effector sites in early infection. Regeneration of the TEM cell compartment is slow and incomplete, even when viral replication is controlled by antiretroviral therapy (ART). Here, we demonstrate that IL-15 dramatically increases in vivo proliferation of rhesus macaque (RM) CD4+ and CD8+ TEM cells with little effect on the naive or central memory T (TCM) cell subsets, a response pattern that is quite distinct from that of either IL-2 or IL-7. TEM cells produced in response to IL-15 did not accumulate in blood. Rather, 5-bromo-2′-deoxyuridine (BrdU) labeling studies suggest that many of these cells rapidly disperse to extralymphoid effector sites, where they manifest (slow) decay kinetics indistinguishable from that of untreated controls. In RMs with uncontrolled SIV infection and highly activated immune systems, IL-15 did not significantly increase CD4+ TEM cell proliferation, but with virologic control and concomitant reduction in immune activation by ART, IL-15 responsiveness was again observed. These data suggest that therapeutic use of IL-15 in the setting of ART might facilitate specific restoration of the CD4+ T cell compartment that is the primary target of HIV with less risk of exhausting precursor T cell compartments or generating potentially deleterious regulatory subsets. PMID:16691294
Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti.
Arias, Maykel A; Santiago, Llipsy; Costas-Ramon, Santiago; Jaime-Sánchez, Paula; Freudenberg, Marina; Jiménez De Bagüés, Maria P; Pardo, Julián
2016-01-01
Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti , was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8 + T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2 -/- , TLR4 -/- , TLR9 -/- , TLR2×4 -/- and TLR2×4×9 -/- . WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4 -/- and TLR2×4×9 -/- mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti -infected dendritic cells from TLR2×4 -/- and TLR2×4×9 -/- mice. Finally, it was found that Tc cells from TLR2×4 -/- and TLR2×4×9 -/- mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8 + Tc cells.
Kuroyanagi, Gen; Tokuda, Haruhiko; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu
2015-09-01
Heat-shock protein 27 (HSP27/HSPB1) and its phosphorylation are implicated in multiple physiological and pathophysiological cell functions. Our previous study reported that unphosphorylated HSP27 has an inhibitory role in triiodothyronine (T(3))‑induced osteocalcin (OC) synthesis in osteoblasts. However, the mechanisms behind the HSP27‑mediated effects on osteoblasts remain to be clarified. In the present study, to investigate the exact mechanism of HSP27 and its phosphorylation in osteoblasts, the molecular targets of HSP27 were explored using osteoblast‑like MC3T3‑E1 cells. The levels of OC mRNA induced by T(3) in the HSP27‑overexpressing cells did not show any significant differences compared with those in the control empty vector‑transfected cells. Therefore, the interactions between HSP27 and translational molecules were focused on, including eukaryotic translation initiation factor 4E (eIF4E), eIF4G and 4E‑binding protein 1 (4E‑BP1). The HSP27 protein in the unstimulated cells co‑immunoprecipitated with eIF4E, but not eIF4G or 4E‑BP1. In addition, the association of eIF4E with 4E‑BP1 was observed in the HSP27‑overexpressing cells, as well as in the control cells. Under T(3) stimulation, the binding of eIF4E to eIF4G was markedly attenuated in the HSP27‑overexpressing cells compared with the control cells. In addition, the binding of HSP27 to eIF4E in the unstimulated cells was diminished by the phosphorylation of HSP27. In response to T(3) stimulation, the association of eIF4E with eIF4G in the unphosphorylatable HSP27‑overexpressing cells was markedly reduced compared with the phospho‑mimic HSP27‑overexpressing cells. Taken together, these findings strongly suggest that unphosphorylated HSP27 associates with eIF4E in osteoblasts and suppresses the translation initiation process.
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE ...
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE FOR ENGINE TEST CELL 4. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
Zhang, Yang; Qu, Wen; Ruan, Er-Bao; Fu, Rong; Wang, Guo-Jin; Liu, Hong; Wang, Xiao-Ming; Wu, Yu-Hong; Song, Jia; Xing, Li-Min; Guan, Jing; Li, Li-Juan; Wang, Hua-Quan; Shao, Zong-Hong
2014-06-01
This study was purposed to detect the quantity and function of bone marrow (BM) T follicular helper (Tfh) cells of patients with immune thrombocytopenia, and to explore the role of Tfh cells in the pathogenesis of ITP. Twenty-one newly diagnosed ITP patients, twenty ITP patients in recovery stage and eighteen normal controls were enrolled in this study. The percentages of Tfh cells, Tfh-related molecules ICOS, CD40L, IL-21 in BM were detected by flow cytometry (FCM), and the mRNA expression of BCL-6 in BMMNC was determined by semi-quantitive RT-PCR. Correlation of Tfh cell level with the disease severity of ITP patients was analysed. The results showed that the ratio of CD4(+)CXCR5(+)/CD4(+) cells in newly diagnosed ITP patients [(5.532 ± 2.599)%] was significantly higher than that in ITP patients with recovery stage [(4.064 ± 2.026)%] and controls [(4.048 ± 1.413)%] (P < 0.05). The ratio of CD4(+)CXCR5(+)ICOS(+)/CD4(+) CXCR5(+) cells in newly diagnosed ITP patients [(14.586 ± 8.561)%] was higher than that in recovery stage ITP patients [(12.884 ± 10.161)%] and controls [(7.487 ± 5.176)%]. The differences be-tween newly diagnosed ITP patients and controls were statistically significant (P < 0.05). The ratio of CD4(+)CXCR5(+) CD40L(+)/CD4(+) CXCR5(+) cells in newly diagnosed ITP patients [(15.309 ± 10.756)%] and in ITP patients with recovery stage [(18.242 ± 12.243)%] were significantly higher than that in controls [(8.618 ± 5.719) %] (P < 0.05). The ratio of intracytoplasm CD4(+) CXCR5(+) IL-21(+)/CD4(+)CXCR5(+) cells in newly diagnosed ITP patients [(58.560 ± 26.285)%] and in ITP patients with recovery stage [(57.035 ± 30.936)%] were significantly higher than that in controls [(36.289 ± 24.868)%] (P < 0.05). The relative expression levels of BCL-6 mRNA in BMMNC of three groups were (1.407 ± 0.264), (1.149 ± 0.217) and (0.846 ± 0.157), respectively. The differences between 3 groups were significant(P < 0.05). It is concluded that the quantity and function of Tfh cells in ITP patients increase, which may play an important role in the pathogenesis of ITP.
Insights into the role of Bcl6 in follicular Th cells using a new conditional mutant mouse model.
Hollister, Kristin; Kusam, Saritha; Wu, Hao; Clegg, Ninah; Mondal, Arpita; Sawant, Deepali V; Dent, Alexander L
2013-10-01
The transcriptional repressor Bcl6 controls development of the follicular Th cell (T(FH)) lineage, but the precise mechanisms by which Bcl6 regulates this process are unclear. A model has been proposed whereby Bcl6 represses the differentiation of T cells into alternative effector lineages, thus favoring T(FH) cell differentiation. Analysis of T cell differentiation using Bcl6-deficient mice has been complicated by the strong proinflammatory phenotype of Bcl6-deficient myeloid cells. In this study, we report data from a novel mouse model where Bcl6 is conditionally deleted in T cells (Bcl6(fl/fl)Cre(CD4) mice). After immunization, programmed death -1 (PD-1)(high) T(FH) cells in Bcl6(fl/fl)Cre(CD4) mice are decreased >90% compared with control mice, and Ag-specific IgG is sharply reduced. Residual PD-1(high)CXCR5(+) T(FH) cells in Bcl6(fl/fl)Cre(CD4) mice show a significantly higher rate of apoptosis than do PD-1(high)CXCR5(+) T(FH) cells in control mice. Immunization of Bcl6(fl/fl)Cre(CD4) mice did not reveal enhanced differentiation into Th1, Th2, or Th17 lineages, although IL-10 expression by CD4 T cells was markedly elevated. Thus, T cell-extrinsic factors appear to promote the increased Th1, Th2, and Th17 responses in germline Bcl6-deficient mice. Furthermore, IL-10 may be a key target gene for Bcl6 in CD4 T cells, which enables Bcl6 to promote the T(FH) cell phenotype. Finally, our data reveal a novel mechanism for the role of Bcl6 in promoting T(FH) cell survival.
Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava
2015-03-01
Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.
Ye, Xin; Wang, Yanshu; Cahill, Hugh; Yu, Minzhong; Badea, Tudor C; Smallwood, Philip M; Peachey, Neal S; Nathans, Jeremy
2009-10-16
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, whereas excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is upregulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease.
Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys.
Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Fanales-Belasio, Emanuele; Moretti, Sonia; Sernicola, Leonardo; Cara, Andrea; Negri, Donatella R M; Buttò, Stefano; Fiorelli, Valeria; Tripiciano, Antonella; Scoglio, Arianna; Caputo, Antonella; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Ciccozzi, Massimo; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara
2004-09-03
Vaccination with a biologically active Tat protein or tat DNA contained infection with the highly pathogenic SHIV89.6P virus, preventing CD4 T-cell decline and disease onset. Here we show that protection was prolonged, since neither CD4 T-cell decline nor active virus replication was observed in all vaccinated animals that controlled virus replication up to week 104 after the challenge. In contrast, virus persisted and replicated in peripheral blood mononuclear cells and lymph nodes of infected animals, two of which died. Tat-specific antibody, CD4 and CD8 T-cell responses were high and stable only in the animals controlling the infection. In contrast, Gag-specific antibody production and CD4 and CD8 T-cell responses were consistently and persistently positive only in the monkeys that did not control primary virus replication. These results indicate that vaccination with Tat protein or DNA induced long-term memory Tat-specific immune responses and controlled primary infection at its early stages allowing a long-term containment of virus replication and spread in blood and tissues.
Cholette, Jill M; Powers, Karen S; Alfieris, George M; Angona, Ronald; Henrichs, Kelly F; Masel, Debra; Swartz, Michael F; Daugherty, L Eugene; Belmont, Kevin; Blumberg, Neil
2013-02-01
To evaluate whether transfusion of cell saver salvaged, stored at the bedside for up to 24 hrs, would decrease the number of postoperative allogeneic RBC transfusions and donor exposures, and possibly improve clinical outcomes. Prospective, randomized, controlled, clinical trial. Pediatric cardiac intensive care unit. Infants weighing less than 20 kg (n = 106) presenting for cardiac surgery with cardiopulmonary bypass. Subjects were randomized to a cell saver transfusion group where cell saver blood was available for transfusion up to 24 hrs after collection, or to a control group. Cell saver subjects received cell saver blood for volume replacement and/or RBC transfusions. Control subjects received crystalloid or albumin for volume replacement and RBCs for anemia. Blood product transfusions, donor exposures, and clinical outcomes were compared between groups. Children randomized to the cell saver group had significantly fewer RBC transfusions (cell saver: 0.19 ± 0.44 vs. control: 0.75 ± 1.2; p = 0.003) and coagulant product transfusions in the first 48 hrs post-op (cell saver: 0.09 ± 0.45 vs. control: 0.62 ± 1.4; p = 0.013), and significantly fewer donor exposures (cell saver: 0.60 ± 1.4 vs. control: 2.3 ± 4.8; p = 0.019). This difference persisted over the first week post-op, but did not reach statistical significance (cell saver: 0.64 ± 1.24 vs. control: 1.1 ± 1.4; p = 0.07). There were no significant clinical outcome differences. Cell saver blood can be safely stored at the bedside for immediate transfusion for 24 hrs after collection. Administration of cell saver blood significantly reduces the number of RBC and coagulant product transfusions and donor exposures in the immediate postoperative period. Reduction of blood product transfusions has the potential to reduce transfusion-associated complications and decrease postoperative morbidity. Larger studies are needed to determine whether this transfusion strategy will improve clinical outcomes.
Huang, Hongdong; Sun, Weiming; Liang, Yumei; Long, Xi-Dai; Peng, Youming; Liu, Zhihua; Wen, Xiaojun; Jia, Meng
2014-09-01
CD(+)(4)CD(+)(25) Treg cells are of critical importance for maintenance of tolerance. The purpose of the this study was to observe the number of CD(+)(4)CD(+)(25) Treg cells in the patients with thrombotic thrombocytopenic purpura (TTP) associated with systemic lupus erythematosus (SLE), and to study pathogenesis of TTP with SLE. Seven patients with TTP associated with SLE and seven healthy volunteers were studied. The CD(+)(4)CD(+)(25) Treg cells were examined by flow cytometry. Clinical and laboratory data, such as urinary protein, serum creatinine, endothelial markers and immunologic serologics, were obtained from each patient and healthy volunteer. Glomerular injury was assessed by histopathology. Serum IL-2, IL-4, IL-6 and anti-endothelial cell antibody were analyzed by ELISA and anti-ADAMTS13 antibody were detected by Western blotting. CD(+)(4)CD(+)(25) Treg cells significantly decreased in TTP with SLE patients compared with controls (p < 0.05). CD(+)(4)CD(+)(25) Treg cells are negatively correlated with blood urea nitrogen, serum uric acid, supernatant IL-4, and proteinuria, and positively with estimated glomerular filtration rate (eGFR) in TTP with SLE patients. [Formula: see text] Treg cells gradually decreased as the severity of renal histology increased. Serum IL-2, IL-6, supernatant IL-4, anti-endothelial cell antibody, and anti-ADAMTS13 antibody significantly increased in TTP with SLE patients compared to those of the control groups (all p < 0.05). In contrast, serum levels of C3 were significantly decreased in TTP with SLE patients compared to those of the control groups (p < 0.05). CD(+)(4)CD(+)(25) Treg cells are not only lower in TTP with SLE patients, but also are correlated with disease severity in TTP with SLE patients.CD(+)(4)CD(+)(25)Treg cells may play an important role in the pathogenesis of TTP with SLE.
Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas
2017-11-01
In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
[Osteogenic potential of bone marrow mesenchymal stem cells from ovariectomied osteoporotic rat].
Li, Dong-ju; Ge, Dong-xia; Wu, Wen-chao; Wu, Jiang; Li, Liang
2005-05-01
To investigate the difference of osteogenic potential of bone marrow mesenchymal stem cells (MSCs) between healthy rats and osteoporotic rats. We established the animal model of osteoporosis by performing ovariectom on the 3-month-old female Sprague-Dawley rats. Bone marrow mesenchymal stem cells(MSCs) were isolated from the rats of control group and of ovariectomized (ovx) group by means of the density-gradient centrifugation method, and the 3rd-4th passage MSCs were used in all the experiments. The experiments comprised 4 groups: (1) Marrow mesenchymal stem cells control group (MSCs control group); (2) Marrow mesenchymal stem cells ovx group (MSCs ovx group); (3) Osteogenesis induction control group (OSI control group); (4) Osteogenesis induction ovx group (OSI ovx group). Cell cycle and proliferation index (PI) of MSCs were detected by flow cytometry. The expression of alkaline phosphatase (ALP) was detected by dynamics method with substrate of phosphoric acid para-Nitro benzene. The levels of osteocalcin were detected with the isotope labelling method. (1) PI of MSCs was lower in MSCs ovx group than in MSCs control group. (2) The expression of alkaline phosphatase (ALP) was much higher in OSI control group than in the MSCs control group; the expression of alkaline phosphatase (ALP) was much higher in the OSI control group than in OSI ovx group after 7-day and 14-day osteogenic induction. (3) The level of osteocalcin was much higher in the OSI control group than in the MSCs control group after 14-day, 21-day, 28-day osteogenic induction. The level of osteocalcin was much higher in the OSI control group than in the OSI ovx group. Both the proliferative potential and the osteogenic potential of bone marrow mesenchymal stem cells (MSCs) from the ovariectomized osteoporotic rat are decreased.
Altered expression of regulatory T and Th17 cells in murine bronchial asthma
Zhu, Jianbo; Liu, Xiaoying; Wang, Wenxia; Ouyang, Xiuhe; Zheng, Wentao; Wang, Qingyuan
2017-01-01
Alteration of the careful balance of the ratio of Th1/Th2 cell subsets impacts immune function and plays an important role in the pathogenesis of asthma. There is little research on the impact of changes on the balance of the regulatory T (Treg)/Th17 subset ratio and its possible repercussions for asthma. This investigation used a murine model of asthma to measure the expression levels of Treg and Th17 cells and the levels of their transcription factors Foxp3 and retinoic acid receptor-related orphan nuclear receptor (ROR)γt in bronchial asthma while assessing indexes of airway inflammation. Thirty female SPF BALB/c mice were divided into three equally numbered groups: a normal control, an asthma and a dexamethasone treatment group. All the airway inflammation indexes measured were more prominent in the asthma group and less so in the control group. The percentage of the lymphocyte subset CD4+CD25+Foxp3+ cells in the CD4+ cells in the asthma group was significantly lower than that in the normal control group (P<0.01). The percentage of the lymphocyte subset CD4+IL-17+ cells in the CD4+ cells in the asthma group was significantly higher than that in the normal control group (P<0.01). The ratio of CD4+CD25+Foxp3+ cells/CD4+IL-17+ cells in the asthma group decreased compared with that in the normal control group (P<0.01). The expression level of Foxp3 of the mice in the asthma group was significantly lower than that in the control group (P<0.01). The expression intensity of RORγt in the asthma group was higher than that in the normal control group (P<0.01). Finally, the Foxp3/RORγt protein expression ratio in the asthma group was significantly lower than that in the normal control group (P<0.01). The Foxp3/RORγt protein expression ratio and the airway responsiveness were negatively correlated. The average levels of inflammation markers in the dexamethasone group were intermediate between the other groups. During the course of bronchial asthma the unbalanced expression of Treg and Th17 affects mostly the expression of Foxp3/RORγt, leading to inflammation of the airways. Dexamethasone may inhibit airway inflammation by regulating the balance between Treg and Th17. PMID:28672989
Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.
Ulges, Alexander; Klein, Matthias; Reuter, Sebastian; Gerlitzki, Bastian; Hoffmann, Markus; Grebe, Nadine; Staudt, Valérie; Stergiou, Natascha; Bohn, Toszka; Brühl, Till-Julius; Muth, Sabine; Yurugi, Hajime; Rajalingam, Krishnaraj; Bellinghausen, Iris; Tuettenberg, Andrea; Hahn, Susanne; Reißig, Sonja; Haben, Irma; Zipp, Frauke; Waisman, Ari; Probst, Hans-Christian; Beilhack, Andreas; Buchou, Thierry; Filhol-Cochet, Odile; Boldyreff, Brigitte; Breloer, Minka; Jonuleit, Helmut; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias
2015-03-01
The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.
Th17 cells and CD4(+) multifunctional T cells in patients with systemic lupus erythematosus.
Araújo, Júlio Antônio Pereira; Mesquita, Danilo; de Melo Cruvinel, Wilson; Salmazi, Karina Inácio; Kallás, Esper Georges; Andrade, Luis Eduardo Coelho
2016-01-01
Recent evidence suggests that abnormalities involving Th17 lymphocytes are associated with the pathophysiology of systemic lupus erythematosus (SLE). In addition, multifunctional T cells (MFT), i.e., those producing multiple cytokines simultaneously, are present in the inflammatory milieu and may be implicated in the autoimmune process observed in SLE. In the present study, we aimed to characterize the functional status of CD4(+) T cells in SLE by simultaneously determining the concentration of IL-2, IFN-γ and IL-17 in lymphocyte cultures under exogenous and self-antigenic stimuli. Eighteen patients with active disease, 18 with inactive disease, and 14 healthy controls had functional status of CD4(+) T cells analyzed. We found that SLE patients presented a decreased number of total CD4(+) cells, an increased number of activated T cells, and an increased frequency of Th17 cells compared to healthy controls (HC). MFT cells had increased frequency in SLE patients and there was an increased frequency of tri-functional MFT in patients with active SLE compared with those with inactive SLE. Interestingly, MTF cells produced larger amounts of IFNγ than mono-functional T cells in patients and controls. Taken together these data indicate the participation of recently activated Th17 cells and MTF cells in the SLE pathophysiology. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio
2015-01-01
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876
Increased Circulating Anti-inflammatory Cells in Marathon-trained Runners.
Rehm, K; Sunesara, I; Marshall, G D
2015-10-01
Exercise training can alter immune function. Marathon training has been associated with an increased susceptibility to infectious diseases and an increased activity of inflammatory-based diseases, but the precise mechanisms are unknown. The purpose of this study was to compare levels of circulating CD4+ T cell subsets in the periphery of marathon-trained runners and matched non-marathon controls. 19 recreational marathoners that were 4 weeks from running a marathon and 19 demographically-matched healthy control subjects had the percentage of CD4+ T cell subpopulations (T helper 1, T helper 2, T helper 1/T helper 2 ratio, regulatory T cells, CD4+ IL10+, and CD4+ TGFβ+ (Transforming Growth Factor-beta) measured by flow cytometry. Marathon-trained runners had significantly less T helper 1 and regulatory T cells and significantly more T helper 2, CD4+ IL10+, and TGFβ+ cells than the control subjects. The alterations in the percentage of T helper 1 and T helper 2 cells led to a significantly lower T helper 1/T helper 2 ratio in the marathon-trained runners. These data suggest that endurance-based training can increase the number of anti-inflammatory cells. This may be a potential mechanism for the increased incidence of both infectious and inflammatory diseases observed in endurance athletes. © Georg Thieme Verlag KG Stuttgart · New York.
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J.; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E.; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I.; Leadbetter, Elizabeth A.; Sant’Angelo, Derek B.; von Andrian, Ulrich; Brenner, Michael B.
2015-01-01
iNKT cells are CD1d-restricted lipid-sensing innate T cells that express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, and their targets in adipose tissue are unknown. Here we report that adipose tissue iNKT cells have a unique transcriptional program and produce interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lack PLZF, but express the transcription factor E4BP4, which controls their IL-10 production. Adipose iNKT cells are a tissue resident population that induces an anti-inflammatory phenotype in macrophages and, through production of IL-2, controls the number, proliferation and suppressor function of adipose regulatory T (Treg) cells. Thus, adipose tissue iNKT cells are unique regulators of immune homeostasis in this tissue. PMID:25436972
Klatt, Nichole R; Villinger, Francois; Bostik, Pavel; Gordon, Shari N; Pereira, Lara; Engram, Jessica C; Mayne, Ann; Dunham, Richard M; Lawson, Benton; Ratcliffe, Sarah J; Sodora, Donald L; Else, James; Reimann, Keith; Staprans, Silvija I; Haase, Ashley T; Estes, Jacob D; Silvestri, Guido; Ansari, Aftab A
2008-06-01
Naturally SIV-infected sooty mangabeys (SMs) remain asymptomatic despite high virus replication. Elucidating the mechanisms underlying AIDS resistance of SIV-infected SMs may provide crucial information to better understand AIDS pathogenesis. In this study, we assessed the determinants of set-point viremia in naturally SIV-infected SMs, i.e., immune control of SIV replication versus target cell limitation. We depleted CD4+ T cells in 6 naturally SIV-infected SMs by treating with humanized anti-CD4 mAb (Cdr-OKT4A-huIgG1). CD4+ T cells were depleted almost completely in blood and BM and at variable levels in mucosal tissues and LNs. No marked depletion of CD14+ monocytes was observed. Importantly, CD4+ T cell depletion was associated with a rapid, significant decline in viral load, which returned to baseline level at day 30-45, coincident with an increased fraction of proliferating and activated CD4+ T cells. Throughout the study, virus replication correlated with the level of proliferating CD4+ T cells. CD4+ T cell depletion did not induce any changes in the fraction of Tregs or the level of SIV-specific CD8+ T cells. Our results suggest that the availability of activated CD4+ T cells, rather than immune control of SIV replication, is the main determinant of set-point viral load during natural SIV infection of SMs.
de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso
2016-01-28
Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K
2011-04-26
Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population.
2011-01-01
Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population. PMID:21521521
Cai, Shijie; Alp, Nicholas J; McDonald, Denise; Smith, Ian; Kay, Jonathan; Canevari, Laura; Heales, Simon; Channon, Keith M
2002-09-01
Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS-GFP fusion protein were significantly increased following GTPCH gene transfer. These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.
Aberrant Chromatin Modification as a Mechanism of Prostate Cancer Progression
2004-12-01
mediated control of gene expression. Using the antibody generated against phosphorylated histone H3 (from either Upstate Biotech or Cell Signaling), we...C4-2B cells (Fig 3 of Appendix 2). Interestingly, depletion of AR and ACTR affects the expression of distinct cell cycle genes. As shown in Fig 4A and...coactivator ACTR regulate the expression of different genes that are involved in control of cell cycle , suggesting that distinct mechanisms evolves
Lin, Philana Ling; Rutledge, Tara; Green, Angela M.; Bigbee, Matthew; Fuhrman, Carl; Klein, Edwin
2012-01-01
Abstract CD4 T cells are believed to be important in protection against Mycobacterium tuberculosis, but the relative contribution to control of initial or latent infection is not known. Antibody-mediated depletion of CD4 T cells in M. tuberculosis-infected cynomolgus macaques was used to study the role of CD4 T cells during acute and latent infection. Anti-CD4 antibody severely reduced levels of CD4 T cells in blood, airways, and lymph nodes. Increased pathology and bacterial burden were observed in CD4-depleted monkeys during the first 8 weeks of infection compared to controls. CD4-depleted monkeys had greater interferon (IFN)-γ expression and altered expression of CD8 T cell activation markers. During latent infection, CD4 depletion resulted in clinical reactivation in only three of six monkeys. Reactivation was associated with lower CD4 T cells in the hilar lymph nodes. During both acute and latent infection, CD4 depletion was associated with reduced percentages of CXCR3+ expressing CD8 T cells, reported to be involved in T cell recruitment, regulatory function, and effector and memory T cell maturation. CXCR3+ CD8 T cells from hilar lymph nodes had more mycobacteria-specific cytokine expression and greater coexpression of multiple cytokines compared to CXCR3− CD8 T cells. CD4 T cells are required for protection against acute infection but reactivation from latent infection is dependent on the severity of depletion in the draining lymph nodes. CD4 depletion influences CD8 T cell function. This study has important implications for human HIV–M. tuberculosis coinfection. PMID:22480184
Regulatory T Cells in Patients with Idiopathic Thrombocytopenic Purpura.
Akyol Erikçi, Alev; Karagöz, Bülent; Bilgi, Oğuz
2016-06-05
Immune thrombocytopenic purpura (ITP) is an immune-mediated bleeding disorder in which platelets are opsonized by autoantibodies and destroyed by an Fc receptor-mediated phagocytosis by the reticuloendothelial system within the spleen. Autoimmune processes are also considered in the pathogenesis of this disorder. CD4+CD25+FoxP3+ regulatory T (Treg) cells and CD8+CD28- Treg cells have roles in autoimmune diseases. We investigated these regulatory cells in ITP patients. We included 22 ITP patients and 16 age-matched healthy subjects. CD4+CD25+FoxP3+ Treg cells and CD8+CD28- cells were investigated by three-color flow cytometry. The ratios of these cell populations to total lymphocytes were calculated. Statistical analysis was carried out with the Mann-Whitney U test. CD4+CD25+ Treg cells were 9.69±3.70% and 12.99±5.58% in patients with ITP and controls, respectively. CD4+CD25highFoxP3+ cells were 27.72±19.74% and 27.55±23.98% in ITP patients and controls, respectively. The percentages of both of these cell types were not statistically significant when compared to the control group. We did not find any differences in ratios of CD4+CD25+FoxP3+ Treg cells or CD8+CD28- T cells in lymphocytes between patients and healthy subjects. We conclude that these circulatory cells are not different in ITP, but further studies are needed to explore the putative roles of these regulatory cells.
In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells.
Dimitrova-Nakov, Sasha; Uzunoglu, Emel; Ardila-Osorio, Hector; Baudry, Anne; Richard, Gilles; Kellermann, Odile; Goldberg, Michel
2015-11-01
To evaluate the biocompatibility and osteoinductive properties of Bioroot™ RCS (BR, Septodont, France) compared to Kerr's Pulp Canal Sealer™ (PCS, Kerr, Italy) using the mouse pulp-derived stem cell line A4, which have an osteo/odontogenic potential in vitro and contribute to efficient bone repair in vivo. A4 cells were cultured at the stem cell stage in the presence of solid disks of BR or PCS, whereas untreated A4 cells were used as control. After 3, 7, 10 days of direct contact with the sealers, cell viability was quantified using Trypan Blue exclusion assay. Immunolabelings were performed to assess the expression of odontoblast markers i.e. type 1 collagen, DMP1 or BSP. Finally, sealer-treated cells were induced toward osteo/odontogenic differentiation to assess the impact of the sealers on mineralization by Von Kossa staining. Statistical significance was evaluated by one-way analysis of variance and t-test (p<0.05). BR did not alter the viability and morphology of A4 pulpal cells compared to control group (p>0.05); however, living cell percentage of PCS was significantly lower compared to control and BR groups (p<0.05). BR preserved the intrinsic ability of A4 cells to express type 1 collagen, DMP1 or BSP at the stem cell stage. It did not alter the integrity of collagen fibers surrounding the cells and promoted overexpression of BSP and DMP1 at the cell surface. In contrast to PCS, BR did not compromise the mineralization potential of pulpal A4 stem cells. Bioroot™ RCS was not as cytotoxic as PCS. It did not recruit the pulpal stem cells toward differentiation but preserve their osteo-odontogenic intrinsic properties. Bioroot™ RCS might provide more suitable environment to induce stem cells for hard tissue deposition. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A
2013-12-01
Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.
Xie, Jianfeng; Robertson, Jennifer M; Chen, Ching-Wen; Zhang, Wenxiao; Coopersmith, Craig M; Ford, Mandy L
2018-01-01
The presence of pre-existing malignancy in murine hosts results in increased immune dysregulation and risk of mortality following a septic insult. Based on the known systemic immunologic changes that occur in cancer hosts, we hypothesized that the presence of pre-existing malignancy would result in phenotypic and functional changes in CD4+ T cell responses following sepsis. In order to conduct a non-biased, unsupervised analysis of phenotypic differences between CD4+ T cell compartments, cohorts of mice were injected with LLC1 tumor cells and tumors were allowed to grow for 3 weeks. These cancer hosts and age-matched non-cancer controls were then subjected to CLP. Splenocytes were harvested at 24h post CLP and flow cytometry and SPADE (Spanning-tree Progression Analysis of Density-normalized Events) were used to analyze populations of CD4+ cells most different between the two groups. Results indicated that relative to non-cancer controls, cancer mice contained more resting memory CD4+ T cells, more activated CD4+ effectors, and fewer naïve CD4+ T cells during sepsis, suggesting that the CD4+ T cell compartment in cancer septic hosts is one of increased activation and differentiation. Moreover, cancer septic animals exhibited expansion of two distinct subsets of CD4+ T cells relative to previously healthy septic controls. Specifically, we identified increases in both a PD-1hi population and a distinct 2B4hi BTLAhi LAG-3hi population in cancer septic animals. By combining phenotypic analysis of exhaustion markers with functional analysis of cytokine production, we found that PD-1+ CD4+ cells in cancer hosts failed to make any cytokines following CLP, while the 2B4+ PD-1lo cells in cancer mice secreted increased TNF during sepsis. In sum, the immunophenotypic landscape of cancer septic animals is characterized by both increased CD4+ T cell activation and exhaustion, findings that may underlie the observed increased mortality in mice with pre-existing malignancy following sepsis.
Xie, Jianfeng; Robertson, Jennifer M.; Chen, Ching-wen; Zhang, Wenxiao
2018-01-01
The presence of pre-existing malignancy in murine hosts results in increased immune dysregulation and risk of mortality following a septic insult. Based on the known systemic immunologic changes that occur in cancer hosts, we hypothesized that the presence of pre-existing malignancy would result in phenotypic and functional changes in CD4+ T cell responses following sepsis. In order to conduct a non-biased, unsupervised analysis of phenotypic differences between CD4+ T cell compartments, cohorts of mice were injected with LLC1 tumor cells and tumors were allowed to grow for 3 weeks. These cancer hosts and age-matched non-cancer controls were then subjected to CLP. Splenocytes were harvested at 24h post CLP and flow cytometry and SPADE (Spanning-tree Progression Analysis of Density-normalized Events) were used to analyze populations of CD4+ cells most different between the two groups. Results indicated that relative to non-cancer controls, cancer mice contained more resting memory CD4+ T cells, more activated CD4+ effectors, and fewer naïve CD4+ T cells during sepsis, suggesting that the CD4+ T cell compartment in cancer septic hosts is one of increased activation and differentiation. Moreover, cancer septic animals exhibited expansion of two distinct subsets of CD4+ T cells relative to previously healthy septic controls. Specifically, we identified increases in both a PD-1hi population and a distinct 2B4hi BTLAhi LAG-3hi population in cancer septic animals. By combining phenotypic analysis of exhaustion markers with functional analysis of cytokine production, we found that PD-1+ CD4+ cells in cancer hosts failed to make any cytokines following CLP, while the 2B4+ PD-1lo cells in cancer mice secreted increased TNF during sepsis. In sum, the immunophenotypic landscape of cancer septic animals is characterized by both increased CD4+ T cell activation and exhaustion, findings that may underlie the observed increased mortality in mice with pre-existing malignancy following sepsis. PMID:29338031
Role of human epididymis protein 4 in chemoresistance and prognosis of epithelial ovarian cancer.
Lee, Seungho; Choi, Seowon; Lee, Yookyung; Chung, Donghae; Hong, Suntaek; Park, Nohhyun
2017-01-01
Human epididymis protein 4 (HE4) is a novel biomarker for epithelial ovarian cancer. This study was designed to evaluate the role of HE4 in chemo-response against anti-cancer drugs and prognosis of epithelial ovarian cancer. HE4-depleted cells and HE4-overexpressing cells were generated. The effect of HE4 gene silencing and overexpression was examined using a cell viability assay after exposure to chemotherapeutic agents and the signaling pathway. We studied the expression of HE4 in ovarian cancer tissue and the prognostic significance. Cytoplasmic staining was graded for intensity and percentage of positive cells. The grades were multiplied to determine an H-score. Knockdown of HE4 in OVCAR-3 cells resulted in reduction in cell growth and increased sensitivity to paclitaxel and cisplatin compared to control cells. This effect originated from the decreased activation of cell-growth-related signaling, such as AKT and Erk mediated by epidermal growth factor (EGF), while overexpression of HE4 resulted in enhanced cell growth and suppressed the anti-tumorigenic activity of paclitaxel. Activation of AKT and Erk pathways was enhanced in HE4-overexpressing cells compared to control cells. Based on the results of multivariate analysis, the risk of death was significantly higher in patients with an H-score > 4. HE4 induces chemoresistance against anti-cancer drugs and activates the AKT and Erk pathways to enhance tumor survival. HE4 expression in ovarian cancer tissue is associated with a worse prognosis for epithelial ovarian cancer patients. © 2016 Japan Society of Obstetrics and Gynecology.
Diversity in TAF proteomics: consequences for cellular differentiation and migration.
Kazantseva, Jekaterina; Palm, Kaia
2014-09-19
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of "core transcription machinery" during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.
Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L
1983-02-01
Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected.
Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.
Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L
1983-01-01
Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected. PMID:6601555
Liu, Jianjun; Ding, Degang; Liu, Jie
2014-10-14
We aimed to investigate whether varicocele (VC) in rats can cause Sertoli cell-only syndrome (SCOS). Forty adolescent SD rats were randomly divided into 4 groups: 4-weeks control group, 4-weeks experimental group, 12-weeks control group, and 12-weeks experimental group. Left varicocele models were introduced by partially ligating left kidney veins for the experimental groups, and the sham surgery groups as controls were executed with exactly the same surgery as in the experimental groups except for the ligation. Rats in control and experimental groups for 4 and 12 weeks were killed after laparotomy at 4 and 12 weeks, respectively, the testes were taken out and fixed in fixative containing 4% polyformaldehyde, then were stained by hematoxylin and eosin (HE). The density and viability of sperm were analyzed by computer-aided sperm analysis. Compared with rats in 4-weeks and 12-weeks control group, histological structures of bilateral testes in both experimental groups were impaired, most of them showing as focal focuses. The pathological changes of testes in rats of the 12-weeks experimental group were bilateral, and included atrophy of seminiferous tubules, turbulence of spermatogenic cells in seminiferous tubules, defluvium of most spermatogenic cells, abortion of spermatogenesis, and degradation of spermatogenic epithelia. One rat in the 12-weeks experimental group was shown having SCOS, with the spermatogenic cells in seminiferous tubules completely flaked, degraded, or absent, and only Sertoli cells lined the seminiferous tubules. Laboratory VC caused progressive impairment of homolateral testes, and SCOS could be induced when the damage was severe. Our results indicate that asthenozoospermia, azoospermia, and SCOS can be prevented by the earlier treatment of VC.
Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.
Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika
2013-01-01
Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.
Regulatory T cell subsets in children with systemic lupus erythematosus.
Eltayeb, Azza A; Sayed, Douaa M; Afifi, Noha A; Ibrahim, Maggie A; Sheref, Tahra M
2014-08-01
The aim of this work was to quantify CD4(+)CD25(+)Foxp3(+) T cells (Tregs) in Egyptian children with SLE and to correlate these findings with their disease activity scores and drug therapy. We enrolled 37 Egyptian children with active SLE. Disease activity was assessed by measuring serum levels of anti-dsDNA antibody and by the SLEDAI scores. Twenty healthy children were also enrolled as normal controls. The CD4+CD25+, CD4+CD25(bright), and CD4+CD25(dim) cells in patients were significantly increased in comparison to controls. There was no significant difference in the Foxp3 gated on CD4+CD25(bright) and CD4+CD25(dim), but there was a significant increase when gated on CD4+CD25- and whole CD4+ cells in patients than controls. There was no significant difference among patients with different degrees of activity on different lines of treatments and their outcomes as regards all studied values. There was no significant correlation between SLEDAI score and any of the studied parameters except for a significant negative correlation with gated lymphocytes. There is increased expression of Foxp3 in CD4+ T cells mostly CD25- in Egyptian children with active SLE under corticosteroid treatment regardless of disease activity.
Kang, Minkyung; Ryu, Jihye; Lee, Doohyung; Lee, Mi-Sook; Kim, Hye-Jin; Nam, Seo Hee; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Tai Young; Lee, Hansoo; Kim, Sang Jick; Ye, Sang-Kyu; Kim, Semi; Lee, Jung Weon
2014-01-01
Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies. PMID:25033048
Cell type-specific translational repression of Cyclin B during meiosis in males.
Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T
2015-10-01
The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I. © 2015. Published by The Company of Biologists Ltd.
Galaup, Ariane; Cazes, Aurelie; Le Jan, Sebastien; Philippe, Josette; Connault, Elisabeth; Le Coz, Emmanuelle; Mekid, Halima; Mir, Lluis M; Opolon, Paule; Corvol, Pierre; Monnot, Catherine; Germain, Stephane
2006-12-05
Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness.
Galaup, Ariane; Cazes, Aurelie; Le Jan, Sebastien; Philippe, Josette; Connault, Elisabeth; Le Coz, Emmanuelle; Mekid, Halima; Mir, Lluis M.; Opolon, Paule; Corvol, Pierre; Monnot, Catherine; Germain, Stephane
2006-01-01
Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness. PMID:17130448
Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.
Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M
2017-11-01
Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.
A transcriptome-based model of central memory CD4 T cell death in HIV infection.
Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique
2016-11-22
Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.
Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation.
Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-Chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y; Serody, Jonathan S; Chen, Xian; Xu, Xiaojiang; Wade, Paul A; Cook, Donald N; Ting, Jenny P Y; Wan, Yisong Y
2017-11-02
T helper 17 (T H 17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor β (TGFβ) is instrumental in T H 17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFβ enables T H 17 cell differentiation remains elusive. Here we reveal that TGFβ enables T H 17 cell differentiation by reversing SKI-SMAD4-mediated suppression of the expression of the retinoic acid receptor (RAR)-related orphan receptor γt (RORγt). We found that, unlike wild-type T cells, SMAD4-deficient T cells differentiate into T H 17 cells in the absence of TGFβ signalling in a RORγt-dependent manner. Ectopic SMAD4 expression suppresses RORγt expression and T H 17 cell differentiation of SMAD4-deficient T cells. However, TGFβ neutralizes SMAD4-mediated suppression without affecting SMAD4 binding to the Rorc locus. Proteomic analysis revealed that SMAD4 interacts with SKI, a transcriptional repressor that is degraded upon TGFβ stimulation. SKI controls histone acetylation and deacetylation of the Rorc locus and T H 17 cell differentiation via SMAD4: ectopic SKI expression inhibits H3K9 acetylation of the Rorc locus, Rorc expression, and T H 17 cell differentiation in a SMAD4-dependent manner. Therefore, TGFβ-induced disruption of SKI reverses SKI-SMAD4-mediated suppression of RORγt to enable T H 17 cell differentiation. This study reveals a critical mechanism by which TGFβ controls T H 17 cell differentiation and uncovers the SKI-SMAD4 axis as a potential therapeutic target for treating T H 17-related diseases.
Yu, Qiu-Yun; Zhou, Xin-Feng; Xia, Qing; Shen, Jia; Yan, Jia; Zhu, Jiu-Ting; Li, Xiang; Shu, Ming
2018-01-01
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca-F and Hca-P cells. A CLIC4-target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca-F and Hca-P cells. Quantitative real-time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide-induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca-F and Hca-P cells transfected by pSilencer-CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca-F and Hca-P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer-CLIC4 siRNA-2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca-F and Hca-P cells. The results demonstrated that siRNA-induced down-regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca-F and Hca-P cells. J. Cell. Biochem. 119: 659-668, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Li, Hao; Li, Songyan; Hu, Shidong; Zou, Guijun; Hu, Zilong; Wei, Huahua; Wang, Yufeng; Du, Xiaohui
2017-01-01
Objective To detect the frequencies of peripheral programmed death-1 + (PD-1 + ) lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in patients with gastric adenocarcinoma. Methods The study enrolled 29 patients with gastric adenocarcinoma and 29 age- and sex-matched healthy controls. Frequencies of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells were detected using flow cytometry. Results The number of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood was higher in patients with gastric adenocarcinoma than that in the control group. Moreover, linear correlation analysis indicated a positive correlation between PD-1 expression and frequency of CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood of the patients. Conclusion Gastric adenocarcinoma patients present with increased PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in the peripheral blood.
Microprocessor controlled advanced battery management systems
NASA Technical Reports Server (NTRS)
Payne, W. T.
1978-01-01
The advanced battery management system described uses the capabilities of an on-board microprocessor to: (1) monitor the state of the battery on a cell by cell basis; (2) compute the state of charge of each cell; (3) protect each cell from reversal; (4) prevent overcharge on each individual cell; and (5) control dual rate reconditioning to zero volts per cell.
Kershaw, Stephen; Cummings, Jeffrey; Morris, Karen; Tugwood, Jonathan; Dive, Caroline
2015-05-10
The monocarboxylate transporter-1 (MCT1) represents a novel target in rational anticancer drug design while AZD3965 was developed as an inhibitor of this transporter and is undergoing Phase I clinical trials ( http://www.clinicaltrials.gov/show/NCT01791595 ). We describe the optimisation of an immunofluorescence (IF) method for determination of MCT1 and MCT4 in circulating tumour cells (CTC) as potential prognostic and predictive biomarkers of AZD3965 in cancer patients. Antibody selectivity was investigated by western blotting (WB) in K562 and MDAMB231 cell lines acting as positive controls for MCT1 and MCT4 respectively and by flow cytometry also employing the control cell lines. Ability to detect MCT1 and MCT4 in CTC as a 4(th) channel marker utilising the Veridex™ CellSearch system was conducted in both human volunteer blood spiked with control cells and in samples collected from small cell lung cancer (SCLC) patients. Experimental conditions were established which yielded a 10-fold dynamic range (DR) for detection of MCT1 over MCT4 (antibody concentration 6.25 μg/mL; integration time 0.4 seconds) and a 5-fold DR of MCT4 over MCT 1 (8 μg/100 μL and 0.8 seconds). The IF method was sufficiently sensitive to detect both MCT1 and MCT4 in CTCs harvested from cancer patients. The first IF method has been developed and optimised for detection of MCT 1 and MCT4 in cancer patient CTC.
Characterisation of the immune response to type I collagen in scleroderma
Warrington, Kenneth J; Nair, Usha; Carbone, Laura D; Kang, Andrew H; Postlethwaite, Arnold E
2006-01-01
This study was conducted to examine the frequency, phenotype, and functional profile of T lymphocytes that proliferate in response to type I collagen (CI) in patients with scleroderma (SSc). Peripheral blood mononuclear cells (PBMCs) from SSc patients, healthy controls, and rheumatoid arthritis disease controls were labeled with carboxy-fluorescein diacetate, succinimidyl ester (CFSE), cultured with or without antigen (bovine CI) for 14 days, and analysed by flow cytometry. Surface markers of proliferating cells were identified by multi-color flow cytometry. T-cell lines were derived after sorting for proliferating T cells (CFSElow). Cytokine expression in CI-responsive T cells was detected by intracellular staining/flow cytometry and by multiplex cytokine bead assay (Bio-Plex). A T-cell proliferative response to CI was detected in 8 of 25 (32%) SSc patients, but was infrequent in healthy or disease controls (3.6%; p = 0.009). The proliferating T cells expressed a CD4+, activated (CD25+), memory (CD45RO+) phenotype. Proliferation to CI did not correlate with disease duration or extent of skin involvement. T-cell lines were generated using in vitro CI stimulation to study the functional profile of these cells. Following activation of CI-reactive T cells, we detected intracellular interferon (IFN)-γ but not interleukin (IL)-4 by flow cytometry. Supernatants from the T-cell lines generated in vitro contained IL-2, IFN-γ, GM-CSF (granulocyte macrophage-colony-stimulating factor), and tumour necrosis factor-α, but little or no IL-4 and IL-10, suggesting that CI-responsive T cells express a predominantly Th1 cytokine pattern. In conclusion, circulating memory CD4 T cells that proliferate to CI are present in a subset of patients with SSc, but are infrequent in healthy or disease controls. PMID:16879746
Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis
Cobb, Dustin A.; Bhadra, Rajarshi
2016-01-01
CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131
Liu, Danya; Badell, I. Raul; Ford, Mandy L.
2018-01-01
Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling. PMID:29321374
Yazdani, Mohammadreza; Khosropanah, Shahdad; Hosseini, Ahmad; Doroudchi, Mehrnoosh
2016-12-01
Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries. CD4+ T cells are known to play a role in the progression of the disease. CD4+CD25+Foxp3+ natural Treg (nTreg) cells seem to have a protective role in the disease and their reduction in acute coronary syndrome is recently shown. To investigate the frequency of nTreg subsets in the peripheral blood of patients with atherosclerosis. Confirmation of atherosclerosis was done by angiography and 15 ml heparinized blood was obtained from each of the 13 non-diabetic patients and 13 non-diabetic, non-smoker individuals with normal/insignificant coronary artery disease confirmed by angiography. Lipid profiles of the patients and controls were measured at the time of sampling. Mononuclear cells were used for both RNA extraction and immunophenotyping by real-time PCR and flowcytometry techniques, respectively. In natural Treg subsets, the frequency of CD4+CD45RO-CD25+Foxp3lo T-cells (resting nTregs) was greater in controls than patients (p=0.02). The frequency of CD4+CD45RO+CD25hiFoxp3hi T-cells (activated nTregs) was significantly higher in controls compared with patients (p=0.02). However, the frequency of CD4+CD25+CD45RO+Foxp3- T-cells (effector/memory T-cell) increased in patients compared with controls (p=0.01). Both the MFI and gene expression of Foxp3 were higher in control group than in patients (p=0.015 and p=0.017, respectively). Moreover, the TGF-β gene expression showed a decrease in the peripheral blood mononuclear cells of patients compared with controls (p=0.03). Decrease in both subsets of resting and activated nTregs along with a decrease in the expression of Foxp3 and TGF-β genes in patients with atherosclerosis suggests phenotypic changes in these subsets, which may as well be correlated with a more inflammatory profile in their lymphocytes.
Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis
Hawkins, Charlene; Shaginurova, Guzel; Shelton, D. Auriel; Herazo-Maya, Jose D.; Oswald-Richter, Kyra A.; Young, Anjuli; Celada, Lindsay J.; Kaminski, Naftali; Sevin, Carla
2017-01-01
Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p < 0.05), enhanced apoptosis (p < 0.01), and increased PD-1 expression (p < 0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p < 0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p < 0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion. PMID:29234685
Hwang, S-K; Jin, H; Kwon, J T; Chang, S-H; Kim, T H; Cho, C-S; Lee, K H; Young, M R; Colburn, N H; Beck, G R; Yang, H-S; Cho, M-H
2007-09-01
The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.
Fischer, Anika; Zundler, Sebastian; Atreya, Raja; Rath, Timo; Voskens, Caroline; Hirschmann, Simon; López-Posadas, Rocío; Watson, Alastair; Becker, Christoph; Schuler, Gerold; Neufert, Clemens; Atreya, Imke; Neurath, Markus F
2016-10-01
Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in IBDs. We aimed to analyse the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4β7 and G protein receptor GPR15. We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanised mouse model in dextran sodium sulfate-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Expression of GPR15 and α4β7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with UC as compared with Crohn's disease and controls. In vivo analysis in a humanised mouse model showed augmented gut homing of UC Treg cells as compared with controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4β7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. α4β7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff cell homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic Teff cell expansion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence
2018-05-01
Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.
Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability.
Moon, Young Jae; Yun, Chi-Young; Choi, Hwajung; Ka, Sun-O; Kim, Jung Ryul; Park, Byung-Hyun; Cho, Eui-Sic
2016-09-02
Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4Δ(Os) mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4Δ(Os) mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5'-bromo-2'deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4Δ(Os) mice. Apoptosis in isolated calvaria cells from Smad4Δ(Os) mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4Δ(Os) mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4Δ(Os) mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.
Liu, Ming; Chen, Yumei; Song, Guixian; Chen, Bin; Wang, Lihua; Li, Xing; Kong, Xiangqing; Shen, Yahui; Qian, Lingmei
2016-01-15
Compared to healthy controls, microRNA-29c (miR-29c) is highly expressed in the heart during progression towards ventricular septal defect. However, studies on miR-29c function in heart development are scarce. We investigated the role of miR-29c in P19 cell proliferation, apoptosis, and differentiation and the underlying mechanisms. We evaluated proliferation and cell cycle progression, detected morphological changes; apoptosis rate; BAX, BCL2, GATA binding protein 4 (GATA4), cardiac troponin T (cTnT), and myocyte enhancer factor 2C (MEF2C) expression; and caspase-3, -8, and -9 activity in miR-29c-overexpressing P19 cells, and investigated whether WNT4 was a miR-29c target. MiR-29c-overexpressing cells had decreased proliferation, increased G1 cells, and significantly higher apoptotic rate than the controls. Expression of the apoptosis-related BAX and BCL2 genes and caspase-3, -8, and -9 activity were significantly increased in miR-29c-overexpressing cells. Expression of the cardiac-specific markers GATA4, cTnT, and MEF2C revealed promoted differentiation in miR-29c-overexpressing cells compared to the controls. Luciferase assay confirmed that WNT4 is a miR-29c target. Wnt4 and β-catenin expression was decreased in miR-29c-overexpressing cells. MiR-29c inhibits P19 cell proliferation and promotes apoptosis and differentiation, possibly by suppressing Wnt4 signaling, whose deregulation contributes to congenital heart disease development. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.
Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng
2017-01-21
To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP + CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP + CD4 + T cells and TNM stage ( P < 0.001), distant metastasis ( P < 0.001) and serum level of carcinoembryonic antigen ( P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P < 0.01). LAP + CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.
Pérez-Antón, Elena; Egui, Adriana; Thomas, M Carmen; Puerta, Concepción J; González, John Mario; Cuéllar, Adriana; Segovia, Manuel; López, Manuel Carlos
2018-05-11
Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells.
Pérez-Antón, Elena; Egui, Adriana; Thomas, M. Carmen; Puerta, Concepción J.; González, John Mario; Cuéllar, Adriana; Segovia, Manuel
2018-01-01
Background Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Methodology Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. Principal findings The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. Conclusions CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells. PMID:29750791
MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.
Rodo, Joana; Gonçalves, Lígia A; Demengeot, Jocelyne; Coutinho, António; Penha-Gonçalves, Carlos
2006-10-01
LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.
Depletion of CD4⁺ T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques.
Ortiz, Alexandra M; Klatt, Nichole R; Li, Bing; Yi, Yanjie; Tabb, Brian; Hao, Xing Pei; Sternberg, Lawrence; Lawson, Benton; Carnathan, Paul M; Cramer, Elizabeth M; Engram, Jessica C; Little, Dawn M; Ryzhova, Elena; Gonzalez-Scarano, Francisco; Paiardini, Mirko; Ansari, Aftab A; Ratcliffe, Sarah; Else, James G; Brenchley, Jason M; Collman, Ronald G; Estes, Jacob D; Derdeyn, Cynthia A; Silvestri, Guido
2011-11-01
CD4+ T cells play a central role in the immunopathogenesis of HIV/AIDS, and their depletion during chronic HIV infection is a hallmark of disease progression. However, the relative contribution of CD4+ T cells as mediators of antiviral immune responses and targets for virus replication is still unclear. Here, we have generated data in SIV-infected rhesus macaques (RMs) that suggest that CD4+ T cells are essential in establishing control of virus replication during acute infection. To directly assess the role of CD4+ T cells during primary SIV infection, we in vivo depleted these cells from RMs prior to infecting the primates with a pathogenic strain of SIV. Compared with undepleted animals, CD4+ lymphocyte-depleted RMs showed a similar peak of viremia, but did not manifest any post-peak decline of virus replication despite CD8+ T cell- and B cell-mediated SIV-specific immune responses comparable to those observed in control animals. Interestingly, depleted animals displayed rapid disease progression, which was associated with increased virus replication in non-T cells as well as the emergence of CD4-independent SIV-envelopes. Our results suggest that the antiviral CD4+ T cell response may play an important role in limiting SIV replication, which has implications for the design of HIV vaccines.
Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng
2015-01-01
Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.
Ziegler, Thomas R; Judd, Suzanne E; Ruff, Joshua H; McComsey, Grace A; Eckard, Allison Ross
2017-07-01
Amino acids play critical roles in metabolism, cell function, body composition and immunity, but little data on plasma amino acid concentrations in HIV are available. We evaluated plasma amino acid concentrations and associations with CD4 counts and inflammatory biomarkers in HIV-infected youth. HIV-infected subjects with a high (≥500 cells/mm 3 ) and low (<500 cells/mm 3 ) current CD4 + T cell counts were compared to one another and to a matched healthy control group. Plasma concentrations of 19 amino acids were determined with an amino acid analyzer. Plasma levels of interleukin-6, tumor necrosis factor receptor-I, and soluble vascular cellular adhesion molecule-I were also measured. Seventy-nine HIV-infected subjects (40 and 39 with high and low CD4 + T cell counts, respectively) and 40 controls were included. There were no differences in amino acid concentrations between HIV-infected subjects with high or low CD4 + T cell counts. When combined, the HIV-infected group exhibited significantly lower median plasma concentrations compared to controls for total, essential, branched-chain and sulfur amino acids, as well as for 12 individual amino acids. Glutamate was the only amino acid that was higher in the HIV-infected group. There were no significant correlations between amino acid endpoints and inflammatory biomarkers for either HIV-infected group or controls. Plasma amino acid concentrations were lower in HIV-infected youth compared to healthy controls, regardless of immune status, while glutamate concentrations were elevated. These findings can inform future interventional studies designed to improve metabolic and clinical parameters influenced by amino acid nutriture.
Klatt, Nichole R.; Villinger, Francois; Bostik, Pavel; Gordon, Shari N.; Pereira, Lara; Engram, Jessica C.; Mayne, Ann; Dunham, Richard M.; Lawson, Benton; Ratcliffe, Sarah J.; Sodora, Donald L.; Else, James; Reimann, Keith; Staprans, Silvija I.; Haase, Ashley T.; Estes, Jacob D.; Silvestri, Guido; Ansari, Aftab A.
2008-01-01
Naturally SIV-infected sooty mangabeys (SMs) remain asymptomatic despite high virus replication. Elucidating the mechanisms underlying AIDS resistance of SIV-infected SMs may provide crucial information to better understand AIDS pathogenesis. In this study, we assessed the determinants of set-point viremia in naturally SIV-infected SMs, i.e., immune control of SIV replication versus target cell limitation. We depleted CD4+ T cells in 6 naturally SIV-infected SMs by treating with humanized anti-CD4 mAb (Cdr-OKT4A-huIgG1). CD4+ T cells were depleted almost completely in blood and BM and at variable levels in mucosal tissues and LNs. No marked depletion of CD14+ monocytes was observed. Importantly, CD4+ T cell depletion was associated with a rapid, significant decline in viral load, which returned to baseline level at day 30–45, coincident with an increased fraction of proliferating and activated CD4+ T cells. Throughout the study, virus replication correlated with the level of proliferating CD4+ T cells. CD4+ T cell depletion did not induce any changes in the fraction of Tregs or the level of SIV-specific CD8+ T cells. Our results suggest that the availability of activated CD4+ T cells, rather than immune control of SIV replication, is the main determinant of set-point viral load during natural SIV infection of SMs. PMID:18497876
Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients
McDonald, Georgia; Deepak, Shantal; Miguel, Laura; Hall, Cleo J.; Isenberg, David A.; Magee, Anthony I.; Butters, Terry; Jury, Elizabeth C.
2014-01-01
Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft–associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE. PMID:24463447
Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients.
McDonald, Georgia; Deepak, Shantal; Miguel, Laura; Hall, Cleo J; Isenberg, David A; Magee, Anthony I; Butters, Terry; Jury, Elizabeth C
2014-02-01
Patients with the autoimmune rheumatic disease systemic lupus erythematosus (SLE) have multiple defects in lymphocyte signaling and function that contribute to disease pathogenesis. Such defects could be attributed to alterations in metabolic processes, including abnormal control of lipid biosynthesis pathways. Here, we reveal that CD4+ T cells from SLE patients displayed an altered profile of lipid raft-associated glycosphingolipids (GSLs) compared with that of healthy controls. In particular, lactosylceramide, globotriaosylceramide (Gb3), and monosialotetrahexosylganglioside (GM1) levels were markedly increased. Elevated GSLs in SLE patients were associated with increased expression of liver X receptor β (LXRβ), a nuclear receptor that controls cellular lipid metabolism and trafficking and influences acquired immune responses. Stimulation of CD4+ T cells isolated from healthy donors with synthetic and endogenous LXR agonists promoted GSL expression, which was blocked by an LXR antagonist. Increased GSL expression in CD4+ T cells was associated with intracellular accumulation and accelerated trafficking of GSL, reminiscent of cells from patients with glycolipid storage diseases. Inhibition of GSL biosynthesis in vitro with a clinically approved inhibitor (N-butyldeoxynojirimycin) normalized GSL metabolism, corrected CD4+ T cell signaling and functional defects, and decreased anti-dsDNA antibody production by autologous B cells in SLE patients. Our data demonstrate that lipid metabolism defects contribute to SLE pathogenesis and suggest that targeting GSL biosynthesis restores T cell function in SLE.
Proliferation of protease-enriched mast cells in sarcoptic skin lesions of raccoon dogs.
Noviana, D; W Harjanti, D; Otsuka, Y; Horii, Y
2004-07-01
Skin sites, tongue, lung, liver, jejunum and rectum from two raccoon dogs with Sarcoptes scabiei infestation and five normal (control) raccoon dogs were examined in terms of the distribution, proteoglycan properties and protease activity of mast cells. Infestation with S. scabiei caused a significant increase in the number of dermal mast cells. While the number of mast cells (average +/- standard deviation) in specimens of skin from the dorsum, dorsal neck, dorsal hind foot and dorsal fore foot was 40.0 +/- 19.8/mm2 in control animals, it was 236.1 +/- 58.9/mm2 in the skin of mange-infested animals. Histochemical analysis revealed the glycosaminoglycan, heparin, within the mast cells of all organs examined in both control and affected animals. Enzyme-histochemical detection of serine proteases demonstrated an increase in mast-cell-specific protease activity (i.e., chymase and tryptase) in the skin of infested animals. The percentage of mast cells demonstrating chymase activity was 53.0 +/- 27.4% in control animals and 73.8 +/- 19.4% in mite-infested animals. The corresponding results for tryptase activity were 53.5 +/- 25.2% and 89.4 +/- 9.8%. Increases in mast cell chymase or tryptase activity, or both, were also observed within other organs of the infected animals, but the total number of mast cells found at such sites (with the exception of liver and ventrolateral pinna) did not differ from those of control animals. Copyright 2004 Elsevier Ltd.
Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho
2016-02-28
A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.
Alexander, James; Brombacher, Frank
2012-01-01
Work in large part on Leishmania major in the 1980s identified two distinct apparently counter-regulatory CD4+ T cell populations, T helper (h)1 and Th2, that controlled resistance/susceptibility to infection respectively. However, the generation of IL-4−/− mice in the 1990s questioned the paramount role of this Th2 archetypal cytokine in the non-healing response to Leishmania infection. The more recent characterization of CD4+ T cell regulatory populations and further effector CD4+ T helper populations, Th17, Th9, and T follicular (f)h cells as well as the acknowledged plasticity in T helper cell function has further added to the complexity of host pathogen interactions. These interactions are complicated by the multiplicity of cells that respond to CD4+ T cell subset signatory cytokines, as well as the diversity of Leishmania species that are often subject to significantly different immune-regulatory controls. In this article we review current knowledge with regard to the role of CD4+ T cells and their products during Leishmania infection. In particular we update on our studies using conditional IL-4Rα gene-deficient mice that have allowed dissection of the cell interplay dictating the disease outcomes of the major Leishmania species infecting humans. PMID:22566961
Cole, John J.; Nelson, David M.; Dikovskaya, Dina; Faller, William J.; Vizioli, Maria Grazia; Hewitt, Rachael N.; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A.; Ivanov, Andre; Brock, Claire; Drotar, Mark E.; Nixon, Colin; Clark, William; Sansom, Owen J.; Anderson, Kurt I.; King, Ayala; Blyth, Karen
2014-01-01
Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. PMID:25512559
Rai, Taranjit Singh; Cole, John J; Nelson, David M; Dikovskaya, Dina; Faller, William J; Vizioli, Maria Grazia; Hewitt, Rachael N; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A; Ivanov, Andre; Brock, Claire; Drotar, Mark E; Nixon, Colin; Clark, William; Sansom, Owen J; Anderson, Kurt I; King, Ayala; Blyth, Karen; Adams, Peter D
2014-12-15
Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. © 2014 Rai et al.; Published by Cold Spring Harbor Laboratory Press.
Zahran, Asmaa M; Saad, Khaled; Elsayh, Khalid I; Alblihed, Mohamd A
2017-03-01
Infectious complications represent the second most common cause of mortality and a major cause of morbidity in β-thalassemia major (BTM), with a prevalence of 12-13%. The data on unconventional T-lymphocyte subsets in BTM children are limited. The aim of the present study was to investigate and evaluate phenotypic alterations in CD4 + CD8 + double positive (DP), CD4 - CD8 - double negative (DN), and natural killer T-lymphocytes (NKT) in BTM children in comparison to healthy controls. Our case control study included 80 children with BTM and 40 healthy children as controls. Assessment of unconventional T-lymphocyte populations was done using sensitive four-color flow cytometry (FACSCalibur). Our analysis of the data showed a significantly higher frequency CD4 + CD8 + (double-positive) T cells, CD4 - CD8 - (double negative) T cells, and natural killer T cells in the peripheral blood of both BTM groups (splenectomized and non-splenectomized) as compared to healthy controls, suggesting that these cells may play a role in the clinical course of BTM. The relationship of the unconventional T-lymphocytes to immune disorders in BTM children remains to be determined. Further longitudinal study with a larger sample size is warranted to elucidate the role these cells in BTM. TRIAL NUMBER: UMIN000018950.
Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.
Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L
2014-04-15
Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients. ©2014 AACR.
Downregulation of ILT4+ dendritic cells in recurrent miscarriage and recurrent implantation failure.
Liu, Su; Wei, Hongxia; Li, Yuye; Huang, Chunyu; Lian, Ruochun; Xu, Jian; Chen, Lanna; Zeng, Yong
2018-06-14
The role of ILT4 + DCs in healthy fertile controls and patients with recurrent miscarriages (RM) and recurrent implantation failure (RIF) is unclear. We studied the expression of ILT4 from peripheral blood and endometrial samples from healthy controls and patients with RM and RIF by flow cytometry and immunohistochemistry analysis. Endometrial Foxp3 expression was also investigated using immunohistochemistry. In peripheral blood, there was a significant increase in the percentage of ILT4 + DCs in healthy fertile controls compared with patients with RM and RIF. The presence of ILT4 + DC is even more prominent in the endometrium of healthy fertile controls compared with patients with RM and RIF. Moreover, there was a strong correlation between the number of ILT4 + cells and Foxp3 + Tregs in healthy fertile controls, but not in patients with RM and RIF. Our data indicate that ILT4 + DCs play an important role in the maintenance of immune tolerance during pregnancy, probably through the induction of Foxp3 + Treg cells, a process which is impaired in RM and RIF. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Imahashi, Nobuhiko; Nishida, Tetsuya; Goto, Tatsunori; Terakura, Seitaro; Watanabe, Keisuke; Hanajiri, Ryo; Sakemura, Reona; Imai, Misa; Kiyoi, Hitoshi; Naoe, Tomoki; Murata, Makoto
2015-01-01
Although recent studies of virus-specific T-cell (VST) therapy for viral infections after allogeneic hematopoietic stem cell transplantation have shown promising results, simple and less time-intensive and labor-intensive methods are required to generate VSTs for the wider application of VST therapy. We investigated the efficacy of anti-CD28 and anti-4-1BB antibodies, which can provide T cells with costimulatory signals similar in strength to those of antigen-presenting cells, in generating VSTs. When peripheral blood mononuclear cells were stimulated with viral peptides together with isotype control, anti-CD28, or anti-4-1BB antibodies, anti-4-1BB antibodies yielded the highest numbers of VSTs, which were on an average 7.9 times higher than those generated with isotype control antibody. The combination of anti-CD28 and anti-4-1BB antibodies did not result in increased numbers of VSTs compared with anti-4-1BB antibody alone. Importantly, the positive effect of anti-4-1BB antibody was observed regardless of the epitopes of the VSTs. In contrast, the capacity of dendritic cells (DCs) to generate VSTs differed considerably depending on the epitopes of the VSTs. Furthermore, the numbers of VSTs generated with DCs were at most similar to those generated with the anti-4-1BB antibody. Generation of VSTs with anti-4-1BB antibody did not result in excessive differentiation or deteriorated function of the generated VSTs compared with those generated with control antibody or DCs. In conclusion, VSTs can be generated rapidly and efficiently by simply stimulating peripheral blood mononuclear cells with viral peptide and anti-4-1BB antibody without using antigen-presenting cells. We propose using anti-4-1BB antibody as a novel strategy to generate VSTs for adoptive therapy.
Yong, Yean K; Saeidi, Alireza; Tan, Hong Y; Rosmawati, Mohamed; Enström, Philip F; Batran, Rami Al; Vasuki, V; Chattopadhyay, Indranil; Murugesan, Amudhan; Vignesh, Ramachandran; Kamarulzaman, Adeeba; Rajarajeswaran, Jayakumar; Ansari, Abdul W; Vadivelu, Jamuna; Ussher, James E; Velu, Vijayakumar; Larsson, Marie; Shankar, Esaki M
2018-01-01
Mucosal-associated invariant T (MAIT) cells, defined as CD161 ++ TCR iVα7.2 + T cells, play an important role in the innate defense against bacterial infections, and their functionality is impaired in chronic viral infections. Here, we investigated the frequency and functional role of MAIT cells in chronic hepatitis B virus (HBV) infection. The peripheral CD3 + CD161 ++ TCR iVα7.2 + MAIT cells in chronic HBV-infected patients and healthy controls were phenotypically characterized based on CD57, PD-1, TIM-3, and CTLA-4, as well as HLA-DR and CD38 expression. The frequency of MAIT cells was significantly decreased among chronic HBV-infected individuals as compared to controls. Expression of CD57, PD-1, CTLA-4, as well as HLA-DR and CD38 on MAIT cells was significantly elevated in chronic HBV-infected individuals relative to controls. The percentage of T cell receptor (TCR) iVα7.2 + CD161 + MAIT cells did not correlate with HBV viral load but inversely with HLA-DR on CD4 + T cells and MAIT cells and with CD57 on CD8 + T cells suggesting that decrease of MAIT cells may not be attributed to direct infection by HBV but driven by HBV-induced chronic immune activation. The percentage and expression levels of PD-1 as well as CTLA-4 on MAIT cells inversely correlated with plasma HBV-DNA levels, which may suggest either a role for MAIT cells in the control of HBV infection or the effect of HBV replication in the liver on MAIT cell phenotype. We report that decrease of TCR iVα7.2 + MAIT cells in the peripheral blood and their functions were seemingly impaired in chronic HBV-infected patients likely because of the increased expression of PD-1.
Yamawaki, Kazuo; Inuo, Chisato; Nomura, Takayasu; Tanaka, Kenichi; Nakajima, Yoichi; Kondo, Yasuto; Yoshikawa, Tetsushi; Urisu, Atsuo; Tsuge, Ikuya
2015-12-01
Allergen-specific T-helper type 2 (TH2) cells play an important role in the development of allergic inflammation; however, investigations of the properties of allergen-specific T cells have been challenging in humans. Despite clear evidence that forkhead box p3 (Foxp3) is expressed in conventional effector T cells, its function has remained unknown. To characterize allergen-specific TH2 cells in milk allergy, with particular focus on the expression of Foxp3. Twenty-one children with milk allergy and 11 children without milk allergy were studied. Peripheral blood mononuclear cells from subjects were stimulated with milk allergen for 6 hours and analyzed using multicolor flow cytometry to identify CD154(+) allergen-specific T-helper cells. Simultaneously, the expression of intracellular cytokines and Foxp3 was analyzed. The milk allergy group had significantly larger numbers of milk allergen-specific interleukin (IL)-4- and IL-5-producing CD4(+) T cells than the control group. Subjects in the milk allergy group had significantly more CD154(+)CD4(+) IL-10-producing cells and CD154(+)Foxp3(+)CD4(+) cells than those in the control group. In addition, the number of milk allergen-specific CD154(+)Foxp3(+)CD4(+) cells strongly correlated with that of CD154(+)IL4(+)CD4(+) cells. Bcl-2 expression in CD154(+)IL-4(+)Foxp3(+) T-helper cells was significantly lower compared with that in total CD4 cells. Increased numbers of IL-4-producing allergen-specific T-helper cells were found in patients with milk allergy. In addition, Foxp3 was coexpressed with IL-4 in allergen-specific TH2 cells from patients. This coexpression was associated with lower Bcl-2 levels and could contribute to the phenotype and function of TH2 cells. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection
Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.
2011-01-01
Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630
Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B
2017-08-15
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Adenosine Triphosphate Regresses Endometrial Explants in a Rat Model of Endometriosis.
Zhang, Chen; Gao, Li; Yi, Yanhong; Han, Hongjing; Cheng, Hongyan; Ye, Xue; Ma, Ruiqiong; Sun, Kunkun; Cui, Heng; Chang, Xiaohong
2016-07-01
The aim of this study was to determine the effects of adenosine triphosphate (ATP) in a rat endometriosis model. After surgical induction of endometriosis, 3 rats were killed, and explants were measured in the remaining 19 rats, which were then randomly assigned to 4 groups. Group 1 (n = 4) received normal saline (2 mL/d intragastric [IG]), group 2 (n = 4) gestrinone (0.5 mg/kg/d IG), group 3 (n = 5) ATP (3.4 mg/kg/d IG), and group 4 (n = 6) ATP (1.0 mg/kg/d; intramuscularly), respectively. Four weeks after medication, they were euthanized to evaluate histological features of explants and eutopic uterine tissues. To test the effect of ATP on the growth of eutopic endometrium stromal cells, proliferation rates of hEM15A cells at 24, 48, and 72 hours after treatment with different concentrations of ATP and vehicle control were detected with the Cell Counting Kit-8 (CCK-8) method. There was a significant difference between pretreatment and posttreatment volumes within group 2 (positive control; P = .048) and group 4 (P = .044). On condition that pretreatment implant size was similar in both groups (P = .516), regression of explants in group 4 was significantly higher than that in group 1 (negative control; P = .035). Epithelial cells were significantly better preserved in group 1 than in group 3 (P = .008) and group 4 (P = .037). The CCK-8 assay showed no significant difference in proliferation among hEM15A cells treated with ATP and controls. These results suggest that ATP regresses endometriotic tissues in a rat endometriosis model but has no impact on the growth of eutopic endometrium stromal cells. © The Author(s) 2016.
Collaboration between tumor-specific CD4+ T cells and B cells in anti-cancer immunity.
Guy, Thomas V; Terry, Alexandra M; Bolton, Holly A; Hancock, David G; Zhu, Erhua; Brink, Robert; McGuire, Helen M; Shklovskaya, Elena; Fazekas de St. Groth, Barbara
2016-05-24
The role of B cells and antibodies in anti-tumor immunity is controversial, with both positive and negative effects reported in animal models and clinical studies. We developed a murine B16.F10 melanoma model to study the effects of collaboration between tumor-specific CD4+ T cells and B cells on tumor control. By incorporating T cell receptor transgenic T cells and B cell receptor isotype switching B cells, we were able to track the responses of tumor-reactive T and B cells and the development of anti-tumor antibodies in vivo. In the presence of tumor-specific B cells, the number of tumor-reactive CD4+ T cells was reduced in lymphoid tissues and the tumor itself, and this correlated with poor tumor control. B cells had little effect on the Th1 bias of the CD4+ T cell response, and the number of induced FoxP3+ regulatory cells (iTregs) generated from within the original naive CD4+ T cell inoculum was unrelated to the degree of B cell expansion. In response to CD4+ T cell help, B cells produced a range of isotype-switched anti-tumor antibodies, principally IgG1, IgG2a/c and IgG2b. In the absence of CD4+ T cells, B cells responded to agonistic anti-CD40 administration by switching to production of IgG2a/c and, to a lesser extent, IgG1, IgG3, IgA and IgE, which reduced the number of lung metastases after i.v. tumor inoculation but had no effect on the growth of subcutaneous tumors.
Braun, Stephen E.; Taube, Ran; Zhu, Quan; Wong, Fay Eng; Murakami, Akikazu; Kamau, Erick; Dwyer, Markryan; Qiu, Gang; Daigle, Janet; Carville, Angela; Johnson, R. Paul
2012-01-01
Abstract We evaluated the potential of an anti–human immunodeficiency virus (HIV) Tat intrabody (intracellular antibody) to promote the survival of CD4+ cells after chimeric simian immunodeficiency virus (SIV)/HIV (SHIV) infection in rhesus macaques. Following optimization of stimulation and transduction conditions, purified CD4+ T cells were transduced with GaLV-pseudotyped retroviral vectors expressing either an anti-HIV-1 Tat or a control single-chain intrabody. Ex vivo intrabody-gene marking was highly efficient, averaging four copies per CD4+ cell. Upon reinfusion of engineered autologous CD4+ cells into two macaques, high levels of gene marking (peak of 0.6% and 6.8% of peripheral blood mononuclear cells (PBMCs) and 0.3% or 2.2% of the lymph node cells) were detected in vivo. One week post cell infusion, animals were challenged with SHIV 89.6p and the ability of the anti-HIV Tat intrabody to promote cell survival was evaluated. The frequency of genetically modified CD4+ T cells progressively decreased, concurrent with loss of CD4+ cells and elevated viral loads in both animals. However, CD4+ T cells expressing the therapeutic anti-Tat intrabody exhibited a relative survival advantage over an 8- and 21-week period compared with CD4+ cells expressing a control intrabody. In one animal, this survival benefit of anti-Tat transduced cells was associated with a reduction in viral load. Overall, these results indicate that a retrovirus-mediated anti-Tat intrabody provided significant levels of gene marking in PBMCs and peripheral tissues and increased relative survival of transduced cells in vivo. PMID:22734618
Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H; García, Felipe; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L; Mounzer, Karam; Swindells, Susan; Baxter, John D; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François
2016-02-01
The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.
2010-01-01
Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis. PMID:20799941
A Co-Receptor Independent Transgenic Human TCR Mediates Anti-Tumor and Anti-Self Immunity in Mice
Mehrotra, Shikhar; Al-Khami, Amir A.; Klarquist, Jared; Husain, Shahid; Naga, Osama; Eby, Jonathan M.; Murali, Anuradha K.; Lyons, Gretchen E.; Li, Mingli; Spivey, Natali D.; Norell, Håkan; Martins da Palma, Telma; Onicescu, Georgiana; Diaz-Montero, C. Marcela; Garrett-Mayer, Elizabeth; Cole, David J.; Le Poole, I. Caroline; Nishimura, Michael I.
2013-01-01
Recent advancements in T cell immunotherapy suggest that T cells engineered with high affinity T cell receptors (TCR) can offer better tumor regression. However, whether a high affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope reactive, CD8 independent, high affinity TCR isolated from MHC class-I restricted CD4+ T cells obtained from tumor infiltrating lymphocytes of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2 restricted TCR was positively selected on both CD4+ and CD8+ single-positive (SP) cells. However, when the TCR transgenic mouse was developed with an HLA-A2 background, the transgenic TCR was primarily expressed by CD3+CD4-CD8- double-negative (DN) T cells. TIL 1383I TCR transgenic CD4+, CD8+ and CD4-CD8- T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2+/human tyrosinase TCR double transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high affinity TIL 1383I TCR alone in CD3+ T cells is sufficient to control the growth of murine and human melanoma and the presence or absence of CD4 and CD8 co-receptors had little effect on its functional capacity. PMID:22798675
Abdallah, Khaled Omar; Saleh, Rasha Mamdouh; Al-Shawarby, Laila Abd Al-Aala; Amer, Hanaa Ahmed; Mostafa, Sara
2014-01-01
Bone marrow harbors a population of tissue-committed stem cells that are CD34+/CXCR4+. These potential cardiac progenitors which express cardiac and endothelial markers may contribute to cardiac regeneration. The ability of injured myocardium to recruit extracardiac stem cells after injury would be beneficial to aid in myocardial repair and regeneration. The aim of this study was to answer the question whether acute myocardial infarction (AMI) related stress may trigger the increase of CD34/CXCR4+ stem cells number in peripheral blood in response to myocardial ischemic injury which might be accompanied with increased release of this population of stem cells in peripheral blood as well as to correlate this phenomenon with other clinical and laboratory parameters such as diabetes, chest pain, smoking, streptokinase administration and elevated cardiac enzymes. The study was conducted on 25 newly diagnosed AMI patients who attended the emergency department of National Heart Institute. They were compared to a control group of 25 apparently healthy sex and age matched individuals. The percentage of CD34+ cells as well as percentage of cells coexpressing CD34/CXCR4+ and their expression intensity were assessed by Flowcytometery. These parameters were correlated to other laboratory and clinical data. The absolute CD34+ as well as the CD34/CXCR4+ cell counts were significantly higher in patients upon admission in comparison to control group (P < 0.01). While CD34 expression was significantly higher in patients compared to control group, CXCR4 expression on CD34+ cells was significantly lower in patients than control group (P < 0.05). Diabetes, duration of chest pain and streptokinase administration had no significant effect on CD34/CXCR4+ number or the expression intensity of both markers (p > 0.05). Otherwise, CXCR4 intensity was lower in non-smoker than smoker patients (P < 0.05). Patients admitted with normal cardiac enzymes, including Creatine Kinase (CK) and Creatine Kinase MB fraction (CK-MB) activity, showed no significant difference in CD34/CXCR4+ number or the expression intensity of CD34 marker in comparison to those admitted with high levels of enzymes (P > 0.05). However, the expression intensity of CXCR4 was significantly low in patients admitted with elevated cardiac enzymes (P < 0.05). In conclusion, there is a pool of CD34/CXCR4+ stem cells circulating in large number in peripheral blood of AMI patients post infarction together with low CXCR4 expression on these cells which are likely to contribute to myocardial repair following the acute ischemic injury.
Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan
2013-08-09
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.
Nardo-Marino, Amina; Williams, Thomas N; Olupot-Olupot, Peter
2017-01-01
There are a paucity of data on epistaxis as it pertains to sickle cell anaemia. Some case studies suggest epistaxis to be a significant complication in patients with sickle cell anaemia in sub-Saharan Africa; however, no robust studies have sought to establish the epidemiology or pathophysiology of this phenomenon. We conducted a case-control study with the aim of investigating the importance of epistaxis among children presenting with sickle cell anaemia at the Mbale Regional Referral Hospital in eastern Uganda. Cases were children aged 2-15 years with an existing diagnosis of laboratory confirmed sickle cell anaemia, while controls were children without sickle cell anaemia who were frequency matched to cases on the basis of age group and gender. The frequency and severity of epistaxis was assessed using a structured questionnaire developed specifically for this study. Odds ratios controlled for age group and gender were calculated using unconditional logistic regression. A total of 150 children were included, 73 children with sickle cell anaemia and 77 children without sickle cell anaemia. The overall prevalence of epistaxis among children with sickle cell anaemia and children without sickle cell anaemia was 32.9 and 23.4% respectively. The case-control odds ratios for epistaxis, recurrent epistaxis and severe epistaxis were, 1.6 (95%CI 0.8-3.4; p = 0.2), 7.4 (1.6-34.5; 0.01), and 8.3 (1.0-69.8; 0.05) respectively. Our results suggest that in eastern Uganda, children with sickle cell anaemia experience epistaxis more frequently and with greater severity than children without sickle cell anaemia. Further studies are indicated to confirm this conclusion and investigate aetiology.
[Cytocompatibility of collagen membranes with bladder transitional cells of rabbit in vitro].
Sun, Daodong; Song, Bo; Sun, Danning
2004-05-01
To evaluate the cytocompatibility of collagen membranes with transitional cells of rabbit in vitro and to discuss the possibility of the collagen membranes as urologic tissue engineering scaffolds. Primary cultured transitional cells isolated from New Zealand rabbits were implanted on collagen membranes at 1 x 10(5) cells/cm2. The changes of cell adhering were observed by inverted microscope and scanning electron microscope 2, 12 and 24 hours later. The experiment was divided into 4 groups: non-cell group (black control) culture medium group (negative control), extract medium from Polyvinyl chloride group(positive control) and extract medium from collagen membranes group(experimental group). The cells of generations 2 to 4 were implanted in 96-hole-plank at 1 x 10(4) cells every hole. And every group had 5 holes. Then absorption coefficient were detected at the wave length of 490 nm by MTT assay. Then the cytotoxicity and cytocompatibility were evaluated by comparison of the numbers of absorption coefficient. The bladder transitional cells began to adhere to the collagen membrane 2 hours after implanting, and the number of the adhered cells increased with time. The actual absorption coefficient of experimental groups was 0.590 +/- 0.024, 1.065 +/- 0.40 and 1.129 +/- 0.074 after 24, 72 and 120 hours. The actual absorption coefficient of negative control group was 0.639 +/- 0.068, 1.022 +/- 0.044 and 1.087 +/- 0.111. The actual absorption coefficient of positive control group was 0.302 +/- 0.029, 0.653 +/- 0.083 and 0.694 +/- 0.031. There was significant difference between the experimental group and positive control (P < 0.01), and no significant difference between the experimental group and negative control(P > 0.05). Collagen membrane has good cytocompatibility with transitional cells and no cytotoxicity. It can be used as scaffolds of urologic tissue engineering.
CD4+ T Lymphocytes count in sickle cell anaemia patients attending a tertiary hospital.
Ojo, Omotola Toyin; Shokunbi, Wuraola Adebola
2014-05-01
Sickle cell haemoglobin (HbS) is the commonest abnormal haemoglobin and it has a worldwide distribution. Reports have shown that patients with sickle cell anaemia (HbSS) have an increased susceptibility to infection leading to increased morbidity and mortality. Impaired leucocyte function and loss of both humoral and cell-mediated immunity are some of the mechanisms that have been reported to account for the immunocompromised state in patients with sickle cell disease. This study was carried out to determine the CD4+ T lymphocytes count in patients with sickle cell anaemia. A comparative cross-sectional study of 40 sickle cell anaemia patients in steady state (asymptomatic for at least 4 weeks) attending haematology clinic and 40 age and sex-matched healthy HbA control were recruited into the study. Both HbS patients and the controls were HIV negative. The blood samples obtained were analyzed for CD4+ T cell by Flow cytometry. The study found that there was no significant difference in the number of CD4+ T lymphocyte count between individuals with sickle cell anaemia and HbA (1016 ± 513 cells/μL vs 920 ± 364cells/μL). It is recommended that the functionality of CD4+ T lymphocyte should be considered rather than the number in further attempt to elucidate the cellular immune dysfunction in patients with sickle cell anaemia.
Alzahrani, Yahya; Colorado, Luisa H; Pritchard, Nicola; Efron, Nathan
2017-01-01
The aim was to determine longitudinal changes in Langerhans cell density (LCD) in the human cornea and conjunctiva during asymptomatic and symptomatic contact lens wear. Twenty-five participants with contact lens-induced dry eye (CLIDE) and 35 without CLIDE (NO-CLIDE), diagnosed using a range of symptom questionnaires and objective tests (tear film break up, cotton thread tear test and corneal staining) were enrolled. The central cornea and nasal bulbar conjunctiva were examined using a Heidelberg laser scanning confocal microscope at baseline and following one, four and 24 weeks wear of daily disposable hydrogel contact lenses. Twenty-three non-contact lens-wearing controls were also examined. Langerhans cells were counted manually from randomly selected images. In the cornea, mean and standard error of the mean LCD was greater after one week of lens wear in CLIDE (55 ± 7 cells/mm 2 ) versus NO-CLIDE (43 ± 4 cells/mm 2 ) (p = 0.041) and controls (27 ± 4 cells/mm 2 ) (p < 0.001). LCD was also greater in NO-CLIDE versus controls (p = 0.010). At week 4, LCD was greater in CLIDE (41 ± 6 cells/mm 2 ) versus controls (27 ± 4 cells/mm 2 ) (p = 0.004). There were no other significant differences between groups at weeks four or 24. In the conjunctiva, LCD was greater after one week of lens wear in CLIDE (17 ± 1 cells/mm 2 ) (p = 0.003) and NO-CLIDE (17 ± 3 cells/mm 2 ) (p = 0.001) versus controls (7 ± 1 cells/mm 2 ). There were no significant differences between groups at weeks four or 24. The initial transient increase in corneal and conjunctival LCD in CLIDE (versus NO-CLIDE) suggests an inflammatory component in the aetiology of this condition. © 2016 Optometry Australia.
Garbuglia, Anna Rosa; Calcaterra, Silvia; D'Offizi, Gianpiero; Topino, Simone; Narciso, Pasquale; Lillo, Flavia; Girardi, Enrico; Capobianchi, Maria Rosaria
2004-11-01
Replication-competent HIV, as well as HIV-1 DNA, has been detected in CD4 T cells and in monocytes during antiretroviral therapy (ART), indicating that these cells could represent an important viral reservoir. We measured HIV-1 DNA in monocytes and CD4 T cells in patients undergoing transient therapy interruption (TTI), to establish the dynamic of HIV-1 DNA burden and to find possible correlations with immune restoration and re-establishment of virological control after ART resumption. In most patients CD4 depletion and viral load rebound followed TTI. Rapid resumption of virological and immunological control was achieved after ART reintroduction. After TTI, in most cases a transient increase of both monocyte and CD4 HIV-1 DNA burden was observed. After ART reintroduction, both CD4 T cell and monocyte HIV-1 DNA copy number decreased, reaching baseline levels at the end of observation. At this time monocyte HIV-1 DNA burden was always undetectable, while CD4 T cell HIV-1 DNA burden was lower than at baseline. As CD4 T cell HIV-1 DNA values are independently associated with CD4 depletion, the increase of HIV-1 DNA burden in these cells after TTI is presumably due to acute infection, causing cell death. This is also supported by the pattern of 2-LTR appearance in these cells after TTI. HIV-1 DNA burden in monocytes and CD4 T cells show high correlation, suggesting reciprocal re-feeding of two cell populations. Repopulation by HIV these cells after TTI is temporary, and no significant changes of HIV-1 DNA burden were observed after ART resumption respect to pre-TTI period.
Langhorst, Jost; Frede, Annika; Knott, Markus; Pastille, Eva; Buer, Jan; Dobos, Gustav J; Westendorf, Astrid M
2014-01-01
We found the first evidence of the efficacy of a herbal treatment with myrrh, dry extract of chamomile flowers, and coffee charcoal for ulcerative colitis (UC). However, the impact of the herbal treatment on the CD4+ T-cell compartment, which is essential for both the induction of UC and the maintenance of tolerance in the gut, is not well understood. To analyze the frequency and functional phenotype of CD4+ T cells and of immune-suppressive CD4+CD25high regulatory T cells (Tregs) in healthy control subjects, patients with UC in remission, and patients with clinical flare of UC. Patients in clinical remission were treated with either mesalazine or the herbal preparation for 12 months. The frequencies of whole CD4+ T cells, CD4+CD25med effector T cells, and Tregs and the expression of Foxp3 within the CD4+CD25hig Tregs were determined by flow cytometry at 6 time points. We determined the suppressive capability of Tregs from healthy control subjects and from patients in remission or clinical flare. A total of 79 patients (42 women, 37 men; mean age, 48.5 years; 38 with clinical flare) and 5 healthy control subjects were included in the study. At baseline the frequencies of whole CD4+ T cells, CD4+CD25med effector cells, and Tregs did not differ between the two treatment groups and the healthy control subjects. In addition, patients with UC in sustained clinical remission showed no alteration from baseline after 1, 3, 6, 9, or 12 months of either treatment. In contrast, CD4+ T cells, CD4+CD25med effector T cells, and Tregs demonstrated distinctly different patterns at time points pre-flare and flare. The mesalazine group showed a continuous but not statistically significant increase from baseline to pre-flare and flare (p = ns). In the herbal treatment group, however, the percentage of the CD4+ T cells was lower at pre-flare than at baseline. This decrease was completely reversed after flare, when a significant increase was seen (CD4+CD25med pre-flare/flare p = 0.0461; CD4+CD25high baseline/flare p = 0.0269 and pre-flare/flare p = 0.0032). In contrast, no changes in the expression of Foxp3 cells were detected within the subsets of CD4+CD25high regulatory T cells. Of note, no alterations were detected in the suppressive capability of CD4+CD25high regulatory T cells isolated from the peripheral blood of healthy donors, from patients in remission, or from patients with clinical flare. In patients with UC experiencing acute flare, the CD4+ T compartment demonstrates a distinctly different pattern during treatment with myrrh, chamomile extract, and coffee charcoal than during treatment with mesalazine. These findings suggest an active repopulation of regulatory T cells during active disease. EU Clinical Trials Register 2007-007928-18/DE.
Langhorst, Jost; Frede, Annika; Knott, Markus; Pastille, Eva; Buer, Jan; Dobos, Gustav J.; Westendorf, Astrid M.
2014-01-01
Background We found the first evidence of the efficacy of a herbal treatment with myrrh, dry extract of chamomile flowers, and coffee charcoal for ulcerative colitis (UC). However, the impact of the herbal treatment on the CD4+ T-cell compartment, which is essential for both the induction of UC and the maintenance of tolerance in the gut, is not well understood. Aim To analyze the frequency and functional phenotype of CD4+ T cells and of immune-suppressive CD4+CD25high regulatory T cells (Tregs) in healthy control subjects, patients with UC in remission, and patients with clinical flare of UC. Methods Patients in clinical remission were treated with either mesalazine or the herbal preparation for 12 months. The frequencies of whole CD4+ T cells, CD4+CD25med effector T cells, and Tregs and the expression of Foxp3 within the CD4+CD25hig Tregs were determined by flow cytometry at 6 time points. We determined the suppressive capability of Tregs from healthy control subjects and from patients in remission or clinical flare. Results A total of 79 patients (42 women, 37 men; mean age, 48.5 years; 38 with clinical flare) and 5 healthy control subjects were included in the study. At baseline the frequencies of whole CD4+ T cells, CD4+CD25med effector cells, and Tregs did not differ between the two treatment groups and the healthy control subjects. In addition, patients with UC in sustained clinical remission showed no alteration from baseline after 1, 3, 6, 9, or 12 months of either treatment. In contrast, CD4+ T cells, CD4+CD25medeffector T cells, and Tregs demonstrated distinctly different patterns at time points pre-flare and flare. The mesalazine group showed a continuous but not statistically significant increase from baseline to pre-flare and flare (p = ns). In the herbal treatment group, however, the percentage of the CD4+ T cells was lower at pre-flare than at baseline. This decrease was completely reversed after flare, when a significant increase was seen (CD4+CD25med pre-flare/flare p = 0.0461; CD4+CD25high baseline/flare p = 0.0269 and pre-flare/flare p = 0.0032). In contrast, no changes in the expression of Foxp3 cells were detected within the subsets of CD4+CD25high regulatory T cells. Of note, no alterations were detected in the suppressive capability of CD4+CD25high regulatory T cells isolated from the peripheral blood of healthy donors, from patients in remission, or from patients with clinical flare. Conclusions In patients with UC experiencing acute flare, the CD4+ T compartment demonstrates a distinctly different pattern during treatment with myrrh, chamomile extract, and coffee charcoal than during treatment with mesalazine. These findings suggest an active repopulation of regulatory T cells during active disease. Trial Registration EU Clinical Trials Register 2007-007928-18/DE PMID:25144293
Cannioto, Rikki A; Sucheston-Campbell, Lara E; Hampras, Shalaka; Goode, Ellen L; Knutson, Keith; Ness, Roberta; Modugno, Francesmary; Wallace, Paul; Szender, J Brian; Mayor, Paul; Hong, Chi-Chen; Joseph, Janine M; Friel, Grace; Davis, Warren; Nesline, Mary; Eng, Kevin H; Edwards, Robert P; Kruszka, Bridget; Schmitt, Kristina; Odunsi, Kunle; Moysich, Kirsten B
2017-01-01
There is a mounting body of evidence demonstrating higher percentages of regulatory T (Treg) cells in the peripheral blood of patients with cancer in comparison to healthy controls, but there is a paucity of epidemiological literature characterizing circulating Treg cells among patients with epithelial ovarian cancer (EOC). To investigate the role of peripheral Treg cells in ovarian neoplasms, we conducted a case-control study to characterize circulating concentrations of Treg cells among patients with EOC, women with benign ovarian conditions, and healthy controls without a history of cancer. Participants were identified for inclusion due to their participation in the Data Bank and BioRepository program at Roswell Park Cancer Institute in Buffalo, NY. Patients included 71 women with a primary diagnosis of EOC and 195 women with a diagnosis of benign ovarian conditions. Controls included 101 age- and race-matched women without a history of cancer. Nonfasting, pretreatment peripheral blood levels of CD3+CD4+CD25+FOXP3+ Treg cells were measured using flow cytometric analyses and expressed as a percentage of total CD3+ cells and as a percentage of total CD3+CD4+ cells. Compared to healthy controls and women with benign ovarian conditions, patients with EOC had significantly higher frequency of Treg cells (P < 0.04). In multivariable logistic regression analyses using Treg frequency expressed as a percentage of CD+3 cells, we observed a significant positive association between Treg cell percentage and EOC risk, with each 1% increase associated with a 37% increased risk of EOC (odds ratio, 1.37; 95% confidence interval, 1.04-1.80). We observed a similar trend when Treg frequency was expressed as a percentage of CD3+CD+4 cells (odds ratio, 1.22; 95% confidence interval, 0.99-1.49). The current study provides support that peripheral Treg cell frequency is elevated in patients with EOC in comparison to women with benign ovarian conditions and healthy controls.
Hampras, Shalaka; Goode, Ellen L.; Knutson, Keith; Ness, Roberta; Modugno, Francesmary; Wallace, Paul; Szender, J. Brian; Mayor, Paul; Hong, Chi-Chen; Joseph, Janine M.; Friel, Grace; Davis, Warren; Nesline, Mary; Eng, Kevin H.; Edwards, Robert P.; Kruszka, Bridget; Schmitt, Kristina; Odunsi, Kunle; Moysich, Kirsten B.
2016-01-01
Objective There is a mounting body of evidence demonstrating higher percentages of regulatory T (Treg) cells in the peripheral blood of cancer patients in comparison to healthy controls, but there is a paucity of epidemiological literature characterizing circulating Treg cells among epithelial ovarian cancer (EOC) patients. To investigate the role of peripheral Treg cells in ovarian neoplasms, we conducted a case-control study to characterize circulating concentrations of Treg cells among EOC patients, women with benign ovarian conditions, and healthy controls without a history of cancer. Materials and Methods Participants were identified for inclusion due to their participation in the Data Bank and BioRepository program at Roswell Park Cancer Institute in Buffalo, NY. Patients included 71 women with a primary diagnosis of EOC and 195 women with a diagnosis of benign ovarian conditions. Controls included 101 age- and race-matched women without a history of cancer. Non-fasting, pre-treatment peripheral blood levels of CD3+CD4+CD25+FOXP3+ Treg cells were measured using flow cytometric analyses and expressed as a percentage of total CD3+ cells and as a percentage of total CD3+CD4+ cells. Results Compared to healthy controls and women with benign ovarian conditions, EOC patients had significantly higher frequency of Treg cells (p<0.04). In multivariable logistic regression analyses utilizing Treg frequency expressed as a percentage of CD+3 cells, we observed a significant positive association between Treg cell percentage and EOC risk, with each one percent increase associated with a 37% increased risk of EOC (OR=1.37, 95% CI: 1.04-1.80). We observed a similar trend when Treg frequency was expressed as a percentage of CD3+CD+4 cells (OR=1.22, 95% CI: 0.99-1.49). Conclusions The current study provides support that peripheral Treg cell frequency is elevated in EOC patients in comparison to women with benign ovarian conditions and healthy controls. PMID:27759594
Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence
2016-01-01
Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664
Zhao, Sha-Sha; Fang, Shu; Zhu, Cheng-Ying; Wang, Li-Li; Gao, Chun-Ji
2018-02-01
To investigate the effect of granulocyte-colony stimulating factor (G-CSF) in vitro stimulation on the distribution of lymphocyte subset in healthy human. Peripheral blood mononuclear cells (PBMNCs) were collected from 8 healthy volunteers by density gradient centrifugation on Ficoll-Paque TM . In vitro 200 ng/ml G-CSF or 200 ng/ml G-CSF plus 10 µg/ml ConA directly act on PBMNCs, then the colleted cells were cultivated for 3 days. Lymphocyte subsets were stained with the corresponding fluoresce labeled antibodies and detected by flow cytometry. The levels of T cells in G-CSF group and G-CSF+ConA group were both higher than that in the control group (P<0.001, P<0.05). However, there were not significantly different in B cells and NK cells levels among the 3 groups. Furthermore, analysis of the effect of G-CSF on T cell subsets indicated that the levels of CD4 + T cells and CD8 + T cells in G-CSF group were both significantly higher than those in control group (P<0.01, P<0.05), Treg cells was not different between G-CSF and control group. Compared with the control group, the level of CD4 + T cells, CD8 + T cells and Treg cells in G-CSF+ConA group significantly increased (P<0.05, P<0.01, P<0.01). Analysis of G-CSF receptor (G-CSFR) expression showed that G-CSFR expression on T cells in G-CSF+ConA group dramatically increased, as compared with control group (P<0.01). The levels of CD4 + T cells and CD8 + T cells in healthy human peripheral blood can be increased by G-CSF stimulation. ConA can enhance the level of T cells and induce G-CSFR expression on T cells.
Jennings, Jeanine E; Ramkumar, Thiruvamoor; Mao, Jingnan; Boyd, Jessica; Castro, Mario; Field, Joshua J; Strunk, Robert C; DeBaun, Michael R
2008-08-01
Cysteinyl leukotrienes (CsyLTs) are inflammatory mediators produced by white blood cells. Leukotriene LTE(4) is the stable metabolite of CsyLTs, which can be measured in urine. We tested two hypotheses among children with sickle cell disease (SCD): (1) baseline urinary LTE(4) levels are elevated in children with SCD when compared with controls; and (2) baseline LTE(4) levels are associated with an increased incidence rate of hospitalization for SCD-related pain. Baseline LTE(4) levels were measured in children with SCD (cases) and children without SCD matched for age and ethnicity (controls). Medical records of cases were reviewed to assess the frequency of hospitalization for pain within 3 years of study entry. LTE(4) levels were obtained in 71 cases and 22 controls. LTE(4) levels were higher in cases compared with controls (median LTE(4): 100 vs. 57 pg/mg creatinine, P < 0.001). After adjustment for age and asthma diagnosis, a greater incidence rate of hospitalization for pain was observed among children with SCD in the highest LTE(4) tertile when compared with the lowest (114 vs. 52 episodes per 100 patient-years, P = 0.038). LTE(4) levels are elevated in children with SCD when compared with controls. LTE(4) levels are associated with an increased rate of hospitalizations for pain. Copyright 2008 Wiley-Liss, Inc.
Hernandez-Lopez, Rubicel; Chavez-Gonzalez, Antonieta; Torres-Barrera, Patricia; Moreno-Lorenzana, Dafne; Lopez-DiazGuerrero, Norma; Santiago-German, David; Isordia-Salas, Irma; Smadja, David; C. Yoder, Mervin; Majluf-Cruz, Abraham
2017-01-01
Background Venous thromboembolic disease (VTD) is a public health problem. We recently reported that endothelial colony-forming cells (ECFCs) derived from endothelial cells (EC) (ECFC-ECs) from patients with VTD have a dysfunctional state. For this study, we proposed that a dysfunctional status of these cells generates a reduction of its proliferative ability, which is also associated with senescence and reactive oxygen species (ROS). Methods and results Human mononuclear cells (MNCs) were obtained from peripheral blood from 40 healthy human volunteers (controls) and 50 patients with VTD matched by age (20−50 years) and sex to obtain ECFCs. We assayed their proliferative ability with plasma of patients and controls and supernatants of cultures from ECFC-ECs, senescence-associated β-galactosidase (SA-β-gal), ROS, and expression of ephrin-B2/Eph-B4 receptor. Compared with cells from controls, cells from VTD patients showed an 8-fold increase of ECFCs that emerged 1 week earlier, reduced proliferation at long term (39%) and, in passages 4 and 10, a highly senescent rate (30±1.05% vs. 91.3±15.07%, respectively) with an increase of ROS and impaired expression of ephrin-B2/Eph-4 genes. Proliferation potential of cells from VTD patients was reduced in endothelial medium [1.4±0.22 doubling population (DP)], control plasma (1.18±0.31 DP), or plasma from VTD patients (1.65±0.27 DP). Conclusions As compared with controls, ECFC-ECs from individuals with VTD have higher oxidative stress, proliferation stress, cellular senescence, and low proliferative potential. These findings suggest that patients with a history of VTD are ECFC-ECs dysfunctional that could be associated to permanent risk for new thrombotic events. PMID:28910333
Effect of Thermodiffusion Nitriding on Cytocompatibility of Ti-6Al-4V Titanium Alloy
NASA Astrophysics Data System (ADS)
Pohrelyuk, I. M.; Tkachuk, O. V.; Proskurnyak, R. V.; Boiko, N. M.; Kluchivska, O. Yu.; Stoika, R. S.
2016-04-01
The nitrided layer was formed on the surface of Ti-6Al-4V titanium alloy by the thermodiffusion saturation in nitrogen at the atmospheric pressure. The study of the vitality of pseudonormal human embryo kidney cells of the HEK293T line showed that their cultivation in the presence of the untreated alloy sample is accompanied by a statistically significant reduction in the number of living cells compared with the control sample (untreated cells), whereas their cultivation in the presence of the nitrided alloy sample does not change the cell number considerably. In addition, it was shown that cell behavior in the presence of the nitrided sample differs only slightly from the control sample, whereas the growth of cells in the presence of the untreated alloy differed significantly from that in the control sample, demonstrating small groups of cells instead of their big clusters.
Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity
Braun, Nicole A.; Celada, Lindsay J.; Herazo-Maya, Jose D.; Abraham, Susamma; Shaginurova, Guzel; Sevin, Carla M.; Grutters, Jan; Culver, Daniel A.; Dworski, Ryszard; Sheller, James; Massion, Pierre P.; Polosukhin, Vasiliy V.; Johnson, Joyce E.; Kaminski, Naftali; Wilkes, David S.; Oswald-Richter, Kyra A.
2014-01-01
Rationale: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. Objectives: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4+ T-cell proliferative capacity. Methods: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage–derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. Measurements and Main Results: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1+ CD4+ T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1+ CD4+ T cells with spontaneous clinical resolution but not with disease progression. Conclusions: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4+ T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a viable therapeutic target to optimize clinical outcomes. PMID:25073001
Nekoua, Magloire Pandoua; Yessoufou, Akadiri; Alidjinou, Enagnon Kazali; Badia-Boungou, Francis; Moutairou, Kabirou; Sane, Famara; Hober, Didier
2018-05-17
Enteroviruses, especially coxsackieviruses B (CV-B), have been associated with the pathogenesis of type 1 diabetes (T1D). An anti-CV-B4 neutralizing activity in saliva of T1D patients was previously reported. Our aim was to study the association between the saliva anti-CV-B4 neutralizing activity and immune parameters in T1D patients in comparison with non-diabetic individuals. Saliva and blood samples were collected from 15 T1D patients and 8 controls. The anti-CV-B4 and anti-poliovirus type 1 (PV-1) activities of saliva and serum samples were determined by a plaque neutralization assay. Quantification of serum cytokines was performed by ELISA and the frequencies of lymphocyte subsets were evaluated using flow cytometry. The levels of salivary anti-CV-B4 neutralizing activity were higher in T1D patients than in controls (p = 0.02), whereas the serum levels of anti-CV-B4 neutralizing activity and the saliva and serum levels of anti-PV-1 neutralizing activity were not different. The proportions of effector CD4 + T cells and CD19 + B cells, but not those of CD4 + T cells, CD8 + T cells and Foxp3 + regulatory T cells, were higher in T1D patients than in controls (p = 0.02 and p = 0.01 respectively). Moreover, serum IFN-γ levels were lower in T1D patients compared to controls (p = 0.03) while IL-4 and IL-10 were not different. There was an association between saliva anti-CV-B4 activity, down-regulation of IFN-γ and B cell expansion in peripheral blood of T1D patients. The association between saliva anti-CV-B4 activity and disturbance of immune system in T1D patients deserves further investigation.
Wei, Shengnan; Zhang, Ming; Yu, Yang; Xue, Huan; Lan, Xiaoxin; Liu, Shuping; Hatch, Grant; Chen, Li
2016-11-15
Hepatocyte Nuclear Factor-4α (HNF-4α) is a key nuclear receptor protein required for liver development. miR-122 is a predominant microRNA expressed in liver and is involved in the regulation of cholesterol and fatty acid metabolism. HNF-4α is know to regulate expression of miR-122 in liver. We examined how HNF-4α regulated gluconeogenesis and lipid metabolism through miR-122 in vivo and in vitro. Expression of miR-122, HNF-4α, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), sterol response elementary binding protein-1 (SREBP-1), fatty acid synthase-1 (FAS-1), carnitine palmitoyltransferase-1 (CPT-1) and acetyl Coenzyme A carboxylase alpha (ACCα) were determined in livers of Type 2 diabetic mice and in insulin resistant palmitate-treated HepG2 cells. CPT-1 and phosphorylated ACCα expression were significantly decreased in livers of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. In contrast, expression of miR-122, HNF-4α, PEPCK, G6Pase, SREBP-1, FAS-1 and ACCα were significantly elevated in liver of Type 2 diabetic mice and in palmitate-treated HepG2 cells compared to controls. Expression of HNF-4α increased whereas siRNA knockdown of HNF-4α decreased miR-122 levels in HepG2 cells compared to controls. In addition, expression of HNF-4α in HepG2 cells increased PEPCK, G6Pase, SREBP-1, FAS-1, ACCα mRNA and protein expression and decreased CPT-1 and p-ACCα mRNA and protein expression compared to controls. Addition of miR-122 inhibitors attenuated the HNF-4α mediated effect on expression of these gluconeogenic and lipid metabolism proteins. The results indicate that HNF-4α regulated miR-122 contributes to development of the gluconeogenic and lipid metabolism alterations observed in Type 2 diabetic mice and in palmitate-treated HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona
2017-11-01
Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4 + T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4 + T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Moss, Nicholas J; Magaret, Amalia; Laing, Kerry J; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E; Schiffer, Joshua T; Wald, Anna; Koelle, David M
2012-09-01
Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.
Moss, Nicholas J.; Magaret, Amalia; Laing, Kerry J.; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E.; Schiffer, Joshua T.; Wald, Anna
2012-01-01
Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals. PMID:22761381
Cell-Responsive Hydrogel for Encapsulation of Vascular Cells
Kraehenbuehl, Thomas P.; Ferreira, Lino S.; Zammaretti, Prisca; Hubbell, Jeffrey A.; Langer, Robert
2014-01-01
The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive polyethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin β4 (Tp4), was examined. We show that the physical incorporation of Tβ4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tβ4 increased the survival of HUVEC compared to gels without Tp4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tβ4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tβ4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tβ4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues. PMID:19500842
Chen, Z Y; Li, D L; Duan, X D; Peng, D Z
2016-09-20
To investigate the changes of proliferative activity and reactive oxygen species level of human epidermal cell line HaCaT after being irradiated with low-energy 633 nm red light. Irradiation distance was determined through preliminary experiment. HaCaT cells were conventionally sub-cultured with RPMI 1640 culture medium containing 10% fetal calf serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. Cells of the third passage were used in the following experiments. (1) Cells were divided into blank control group and 0.082, 0.164, 0.245, 0.491, 1.472, 2.453, 4.910, and 9.810 J/cm(2) irradiation groups according to the random number table, with 3 wells in each group. Cells in blank control group were not irradiated, while cells in the latter 8 irradiation groups were irradiated with 633 nm red light for 10, 20, 30, 60, 180, 300, 600, and 1 200 s in turn. Cells were reirradiated once every 8 hours. After being irradiated for 48 hours (6 times) in irradiation groups, the proliferative activity of cells in 9 groups was determined with cell counting kit 8 and microplate reader (denoted as absorbance value). (2) Another batch of cells were grouped and irradiated as in experiment (1). After being irradiated for once in irradiation groups, cells in 9 groups were conventionally cultured for 60 min with detection reagent of reactive oxygen species. At post culture minute (PCM) 0 (immediately), 30, 60, and 120, reactive oxygen species level of cells was determined with microplate reader (denoted as absorbance value). (3) Another batch of cells were divided into blank control group, 0.082, 0.491, 2.453, and 9.810 J/cm(2) irradiation groups, and positive control group. Cells in blank control group and positive control group were not irradiated (positive control reagent of reactive oxygen species was added to cells in positive control group), and cells in irradiation groups were irradiated as in experiment (1) for once. The expression of reactive oxygen species in cells of each group was observed by confocal laser scanning microscope. Data were processed with one-way analysis of variance, analysis of variance for repeated measurement, and t test. (1) Irradiation distance was 10 cm. Proliferative activity of cells in blank control group and 0.082, 0.164, 0.245, 0.491, 1.472, 2.453, 4.910, and 9.810 J/cm(2) irradiation groups was 1.000, 1.116±0.031, 1.146±0.016, 1.162±0.041, 1.179±0.016, 1.207±0.016, 1.247±0.040, 1.097±0.059, and 0.951±0.118, respectively. Compared with that in blank control group, proliferative activity of cells in 0.082-2.453 J/cm(2) irradiation groups was significantly higher (with t values from -22.803 to -6.779, P values below 0.05). Proliferative activity of cells in 4.910 and 9.810 J/cm(2) irradiation groups was similar to that in blank control group (with t values respectively -2.854 and 0.711, P values above 0.05). (2) Compared with that in blank control group, reactive oxygen species level of cells was significantly enhanced at PCM 0 and 30 in 0.164-2.453 J/cm(2) irradiation groups (with t values from -12.453 to -4.684, P<0.05 or P<0.01), while that showed no significant change in 0.082, 4.910, and 9.810 J/cm(2) irradiation groups (with t values from -3.925 to -0.672, P values above 0.05). Compared with that in blank control group, reactive oxygen species level of cells was significantly enhanced at PCM 60 in 0.082-2.453 J/cm(2) irradiation groups (with t values from -11.387 to -4.717, P<0.05 or P<0.01). Compared with that in blank control group, reactive oxygen species level of cells was significantly enhanced at PCM 120 in 0.491-2.453 J/cm(2) irradiation groups (with t values from -10.657 to -6.644, P<0.05 or P<0.01). (3) Compared with that in blank control group, the expression of reactive oxygen species of cells was increased in 0.082, 0.491, and 2.453 J/cm(2) irradiation groups and positive control group. The expression of reactive oxygen species of cells in 9.810 J/cm(2) irradiation group was attenuated when compared with the expressions in the other irradiation groups. Reactive oxygen species expressed in mitochondria of cells in each group. Low-energy 633 nm red light can enhance the proliferation of human epidermal cell line HaCaT, and the effect is closely related to the increase of reactive oxygen species produced by mitochondria after being stimulated by red light irradiation.
Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model.
Harada, Yoshifumi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Muto, Tomoyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kokubu, Takeshi; Kuroda, Ryosuke; Kurosaka, Masahiro
2017-02-01
To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:289-296, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus.
Sheu, Angela; Chan, Yixian; Ferguson, Angela; Bakhtyari, Mohammad B; Hawke, Wendy; White, Chris; Chan, Yuk Fun; Bertolino, Patrick J; Woon, Heng G; Palendira, Umaimainthan; Sierro, Frederic; Lau, Sue Mei
2018-07-01
Numerous adaptations of the maternal immune system are necessary during pregnancy to maintain immunological tolerance to the semi-allogeneic fetus. Several complications of pregnancy have been associated with dysregulation of these adaptive mechanisms. While gestational diabetes mellitus (GDM) has been associated with upregulation of circulating inflammatory factors linked to innate immunity, polarisation of the adaptive immune system has not been extensively characterised in this condition. We aimed to characterise pro- and anti-inflammatory CD4 + (T helper [Th]) T cell subsets in women with GDM vs women without GDM (of similar BMI), during and after pregnancy, and examine the relationship between CD4 + subsets and severity of GDM. This is a prospective longitudinal case-control study of 55 women with GDM (cases) and 65 women without GDM (controls) at a tertiary maternity hospital. Quantification of proinflammatory (Th17, Th17.1, Th1) and anti-inflammatory (regulatory T cell [Treg]) CD4 + T cell subsets was performed on peripheral blood at 37 weeks gestation and 7 weeks postpartum, and correlated with clinical characteristics and measures of blood glucose. Women with GDM had a significantly greater percentage of Th17 (median 2.49% [interquartile range 1.62-4.60] vs 1.85% [1.13-2.98], p = 0.012) and Th17.1 (3.06% [1.30-4.33] vs 1.55% [0.65-3.13], p = 0.006) cells compared with the control group of women without GDM. Women with GDM also had higher proinflammatory cell ratios (Th17:Treg, Th17.1:Treg and Th1:Treg) in pregnancy compared with the control group of women without GDM. In the control group, there was a statistically significant independent association between 1 h glucose levels in the GTT and Th17 cell percentages, and also between 2 h glucose levels and percentage of Th17 cells. The percentage of Th17 cells and the Th17:Treg ratio declined significantly after delivery in women with GDM, whereas this was not the case with the control group of women. Nevertheless, a milder inflammatory phenotype persisted after delivery (higher Th17:Treg ratio) in women with GDM vs women without. Dysregulation of adaptive immunity supports a novel paradigm of GDM that extends beyond hyperglycaemia and altered innate immunity.
Antonchuk, J; Sauvageau, G; Humphries, R K
2001-09-01
Hox transcription factors have emerged as important regulators of hematopoiesis. In particular, we have shown that overexpression of HOXB4 in mouse bone marrow can greatly enhance the level of hematopoietic stem cell (HSC) regeneration achieved at late times (> 4 months) posttransplantation. The objective of this study was to resolve if HOXB4 increases the rate and/or duration of HSC regeneration, and also to see if this enhancement was associated with impaired production of end cells or would lead to competitive reconstitution of all compartments. Retroviral vectors were generated with the GFP reporter gene +/- HOXB4 to enable the isolation and direct tracking of transduced cells in culture or following transplantation. Stem cell recovery was measured by limit dilution assay for long-term competitive repopulating cells (CRU). HOXB4-overexpressing cells have enhanced growth in vitro, as demonstrated by their rapid dominance in mixed cultures and their shortened population doubling time. Furthermore, HOXB4-transduced cells have a marked competitive repopulating advantage in vivo in both primitive and mature compartments. CRU recovery in HOXB4 recipients was extremely rapid, reaching 25% of normal by 14 days posttransplant or some 80-fold greater than control transplant recipients, and attaining normal numbers by 12 weeks. Mice transplanted with even higher numbers of HOXB4-transduced CRU regenerated up to but not beyond the normal CRU levels. HOXB4 is a potent enhancer of primitive hematopoietic cell growth, likely by increasing self-renewal probability but without impairing homeostatic control of HSC population size or the rate of production and maintenance of mature end cells.
Adachi, Yasuhiro; Hiramatsu, Sumie; Tokuda, Nobuko; Sharifi, Kazem; Ebrahimi, Majid; Islam, Ariful; Kagawa, Yoshiteru; Koshy Vaidyan, Linda; Sawada, Tomoo; Hamano, Kimikazu; Owada, Yuji
2012-09-01
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.
Barcelos, Filipe; Martins, Catarina; Papoila, Ana; Geraldes, Carlos; Cardigos, Joana; Nunes, Glória; Lopes, Teresa; Alves, Nuno; Vaz-Patto, José; Branco, Jaime; Borrego, Luís-Miguel
2018-06-01
B-cells play a pivotal role in primary Sjögren's syndrome (pSS) pathogenesis. We aim to (1) evaluate the distribution of B-lymphocyte subpopulations in pSS and Sicca patients, (2) establish cut-off points that discriminate pSS from controls, (3) evaluate the association between memory B-cells and phenotypic features in pSS. We included 57 pSS patients, 68 Sicca and 24 healthy controls. Circulating B-cells were characterized by flow cytometry as naïve and memory subsets and classified from Bm1 to Bm5. Compared to controls, pSS patients had lower percentages (29.5 vs 44.4%) and absolute numbers (47 vs 106 cells/µl) of memory B-cells. Through ROC curves, a cut-off of ≤ 58 total memory B-cells/µl yielded a specificity of 0.88 and a sensitivity of 0.60 for pSS, and was met by 59.6% of pSS patients, 38.8% of Sicca and 12.5% of controls. A cut-off of < 23.5 Switched-memory B-cells/µl yielded a specificity of 0.88 and a sensitivity of 0.54 and was met by 54.4% of pSS patients, 37.3% of Sicca and 12.5% of controls. In pSS, lower total memory B-cells count was associated with longer disease duration (14.3 vs 8.1 years, p = 0.006) and more active disease profile, as evaluated by the European League Against Rheumatism (EULAR) Sjögren's Syndrome Disease Activity Index (ESSDAI) (3.1 vs 1.4, p = 0.043). Decreased numbers of memory B-cells clearly discriminated pSS from controls and can also have prognostic value. It remains to be clarified whether Sicca patients with decreased memory B-cells represent pSS and if B-cell profiling could help in the diagnosis of pSS.
B-cell subset alterations and correlated factors in HIV-1 infection.
Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella
2013-05-15
During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I; Leadbetter, Elizabeth A; Sant'Angelo, Derek B; von Andrian, Ulrich; Brenner, Michael B
2015-01-01
Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue.
Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection
Zhang, Zhi-Qiang; Notermans, Daan W.; Sedgewick, Gerald; Cavert, Winston; Wietgrefe, Stephen; Zupancic, Mary; Gebhard, Kristin; Henry, Keith; Boies, Lawrence; Chen, Zongming; Jenkins, Marc; Mills, Roger; McDade, Hugh; Goodwin, Carolyn; Schuwirth, Caspar M.; Danner, Sven A.; Haase, Ashley T.
1998-01-01
Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1. PMID:9448301
Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection.
Zhang, Z Q; Notermans, D W; Sedgewick, G; Cavert, W; Wietgrefe, S; Zupancic, M; Gebhard, K; Henry, K; Boies, L; Chen, Z; Jenkins, M; Mills, R; McDade, H; Goodwin, C; Schuwirth, C M; Danner, S A; Haase, A T
1998-02-03
Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1.
Suzuki, T; Sadakata, Y; Kashiwagi, K; Hoshino, K; Kakinuma, Y; Shirahata, A; Igarashi, K
1993-07-15
A variant cell line, termed SAM-1, which overproduced S-adenosylmethionine decarboxylase (AdoMetDC), was isolated by treatment of mouse FM3A cells with N-methyl-N'-nitro-N-nitrosoguanidine and subsequent incubation with ethylglyoxal bis(guanylhydrazone), an inhibitor of the enzyme. The cells were resistant to ethylglyoxal bis(guanylhydrazone), and showed AdoMetDC activity approximately five-times higher than control cells. The rate of AdoMetDC synthesis and the amount of AdoMetDC existing in SAM-1 cells were about five-times those in control cells. The amount of AdoMetDC mRNA existing in SAM-1 cells was five-times more than that in control cells. The amount of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, an irreversible inhibitor of AdoMetDC, necessary to inhibit cell growth was also five-times more in SAM-1 cells than in control cells. However, the following were the same in both SAM-1 and control cells; the amount of genomic DNA for AdoMetDC, the size and nucleotide sequence of 5' untranslated region of AdoMetDC mRNA, the deduced amino acid sequence (334 residues) from the nucleotide sequence of AdoMetDC cDNA and the degradation rate (t1/2 = about 4 h) of AdoMetDC. In addition, AdoMetDC mRNA in control cells was slightly more stable than that in SAM-1 cells. The results indicate that the overproduction of AdoMetDC in SAM-1 cells was caused by the increase of AdoMetDC mRNA. The variant cell line is convenient for studying the regulation of AdoMetDC and the physiological function of polyamines.
Prunskaite-Hyyryläinen, Renata; Skovorodkin, Ilya; Xu, Qi; Miinalainen, Ilkka; Shan, Jingdong; Vainio, Seppo J.
2016-01-01
The Müllerian duct (MD) is the anlage of the oviduct, uterus and upper part of the vagina, the main parts of the female reproductive tract. Several wingless-type mouse mammary tumor virus (MMTV) integration site family member (Wnt) genes, including Wnt4, Wnt5a and Wnt7a, are involved in the development of MD and its derivatives, with Wnt4 particularly critical, since the MD fails to develop in its absence. We use, here, Wnt4EGFPCre-based fate mapping to demonstrate that the MD tip cells and the subsequent MD cells are derived from Wnt4+ lineage cells. Moreover, Wnt4 is required for the initiation of MD-forming cell migration. Application of anti-Wnt4 function-blocking antibodies after the initiation of MD elongation indicated that Wnt4 is necessary for the elongation as well, and consistent with this, cell culture wound-healing assays with NIH3T3 cells overexpressing Wnt4 promoted cell migration by comparison with controls. In contrast to the Wnt4 null embryos, some Wnt4monomeric cherry/monomeric cherry (Wnt4mCh/mCh) hypomorphic mice survived to adulthood and formed MD in ∼45% of cases. Nevertheless, the MD of the Wnt4mCh/mCh females had altered cell polarization and basement membrane deposition relative to the controls. Examination of the reproductive tract of the Wnt4mCh/mCh females indicated a poorly coiled oviduct, absence of the endometrial glands and an undifferentiated myometrium, and these mice were prone to develop a hydro-uterus. In conclusion, the results suggest that the Wnt4 gene encodes signals that are important for various aspects of female reproductive tract development. PMID:26721931
Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun
2017-11-01
Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.
A Controlled-Environment Chamber for Atmospheric Chemistry Studies Using FT-IR Spectroscopy
1990-06-01
necessary and identify by block number) FELD GROUP SUB-GROUP i >Chamber, controlled environment; long-path cell ; 07 04 FT-IR; Hydrazine decay...modification doubles the useable path length of the original multipass cell described by White (Reference 8). The pattern of images formed on the nesting...system is shown in Figure 13. 24 z C C02, Ibm, El4 944 C3 ta) caC E-4- 252 14 $4 41) 41) 0. 0 04 04 4 41) ~0 to 0.0 V-4 (A q14 0~ 1% 4-r4 $4 0 u P416 4 4
Krishnapuram, Rashmi; Dhurandhar, Emily J.; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V.
2013-01-01
Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin. PMID:23544159
Krishnapuram, Rashmi; Dhurandhar, Emily J; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V
2013-01-01
Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.
T cells establish and maintain CNS viral infection in HIV-infected humanized mice.
Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C; Cleary, Rachel A; Thayer, William O; Birath, Shayla L; Swanson, Michael D; Sheridan, Patricia; Zakharova, Oksana; Prince, Francesca; Kuruc, JoAnn; Gay, Cynthia L; Evans, Chris; Eron, Joseph J; Wahl, Angela; Garcia, J Victor
2018-06-04
The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.
The inhibition of apoptosis in EL4 lymphoma cells overexpressing growth hormone.
Arnold, Robyn E; Weigent, Douglas A
2004-01-01
The antiapoptotic action of exogenous growth hormone (GH) has been reported for several lymphoid cell lines; however, the potential role of endogenous GH in apoptosis has not been thoroughly investigated. This study was designed to investigate the effects of endogenous GH on apoptosis induced by methyl methanesulfonate (MMS) in a T cell lymphoma overexpressing GH (GHo). The results of these experiments have shown that in EL4 lymphoma cells, overexpression of GH sustained viability after exposure to MMS compared to control cells. The extent of DNA fragmentation measured by ladder formation on agarose gels was reduced in GHo cells following treatment with MMS, when compared to control cells. Adding exogenous GH to control cells and treatment of GHo cells with antibodies to GH had no effect on MMS-induced DNA ladder formation. In further studies, DNA microarray analysis suggested a marked decrease in the constitutive expression of bax, BAD, and caspases 3, 8, and 9 in GHo cells compared to controls. In addition, after treatment with MMS, the activities of caspases 2, 3, 6, 8, and 9 were all lower than control in GHo cells. Western blot analysis detected an increase in Bcl-2 while the levels of nuclear factor kappa B (NFkappaB) remained unchanged in GHo cells. Treatment of EL4 cells with antisense deoxyoligonucleotides to GH and specific inhibitors of NFkappaB (SN-50) increased DNA fragmentation. GHo cells show increased levels of phosphorylated Akt and GSK-3, suggesting inactivation of this proapoptotic protein. The results, taken together with our previous data which showed increased nitric oxide formation in GHo cells, suggest a possible mechanism for the antiapoptotic effects of endogenous GH through the production of nitric oxide and support the idea that endogenous GH may play an important role in the survival of lymphocytes exposed to stressful stimuli. Copyright 2004 S. Karger AG, Basel
Moresco, Monica; Lecciso, Mariangela; Ocadlikova, Darina; Filardi, Marco; Melzi, Silvia; Kornum, Birgitte Rahbek; Antelmi, Elena; Pizza, Fabio; Mignot, Emmanuel; Curti, Antonio; Plazzi, Giuseppe
2018-04-01
Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4 + terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4 + terminally differentiated effector memory T cells and an increased frequency of NK CD56 bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4 + terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.
Depletion of CD4+ T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques
Ortiz, Alexandra M.; Klatt, Nichole R.; Li, Bing; Yi, Yanjie; Tabb, Brian; Hao, Xing Pei; Sternberg, Lawrence; Lawson, Benton; Carnathan, Paul M.; Cramer, Elizabeth M.; Engram, Jessica C.; Little, Dawn M.; Ryzhova, Elena; Gonzalez-Scarano, Francisco; Paiardini, Mirko; Ansari, Aftab A.; Ratcliffe, Sarah; Else, James G.; Brenchley, Jason M.; Collman, Ronald G.; Estes, Jacob D.; Derdeyn, Cynthia A.; Silvestri, Guido
2011-01-01
CD4+ T cells play a central role in the immunopathogenesis of HIV/AIDS, and their depletion during chronic HIV infection is a hallmark of disease progression. However, the relative contribution of CD4+ T cells as mediators of antiviral immune responses and targets for virus replication is still unclear. Here, we have generated data in SIV-infected rhesus macaques (RMs) that suggest that CD4+ T cells are essential in establishing control of virus replication during acute infection. To directly assess the role of CD4+ T cells during primary SIV infection, we in vivo depleted these cells from RMs prior to infecting the primates with a pathogenic strain of SIV. Compared with undepleted animals, CD4+ lymphocyte–depleted RMs showed a similar peak of viremia, but did not manifest any post-peak decline of virus replication despite CD8+ T cell– and B cell–mediated SIV-specific immune responses comparable to those observed in control animals. Interestingly, depleted animals displayed rapid disease progression, which was associated with increased virus replication in non-T cells as well as the emergence of CD4-independent SIV-envelopes. Our results suggest that the antiviral CD4+ T cell response may play an important role in limiting SIV replication, which has implications for the design of HIV vaccines. PMID:22005304
Abdulhaqq, Shaheed A; Martinez, Melween I; Kang, Guobin; Foulkes, Andrea S; Rodriguez, Idia V; Nichols, Stephanie M; Hunter, Meredith; Sariol, Carlos A; Ruiz, Lynnette A; Ross, Brian N; Yin, Xiangfan; Speicher, David W; Haase, Ashley T; Marx, Preston A; Li, Qinsheng; Kraiselburd, Edmundo N; Montaner, Luis J
2014-04-01
Intravaginal exposure to simian immunodeficiency virus (SIV) acutely recruits interferon-alpha (IFN-α) producing plasmacytoid dendritic cells (pDC) and CD4 T-lymphocyte targets to the endocervix of nonhuman primates. We tested the impact of repeated cervicovaginal exposures to noninfectious, defective SIV particles over 72 hours on a subsequent cervicovaginal challenge with replication competent SIV. Thirty-four female Indian Rhesus macaques were given a 3-day twice-daily vaginal exposures to either SIVsmB7, a replication-deficient derivative of SIVsmH3 produced by a T lymphoblast CEMx174 cell clone (n = 16), or to CEM supernatant controls (n = 18). On the fourth day, animals were either euthanized to assess cervicovaginal immune cell infiltration or intravaginally challenged with SIVmac251. Challenged animals were tracked for plasma viral load and CD4 counts and euthanized at 42 days after infection. At the time of challenge, macaques exposed to SIVsmB7, had higher levels of cervical CD123 pDCs (P = 0.032) and CD4 T cells (P = 0.036) than those exposed to CEM control. Vaginal tissues showed a significant increase in CD4 T-cell infiltrates (P = 0.048) and a trend toward increased CD68 cellular infiltrates. After challenge, 12 SIVsmB7-treated macaques showed 2.5-fold greater daily rate of CD4 decline (P = 0.0408), and viral load rise (P = 0.0036) as compared with 12 control animals. Repeated nonproductive exposure to viral particles within a short daily time frame did not protect against infection despite pDC recruitment, resulting instead in an accelerated CD4 T-cell loss with an increased rate of viral replication.
An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis.
Motobayashi, Mitsuo; Inaba, Yuji; Nishimura, Takafumi; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi
2015-04-01
Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis. Copyright © 2015 Elsevier Inc. All rights reserved.
Zuluaga, Paola; Sanvisens, Arantza; Martínez-Cáceres, Eva; Teniente, Aina; Tor, Jordi; Muga, Robert
2017-11-01
Harmful alcohol consumption may have an impact on the adaptive immune system through an imbalance in T cell subpopulations and changes in cell activation. We aimed to analyze profiles of CD4 and CD8T cell activation in patients with alcohol use disorder (AUD). We used a cross-sectional study with patients seeking treatment of the disorder. Blood samples for immunophenotyping were obtained at admission. Profiles of T cell activation were defined: (I) CD38 + /HLA-DR + , (II) CD38 + /HLA-DR - , (III) CD38 - /HLA-DR + , (IV) CD38 - /HLA-DR - and compared with healthy controls. We calculated a CD8 + T cell activation indicator (AI) that was defined as the quotient of non-activated cells (CD38 - /HLA-DR - ) and activated cells (CD38 + /HLA-DR + ). 60 patients were eligible (83%M); median age was 49 years [IQR: 44-54] and alcohol consumption was 145g/day [IQR: 90-205]. Mean±SD of CD38 + /HLA-DR - was 50.3±50.6 cells/μL in patients and 33.5±24.5 cells/μL in controls (p=0.03), for the CD38 - /HLA-DR + it was 61±62.2 cells/μL in patients and 21.2±17.3 cells/μL in controls (p<0.001) and for the CD38 + /HLA-DR + it was 20.2±15.6 cells/μL in patients and 10.8±10.3 cells/μL in controls (p<0.001). In patients, an inverse correlation was observed between absolute number and percentage of CD4 + T cells, and the percentage of CD38 + /HLA-DR + CD8 + T cells (r=0.37, p=0.003; r=0.2, p=0.086, respectively). Patients with AUD have an increased expression of immune activation with respect to healthy individuals. This excess of activated CD8 + T cells correlates with the absolute CD4 + T cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Quezada, Sergio A.; Peggs, Karl S.; Curran, Michael A.; Allison, James P.
2006-01-01
CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF–transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3– and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy. PMID:16778987
Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling
Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.
2013-01-01
Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597
Schuler, Patrick J.; Macatangay, Bernard J.C.; Saze, Zenichiro; Jackson, Edwin K.; Riddler, Sharon A.; Buchanan, William G.; Hilldorfer, Benedict B.; Mellors, John W.; Whiteside, Theresa L.; Rinaldo, Charles R.
2013-01-01
Background The role of the adenosine (ADO) suppression pathway, specifically CD39-expressing and CD73-expressing CD4+ T cells in HIV-1 infection is unclear. Methods We evaluated the frequency and numbers of CD4+CD39+ and CD4+CD73+ T cells, activated T cells, and plasma C reactive protein (CRP) levels in 36 HIV-1-positive individuals and 10 normal controls (NC). Low-level plasma viremia was evaluated using single copy assay. Mass spectrometry was used to measure hydrolysis of ATP by ectoenzyme-expressing CD4+ T cells, whereas cyclic adenosine monophosphate (cAMP) levels were measured using enzyme immunoassay. Suppression of T-cell function by exogenous ADO and CD4+CD73+ T cells was tested by flow cytometry. Results CD39 and CD73 are expressed in different CD4+ T-cell subsets. CD4+CD73+ T cells do not express CD25 and FOXP3, and their frequency and numbers were lower in HIV-1-positive individuals regardless of virologic suppression (P = 0.005 and P < 0.001, respectively). CD4+CD73+ numbers inversely correlated with CD4+CD38+DR+ (P = 0.002), CD8+CD38+DR+ T-cell frequency (P = 0.05), and plasma CRP levels (P = 0.01). Both subsets are required for hydrolysis of exogenous ATP to ADO and can increase CD4+ T-cell cAMP levels when incubated with exogenous ATP. Low-level viremia did not correlate with activated T-cell frequency. In vitro, ADO suppressed T-cell activation and cytokine expression. CD4+CD73+ T cells suppressed T-cell proliferation only in the presence of exogenous 5′-AMP. Conclusion The ADO-producing CD4+CD73+ subset of T cells is depleted in HIV-1-positive individuals regardless of viral suppression and may play a key role in controlling HIV-1-associated immune activation. PMID:24005375
CRYAB modulates the activation of CD4+ T cells from relapsing-remitting multiple sclerosis patients.
Quach, Que Lan; Metz, Luanne M; Thomas, Jenna C; Rothbard, Jonathan B; Steinman, Lawrence; Ousman, Shalina S
2013-12-01
Suppression of activation of pathogenic CD4(+) T cells is a potential therapeutic intervention in multiple sclerosis (MS). We previously showed that a small heat shock protein, CRYAB, reduced T cell proliferation, pro-inflammatory cytokine production and clinical signs of experimental allergic encephalomyelitis, a model of MS. We assessed whether the ability of CRYAB to reduce the activation of T cells translated to the human disease. CD4(+) T cells from healthy controls and volunteers with MS were activated in vitro in the presence or absence of a CRYAB peptide (residues 73-92). Parameters of activation (proliferation rate, cytokine secretion) and tolerance (anergy, activation-induced cell death, microRNAs) were evaluated. The secretion of pro-inflammatory cytokines by CD4(+) T cells was decreased in the presence of CRYAB in a subset of relapsing-remitting multiple sclerosis (RRMS) participants with mild disease severity while no changes were observed in healthy controls. Further, there was a correlation for higher levels of miR181a microRNA, a marker upregulated in tolerant CD8(+) T cells, in CD4(+) T cells of MS patients that displayed suppressed cytokine production (responders). CRYAB may be capable of suppressing the activation of CD4(+) T cells from a subset of RRMS patients who appear to have less disability but similar age and disease duration.
Lai, Zhi-Wei; Borsuk, Rebecca; Shadakshari, Ashwini; Yu, Jianghong; Dawood, Maha; Garcia, Ricardo; Francis, Lisa; Tily, Hajra; Bartos, Adam; Faraone, Stephen V.; Phillips, Paul; Perl, Andras
2013-01-01
The mechanistic target of rapamycin (mTOR) is recognized as a sensor of mitochondrial dysfunction and effector of T-cell lineage development, however, its role in autoimmunity, including systemic lupus erythematosus, remains unclear. Here, we prospectively evaluated mitochondrial dysfunction and mTOR activation in PBL relative to SLE disease activity index (SLEDAI) during 274 visits of 59 patients and 54 matched healthy subjects. Partial least square-discriminant analysis identified 15 of 212 parameters that accounted for 70.2% of the total variance and discriminated lupus and control samples (p<0.0005); increased mitochondrial mass of CD3+/CD4−/CD8− double-negative (DN) T cells (p=1.1×10−22) and FoxP3 depletion in CD4+/CD25+ T cells were top contributors (p=6.7×10−7). Prominent necrosis and mTOR activation were noted in DN T cells during 15 visits characterized by flares (SLEDAI increase ≥4) relative to 61 visits of remission (SLEDAI decrease ≥4). mTOR activation in DN T cells was also noted at pre-flare visits of SLE patients relative to those of stable disease or healthy controls. DN lupus T cells showed increased production of IL-4, which correlated with depletion of CD25+/CD19+B cells. Rapamycin treatment in vivo blocked the IL-4 production and necrosis of DN T cells, increased the expression of FoxP3 in CD25+/CD4+T cells, and expanded CD25+/CD19+ B cells. These results identify mTOR activation to be a trigger of IL-4 production and necrotic death of DN T cells in patients with SLE. PMID:23913957
Hayashi, Shinichi; Ochi, Haruki; Ogino, Hajime; Kawasumi, Aiko; Kamei, Yasuhiro; Tamura, Koji; Yokoyama, Hitoshi
2014-12-01
The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate epimorphic regeneration as well as for organ size control in appendage regeneration. In regenerative medicine, these findings should contribute to the development of three-dimensional organs with the correct size for a patient's body. Copyright © 2014 Elsevier Inc. All rights reserved.
Ateyah, Mohamed E; Hashem, Mona E; Abdelsalam, Mohamed
2017-02-01
Acute B lymphoblastic leukaemia (B-ALL) is the most common type of childhood malignancy worldwide but little is known of its origin. Recently, many studies showed both a high incidence of Epstein-Barr virus (EBV) infection and high levels of CD4 + CD25 + Foxp3 + (Treg cells) in children with B-ALL. In our study, we investigated the possible relationship between EBV infection and the onset of B-ALL, and its relation to expression of CD4 + , CD25 high+ Foxp3+ T regulatory cells. We analysed expression and mean fluorescence intensity (MFI) of Treg cells in peripheral blood of 45 children with B-ALL and in 40 apparently healthy children as a control, using flow cytometry. Serum anti-EBV viral capsid antigen (VCA) IgG, anti-EBV nuclear antigen (EBNA) IgG (for latent infection) and anti-EBV VCA IgM (for acute infection) were investigated using ELISA. Analysis of the Treg cells population in patients and controls revealed that expression of CD4 + CD25 high+ T lymphocytes was higher in patients than in controls (mean±SD 15.7±4.1 and 10.61±2.6 in patients and controls, respectively, and MFI of Foxp3 was 30.1±7.1 and 16.7±3.7 in patients and controls, respectively (p<0.001)). There was a high incidence of latent EBV infection in patients (31%) compared with controls (10%) while the incidence of acute infection was 12% in patients and 0% in the control group. To study the role of latent EBV infection in the pathogenesis of acute B-ALL, OR was calculated (OR=4.06, coefficient index 1.2-13.6). These findings suggest a possible role for Treg cells and EBV in the pathogenesis of B-ALL. Further studies are needed on the possible mechanisms of tumour genesis related to Treg cells and EBV in children with B-ALL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases.
Zeelenberg, Ingrid S; Ruuls-Van Stalle, Lisette; Roos, Ed
2003-07-01
CXCR4, the receptor for the chemokine stromal cell-derived factor (SDF)-1 (CXCL12), is involved in lymphocyte trafficking. We have demonstrated previously that it is required for invasion of lymphoma cells into tissues and therefore essential for lymphoma metastasis. CXCR4 is also expressed by carcinoma cells, and CXCR4 antibodies were recently shown to reduce metastasis of a mammary carcinoma cell line. This was also ascribed to impaired invasion. We have blocked CXCR4 function in CT-26 colon carcinoma cells by transfection of SDF-1, extended with a KDEL sequence. The SDF-KDEL protein is retained in the endoplasmic reticulum by the KDEL-receptor and binds CXCR4, which is thus prevented from reaching the cell surface. We found that metastasis of these cells to liver and lungs was greatly reduced and often completely blocked. Surprisingly, however, our observations indicate that this was not attributable to inhibition of invasion but rather to impairment of outgrowth of micrometastases: (a) in contrast to the lymphoma cells, metastasis was not affected by the transfected S1 subunit of pertussis toxin. S1 completely inhibited Gi protein signaling, which is required for SDF-1-induced invasion; (b) CXCR4 levels were very low in CT-26 cells grown in vitro but strongly up-regulated in vivo. Strong up-regulation was not seen in the lungs until 7 days after tail vein injection. CXCR4 can thus have no role in initial invasion in the lungs; and (c) CXCR4-deficient cells did colonize the lungs to the same extent as control cells and survived. However, they did not expand, whereas control cells proliferated rapidly after a lag period of > or = 7 days. We conclude that CXCR4 is up-regulated by the microenvironment and that isolated metastatic cells are likely to require CXCR4 signals to initiate proliferation. Our results suggest that CXCR4 inhibitors have potential as anticancer agents to suppress outgrowth of micrometastases.
Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo
Smith, Nicola M. G.; Mlcochova, Petra; Watters, Sarah A.; Aasa-Chapman, Marlene M. I.; Rabin, Neil; Moore, Sally; Edwards, Simon G.; Garson, Jeremy A.; Grant, Paul R.; Ferns, R. Bridget; Kashuba, Angela; Mayor, Neema P.; Schellekens, Jennifer; Marsh, Steven G. E.; McMichael, Andrew J.; Perelson, Alan S.; Pillay, Deenan; Goonetilleke, Nilu; Gupta, Ravindra K.
2015-01-01
Background. Emerging data relating to human immunodeficiency virus type 1 (HIV-1) cure suggest that vaccination to stimulate the host immune response, particularly cytotoxic cells, may be critical to clearing of reactivated HIV-1–infected cells. However, evidence for this approach in humans is lacking, and parameters required for a vaccine are unknown because opportunities to study HIV-1 reactivation are rare. Methods. We present observations from a HIV-1 elite controller, not treated with combination antiretroviral therapy, who experienced viral reactivation following treatment for myeloma with melphalan and autologous stem cell transplantation. Mathematical modeling was performed using a standard viral dynamic model. Enzyme-linked immunospot, intracellular cytokine staining, and tetramer staining were performed on peripheral blood mononuclear cells; in vitro CD8 T-cell–mediated control of virion production by autologous CD4 T cells was quantified; and neutralizing antibody titers were measured. Results. Viral rebound was measured at 28 000 copies/mL on day 13 post-transplant before rapid decay to <50 copies/mL in 2 distinct phases with t1/2 of 0.71 days and 4.1 days. These kinetics were consistent with an expansion of cytotoxic effector cells and killing of productively infected CD4 T cells. Following transplantation, innate immune cells, including natural killer cells, recovered with virus rebound. However, most striking was the expansion of highly functional HIV-1–specific cytotoxic CD8 T cells, at numbers consistent with those applied in modeling, as virus control was regained. Conclusions. These observations provide evidence that the human immune response is capable of controlling coordinated global HIV-1 reactivation, remarkably with potency equivalent to combination antiretroviral therapy. These data will inform design of vaccines for use in HIV-1 curative interventions. PMID:25778749
Innovative T Cell-Targeted Therapy for Ovarian Cancer
2012-10-01
from co-culture with EL4 -ROR1neg and EL4 -ROR1+ tumor targets. Ovarian cancer cell lines (A2780, EFO21, EFO27, IGROV1, OC314, and UPN251) were...profiled for ROR1 expression in normoxia (20% O2) and hypoxia (1% O2). Four-hour CRA was used to evaluate cytotoxicity against the OvCa and EL4 tumor...loaded aAPC for negative controls. EL4 is a murine T cell lymphoma cell line used to test specificity of CAR+ T cells with limited allo-reactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, Adriana; Jesser, Renee D.; Edelstein, Charles L.
2004-12-05
HIV-infected patients on highly active antiretroviral therapy (HAART) have persistently decreased cytomegalovirus (CMV)-specific proliferative responses [lymphocyte proliferation assay (LPA)] in spite of increases in CD4+ T cell counts. Here we demonstrate an association between apoptosis of unstimulated peripheral blood mononuclear cells (uPBMC) and decreased CMV-LPA. HAART recipients had more apoptosis of uPBMC than controls when measured by caspases 3, 8, and 9 activities and by annexin V binding. Patients with undetectable HIV replication maintained significantly higher apoptosis of CD4+ and CD14+ cells compared to controls. CMV-LPA decreased with higher apoptosis of uPBMC in patients only. This association was independent ofmore » CD4+ cell counts or HIV replication. Furthermore, rescuing PBMC from apoptosis with crmA, but not with TRAIL- or Fas-pathway blocking agents or with other caspase inhibitors, increased CMV-LPA in HAART recipients. This effect was not observed in uninfected controls, further indicating that the down regulatory effect of apoptosis on cell-mediated immunity (CMI) was specifically associated with the HIV-infected status.« less
Teshome, Wondu; Asefa, Anteneh; Assefa, Anteneh
2014-01-01
In resource constrained settings, immunological assessment through CD4 count is used to assess response to first line Highly Active Antiretroviral Therapy (HAART). In this study, we aim to investigate factors associated with immunological treatment failure. A matched case-control study design was used. Cases were subjects who already experienced immunological treatment failure and controls were those without immunological failure after an exactly or approximately equivalent duration of first line treatment with cases. Data were analyzed using SPSS v16.0. Conditional logistic regression was carried out. A total of 134 cases and 134 controls were included in the study. At baseline, the mean age ± 1 SD of cases was 37.5 ± 9.7 years whereas it was 36.9 ± 9.2 years among controls. The median baseline CD4 counts of cases and controls were 121.0 cells/µl (IQR: 47-183 cells/µl) and 122.0 cells/µl (IQR: 80.0-189.8 cells/µl), respectively. The median rate of CD4 cells increase was comparable for the two groups in the first six months of commencing HAART (P = 0.442). However, the median rate of CD4 increase was significantly different for the two groups in the next 6 months period (M6 to M12). The rate of increment was 8.8 (IQR: 0.5, 14.6) and 1.8 (IQR: 8.8, 11.3) cells/µl/month for controls and cases, respectively (Mann-Whitney U test, P = 0.003). In conditional logistic regressions grouped baseline CD4 count (P = 0.028), old age group and higher educational status (P<0.001) were significant predictors of immunological treatment failure. Subjects with immunological treatment failure have an optimal rate of immunological recovery in the first 6 months of treatment with first line HAART, but relative to the non-failing group the rate declines at a later period, notably between 6 and 12 months. Low baseline CD4 count, old age and higher educational status were associated with immunological treatment failure.
Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki
2018-03-20
Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4+
Liebe, Franziska; Liebe, Hendrik
2018-01-01
Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia. PMID:29494673
The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4.
Schrapers, Katharina T; Sponder, Gerhard; Liebe, Franziska; Liebe, Hendrik; Stumpff, Friederike
2018-01-01
Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.
Effect of clinostat rotation on differentiation of embryonic bone in vitro
NASA Astrophysics Data System (ADS)
Al-Ajmi, N.; Braidman, I. P.; Moore, D.
We have investigated the effect of changes in the gravity vector on osteoblast behaviour, using the clinostat set at 8 rpm. Two sources of osteoblasts were used: secondary cultures of fetal rat bone cells, and the rat osteosarcoma line 17/2.8 (ROS). Cell number was determined by incubation with 3-(4,dimethyl-2yl)-2,3 diphenyl) tetrazolium bromide (MTT) and measurement of optical density at 570 nm (OD). Alkaline phosphatase activity was detected by standard cytochemical methods. Dividing cells were localised by labelling dividing nuclei with Bromodeoxyuridine (BrdU), detected by immunofluorescence. Cell culture was initiated at densities between 1-4x10^4 cells ml^-1. Growth rates in all cultures during the first 48 hours exposure to clinostat rotation were less than in stationary controls. After 3 days, ROS cell numbers were 35% lower, and calvarial cells 39% lower than their respective controls. Alkaline phosphatase activity in calvarial control cultures was uniformly present in characteristically polygonal cells, but after culture in the clinostat the enzyme was present sporadically, and the cells were cuboid. There was also no BrdU uptake in nuclei, but it was present in cell cytoplasms. We conclude that the clinostat decreases cell numbers and cell division. Both cell shape and the distribution of alkaline phosphatase activity in calvarial cell cultures were also affected. This implies that changes in the gravity vector can affect osteoblasts directly, without interaction with other cell types.
Kira, Tsutomu; Akahane, Manabu; Omokawa, Shohei; Shimizu, Takamasa; Kawate, Kenji; Onishi, Tadanobu; Tanaka, Yasuhito
2017-10-18
To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate (TCP) on osteogenesis. Bone marrow cells were harvested from a sheep and cultured in a minimal essential medium (MEM) containing ascorbic acid phosphate (AscP) and dexamethasone (Dex). After 2 wk, the formed osteogenic matrix cell sheet was lifted from the culture dish using a scraper. Additionally, harvested bone marrow cells were cultured in MEM only as a negative control group, and in MEM with AscP, Dex, and β-glycerophosphate as a positive control group. For in vitro evaluation, we measured the alkaline phosphatase (ALP) activity and osteocalcin (OC) content in the media of the cultured cells from each group. For in vivo analysis, a porous TCP ceramic was used as a scaffold. We prepared an experimental group comprising TCP scaffolds wrapped with the osteogenic matrix cell sheets and a control group consisting of the TCP scaffold only. The constructs were implanted subcutaneously into athymic rats and the cell donor sheep, and bone formation was confirmed by histology after 4 wk. In the in vitro part, the mean ALP activity was 0.39 ± 0.03 mg/well in the negative control group, 0.67 ± 0.04 mg/well in the sheet group, and 0.65 ± 0.07 mg/well in the positive control group. The mean OC levels were 1.46 ± 0.33 ng/well in the negative control group, 3.92 ± 0.16 ng/well in the sheet group, and 4.4 ± 0.47 ng/well in the positive control group, respectively. The ALP activity and OC levels were significantly higher in the cell sheet and positive control groups than in the negative control group ( P < 0.05). There was no significant difference in ALP activity or OC levels between the cell sheet group and the positive control group ( P > 0.05). TCP constructs wrapped with cell sheets prior to implantation showed bone formation, in contrast to TCP scaffolds alone, which exhibited poor bone formation when implanted, in the subcutaneous layer both in athymic rats and in the sheep. This technique for preparing highly osteoinductive TCP may promote regeneration in large bone defects.
Reisner, P D; Brandt, P C; Vanaman, T C
1997-01-01
It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.
Repression of cell proliferation by miR319-regulated TCP4.
Schommer, Carla; Debernardi, Juan M; Bresso, Edgardo G; Rodriguez, Ramiro E; Palatnik, Javier F
2014-10-01
Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Antioxidative cellular response of lepidopteran ovarian cells to photoactivated alpha-terthienyl.
Huang, Qingchun; Yun, Xinming; Rao, Wenbing; Xiao, Ciying
2017-04-01
Photodynamic sensitizers as useful alternative agents have been used for population control against insect pests, and the response of insect ovarian cells towards the photosensitizers is gaining attention because of the next reproduction. In this paper, antioxidative responses of lepidopteran ovarian Tn5B1-4 and Sf-21 cells to photoactivated alpha-terthienyl (PAT) are investigated. PAT shows positive inhibitory cytotoxicity on the two ovarian cells, and its inhibition on cell viability is enhanced as the concentrations are increased and the irradiation time is extended. Median inhibitory concentrations (IC 50 ) are 3.36μg/ml to Tn5B1-4 cells, and 3.15μg/ml to Sf-21 cells at 15min-UV-A irradiation 2h-dark incubation. Under 10.0μg/ml PAT exposure, 15min-UV-A irradiation excites higher ROS production than 5min-UV-A irradiation does in the ovarian cells, the maximum ROS content is about 7.1 times in Tn5B1-4 cells and 4.3 times in Sf-21 cells, and the maximum malondialdehyde levels in Tn5B1-4 and Sf-21 cells are about 1.47- and 1.36-fold higher than the control groups, respectively. Oxidative stress generated by PAT strongly decreases the activities of POD, SOD and CAT, and induces an accumulation of Tn5B1-4 cells in S phase and Sf-21 cells in G2/M phase in a concentration-dependent fashion. Apoptosis accumulation of Tn5B1-4 cells and the persistent post-irradiation cytotoxicity are further observed, indicating different antioxidative tolerance and arrest pattern of the two ovarian cells towards the cytotoxicity of PAT. Copyright © 2016 Elsevier Inc. All rights reserved.
Crack, L R; Chan, H W; McPherson, T; Ogg, G S
2011-11-01
Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.
Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard
2016-01-01
Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.
Immune cell populations within the duodenal mucosa of dogs with enteropathies.
German, A J; Hall, E J; Day, M J
2001-01-01
The mucosal immune system may play a critical role in the pathogenesis of small intestinal enteropathies. The aim of the current study was to assess mucosal immune cell populations in dogs with inflammatory bowel disease (IBD), idiopathic antibiotic-responsive diarrhea (ARD), and adverse reactions to food (FR). Endoscopic biopsies were performed of the duodenum of dogs with these conditions and from a group of dogs without enteric disease. Additional control samples were collected after death from other dogs that did not have evidence of enteric disease. Immunohistochemistry and computer-aided morphometry were used to assess the distribution of immune cell subsets in both lamina propria and intestinal epithelium. Compared with controls, dogs with ARD had increased numbers of lamina propria immunoglobulin (Ig) A- plasma cells and CD4+ cells. More marked alterations were noted in dogs with IBD, with significant increases in lamina propria IgG+ plasma cells, T cells (CD3+), CD4+ cells, macrophages, and neutrophils, but with reduced mast cell numbers. Increased intraepithelial CD3+ T cells were also present in the dogs with IBD, compared with controls. However, lamina propria and epithelial populations were unaltered in dogs with FR when compared with controls. The altered mucosal immune cell populations observed in dogs with ARD or IBD may reflect an underlying immunologic pathogenesis in these disorders.
Tibbetts, Scott A; McClellan, Kelly B
2006-01-01
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. PMID:16733540
Xu, Rui; Huang, Huaping; Han, Zhong; Li, Minchao; Zhou, Xiangdong
2016-01-01
To investigate the role of miR-21 in airway immunologic dysfunction induced by cold air irritation. Immortalized human airway epithelial cell lines BEAS-2B and 16HBE cells were cultured in air-liquid phases. The differential expressions of endogenous miR-21, miR-164, and miR-155 in the cells induced by cold air exposure for different time were detected by real-time PCR. The reporter plasmid containing wild-type or mutated 3'UTR of TLR-4 were constructed and co-transfected into BEAS-2B cells or 16HBE cells together with miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, or miR-21 inhibitor control. Following the transfection, dual luciferase reporter assay was performed to verify the action of miR-21 on TLR-4. miR-21 mimic, miR-21 mimic control, miR-21 inhibitor, and miR-21 inhibitor control were transfected via lipofectamine 2000 in BEAS-2B or 16HBE cells that were subsequently exposed to a temperature at 37 degrees celsius; or cold irritation (30 degrees celsius;), and the protein levels of TLR-4/MyD88 were detected by Western blotting. Cold irritation caused a time- dependent up-regulation of miR-21 in both BEAS-2B and 16HBE cells (P<0.05) without obviously affecting the expressions of miR-164 and miR-155. Dual luciferase reporter assay demonstrated a direct combination of miR-21 and its target protein TLR-4. The synthesis levels of TLR-4/MyD88 protein were decreased in miR-21 mimic group even at a routine culture temperature (P<0.05), as also seen in cells with cold irritation (P<0.05). Treatment with the miR-21 inhibitor partially attenuated cold irritation-induced down-regulation of TLR-4/MyD88 protein (P<0.05). Cold air irritation-induced airway immunologic dysfunction is probably associated with TLR-4/MyD88 down-regulation by an increased endogenic miR-21.
Koohini, Zohreh; Hossein-Nataj, Hadi; Mobini, Maryam; Hosseinian-Amiri, Aref; Rafiei, Alireza; Asgarian-Omran, Hossein
2018-04-07
Expression of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) and programmed cell death-1 (PD-1) was studied on CD4 + T cells of patients with rheumatoid arthritis (RA). Association of Tim-3 and PD-1 expression with disease activity of RA patients was also addressed. A total of 37 RA patients and 31 sex- and age-matched healthy controls were included in this study. Disease activity of RA patients was determined by Disease Activity Score of 28 joints scoring system (DAS28). A three-color flow cytometry method was applied to determine the frequency of Tim-3 + /PD-1 + /CD4 + T cells. To measure the cytokine production, peripheral blood mononuclear cells (PBMCs) were stimulated with PMA/ionomycin. Concentrations of IL-17, IL-10, IFN-γ, and TNF-α were measured in culture supernatants by ELISA. The frequency of PD-1 + /CD4 + and Tim-3 + /PD-1 + /CD4 + T cells was significantly higher in patients with RA compared to that in controls (p = 0.0013 and p = 0.050, respectively). The percentage of Tim-3 + /CD4 + T cells was similar in patients and controls (p = 0.4498). The RA patients have produced significant higher levels of TNF-α, IL-17, and IFN-γ than those of healthy controls (p = 0.0121, p = 0.0417, and p = 0.0478, respectively). Interestingly, an inverse correlation was found between the frequency of Tim-3 + /CD4 + cells and DAS28 of RA patients (r = - 0.4696, p = 0.0493). Similarly, the percentage of Tim-3 + /PD-1 + /CD4 + T cells was also revealed an inverse correlation with DAS28 (r = - 0.5268, p = 0.0493). Moreover, significant positive correlations were detected between the concentrations of TNF-α (r = 0.6418, p = 0.0023) and IL-17 (r = 0.4683, p = 0.0373) with disease activity of RA patients. Our results indicate that Tim-3 and PD-1 are involved in immune dysregulation mechanisms of rheumatoid arthritis and could be considered as useful biomarkers for determination of disease activity and progression.
Budesonide increases TLR4 and TLR2 expression in Treg lymphocytes of allergic asthmatics.
Pace, Elisabetta; Di Sano, Caterina; Ferraro, Maria; Bruno, Andreina; Caputo, Valentina; Gallina, Salvatore; Gjomarkaj, Mark
2015-06-01
Reduced innate immunity responses as well as reduced T regulatory activities characterise bronchial asthma. In this study the effect of budesonide on the expression of TLR4 and TLR2 in T regulatory lymphocyte sub-population was assessed. TLR4 and TLR2 expression in total peripheral blood mononuclear cells (PBMC), in CD4+/CD25+ and in CD4+/CD25- was evaluated, by flow cytometric analysis, in mild intermittent asthmatics (n = 14) and in controls (n = 11). The in vitro effects of budesonide in modulating: TLR4 and TLR2 expression in controls and in asthmatics; IL-10 expression and cytokine release (IL-6 and TNF-α selected by a multiplex assay) in asthmatics were also explored. TLR4 and TLR2 were reduced in total PBMC from asthmatics in comparison to PBMC from controls. CD4+CD25+ cells expressed at higher extent TLR2 and TLR4 in comparison to CD4+CD25- cells. Budesonide was able to increase the expression of TLR4, TLR2 and IL-10 in CD4+/CD25 highly+ cells from asthmatics. TLR4 ligand, LPS induced Foxp3 expression. Budesonide was also able to reduce the release of IL-6 and TNF-α by PBMC of asthmatics. Budesonide potentiates the activity of Treg by increasing TLR4, TLR2 and IL-10 expression. This event is associated to the decreased release of IL-6 and TNF-α in PBMC treated with budesonide. These findings shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Myers, Julie E; Xia, Qiang; Torian, Lucia V; Irvine, Mary; Harriman, Graham; Sepkowitz, Kent A; Shepard, Colin W
2016-03-01
The evidence has begun to mount for diminishing the frequency of CD4 count testing. To determine whether these observations were applicable to an urban US population, we used New York City (NYC) surveillance data to explore CD4 testing among stable patients in NYC, 2007-2013. We constructed a population-based retrospective open cohort analysis of NYC HIV surveillance data. HIV+ patients aged ≥ 13 years with stable viral suppression (≥ 1 viral load the previous year; all <400 copies per milliliter) and immune status (≥ 1 CD4 the previous year; all ≥ 200 cells per cubic millimeter) entered the cohort the following year beginning January 1, 2007. Each subsequent year, eligible patients not previously included entered the cohort on January 1. Outcomes were annual frequency of CD4 monitoring and probability of maintaining CD4 ≥ 200 cells per cubic millimeter. A multivariable Cox model identified factors associated with maintaining CD4 ≥ 200 cells per cubic millimeter. During 1.9 years of observation (median), 62,039 patients entered the cohort. The mean annual number of CD4 measurements among stable patients was 2.8 and varied little by year or characteristic. Two years after entering, 93.4% and 97.8% of those with initial CD4 350-499 and CD4 ≥ 500 cells per cubic millimeter, respectively, maintained CD4 ≥ 200 cells per cubic millimeter. Compared to those with initial CD4 ≥ 500 cells per cubic millimeter, those with CD4 200-349 cells per cubic millimeter and CD4 350-499 cells per cubic millimeter were more likely to have a CD4 <200 cells per cubic millimeter, controlling for sex, race, age, HIV risk group, and diagnosis year. In a population-based US cohort with well-controlled HIV, the probability of maintaining CD4 ≥ 200 cells per cubic millimeter for ≥ 2 years was >90% among those with initial CD4 ≥ 350 cells per cubic millimeter, suggesting that limited CD4 monitoring in these patients is appropriate.
Hu, Desheng; Mohanta, Sarajo K.; Yin, Changjun; Peng, Li; Ma, Zhe; Srikakulapu, Prasad; Grassia, Gianluca; MacRitchie, Neil; Dever, Gary; Gordon, Peter; Burton, Francis L.; Ialenti, Armando; Sabir, Suleman R.; McInnes, Iain B.; Brewer, James M.; Garside, Paul; Weber, Christian; Lehmann, Thomas; Teupser, Daniel; Habenicht, Livia; Beer, Michael; Grabner, Rolf; Maffia, Pasquale; Weih, Falk; Habenicht, Andreas J.R.
2015-01-01
Summary Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs. PMID:26084025
The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control
Halter, David; Collart, Martine A.; Panasenko, Olesya O.
2014-01-01
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968
Riss, Gina-Lucia; Chang, Dae-In; Wevers, Carolin; Westendorf, Astrid M; Buer, Jan; Scherbaum, Norbert; Hansen, Wiebke
2012-08-01
There is an increasing body of evidence that heroin addiction is associated with severe alterations in immune function, which might contribute to an increased risk to contract infectious diseases like hepatitis B and C or HIV. However, the impact of heroin consumption on the CD4(+) T cell compartment is not well understood. Therefore, we analyzed the frequency and functional phenotype of CD4(+) T cells as well as immune-suppressive CD4(+)CD25(high) regulatory T cells (Tregs) isolated from the peripheral blood of opiate addicts currently abusing heroin (n=27) in comparison to healthy controls (n=25) and opiate addicts currently in opioid maintenance treatment (OMT; n=27). Interestingly, we detected a significant increase in the percentage of CD4(+)CD25(high) Tregs in the peripheral blood of heroin addicted patients in contrast to patients in OMT. The proliferative response of CD4(+) T cells upon stimulation with anti-CD3 and anti-CD28 antibodies was significantly decreased in heroin users, but could be restored by depletion of CD25(high) regulatory T cells from CD4(+) T cells to similar values as observed from healthy controls and patients in OMT. These results suggest that impaired immune responses observed in heroin users are related to the expansion of CD4(+)CD25(high) Tregs and more importantly, can be restored by OMT. Copyright © 2012 Elsevier Inc. All rights reserved.
Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species
Nakayama, Ken; Murata, Soichiro; Ito, Hiromu; Iwasaki, Kenichi; Villareal, Myra Orlina; Zheng, Yun-Wen; Matsui, Hirofumi; Isoda, Hiroko; Ohkohchi, Nobuhiro
2017-01-01
Terpinen-4-ol (TP4O) is the main component of the essential oil extracted from Melaleuca alternifolia, known as the tea tree, of the botanical family Myrtaceae. The anticancer effects of TP4O have been reported in several cancer cell lines. Previous reports have demonstrated that TP4O exerts anticancer effects by inducing apoptotic cell death in several cell lines; however, the underlying molecular mechanisms of these effects remain unclear. In the present study, the anticancer effects of TP4O against the colorectal cancer (CRC) cell lines HCT116 and RKO were evaluated using WST-8 and bromodeoxyuridine assays. The mechanism of cell death was investigated by the measurement of caspase-3/7, Annexin V and lactate dehydrogenase release. Reactive oxygen species (ROS) levels induced by TP4O were evaluated by electron spin resonance and quantitative measurement of dihydroethidium. Localization of the ROS derived from mitochondria was observed by confocal inverted microscopy. Protein levels of ROS scavengers were assessed by western blotting analysis. To confirm the role of ROS, cell viability was measured in the presence of antioxidant reagents. In an in vivo xenograft model of ICR-SCID mice implanted with HCT116 cells, 200 mg/kg TP4O was injected locally, and tumor growth was compared with that of the control. TP4O induced apoptotic cell death in HCT116 and RKO cells in a dose-dependent manner, and TP4O also increased the levels of ROS generated by mitochondria. TP4O-induced cell death was rescued by administration of antioxidant regents. In vivo, TP4O inhibited the proliferation of HCT116 xenografts compared with that of the control group. The results of the present study suggest that TP4O induces apoptosis in CRC cells through ROS generation. Furthermore, TP4O is potentially useful for the development of novel therapies against CRC. PMID:28781645
The Immune Cell Composition in Barrett's Metaplastic Tissue Resembles That in Normal Duodenal Tissue
Lind, Alexandra; Siersema, Peter D.; Kusters, Johannes G.; Van der Linden, Jan A. M.; Knol, Edward F.; Koenderman, Leo
2012-01-01
Background and Objective Barrett's esophagus (BE) is characterized by the transition of squamous epithelium into columnar epithelium with intestinal metaplasia. The increased number and types of immune cells in BE have been indicated to be due to a Th2-type inflammatory process. We tested the alternative hypothesis that the abundance of T-cells in BE is caused by a homing mechanism that is found in the duodenum. Patients and Methods Biopsies from BE and duodenal tissue from 30 BE patients and duodenal tissue from 18 controls were characterized by immmunohistochemistry for the presence of T-cells and eosinophils(eos). Ex vivo expanded T-cells were further phenotyped by multicolor analysis using flowcytometry. Results The high percentage of CD4+-T cells (69±3% (mean±SEM/n = 17, by flowcytometry)), measured by flowcytometry and immunohistochemistry, and the presence of non-activated eosinophils found in BE by immunohistochemical staining, were not different from that found in duodenal tissue. Expanded lymphocytes from these tissues had a similar phenotype, characterized by a comparable but low percentage of αE(CD103) positive CD4+cells (44±5% in BE, 43±4% in duodenum of BE and 34±7% in duodenum of controls) and a similar percentage of granzyme-B+CD8+ cells(44±5% in BE, 33±6% in duodenum of BE and 36±7% in duodenum of controls). In addition, a similar percentage of α4β7+ T-lymphocytes (63±5% in BE, 58±5% in duodenum of BE and 62±8% in duodenum of controls) was found. Finally, mRNA expression of the ligand for α4β7, MAdCAM-1, was also similar in BE and duodenal tissue. No evidence for a Th2-response was found as almost no IL-4+-T-cells were seen. Conclusion The immune cell composition (lymphocytes and eosinophils) and expression of intestinal adhesion molecule MAdCAM-1 is similar in BE and duodenum. This supports the hypothesis that homing of lymphocytes to BE tissue is mainly caused by intestinal homing signals rather than to an active inflammatory response. PMID:22509265
Lind, Alexandra; Siersema, Peter D; Kusters, Johannes G; Van der Linden, Jan A M; Knol, Edward F; Koenderman, Leo
2012-01-01
Barrett's esophagus (BE) is characterized by the transition of squamous epithelium into columnar epithelium with intestinal metaplasia. The increased number and types of immune cells in BE have been indicated to be due to a Th2-type inflammatory process. We tested the alternative hypothesis that the abundance of T-cells in BE is caused by a homing mechanism that is found in the duodenum. Biopsies from BE and duodenal tissue from 30 BE patients and duodenal tissue from 18 controls were characterized by immmunohistochemistry for the presence of T-cells and eosinophils(eos). Ex vivo expanded T-cells were further phenotyped by multicolor analysis using flowcytometry. The high percentage of CD4(+)-T cells (69±3% (mean±SEM/n = 17, by flowcytometry)), measured by flowcytometry and immunohistochemistry, and the presence of non-activated eosinophils found in BE by immunohistochemical staining, were not different from that found in duodenal tissue. Expanded lymphocytes from these tissues had a similar phenotype, characterized by a comparable but low percentage of αE(CD103) positive CD4(+)cells (44±5% in BE, 43±4% in duodenum of BE and 34±7% in duodenum of controls) and a similar percentage of granzyme-B(+)CD8(+) cells(44±5% in BE, 33±6% in duodenum of BE and 36±7% in duodenum of controls). In addition, a similar percentage of α4β7(+) T-lymphocytes (63±5% in BE, 58±5% in duodenum of BE and 62±8% in duodenum of controls) was found. Finally, mRNA expression of the ligand for α4β7, MAdCAM-1, was also similar in BE and duodenal tissue. No evidence for a Th2-response was found as almost no IL-4(+)-T-cells were seen. The immune cell composition (lymphocytes and eosinophils) and expression of intestinal adhesion molecule MAdCAM-1 is similar in BE and duodenum. This supports the hypothesis that homing of lymphocytes to BE tissue is mainly caused by intestinal homing signals rather than to an active inflammatory response.
Czarnowicki, Tali; Esaki, Hitokazu; Gonzalez, Juana; Malajian, Dana; Shemer, Avner; Noda, Shinji; Talasila, Sreya; Berry, Adam; Gray, Jayla; Becker, Lauren; Estrada, Yeriel; Xu, Hui; Zheng, Xiuzhong; Suárez-Fariñas, Mayte; Krueger, James G; Paller, Amy S; Guttman-Yassky, Emma
2015-10-01
Identifying differences and similarities between cutaneous lymphocyte antigen (CLA)(+) polarized T-cell subsets in children versus adults with atopic dermatitis (AD) is critical for directing new treatments toward children. We sought to compare activation markers and frequencies of skin-homing (CLA(+)) versus systemic (CLA(-)) "polar" CD4 and CD8 T-cell subsets in patients with early pediatric AD, adults with AD, and control subjects. Flow cytometry was used to measure CD69/inducible costimulator/HLA-DR frequency in memory cell subsets, as well as IFN-γ, IL-13, IL-9, IL-17, and IL-22 cytokines, defining TH1/cytotoxic T (TC) 1, TH2/TC2, TH9/TC9, TH17/TC17, and TH22/TC22 populations in CD4 and CD8 cells, respectively. We compared peripheral blood from 19 children less than 5 years old and 42 adults with well-characterized moderate-to-severe AD, as well as age-matched control subjects (17 children and 25 adults). Selective inducible costimulator activation (P < .001) was seen in children. CLA(+) TH2 T cells were markedly expanded in both children and adults with AD compared with those in control subjects, but decreases in CLA(+) TH1 T-cell numbers were greater in children with AD (17% vs 7.4%, P = .007). Unlike in adults, no imbalances were detected in CLA(-) T cells from pediatric patients with AD nor were there altered frequencies of TH22 T cells within the CLA(+) or CLA(-) compartments. Adults with AD had increased frequencies of IL-22-producing CD4 and CD8 T cells within the skin-homing population, compared with controls (9.5% vs 4.5% and 8.6% vs 2.4%, respectively; P < .001), as well as increased HLA-DR activation (P < .01). These data suggest that TH2 activation within skin-homing T cells might drive AD in children and that reduced counterregulation by TH1 T cells might contribute to excess TH2 activation. TH22 "spreading" of AD is not seen in young children and might be influenced by immune development, disease chronicity, or recurrent skin infections. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Exosomes as mediators of platinum resistance in ovarian cancer.
Crow, Jennifer; Atay, Safinur; Banskota, Samagya; Artale, Brittany; Schmitt, Sarah; Godwin, Andrew K
2017-02-14
Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells.
A role for B cells in the development of T cell helper function in a malaria infection in mice
Langhorne, Jean; Cross, Caroline; Seixas, Elsa; Li, Ching; von der Weid, Thierry
1998-01-01
B cell knockout mice are unable to clear a primary erythrocytic infection of Plasmodium chabaudi chabaudi. However, the early acute infection is controlled to some extent, giving rise to a chronic relapsing parasitemia that can be reduced either by drug treatment or by adoptive transfer of B cells. Similar to mice rendered B-cell deficient by lifelong treatment with anti-μ antibodies, B cell knockout mice (μMT) retain a predominant CD4+ Th1-like response to malarial antigens throughout a primary infection. This contrasts with the response seen in control C57BL/6 mice in which the CD4+ T-cell response has switched to that characteristic of Th2 cells at the later stages of infection, manifesting efficient help for specific antibodies in vitro and interleukin 4 production. Both chloroquine and adoptive transfer of immune B cells reduced parasite load. However, the adoptive transfer of B cells resulted in a Th2 response in recipient μMT mice, as indicated by a relative increase in the precursor frequency of helper cells for antibody production. These data support the idea that B cells play a role in the regulation of CD4+ T subset responses. PMID:9465085
Jacobs, Evan S.; Abdel-Mohsen, Mohamed; Gibb, Stuart L.; Heitman, John W.; Inglis, Heather C.; Martin, Jeffrey N.; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Landay, Alan L.; Gange, Stephen J.; Deeks, Steven G.; Golub, Elizabeth T.; Pillai, Satish K.
2017-01-01
ABSTRACT A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells. PMID:28053103
Jacobs, Evan S; Keating, Sheila M; Abdel-Mohsen, Mohamed; Gibb, Stuart L; Heitman, John W; Inglis, Heather C; Martin, Jeffrey N; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C; Young, Mary; Greenblatt, Ruth M; Landay, Alan L; Gange, Stephen J; Deeks, Steven G; Golub, Elizabeth T; Pillai, Satish K; Norris, Philip J
2017-03-15
A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4 + T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4 + T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4 + T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4 + T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells. Copyright © 2017 American Society for Microbiology.
Sodium Orthovanadate Effect on Outflow Facility and Intraocular Pressure in Live Monkeys
Tan, James C.H.; Kiland, Julie A.; Gonzalez, Jose M.; Gabelt, B’Ann T.; Peters, Donna M.; Kaufman, Paul L.
2010-01-01
Sodium orthovanadate (Na3VO4) is reported to reduce IOP by affecting aqueous formation, but whether it also affects outflow facility (OF) is unclear. We tested the effect of Na3VO4 on OF and intraocular pressure (IOP) in live cynomolgus monkeys, and on actin and cell adhesion organization in cultured human trabecular meshwork (HTM) cells. Total OF (n = 12) was measured by 2-level constant pressure perfusion of the monkey anterior chamber (AC) before and after exchange with 1 mM Na3VO4 or vehicle in opposite eyes. Topical 1% Na3VO4 or vehicle only was given twice daily (each 2×20 μL drops) for 4 days to opposite eyes (n = 8), and Goldmann IOP was measured before and hourly after treatment for 6 hours on Days 1 and 4. Filamentous actin and vinculin-containing cell adhesions were examined by epifluorescence microscopy after the cells had been incubated with 1 mM Na3VO4 for 24 hours. A) In monkeys, Na3VO4 increased OF by 29.3 ± 8.8% (mean ± s.e.m.) over the perfusion interval when adjusted for baseline and contralateral eye washout (p = 0.01; n = 12). B) Day 1 baseline IOP was 16.2 ± 1.5 mmHg in treated eyes and 15.9 ± 1.3 mmHg in the contralateral control eyes. Following treatment on Day 1, IOP was no different (p>0.05) between treated eyes and control eyes at any time-point or compared to baseline. Day 4 mean IOP averaged over hours 2–6 was 13.5 ± 0.8 mmHg in treated eyes and 16.1 ± 0.2 mmHg in control eyes. Treated eye IOP was lower than its Day 4 baseline (p<0.005), lower than control eyes for the same Day 4 interval (p = 0.009), and lower than the Day 1 baseline (p = 0.0000). Control eye IOP on Day 4 was not significantly different from baseline on Day 1. C) Incubation of HTM cells with 1 mM Na3VO4 for 24 hours caused a loss of actin stress fibers and vinculin-containing adhesions. Cell retraction and separation was also observed in vanadate-treated cultures. Reformation of actin stress fibers, vinculin-containing adhesions and confluent monolayers occurred within 24 hours after Na3VO4-containing culture medium was replaced with Na3VO4-free medium. Ocular administration of Na3VO4 to live monkeys significantly increases OF and reduces IOP. Na3VO4 reversibly disrupts actin and cell adhesion organization and causes retraction and separation of cultured HTM cells. Na3VO4 increases pressure-dependent outflow in live monkeys. Altered actin architecture in the TM may play a part in this increased OF. PMID:20620138
Naciute, Milda; Maciunaite, Gabriele; Mieliauskaite, Diana; Rugiene, Rita; Zinkeviciene, Aukse; Mauricas, Mykolas; Murovska, Modra; Girkontaite, Irute
2017-01-01
To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19 + ) and -negative (B19 - ) patients with rheumatoid arthritis (RA) and healthy persons. Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19 + Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4 + CD45RA + , CD4 + CD45RA - , CD8 + CD45RA + , CD8 + CD45RA - subsets were analyzed by flow cytometry. The percentage of CD25 low and CD25 hi cells was increased on CD4 + CD45RA + , CD4 + CD45RA - T-cells and the percentage of CD25 + cells was increased on CD8 + CD45RA + , CD8 + CD45RA - T-cells of B19 + patients with RA in comparison with B19 - patients and controls. Raised levels of CD4 and CD8 regulatory T-cells in B19 + RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NACIUTE, MILDA; MACIUNAITE, GABRIELE; MIELIAUSKAITE, DIANA; RUGIENE, RITA; ZINKEVICIENE, AUKSE; MAURICAS, MYKOLAS; MUROVSKA, MODRA; GIRKONTAITE, IRUTE
2017-01-01
Aim: To investigate T-cell subpopulations in peripheral blood of human parvovirus B19 DNA-positive (B19+) and -negative (B19−) patients with rheumatoid arthritis (RA) and healthy persons. Patients and Methods: Blood samples were collected from 115 patients with RA and 47 healthy volunteers; 27 patients with RA and nine controls were B19+. Cluster of differentiation (CD) 4, 8, 25 and 45RA were analyzed on blood cells. CD25 expression on CD4+CD45RA+, CD4+CD45RA−, CD8+CD45RA+, CD8+CD45RA− subsets were analyzed by flow cytometry. Results: The percentage of CD25low and CD25hi cells was increased on CD4+CD45RA+, CD4+CD45RA− T-cells and the percentage of CD25+ cells was increased on CD8+CD45RA+, CD8+CD45RA− T-cells of B19+ patients with RA in comparison with B19− patients and controls. Conclusion: Raised levels of CD4 and CD8 regulatory T-cells in B19+ RA patients could cause down-regulation of antiviral clearance mechanisms and lead to activation of persistent human parvovirus B19 infection in patients with RA PMID:28358698
Abdellatif, Hussein; Shiha, Gamal; Saleh, Dalia M; Eltahry, Huda; Botros, Kamal G
2017-01-01
Oval cells, specific liver progenitors, are activated in response to injury. The human umbilical cord blood (hUCB) is a possible source of transplantable hepatic progenitors and can be used in cases of severe liver injury. We detected the effect of hUCB stem cell transplantation on natural response of oval cells to injury. Twenty-four female albino rats were randomly divided into three groups: (A) control, (B) liver injury with hepatocyte block, and (C) hUCB transplanted group. Hepatocyte block was performed by administration of 2-acetylaminofluorene (2-AAF) for 12 days. CCL4 was administrated at day 5 from experiment start. Animals were sacrificed at 9 days post CCL4 administration, and samples were collected for biochemical and histopathological analysis. Oval cell response to injury was evaluated by the percentage of oval cells in the liver tissue and frequency of cells incorporated into new ducts. Immunohistochemical analysis of oval cell response to injury was performed. There was significant deviation in the hUCB-transplanted (4.9 ± 1.4) and liver injury groups (2.4 ± 0.9) as compared to control (0.89 ± 0.4) 9 days post injury. Detection of oval cell response was dependant on OV-6 immunoreactivity. For mere localization of cells with human origin, CD34 antihuman immunoreactivity was performed. There was no significant difference in endogenous OV-6 immunoreactivity following stem cell transplantation as compared to the liver injury group. In vivo transplantation of cord blood stem cells (hUCB) does not interfere with natural oval cell response to liver injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu
2005-06-17
Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less
HBV-specific and global T-cell dysfunction in chronic hepatitis B
Park, Jang-June; Wong, David K.; Wahed, Abdus S.; Lee, William M.; Feld, Jordan J.; Terrault, Norah; Khalili, Mandana; Sterling, Richard K.; Kowdley, Kris V.; Bzowej, Natalie; Lau, Daryl T.; Kim, W. Ray; Smith, Coleman; Carithers, Robert L.; Torrey, Keith W.; Keith, James W.; Levine, Danielle L.; Traum, Daniel; Ho, Suzanne; Valiga, Mary E.; Johnson, Geoffrey S.; Doo, Edward; Lok, Anna S. F.; Chang, Kyong-Mi
2015-01-01
Background & Aims T cells play a critical role in in viral infection. We examined whether T-cell effector and regulatory responses can define clinical stages of chronic hepatitis B (CHB). Methods We enrolled 200 adults with CHB who participated in the NIH-supported Hepatitis B Research Network from 2011 through 2013 and 20 uninfected individuals (controls). Peripheral blood lymphocytes from these subjects were analyzed for T-cell responses (proliferation and production of interferon-γ and interleukin-10) to overlapping hepatitis B virus (HBV) peptides (preS, S, preC, core, and reverse transcriptase), influenza matrix peptides, and lipopolysaccharide. T-cell expression of regulatory markers FOXP3, programmed death-1 (PD1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) was examined by flow cytometry. Immune measures were compared with clinical parameters, including physician-defined immune-active, immune-tolerant, or inactive CHB phenotypes, in a blinded fashion. Results Compared to controls, patients with CHB had weak T-cell proliferative, interferon-γ, and interleukin-10 responses to HBV, with increased frequency of circulating FOXP3+CD127− regulatory T cells and CD4+ T-cell expression of PD1 and CTLA4. T-cell measures did not clearly distinguish between clinical CHB phenotypes, although the HBV core-specific T-cell response was weaker in HBeAg+ than HBeAg− patients (% responders: 3% vs 23%, P=.00008). Although in vitro blockade of PD1 or CTLA4 increased T-cell responses to HBV, the effect was weaker in HBeAg+ than HBeAg− patients. Furthermore, T-cell responses to influenza and lipopolysaccharide were weaker in CHB patients than controls. Conclusion HBV persists with virus-specific and global T-cell dysfunction mediated by multiple regulatory mechanisms including circulating HBeAg, but without distinct T-cell–based immune signatures for clinical phenotypes. These findings suggest additional T-cell independent or regulatory mechanisms of CHB pathogenesis that warrant further investigation. PMID:26684441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Fang; Chen, Rongjing; Liu, Baojun
2012-09-07
Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expressionmore » of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.« less
Lin, Wei; Jin, Lixia; Chen, Hua; Wu, Qingjun; Fei, Yunyun; Zheng, Wenjie; Wang, Qian; Li, Ping; Li, Yongzhe; Zhang, Wen; Zhao, Yan; Zeng, Xiaofeng; Zhang, Fengchun
2014-05-29
IgG4-related disease (IgG4-RD) is a multisystem-involved autoimmune disease. Abnormally activated and differentiated B cells may play important roles. Regulatory B cells (Breg) are newly defined B cell subgroups with immunosuppressive functions. In this study, we investigated the differences of B cell subsets, the expressions of co-stimulatory molecules on B cells, and the function of Breg cells in patients with IgG4-RD, primary Sjögren's syndrome (pSS) as well as in healthy controls (HC). Newly diagnosed IgG4-RD patients (n = 48) were enrolled, 38 untreated pSS patients and 30 healthy volunteers were recruited as disease and healthy controls. To analyze B cell subsets and B cell activity, PBMCs were surface stained and detected by flow cytometry. The function of Breg cells was tested by coculturing isolated CD19 + CD24(hi)CD38(hi) Breg cells with purified CD4 + CD25- T cells. Serum cytokines were measured by ELISA and cytometric bead array. Relationship between clinical data and laboratory findings were analyzed as well. Compared with pSS patients and HC, IgG4-RD patients had a lower frequency of peripheral Breg cells. Interestingly, CD19 + CD24-CD38(hi) B cell subsets were significantly higher in peripheral B cells from IgG4-RD patients than in pSS patients and HC, which correlated with serum IgG4 levels. The expression of BAFF-R and CD40 on B cells was significantly lower in IgG4-RD patients compared with those in pSS patients and HC. Unlike HC, Breg cells from pSS patients lacked suppressive functions. B cells in patients with IgG4-RD and pSS display a variety of abnormalities, including disturbed B cell subpopulations, abnormal expression of key signaling molecules, co-stimulatory molecules, and inflammatory cytokines. In addition, a significantly increased B cell subset, CD19 + CD24-CD38(hi) B cells, may play an important role in the pathogenesis of IgG4-RD.
Wei, Yuzhen; Yu, Kunwu; Wei, Hui; Su, Xin; Zhu, Ruirui; Shi, Huairui; Sun, Haitao; Luo, Quan; Xu, Wenbin; Xiao, Junhui; Zhong, Yucheng; Zeng, Qiutang
2017-07-01
Dilated cardiomyopathy (DCM) is a lethal inflammatory heart disease and closely connected with dysfunction of the immune system. Glycoprotein A repetitions predominant (GARP) expressed on activated CD4 + T cells with suppressive activity has been established. This study aimed to investigate the frequency and function of circulating CD4 + CD25 + GARP + regulatory T (Treg) cells in DCM. Forty-five DCM patients and 46 controls were enrolled in this study. There was a significant increase in peripheral T helper type 1 (Th1) and Th17 number and their related cytokines [interferon-γ (IFN-γ), interleukin (IL-17)], and an obvious decrease in Treg number, transforming growth factor-β 1 (TGF-β 1 ) levels and the expression of forkhead box P3 (FOXP3) and GARP in patients with DCM compared with controls. In addition, the suppressive function of CD4 + CD25 + GARP + Treg cells was impaired in DCM patients upon T-cell receptor stimulation detected using CFSE dye. Lower level of TGF-β 1 and higher levels of IFN-γ and IL-17 detected using ELISA were found in supernatants of the cultured CD4 + CD25 + GARP + Treg cells in DCM patients compared with controls. Together, our results indicate that CD4 + CD25 + GARP + Treg cells are defective in DCM patients and GARP seems to be a better molecular definition of the regulatory phenotype. Therefore, it might be an attractive stategy to pay more attention to GARP in DCM patients. © 2017 John Wiley & Sons Ltd.
Occupational exposure to formaldehyde and alterations in lymphocyte subsets
Hosgood, H. Dean; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Hao, Zhenyue; Shen, Min; Qiu, Chuangyi; Ge, Yichen; Hua, Ming; Ji, Zhiying; Li, Senhua; Xiong, Jun; Reiss, Boris; Liu, Songwang; Xin, Kerry X.; Azuma, Mariko; Xie, Yuxuan; Freeman, Laura Beane; Ruan, Xiaolin; Guo, Weihong; Galvan, Noe; Blair, Aaron; Li, Laiyu; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing
2012-01-01
Background Formaldehyde is used in many occupational settings, most notably in manufacturing, health care, and embalming. Formaldehyde has been classified as a human carcinogen, but its mechanism of action remains uncertain. Methods We carried out a cross-sectional study of 43 formaldehyde exposed-workers and 51 unexposed age and sex-matched controls in Guangdong, China to study formaldehyde’s early biologic effects. To follow-up our previous report that the total lymphocyte count was decreased in formaldehyde-exposed workers compared to controls, we evaluated each major lymphocyte subset (i.e., CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and B cells) and T cell lymphocyte subset (CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells). Linear regression of each subset was used to test for differences between exposed workers and controls, adjusting for potential confounders. Results Total NK cell and T cell counts were about 24% (p=0.037) and 16% (p=0.0042) lower, respectively, among exposed workers. Among certain T cell subsets, decreased counts among exposed workers were observed for CD8+ T cells (p=0.026), CD8+ effector memory T cells (p=0.018), and regulatory T cells (CD4+FoxP3+: p=0.04; CD25+FoxP3+: p=0.008). Conclusions Formaldehyde exposed-workers experienced decreased counts of NK cells, regulatory T cells, and CD8+ effector memory T cells; however, due to the small sample size these findings need to be confirmed in larger studies. PMID:22767408
Laforge, Mireille; Silvestre, Ricardo; Rodrigues, Vasco; Garibal, Julie; Campillo-Gimenez, Laure; Mouhamad, Shahul; Monceaux, Valérie; Cumont, Marie-Christine; Rabezanahary, Henintsoa; Pruvost, Alain; Cordeiro-da-Silva, Anabela; Hurtrel, Bruno; Silvestri, Guido; Senik, Anna; Estaquier, Jérôme
2018-04-02
Apoptosis has been proposed as a key mechanism responsible for CD4+ T cell depletion and immune dysfunction during HIV infection. We demonstrated that Q-VD-OPH, a caspase inhibitor, inhibits spontaneous and activation-induced death of T cells from SIV-infected rhesus macaques (RMs). When administered during the acute phase of infection, Q-VD-OPH was associated with (a) reduced levels of T cell death, (b) preservation of CD4+/CD8+ T cell ratio in lymphoid organs and in the gut, (c) maintenance of memory CD4+ T cells, and (d) increased specific CD4+ T cell response associated with the expression of cytotoxic molecules. Although therapy was limited to the acute phase of infection, Q-VD-OPH-treated RMs showed lower levels of both viral load and cell-associated SIV DNA as compared with control SIV-infected RMs throughout the chronic phase of infection, and prevented the development of AIDS. Overall, our data demonstrate that Q-VD-OPH injection in SIV-infected RMs may represent an adjunctive therapeutic agent to control HIV infection and delaying disease progression to AIDS.
Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander.
Newman, E A
1991-12-01
An electrogenic Na+/HCO3- cotransport system was studied in freshly dissociated Müller cells of the salamander retina. Cotransporter currents were recorded from isolated cells using the whole-cell, voltage-clamp technique following the block of K+ conductance with external Ba2+ and internal Cs+. At constant pHo, an outward current was evoked when extracellular HCO3- concentration was raised by pressure ejecting a HCO3(-)-buffered solution onto the surface of cells bathed in nominally HCO3(-)-free solution. The HCO3(-)-evoked outward current was reduced to 4.4% of control by 0.5 mM DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate), to 28.8% of control by 2 mM DNDS (4,4'-dinitrostilbene-2,2'-disulfonate), and to 28.4% of control by 2 mM harmaline. Substitution of choline for Na+ in bath and ejection solutions reduced the response to 1.3% of control. Bicarbonate-evoked currents of normal magnitude were recorded when methane sulfonate was substituted for Cl- in bath, ejection, and intracellular solutions. Similarly, an outward current was evoked when extracellular Na+ concentration was raised in the presence of HCO3-. The Na(+)-evoked response was reduced to 16.2% of control by 2 mM DNDS and was abolished by removal of HCO3- from bath and ejection solutions. Taken together, these results (block by stilbenes and harmaline, HCO3- and Na+ dependence, Cl- independence) indicate that salamander Müller cells possess an electrogenic Na+/HCO3- cotransport system. Na+/HCO3- cotransporter sites were localized primarily at the endfoot region of Müller cells. Ejection of HCO3- onto the endfoot evoked outward currents 10 times larger than currents evoked by ejections onto the opposite (distal) end of the cell. The reversal potential of the cotransporter was determined by DNDS block of cotransport current. In the absence of a transmembrane HCO3- gradient, the reversal potential varied systematically as a function of the transmembrane Na+ gradient. The reversal potential was -0.1 mV for a [Na+]o:[Na+]i ratio of 1:1 and -25.2 mV for a Na+ gradient ratio of 7.4:1. Based on these values, the estimated stoichiometry of the cotransporter was 2.80 +/- 0.13:1 (HCO3-:Na+). Possible functions of the glial cell Na+/HCO3- cotransporter, including the regulation of CO2 in the retina and the regulation of cerebral blood flow, are discussed.
Involvement of heat shock protein a4/apg-2 in refractory inflammatory bowel disease.
Adachi, Teppei; Sakurai, Toshiharu; Kashida, Hiroshi; Mine, Hiromasa; Hagiwara, Satoru; Matsui, Shigenaga; Yoshida, Koji; Nishida, Naoshi; Watanabe, Tomohiro; Itoh, Katsuhiko; Fujita, Jun; Kudo, Masatoshi
2015-01-01
Expression of heat shock protein A4 (HSPA4, also called Apg-2), a member of the HSP110 family, is induced by several forms of stress. The physiological and pathological functions of HSPA4 in the intestine remain to be elucidated. We assessed HSPA4 expression and function by generating HSPA4-deficient mice and using 214 human intestinal mucosa samples from patients with inflammatory bowel disease (IBD). In the colonic mucosa of patients with IBD, a significant correlation was observed between the expression of HSPA4 and antiapoptotic protein Bcl-2, a T-cell-derived cytokine IL-17 or stem cell markers, such as Sox2. In refractory ulcerative colitis, a condition associated with increased cancer risk, expression of HSPA4 and Bcl-2 was increased in inflammatory cells of colonic mucosae. HSPA4 was overexpressed both in cancer cells and immune cells of human colorectal cancers. Patients with high expression of HSPA4 or Bmi1 showed significantly lower response rates upon subsequent steroid therapy as compared with patients with low expression of each gene. HSPA4-deficient mice exhibit more apoptosis and less expression of IL-17/IL-23 in inflammatory cells and less number of Sox2 cells after administration of dextran sodium sulfate than control mice. Transduction of HspaA4 bone marrow into wild-type mice reduced the immune response. Upregulation of Bcl-2 and IL-17 by HSPA4 would control apoptosis of inflammatory cells and immune response in the gut, which might develop treatment resistance in IBD. HSPA4 and Bmi1 would be a useful biomarker for refractory clinical course and a promising approach for a therapeutic strategy in patients with IBD.
Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma
NASA Astrophysics Data System (ADS)
Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan
2007-02-01
For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.
Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.
Lee, Yoonjin; Dominy, John E; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I; Puigserver, Pere
2014-06-26
Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3β (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.
Batorov, Egor V; Tikhonova, Marina A; Kryuchkova, Irina V; Sergeevicheva, Vera V; Sizikova, Svetlana A; Ushakova, Galina Y; Batorova, Dariya S; Gilevich, Andrey V; Ostanin, Alexander A; Shevela, Ekaterina Y; Chernykh, Elena R
2017-07-01
High-dose chemotherapy with autologous hematopoietic stem-cell transplantation (AHSCT) causes severe and long-lasting immunodeficiency in patients with lymphoproliferative disorders. The thymus begins to restore the T-cell repertoire approximately from the sixth month post-transplant. We assessed the dynamics of post-transplant recovery of CD4 + CD45RA + CD31 + T cells, "recent thymic emigrants" (RTEs), and a poorly described subtype of CD4 + CD45RA - CD31 + T cells in 90 patients with lymphoproliferative disorders following high-dose chemotherapy with AHSCT. Relative and absolute counts of CD4 + CD31 + naïve and memory T cells were evaluated before AHSCT, at the day of engraftment, and 6- and 12-month post-transplant. The pre-transplant count of CD4 + CD45RA + CD31 + T cells was lower than in healthy controls, and did not reach donors' values during the 12-month period. The pre-transplant number of CD4 + CD45RA - CD31 + T cells was higher than in healthy controls and was restored rapidly following AHSCT. Post-transplant mediastinal radiotherapy reduced counts of RTEs and elongated recovery period. Non-thymic tissue irradiation did not reduce this subset. The obtained data indicate that homeostatic proliferation may decrease the significance of CD31 expression on CD4 + CD45RA + T cells as a marker of RTEs, and suggest that evaluation of RTEs recovery by flow cytometry requires an accurate gating strategy to exclude CD31 + memory T cells.
Shen, Lei; Shi, Hong; Gao, Yan; Ou, Qinfang; Liu, Qianqian; Liu, Yuanyuan; Wu, Jing; Zhang, Wenhong; Fan, Lin; Shao, Lingyun
2016-12-01
PD-1 is a cell surface receptor of activated T and B lymphocytes and it's role in tuberculosis is controversial because of lack of congruence between clinical study and animal model. To investigate the immunological pathogenesis mechanisms of tuberculosis and to develop the immune therapy target essential for controlling tuberculosis, here we explored the expression characteristics and dynamic changes of PD-1/PD-L1 pathway in different CD4+T cell subsets. We enrolled 24 human subjects including 15 active tuberculosis (ATB) patients and 9 healthy donors (HD). The expressions of PD-1 and PD-L1 on CD4+T cells increased significantly in ATB patients than HD. ATB patients had a higher proportion of regulatory T cells (Treg, CD4 + CD25 + Foxp3+) than HD. The expressions of PD-1 and PD-L1 increased remarkably on CD4+T cell subsets, including Treg cells, Tresp (CD4 + CD25 - ) cells and Teff (CD4 + CD25 + Foxp3-) cells. Finally, clinical improvement following effective anti-TB therapy is correlated with significantly decreased expression of PD-1 in Tresp and Teff cells, but not in Treg cells. Thus, expression profiles of PD-1 in T cell subpopulations may be used as a candidate to predict the clinical efficacy of anti-tuberculosis therapy. Modulation of PD-1/PD-L1 pathway in CD4 subsets may offer an immunotherapy target for the control of tuberculosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.
Weigent, Douglas A
2009-01-01
In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.
Jaiswal, Sarita Rani; Zaman, Shamsur; Nedunchezhian, Murugaiyan; Chakrabarti, Aditi; Bhakuni, Prakash; Ahmed, Margoob; Sharma, Kanika; Rawat, Sheh; O'donnell, Paul; Chakrabarti, Suparno
2017-04-01
We conducted a pilot study on the feasibility of CD56-enriched donor cell infusion after post-transplantation cyclophosphamide (PTCy) for 10 patients with advanced myeloid malignancies undergoing haploidentical peripheral blood stem cell transplantation with cyclosporine alone as graft-versus-host disease (GVHD) prophylaxis and compared the outcome and immune reconstitution with a control group of 20 patients undergoing the same without CD56-enriched donor cell infusion. An early and rapid surge of mature NK cells as well as CD4 + T cells and regulatory T cells (Tregs) was noted compared with the control group. KIR of donor phenotype reconstituted as early as day 30 with expression of CD56 dim CD16 + NKG2A - KIR + phenotype. None experienced viral or fungal infections, and non-relapse mortality was 10% only. The incidence of grade 2-4 acute GVHD was 50% in the control group with none in the CD56 group (P = 0.01). Only two had de novo chronic GVHD in each group. Relapse occurred in five patients in CD56 group with a median follow-up of 12 months, similar to the control group. Our preliminary data show that CD56 + donor cell infusion after PTCy and short-course cyclosporine is feasible with prompt engraftment, rapid reconstitution of CD4 + T cells, Tregs and NK cells and reduced incidence of acute GVHD. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Sedikides, George X.; Mason, Gavin M.; Okecha, Georgina
2017-01-01
ABSTRACT Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8+ T cell response to HCMV has been extensively studied, the HCMV-specific CD4+ T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4+ T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4+ T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4+ T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro, we observed that the CD4+ T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4+ T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4+ T cell responses, even those from elderly individuals, are highly functional and are directly antiviral. IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4+ T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4+ T cells is maintained. We also show that CD4+ T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people. PMID:28053099
Jackson, Sarah E; Sedikides, George X; Mason, Gavin M; Okecha, Georgina; Wills, Mark R
2017-03-15
Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8 + T cell response to HCMV has been extensively studied, the HCMV-specific CD4 + T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4 + T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4 + T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4 + T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro , we observed that the CD4 + T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4 + T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4 + T cell responses, even those from elderly individuals, are highly functional and are directly antiviral. IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4 + T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4 + T cells is maintained. We also show that CD4 + T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people. Copyright © 2017 American Society for Microbiology.
Vijayakumar, Priya; Datta, Sourav; Dolan, Liam
2016-12-01
ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib
Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krishnan, Ramesh K.; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M.
2017-01-01
Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. PMID:28007914
Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.
Borrell, Víctor; Marín, Oscar
2006-10-01
Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.
Zeng, Zhipeng; Wang, Ke; Li, Yuanyuan; Xia, Ni; Nie, Shaofang; Lv, Bingjie; Zhang, Min; Tu, Xin; Li, Qianqian; Tang, Tingting; Cheng, Xiang
2017-04-07
CD4 + T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4 + T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4 + T cell activation in DCM. CD4 + T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4 + T cells revealed a distinct pattern of miRNA expression in CD4 + T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4 + T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4 + T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4 + T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
[Effect of aspirin on cell biological activities in murine bone marrow stromal cells].
Du, Mi; Pan, Wan; Yang, Pishan; Ge, Shaohua
2016-03-01
To determine the effect of aspirin on cell proliferation, alkaline phosphatase (ALP) activity, cell cycle and apoptosis in murine bone marrow stromal cells, so as to explore an appropriate dose range to improve bone regeneration in periodontal treatment. ST2 cells were stimulated with aspirin (concentrations of 1, 10, 100 and 1 000 μmol/L) for 1, 2, 3, 5 and 7 d. Cell proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay. After ST2 cells were treated for 1, 3 and 7 d, ALP activity was measured by ALP kit, cell cycle and apoptosis were measured by flow cytometry (FCM) after treated for 48 h. MTT assays showed that various doses of aspirin have different effects on the cell growth. Briefly, lower concentrations (1, 10 μmol/L) of aspirin promoted the cell growth, the A value of 0, 1 and 10 μmol/L aspirin 7-day-treated cells were 0.313±0.012, 0.413±0.010 and 0.387±0.017 respectively (P <0.01 vs control), and so did the ALP level ([4.3±0.9], [6.0±0.3] and [7.7±0.4] μmol·min(-1)·g(-1), P <0.05 vs control), while higher concentrations, especially 1000 μmol/L of aspirin might inhibit the cell growth with time going, A value and ALP level were 0.267±0.016, (4.3±1.3) μmol·min(-1)·g(-1) respectively (P <0.05 vs control). Cell cycle analysis revealed no changes in comparison to control cells after treatment with 1 or 10 μmol/L aspirin, but it was observed that cell mitosis from S phase to G2/M phase proceeded at higher concentrations of 100 μmol/L aspirin, and the cell cycle in phase G0/G1 arrested at 1000 μmol/L. Parallel apoptosis/necrosis studies showed that the percentage of cells in apoptosis decreased dramatically at all doses of aspirin, the apoptosis rates of ST2 cells responded to 0, 1, 10, 100 and 1000 μmol/L aspirin were (11.50±0.90)%, (5.30±0.10)%, (5.50±0.10)%, (4.90±0.90)% and (7.95±0.25)% respectively (P<0.05 vs control). This study demonstrated that lower dosage of aspirin can promote ST2 cells growth, osteogenic activity and inhibit its apoptosis. Aspirin maybe used for the bone reconstruction with a proper concentration.
Binesh, Fariba; Akhondei, Mohsen; Pourmirafzali, Hamideh; Rajabzadeh, Yavar
2013-05-01
To determine eosinophil and mast cell populations in gastric and duodenal mucosal biopsies of adults with nonulcer dyspepsia (NUD) as compared to non-dyspeptic adults. A case control study. Shahid Sadoughi University of Medical Sciences, Yazd, Iran, from January 2010 to June 2011. A total of 52 (25 non-ulcer dyspeptic patients as case and 27 non-dyspeptic patients as control) patients underwent endoscopy. All patients had a minimum of 2 forceps biopsies obtained from stomach and duodenum. Routine histological evaluation was performed and additionally evaluated to determine eosinophil and mast cell counts. The statistical analysis was performed on SPSS version 17.0, using Mann-Whitney test with significance at p < 0.05. The mean age in the case and control groups was 31.72 ± 12.17 and 35.74 ± 12.42 years respectively. The median eosinophil density in gastric mucosa in case group was 5.0 (ranging from 1 to 20) and 4.0 in control group (ranging from 0 to 16; p = 0.140). The median eosinophil density in duodenal mucosa in case group was 16.0 (ranging from 2 to 24) and 13 in control group (ranging from 2 to 45; p = 0.147). The median mast cell density in gastric mucosa in case group was 4.0 (ranging from 0 to 33) and 4.0 in control group (ranging from 0 to 26; p = 0.827). The median mast cell density in duodenal mucosa in case group was 4.0 (ranging from 0 to 31) and 3.0 in control group (ranging from 1 to 23; p = 0.704). The frequency of Helicobacter pylori infection in both the groups was similar. Although there were not statistically significant differences in eosinophil and mast cell densities between case and control groups, there was a trend toward mild eosinophilia in gastric and duodenal mucosa. The specific role of eosinophils and mast cells in NUD is yet to be completely defined.
Keesen, T S L; Antonelli, L R V; Faria, D R; Guimarães, L H; Bacellar, O; Carvalho, E M; Dutra, W O; Gollob, K J
2011-01-01
Leishmaniasis is caused by infection with the protozoan parasite, Leishmania, that parasitizes human cells, and the cellular immune response is essential for controlling infection. In order to measure the host T cell response to Leishmania infection, we have measured the expansion, activation state and functional potential of specific T cells as identified by their T cell receptor Vβ region expression. In a group of cutaneous leishmaniasis (CL) patients, we evaluated these characteristics in nine different T cell subpopulations as identified by their Vβ region expression, before and after specific Leishmania antigen stimulation. Our results show: (1) an increase in CD4+ T cells expressing Vβ 5·2 and Vβ 24 in CL compared to controls; (2) a Leishmania antigen-induced increase in CD4+ T cells expressing Vβ 5·2, 11, 12 and 17; (3) a profile of previous activation of CD4+ Vβ 5·2-, 11- and 24-positive T cells, with higher expression of CD45RO, HLA-DR, interferon-γ, tumour necrosis factor-α and interleukin-10 compared to other Vβ-expressing subpopulations; (4) a positive correlation between higher frequencies of CD4+Vβ5·2+ T cells and larger lesions; and (5) biased homing of CD4+ T cells expressing Vβ 5·2 to the lesion site. Given that CL disease involves a level of pathology (ulcerated lesions) and is often followed by long-lived protection and cure, the identification of specific subpopulations active in this form of disease could allow for the discovery of immunodominant Leishmania antigens important for triggering efficient host responses against the parasite, or identify cell populations most involved in pathology. PMID:21726211
Xiong, X R; Li, J; Fu, M; Gao, C; Wang, Y; Zhong, J C
2013-02-01
The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle
2014-01-01
The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817
Thompson, Linda F.; Saxon, Andrew; O'Connor, Richard D.; Fox, Robert I.
1983-01-01
T lymphocytes from control subjects were separated into subsets using monoclonal antibodies of the OKT series and complement lysis and analyzed for ecto-5′-nucleotidase activity both by quantitative radiochemical assay and a histochemical stain. T cells from 15 control subjects contained 54±4% OKT4+ (helper/inducer) cells and 32±3% OKT8+ (cytotoxic/suppressor) cells. Total T cell ecto-5′-nucleotidase activity was 10.9±2.1 nmol/h per 106 cells with 25±7% positive by histochemical stain. Ecto-5′-nucleotidase activity in OKT4-enriched populations was 5.43±1.8 nmol/h per 106 cells with 14±2% positive by histochemical stain; that in OKT8-enriched populations was 17.1±5.9 nmol/h per 106 cells with 35±8% positive by histochemical stain. Two of four patients with congenital agammaglobulinemia and four of seven patients with common variable immunodeficiency had decreased proportions of OKT4+ T cells with corresponding increases in the proportions of OKT8+ T cells (OKT4/OKT8 = 0.60 to 1.0 as compared with 1.7±0.2 for control subjects). All four patients with congenital agammaglobulinemia, and three of seven patients with common variable immunodeficiency also had low T cell ecto-5′-nucleotidase activity (<5.5 nmol/h per 106 cells). Ecto-5′-nucleotidase activity in OKT4- enriched populations isolated from four patients with low total T cell activity was 2.85±0.90 nmol/h per 106 cells with 10±4% positive by histochemical stain; that in OKT8-enriched populations was 6.82±1.7 nmol/h per 106 cells with 7.5±3% positive by histochemical stain. Thus, the number of ecto-5′-nucleotidase positive cells is decreased, especially in the OKT8+ subpopulation, and the low total T cell ecto-5′-nucleotidase activity seen in these patients is due to fewer positive cells rather than to substantially less activity per cell. Our data indicate that ecto-5′-nucleotidase activity defines two subpopulations of T lymphocytes (ecto-5′-nucleotidase positive and negative), the proportions of which are markedly altered in many patients with hypogammaglobulinemia. In preliminary studies with seven patients, increased numbers of ecto-5′-nucleotidase negative T cells appeared to correlate with increased suppressor T cell activity toward in vitro immunoglobulin synthesis. Therefore, ecto-5′-nucleotidase may be a useful cell surface marker in the study of imbalances of regulatory T cell subsets in patients with antibody synthesis disorders. PMID:6300192
Dai, Hai-Ping; Zhu, Guo-Hua; Wu, Li-Li; Wang, Qian; Yao, Hong; Wang, Qin-Rong; Wen, Li-Jun; Qiu, Hui-Ying; Shen, Qun; Chen, Su-Ning; Wu, De-Pei
2017-06-01
To explore the effect of LPXN overexpression on the proliferation, adhesion and invasion of THP-1 cells and its possible mechanism. A THP-1 cell line with stable overexpression of LPXN was constucted by using a lentivirus method, CCK-8 was used to detect the proliferation of cells, adhesion test was used to evaluate adhesion ablity of cells to Fn. Transwell assay was used to detect the change of invasion capability. Western blot was used to detect expression of LPXN, ERK, pERK and integrin α4, α5, β1, the Gelatin zymography was applied to detect activity of MMP2/MMP9 secreted by the THP-1 cells. Successful establishment of THP-1 cells with LPXN overexpression (THP-1 LPXN) was confirmed with Western blot. THP-1 LPXN cells were shown to proliferate faster than the control THP-1 vector cells. Adhesion to Fn and expression of ERK, integrin α4, α5 and β1 in the THP-1 LPXN cells were higher than that in the control cells. Invasion across matrigel and enhanced activity of MMP2 could be detected both in the THP-1 LPXN cells as compared with the control cells. Ectopically ovexpression of LPXN may promote proliferation of THP-1 cells through up-regulation of ERK; promote adhesion of THP-1 cells through up-regulating the integrin α4/β1 as well as integrin α5/β1 complex; promote invasion of THP-1 cells through activating MMP2.
Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression
Vaeth, Martin; Müller, Gerd; Stauss, Dennis; Dietz, Lena; Klein-Hessling, Stefan; Serfling, Edgar; Lipp, Martin
2014-01-01
Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4+CXCR5+ follicular helper T cells (TFH) and inhibited by CD4+CXCR5+Foxp3+ follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells. PMID:24590764
Singh, Yogesh; Zhou, Yuetao; Zhang, Shaqiu; Abdelazeem, Khalid N M; Elvira, Bernat; Salker, Madhuri S; Lang, Florian
2017-01-01
MicroRNAs (miRNAs) negatively regulate gene expression at a post-transcriptional level. Dicer, a cytoplasmic RNase III enzyme, is required for the maturation of miRNAs from precursor miRNAs. Dicer, therefore, is a critical enzyme involved in the biogenesis and processing of miRNAs. Several biological processes are controlled by miRNAs, including the regulation of T cell development and function. T cells generate reactive oxygen species (ROS) with parallel H+ extrusion accomplished by the Na+/H+-exchanger 1 (NHE1). The present study explored whether ROS production, as well as NHE1 expression and function are sensitive to the lack of Dicer (miRNAs deficient) and could be modified by individual miRNAs. CD4+ T cells were isolated from CD4 specific Dicer deficient (DicerΔ/Δ) mice and the respective control mice (Dicerfl/fl). Transcript and protein levels were quantified with RT-PCR and Western blotting, respectively. For determination of intracellular pH (pHi) cells were incubated with the pH sensitive dye bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and Na+/H+ exchanger (NHE) activity was calculated from re-alkalinization after an ammonium pulse. Changes in cell volume were measured using the forward scatter in flow cytometry, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. Transfection of miRNA-control and mimics in T cells was performed using DharmaFECT3 reagent. ROS production, cytosolic H+ concentration, NHE1 transcript and protein levels, NHE activity, and cell volume were all significantly higher in CD4+ T cells from DicerΔ/Δ mice than in CD4+ T cells from Dicerfl/fl mice. Furthermore, individual miR-200b and miR-15b modify pHi and NHE activity in Dicerfl/fl and DicerΔ/Δ CD4+ T cells, respectively. Lack of Dicer leads to oxidative stress, cytosolic acidification, upregulated NHE1 expression and activity as well as swelling of CD4+ T cells, functions all reversed by miR-15b or miR-200b. © 2017 The Author(s). Published by S. Karger AG, Basel.
Ma, Qiang; Liu, Junning; Wu, Guoliang; Teng, Mujian; Wang, Shaoxuan; Cui, Meng; Li, Yuantao
2018-06-15
Regulatory T (Treg) cells are critical suppressors of inflammation and are thought to exert mainly deleterious effects in cancers. In colorectal cancer (CRC), Foxp3 + Treg accumulation in the tumor was associated with poor prognosis. Hence, we examined the circulating Treg cells in CRC patients. Compared to controls, CRC patients presented mild upregulations in CD4 + CD25 +/hi T cells and in the more canonical CD4 + CD25 +/hi Foxp3 + Treg cells in peripheral blood mononuclear cells. Both of these Treg populations could be roughly divided into LAG3 - TIM3 - and LAG3 + TIM3 + subsets. In CRC patients, the LAG3 + TIM3 + subset represented approximately half of CD4 + CD25 +/hi T cells and greater than 60% of CD4 + CD25 +/hi Foxp3 + Treg cells, which was significantly more frequent than in healthy controls. Compared to the LAG3 - TIM3 - CD4 + CD25 +/hi T cells, the LAG3 + TIM3 + CD4 + CD25 +/hi T cells presented considerably higher transforming growth factor (TGF)-β and slightly higher interleukin (IL)-10 secretion, together with higher CTLA-4 and Foxp3 expression levels. Notably, macrophages following incubation with LAG3 - TIM3 - CD4 + CD25 +/hi T cells and LAG3 + TIM3 + CD4 + CD25 +/hi T cells displayed different characteristics. Macrophages incubated with LAG3 + TIM3 + CD4 + CD25 +/hi T cells presented lower expression of MHC class II, CD80, CD86, and tumor necrosis factor alpha (TNFα) but higher expression of IL-10, than macrophages incubated with LAG3 - TIM3 - CD4 + CD25 +/hi T cells. Together, our investigations demonstrated that CRC patients presented an enrichment of circulating Treg cells, in which the LAG3 + TIM3 + subset exhibited more potent expression of inhibitory molecules, and furthermore, the LAG3 + TIM3 + Treg cells could suppress the proinflammatory activation of macrophages more potently than the LAG3 - TIM3 - Treg cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
2009-04-01
Untreated and TAX treated EL4 targets were labeled with DDAO-SE and loaded with control (C.P.) or specific (S.P.) peptide. The tumor cells were...C ell Vehicle treated EL4 cells 100 101 102 103 104 FL4-H: anti mouse granzyme B alexa647 0 100 200 300 400 500 # Cells 2.5297.5 100 101 102 103...mouse granzyme B alexa647 0 100 200 300 400 500 # Cells 7.292.8 Taxol treated EL4 cells 100 101 102 103 104 FL4-H: anti mouse granzyme B alexa647 0
Dolff, S; Quandt, D; Feldkamp, T; Jun, C; Mitchell, A; Hua, F; Specker, C; Kribben, A; Witzke, O; Wilde, B
2014-01-01
Programmed death (PD)-1 is a cell death receptor that, upon stimulation, leads to apoptosis. Previous studies have shown alteration of PD-1 expression on T cells and PD-1 genes in patients with systemic lupus erythematosus (SLE). The aim of this study was to assess the expression of this receptor on effector T cells in patients with SLE. In this study we enrolled 32 SLE patients and 31 healthy controls. T cells from peripheral blood were analysed by flow cytometry for the expression of PD-1. Interferon (IFN)-γ and interleukin (IL)-17-producing cells were investigated for the expression of this co-stimulatory marker. Percentages of CD4(+) T cells expressing PD-1 were significantly increased in patients with SLE compared to healthy controls. The percentage of PD-1 expression was correlated with the production of INF-γ (r = 0.83, p < 0.0001). We also investigated the production of IL-17 by PD-1(+) CD3(+) T cells. Inactive patients (3.2 ± 1.2% vs. 5.9 ± 3.5%, p = 0.002) and patients without lupus nephritis (LN) (3.2 ± 1.5% vs. 5.9 ± 3.5%, p = 0.005) showed lower levels of IL-17 compared to healthy controls. We have demonstrated increased expression of PD-1 on CD4(+) T cells in SLE patients and an association between PD-1 expression on CD4(+) T cells and IFN-γ expression on CD3(+) T cells. We have also shown that there is an altered subset of PD-1(+) T cells in inactive patients and patients without LN producing lower amounts of IL-17.
Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses.
Bizzell, Erica; Sia, Jonathan Kevin; Quezada, Melanie; Enriquez, Ana; Georgieva, Maria; Rengarajan, Jyothi
2018-04-01
Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge. ©2017 Society for Leukocyte Biology.
[Changes of CD(4)(+) Foxp3+ regulatory T cells and CD(4)(+)IL-17+T cells in acrolein exposure rats].
Wei, Ming; Tu, Ling; Liang, Yinghong; Li, Jia; Gong, Yanjie; Zhang, Yihua; Yang, Lu
2015-09-01
To evaluate the changes of CD(4)(+) IL-17+T (Th17) and CD(4)(+)Foxp3+regulatory T (Treg) cells in peripheral blood and bronchoalveolar lavage fluid (BALF) , and therefore to explore the role of Th17 and Treg in acrolein exposure airway inflammation in rats. Forty male Wistar rats were randomly divided into 4 groups: a 2 wk acrolein exposure group, a 4 wk acrolein exposure group, a 2 wk control group and a 4 wk control group (n=10 each). Cells in BALF were collected and analyzed by absolute and differential cell counts.IL-17 and IL-6 levels in serum and BALF were tested by enzyme linked immunosorbent assay (ELISA). The proportion of CD(4)(+)IL-17+T and CD(4)(+) Foxp3+Treg in peripheral blood and BALF were determined by flow cytometry.The mRNA expressions of IL-17 and Foxp3 were measured by real-time PCR. Comparisons of the data between different groups were performed using one-way ANOVA, and SNK and Games-Howell test were used for comparison between 2 groups. Levels of IL-17 were remarkable increased in the 2 wk acrolein exposure group and the 4 wk acrolein exposure group in serum [(52.64 ± 1.89) ng/L, (76.73 ± 5.57) ng/L], and BALF [(79.07 ± 5.67) ng/L, (96.61 ± 6.44) ng/L] compared with the 2 wk control group [(40.05 ± 3.12) ng/L, (56.75 ± 4.37) ng/L] and the 4 wk control group [(38.75 ± 3.23) ng/L, (53.27 ± 4.48) ng/L], all P<0.01. IL-6 was increased in the 2 wk and the 4 wk acrolein exposure group [ (33.28 ± 2.27) ng/L, (46.24 ± 3.16) ng/L] compared with the 2 wk and the 4 wk control group [ (16.37 ± 1.49) ng/L, (17.02 ± 1.43) ng/L] in BALF.Ratio of Th17 was higher in the 2 wk and the 4 wk acrolein exposure groups in peripheral blood (1.82 ± 0.18) %, (3.75 ± 0.48) % and BALF [(7.23 ± 0.27) %, (8.12 ± 0.38) %] compared with the 2 wk [(0.96 ± 0.07) %, (5.64 ± 0.63) %] and the 4 wk control group [(1.01 ± 0.08) %, (5.86 ± 0.57) %]. Ratio of Treg in BALF was higher in the acrolein exposure groups [ (8.83 ± 0.52) %, (12.05 ± 0.74) %] compared with the control groups [(4.37 ± 0.27) %, (5.01 ± 0.37) %]. The level of IL-17 mRNA was increased in the 2 wk and the 4 wk acrolein exposure group in peripheral blood [(25.78 ± 2.31), (34.69 ± 2.01) ] and in BALF [(23.04 ± 1.78), (34.56 ± 3.12)] compared with the 2 wk [(11.04 ± 2.53), (11.08 ± 2.05)] and the 4 wk [(12.03 ± 2.34), (12.69 ± 2.69)] control groups. Foxp3 mRNA was increased in the acrolein exposure groups [ (26.37 ± 3.24), (33.19 ± 2.98)] (24.4 ± 2.7), (30.3 ± 2.7) compared with the control groups [(12.37 ± 2.56), (13.12 ± 3.08)]. Th17 in acrolein exposure groups was positively correlated with counts of total cells and macrophages (r=0.5126, 0.5437, all P<0.01). A changed expression of Th17 and Treg cells and an vary of inflammatory cytokines were evident in airway inflammation of acrolein exposed rats, suggesting that Treg was involved in the immunological regulation and Th17 was associated with the persistent inflammation in acrolein induced airway inflammation in rats.
Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro.
Pinheiro, Marcelo Maia; Stoppa, Caroline Lais; Valduga, Claudete Justina; Okuyama, Cristina Eunice; Gorjão, Renata; Pereira, Regina Mara Silva; Diniz, Susana Nogueira
2017-03-30
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of anti-diabetic agents that are widely used in clinical practice to improve glycemic control in patients with type 2 diabetes. DPP-4 is also known as lymphocyte cell surface protein, CD26, and plays an important role in T-cell immunity. Recent studies suggest that DPP-4 inhibitors improve beta-cell function and attenuate autoimmunity in type 1 diabetic mouse models. To investigate the direct effect of DPP4 in immune response, human peripheral blood mononuclear cells (PBMC) from healthy volunteers were obtained by Ficoll gradient and cultivated in the absence (control) or presence of phytohemagglutinin (PHA), or stimulated with PHA and treated with sitagliptin. The immune modulation mechanisms analyzed were: cell proliferation, by MTT assay; cytokine quantification by ELISA or cytometric bead array (CBA), Th1/Th2/Th17 phenotyping by flow cytometric analysis and CD26 gene expression by real time PCR. The results showed that sitagliptin treatment inhibited the proliferation of PBMC-PHA stimulated cells in a dose dependent manner and decreased CD26 expression by these cells, suggesting that sitagliptin may interfere in CD26 expression, dimerization and cell signaling. Sitagliptin treatment not only inhibited IL-10 (p<0.05) and IFN-gamma (p=0.07) cytokines, but also completely abolish IL-6 expression by PBMCs (p<0.001). On the other hand, IL-4 were secreted in culture supernatants from sitagliptin treated cells. A statistically significant increase (p<0.05) in the ratio of TGF-beta/proliferation index after sitagliptin treatment (2627.97±1351.65), when comparing to untreated cells (646.28±376.94), was also demonstrated, indicating higher TGF-beta1 production by viable cells in cultures. Sitagliptin treatment induced a significantly (p<0.05) decrease in IL-17 and IFN-gamma intracellular expression compared with PHA alone. Also, the percentage of T CD4 + IL-17 + , T CD4 + IFNgamma + and T CD4 + IL-4 + cells were significantly reduced (p<0.05) by sitagliptin. Our data demonstrated an immunosuppressive effect of sitagliptin on Th1, Th17 and Th2 lymphocytes differentiation that leads to the generation of regulatory TGF-beta1 secreting cells with low CD26 gene expression that may influence the state of pancreatic beta-cells and controlling DM1 patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Linnemann, Carsten; van Buuren, Marit M; Bies, Laura; Verdegaal, Els M E; Schotte, Remko; Calis, Jorg J A; Behjati, Sam; Velds, Arno; Hilkmann, Henk; Atmioui, Dris El; Visser, Marten; Stratton, Michael R; Haanen, John B A G; Spits, Hergen; van der Burg, Sjoerd H; Schumacher, Ton N M
2015-01-01
Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon
2012-03-30
Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage asmore » a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.« less
Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.
Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A
2016-05-01
Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamata, Masakazu, E-mail: masa3k@ucla.edu; Kim, Patrick Y.; Ng, Hwee L.
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To testmore » this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.« less
Glycogen Synthase Kinase-3 Is an Early Determinant in the Differentiation of Pathogenic Th17 Cells
Beurel, Eléonore; Yeh, Wen-I; Michalek, Suzanne M.; Harrington, Laurie E.; Jope, Richard S.
2011-01-01
CD4+ T cells are critical for host defense but are also major drivers of immune-mediated diseases. The classical view of Th1 and Th2 subtypes of CD4+ T cells was recently revised by the identification of the Th17 lineage of CD4+ T cells that produce IL-17, which have been found to be critical in the pathogenesis of autoimmune and other diseases. Mechanisms controlling the differentiation of Th17 cells have been well described, but few feasible targets for therapeutically reducing Th17 cells are known. The generation of Th17 cells requires IL-6 and activation of STAT3. During polarization of CD4+ T cells to Th17 cells, we found that inhibition of glycogen synthase kinase-3 (GSK3) blocked IL-6 production, STAT3 activation, and polarization to Th17 cells. Polarization of CD4+ T cells to Th17 cells increased by 10-fold the expression of GSK3β protein levels in Th17 cells, whereas GSK3β was unaltered in regulatory T cells. Diminishing GSK3 activity either pharmacologically or molecularly blocked Th17 cell production, and increasing GSK3 activity promoted polarization to Th17 cells. In vivo inhibition of GSK3 in mice depleted constitutive Th17 cells in intestinal mucosa, blocked Th17 cell generation in the lung after Francisella tularensis infection, and inhibited the increase in spinal cord Th17 cells and disease symptoms in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. These findings identify GSK3 as a critical mediator of Th17 cell production and indicate that GSK3 inhibitors provide a potential therapeutic intervention to control Th17-mediated diseases. PMID:21191064
HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving
NASA Astrophysics Data System (ADS)
Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.
2016-02-01
The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.
Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad
2011-06-10
Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Expression of FLT4 in hypoxia-induced neovascular models in vitro and in vivo.
Liu, Jiao-Lian; Xia, Xiao-Bo; Xu, Hui-Zhuo
2011-01-01
To investigate the expression of FLT4 in retina with oxygen induced retinopathy (OIR) and in brain endothelial cell lines (bEnd3) under hypoxia conditions in mice. Fifty-two one-week-old C57BL/6J mice were divided into control group and hypoxia group. The mice of hypoxia group were exposed to 75% oxygen for 5 days and then returned to the room air to induce retinal neovascularization. Mice in control group were raised in the environment of room air at the same time. The expressions of FLT4 mRNA and protein were checked with RT-PCR and Western Blot analysis at postnatal day 14, 17 and 21 ( P14, P17 and P21) respectively. 125mmol/L CoCl(2) were added to the culture medium of bEnd3 cell, proteins were extracted in 12, 24, 48 and 72 hours and FLT4 levels were examined by Western Blot analysis. The mRNA and protein level of FLT4 expressed in P14 and P17 OIR mice retina statistically up-regulated as compared with those in control group, but there was no statistical difference between OIR group and control group at P21. FLT4 levels increased significantly in 12, 24 and 48 hours hypoxia intervened bEnd3 cells, its levels in 72 hours increased mildly but showed no significance. FLT4 levels increase in OIR mice retinas and bEnd3 cells in hypoxia. It may play an important role in endothelial cells proliferation in hypoxia and retinal neovascularization in OIR mice.
Expression of FLT4 in hypoxia-induced neovascular models in vitro and in vivo
Liu, Jiao-Lian; Xia, Xiao-Bo; Xu, Hui-Zhuo
2011-01-01
AIM To investigate the expression of FLT4 in retina with oxygen induced retinopathy (OIR) and in brain endothelial cell lines (bEnd3) under hypoxia conditions in mice. METHODS Fifty-two one-week-old C57BL/6J mice were divided into control group and hypoxia group. The mice of hypoxia group were exposed to 75% oxygen for 5 days and then returned to the room air to induce retinal neovascularization. Mice in control group were raised in the environment of room air at the same time. The expressions of FLT4 mRNA and protein were checked with RT-PCR and Western Blot analysis at postnatal day 14, 17 and 21 ( P14, P17 and P21) respectively. 125mmol/L CoCl2 were added to the culture medium of bEnd3 cell, proteins were extracted in 12, 24, 48 and 72 hours and FLT4 levels were examined by Western Blot analysis. RESULTS The mRNA and protein level of FLT4 expressed in P14 and P17 OIR mice retina statistically up-regulated as compared with those in control group, but there was no statistical difference between OIR group and control group at P21. FLT4 levels increased significantly in 12, 24 and 48 hours hypoxia intervened bEnd3 cells, its levels in 72 hours increased mildly but showed no significance. CONCLUSION FLT4 levels increase in OIR mice retinas and bEnd3 cells in hypoxia. It may play an important role in endothelial cells proliferation in hypoxia and retinal neovascularization in OIR mice. PMID:22553602
OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells.
Yannarelli, Gustavo; Pacienza, Natalia; Montanari, Sonia; Santa-Cruz, Diego; Viswanathan, Sowmya; Keating, Armand
2017-01-01
Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment.
OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells
Montanari, Sonia; Santa-Cruz, Diego; Viswanathan, Sowmya; Keating, Armand
2017-01-01
Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment. PMID:29216265
Liu, Fengliang; Fan, Xiuzhen; Auclair, Sarah; Ferguson, Monique; Sun, Jiaren; Soong, Lynn; Hou, Wei; Redfield, Robert R.; Birx, Deborah L.; Ratto-Kim, Silvia; Robb, Merlin L.; Kim, Jerome H.; Michael, Nelson L.; Hu, Haitao
2016-01-01
Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. PMID:27280548
TCF7L1 recruits CtBP and HDAC1 to repress DICKKOPF4 gene expression in human colorectal cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eshelman, Melanie A.; Shah, Meera; Raup-Konsavage, Wesley M.
The T-cell factor/Lymphoid enhancer factor (TCF/LEF; hereafter TCF) family of transcription factors are critical regulators of colorectal cancer (CRC) cell growth. Of the four TCF family members, TCF7L1 functions predominantly as a repressor of gene expression. Few studies have addressed the role of TCF7L1 in CRC and only a handful of target genes regulated by this repressor are known. By silencing TCF7L1 expression in HCT116 cells, we show that it promotes cell proliferation and tumorigenesis in vivo by driving cell cycle progression. Microarray analysis of transcripts differentially expressed in control and TCF7L1-silenced CRC cells identified genes that control cell cycle kinetics andmore » cancer pathways. Among these, expression of the Wnt antagonist DICKKOPF4 (DKK4) was upregulated when TCF7L1 levels were reduced. We found that TCF7L1 recruits the C-terminal binding protein (CtBP) and histone deacetylase 1 (HDAC1) to the DKK4 promoter to repress DKK4 gene expression. In the absence of TCF7L1, TCF7L2 and β-catenin occupancy at the DKK4 promoter is stimulated and DKK4 expression is increased. These findings uncover a critical role for TCF7L1 in repressing DKK4 gene expression to promote the oncogenic potential of CRCs. - Highlights: • TCF7L1 promotes colorectal cancer cell proliferation and tumorigenesis. • DICKKOPF4 is directly regulated by TCF7L1. • TCF7L1 recruits CtBP and HDAC1 to repress DKK4 gene expression.« less
Kouro, Hitomi; Kon, Shigeyuki; Matsumoto, Naoki; Miyashita, Tomoe; Kakuchi, Ayaka; Ashitomi, Dai; Saitoh, Kodai; Nakatsuru, Takuya; Togi, Sumihito; Muromoto, Ryuta; Matsuda, Tadashi
2014-01-01
Integrins affect the motility of multiple cell types to control cell survival, growth, or differentiation, which are mediated by cell-cell and cell-extracellular matrix interactions. We reported previously that the α9 integrin splicing variant, SFα9, promotes WT α9 integrin-dependent adhesion. In this study, we introduced a new murine α4 integrin splicing variant, α4B, which has a novel short cytoplasmic tail. In inflamed tissues, the expression of α4B, as well as WT α4 integrin, was up-regulated. Cells expressing α4B specifically bound to VCAM-1 but not other α4 integrin ligands, such as fibronectin CS1 or osteopontin. The binding of cells expressing WT α4 integrin to α4 integrin ligands is inhibited by coexpression of α4B. Knockdown of α4B in metastatic melanoma cell lines results in a significant increase in lung metastasis. Expression levels of WT α4 integrin are unaltered by α4B, with α4B acting as a regulatory subunit for WT α4 integrin by a dominant-negative effect or inhibiting α4 integrin activation. PMID:24755217
Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.
2009-01-01
Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279
CD4 mimetics sensitize HIV-1-infected cells to ADCC.
Richard, Jonathan; Veillette, Maxime; Brassard, Nathalie; Iyer, Shilpa S; Roger, Michel; Martin, Loïc; Pazgier, Marzena; Schön, Arne; Freire, Ernesto; Routy, Jean-Pierre; Smith, Amos B; Park, Jongwoo; Jones, David M; Courter, Joel R; Melillo, Bruno N; Kaufmann, Daniel E; Hahn, Beatrice H; Permar, Sallie R; Haynes, Barton F; Madani, Navid; Sodroski, Joseph G; Finzi, Andrés
2015-05-19
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.
CD4 mimetics sensitize HIV-1-infected cells to ADCC
Richard, Jonathan; Veillette, Maxime; Brassard, Nathalie; Iyer, Shilpa S.; Roger, Michel; Martin, Loïc; Pazgier, Marzena; Schön, Arne; Freire, Ernesto; Routy, Jean-Pierre; Smith, Amos B.; Park, Jongwoo; Jones, David M.; Courter, Joel R.; Melillo, Bruno N.; Kaufmann, Daniel E.; Hahn, Beatrice H.; Permar, Sallie R.; Haynes, Barton F.; Madani, Navid; Sodroski, Joseph G.; Finzi, Andrés
2015-01-01
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection. PMID:25941367
Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.
2014-01-01
Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661
Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism
Jiang, Ting-Jun; Cao, Xue-Liang; Luan, Sha; Cui, Wan-Hui; Qiu, Si-Huang; Wang, Yi-Chao; Zhao, Chang-Jiu; Fu, Peng
2018-01-01
The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (P<0.05). In addition, it was demonstrated that thyroid function of patients with hyperthyroidism was significantly improved (P<0.05) subsequent to receiving medication. Compared with the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (P<0.05). PB CD4+CD25+ Tregs function was decreased in patients with hyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism. PMID:29207121
Schoch, Justine; Rohrer, Tilman R; Kaestner, Michael; Abdul-Khaliq, Hashim; Gortner, Ludwig; Sester, Urban; Sester, Martina; Schmidt, Tina
2017-05-15
Infections and autoimmune disorders are more frequent in Down syndrome, suggesting abnormality of adaptive immunity. Although the role of B cells and antibodies is well characterized, knowledge regarding T cells is limited. Lymphocyte subpopulations of 40 children and adolescents with Down syndrome and 51 controls were quantified, and phenotype and functionality of antigen-specific effector T cells were analyzed with flow cytometry after polyclonal and pathogen-specific stimulation (with varicella-zoster virus [VZV] and cytomegalovirus [CMV]). Results were correlated with immunoglobulin (Ig) G responses. Apart from general alterations in the percentage of lymphocytes, regulatory T cells, and T-helper 1 and 17 cells, all major T-cell subpopulations showed higher expression of the inhibitory receptor PD-1. Polyclonally stimulated effector CD4+ T-cell frequencies were significantly higher in subjects with Down syndrome, whereas their inhibitory receptor expression (programmed cell death 1 [PD-1] and cytotoxic T-lymphocyte antigen 4 [CTLA-4]) was similar to that of controls and cytokine expression profiles were only marginally altered. Pathogen-specific immunity showed age-appropriate levels of endemic infection, with correlation of CMV-specific cellular and humoral immunity in all subjects. Among VZV IgG-positive individuals, a higher percentage of VZV-specific T-cell-positive subjects was seen in those with Down syndrome. Despite alterations in lymphocyte subpopulations, individuals with Down syndrome can mount effector T-cell responses with similar phenotype and functionality as controls but may require higher effector T-cell frequencies to ensure pathogen control. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Taborda, Natalia A; Hernández, Juan C; Lajoie, Julie; Juno, Jennifer A; Kimani, Joshua; Rugeles, María T; Fowke, Keith R
2015-06-01
Chronic HIV-1 infection induces severe immune alterations, including hyperactivation, exhaustion, and apoptosis. In fact, viral control has been associated with low frequencies of these processes. Here, we evaluated the expression of activation and inhibitory molecules on natural killer (NK) and CD4(+) T cells and plasma levels of proinflammatory cytokines in individuals exhibiting viral control: a cohort of HIV-1-exposed-seronegative individuals (HESN) and a cohort of HIV controllers. There was lower expression of CD69, LAG-3, PD-1, and TIM-3 in both cohorts when compared to a low-risk population or HIV progressors. In addition, HIV controllers exhibited lower plasma levels of proinflamatory molecules TNF-α and IP-10. These findings suggest that individuals exhibiting viral control have lower basal expression of markers associated with cellular activation and particularly immune exhaustion.
Day, Cheryl L; Abrahams, Deborah A; Harris, Levelle D; van Rooyen, Michele; Stone, Lynnett; de Kock, Marwou; Hanekom, Willem A
2017-09-15
Coinfection with HIV is the single greatest risk factor for reactivation of latent Mycobacterium tuberculosis infection (LTBI) and progression to active tuberculosis disease. HIV-associated dysregulation of adaptive immunity by depletion of CD4 Th cells most likely contributes to loss of immune control of LTBI in HIV-infected individuals, although the precise mechanisms whereby HIV infection impedes successful T cell-mediated control of M. tuberculosis have not been well defined. To further delineate mechanisms whereby HIV impairs protective immunity to M. tuberculosis , we evaluated the frequency, phenotype, and functional capacity of M. tuberculosis -specific CD4 T cells in HIV-infected and HIV-uninfected adults with LTBI. HIV infection was associated with a lower total frequency of cytokine-producing M. tuberculosis -specific CD4 T cells, and preferential depletion of a discrete subset of M. tuberculosis -specific IFN-γ + IL-2 - TNF-α + CD4 T cells. M. tuberculosis -specific CD4 T cells in HIV-infected individuals expressed significantly higher levels of Ki67, compared with HIV-uninfected individuals, thus indicating recent activation and turnover of these cells in vivo. The ex vivo proliferative capacity of M. tuberculosis -specific CD4 T cells was markedly impaired in HIV-infected individuals, compared with HIV-uninfected individuals. Moreover, HIV infection was associated with increased M. tuberculosis Ag-induced CD4 T cell death ex vivo, indicating a possible mechanism contributing to impaired proliferative capacity of M. tuberculosis -specific CD4 T cells in HIV-infected individuals. These data provide new insights into the parameters of M. tuberculosis -specific CD4 T cell immunity that are impaired in HIV-infected individuals with LTBI, which may contribute to their increased risk of developing active tuberculosis disease. Copyright © 2017 by The American Association of Immunologists, Inc.
Yu, Jin; Heck, Susanne; Patel, Vivek; Levan, Jared; Yu, Yu; Bussel, James B.
2008-01-01
Immune thrombocytopenic purpura (ITP) is characterized by the presence of antiplatelet autoantibodies as a result of loss of tolerance. CD4+CD25+ regulatory T cells (Tregs) are important for maintenance of peripheral tolerance. Decreased levels of peripheral Tregs in patients with ITP have been reported. To test whether inefficient production or reduced immunosuppressive activity of Tregs contributes to loss of tolerance in patients with chronic ITP, we investigated the frequency and function of their circulating CD4+CD25hi Tregs. We found a com-parable frequency of circulating CD4+CD25hiFoxp3+ Tregs in patients and controls (n = 16, P > .05). However, sorted CD4+CD25hi cells from patients with chronic ITP (n = 13) had a 2-fold reduction of in vitro immunosuppressive activity compared with controls (n = 10, P < .05). The impaired suppression was specific to Tregs as shown by cross-mixing experiments with T cells from controls. These data suggest that functional defects in Tregs contribute to breakdown of self-tolerance in patients with chronic ITP. PMID:18420827
Jenum, Synne; Grewal, Harleen M S; Hokey, David A; Kenneth, John; Vaz, Mario; Doherty, Timothy Mark; Jahnsen, Frode Lars
2014-01-01
QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced. To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity. Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls. There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response. Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.
Juárez-Mosqueda, M L; Anzaldúa Arce, S R; Palma Lara, I; García Dalmán, C; Cornejo Cortés, M A; Córdova Izquierdo, A; Villaseñor Gaona, H; Trujillo Ortega, M E
2015-12-01
The aim of this study was to determine the histomorphological changes that occurred in response to two treatments for oestrus synchronization in three different regions of the gilt's uterine tubes epithelium: the ampulla (AMP), ampulla-isthmic junction (AIJ) and isthmus (IST). Nine prepuberal gilts were divided into three groups (n = 3): (1) eCG 400 IU and hCG 200 IU (eCG/hCG), (2) progesterone agonist (P4) and (3) control group. The number of secretory cells (stained with periodic acid-Schiff reaction or PAS-positive cells) decreased in the AMP in the P4 treated group when compared to the control group, whereas, no difference was observed in the number of PAS-negative cells in the AMP of the three groups. A significant decrease in the number of PAS-positive cells was observed in the AIJ and IST of the P4 treated group when compared to the eCG/hCG and control groups. An increase in the number of PAS-negative cells was observed in the AIJ and IST in the P4 treated group. The epithelium height in the AMP and AIJ was increased in the eCG/hCG group when compared to the control and P4 groups. In this last group, we observed a reduced height compared with the other two groups for the AIJ. In the IST, there were no significant changes in the epithelium height of the control or the other two groups (eCG/hCG and P4). The epithelial cells of the P4 treated group had the least amount of cytoplasmic granules and the lowest intensity of PAS staining in the AMP, AIJ and IST. Animals treated with eCG/hCG showed an intermediate number of cytoplasmic granules and intensity in all regions evaluated. These data show that P4 treatment for synchronization induces a significant (P < 0.001) decrease of PAS-positive cells and staining intensity of cytoplasmic granules in the different regions studied and an increased number of PAS-negative cells in the AIJ and IST epithelium. Moreover, eCG/hCG treatment increased the height of the epithelium in the AMP and AIJ, while in this last region, the P4 treatment decreased the epithelium height. These results show that synchronization treatments with P4 and in a smaller proportion with eCG/hCG can modify the amount of PAS-positive and PAS-negative cells, and the epithelium height. This has influence in the secretory activity of the epithelium and possibly alters the fluid microenvironment of the gilt's uterine tube. The biological impact of regional variations in the epithelial cells of the gilt's uterine tube needs further investigation to understand the implications that the reproductive processes can have in the uterine tube. © 2014 Blackwell Verlag GmbH.
Jung, Sung-No; Rhie, Jong Won; Kwon, Ho; Jun, Young Joon; Seo, Je-Won; Yoo, Gyeol; Oh, Deuk Young; Ahn, Sang Tae; Woo, Jihyoun; Oh, Jieun
2010-03-01
Human adipose-derived mesenchymal stem cells (MSCs) were differentiated into chondrogenic MSCs, and fibrin glue was used together to explore the feasibility of whether cartilages can be generated in vivo by injecting the differentiated cells. Mesenchymal stem cells extracted from human adipose were differentiated into chondrogenic MSCs, and such differentiated cells mixed with fibrin glue were injected subcutaneously into the back of the nude mouse. In addition to visual evaluation of the tissues formed after 4, 8, and 12 weeks, hematoxylin-eosin staining, Masson trichrome staining, measurement of glycosaminoglycan concentration using dimethylmethylene blue, agreecan through reverse transcriptase-polymerase chain reaction, type II collagen, and expression of SOX-9 were verified. Moreover, the results were compared with 2 groups of controls: 1 control group that received only injection of chondrogenic-differentiated MSC and the supporting control group that received only fibrin glue injection. For the experimental group, cartilage-like tissues were formed after 4, 8, and 12 weeks. Formation of cartilage tissues was not observed in any of 4, 8, and 12 weeks of the control group. The supporting control group had only a small structure formation after 4 weeks, but the formed structure was completely decomposed by the 8th and 12th weeks. The range of staining dramatically increased with time at 4, 8, and 12 weeks in Masson trichrome staining. The concentration of glycosaminoglycan also increased with time. The increased level was statistically significant with more than 3 times more after 8 weeks compared with 4 weeks and more than 2 times more after 12 weeks compared with 8 weeks. Also, in reverse transcriptase-polymerase chain reaction at 4, 8, and 12 weeks, all results expressed a cartilage-specific gene called aggrecan, type II collagen, and SOX-9. The study verified that the chondrogenic-differentiated MSCs derived from human adipose tissues with fibrin glue can proliferate and form new cartilage. Our findings suggest that formation of cartilages in vivo is possible.
Chijioke, Obinna; Marcenaro, Emanuela; Moretta, Alessandro; Capaul, Riccarda; Münz, Christian
2015-09-01
Patients with X-linked lymphoproliferative (XLP) disease due to deficiency in the adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) are highly susceptible to one specific viral pathogen, the Epstein-Barr virus (EBV). This susceptibility might result from impaired CD8(+) T-cell and natural killer cell responses to EBV infection in these patients. We demonstrate that antibody blocking of the SAP-dependent 2B4 receptor is sufficient to induce XLP-like aggravation of EBV disease in mice with reconstituted human immune system components. CD8(+) T cells require 2B4 for EBV-specific immune control, because 2B4 blockade after CD8(+) T-cell depletion did not further aggravate symptoms of EBV infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ma, Junjie; Liu, Huiping; Wang, Xiaolong
2014-12-01
To investigate the effect of thorascopic administration.of ginseng polysaccharides (GPS) plus dendritic cells (DC) on T helper cell type 1/T helper cell type 2 (Th1/Th2) balance in patients with non-small cell lung cancer (NSCLC). A total of 96 NSCLC patients were divided evenly into two groups. The control group was treated with DCs alone and the treatment group was treated with DCs plus GPS. After DCs and GPS were administered thoracoscopically, once a week, 4 times for 30 days, the patients' quality of life was measured with the Functional Assessment of Cancer Treatment-Lung (FACT-L) questionnaire before and after treatment. Serum interferon-γ (INF-γ), interleukin-4 (IL-4), IL-2 and IL-5 were examined before and after treatments. The level of Th1 cytokines (INF-γ, IL-2) and the ratio of Th1/Th2 cytokines (INF-γ/IL-4, IL-2/ IL-5) increased in both treatment groups, while Th2 cytokines (IL-4, IL-5) and FACT-L scores decreased (P < 0.01). Furthermore, after treatment Th1 cytokines (INF-γ, IL-2) and the ratio of Th1/Th2 cytokines (INF-γ/IL-4, IL-2/IL-5) were higher in the DCs + GPS group than in the control group (P < 0.05). Conversely, FACT-L scores and Th2 cytokines (IL-4, IL-5) were higher in the control group than in the DCs + GPS group (P < 0.05). The treatment regime of DCs plus GPS had a greater effect on NSCLC patients' immune function as compared with DCs alone. This was evident by increased expression of Th1 cytokines (INF-γ, IL-2) and the ratio of Th1/Th2 (INF-γ/IL-4, IL-2/IL-5), as well as by decreased FACT-L scores and the expression of Th2 cytokines (IL-4, IL-5).
Hawse, William F; Sheehan, Robert P; Miskov-Zivanov, Natasa; Menk, Ashley V; Kane, Lawrence P; Faeder, James R; Morel, Penelope A
2015-05-15
Signaling via the Akt/mammalian target of rapamycin pathway influences CD4(+) T cell differentiation; low levels favor regulatory T cell induction and high levels favor Th induction. Although the lipid phosphatase phosphatase and tensin homolog (PTEN) suppresses Akt activity, the control of PTEN activity is poorly studied in T cells. In this study, we identify multiple mechanisms that regulate PTEN expression. During Th induction, PTEN function is suppressed via lower mRNA levels, lower protein levels, and an increase in C-terminal phosphorylation. Conversely, during regulatory T cell induction, PTEN function is maintained through the stabilization of PTEN mRNA transcription and sustained protein levels. We demonstrate that differential Akt/mammalian target of rapamycin signaling regulates PTEN transcription via the FoxO1 transcription factor. A mathematical model that includes multiple modes of PTEN regulation recapitulates our experimental findings and demonstrates how several feedback loops determine differentiation outcomes. Collectively, this work provides novel mechanistic insights into how differential regulation of PTEN controls alternate CD4(+) T cell fate outcomes. Copyright © 2015 by The American Association of Immunologists, Inc.
Effect of complete protein 4.1R deficiency on ion transportproperties of murine erythrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, Alicia; De Franceschi, Lucia; Peters, Luanne L.
2006-06-02
Moderate hemolytic anemia, abnormal erythrocyte morphology(spherocytosis), and decreased membrane stability are observed in micewith complete deficiency of all erythroid protein 4.1 protein isoforms(4.1-/-; Shi TS et al., J. Clin. Invest. 103:331,1999). We have examinedthe effects of erythroid protein 4.1 (4.1R) deficiency on erythrocytecation transport and volume regulation. 4.1-/- mice exhibited erythrocytedehydration that was associated with reduced cellular K and increased Nacontent. Increased Na permeability was observed in these mice, mostlymediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransportactivities. The Na/H exchange of 4.1-/- erythrocytes was markedlyactivated by exposure to hypertonic conditions (18.2+- 3.2 in 4.1 -/- vs.9.8 +-more » 1.3 mmol/1013 cell x h in control mice), with an abnormaldependence on osmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsmin control mice) suggestive of an up-regulated functional state. Whilethe affinity for internal protons was not altered (K0.5= 489.7 +- 0.7 vs.537.0+- 0.56 nM in control mice), the Vmax of the H-induced Na/H exchangeactivity was markedly elevated in 4.1-/- erythrocytes (Vmax 91.47Moderatehemolytic anemia, abnormal erythrocyte morphology (spherocytosis), anddecreased membrane stability are observed in mice with completedeficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TSet al., J. Clin. Invest. 103:331,1999). We have examined the effects oferythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transportand volume regulation. 4.1-/- mice exhibited erythrocyte dehydration thatwas associated with reduced cellular K and increased Na content.Increased Na permeability was observed in these mice, mostly mediated byNa/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities.The Na/H exchange of 4.1-/- erythrocytes was markedly activated byexposure to hypertonic conditions (18.2 +- 3.2 in 4.1 -/- vs. 9.8 +- 1.3mmol/1013 cell x h in control mice), with an abnormal dependence onosmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsm in controlmice) suggestive of an up-regulated functional state. While the affinityfor internal protons was not altered (K0.5= 489.7 +- 0.7 vs. 537.0 +-0.56 nM in control mice), the Vmax of the H-induced Na/H exchangeactivity was markedly elevated in 4.1-/- erythrocytes (Vmax 91.47+-7.2compared to 46.52+-5.4 mmol/1013 cell x h in control mice). Na/H exchangeactivation by okadaic acid was absent in 4.1-/- erythrocytes. Altogether,these results suggest that erythroid protein 4.1 plays a major role involume regulation and physiologically down-regulates Na/H exchange inmouse erythrocytes. Up-regulation of the Na/H exchange is an importantcontributor to the elevated cell Na content of 4.1 -/- erythrocytes.-7.2compared to 46.52+-5.4 mmol/1013 cell x h in control mice). Na/H exchangeactivation by okadaic acid was absent in 4.1-/- erythrocytes. Altogether,these results suggest that erythroid protein 4.1 plays a major role involume regulation and physiologically down-regulates Na/H exchange inmouse erythrocytes. Up-regulation of the Na/H exchange is an importantcontributor to the elevated cell Na content of 4.1 -/-erythrocytes.« less
Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.
Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu
2018-05-08
The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4HB- and HIF1α-positive cells. At 4 weeks after surgery, the sham-structure control rats exhibited significant urinary frequency symptoms with irregular and short voiding intervals, and low micturition volumes. In contrast, the structure-transplanted rats had regular micturition with longer voiding intervals and higher micturition volumes compared to the control rats. Further, the residual volume of the structure-transplanted rats was lower than for the controls. Therefore, transplantation of biofabricated bone marrow-derived cell structures reconstructed functional bladders.
Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio
2016-08-01
Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.
Wnt/beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression
2014-07-01
NT1 cells that over-expressing Foxa2. The reason we used NT1 cells for the Foxa2 over-expressing experiments is that NT1 is an AR-expressing... cells . We have also established NT1 cells over-expressing a dominant active beta-catenin. We have characterized these cells . Our research found: 1...expression profiles of control NT1 , NT1 /Foxa2, and NT1 /beta-catenin cells Figure 1. We did RT-PCR to examine the expression of key
Shearn, Colin T; Reigan, Philip; Petersen, Dennis R
2012-07-01
Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.
The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells.
Moslehi, Akram; Hashemi-Beni, Batool; Moslehi, Azam; Akbari, Maryam Ali; Adib, Minoo
2016-07-01
Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs.
The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells
Moslehi, Akram; Hashemi-beni, Batool; Moslehi, Azam; Akbari, Maryam Ali
2016-01-01
Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs. PMID:27382350
Interleukin 4: signalling mechanisms and control of T cell differentiation.
Paul, W E
1997-01-01
Interleukin 4 (IL-4) is a pleiotropic type I cytokine that controls both growth and differentiation among haemopoietic and non-haemopoietic cells. Its receptor is a heterodimer. One chain, the IL-4R alpha chain, binds IL-4 with high affinity and determines the nature of the biochemical signals that are induced. The second chain, gamma c, is required for the induction of such signals. IL-4-mediated growth depends upon activation events that involve phosphorylation of Y497 of IL-4R alpha, leading to the binding and phosphorylation of 4PS/IRS-2 in haemopoietic cells and of IRS-1 in non-haemopoietic cells. By contrast, IL-4-mediated differentiation events depend upon more distal regions of the IL-4R alpha chain that include a series of STAT-6 binding sites. The distinctive roles of these receptor domains was verified by receptor-reconstruction experiments. The 'growth' and 'differentiation' domains of the IL-4R alpha chain, independently expressed as chimeric structures with a truncated version of the IL-2R beta chain, were shown to convey their functions to the hybrid receptor. The critical role of STAT-6 in IL-4-mediated gene activation and differentiation was made clear by the finding that lymphocytes from STAT-6 knockout mice are strikingly deficient in these functions but have retained the capacity to grow, at least partially, in response to IL-4. IL-4 plays a central role in determining the phenotype of naive CD4+ T cells. In the presence of IL-4, newly primed naive T cells develop into IL-4 producers while in its absence they preferentially become gamma-interferon (IFN-gamma) producers. Recently, a specialized subpopulation of T cells, CD4+/NK1.1+ cells, has been shown to produce large amounts of IL-4 upon stimulation. Two examples of mice with deficiencies in these cells are described--beta 2-microglobulin knockout mice and SJL mice. Both show defects in the development of IL-4-producing cells and in the increase in serum IgE in response to stimulation with the polyclonal stimulant anti-IgD. Both sets of mice have major diminutions in the number of CD4+/ NK1.1+ T cells, strongly indicating an important role of these cells in some but not all IgE responses to physiologic stimuli.
Exosomes as mediators of platinum resistance in ovarian cancer
Crow, Jennifer; Atay, Safinur; Banskota, Samagya; Artale, Brittany; Schmitt, Sarah; Godwin, Andrew K
2017-01-01
Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells. PMID:28060758
The expression of BAFF in the muscles of patients with dermatomyositis.
Baek, Ahmi; Park, Hyung Jun; Na, Sang-Jun; Shim, Dong Suk; Moon, Joon-Shik; Yang, Young; Choi, Young-Chul
2012-08-15
A B-cell activating factor of the tumor necrosis factor (TNF) family (BAFF) plays a crucial role in B-cell survival and maturation. An elevated serum BAFF level has been linked to several autoimmune diseases such as Sjögren syndrome, systemic lupus erythematosus and rheumatoid arthritis. Dermatomyositis (DM), one of autoimmune inflammatory myopathies, is characterized by inflammatory cell infiltration (CD4(+) T cells and B cells) in skeletal muscle. Serum BAFF level was significantly high in DM, but the role of BAFF is not well understood. We investigated the role of BAFF in the immunopathogenesis of DM. To examine the transcriptional increase of BAFF gene expression, we performed RT-PCR analysis with skeletal muscle tissue that contained 4 controls and 9 patients with DM. Next, in order to detect BAFF expression and cellular localization in DM, we executed immunostaining in cryosection of biopsied muscle tissue with 4 controls and 8 patients and we adopted to double immunostaining to find which inflammatory cells expressed BAFF-receptor (BAFF-R). BAFF mRNA level was increased in DM patients compared with normal controls. BAFF expression was markedly increased at muscle fibers in the perifascicular area but not blood vessels. BAFF-R was expressed in inflammatory cells in skeletal muscle tissues of DM patients. We found that BAFF expression in muscle tissue may be associated with an increased number of CD4(+) T cells and CD19(+) B cells in DM. Our study results suggest that BAFF might play an important role in the pathogenesis of DM. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Qing; Kobayashi, Maiko; Inagaki, Hirofumi; Hirata, Yukiyo; Sato, Shigeru; Ishizaki, Masamichi; Okamura, Ai; Wang, Dong; Nakajima, Tamie; Kamijima, Michihiro; Kawada, Tomoyuki
2011-07-01
Fenitrothion (FNT) is used throughout the world as an insecticide in agriculture. To investigate the effect of FNT on the splenocytes and the underlying mechanism, FNT and its main metabolite, 3-methyl-4-nitrophenol (MNP), were administered orally to Wistar rats in daily doses of 0, 5 and 10 mg/kg, 4-5 days/week for 9 weeks. Splenocytes were harvested from control and exposed rats, and the following cell phenotypes were quantified by flow cytometry: (1) B cells (PE-CD45RA), (2) T cells (FITC-CD3), (3) T cell subsets (PE-CD4 and PerCPCD8), (4) natural killer (NK) cells (FITC-CD161a), (5) macrophages (FITC-CD11b), and (6) granulocyte (PE-granulocyte). Body weight, weight of the spleen, and histopathological alterations of spleens were also examined. The percentage of splenic CD8+ T cells and the ratio of CD8/CD4 in the group receiving 10 mg/kg FNT, and the percentages of splenic CD3+ and CD8+ T cells in the group receiving 10 mg/kg MNP were significantly decreased compared with those in the controls. FNT exposure also significantly decreased the weight of the spleen and body weight. In addition, apoptotic lymphocytes in spleen were observed in FNT-exposed rats under transmission electron microscope. However, FNT and MNP exposures did not affect splenic NK cells, B cells, macrophages, and granulocytes. The above findings indicate that FNT and MNP may selectively affect splenic T cells in rats.
Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H.; García, Felipe.; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L.; Mounzer, Karam; Swindells, Susan; Baxter, John D.; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François
2016-01-01
Abstract The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults. This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4+ T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks. At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): −0.088; 0.235]), or F4/AS01B_3 and control group (−0.096 log10 copies/mL [97.5% CI: −0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4+ T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4+ T-cells, but had no significant impact on F4-specific CD8+ T-cell and anti-F4 antibody levels. F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4+ T-cell responses, but did not reduce HIV-1 VL, impact CD4+ T-cells count, delay ART initiation, or prevent HIV-1 related clinical events. PMID:26871794
Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus
Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E
2015-01-01
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID:25611806
Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E
1996-02-01
IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.
Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells
Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando
2012-01-01
SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
CD20+ T cell numbers are decreased in untreated HIV-1 patients and recover after HAART.
Förster, Friederike; Singla, Anuj; Arora, Sunil K; Schmidt, Reinhold E; Jacobs, Roland
2012-08-30
To elucidate if CD20(+) T cells are affected by HIV-1 infection and may have a prognostic value for the course of disease, numbers of CD20(+) T cells were determined in healthy controls, untreated and HAART-treated HIV-1 patients. Coexpression patterns of CD4, CD8, and CD38 were analysed on CD3(+)CD20(+) and CD3(+)CD20(-) T cells. We found a significant decrease of CD20(+) T cell numbers in untreated HIV-1 patients (1.4%) as compared to healthy controls (2.5%) which recovered under HAART (1.9%). Particularly, the CD8(+) T cell compartment was affected revealing significant differences between healthy controls (3.4%) and both treated (1.7%) and untreated (1.1%) patients. CD38 was expressed on a few CD20(+) T cells but preferentially on CD20(-) cells in all three groups. IFN-γ production was measured upon cell activation using PMA alone or in combination with ionomycin in order to assess functional capacities of the cells. PMA alone was much more effective in CD20(+) cells regardless of CD38 coexpression, indicating a supportive role of CD20 but not CD38 in T cell activation. Here we present data showing that CD3(+)CD20(+) T cells are decreased in untreated HIV-1 patients and normal numbers are restored under HAART. Expression of CD20 and CD38 is independently regulated on T cells. Contrary to CD38, CD20 can substitute ionophores for Ca(2+) flux in early T cell activation and also strongly amplify cell stimulation in the presence of Ca(2+) ionophores, indicating that CD20 contributes to T cell activation. Copyright © 2012 Elsevier B.V. All rights reserved.
Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance
Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari
2013-01-01
Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861
Role of IL-17-producing lymphocytes in severity of multiple sclerosis upon natalizumab treatment.
Bühler, Ulrike; Fleischer, Vinzenz; Luessi, Felix; Rezk, Ayman; Belikan, Patrick; Graetz, Christiane; Gollan, René; Wolf, Christina; Lutz, Jens; Bar-Or, Amit; Siffrin, Volker; Zipp, Frauke
2017-04-01
Natalizumab is known to prevent T-helper cells entering the central nervous system (CNS). We hypothesize that more pathogenic T-helper cells are present outside the CNS and a possible relationship to disease severity. Characterization and enrichment of human CD4+IL-17+ cells were performed ex vivo using peripheral blood mononuclear cells from natalizumab-treated relapsing-remitting multiple sclerosis (RRMS) patients ( n = 33), untreated RRMS patients ( n = 13), and healthy controls ( n = 33). Magnetic resonance imaging (MRI) scans were performed routinely for patients. Lymphocytes were elevated in peripheral blood of natalizumab-treated patients compared to untreated patients and healthy controls. Whereas group comparison for CD4+IL-17+ numbers also differed, CD4+IFN-γ+ and CD4+IL-22+ counts were not increased. CD4+IL-17+ cells not only expressed but also secreted IL-17. In natalizumab-treated patients, IL-17+ cell frequency was found to correlate with T1-hypointense lesions, but was not an indicator for rebound activity after treatment discontinuation, except in one patient who experienced a fulminant rebound, and interestingly, in whom the highest IL-17+ cell levels were observed. Increased lymphocytes and CD4+IL-17+ cells in the blood of RRMS patients receiving natalizumab corroborate the drug's mechanism of action, that is, blocking transmigration to CNS. Correlation between IL-17-expressing lymphocytes and T1-hypointense lesions underlines the important role of these cells in the disease pathology.
Zhao, Jian; Tu, Keyao; Liu, Yanlei; Qin, Yulei; Wang, Xiwei; Qi, Lifeng; Shi, Donglu
2017-11-01
Dual surfaced dumbbell-like gold magnetic nanoparticles (Au-Fe 3 O 4 ) were synthesized for targeted aptamers delivery. Their unique biological properties were characterized as a smart photo-controlled drug carrier. DNA aptamers targeting vascular endothelial growth factor (VEGF) were assembled onto the surface of Au-Fe 3 O 4 by electrostatic absorption. The binding capacity of the nanoparticles with VEGF aptamers was confirmed by gel electrophoresis. The targeted recognization of ovarian cancer cells by the aptamers-functionalized Au-Fe 3 O 4 nanoparticles (Apt-Au-Fe 3 O 4 NPs) was observed by confocal microscopy. Apt-Au-Fe 3 O 4 was found to bind with SKOV-3 ovarian cancer cells specifically, leading to marked intracellular release of aptamers upon plasmon-resonant light (605nm) radiation, and to enhance the in vitro inhibition against tumor cell proliferation. The results show high potential of Apt-Au-Fe 3 O 4 as a targeted cancer hyperthermia carrier by remote control with high spatial/temporal resolution. Copyright © 2017. Published by Elsevier B.V.
Gomez-Lopez, Nardhy; Olson, David M; Robertson, Sarah A
2016-01-01
Interleukin-6 (IL6) is a determinant of the timing of parturition and birth in mice. We previously demonstrated that genetic IL6 deficiency delays parturition by ~24 h, and this is restored by administration of exogenous IL6. In this study, we have investigated whether IL6 influences the number or phenotypes of T cells or other leukocytes in uterine decidual tissue at the maternal-fetal interface. In late gestation, decidual leukocytes in Il6 null mutant (Il6(-/-)) mice exhibit an altered profile, characterized by reduced numbers of cells expressing the monocyte/macrophage marker F4/80 or the T-cell marker CD4, increased cells expressing the natural killer (NK) cell marker CD49b or the dendritic cell marker CD11c, but no change in cells expressing the neutrophil marker Ly6G. These changes are specific to late pregnancy, as similar differences in decidual leukocytes were not evident in mid-gestation Il6(-/-) mice. The IL6-regulated changes in decidual NK and dendritic cells appear secondary to local recruitment, as no comparable changes occurred in peripheral blood of Il6(-/-) mice. When exogenous IL6 was administered to restore normal timing of parturition, a partial reversal of the altered leukocyte profile was observed, with a 10% increase in the proportion of decidual CD4(+) T cells, a notable 60% increase in CD8(+) T cells including CD8(+)CD25(+)Foxp3(+) regulatory T cells and a 60% reduction in CD4(+)IL9(+) Th9 cells. Together these findings suggest that IL6-controlled accumulation of decidual CD4(+) T cells and CD8(+) regulatory T cells, with an associated decline in decidual Th9 cells, is instrumental for progressing parturition in mice.
MTORC1 EXPANDS TH17 AND IL-4+ DN T CELLS AND CONTRACTS TREGS IN SLE
Kato, Hiroshi; Perl, Andras
2014-01-01
The mechanistic target of rapamycin (mTOR) is activated in CD4−CD8− double-negative (DN) T cells and its blockade is therapeutic in systemic lupus erythematosus (SLE) patients. Murine studies showed the involvement of mTOR complex 1 (mTORC1) and 2 (mTORC2) in the differentiation of Th1/Th17 cells and Th2 cells, respectively. Here, we investigated the roles of mTORC1 and mTORC2 in T-cell lineage development in SLE and matched healthy control (HC) subjects. mTORC1 activity was increased while mTORC2 was reduced as assessed by phosphorylation of their substrates pS6K or pS6RP and pAkt, respectively. Rapamycin inhibited mTORC1 and enhanced mTORC2. IL-4 expression was increased in freshly isolated CD8+ lupus T cells (SLE: 8.09±1.93%, HC: 3.61±0.49%; p=0.01). DN T cells had greater IL-4 expression than CD4+ or CD8+ T cells of SLE patients after 3 day in vitro stimulation, which was suppressed by rapamycin (control: 9.26±1.48%, rapamycin: 5.03±0.66%; p<0.001). GATA-3 expression was increased in CD8+ lupus T cells (p<0.01) and insensitive to rapamycin treatment. IFN-γ expression was reduced in all lupus T cell subsets (p=1.0×10−5) and also resisted rapamycin. IL-17 expression was increased in CD4+ lupus T cells (SLE: 3.62±0.66%, HC: 2.29±0.27%; p=0.019), which was suppressed by rapamycin (control: 3.91±0.79%, rapamycin: 2.22±0.60%; p<0.001). Frequency of Tregs was reduced in SLE (SLE: 1.83±0.25%, HC: 2.97±0.27%; p=0.0012). Rapamycin inhibited mTORC1 in Tregs and promoted their expansion. Neutralization of IL-17 but not IL-4 also expanded Tregs in SLE and HC subjects. These results indicate that mTORC1 expands IL-4+ DN T and Th17 cells and contracts Tregs in SLE. PMID:24683191
Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng
2016-05-01
Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.
Mahmoud, Fadia F; Haines, David; Dashti, Ali A; El-Shazly, Sherief; Al-Najjar, Fawzia
2018-05-11
Type 2 diabetes mellitus (T2DM) features insulin resistance, hyperglycemia, dyslipidemia, overproduction of inflammatory cytokines, and systemic oxidative stress. Here, heat shock proteins Hsp70 and Hsp 90, adiponectin, and heme oxygenase-1 (HO-1, Hsp32) are profiled in peripheral blood mononuclear cells (PBMC) and serum from 25 T2DM patients and 25 healthy control subjects. Cells cultured with phorbol 12-myristate 13-acetate/ionomycin were evaluated by three-color flow cytometry for immunophenotypic biomarkers. Plasma HO-1, Hsp, and adiponectin levels were assayed by enzyme-linked immunosorbent assay (ELISA). Relative to healthy controls, T2DM patients exhibited significantly elevated plasma Hsp70, and representation of T helper immunophenotypes activated to express inflammatory cytokines, including CD4+ IFN-γ+, CD4+ TNF-α+, CD4+ IL-6+, CD4+ IL-1β+ T cells, significantly lower representation of CD4+ IL-10+ T cells, plasma adiponectin and cell-associated HO-1 expression-with no significant differences in plasma Hsp90 between T2DM and healthy controls. Plasma HO-1 and adiponectin in T2DM patients inversely correlated with TNF-α and showed inverse correlation between serum LDL and plasma HO-1. Moreover, TNF-α and Hsp90 in T2DM patients correlated positively with fasting blood glucose (FBG). These results demonstrate correlation between potentially pathogenic T cells, HO-1, and adiponectin, additionally revealing a T helper (Th)1-related character of T2DM immunopathogenesis, suggesting potential for novel T cell-related management strategies for T2DM and related co-morbidities.
The diabetes type 1 locus Idd6 modulates activity of CD4+CD25+ regulatory T-cells.
Rogner, Ute Christine; Lepault, Françoise; Gagnerault, Marie-Claude; Vallois, David; Morin, Joëlle; Avner, Philip; Boitard, Christian
2006-01-01
The genetic locus Idd6 confers susceptibility to the spontaneous development of type 1 diabetes in the NOD mouse. Our studies on disease resistance of the congenic mouse strain NOD.C3H 6.VIII showed that Idd6 influences T-cell activities in the peripheral immune system and suggest that a major mechanism by which the Idd6 locus modifies diabetes development is via modulation of regulatory T-cell activities. Our transfer experiments using total splenocytes and purified T-cells demonstrated that the locus specifically controls the efficiency of disease protection mediated by the regulatory CD4(+)CD25(+) T-cell subset. Our data also implicate the Idd6 locus in controlling the balance between infiltrating lymphocytes and antigen-presenting cells within the pancreatic islet.
A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells
2012-01-01
Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results. Mathematical models based on the framework make specific testable predictions that may improve our understanding of this differentiation system. PMID:22697466
Campos, Regis A; Szczepanik, Marian; Itakura, Atsuko; Lisbonne, Mariette; Dey, Neelendu; Leite-de-Moraes, Maria C; Askenase, Philip W
2006-01-01
We showed that hepatic Vα14+ invariant natural killer T (iNKT) cells, via their rapid interleukin (IL)-4 production, activate B-1 cells to initiate contact sensitivity (CS). This innate collaboration was absent in IL-4–/– and signal transducer and activator of transcription (STAT)-6–/– mice and was inhibited by anti-IL-4 treatment. These mice have defective CS because they fail to locally recruit the sensitized effector T cells of acquired immunity. Their CS is reconstituted by transfer of downstream-acting 1-day immune B-1 cells from wild-type mice. Responses were not reconstituted with B-1 cells from IL-4 receptor-α–/– or STAT-6–/– mice, nor by IL-4 treatment of B cell-deficient mice at immunization. Finally, IL-4 was preferentially and transiently produced by hepatic iNKT cells within 7 min after sensitization to mediate collaboration between innate-like iNKT cells and the B-1 B cells that participate in the recruitment of effector T cells in vivo. PMID:16556268
George, Jeffy; Cofano, Egidio Brocca; Lybarger, Elizabeth; Louder, Mark; Lafont, Bernard A.P.; Mascola, John R.; Robert-Guroff, Marjorie
2011-01-01
Abstract Regulatory T cells contain a mix of CD4 and CD8 T cell subsets that can suppress immune activation and at the same time suppress immune responses, thereby contributing to disease progression. Recent studies have shown that an increased prevalence of CD8+FoxP3+ T regulatory cells was associated with immune suppression and diminished viral control in simian immunodeficiency virus (SIV)-infected rhesus macaques. Preventing an increase in the prevalence of CD8 T regulatory subsets is likely to lead to a better long-term outcome. Here we show that short-term antiretroviral therapy initiated within 1 week after SIV infection was associated with lower viral set point and immune activation after withdrawal of therapy as compared to untreated animals. Early short-term treated controller animals were found to have better SIV-specific immune responses and a significantly lower prevalence of immunosuppressive CD8+FoxP3+ T cells. Lower levels of CD8+FoxP3+ T cells coincided with preservation of CD4+FoxP3+ T cells at homeostatic levels, and significantly correlated with lower immune activation, suggesting a role for viral infection-driven immune activation in the expansion of CD8+FoxP3+ T cells. Interestingly, initiation of continuous therapy later in infection did not reduce the increased prevalence of CD8+FoxP3+ T cells to homeostatic levels. Taken together, our results suggest that early antiretroviral therapy preserves the integrity of the immune system leading to a lower viral set point in controller animals, and prevents alterations in the homeostatic balance between CD4+ and CD8+ T regulatory cells that could aid in better long-term outcome. PMID:21142402
Borovsky, Dov; Sterner, Andeas; Powell, Charles A
2016-01-01
The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh. © 2015 Wiley Periodicals, Inc.
Regulation of Effector Treg Cells in Murine Lupus.
Chandrasekaran, Uma; Yi, Woelsung; Gupta, Sanjay; Weng, Chien-Huan; Giannopoulou, Eugenia; Chinenov, Yurii; Jessberger, Rolf; Weaver, Casey T; Bhagat, Govind; Pernis, Alessandra B
2016-06-01
Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development. © 2016, American College of Rheumatology.
Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Jia, Ting; Elowsky, Christian; Li, Qingsheng; Zhou, You; Reddy, Jay
2014-01-01
This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images. PMID:25145797
Phenotypic Characteristics of PD-1 and CTLA-4 Expression in Symptomatic Acute Hepatitis A.
Cho, Hyosun; Kang, Hyojeung; Kim, Chang Wook; Kim, Hee Yeon; Jang, Jeong Won; Yoon, Seung Kew; Lee, Chang Don
2016-03-01
The immunoregulatory molecules programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are associated with the dysfunction of antiviral effector T-cells, which leads to T-cell exhaustion and persistent viral infection in patients with chronic hepatitis C and chronic hepatitis B. Little is known about the role of PD-1 and CTLA-4 in patients with symptomatic acute hepatitis A (AHA). Peripheral blood mononuclear cells were isolated from seven patients with AHA and from six patients with nonviral acute toxic hepatitis (ATH) during the symptomatic and convalescent phases of the respective diseases; five healthy subjects acted as controls. The expression of PD-1 and CTLA-4 on T-cells was measured by flow cytometry. PD-1 and CTLA-4 expression during the symptomatic phase was significantly higher in the T-cells of AHA patients than in those of ATH patients or healthy controls (PD-1 18.3% vs 3.7% vs 1.6%, respectively, p<0.05; CTLA-4 23.5% vs 6.1% vs 5.9%, respectively, p<0.05). The levels of both molecules decreased dramatically during the convalescent phase of AHA, whereas a similar pattern was not seen in ATH. Our findings are consistent with a viral-protective effect of PD-1 and CTLA-4 as inhibitory molecules that suppress cytotoxic T-cells and thereby prevent the destruction of virus-infected hepatocytes in AHA.
Dimitrijević, Mirjana; Arsenović-Ranin, Nevena; Bufan, Biljana; Nacka-Aleksić, Mirjana; Macanović, Mirjana Lazarević; Milovanović, Petar; Đurić, Marija; Sopta, Jelena; Leposavić, Gordana
2018-05-21
Collagen-induced arthritis (CIA) is a frequently used animal model of rheumatoid arthritis, human autoimmune disease that exhibits clear sex bias in incidence and clinical course. Female Dark Agouti rats immunized for CIA showed also greater incidence and higher arthritic score than their male counterparts. The study investigated sex differences in mechanisms controlling the primary immune responses in draining lymph nodes (dLNs), as a factor contributing to this dimorphism. The higher frequencies of CD4 + CD25 + Foxp3- cells, presumably activated effector T (Teff) cells, and IL-17+, IFN-γ + and IL-17 + IFN-γ + T cells were found in female compared with male rat dLNs. However, the frequency of CD4 + CD25 + Foxp3+ T regulatory cells (Treg) did not differ between sexes. Thus, CD4+ Teff cells/Treg ratio, and IL-17+ T cells/Treg and IFN-γ + T cells/Treg ratios were higher in female than in male rats, and among them was found lower frequency of PD-1+ cells. This suggested less efficient control of (auto)immune Th1/Th17 cell responses in female rat dLNs. On the contrary, the frequency of IL-4+ T cells was lower in female than in male rat dLNs. Consistently, the ratio of serum levels of collagen-specific IgG2a (IFN-γ-dependent, with an important pathogenic role in CIA) and IgG1 (IL-4-dependent) was shifted towards IgG2a in female compared with male rats. As a whole, the study suggests that sexual dimorphism in the control of T cell activation/polarization could contribute to sex bias in the susceptibility to CIA. Moreover, the study advises the use of animals of both sexes in the preclinical testing of new drugs for rheumatoid arthritis. Copyright © 2018 Elsevier Inc. All rights reserved.
Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P
2017-01-01
Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4 + T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 + T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 + CD4 + T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4 + T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.
Celada, Lindsay J.; Rotsinger, Joseph E.; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene
2017-01-01
Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = −0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression. PMID:27564547
Shin, Jin-Young; Yoon, Il-Hee; Lim, Jong-Hyung; Shin, Jun-Seop; Nam, Hye-Young; Kim, Yong-Hee; Cho, Hyoung-Soo; Hong, So-Hee; Kim, Jung-Sik; Lee, Won-Woo; Park, Chung-Gyu
2015-09-01
Regulatory T cells (Tregs) are a specialized subpopulation of T cells that control the immune response and thereby maintain immune system homeostasis and tolerance to self-antigens. Many subsets of CD4(+) Tregs have been identified, including Foxp3(+), Tr1, Th3, and Foxp3neg iT(R)35 cells. In this study, we identified a new subset of CD4(+)VEGFR1(high) Tregs that have immunosuppressive capacity. CD4(+)VEGFR1high T cells, which constitute approximately 1.0% of CD4(+) T cells, are hyporesponsive to T-cell antigen receptor stimulation. Surface marker and FoxP3 expression analysis revealed that CD4(+)VEGFR1(high) T cells are distinct from known Tregs. CD4(+)VEGFR1(high) T cells suppressed the proliferation of CD4(+)CD25(-) T cell as efficiently as CD4(+)CD25(high) natural Tregs in a contact-independent manner. Furthermore, adoptive transfer of CD4(+)VEGFR1(+) T cells from wild type to RAG-2-deficient C57BL/6 mice inhibited effector T-cell-mediated inflammatory bowel disease. Thus, we report CD4(+) VEGFR1(high) T cells as a novel subset of Tregs that regulate the inflammatory response in the intestinal tract.
Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4+ T cells
Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A
2016-01-01
Aim: Autoimmune disease and CD4+ T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4+ T cells as a possible mechanism of immunotoxicity. Materials & methods: Naive and effector/memory CD4+ T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. Results: A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4+ T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. Conclusion: TCE increased epigenetic drift of specific CpG sites in CD4+ T cells. PMID:27092578
HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.
Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare
2015-02-01
In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (p<0.05). The frequency of C282Y, S65C and H63D HFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.
Characterization of CD4 and CD8 T Cell Responses in MuSK Myasthenia Gravis
Yi, JS; Guidon, A; Sparks, S; Osborne, R; Juel, VC; Massey, JM; Sanders, DB; Weinhold, KJ; Guptill, JT
2014-01-01
Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T-cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T-cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T-cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T-cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T-cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T-cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in Treg function or number. PMID:24378287
Qian, Jinfeng; Zhang, Na; Lin, Jing; Wang, Caiyan; Pan, Xinyao; Chen, Lanting; Li, Dajin; Wang, Ling
2018-05-13
The aim of the current study was to determine the pattern of immune cells and related functional molecules in peripheral blood and at the maternal-fetal interface in women with unexplained recurrent spontaneous abortion (URSA). In part I, 155 women were included and divided into four groups: non-pregnant controls with no history of URSA (NPCs), pregnant controls with no history of URSA (PCs), non-pregnant women with a history of URSA (NPUs), and pregnant women with a history of URSA (PUs). Venous blood samples were collected and analyzed. In part II, 35 subjects with URSA and 40 subjects in the early stage of normal pregnancy who chose to undergo an abortion were recruited. Samples of the decidua were collected, and the proportion of immune cells and the expression of related molecules were evaluated. Peripheral regulatory T cells (Treg cells) increased in PCs compared to NPCs, but in women with URSA the flux of Treg cells disappeared when pregnancy occurred. Levels of interleukin-10 (IL-10), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and IL-17 and the ratio of Th17/Treg cells in peripheral blood remained stable among the four groups. At the maternal-fetal interface, the percentage of Treg cells, the level of CTLA-4 of CD4 + CD25 + CD127 lo cells and CD4 + Foxp3 + cells were significantly lower in women with URSA compared to controls, respectively. Levels of transforming growth factor-β1 (TGF-β1) mRNA and protein in the decidua significantly decreased in URSA while levels of IL-6 and tumor necrosis factor-ɑ (TNF-ɑ) and the Th17/Treg ratio significantly increased. In conclusion, peripheral Treg cells did not increase in pregnant women with URSA. The decrease in Treg cells and levels of CTLA-4 and TGF-β1 and as well as the increase in levels of IL-6 and TNF-ɑ, and the Th17/Treg ratio at the maternal-fetal interface might contribute to inappropriate maternal-fetal immune tolerance in URSA.
ELOVL4 protein preferentially elongates 20:5n3 to very long chain PUFAs over 20:4n6 and 22:6n3[S
Yu, Man; Benham, Aaron; Logan, Sreemathi; Brush, R. Steven; Mandal, Md Nawajes A.; Anderson, Robert E.; Agbaga, Martin-Paul
2012-01-01
We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein. PMID:22158834
Aldridge, Andrew; Kouroupis, Dimitrios; Churchman, Sarah; English, Anne; Ingham, Eileen; Jones, Elena
2013-01-01
Background aims Mesenchymal stromal cells (MSCs) are regenerative and immuno-privileged cells that are used for both tissue regeneration and treatment of severe inflammation-related disease. For quality control of manufactured MSC batches in regard to mature fat cell contamination, a quantitative method for measuring adipogenesis is needed. Methods Four previously proposed methods were validated with the use of bone marrow (BM) MSCs during a 21-day in vitro assay. Oil red staining was scored semiquantitatively; peroxisome proliferator activated receptor-γ and fatty acid binding protein (FABP)4 transcripts were measured by quantitative real-time polymerase chain reaction; FABP4 protein accumulation was evaluated by flow cytometry; and Nile red/4′,6-diamidino-2-phenylindole (DAPI) ratios were measured in fluorescent microplate assay. Skin fibroblasts and MSCs from fat pad, cartilage and umbilical cord were used as controls. Results Oil red staining indicated considerable heterogeneity between BM donors and individual cells within the same culture. FABP4 transcript levels increased 100- to 5000-fold by day 21, with large donor variability observed. Flow cytometry revealed increasing intra-culture heterogeneity over time; more granular cells accumulated more FABP4 protein and Nile red fluorescence compared with less granular cells. Nile red increase in day-21 MSCs was ∼5- and 4-fold, measured by flow cytometry or microplate assay, respectively. MSC proliferation/apoptosis was accounted through the use of Nile red/DAPI ratios; adipogenesis levels in day-21 BM MSCs increased ∼13-fold, with significant correlations with oil red scoring observed for MSC from other sources. Conclusions Flow cytometry permits the study of MSC differentiation at the single-cell level and sorting more and less mature cells from mixed cell populations. The microplate assay with the use of the Nile red/DAPI ratio provides rapid quantitative measurements and could be used as a low-cost, high-throughput method to quality-control MSC batches from different tissue sources. PMID:23260089
A PI4P-driven electrostatic field controls cell membrane identity and signaling in plants
Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon
2016-01-01
Many signaling proteins permanently or transiently localize to specific organelles for function. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PI4P). Our results further reveal that, contrarily to other eukaryotes, PI4P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID, as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATORs (MAKRs) family, which are involved in brassinosteroid and receptor-like kinase signaling. We anticipate that this PI4P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition. PMID:27322096
A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.
Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon
2016-06-20
Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.
Polianskaia, G G; Goriachaia, T S; Pinaev, G P
2007-01-01
The numerical and structural karyotypic variability has been investigated in "markerless" Rat kangaroo kidney cell lines NBL-3-17 and NBL-3-11 when cultivating on a fibronectin-coated surface. In cell line NBL-3-17, cultivated on the fibronectin-coated surface for 1, 2, 4 and 8 days, the character of cell distribution for the chromosome number has changed. These changes involve a significant decrease in frequency of cells with modal number of chromosomes, and an increase in frequency of cells with lower chromosomal number. Many new additional structural variants of the karyotype (SVK) appear. The observed alterations seem to be due preference adhesion of cells with lower chromosome number, disturbances of mitotic apparatus and selection of SVK, which are more adopted to changes in culture conditions. Detachment of cells from the fibronectin-coated surface, followed by 5 days cultivation on a hydrophilic surface restored control distribution. In cell line NBL-3-11, cultivated on the fibronectin-coated surface for 1, 2, 4 and 8 days, the character of numerical karyotypic variability did not change compared to control variants. In cell line NBL-3-17 the frequency of chromosomal aberrations under cultivation on the fibronectin-coated surface for 1, 2, 4 and 8 days did not change relative to control variants. In cell line NBL-3-11 the frequency of chromosomal aberrations under the same conditions significantly increases, mainly at the expence of chromosomal, chromatid breaks and dicentrics (telomeric association) relative to control variants. We discuss possible reasons of differences in the character of numerical and structural karyotypic variability between cell lines NBL-3-17 (hypotriploid) and NBL-3-11 (hypodiploid) under cultivation on fibronectin. The reasons of the observed interline karyotypic differences possibly consist in peculiarity of karyotypic structure of cell line NBL-3-11 and in the change of gene expression, namely in a dose of certain functioning genes in the hypotryploid cell line NBL-3-17.
Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun
2006-01-01
AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858
Shamji, M H; Bellido, V; Scadding, G W; Layhadi, J A; Cheung, D K M; Calderon, M A; Asare, A; Gao, Z; Turka, L A; Tchao, N; Togias, A; Phippard, D; Durham, S R
2015-02-01
Several studies have demonstrated the time course of inflammatory mediators in nasal fluids following nasal allergen challenge (NAC), whereas the effects of NAC on cells in the periphery are unknown. We examined the time course of effector cell markers (for basophils, dendritic cells and T cells) in peripheral blood after nasal grass pollen allergen challenge. Twelve participants with seasonal allergic rhinitis underwent a control (diluent) challenge followed by NAC after an interval of 14 days. Nasal symptoms and peak nasal inspiratory flow (PNIF) were recorded along with peripheral basophil, T-cell and dendritic cell responses (flow cytometry), T-cell proliferative responses (thymidine incorporation), and cytokine expression (FluoroSpot assay). Robust increases in nasal symptoms and decreases in PNIF were observed during the early (0-1 h) response and modest significant changes during the late (1-24 h) response. Sequential peaks in peripheral blood basophil activation markers were observed (CD107a at 3 h, CD63 at 6 h, and CD203c(bright) at 24 h). T effector/memory cells (CD4(+) CD25(lo) ) were increased at 6 h and accompanied by increases in CD80(+) and CD86(+) plasmacytoid dendritic cells (pDCs). Ex vivo grass antigen-driven T-cell proliferative responses and the frequency of IL-4(+) CD4(+) T cells were significantly increased at 6 h after NAC when compared to the control day. Basophil, T-cell, and dendritic cell activation increased the frequency of allergen-driven IL-4(+) CD4(+) T cells, and T-cell proliferative responses are detectable in the periphery after NAC. These data confirm systemic cellular activation following a local nasal provocation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.
Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy
2012-12-07
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.
[T-lymphocytes--do they control rheumatic immune responses?].
Wagner, U; Schulze-Koops, H
2005-09-01
T cells, in particular CD4(+) T cells, have been implicated in mediating many aspects of rheumatoid inflammation. In rheumatoid arthritis (RA), CD4(+) T cells display various functional abnormalities in the synovium as well as in the peripheral circulation. Current evidence suggests, however, that the role of CD4(+) T cells in the development of rheumatoid inflammation exceeds that of activated pro-inflammatory effector T cells that drive the chronic autoimmune response. Subsets of CD4(+) T cells with regulatory capacity, such as CD25(+) Tregs, have been identified in mice and man, and recent observations suggest that in RA, the function of these regulatory T cells is severely impaired. Thus, in RA, defective regulatory immune mechanisms might allow the breakdown of peripheral tolerance, following which the detrimental CD4(+) T-cell-driven immune response evolves and proceeds to chronic inflammation. Here, we review the functional abnormalities and the contribution of different T-cell subsets to rheumatoid inflammation.
ElAlfy, Mohsen Saleh; Adly, Amira Abdel Moneam; Ebeid, Fatma Soliman ElSayed; Eissa, Deena Samir; Ismail, Eman Abdel Rahman; Mohammed, Yasser Hassan; Ahmed, Manar Elsayed; Saad, Aya Sayed
2018-06-20
Sickle cell disease (SCD) is associated with alterations in immune phenotypes. CD4 + CD28 null T lymphocytes have pro-inflammatory functions and are linked to vascular diseases. To assess the percentage of CD4 + CD28 null T lymphocytes, natural killer cells (NK), and IFN-gamma levels, we compared 40 children and adolescents with SCD with 40 healthy controls and evaluated their relation to disease severity and response to therapy. Patients with SCD steady state were studied, focusing on history of frequent vaso-occlusive crisis, hydroxyurea therapy, and IFN-gamma levels. Analysis of CD4 + CD28 null T lymphocytes and NK cells was done by flow cytometry. Liver and cardiac iron overload were assessed. CD4 + CD28 null T lymphocytes, NK cells, and IFN-gamma levels were significantly higher in patients than controls. Patients with history of frequent vaso-occlusive crisis and those with vascular complications had higher percentage of CD4 + CD28 null T lymphocytes and IFN-gamma while levels were significantly lower among hydroxyurea-treated patients. CD4 + CD28 null T lymphocytes were positively correlated to transfusional iron input while these cells and IFN-gamma were negatively correlated to cardiac T2* and duration of hydroxyurea therapy. NK cells were correlated to HbS and indirect bilirubin. Increased expression of CD4 + CD28 null T lymphocytes highlights their role in immune dysfunction and pathophysiology of SCD complications.
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A.; Wan, Yisong Y.
2014-01-01
Summary Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. While Smad4 was dispensable for T cell generation, homeostasis and effector function, it was essential for T cell proliferation following activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity and anti-tumor immunity. PMID:25577439
Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y
2015-01-20
Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.
RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis
Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen
2014-01-01
G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754
Phenotypic and functional characterization of T cells from patients with myasthenia gravis.
Mokhtarian, F; Pino, M; Ofosu-Appiah, W; Grob, D
1990-01-01
A study of cell surface phenotypes of PBL of myasthenia gravis (MG) patients showed that their T cells had a significantly higher percentage of 4B4+ T cells (the helper/inducer subset) than age- and sex-matched controls. The PBL of MG patients proliferated significantly higher than those of normal subjects (NS) in response to the purified alpha chain of the acetylcholine receptor (AChR). Anti-AChR antibody was present in sera of 88% of MG and none of the NS. The PBL B cells from MG only, when cultured with autologous T cells and stimulated with either pokeweed mitogen (69%), or AChR-alpha chain (38%), secreted antibody to AChR-alpha chain, whereas T and B cells alone secreted no antibody. T cells from PBL of MG patients were more readily cloned than T cells of NS, by limiting dilution, in the presence of recombinant IL-2 and in the absence of AChR-alpha chain. About 50% of T cell clones from MG patients, compared to none from NS, proliferated to AChR-alpha chain. This response was HLA-DR restricted. MG T cell clones did not display significant cytotoxic activity, as compared to control T cell clones. Our results indicate that in MG, 4B4+ regulatory T cells play their role in the pathogenesis of MG, not by cytotoxicity, but more likely by their ability to stimulate specific antibody production by B cells. Images PMID:1979338
In-vivo neutrophil migration and nitroblue tetrazolium reduction in sickle cell disease.
Akinyanju, O O
1985-01-01
In order to determine the contribution of neutrophil malfunction to the phenomenon of enhanced susceptibility of sickle cell disease patients to bacterial infection, the in-vivo neutrophil migration capacity in 23 sickle cell patients and in 14 normal controls; and the neutrophil reduction of nitroblue tetrazolium dye in 74 sickle cell patients and in 78 normal controls were studied. Secondarily the usefulness of the NBT test in distinguishing between osteomyelitis and uncomplicated bone pain was examined. No impairment of neutrophil migratory capacity was evident as no significant difference was observed between the mean migrated neutrophil count in the sickle cell subjects (1.99 X 10(9)/1) and that in normal controls (2.08 X 10(9)/1). The mean NBT scores were 19.9 +/- 8.9% in non-infected controls and 41.3 +/- 14.6% in infected controls (P less than 0.001). In sickle cell disease they were 23.6 +/- 6% in steady state subjects, 29.2 +/- 16.4% in sterile painful crises, 42.9 +/- 15% in non-osteomyelitic bacterial infection (P less than 0.001) and 18.9 +/- 4.2% during osteomyelitis. Thus all sickle cell subjects apart from those with osteomyelitis showed significant increases in the NBT scores during bacterial infection. The low score in sickle cell osteomyelitis is possibly associated with a relative neutrophil phagocytic defect which requires further elucidation. The NBT test was not useful in distinguishing uncomplicated painful crisis from early osteomyelitis in sickle cell disease.
Evaluation of CD4+ CD25+ FoxP3+ regulatory T cells during treatment of patients with brucellosis.
Hasanjani Roushan, M R; Bayani, M; Soleimani Amiri, S; Mohammadnia-Afrouzi, M; Nouri, H R; Ebrahimpour, S
2016-01-01
Cell-mediated immunity (CMI) plays a critical role in the control of brucellosis. Regulatory T cells (Tregs) have a functional character in modulating the balance between host immune response and tolerance, which can eventually lead to chronic infection or relapse. The aim of this study was to assess the alteration of Tregs in cases of brucellosis before and after treatment. Thirty cases of acute brucellosis with the mean age of 41.03±15.15 years (case group) and 30 healthy persons with the mean age of 40.63±13.95 years (control group) were selected and assessed. Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of all individuals. We analyzed the alteration of Treg cell count using flow cytometry for CD4, CD25, and FoxP3 markers. The level of CD4+ CD25+ FoxP3+ Treg cells was increased in active patients compared with controls (2.5±0.99% vs 1.6±0.84%, p= 0.0004), but it had declined in the treated cases (1.83±0.73%, p=0.02). The level of Tregs was elevated in three relapsed cases. The frequency of Tregs and Treg/Teff (effector T cell) ratio was correlated with inverse serum agglutination test (SAT) and, 2-mercaptoethanol (2-ME) titers as markers of treatment in brucellosis. Based on our findings, we suggest that regulatory cells, such as CD4+ CD25+ FoxP3+ Treg cells, may contribute to the development of infection processes involving immune responses in brucellosis, and evaluation of regulatory T-cell levels may be a potential diagnostic strategy for the treatment outcome in chronic and relapsed cases of brucellosis.
Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank
2013-05-15
Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.
Ali, Naglaa A; Swelam, Enas; AI Banna, Ehab A; Showkry, Amira
2012-01-01
To evaluate glutamic acid decarboxylase autoantibodies (GAD65), islet cell autoantibodies (ICA) and insulin autoantibodies (IAA) as disease markers and their relationship to certain residual beta-cell function as well as glycemic control among patients with diabetes mellitus. Also, to evaluate of the level of CD4+CD25+(Treg) out of CD4 cells among patients with immune mediated diabetes mellitus (DM). The study included 80 individuals divided into: 40 diabetic patients (group A) and 20 risk siblings (group B) of diabetic father or mother or both. 20 healthy individuals enrolled as control group (group C) all were with no family history of DM. GAD, ICA, IAA autoantibodies and C-peptide were determined by ELISA. HbA1 by ion exchange chromatography and measurement of the expression of CD4+CD25+ (T reg) by flowcytometry. The most frequently encountered antibody in adult and children groups was GAD65, followed by ICA. But in risk group the most frequently antibody was ICA, followed by GAD. In the risk group, there was no statistical difference in the level of CD4+CD25+ in comparison with control group. There was significant decrease in the percentage of CD4+CD25+ in adult and children patients groups with positive autoantibodies than those with negative autoantibodies. In conclusions, at the time of diagnosis the majority of patients with type I diabetes have autoantibodies that are reactive to islet antigens. GAD, ICA, IAA are of value for predicting IDDM in sibling of diabetic parents type I. CD4+CD25+ Treg cells may actively suppress activation of the immune system and prevent pathological self-reactivity.
Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J.
2013-01-01
Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels. PMID:23504458
Woodworth, J S; Cohen, S B; Moguche, A O; Plumlee, C R; Agger, E M; Urdahl, K B; Andersen, P
2017-03-01
The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1 - CXCR3 + cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma.
Erfani, Nasrollah; Mehrabadi, Shayesteh Mofakhami; Ghayumi, Mohammad Ali; Haghshenas, Mohammad Reza; Mojtahedi, Zahra; Ghaderi, Abbas; Amani, Davar
2012-08-01
We hypothesized that the increased percentages of Regulatory T (Treg) cells, as well as over expression of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) by lymphocyte subsets might be associated with lung cancer. Accordingly, peripheral blood of 23 new cases with non-small cell lung cancer (NSCLC) and 16 healthy volunteers were investigated, by follow cytometry, for the prevalence of CD4+CD25+FoxP3+ Treg cells as well as surface (sur-) and intracellular (In-) expression of CTLA-4 by the main lymphocyte subsets (CD4+, CD8+ and CD19+). Results indicated that NSCLC patients had an increased percentage of Treg cells than controls (7.9±4.1 versus 3.8±1.8, P=0.001). The proportion of Treg cells was observed to be increased by stage increase in patients (stage II=5.2±2.4, stage III=7.9±4.4, stage IV=12.0±2.2), and also significantly higher in metastatic than non-metastatic stages (12.0±2.2 versus 6.8±3.9, P=0.023). Increase of SurCTLA-4- as well as InCTLA-4-expressing lymphocytes in patients were observed in nearly all investigated subsets, but significant differences between patients and controls were observed about InCTLA-4+CD4+ lymphocytes (8.6±7.1 and 3.8±5.3 respectively, P=0.006) as well as SurCTLA-4+CD8+ lymphocytes (0.3±0.2 and 0.2±0.1 respectively, P=0.047). In conclusion, the results suggest that immunotherapy regimen targeting CTLA-4 and Treg cells might be beneficial in lung cancer patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge
2014-09-01
We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.
2015-01-01
Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398
Cellular immune responses to HIV
NASA Astrophysics Data System (ADS)
McMichael, Andrew J.; Rowland-Jones, Sarah L.
2001-04-01
The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.
Th17 and Th22 cells in psoriatic arthritis and psoriasis
2013-01-01
Introduction The aim of this study was to characterize interleukin 17 (IL-17) and interleukin 22 (IL-22) producing cells in peripheral blood (PB), skin, synovial fluid (SF) and synovial tissue (ST) in patients with psoriasis (Ps) and psoriatic arthritis (PsA). Methods Flow cytometry was used to enumerate cells making IL-22 and IL-17, in skin and/or SF and PB from 11 patients with Ps and 12 patients with PsA; skin and PB of 15 healthy controls and SF from rheumatoid arthritis (RA) patients were used as controls. Expression of the interleukin 23 receptor (IL-23R) and chemokine receptors CCR4 and CCR6 was examined. Secretion of IL-17 and IL-22 was measured by ELISA. ST was analysed by immunohistochemical staining of IL-17 and IL-22. Results Increased frequencies of IL-17+ and IL-22+ CD4+ T cells were seen in PB of patients with PsA and Ps. IL-17 secretion was significantly elevated in both PsA and Ps, whilst IL-22 secretion was higher in PsA compared to Ps and healthy controls. A higher proportion of the CD4+ cells making IL-17 or IL-22 expressed IL-23R and frequencies of IL-17+, CCR6+ and CCR4+ T cells were elevated in patients with Ps and those with PsA. In patients with PsA, CCR6+ and IL-23R + T cells numbers were elevated in SF compared to PB. Increased frequencies of IL-17+ and IL-22+ CD4+ T cells were demonstrated in Ps skin lesions. In contrast, whilst elevated frequencies of CD4+ IL-17+ cells were seen in PsA SF compared to PB, frequencies of CD4+ IL-22+ T cells were lower. Whereas IL-17 expression was equivalent in PsA, osteoarthritis (OA) and RA ST, IL-22 expression was higher in RA than either OA or PsA ST, in which IL-22 was strikingly absent. Conclusions Elevated frequencies of IL-17 and IL-22 producing CD4+ T cells were a feature of both Ps and PsA. However their differing distribution at disease sites, including lower frequencies of IL-22+ CD4+ T cells in SF compared to skin and PB, and lack of IL-22 expression in ST suggests that Th17 and Th22 cells have common, as well as divergent roles in the pathogenesis of Ps and PsA. PMID:24286492
[Effect of CsA bleomycin-induced interstitial pulmonary disease in mice].
Ren, Ying; Yang, Hui; Zhu, Ping; Fan, Chun-mei; Wang, Yan-hong; Li, Jia; Liu, Hui
2012-03-01
To observe the therapeutic effect of cyclosporine A (CsA) on bleomycin (BLM) induced pulmonary fibrosis and to investigate its mechanism. One hundred and twenty C57BL/6 female mice were divided randomly into five groups: BLM model group, control saline group, CsA30 mg treatment group, CsA50 mg treatment group and control treatment group. Treatment groups and model groups were administrated BLM intratracheally to induce interstitial pulmonary disease model, with control saline group administrated with equal volume of normal saline instead. Mice in treatment groups were intraperitoneal injected with CsA, while control treatment group were injected with equal volume of normal saline instead. On the 4th, 7th and 14th day after administration, 8 mice of each group were sacrificed, and the peripheral blood was obtained to count total leucocytes with counting chamber and quantify CD4(+); T cells, CD14(+); monocytes and CD19(+); B cells by flow cytometry (FCM). Bronchoalveolar levage fluid was harvested for cell counting and Giemsa staining. Lung tissues were harvested for immunohistochemical staining and pathological examination. The quantity of total leucocyte was higher in BLM model group than those in control saline group.The proportion of CD14(+); T cells and CD19(+);B cells in BLM model group were increased markedly than those in control saline group on the 4th, 7th and 14th day post BLM. With CsA treatment, The proportion of CD14(+); T cells was lower than BLM model group at the same time point, especially on the 4th day. The proportion of CD19(+); B cells were significantly lower than those of BLM model group at the same time point(7 d, 14 d). The total and classification of cells of BLM model group were increased markedly than those in control saline group, and decreased obviously in the treatment groups at the same time point. Examination of lung tissues: With the prolonged time of BLM administration, it showed wider alveolar septum, more collagen deposition, as well as more infiltrating inflammatory cells which consisted of generous lymphocyte and few mononuclear macrophages than those in saline control group. With the prolonged time of CsA injection, the interstitial pulmonary inflammation was remissive, and there was less fibroblast infiltration and collagen deposition in pulmonary interstitium and periphery of bronchiole. Alveolar epithelial cells, bronchiolar epithelial cells, mononuclear macrophages, neutrophils and lymphocytes were demonstrated to express CD147, there was higher CD147 expression in BLM model group than those in CsA treatment groups. CsA may heal BLM induced interstitial pulmonary disease by blocking CD147-CypA interaction, then decreasing chemotaxis for the immunocyte, and reducing migration of immunocytes to the lung and collagen deposition in the lung.
RGC-32 is a novel regulator of the T-lymphocyte cell cycle.
Tegla, Cosmin A; Cudrici, Cornelia D; Nguyen, Vinh; Danoff, Jacob; Kruszewski, Adam M; Boodhoo, Dallas; Mekala, Armugam P; Vlaicu, Sonia I; Chen, Ching; Rus, Violeta; Badea, Tudor C; Rus, Horea
2015-06-01
We have previously shown that RGC-32 is involved in cell cycle regulation in vitro. To define the in vivo role of RGC-32, we generated RGC-32 knockout mice. These mice developed normally and did not spontaneously develop overt tumors. To assess the effect of RGC-32 deficiency on cell cycle activation in T cells, we determined the proliferative rates of CD4(+) and CD8(+) T cells from the spleens of RGC-32(-/-) mice, as compared to wild-type (WT, RGC-32(+/+)) control mice. After stimulation with anti-CD3/anti-CD28, CD4(+) T cells from RGC-32(-/-) mice displayed a significant increase in [(3)H]-thymidine incorporation when compared to WT mice. In addition, both CD4(+) and CD8(+) T cells from RGC-32(-/-) mice displayed a significant increase in the proportion of proliferating Ki67(+) cells, indicating that in T cells, RGC-32 has an inhibitory effect on cell cycle activation induced by T-cell receptor/CD28 engagement. Furthermore, Akt and FOXO1 phosphorylation induced in stimulated CD4(+) T-cells from RGC-32(-/-) mice were significantly higher, indicating that RGC-32 inhibits cell cycle activation by suppressing FOXO1 activation. We also found that IL-2 mRNA and protein expression were significantly increased in RGC-32(-/-) CD4(+) T cells when compared to RGC-32(+/+) CD4(+) T cells. In addition, the effect of RGC-32 on the cell cycle and IL-2 expression was inhibited by pretreatment of the samples with LY294002, indicating a role for phosphatidylinositol 3-kinase (PI3K). Thus, RGC-32 is involved in controlling the cell cycle of T cells in vivo, and this effect is mediated by IL-2 in a PI3K-dependent fashion. Copyright © 2015 Elsevier Inc. All rights reserved.
Kufaishi, Hala; Alarab, May; Drutz, Harold; Lye, Stephen; Shynlova, Oksana
2016-08-01
Primary human vaginal cells derived from women with severe pelvic organ prolapse (POP-HVCs) demonstrate altered cellular characteristics as compared to cells derived from asymptomatic women (control-HVCs). Using computer-controllable Flexcell stretch unit, we examined whether POP-HVCs react differently to mechanical loading as compared to control-HVCs by the expression of extracellular matrix (ECM) components, cell-ECM adhesion proteins, and ECM degrading and maturating enzymes. Vaginal tissue biopsies from premenopausal patients with Pelvic Organ Prolapse Quantification System stage ≥3 (n = 8) and asymptomatic controls (n = 7) were collected during vaginal hysterectomy or repair. Human vaginal cells were isolated by enzymatic digestion, seeded on collagen (COLI)-coated plates, and stretched (24 hours, 25% elongation). Total RNA was extracted, and 84 genes were screened using Human ECM and Adhesion Molecules polymerase chain reaction array; selected genes were verified by quantitative reverse transcription-polymerase chain reaction. Stretch-conditioned media (SCM) were collected and analyzed by protein array, immunoblotting, and zymography. In mechanically stretched control-HVCs, transcript levels of integrins (ITGA1, ITGA4, ITGAV, and ITGB1) and matrix metalloproteinases (MMPs) 2, 8, and 13 were downregulated (P < .05); in POP-HVCs, MMP1, MMP3, and MMP10, ADAMTS8 and 13, tissue inhibitor of metalloproteinases (TIMPs) 1 to 3, ITGA2, ITGA4, ITGA6, ITGB1, contactin (CNTN1), catenins (A1 and B1), and laminins (A3 and C1) were significantly upregulated, whereas COLs (1, 4, 5, 6, 11, and 12) and LOXL1 were downregulated. Human vaginal cells massively secrete MMPs and TIMPs proteins; MMP1, MMP8, MMP9 protein expression and MMP2 gelatinase activity were increased, whereas TIMP2 decreased in SCM from POP-HVCs compared to control-HVCs. Primary human vaginal cells derived from women with severe pelvic organ prolapse and control-HVCs react differentially to in vitro mechanical stretch. Risk factors that induce stretch may alter ECM composition and cell-ECM interaction in pelvic floor tissue leading to the abatement of pelvic organ support and subsequent POP development. © The Author(s) 2016.
CD16+ monocytes control T-cell subset development in immune thrombocytopenia
Zhong, Hui; Bao, Weili; Li, Xiaojuan; Miller, Allison; Seery, Caroline; Haq, Naznin; Bussel, James
2012-01-01
Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4+ regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14hiCD16− subpopulation, the CD16+ monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4+IFN-γ+ levels, but negatively with circulating CD4+CD25hiFoxp3+ and IL-17+ Th cells. Using a coculture model, we found that CD16+ ITP monocytes promoted the expansion of IFN-γ+CD4+ cells and concomitantly inhibited the proliferation of Tregs and IL-17+ Th cells. Th-1–polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16+ monocytes, was responsible for the inhibitory effect on Treg and IL-17+CD4+ cell proliferation. Our findings are consistent with ITP CD16+ monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16+ monocytes in the generation of potentially pathogenic Th responses in ITP. PMID:22915651
A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib.
Sun, Tianliang; Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krasel, Cornelius; Heil, Daniel; Krishnan, Ramesh K; Santoni, Marie-Josée; Borg, Jean-Paul; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M; Worzfeld, Thomas
2017-01-02
Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. © 2017 Sun et al.
Quintana, R; Kopcow, L; Marconi, G; Sueldo, C; Speranza, G; Barañao, R I
2001-09-01
The aim of this study was to evaluate the concentration of vascular endothelial growth factor (VEGF) in follicular fluid and in granulosa cell cultures in relation to the degree of apoptosis in granulosa cells from patients with different types of ovarian response to controlled ovarian hyperstimulation. We studied 30 women who underwent controlled ovarian hyperstimulation and oocyte retrieval. Group A comprised patients with 1-4 follicles (n = 10), group B patients with 5-14 follicles (n = 10) and group C patients with >15 follicles (n = 10). Mean (+/-SD) VEGF concentrations in follicular fluid were 1232 +/- 209, 813 +/- 198 and 396 +/- 103 pg/ml for groups A, B and C respectively (P > 0.01). Concentrations of VEGF in granulosa cell supernatant were 684 +/- 316, 1101 +/- 295 and 1596 +/- 227 pg/ml respectively (P < 0.05). Percentages of apoptotic cells in granulosa cells culture was 55.02 +/- 7.5, 23.98 +/- 4.4 and 14.2 +/- 2.3% respectively (A versus B, P < 0.01, A versus C, P < 0.006, B versus C, NS). Our findings showed that in patients with decreased ovarian response to controlled ovarian hyperstimulation, follicular fluid VEGF concentration is elevated, the concentration from granulosa cells culture supernatant is decreased and the percentage of apoptotic granulosa cells is increased, while opposite findings occurred in patients with normal or hyper-responses.
Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko
2015-01-01
Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610
Atluru, D; Goodwin, J S
1984-01-01
We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4. Images PMID:6090503
Interleukin 4-producing CD4+ T cells in the skin of cats with allergic dermatitis.
Roosje, P J; Dean, G A; Willemse, T; Rutten, V P M G; Thepen, T
2002-03-01
Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells (P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.
Lopes da Silva, Mafalda; O'Connor, Marie N; Kriston-Vizi, Janos; White, Ian J; Al-Shawi, Raya; Simons, J Paul; Mössinger, Julia; Haucke, Volker; Cutler, Daniel F
2016-05-15
Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIα and PI4KIIβ in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIα-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function. © 2016. Published by The Company of Biologists Ltd.
Ryu, Yun-Kyoung; Lee, Yu-Sun; Lee, Geun-Hee; Song, Kyu-Sang; Kim, Yong-Sung; Moon, Eun-Yi
2012-11-01
Thymosin beta-4 (Tβ4), actin-sequestering protein, plays important roles in many cellular functions including cancer cell migrations. Glycogen synthase kinase (GSK) in Wnt signaling pathway is a key molecule to control intercellular interaction. Here, we investigated whether GSK-3 activity is regulated by Tβ4 and it is associated with Tβ4-mediated migration in gastric cancer cells. Various expression level of Tβ4 was observed in human gastric tumor tissues. Migration in gastric cancer cells, SNU638 and SNU668, was dependent on a relative expression level of Tβ4. Cell migration was higher in SNU668 with a higher expression level of Tβ4 than that in SNU638 with a lower Tβ4. Although the level of phosphorylated(p)-GSK-3α (inactive), β-catenin, E-cadherin and E-cadherin:β-catenin complex was relatively higher, p-GSK-3β (inactive) was lower in SNU638 compared to those in SNU668 cells. LiCl, GSK-3α/β inhibitor, reduced lung metastasis of B16F10 mouse melanoma cells and SNU668 cell migration. Small interference (si)RNA of GSK-3α increased SNU638 cell migration in accordance with the reduction of E-cadherin:β-catenin complex formation through a decrease in β-catenin and E-cadherin. Expression level of GSK-3α/β, β-catenin and E-cadherin in SNU668 and SNU638 was reversed by Tβ4-siRNA and by the treatment with acetylated-serine-aspartic acid-lysine-proline (SDKP) tetrapeptide of Tβ4, respectively. E-cadherin expression in SNU638 cells was decreased by β-catenin-siRNA. PD98059, MEK inhibitor, or U0126, ERK inhibitor, reduced SNU668 cell migration accompanying an increase in p-GSK-3α, β-catenin and E-cadherin. Taken together, data indicated that the expression of GSK-3α, β-catenin and E-cadherin could be negatively regulated by Tβ4-induced ERK phosphorylation. It suggests that Tβ4 could be a novel regulator to control Wnt signaling pathways. Copyright © 2012 UICC.
In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.
Lin, Hsin-Yi; Bumgardner, Joel D
2004-03-15
Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 717-724, 2004
Moguche, Albanus O.; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P.; Dinh, Crystal; Higdon, Lauren E.; Cambier, C.J.; Sissons, James R.; Gallegos, Alena M.; Fink, Pamela J.
2015-01-01
Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. PMID:25918344
Alahgholi-Hajibehzad, M; Durmuş, H; Aysal, F; Gülşen-Parman, Y; Oflazer, P; Deymeer, F; Saruhan-Direskeneli, G
2017-11-01
Impairment of the suppressive function of regulatory T (T reg ) cells has been reported in myasthenia gravis (MG). In this study, cytokine-related mechanisms that may lead to the defect of T reg were investigated in patients with anti-acetylcholine receptor antibody-positive MG (AChR + MG). Proliferation and cytokine production of responder T (T resp ) cells in response to polyclonal activation were measured in a suppression assay. The effect of interleukin (IL)-21 on suppression was evaluated in vitro in co-culture. IL-21 increased the proliferation of T resp cells in T resp /T reg co-cultures. T resp cells from patients with MG secreted significantly lower levels of IL-2. In patients with MG, IL-2 levels did not change with the addition of T reg to cultures, whereas it decreased significantly in controls. In T resp /T reg co-cultures, IL-4, IL-6 and IL-10 production increased in the presence of T reg in patients. Interferon (IFN)-γ was decreased, whereas IL-17A was increased in both patient and control groups. IL-21 inhibited the secretion of IL-4 in MG and healthy controls (HC), and IL-17A in HC only. The results demonstrated that IL-21 enhances the proliferation of T resp cells in the presence of T reg . An effect of IL-21 mainly on T resp cells through IL-2 is implicated. © 2017 British Society for Immunology.
The effects of beta 2-agonists and methylxanthines on neutrophil function in vitro.
Llewellyn-Jones, C G; Stockley, R A
1994-08-01
Therapeutic agents which affect polymorphonuclear neutrophil (PMN) functions have the potential to reduce or increase PMN activation and, hence, influence the progression of lung inflammation. We have assessed the effects of the beta 2-agonist, terbutaline, and the methylxanthine, aminophylline, on PMN functions in vitro at both therapeutic and higher concentrations. At therapeutic levels, both agents increased PMN chemotaxis to formyl-methionyl-leucyl-phenylalanine (FMLP) in a dose-dependent manner from a control value of 22.5 +/- 3.58 cells.field-1 to 26.1 +/- 4.73 cells.field-1 with 4 mg.l-1 terbutaline, and to 26.3 +/- 4.49 cells.field-1 with 20 mg.l-1 aminophylline. When the cells were preincubated with higher doses of the agents in separate experiments there was inhibition of chemotaxis from a control value of 31.1 +/- 2.06 cells.field-1 to 18.3 +/- 0.82 cells.field-1 at 160 mg.l-1 terbutaline, and to 16.1 +/- 0.77 cells.field-1 at 400 mg.l-1 aminophylline. A similar effect was seen when the PMNs were preincubated with terbutaline and aminophylline prior to assessment of superoxide anion generation, with stimulation of superoxide release at therapeutic levels of the drugs and inhibition at higher doses (19% increase from resting control cells at terbutaline 4 mg.l-1 and 53% reduction at 160 mg.l-1; 28% increase with aminophylline 20 mg.l-1 and 22% reduction at 400 mg.l-1). Both terbutaline and aminophylline had no effect on PMN degranulation, as assessed by the degradation of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)
USDA-ARS?s Scientific Manuscript database
The CD4+ T-cell response is central for control of Anaplasma marginale infection in cattle. However, the infection induces a functional exhaustion of antigen-specific CD4+ T cells in cattle immunized with A. marginale outer membrane proteins or purified outer membranes (OM), which presumably facilit...
Khalil, Noha A; Hashem, Amal M; Ibrahim, Amal A E; Mousa, Mostafa A
2012-08-01
The present experiments were designed to determine the effect of different stress factors; handling, seawater acclimation, confinement, and induced spawning on plasma cortisol, hydro mineral balance as well as changes in size, number and integrated intensity of somatolactin (SL)-expressing cells in Liza ramada mature females confined to fresh water ponds. The plasma levels of cortisol, PO(4)(3-), Na(+), and K(+) were higher, while Ca(2+) and Mg(2+) were lower than controls during transportation without anesthesia. By using clove oil (5 mg L(-1)) as an anesthetic during transportation, the plasma cortisol, PO(4) (3-), Na(+), and K(+) were similar to controls, while Ca(2+) and Mg(2+) were higher. During seawater acclimation, the plasma cortisol and minerals were significantly higher except Na(+) which was lower than controls. In addition, during induction of spawning, the plasma levels of cortisol, PO(4)(3-), Na(+), K(+), and Mg(2+) were significantly higher than controls. The SL-producing cells are located in the pars intermedia (PI) bordering the neurohypophysis. The stress affected the number, size, and immunostaining of SL-expressing cells. During seawater acclimation, the size and the integrated intensity of SL immunoreactivity were lower, but the number of these cells was higher than controls. Furthermore, the number, size, and the integrated intensity of SL immunoreactivity were significantly lower than controls during handling and after spawning, which was opposite to confinement. The response of SL-expressing cells in PI in parallel with changes in cortisol and hydro mineral balance induced by stress support the possible role of SL in the adaptive response of fish to stress. © 2012 WILEY PERIODICALS, INC.
Zamulaeva, I A; Smirnova, S G; Orlova, N V; Vereshchagina, O A; Chekin, S Iu; Smirnova, I A; Krikunova, L I; Parshin, V S; Ivanov, V K; Saenko, A S
2006-01-01
In the period of 2001-2004, frequency of cells bearing mutations at T-cell receptor (TCR) locus was assessed in 553 inhabitants of radiation polluted regions of the Russian Federation and 154 unexposed control persons. The inhabitants were divided into three groups according to age at the moment of the Chernobyl disaster and 137Cs pollution density: 1) in utero, 37-555 kBq/m2; 2) 0-14 years old, 20-555 kBq/m2; 3) 18 and more years old, highest 137Cs density (185 more than 555 kBq/m2). The most intense changes of the TCR-mutant cell frequency were observed in the group of persons exposed to ionizing radiation in utero. The mean frequency of the mutant cells was higher in the first group than in age-matched control group by about 1.5-fold: 4.0 x 10(-4) vs 2.7 x 10(-4) accordingly (p < 0.0001). Elevation in the mean TCR-mutant cell frequency was less expressed in group of inhabitants aged 0-14 years at the moment of irradiation start: 1.3-fold increase in comparison to age-matched control (3.8 x 10(-4) vs 2.9 x 10(-4), p = 0.0002). It was not found significant differences in mutant cell frequencies between control group and adults consisting in the third group (18 and more years old at the moment of the Chernobyl accident). The changes of the TCR-mutant cell frequency in persons exposed in pre- and postnatal periods differ not only quantitatively, but qualitatively. In the fist case all persons react to irradiation by increasing number of the TCR-mutant cells in some degree. In the second case - only a part of population. Proportion of reacting persons depends on age at the start of irradiation and, perhaps, on dose absorbed. The TCR-mutant frequency was significantly higher in persons with benign tumors of different localizations and nodules in thyroid gland than in persons without this pathology.
Cai, Li; Zhang, Chenxing; Wu, Jing; Zhou, Wei; Chen, Tongxin
2018-03-30
Programmed cell death-1 (PD-1) and its ligand (PD-L1) mediate negative signal in autoimmune diseases. While little is known about its role in juvenile idiopathic arthritis (JIA). The study aimed to reveal the circulating cell profile and the relative PD-1/PD-L1 expression of JIA subsets, elucidating their underlying immunomodulatory mechanisms. We detected the circulating cells and the relative PD-1/PD-L1 signaling in 101 JIA patients and 50 controls by flow cytometry and analyzed their association with disease activity and clinical manifestations. Different from other JIA types, active systemic JIA (sJIA) patients had lower percentage and count of CD4 + T cells and lower PD-1 expression on them compared with healthy controls (P<0.05), active polyarthritis (P<0.05) and enthesitis-related arthritis (ERA) patients (P<0.05). Also, they had higher percentage and count of myeloid dendritic cell (mDC) and lower PD-L1 expression on mDC compared with healthy controls (P<0.05). Both PD-1 on CD4 + T cell and PD-L1 on mDC were negatively correlated with JADAS-27 in sJIA patients (P<0.05). In addition, PD-1 expression on CD4 + T cell was negatively associated with the number of involved joints (P<0.05) and PD-L1 on mDC was lower in patients with fever (P<0.01), which could further divide patients into two groups of different manifestations. Our finding displayed decreased CD4 + T cell, increased mDC and reduced PD-1/PD-L1 signal in sJIA PBMC comparing with other JIA subsets, which might be helpful in JIA differential diagnosis and responsible for distinct clinical manifestations via different mechanisms. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Buri, Marcus V; Dias, Carol C; Barbosa, Christiano M V; Nogueira-Pedro, Amanda; Ribeiro-Filho, Antonio C; Miranda, Antonio; Paredes-Gamero, Edgar J
2016-11-01
Due to the cytotoxic effect of antimicrobial peptides (AMP) against several microorganism and tumor cells has been proposed their association with the immune system. However, just a few reports have shown this relationship. In this study, mice were treated with gomesin, a β-hairpin AMP that exhibit high cytotoxicity against bacterial and tumor cells. Different effects in the immune system were observed, such as, decrease of CD3 + in T lymphocytes (Control: 17.7±1.4%; Gomesin: 7.67±1.2%) and in hematopoietic progenitors and increase of hematopoietic stem cell (Control: 0.046±0.004%; Gomesin: 0.067±0.003%), B220 + B lymphocytes (Control: 38.63±1.5%; Gomesin: 47.83±0.48%), and Mac-1 + F4/80 + macrophages (Control: 11.76±3.4%; Gomesin: 27.13±4.0%). Additionally, macrophage increase was accompanied by an increase of macrophage phagocytosis (Control 20.85±1.53; Gomesin 31.32±1 Geometric mean), interleukin 6 (Control: 47.24±1.9ng/mL; Gomesin: 138.68±33.68ng/mL) and monocyte chemoattractant protein-1 (Control: 0.872±0.093ng/mL; Gomesin: 1.83±0.067ng/mL). Thus, this report showed immunomodulatory activity of gomesin in the immune system of mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Hsin-Hung; Tseng, Guan-Ying; Yang, Hsiao-Bai; Wang, Hung-Jung; Lin, Hwai-Jeng; Wang, Wen-Ching
2012-01-01
AIM: To determine the number of regulatory T cells (Tregs) in gastric mucosa of patients with gastritis, peptic ulcers and gastric cancer. METHODS: This study was a retrospective analysis of gastric antrum biopsy specimens from healthy controls (n = 22) and patients with gastritis (n = 30), peptic ulcer (n = 83), or gastric cancer (n = 32). Expression of CD4, CD25 and Foxp3 was determined by immunohistochemistry in three consecutive sections per sample. RESULTS: Compared with healthy controls, there was an increased number of CD25+ and Foxp3+ cells in patients with gastritis (P = 0.004 and P = 0.008), peptic ulcer (P < 0.001 and P < 0.001), and gastric cancer (P < 0.001 and P < 0.001). The ratio of CD25+/CD4+ or Foxp3+/CD4+ cells was also significantly higher in all disease groups (P < 0.001, respectively). The number of CD4+, CD25+, and Foxp3+ cells, and the ratio of CD25+/CD4+ and Foxp3+/CD4+ cells, were associated with the histological grade of the specimens, including acute inflammation, chronic inflammation, lymphoid follicle number, and Helicobacter pylori infection. The number of CD4+, CD25+ and Foxp3+ cells, and the ratio of CD25+/CD4+ and Foxp3+/CD4+ cells, were negatively associated with intestinal metaplasia among gastritis (P < 0.001, P < 0.001, P < 0.001, P = 0.002 and P = 0.002) and peptic ulcer groups (P = 0.013, P = 0.004, P < 0.001, P = 0.040 and P = 0.003). CONCLUSION: Tregs are positively associated with endoscopic findings of gastroduodenal diseases and histological grade but negatively associated with intestinal metaplasia in gastritis and peptic ulcer groups. PMID:22228968
Oteiza, Alexandra; Mechti, Nadir
2011-01-01
Activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by the viral Tax oncoprotein plays a pivotal role in clonal expansion of human T-cell leukemia virus type 1 (HTLV-1)-infected cells. As the Forkhead box O (FoxO) tumor suppressors act as downstream effectors of PI3K/Akt, they represent good candidate targets whose dysregulation by Tax might be involved in HTLV-1-mediated activation and transformation of infected cells. In this report, we provide evidence showing that Tax induces a dose-dependent degradation of FoxO4 by the ubiquitin-proteasome pathway. Consistent with that, we demonstrate that Tax expression increases the interaction between FoxO4 and Mdm2 E3 ligase, leading to a strong FoxO4 polyubiquitination. These processes require the phosphorylation of FoxO4 by Akt, since a mutant of FoxO4 with mutations on its three Akt phosphorylation sites appears to be resistant to Tax-mediated degradation and ubiquitination. In addition, we show that Tax expression is associated with degradation and phosphorylation of endogenous FoxO4 in Jurkat T cells. Finally, we demonstrate that Tax represses FoxO4 transcriptional activity. Our study demonstrates that Tax can control FoxO4 protein stability and transcriptional activity and provides new insight into the subversion of cell signaling pathways during HTLV-1 infection. PMID:21525355
Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma.
Barbieri, Federica; Bajetto, Adriana; Thellung, Stefano; Würth, Roberto; Florio, Tullio
2016-11-01
Chemokines control homing and trafficking of leukocytes in bone marrow and lymphoid organs. In particular, CXCL12 and its receptors CXCR4/CXCR7 control the homeostasis of multiple organs and systems. Their overexpression is linked to tumor development, both through a direct modulation of neoplastic cell proliferation, survival, and migration, and, indirectly, acting on the tumor microenvironment which sustains drug resistant tumor stem-like cells. Leukemia and lymphomas frequently display upregulation of CXCL12/CXCR4 in bone marrow that nurtures tumor cells, and confers resistance to conventional chemotherapy, increasing disease relapse. Areas covered: The authors review the molecular and cellular mechanisms by which the CXCL12/CXCR4-7 system supports leukemic bone marrow and how it contributes to leukemia development, and their potential pharmacological targeting. Besides receptor antagonists that directly inhibit leukemic cell proliferation, preclinical and clinical studies demonstrate that CXCR4 inhibition mobilizes leukemic-lymphoma cells from their niches, improving conventional chemotherapy efficacy. Clinically available and experimental pharmacological tools targeting CXCR4/CXCR7 are also described. Expert opinion: Studies have revealed the therapeutic efficacy of combining CXCR4 inhibitors and cytotoxic agents to sensitize leukemic cells, and overcome natural or acquired resistance. However, several issues are still to be unveiled (for example the role of CXCR7) to maximize therapeutic response and reduce potential toxicities.
Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.
Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei
2018-05-01
Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.
Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa; Bando, Jennifer K; Robinette, Michelle L; Wang, Qianli; White, Andrew J; Gilfillan, Susan; Cella, Marina; Colonna, Marco
2017-09-01
Among the features that distinguish type 1 innate lymphoid cells (ILC1s) from natural killer (NK) cells is a gene signature indicative of 'imprinting' by cytokines of the TGF-β family. We studied mice in which ILC1s and NK cells lacked SMAD4, a signal transducer that facilitates the canonical signaling pathway common to all cytokines of the TGF-β family. While SMAD4 deficiency did not affect ILC1 differentiation, NK cells unexpectedly acquired an ILC1-like gene signature and were unable to control tumor metastasis or viral infection. Mechanistically, SMAD4 restrained non-canonical TGF-β signaling mediated by the cytokine receptor TGFβR1 in NK cells. NK cells from a SMAD4-deficient person affected by polyposis were also hyper-responsive to TGF-β. These results identify SMAD4 as a previously unknown regulator that restricts non-canonical TGF-β signaling in NK cells.
Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa; Bando, Jennifer K; Robinette, Michelle L; Wang, Qianli; White, Andrew J; Gilfillan, Susan; Cella, Marina; Colonna, Marco
2017-01-01
Among the features that distinguish type 1 innate lymphoid cells (ILC1s) from natural killer (NK) cells is a gene signature indicative of ‘imprinting’ by cytokines of the TGF-β family. We examined mice in which ILC1s and NK cells lacked SMAD4, a signal transducer that facilitates the canonical signaling pathway common to all cytokines of the TGF-β family. While SMAD4 deficiency did not affect ILC1 differentiation, NK cells unexpectedly acquired an ILC1-like gene signature and were unable to control tumor metastasis or viral infection. Mechanistically, SMAD4 restrained non-canonical TGF-β signaling mediated by the cytokine receptor TGF-βR1 in NK cells. NK cells from a SMAD4-deficient person affected by polyposis were also hyper-responsive to TGF-β. These results identify SMAD4 as a previously unknown regulator that restricts non-canonical TGF-β signaling in NK cells. PMID:28759002
At-Sea Test and Evaluation Of Oxygen (O2) Analyzers.
1981-04-01
Paramagnetic Oxygen Analyzer 2-6 2.4 Thermomagnetic Oxygen Analyzer Sensor 2-8 2.5 Cell Voltage versus Oxygen Concentration at 2-11 Various Cell ...of flue gas out of the stack across the cell and back into the stack. In-situ units place the cell directly in the flue gas path in the uptake. ) The...repetitive failurc of a cell heater temperature control circuit and a control cabinet electron- ic malfunction. Of the five (5) units that remained in
Inamura, Kentaro; Togashi, Yuki; Ninomiya, Hironori; Shimoji, Takashi; Noda, Tetsuo; Ishikawa, Yuichi
2008-01-01
Previously, using microarray and real-time RT-PCR analysis, we established that HOXB2 is an adverse prognostic indicator for Stage I lung adenocarcinomas. HOXB2 is one of the homeobox master development-controlling genes regulating morphogenesis and cell differentiation. The molecular functions of HOXB2 were analyzed with a small interfering RNA (siRNA) approach in HOP-62 human non-small cell lung cancer (NSCLC) cells featuring high HOXB2 expression. Matrigel invasion assays and microarray gene expression analysis were compared between the HOXB2-siRNA cells and the control cells. The Matrigel invasion assays showed attenuation of HOXB2 expression by siRNA to result in a significant decrease of invasiveness compared to the control cells (p = 0.0013, paired t-test). On microarray gene expression analysis, up-regulation of many metastasis-related genes and others correlating with HOXB2 expression was observed in the control case. With attenuation of HOXB2 expression, downregulation was noted for laminins alpha 4 and 5, involved in enriched signaling, and for Mac-2BP (Mac-2 binding protein) and integrin beta 4 amongst the genes having an enriched glycoprotein ontology. HOXB2 promotes invasion of lung cancer cells through the regulation of metastasis-related genes.
Morley, Karen L; Ferguson, Peter J; Koropatnick, James
2007-06-18
Tangeretin and nobiletin are citrus flavonoids that are among the most effective at inhibiting cancer cell growth in vitro and in vivo. The antiproliferative activity of tangeretin and nobiletin was investigated in human breast cancer cell lines MDA-MB-435 and MCF-7 and human colon cancer line HT-29. Both flavonoids inhibited proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at G1 in all three cell lines. At concentrations that resulted in significant inhibition of proliferation and cell cycle arrest, neither flavonoid induced apoptosis or cell death in any of the tumor cell lines. To test the ability of arrested cells to recover, cells that were incubated with tangeretin and nobiletin for 4 days were then cultured in flavonoid-free medium for an additional 4 days. Cells resumed proliferation similar to untreated control within a day of flavonoid removal. Cell cycle distribution was similar to that of control within 4 days of flavonoid removal. These data indicate that, in these cell lines at concentrations that inhibit proliferation up to 80% over 4 days, tangeretin and nobiletin are cytostatic and significantly suppress proliferation by cell cycle arrest without apoptosis. Such an agent could be expected to spare normal tissues from toxic side effects. Thus, tangeretin and nobiletin could be effective cytostatic anticancer agents. Inhibition of proliferation of human cancers without inducing cell death may be advantageous in treating tumors as it would restrict proliferation in a manner less likely to induce cytotoxicity and death in normal, non-tumor tissues.
Malaikozhundan, Balasubramanian; Vinodhini, Jayaraj
2018-01-01
In the present study, we reported the biological control of stored product insect pest, Callosobruchus maculatus using the entomopathogenic bacteria, Bacillus thuringiensis. A significant delay in the larval, pupal and total development period of C. maculatus was observed after treatment with B. thuringiensis at 4 × 10 8 cells/mL. Furthermore, B. thuringiensis are highly effective in the control of C. maculatus and produced 100% mortality at 4 × 10 8 cells/mL. The LC 50 value was estimated to be 3 × 10 7 cells/mL. In addition, a significant decrease in the activity of mid-gut α-amylase, cysteine protease, α & β-glucosidases, lipase, glutathione S-transferase (GST) and lactate dehydrogenase (LDH) was observed after treatment with B. thuringiensis at 4 × 10 8 cells/mL. This study concludes that B. thuringiensis are more effective against C. maculatus and could be used as a potential biological control agent in the management of stored product insect pests in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Axl acts as a tumor suppressor by regulating LIGHT expression in T lymphoma
Young, Kon-Ji; Park, A-Reum; Choi, Ha-Rim; Lee, Hwa-Youn; Kim, Su-Man; Chung, Byung Yeoup; Park, Chul-Hong; Choi, Hyo Jin; Ko, Young-Hyeh; Bai, Hyoung-Woo; Kang, Hyung-Sik
2017-01-01
Axl is an oncogenic receptor tyrosine kinase that plays a role in many cancers. LIGHT (Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is a ligand that induces robust anti-tumor immunity by enhancing the recruitment and activation of effector immune cells at tumor sites. We observed that mouse EL4 and human Jurkat T lymphoma cells that stably overexpressed Axl also showed high expression of LIGHT. When Jurkat-Axl cells were treated with Gas6, a ligand for Axl, LIGHT expression was upregulated through activation of the PI3K/AKT signaling pathway and transcriptional induction by Sp1. The lytic activity of cytotoxic T lymphocytes and natural killer cells was enhanced by EL4-Axl cells. In addition, tumor volume and growth were markedly reduced due to enhanced apoptotic cell death in EL4-Axl tumor-bearing mice as compared to control mice. We also observed upregulated expression of CCL5 and its receptor, CCR5, and enhanced intratumoral infiltration of cytotoxic T lymphocytes and natural killer cells in EL4-Axl-bearing mice as compared to mock controls. These data strongly suggested that Axl exerts novel tumor suppressor effects by inducing upregulation of LIGHT in the tumor microenvironment of T lymphoma. PMID:28423548
Axl acts as a tumor suppressor by regulating LIGHT expression in T lymphoma.
Lee, Eun-Hee; Kim, Eun-Mi; Ji, Kon-Young; Park, A-Reum; Choi, Ha-Rim; Lee, Hwa-Youn; Kim, Su-Man; Chung, Byung Yeoup; Park, Chul-Hong; Choi, Hyo Jin; Ko, Young-Hyeh; Bai, Hyoung-Woo; Kang, Hyung-Sik
2017-03-28
Axl is an oncogenic receptor tyrosine kinase that plays a role in many cancers. LIGHT (Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is a ligand that induces robust anti-tumor immunity by enhancing the recruitment and activation of effector immune cells at tumor sites. We observed that mouse EL4 and human Jurkat T lymphoma cells that stably overexpressed Axl also showed high expression of LIGHT. When Jurkat-Axl cells were treated with Gas6, a ligand for Axl, LIGHT expression was upregulated through activation of the PI3K/AKT signaling pathway and transcriptional induction by Sp1. The lytic activity of cytotoxic T lymphocytes and natural killer cells was enhanced by EL4-Axl cells. In addition, tumor volume and growth were markedly reduced due to enhanced apoptotic cell death in EL4-Axl tumor-bearing mice as compared to control mice. We also observed upregulated expression of CCL5 and its receptor, CCR5, and enhanced intratumoral infiltration of cytotoxic T lymphocytes and natural killer cells in EL4-Axl-bearing mice as compared to mock controls. These data strongly suggested that Axl exerts novel tumor suppressor effects by inducing upregulation of LIGHT in the tumor microenvironment of T lymphoma.
von Drygalski, A; Ogilvie, A
2000-01-01
Ap4A and other dinucleotides participate in the regulation of hemostasis and blood pressure control. With the exception of two previously reported surface anchored ectoAp4A-hydrolases on bovine aortic endothelial and chromaffine cells, all Ap4A-hydrolases reported are intracellular or freely soluble. We demonstrated that ectoAp4A-hydrolases are present on a broad variety of cell types of different species: rat mesangial, bovine corneal epithelial, human Hep-G2 and peridontal cells. Ectoenzyme properties were evaluated on rat mesangium cells. Chromatography of purified plasma membranes on Sephacel 300 resulted in enrichment of ectoAp4A-hydrolase and in separation from ectoATPase. In contrast to ATPase, Ap4A-hydrolase was stable at room temperature. EctoAp4A-hydrolase also recognized ATP as substrate, and therefore is not highly specific. The molecular weight was 180 kD. Unlike ectoAMPase ectoAp4A-hydrolase was not attached via a glycosyl-phosphatidylinositol (GPI)-moiety. Concentrations of PI-PLC 10-100-fold higher than effective for ectoAMPase cleavage (10-100 mU/ml) plus extensively extended incubation times up to eight hours did not result in cleavage of ectoAp4A-hydrolase. The enzyme ectoAp4A-hydrolase might presage a direction for pharmaceutical manipulation in the control of blood pressure and hemostasis.
Wang, Ying; Dong, Jie; Li, Dali; Lai, Li; Siwko, Stefan; Li, Yi; Liu, Mingyao
2013-09-01
The key signaling networks regulating mammary stem cells are poorly defined. The leucine-rich repeat containing G protein-coupled receptor (Lgr) family has been implicated in intestinal, gastric, and epidermal stem cell functions. We investigated whether Lgr4 functions in mammary gland development and mammary stem cells. We found that Lgr4(-/-) mice had delayed ductal development, fewer terminal end buds, and decreased side-branching. Crucially, the mammary stem cell repopulation capacity was severely impaired. Mammospheres from Lgr4(-/-) mice showed decreased Wnt signaling. Wnt3a treatment prevented the adverse effects of Lgr4 loss on organoid formation. Chromatin immunoprecipitation analysis indicated that Sox2 expression was controlled by the Lgr4/Wnt/β-catenin/Lef1 pathway. Importantly, Sox2 overexpression restored the in vivo mammary regeneration potential of Lgr4(-/-) mammary stem cells. Therefore, Lgr4 activates Sox2 to regulate mammary development and stem cell functions via Wnt/β-catenin/Lef1. © AlphaMed Press.
Jarocha, Danuta; Zuba-Surma, Ewa; Majka, Marcin
2016-01-01
Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.
TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.
Farmer, John T; Weigent, Douglas A
2006-03-01
Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.
USDA-ARS?s Scientific Manuscript database
Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...
Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi
2016-08-01
This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst. © 2016 Japanese Society of Animal Science.
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2014-07-01
growth of prostatic epithelia both in vitro and in vivo To evaluate the impact of interaction between DAB2IP and Skp2 on cell growth , MTT assay and soft...determined using western blot and actin was used as a loading control. One thousand cells /well were seeded using 96-well plate. In vitro cell growth ...SEM. (E) 1 × 103 cells of C4-2 shSkp2 cells and its control were seeded at 96-well plate. In vitro cell growth was determined using
Regulatory role of Vγ1 γδ T cells in tumor immunity through IL-4 production.
Hao, Jianlei; Dong, Siyuan; Xia, Siyuan; He, Weifeng; Jia, Hao; Zhang, Song; Wei, Jun; O'Brien, Rebecca L; Born, Willi K; Wu, Zhenzhou; Wang, Puyue; Han, Jihong; Hong, Zhangyong; Zhao, Liqing; Yin, Zhinan
2011-11-15
It has been demonstrated that the two main subsets of peripheral γδ T cells, Vγ1 and Vγ4, have divergent functions in many diseases models. Recently, we reported that Vγ4 γδ T cells played a protective role in tumor immunity through eomesodermin-controlled mechanisms. However, the precise roles of Vγ1 γδ T cells in tumor immunity, especially whether Vγ1 γδ T cells have any interaction with Vγ4 γδ T cells, remain unknown. We demonstrated in this paper that Vγ1 γδ T cells suppressed Vγ4 γδ T cell-mediated antitumor function both in vitro and in vivo, and this suppression was cell contact independent. Using neutralizing anti-IL-4 Ab or IL-4(-/-) mice, we determined the suppressive factor derived from Vγ1 γδ T cells was IL-4. Indeed, treatment of Vγ4 γδ T cells with rIL-4 significantly reduced expression levels of NKG2D, perforin, and IFN-γ. Finally, Vγ1 γδ T cells produced more IL-4 and expressed significantly higher level of GATA-3 upon Th2 priming in comparison with Vγ4 γδ T cells. Therefore, to our knowledge, our results established for the first time a negative regulatory role of Vγ1 γδ T cells in Vγ4 γδ T cell-mediated antitumor immunity through cell contact-independent and IL-4-mediated mechanisms. Selective depletion of this suppressive subset of γδ T cells may be beneficial for tumor immune therapy.
Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels
Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A.B.; Pataki, Csilla; Okina, Elena; Xian, Xiaojie; Pedersen, Mikael E.; Stevens, Troy; Griesbeck, Oliver; Park, Pyong Woo; Pocock, Roger
2015-01-01
Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. PMID:26391658
Zong, Jian-Chun; Mosca, Michael J; Degen, Ryan M; Lebaschi, Amir; Carballo, Camila; Carbone, Andrew; Cong, Guang-Ting; Ying, Liang; Deng, Xiang-Hua; Rodeo, Scott A
2017-04-01
Bone marrow aspirate has been used in recent years to augment tendon-to-bone healing, including in rotator cuff repair. However, the healing mechanism in cell-based therapy has not been elucidated in detail. Sixteen athymic nude rats were randomly allocated to 2 groups: experimental (human mesenchymal stem cells in fibrin glue carrier) and control (fibrin glue only). Animals were sacrificed at 2 and 4 weeks. Immunohistochemical staining was performed to evaluate Indian hedgehog (Ihh) signaling and SOX9 signaling in the healing enthesis. Macrophages were identified using CD68 and CD163 staining, and proliferating cells were identified using proliferating cell nuclear antigen staining. More organized and stronger staining for collagen II and a higher abundance of SOX9 + cells were observed at the enthesis in the experimental group at 2 weeks. There was significantly higher Gli1 and Patched1 expression in the experimental group at the enthesis at 2 weeks and higher numbers of Ihh + cells in the enthesis of the experimental group vs control at both 2 weeks and 4 weeks postoperatively. There were more CD68 + cells localized to the tendon midsubstance at 2 weeks compared with 4 weeks, and there was a higher level of CD163 staining in the tendon midsubstance in the experimental group than in the control group at 4 weeks. Stem cell application had a positive effect on fibrocartilage formation at the healing rotator cuff repair site. Both SOX9 and Ihh signaling appear to play an important role in the healing process. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Rodríguez-Fandiño, O; Hernández-Ruíz, J; López-Vidal, Y; Charúa, L; Bandeh-Moghaddam, H; Minzoni, A; Guzmán, C; Schmulson, M
2013-11-01
Immune activation, increased Toll-like Receptors (TLR) expression, and gut epithelial diffusion of bacterial molecules have been reported in irritable bowel syndrome (IBS). Thus, we sought to relate these factors by analyzing gut homing (integrin α4β7), intestinal recruiting (CCR5) and activation (CD28) phenotypes, and the cytokines and chemokines concentration in peripheral blood T-lymphocytes stimulated with TLR-ligands. Twenty-one IBS-Rome II (1 PI-IBS) patients and 19 controls were studied. Isolated peripheral blood mononuclear cells were cultured with and without Escherichia coli lipopolysaccharide (LPS), Staphylococcus aureus peptidoglycan (PGN), and unmethylated cytosine-phosphate-guanine motifs (CpG). Phenotypes were investigated by flow cytometry and supernatant cytokines and chemokines were also measured. After LPS, CCR5 expression in CD4⁺ α4β7⁺ cells remained unchanged in IBS, but decreased in controls (p = 0.002), to lower levels than in IBS (Mean fluorescence intensity [MFI]: 1590 ± 126.9 vs 2417 ± 88.4, p < 0.001). There were less CD8(+) α4β7⁺ CCR5⁺ cells (85.7 ± 1.5 vs 90.8 ± 0.9%, p = 0.006) after LPS and CD3⁺ α4β7⁺ CCR5⁺ (40.0 ± 1.7 vs 51.2 ± 4.3%, p = 0.006) after PGN in controls. Also, after LPS, CD28 decreased in CD4⁺ α4β7⁺ CCR5⁺ in IBS (MFI: 2337 ± 47.2 vs 1779 ± 179.2, p < 0.001), but not in controls. Cytokines and chemokines were similar, except for lower IL8/CXCL8 in the unstimulated condition in IBS (4.18, 95% CI: 3.94-4.42 vs 3.77, 3.59-3.95; p = 0.006). Pathogen-associated molecular patterns stimulation of peripheral blood T cells expressing gut homing marker in IBS compared with controls resulted in an unsuccessful down-regulation of the co-expression of intestinal recruiting/residence phenotype and a state of activation. These findings support an interaction between an innate immune predisposition and microbial triggers, which may unleash or exacerbate IBS. © 2013 John Wiley & Sons Ltd.
Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W
1996-01-01
In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443
Tang, Jun; Wang, Xiaoxia; Xu, Yuanqi; Shi, Yizhen; Liu, Zengli; Yang, Yi
2015-02-01
The objective of this study is to explore the feasibility of radioiodine treatment for cervical cancer using the early growth response (Egr-1) promoter to control sodium-iodine symporter (hNIS) gene expression. The hNIS gene was previously transfected into Hela cells under the control of either the cytomegalovirus (CMV) or Egr-1 promoters. Na(125)I uptake was measured in the presence or absence of NaClO4. Na(125)I efflux was measured. The effects of external beam radiation on iodine uptake and retention were studied. The cytotoxic effects of (131)I were measured by clonogenic assay. The Na(125)I biodistribution was obtained using mice bearing control and transfected cells. The %ID/g of tumor and major organs were obtained for a range of times up to 48 hours post injection and the ratio of tumor to non-tumor activity (T/NT) was calculated. Tumors were imaged with Na(131)I and (99m)TcO4 (-), and the ratio of tumor to background activity (T/B) was calculated. Na(125)I uptake in Hela cells was minimal in the absence of hNIS. Uptake in the transfected cells was strong, and could be blocked by NaClO4. The iodine uptake of Hela-Egr-1-hNIS cells increased after the irradiation, and the magnitude of this effect approximately matched the radiation dose delivered. The efflux of 125I was affected by neither the promoter sequence nor pre-irradiation. (131)I reduced the clonogenic survival of symporter expressing cells, relative to the parental line. The effect was greatest in cells where hNIS was driven by the CMV promoter. Tumors formed from Hela-Egr-1-hNIS concentrated Na(125)I over a 12 hour period, in contrast to untransfected cells. These tumors could also be successfully imaged using either Na(131)I or (99m)TcO4 (-). (131)I uptake peaked at 4h, while (99m)TcO4 (-) accumulated over approximately 20 hours. In vivo uptake of (131)I and (99m)TcO4 (-) was slightly higher in cells transfected with the Egr-1 promoter, compared to CMV. Hela-Egr-1-hNIS cells demonstrate highly enhanced iodine uptake, and this effect is further augmented by radiation, creating a positive feedback loop which may bolster radionuclide therapy in vivo. © The Author(s) 2014.
Donnarumma, Tiziano; Young, George R; Merkenschlager, Julia; Eksmond, Urszula; Bongard, Nadine; Nutt, Stephen L; Boyer, Claude; Dittmer, Ulf; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Bayer, Wibke; Kassiotis, George
2016-11-01
CD4 + T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8 + T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4 + T cells. However, the conditions that induce CD4 + CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB) + CD4 + CTLs, which distinguishes them from other CD4 + T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4 + CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4 + CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4 + T cells with either helper or killer functions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
IL-4 Modulates CCL11 and CCL20 Productions from IL-1β-Stimulated Human Periodontal Ligament Cells.
Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi
2016-01-01
IL-4 is a multifunctional cytokine that is related with the pathological conditions of periodontal disease. However, it is uncertain whether IL-4 could control T cells migration in periodontal lesions. The aim of this study was to examine the effects of IL-4 on CCL11, which is a Th2-type chemokine, and CCL20, which is related with Th17 cells migration, productions from human periodontal ligament cells (HPDLCs). CCL20 and CCL11 productions from HPDLCs were monitored by ELISA. Western blot analysis was performed to detect phosphorylations of signal transduction molecules in HPDLCs. IL-1β could induce both CCL11 and CCL20 productions in HPDLCs. IL-4 enhanced CCL11 productions from IL-1β-stimulated HPDLCs, though IL-4 inhibited CCL20 production. Western blot analysis showed that protein kinase B (Akt) and signal transducer and activator of transcription (STAT)6 pathways were highly activated in IL-4/IL-1β-stimulated HPDLCs. Akt and STAT6 inhibitors decreased CCL11 production, but enhanced CCL20 production in HPDLCs stimulated with IL-4 and IL-1β. These results mean that IL-4 enhanced Th2 cells migration in periodontal lesion to induce CCL11 production from HPDLCs. On the other hand, IL-4 inhibits Th17 cells accumulation in periodontally diseased tissues to inhibit CCL20 production. Therefore, IL-4 is positively related with the pathogenesis of periodontal disease to control chemokine productions in periodontal lesions. © 2016 The Author(s) Published by S. Karger AG, Basel.
The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells.
Li, Wenwen; Liu, Man; Su, Ying; Zhou, Xinying; Liu, Yao; Zhang, Xinyan
2015-12-29
Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that regulates many essential processes, including development and cell differentiation, proliferation, and apoptosis. Along with these roles in normal cells and tissues, KLF4 has important tumor suppressive and oncogenic functions in some malignancies. However, the roles of KLF4 in oral squamous cell carcinoma remain unclear. This study investigated the epigenetic alterations and possible roles of KLF4 in oral cancer carcinogenesis. Notably, KLF4 expression was significantly decreased in human oral cancer tissues compared with healthy controls, and KLF4 promoter hypermethylation contributed to the suppression of KLF4 expression. KLF4 expression was associated with tumor grade. Its expression was much lower in poorly differentiated oral cancers than in well-differentiated cancer cells. KLF4 exerted its antitumor activity in vitro and/or in vivo by inhibiting cell proliferation, cell cycle progression, cell colony formation and by inducing apoptosis. In addition, KLF4 over-expression promoted oral cancer cell migration and invasion in vitro. Knockdown of KLF4 promoted oral cancer cells growth and colony formation, and simultaneously inhibited cell migration and invasion. Mechanistic studies revealed that MMP-9 might contribute to KLF4-mediated cell migration and invasion. These results provide evidence that KLF4 might play Janus-faced roles in oral cancer carcinogenesis, acting both as a tumor suppressor and as an oncogene.
Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression
Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi
2000-01-01
The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660
Revajová, Viera; Levkut, Mikuláš; Levkutová, Mária; Bořutová, Radka; Grešaková, Lubomíra; Košiková, Božena; Leng, Lubomír
2013-09-01
The objective of the study was to investigate the effects of lignin supplementation of a diet contaminated with the Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) on peripheral blood leukocytes and duodenal immunocompetent cells in broiler chickens. From day 1 after hatching, all chickens were fed an identical control diet for two weeks. Then chickens of Group 1 continued to be fed the control diet, whereas Group 2 was fed the same diet supplemented with lignin at 0.5% level. Simultaneously, Group 3 started to receive a diet contaminated with DON (2.95 mg kg-1) and ZEA (1.59 mg kg-1), while Group 4 received an identical contaminated diet supplemented with 0.5% lignin for further two weeks. Samples of blood and duodenal tissue were collected from 6 birds of each group at 4 weeks of age. Neither counts of white blood cells nor phagocytic function in the peripheral blood were significantly affected in the mycotoxin- and/or lignin-treated birds. As compared to the control, increased numbers of IgM-bearing cells were found in the peripheral blood in Group 3 fed the contaminated diet (P < 0.05) and in Group 4 given the contaminated diet supplemented with lignin (P < 0.01). While the contaminated diet led to reduced numbers of duodenal CD4+ cells, in Group 2 treated only with lignin the number of duodenal CD4+ cells was increased. Lignin enrichment of the contaminated diet did not eliminate the mycotoxin-induced reduction in the number of duodenal CD4+ cells. The results suggest that dietary supplementation of lignin as an indigestible compound to poultry feed may increase the density of some intestinal immunocompetent cells without exerting effects on that in the peripheral blood. However, when added to a diet contaminated with Fusarium mycotoxins, lignin did not prevent the mycotoxin-induced changes in the numbers of blood and intestinal immunocompetent cells.
Controlled viable release of selectively captured label-free cells in microchannels.
Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan
2011-12-07
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.
Dowd, Jason E; Jubb, Anthea; Kwok, K Ezra; Piret, James M
2003-05-01
Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.
Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML.
Brück, Oscar; Blom, Sami; Dufva, Olli; Turkki, Riku; Chheda, Himanshu; Ribeiro, Antonio; Kovanen, Panu; Aittokallio, Tero; Koskenvesa, Perttu; Kallioniemi, Olli; Porkka, Kimmo; Pellinen, Teijo; Mustjoki, Satu
2018-06-20
Increasing evidence suggests that the immune system affects prognosis of chronic myeloid leukemia (CML), but the detailed immunological composition of the leukemia bone marrow (BM) microenvironment is unknown. We aimed to characterize the immune landscape of the CML BM and predict the current treatment goal of tyrosine kinase inhibitor (TKI) therapy, molecular remission 4.0 (MR4.0). Using multiplex immunohistochemistry (mIHC) and automated image analysis, we studied BM tissues of CML patients (n = 56) and controls (n = 14) with a total of 30 immunophenotype markers essential in cancer immunology. CML patients' CD4+ and CD8+ T-cells expressed higher levels of putative exhaustion markers PD1, TIM3, and CTLA4 when compared to control. PD1 expression was higher in BM compared to paired peripheral blood (PB) samples, and decreased during TKI therapy. By combining clinical parameters and immune profiles, low CD4+ T-cell proportion, high proportion of PD1+TIM3-CD8+ T cells, and high PB neutrophil count were most predictive of lower MR4.0 likelihood. Low CD4+ T-cell proportion and high PB neutrophil counts predicted MR4.0 also in a validation cohort (n = 52) analyzed with flow cytometry. In summary, the CML BM is characterized by immune suppression and immune biomarkers predicted MR4.0, thus warranting further testing of immunomodulatory drugs in CML treatment.
Centriole duplication: A lesson in self-control.
Holland, Andrew J; Lan, Weijie; Cleveland, Don W
2010-07-15
In interphase and mitosis, centrosomes play a major role in the spatial organization of the microtubule network. Alterations in centrosome number and structure are associated with genomic instability and occur in many cancers. Centrosome duplication is controlled by centriole replication. In most dividing animal cells, centrioles duplicate only once per cell cycle at a site adjacent to existing centrioles. The conserved protein kinase Polo-like kinase 4 (Plk4) has a key role in controlling centriole biogenesis. Overexpression of Plk4 drives centrosome amplification and is associated with tumorigenesis in flies. By contrast, haploinsufficiency of Plk4 promotes cytokinesis failure, leading to an increased incidence of tumors in mice. Recent studies have shown that Plk4 is a low abundance protein whose stability is linked to the activity of the enzyme. We discuss how this autoregulatory feedback loop acts to limit the damaging effects caused by too much or too little Plk4.
Immunotherapy with iTreg and nTreg Cells in a Murine Model of Inflammatory Bowel Disease.
Haribhai, Dipica; Chatila, Talal A; Williams, Calvin B
2016-01-01
Regulatory T (Treg) cells that express the transcription factor Foxp3 are essential for maintaining tolerance at mucosal interfaces, where they act by controlling inflammation and promoting epithelial cell homeostasis. There are two major regulatory T-cell subsets, "natural" CD4(+) Treg (nTreg) cells that develop in the thymus and "induced" Treg (iTreg) cells that develop from conventional CD4(+) T (Tconv) cells in the periphery. Dysregulated Treg cell responses are associated with autoimmune diseases, including inflammatory bowel disease (IBD) and arthritis. Adoptive transfer of Treg cells can modulate innate and adaptive immune responses and cure disease in animal models, which has generated considerable interest in using Treg cells to treat human autoimmune disease, prevent rejection of transplanted organs, and to control graft-versus-host disease following hematopoietic stem cell transplantation. Herein, we describe our modifications of a treatment model of T-cell transfer colitis designed to allow mechanistic investigation of the two major Treg cell subsets and to compare their specific roles in mucosal tolerance.
Treatment and prevention of experimental autoimmune myocarditis with CD28 superagonists.
Wang, Shu; Liu, Jing; Wang, Min; Zhang, Jinghui; Wang, Zhaohui
2010-01-01
Experimental autoimmune myocarditis (EAM), a rodent model of human dilated cardiomyopathy (DCM), is mediated by an autoimmune mechanism. We investigated whether a CD28 superagonistic antibody selectively targeting CD4+CD25+ regulatory T cells (T(regs)) provides effective therapy for EAM. Four groups of 5 rats were used. The normal control group was immunized with PBS. The EAM group was immunized with porcine myosin. The experimental group was immunized with myosin and superagonistic CD28 antibody JJ316. The final group was immunized with myosin and an unrelated rat IgG. Autoantibody and IL-10 production, CD4+CD25+ cell levels, Foxp3 expression and cardiac histology were analyzed. Anti-myosin autoantibody levels were higher in the EAM and isotype control groups than the normal control group (p < 0.05), and reduced in the CD28-JJ316 group (p < 0.05). The levels of CD25+CD4+ cells, IL-10 and splenocyte Foxp3 expression were significantly lower in the EAM and isotype control groups versus the CD28-JJ316 group (p < 0.05). Infiltration of inflammatory cells was observed in the EAM and isotype control groups, whereas CD28-JJ316 ameliorated myocarditis. CD28 superagonists could be effective in EAM treatment by up-regulating Foxp3 expression and contributing to CD4+CD25+ T(reg) activation and expansion. The enhancement in IL-10 by CD28 superagonists also ameliorated the disease.
Releasing Ski-Smad4 mediated suppression is essential to license Th17 differentiation
Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y.; Serody, Jonathan S.; Chen, Xian; Xu, Xiaojiang; Wade, Paul A.; Cook, Donald N.; Ting, Jenny P.; Wan, Yisong Y.
2017-01-01
Th17 cells are critically involved in host defense, inflammation, and autoimmunity1–5. TGF-β is instrumental in Th17 differentiation by cooperating with IL-66,7. Yet, the mechanism of how TGF-β enables Th17 differentiation remains elusive. Here we reveal that TGF-β licenses Th17 differentiation by releasing Ski-Smad4-complex suppressed RORγt expression. We found serendipitously that, unlike wild-type T cells, Smad4-deficient T cells differentiated into Th17 cells in the absence of TGF-β signaling in a RORγt-dependent manner. Ectopic Smad4 expression suppressed the RORγt expression and Th17 differentiation of Smad4-deficient T cells. Unexpectedly however, TGF-β neutralized Smad4 mediated suppression without affecting Smad4 binding to Rorc locus. Proteomic analysis revealed that Smad4 interacted with Ski, a transcriptional repressor degraded upon TGF-β stimulation. Ski controlled the histone acetylation/de-acetylation of Rorc locus and Th17 differentiation via Smad4 because ectopic Ski expression inhibited H3K9Ac of Rorc locus, Rorc expression and Th17 differentiation in a Smad4-dependent manner. Therefore, TGF-β-induced disruption of Ski releases Ski-Smad4 complex imposed suppression of RORγt to license Th17 differentiation. This study reveals a critical mechanism by which TGF-β controls Th17 differentiation and uncovers Ski-Smad4 axis as a potential therapeutic target for treating Th17 related diseases. PMID:29072299
Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.
Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J
2013-01-01
After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.
Lin, Liangjun
2015-01-01
Concerns over the use of autografts or allografts have necessitated the development of biomaterials for bone regeneration. Various studies have been performed to optimize the cultivation of osteogenic cells using osteoconductive porous scaffolds. The aim of this study was to evaluate the osteogenic efficiency of bone cell ingrowth, proliferation, and early differentiation in a silicon carbide (SiC) porous ceramic scaffold promoted with low-intensity pulsed ultrasound. MC3T3-E1 mouse preosteoblasts were seeded onto scaffolds and cultured for 4 and 7 days with daily of 20-min ultrasound treatment. The cells were evaluated for cell attachment, morphology, viability, ingrowth depth, volumetric proliferation, and early differentiation. After 4 and 7 days of culture and ultrasound exposure, the cell density was higher in the ultrasound-treated group compared with the sham-treated group on SiC scaffolds. The cell ingrowth depths inside the SiC scaffolds were 149.2±27.3 μm at 1 day, 310.1±12.6 μm for the ultrasound-treated group and 248.0±19.7 μm for the sham control at 4 days, and 359.6±18.5 μm for the ultrasound-treated group and 280.0±17.7 μm for the sham control at 7 days. They were significantly increased, that is, 25% (p=0.0029) and 28% (p=0.0008) increase, respectively, with ultrasound radiation force as compared with those in sham control at 4 and 7 days postseeding. The dsDNA contents were 583.5±19.1 ng/scaffold at 1 day, 2749.9±99.9 ng/scaffold for the ultrasound-treated group and 2514.9±114.7 ng/scaffold for the sham control at 4 days, and 3582.3±325.3 ng/scaffold for the ultrasound-treated group and 2825.7±134.3 ng/scaffold for the sham control at 7 days. There was a significant difference in the dsDNA content between the ultrasound- and sham-treated groups at 4 and 7 days. The ultrasound-treated group with the SiC construct showed a 9% (p=0.00029) and 27% (p=0.00017) increase in the average dsDNA content at 4 and 7 days over the sham control group, respectively. Alkaline phosphatase activity was significantly increased by the treatment of ultrasound at 4 (p=0.012) and 7 days (p=0.035). These results suggested that ultrasound treatment with low-intensity acoustic energy facilitated the cellular ingrowth and enhanced the proliferation and early differentiation of osteoblasts in SiC scaffolds. PMID:24935158
Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis
2016-06-21
The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Xue, Qiuhong; Chen, Jia; Gong, Shusheng; Xie, Jing; He, Jian; Chen, Xiaolin
2009-12-01
To investigate the mechanism of intense noise-induced cochlea cells death in guinea pig, and the effect of JNK signal transduction pathway in the procedure of cochlea cells apoptosis by intense noise-induced. Thirty-two guinea pigs were randomly divided into 4 groups. The guinea pigs in the experiment groups were exposed to 4 kHz narrow band noise at 120 dB SPL for 4 h. After the noise expose for 1, 4, 14 days of the experiment guinea pigs, ABR of the guinea pigs on experiment and control groups were tested before put them to death. Four guinea pig's cochleas of every group were taken to paraffin section, and the rest was extracted the total cochlear's protein. Apoptosis was tested by terminal deoxynucleotidyl Transferase (TdT)-mediated deoxyuridine triphosphate (d-UTP) nick and labeling method (TUNEL). The phosphorylation of JNK and c-Jun were tested by immunohistochemistry and western blot methods. Tunel-Positive cells in the Corti's, SGC and SV of experiment groups, and there have significant differences compared with the control group (P<0.01) and Tunel-Positive cells are most in 1 d experiment group. The positive cells of P-JNK and P-c-Jun could be detected in guinea pig's cochleas after noise exposed, but no positive cells were found in the control. Protein levels of P-JNK and P-c-Jun were risen up and activated quickly after noise exposed, and achieved peak in 1 d, 4 d and then fallen-offs, but still maintained higher levels within 14 d. Intense noise causes cochlea cell lesion by inducing apoptosis to result in and JNK signal transduction pathway plays an important role in the procedure of apoptosis.
Increased ratio between anaerobic and aerobic metabolism in lymphocytes from hyperthyroid patients.
Valdemarsson, S; Monti, M
1994-03-01
While an increased oxygen consumption is accepted as one consequence of hyperthyroidism, only few data are available on the role of anaerobic processes for the increased metabolic activity in this disease. In this study we evaluated the relative importance of anaerobic and aerobic metabolism for the metabolic activity in lymphocytes from patients before and after treatment for hyperthyroidism. Total lymphocyte heat production rate (P), reflecting total cell metabolic activity, was determined in a plasma lymphocyte suspension using direct microcalorimetry. The contribution from aerobic metabolism (O2-P) was calculated from the product of the lymphocyte oxygen consumption rate and the enthalpy change for glucose combustion, and the anaerobic contribution as the difference between P and O2-P. The total lymphocyte heat production rate P was 3.37 +/- 0.25 (SEM) pW/cell (N = 11) before and 2.50 +/- 0.11 pW/cell (N = 10) after treatment for hyperthyroidism (p < 0.01) as compared to 2.32 +/- 0.10 pW/cell in a control group (N = 18). The aerobic component O2-P amounted to 1.83 +/- 0.11 pW/cell in the patient group before and 1.83 +/- 0.08 pW/cell after treatment and to 1.71 +/- 0.16 pW/cell in 10 controls. Out of P, the O2-P component corresponded to 56.8 +/- 4.4% in the hyperthyroid state and to 73.7 +/- 3.2% after treatment (p < 0.01) as compared to 73.4 +/- 4.4% in the 10 euthyroid controls. It was concluded that the increased metabolic activity demonstrated in lymphocytes from hyperthyroid patients cannot be explained by an increased oxygen-dependent consumption.(ABSTRACT TRUNCATED AT 250 WORDS)
Cataract surgery in eyes with low corneal endothelial cell density.
Hayashi, Ken; Yoshida, Motoaki; Manabe, Shin-ichi; Hirata, Akira
2011-08-01
To compare corneal endothelial damage after cataract surgery in eyes with low endothelial cell density (ECD) and eyes with normal ECD. Hayashi Eye Hospital, Fukuoka, Japan. Case-control study. Cataract surgery was performed in eyes with a low ECD (500 to 1000 cells/mm(2)) (low-density group) and control eyes with a normal ECD. The ECD and central corneal thickness (CCT) were measured preoperatively and 1 and 3 months postoperatively, and the percentage cell loss and increase in CCT were compared. The low-density group and control group each comprised 50 eyes. In the low-density group, 39 eyes had nonprogressive endothelial pathology and 11 had Fuchs dystrophy. The mean ECD was significantly less and the CCT significantly greater in the low-density group than in the control group throughout the follow-up (P ≤.0066). However, no significant difference in the percentage of cell loss was found between groups at 1 or 3 months (5.1%, low-density group; 4.2%, control group) (P ≥.1477). The percentage increase in CCT was significantly greater in the low-density group than in the control group at 1 month (P<.0001), although there was no significant difference at 3 months (0.4% and -0.4%, respectively) (P=.2172). Corneal endothelial damage after cataract surgery in eyes with low ECD was slight and comparable to that in healthy eyes, which suggests that cataract surgery alone (without corneal transplantation) should be performed first. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta
Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cremore » and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo. - Highlights: • First genetic evidence that PTEN controls LPS/TLR4 signaling in B lymphocytes. • Evidence that PTEN regulates LPS induced lymphoproliferation in vivo. • PI-3 kinase inhibitors block LPS induced lymphoproliferation in vivo.« less
Asymmetric cell division during T cell development controls downstream fate
Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min
2015-01-01
During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500
Xu, Huanbin; Wang, Xiaolei; Malam, Naomi; Lackner, Andrew A; Veazey, Ronald S
2015-11-01
CD4(+) T follicular helper (Tfh) cells are critical for the generation of humoral immune responses to pathogenic infections, providing help for B cell development, survival, and affinity maturation of Abs. Although CD4(+) Tfh cells are reported to accumulate in HIV or SIV infection, we found that germinal center Tfh cells, defined in this study as CXCR5(+)PD-1(HIGH)CD4(+) T cells, did not consistently accumulate in chronically SIV-infected rhesus macaques compared with those infected with less pathogenic simian HIV, vaccinated and SIVmac-challenged, or SIVmac-infected Mamu-A*01(+) macaques, all of which are associated with some control of virus replication and slower disease progression. Interestingly, CXCR5(+)PD-1(HIGH) Tfh cells in lymphoid tissues were eventually depleted in macaques with AIDS compared with the other cohorts. Chronic activation and proliferation of CXCR5(+)PD-1(HIGH) Tfh were increased, but PD-L2 expression was downregulated on B cells, possibly resulting in germinal center Tfh cell apoptosis. Together, these findings suggest that changes in CXCR5(+)PD-1(HIGH) Tfh cells in lymph nodes correlate with immune control during infection, and their loss or dysregulation contribute to impairment of B cell responses and progression to AIDS. Copyright © 2015 by The American Association of Immunologists, Inc.
Bonora, S; Calcagno, A; Cometto, C; Fontana, S; Aguilar, D; D'Avolio, A; Gonzalez de Requena, D; Maiello, A; Dal Conte, I; Lucchini, A; Di Perri, G
2012-02-01
To evaluate whether the addition of enfuvirtide to standard highly active antiretroviral therapy (HAART) could confer immunovirological benefits in human immunodeficiency virus (HIV)-infected very late presenters. The current study is an open comparative therapeutic trial of standard protease inhibitor (PI)-based HAART ± additional enfuvirtide in treatment-naïve deeply immunologically impaired HIV-positive patients. Very late presenters (CD4 <50/mm(3)), without tuberculosis and neoplasms, were alternatively allocated to two nucleoside reverse transcriptase inhibitors (NRTIs) and lopinavir/ritonavir without (control arm, CO) or with (ENF arm) enfuvirtide 90 mg bid. Enfuvirtide was administered until the achievement of viral load <50 copies/ml and for at least 24 weeks. The primary objective was the magnitude of CD4+ cell recovery at 6 months. HIV RNA was intensively monitored in the first month, and, thereafter, monthly, as for CD4+ cell count and percentage, clinical data, and plasma drug concentrations. Of 22 enrolled patients (11 per arm), 19 completed the study (10 in the ENF arm). Baseline CD4+ cell counts and % were comparable, with 20 CD4+/mm(3) (12-37) and a percentage of 3.3 (1.7-7.1) in the ENF arm, and 16 CD4+/mm(3) (9-29) and a percentage of 3.1 (2.3-3.8) in the CO arm, respectively. The baseline viral load was also comparable between the two arms, with 5.77 log10 (5.42-6) and 5.39 log10 (5.06-6) in the ENF and CO arms, respectively. Enfuvirtide recipients had higher CD4+ percentage at week 8 (7.6 vs. 3.6%, p = 0.02) and at week 24 (10.7 vs. 5.9%, p = 0.02), and a greater CD4+ increase at week 24 (207 vs. 134 cells/mm(3), p = 0.04), with 70% of enfuvirtide intakers versus 12.5% of controls who achieved a CD4+ cell count >200/mm(3) (p = 0.01). At 48 weeks, patients in the ENF arm had CD4+ cell counts higher than controls (251 vs. 153cells/mm(3), p = 0.04) and were also found to be faster in reaching a CD4 cell count over 200/mm(3): 18 (8-24) versus 48 (36-108) weeks (p = 0.01). Viral load decay at week 4 was greater in the ENF arm (-3 vs. -2.2 log, p = 0.04), while the proportion of patients with viral load <50 copies/ml at week 24 was comparable. In this pilot study, the addition of enfuvirtide to a lopinavir-based HAART was shown to be associated with a significantly faster and greater immunological recovery in newly discovered HIV-positive patients with very low CD4+ cell counts. Induction strategies using an enfuvirtide-based approach in such subjects warrant further investigation.
Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib
2017-10-01
IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.
H2O2/HCl and heat-treated Ti-6Al-4V stimulates pre-osteoblast proliferation and differentiation.
Shi, Geng-sheng; Ren, Ling-fei; Wang, Lin-zhi; Lin, Hai-sheng; Wang, Sha-bin; Tong, Yong-qing
2009-09-01
The purpose of the present study was to evaluate the bioactivity of chemical treatment of titanium alloy (Ti-6Al-4V) in vitro. Smooth-surface discs of Ti-6Al-4V were used in this study. Sandblasted, dual acid-etched and H(2)O(2)/HCl heat-treated discs were set as test group, and sandblasted, dual acid-etched discs as control group. SEM and XRD analysis revealed a porous anatase gel layer on rough surface in the test group and a rough surface in the control group. Mouse pre-osteoblasts (MC3T3-E1 cells) were cultured on these 2 group discs, and then cell proliferation and differentiation were examined 4 days, 7 days, and 14 days after cell seeding. Cell proliferation was greatly stimulated at all time points when cultured in test group (P < .05). The alkaline phosphatase (ALP) activity and osteocalcin (OC) production were much higher in the test group compared with the control group at every time point investigated (P < .05). Furthermore, in the test group, the expressions of alkaline phosphatase-2, osteocalcin, and collagen type I alpha 1 mRNAs were significantly up-regulated as compared with those in the control group (P < .05 or P < .01). The results suggested that H(2)O(2)/HCl and heat-treatment might facilitate better integration of Ti-6Al-4V implants with bone.
Jiang, Xiaotao; Zhang, Mingxia; Lai, Qintao; Huang, Xuan; Li, Yongyin; Sun, Jian; Abbott, William G.H.; Ma, Shiwu; Hou, Jinlin
2011-01-01
Invariant NKT (iNKT) cells are involved in the pathogenesis of various infectious diseases. However, their role in hepatitis B virus (HBV) infection is not fully understood, especially in human species. In this study, 35 chronic hepatitis B (CHB) patients, 25 inactive carriers (IC) and 36 healthy controls (HC) were enrolled and the proportions of circulating iNKT cells in fresh isolated peripheral blood mononuclear cells (PBMC) were detected by flow cytometry. A longitudinal analysis was also conducted in 19 CHB patients who received antiviral therapy with telbivudine. Thereafter, the immune functions of iNKT cells were evaluated by cytokine secretion and a two-chamber technique. The median frequency of circulating iNKT cells in CHB patients (0.13%) was lower than that in HC (0.24%, P = 0.01) and IC (0.19%, P = 0.02), and increased significantly during antiviral therapy with telbivudine (P = 0.0176). The expressions of CC chemokine receptor 5 (CCR5) and CCR6 were dramatically higher on iNKT cells (82.83%±9.87%, 67.67%±16.83% respectively) than on conventional T cells (30.5%±5.65%, 14.02%±5.92%, both P<0.001) in CHB patients. Furthermore, iNKT cells could migrate toward the CC chemokine ligand 5. Patients with a high ratio (≥1.0) of CD4−/CD4+ iNKT cells at baseline had a higher rate (58.33%) of HBeAg seroconversion than those with a low ratio (<1.0, 0%, P = 0.0174). In conclusion, there is a low frequency of peripheral iNKT cells in CHB patients, which increases to normal levels with viral control. The ratio of CD4−/CD4+ iNKT cells at baseline may be a useful predictor for HBeAg seroconversion in CHB patients on telbivudine therapy. PMID:22194934
Gorbet, Maud; Peterson, Rachael; McCanna, David; Woods, Craig; Jones, Lyndon; Fonn, Desmond
2014-03-01
A pilot study was conducted to evaluate human corneal epithelial cell shedding in response to wearing a silicone hydrogel contact lens/solution combination inducing corneal staining. The nature of ex vivo collected cells staining with fluorescein was also examined. A contralateral eye study was conducted in which up to eight participants were unilaterally exposed to a multipurpose contact lens solution/silicone hydrogel lens combination previously shown to induce corneal staining (renu® fresh™ and balafilcon A; test eye), with the other eye using a combination of balafilcon A soaked in a hydrogen peroxide care system (Clear Care®; control eye). Lenses were worn for 2, 4 or 6 hours. Corneal staining was graded after lens removal. The Ocular Surface Cell Collection Apparatus was used to collect cells from the cornea and the contact lens. In the test eye, maximum solution-induced corneal staining (SICS) was observed after 2 hours of lens wear (reducing significantly by 4 hours; p < 0.001). There were significantly more cells collected from the test eye after 4 hours of lens wear when compared to the control eye and the collection from the test eye after 2 hours (for both; n = 5; p < 0.001). The total cell yield at 4 hours was 813 ± 333 and 455 ± 218 for the test and control eyes, respectively (N = 5, triplicate, p = 0.003). A number of cells were observed to have taken up the fluorescein dye from the initial fluorescein instillation. Confocal microscopy of fluorescein-stained cells revealed that fluorescein was present throughout the cell cytoplasm and was retained in the cells for many hours after recovery from the corneal surface. This pilot study indicates that increased epithelial cell shedding was associated with a lens-solution combination which induces SICS. Our data provides insight into the transient nature of the SICS reaction and the nature of fluorescein staining observed in SICS.
805 MHz Beta = 0.47 Elliptical Accelerating Structure R & D
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Bricker; C. Compton; W. Hartung
2008-09-22
A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q{sub 0}) were between 7 {center_dot} 10{sup 9} and 1.4 {center_dot} 10{sup 10} at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules.more » A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.« less
Zhou, Guoying; Sprengers, Dave; Boor, Patrick P C; Doukas, Michail; Schutz, Hannah; Mancham, Shanta; Pedroza-Gonzalez, Alexander; Polak, Wojciech G; de Jonge, Jeroen; Gaspersz, Marcia; Dong, Haidong; Thielemans, Kris; Pan, Qiuwei; IJzermans, Jan N M; Bruno, Marco J; Kwekkeboom, Jaap
2017-10-01
Ligand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4 + and CD8 + T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions. We collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8 + and CD4 + T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays. Expression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8 + and CD4 + T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8 + TIL, compared with other CD8 + TIL. Compared with TIL that did not express these inhibitory receptors, CD8 + and CD4 + TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8 + and CD4 + TIL and cytokine production in response to stimulation with polyclonal antigens or TAA. Importantly, combining antibody against PD-L1 with antibodies against TIM3, LAG3, or CTLA4 further increased TIL functions. The immune checkpoint inhibitory molecules PD-1, TIM3, and LAG3 are up-regulated on TAA-specific T cells isolated from human HCC tissues, compared with T cells from tumor-free liver tissues or blood. Antibodies against PD-L1, TIM3, or LAG3 restore responses of HCC-derived T cells to tumor antigens, and combinations of the antibodies have additive effects. Strategies to block PD-L1, TIM3, and LAG3 might be developed for treatment of primary liver cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Teixeira, Silvania Silva; Tamrakar, Akhilesh K.; Goulart-Silva, Francemilson; Serrano-Nascimento, Caroline; Klip, Amira
2012-01-01
Background Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T3 and insulin action. Methods Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T3. Results Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T3 treatment; however, in these cells glucose transport was not stimulated by T3. In wild-type L6 cells, although T3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T3 plus insulin. Conclusions These data reveal that T3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT. PMID:22663547
T cell immunoregulation in active ocular toxoplasmosis.
Cordeiro, Cynthia A; Vieira, Erica L M; Castro, Vinicius M; Dutra, Walderez O; Costa, Rogerio A; Orefice, Juliana L; Campos, Wesley R; Orefice, Fernando; Young, Lucy H; Teixeira, Antonio Lucio
2017-04-01
Toxoplasma gondii infection is an important cause of infectious ocular disease. The physiopathology of retinochoroidal lesions associated with this infection is not completely understood. The present study was undertaken to investigate cytokine production by T cells from individuals with active toxoplasmic retinochoroiditis (TR) comparing with controls. Eighteen patients with active TR and 15 healthy controls (6 controls IgG + to Toxoplasma and 9 negative controls) were included in the study. Peripheral blood mononuclear cells were incubated in the presence or absence of T. gondii antigen (STAg), and stained against CD4, CD8, TNF, IL-10 and IFN-γ. Baseline expression of cytokines was higher in TR/IgG + patients in comparison with controls. Cytokine expression was not increased by STAg in vitro stimulation in controls. After stimulation, TR/IgG + patients' lymphocytes increased cytokine as compared to cultures from both controls. While T cells were the main source of IL-10, but also IFN-γ and TNF, other lymphocyte populations were relevant source of inflammatory cytokines. Interestingly, it was observed a negative correlation between ocular lesion size and IL-10 expression by CD4 + lymphocytes. This study showed that T cells are the main lymphocyte populations expressing IL-10 in patients with TR. Moreover, expression of IL-10 plays a protective role in active TR. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Production of interleukin-2 (IL-2) and expression of IL-2 receptor in patients with IgA nephropathy.
Lee, T W; Kim, M J
1992-01-01
IL-2 production has been measured in several disease including type I diabetes mellitus, systemic lupus erythematosus, acquired immunodeficiency syndrome and active pulmonary sarcoidosis and its pathogenetic role was suggested. In IgA nephropathy, altered T cell subsets were reported to be associated with increased synthesis of IgA. The altered IL-2 production and the expression of IL-2 receptor might be involved in the pathogenesis of IgA nephropathy. To investigate the role of T cell mediated immunity in the pathogenesis of IgA nephropathy, the immune parameters such as T cell subsets, NK cell activity, interleukin-2 (IL-2) production and IL-2 receptor expression on peripheral blood mononuclear cells (PBMC) were measured before and/or after phytohemagglutinin (PHA) stimulation in 15 patients with IgA nephropathy. Age and sex matched 15 healthy controls and the correlations between the IL-2 production and immune parameters were evaluated. The mean percentages of T helper/inducer cells (CD4), T suppressor/cytotoxic cells (CD8) and the CD4/CD8 ratio of the patients were not different from those of controls and the proportions of CD8 CD11b cell in the patients (21.0 +/- 3.6%) were significantly lower than those in controls (30.5 +/- 5.3%) (p < 0.005). The production of IL-2 by fresh PBMC of both patients and controls was in undetectable ranges. The production of IL-2 by PHA stimulated PBMC of patients was significantly higher than that of controls (140.03 +/- 43.2 U/ml vs 106.5 +/- 42.1 U/ml, p < 0.05). The proportions of lymphocytes expressing the IL-2 receptor (CD25) before the stimulation with PHA in patients were 1.22 +/- 1.00 percent and were not different from those in controls (1.12 +/- 0.78 percent). The correlations between the production of IL-2 and the concentrations of serum IgA, the degrees of histologic alterations and the proportions of CD8 and CD8CD11b cells were not significant. There was a weak tendency of a positive correlation (p < 0.1) between the production of IL-2 and the proportions of CD4 cells, and the CD4/CD8 ratio showed a significant correlation with the production of IL-2 (p < 0.05). After PHA stimulation, the mean percentages of lymphocytes expressing the IL-2 receptors in patients were increased to 47.6 +/- 8.9 percents which is higher than those (40.4 +/- 9.9%) in controls (p < 0.05). The NK cell activity of the patients was higher than that of controls (75.6 +/- 19.6% vs 56.1 +/- 16.2%, p < 0.005), and was well correlated with the production of IL-2 by PBMC (r = 0.89, p < 0.05). It seemed that patients with IgA nephropathy have an 'latent' cellular immunoregulatory dysfunction that becomes apparent on the stimulation of extrinsic antigens or mitogens.
Martins, C F; Silva, A E D Feliciano; Dode, M N; Rumpf, R; Cumpa, H C B; Silva, C G; Pivato, I
2015-08-01
The objectives of this study were study a practical method to characterize bovine spermatogenic cells and test the efficiency cells conservation by refrigeration at 4°C and cryopreservation in different solutions using two cooling curves. Cellular identification was performing by analysis of shape, size and morphology, associated with nucleus positioning and nuclear-cytoplasm ratio (NCR). Cellular samples were kept at 4°C for a period of 96 h in refrigeration solution and every 24h plasma membrane and DNA integrity were evaluated. Cryopreservation of cells was carried out using solutions containing 10% Dimethyl sulfoxide, 5% Dimethylformamide, 7% Glycerol and 7% Ethylene glycol, using a controlled and non-controlled cooling curve. Results of cellular characterization demonstrated that spermatocytes II presented a cylindrical shape, NCR of 1:1.5 and diameter ranging from 14.5 to 17.5 μm. Round spermatids presented diameter ranging from 7.6 to 13.4 μm, acrosomal cap and NCR of 1:2. Elongation and elongated spermatids showed to marked divergence in shape. There was a daily significant loss of viability of cooled cells until third day of storage, however they presented 72.77±5.16% viability after 4 days of storage at 4°C. There was no difference among the cryoprotectant solutions and cooling curves. In conclusion we demonstrated that association of microscopes and staining was a practical method to identify bovine spermatogenic cells. Furthermore, refrigeration at 4°C is an important strategy to preserve over 70% of viable cells after 4 days and cryopreservation, regardless of cryoprotectant solution or cooling curve used, can maintain over 50% of cells viable. Copyright © 2015 Elsevier Inc. All rights reserved.
TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141.
Xue, Lei; Yu, Xiying; Jiang, Xingran; Deng, Xin; Mao, Linlin; Guo, Liping; Fan, Jinhu; Fan, Qinqxia; Wang, Liuxing; Lu, Shih-Hsin
2017-03-21
Cancer stem-like cells have been identified in primary human tumors and cancer cell lines. Previously we found TM4SF1 gene was highly expressed in side population (SP) cells from esophageal squamous cell carcinoma (ESCC) cell lines, but the role and underlying mechanism of TM4SF1 in ESCC remain unclear. In this study, we observed TM4SF1 was up-regulated but miR-141 was down-regulated in SP cells isolated from ESCC cell lines. TM4SF1 could stimulate the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells, and promote cell invasion and migration. In miR-141 overexpression cells, the expression of TM4SF1 was significantly reduced. We also found that overexpression of miR-141 could abolish the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells and decrease cell invasion and migration by suppressing TM4SF1. Consequently, TM4SF1 is a direct target gene of miR-141. The regulation of TM4SF1 by miR-141 may play an important role in controlling self-renewals of esophageal cancer stem-like cells. It may also promote the development of new therapeutic strategies and efficient drugs to target ESCC stem-like cells.
Jung, Im Hee; Park, Jung Chul; Kim, Jane C; Jeon, Dong Won; Choi, Seong Ho; Cho, Kyoo Sung; Im, Gun Il; Kim, Byung Soo; Kim, Chang Sung
2012-03-01
Human periodontal ligament stem cells (hPDLSCs) have been proposed as an alternative to conventional cosmetic fillers because they display an innate ability to synthesize collagen. The aims of this study were to determine the effects of water-soluble chitin (WSC) on the proliferation and migration of hPDLSCs, and to quantify collagen synthesis in vitro and in vivo compared with human adipose-derived stem cell (hADSC)s. hPDLSCs were isolated from healthy extracted teeth, and the cell proliferation and cell migration capacities of untreated hPDLSCs (control group) and WSC-treated hPDLSCs (test group) were compared. Insoluble/soluble collagen synthesis were also assessed, and collagen related markers were evaluated including lysyl oxidase (LOX), lysyl oxidase like (LOXL)1, LOXL2, and hydroxyproline. In vivo collagen formation was examined by transplanting hyaluronic acid as a cell carrier into the subcutaneous pockets of immunocompromised mice in the control and test groups; histology and immunohistochemistry analyses were performed 4 (n=4) and 8 (n=4) weeks later. There was a dose-dependent enhancement of hPDLSCs proliferation in the test group, and a concomitant reduction in cell migration. The amount of insoluble collagen formed was greater in the test group than in the control group (p<0.05), whereas soluble collagen formation was significantly reduced in the test group (p<0.05). The histology and immunohistochemistry results revealed that the amount of collagen formed in vivo was greater in WSC-treated hPDLSCs than in the control cells at 4 and 8 weeks (p<0.05), and histometric analysis at 8 weeks revealed that enhancement of collagen formation by hPDLSCs was greater than by hADSCs. These results indicate that WSC modulates the properties of hPDLSCs, rendering them more suitable for cosmetic soft-tissue augmentation.
Kondo, Yuya; Yokosawa, Masahiro; Kaneko, Shunta; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki
2018-05-01
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell-mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.
Ajeigbe, K O; Owonikoko, W M; Egbe, V; Iquere, I; Adeleye, G
2017-10-01
In this biphasic study, 45 male wistar rats were divided into 9 groups. In Phase 1, Group 1 was treated with normal saline and served as the overall control, group 2 was treated with 95% Ethanol and represents the ulcer control, groups 3 and 4 received coconut water (CW; 4ml/100g BWt) and milk (CM; 4ml/100g BWt) for 4weeks while group 5 received Omeprazole (Omep; 20mg/kg BWt) during terminal week. 95% Ethanol-induced ulceration followed the treatments in all except group 1. In the second phase, Group 1 was the overall control, group 2 served as ulcer control by receiving acetic acid only, group 3 received coconut milk, and group 4 received omep. CM and omep were administered post-ulcer induction for 3 and 6days twice daily. Blood collection after 1hour was through cardiac puncture for haemocytometry, and gastric tissues harvested for histopathological investigations. Results showed significantly reduced ulcer score and gastric lesion index in Omep, CW and CM groups compared to ulcer control. WBC, neutrophil, lymphocyte counts in Omep, CW and CM groups were significantly reduced compared to ulcer and overall control groups. C-reactive protein was significantly reduced in CM compared to control. Neutrophil Infiltration score reduced while mucus cell density increased significantly in Omep; CM compared to control. EGFR and CD 31 assessment revealed significantly higher expressions in coconut-milk group compared to the ulcer control. We conclude that the protective effects of coconut (water and milk) is expressed by inflammation suppression, upregulation of mucus cell population and catalyses mucosa homeostasis via angiogenesis and mucosal cell proliferation following mucosa. erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cytokines and the regulation of fungus-specific CD4 T cell differentiation
Espinosa, Vanessa; Rivera, Amariliz
2011-01-01
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation. PMID:22133343
Combined inhibitors of angiogenesis and histone deacetylase: efficacy in rat hepatoma.
Ganslmayer, Marion; Zimmermann, Annette; Zopf, Steffen; Herold, Christoph
2011-08-21
To evaluate the antitumoral effect of combined inhibitors of angiogenesis and histone deacetylases in an experimental rat hepatoma model. MH7777A hepatoma cells were injected into the liver of male Buffalo rats. After 7 d treatment with the vascular endothelial growth factor receptor antagonist PTK787/ZK222584 (PTK/ZK), the histone deacetylase inhibitor MS-275, tamoxifen (TAM) and/or retinoic acid was initiated (n ≥ 8 animals/group). Natural tumor development was shown in untreated control groups (control 1 with n = 12, control 2 with n = 8). The control groups were initiated at different time points to demonstrate the stability of the hepatoma model. For documentation of possible side effects, we documented any change in body weight, loss of fur and diarrhea. After 21 d treatment, the rats were euthanized. Main target parameters were tumor size and metastasis rate. Additionally, immunohistochemistry for the proliferating cell nuclear antigen (PCNA) and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were performed. The control groups developed large tumor nodules with extrahepatic tumor burden in the lung and abdominal organs (control 1: 6.18 cm(3) ± 4.14 cm(3) and control 2: 8.0 cm(3) ± 4.44 cm(3) 28 d after tumor cell injection). The tumor volume did not differ significantly in the control groups (P = 0.13). As single agents MS-275 and PTK/ZK reduced tumor volume by 58.6% ± 2.6% and 48.7% ± 3.2% vs control group 1, which was significant only for MS-275 (P = 0.025). The combination of MS-275 and PTK/ZK induced a nearly complete and highly significant tumor shrinkage by 90.3% ± 1% (P = 0.005). Addition of TAM showed no further efficacy, while quadruple therapy with retinoic acid increased antitumoral efficacy (tumor reduction by 93 ± 1%) and side effects. PCNA positive cells were not significantly reduced by the single agents, while dual therapy (MS-275 and PTK/ZK) and quadruple therapy reduced the PCNA-positive cell fraction significantly by 9.1 and 20.6% vs control 1 (P < 0.05). The number of TUNEL-positive cells, markers for ongoing apoptosis, was increased significantly by the single agents (control 1: 6.9%, PTK/ZK: 11.4%, MS-275: 12.2% with P < 0.05 vs control 1). The fraction of TUNEL-positive cells was upregulated highly significantly by dual therapy (18.4%) and quadruple therapy (24.8%, P < 0.01 vs control 1). For the proliferating (PCNA positive) and apoptotic cell fraction, quadruple therapy was significantly superior to dual therapy (P = 0.01). Combined PTK/ZK and MS-275 were highly effective in this hepatoma model. Quadruple therapy enhanced the effects microscopically, but not macroscopically. These results should be investigated further.
Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V
2015-02-01
We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.
2014-01-01
Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086
Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M
2016-06-01
Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. © 2015 Blackwell Verlag GmbH.
γδ T cells affect IL-4 production and B-cell tolerance
Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.
2015-01-01
γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377
γδ T cells affect IL-4 production and B-cell tolerance.
Huang, Yafei; Heiser, Ryan A; Detanico, Thiago O; Getahun, Andrew; Kirchenbaum, Greg A; Casper, Tamara L; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Cambier, John C; Wysocki, Lawrence J; O'Brien, Rebecca L; Born, Willi K
2015-01-06
γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.
Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production.
Gruber, Helen E; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N
2009-01-01
Studies were approved by the authors' Human Subjects Institutional Review Board. Human anulus cells were tested for growth and extracellular matrix (ECM) production in vitro. To investigate cell attachment, cell proliferation, and ECM production of human intervertebral disc anulus cells seeded onto randomly oriented electrospun polyamide nanofibers. Because nanofibrillar matrices have the potential to promote microenvironments, which may mimic in vivo conditions and resemble connective tissue, their utilization opens new avenues for cell-based tissue engineering applications for disc cells. Anulus cells were isolated from 4 cervical spine surgical disc specimens, expanded, and seeded into either routine plastic culture (control) or a nanofiber surface of randomly oriented electrospun polyamide nanofibers (Ultra-Web-coated culture dish, Corning) with a positive charge or without a charge. Cells were cultured for 9 days, digital images captured, cells harvested, embedded in paraffin, and examined for production of extracellular matrix (ECM). Additional anulus cultures were tested to quantitatively assess total proteoglycan production and cell proliferation under control or nanofiber cultures. Cells attached well and exhibited cell extensions within the nanofiber layers; cells on the charged nanofiber surface deposited greater amounts of chondroitin sulfate than of type II collagen than cells cultured on the uncharged nanofiber surface. Results showed that culture of anulus cells on nanofibers was permissive for secretion and assembly of type II collagen and chondroitin sulfate. Significantly greater total proteoglycan formation was present after culture on the nanofiber with added charge conditions {control, 0.6116 microg/mL +/- 0.186 [4] [mean +/- sem(n)] vs. 1.201 +/- 0.2509 [4], P < 0.05}. Cell proliferation, however, did not differ among treatment groups. Culture of anulus cells on nanofibers was found to be permissive for secretion and assembly of type II collagen and chondroitin sulfate, and culture on nanofibers with added charge significantly increased total proteoglycan production. These novel findings point to the need for further examination of nanofibrillar 3D culture of anulus cells for tissue engineering applications.
Pettazzoni, Piergiorgio; Ciamporcero, Eric; Medana, Claudio; Pizzimenti, Stefania; Dal Bello, Federica; Minero, Valerio Giacomo; Toaldo, Cristina; Minelli, Rosalba; Uchida, Koji; Dianzani, Mario Umberto; Pili, Roberto; Barrera, Giuseppina
2011-10-15
4-Hydroxynonenal (HNE) is an end product of lipoperoxidation with antiproliferative and proapoptotic properties in various tumors. Here we report a greater sensitivity to HNE in PC3 and LNCaP cells compared to DU145 cells. In contrast to PC3 and LNCaP cells, HNE-treated DU145 cells showed a smaller reduction in growth and did not undergo apoptosis. In DU145 cells, HNE did not induce ROS production and DNA damage and generated a lower amount of HNE-protein adducts. DU145 cells had a greater GSH and GST A4 content and GSH/GST-mediated HNE detoxification. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a regulator of the antioxidant response. Nrf2 protein content and nuclear accumulation were higher in DU145 cells compared to PC3 and LNCaP cells, whereas the expression of KEAP1, the main negative regulator of Nrf2 activity, was lower. Inhibition of Nrf2 expression with specific siRNA resulted in a reduction in GST A4 expression and GS-HNE formation, indicating that Nrf2 controls HNE metabolism. In addition, Nrf2 knockdown sensitized DU145 cells to HNE-mediated antiproliferative and proapoptotic activity. In conclusion, we demonstrated that increased Nrf2 activity resulted in a reduction in HNE sensitivity in prostate cancer cells, suggesting a potential mechanism of resistance to pro-oxidant therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Bernecker, C; Halim, F; Haase, M; Willenberg, H S; Ehlers, M; Schott, M
2013-08-01
Autoimmune Addison's disease (AD) is a rare but potentially life threatening disease. The exact etiology of the immune response to the adrenal gland is still unknown. MicroRNAs (miRNAs) critically control gene-expression and play an important role in regulating the immune response. The aim of this study was to determine key immunoregulatory miRNAs influencing autoimmune adrenal insufficiency. For this purpose selected miRNAs were amplified by a semiquantitative SYBR Green PCR from blood mononuclear cells and after purification from CD4+ and CD 8+ cells of 6 patients with autoimmune adrenal insufficiency and 10 healthy controls. In CD4+ T-cells miRNA 181a*_1 (18.02 in AD vs. 11.99 in CG, p=0.0047) is significantly increased whereas miRNA 200a_1 (12.48 in AD vs. 19.40 in CG, p=0.0003) and miRNA 200a_2* (8.59 in AD vs. 17.94 in CG, p=0.0160) are significantly decreased. miRNA 200a_1 (12.37 in AD group vs. 18.12 in control group, p=0.001) and miRNA 200a_2* (10.72 in AD group vs. 17.84 in control group, p=0.022) are also significantly decreased in CD8+ T-cells. This study could show for the first time a significant change of three defined miRNAs in PBMCs, CD4+, and CD8+ T-cells of autoimmune AD patients in vivo. These data may help to better understand the cause of the autoimmune processes leading to autoimmune AD. They extend our very limited knowledge concerning miRNAs in autoimmune Addison's disease. © Georg Thieme Verlag KG Stuttgart · New York.
Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland
2018-01-01
ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521
Downstream targets of HOXB4 in a cell line model of primitive hematopoietic progenitor cells.
Lee, Han M; Zhang, Hui; Schulz, Vincent; Tuck, David P; Forget, Bernard G
2010-08-05
Enforced expression of the homeobox transcription factor HOXB4 has been shown to enhance hematopoietic stem cell self-renewal and expansion ex vivo and in vivo. To investigate the downstream targets of HOXB4 in hematopoietic progenitor cells, HOXB4 was constitutively overexpressed in the primitive hematopoietic progenitor cell line EML. Two genome-wide analytical techniques were used: RNA expression profiling using microarrays and chromatin immunoprecipitation (ChIP)-chip. RNA expression profiling revealed that 465 gene transcripts were differentially expressed in KLS (c-Kit(+), Lin(-), Sca-1(+))-EML cells that overexpressed HOXB4 (KLS-EML-HOXB4) compared with control KLS-EML cells that were transduced with vector alone. In particular, erythroid-specific gene transcripts were observed to be highly down-regulated in KLS-EML-HOXB4 cells. ChIP-chip analysis revealed that the promoter region for 1910 genes, such as CD34, Sox4, and B220, were occupied by HOXB4 in KLS-EML-HOXB4 cells. Side-by-side comparison of the ChIP-chip and RNA expression profiling datasets provided correlative information and identified Gp49a and Laptm4b as candidate "stemness-related" genes. Both genes were highly ranked in both dataset lists and have been previously shown to be preferentially expressed in hematopoietic stem cells and down-regulated in mature hematopoietic cells, thus making them attractive candidates for future functional studies in hematopoietic cells.
Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W
2017-01-13
T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.
Interactions between nutrition and immunity in anorexia nervosa: a 1-y follow-up study.
Marcos, A; Varela, P; Toro, O; López-Vidriero, I; Nova, E; Madruga, D; Casas, J; Morandé, G
1997-08-01
Nutritional status and immunocompetence were evaluated in 15 patients suffering from anorexia nervosa in comparison with a control group (n = 15). After 1 y, data from six phases of the study were evaluated: immediately after admittance to the hospital (AN1), after 1 mo (AN2), after 2 mo (AN3), after 3 mo (AN4), after 6 mo (AN5), and after 1 y, (AN6). Patients recovered weight from AN4 until AN6 although, according to body mass index values, all patients had low weights during the 1-y follow-up. Likewise, leukocyte and lymphocyte values were borderline and lower in patients in all phases tested than in control subjects. All lymphocyte subpopulations were lower in AN1 and AN2 patients (inpatients) than in control subjects, except for CD19 cells, which remained unmodified. There seemed to be a recovery of lymphocyte subsets after hospitalization in AN3 and AN4 patients (outpatients), except for CD57, which remained below control values. However, there was a global decrease of the lymphocyte subsets in AN5 and AN6. Ratios of CD4 to CD8 cells were not altered but the ratio of CD2 to CD19 cells was lower in all phases except AN6. Moreover, cell-mediated immune function was impaired and none of the patients showed normal responses. Thus, despite the slight weight increase found in AN4, AN5, and AN6 and the apparent cell subset recovery after hospitalization, these results suggest a greatly depleted nutritional status that remained during the whole year in all patients.
NASA Astrophysics Data System (ADS)
Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.
2014-11-01
Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.