Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzi, Anna; Toniolo, Sara; Catto, Stella
A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodologicalmore » framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.« less
DOT National Transportation Integrated Search
2018-02-01
Qing Lu (ORCID ID 0000-0002-9120-9218) Given a huge amount of annual investment and large inputs of energy and natural resources in pavement maintenance and rehabilitation (M&R) activities, significant environmental improvement and budget saving can ...
Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H
2017-07-01
For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.
Conceptual Framework To Extend Life Cycle Assessment ...
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools
Schroeder, Jenna N.
2014-06-10
This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.
LCIA framework and cross-cutting issues guidance within the UNEP/SETAC Life Cycle Initiative
Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Init...
Parasites and Their Impact on Ecosystem Nutrient Cycling.
Vannatta, J Trevor; Minchella, Dennis J
2018-06-01
Consumer species alter nutrient cycling through nutrient transformation, transfer, and bioturbation. Parasites have rarely been considered in this framework despite their ability to indirectly alter the cycling of nutrients via their hosts. A simple mathematical framework can be used to assess the relative importance of parasite-derived nutrients in an ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent Dixon
Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less
LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES
The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...
NASA Technical Reports Server (NTRS)
Depenbrock, Brett T.; Balint, Tibor S.; Sheehy, Jeffrey A.
2014-01-01
Research and development organizations that push the innovation edge of technology frequently encounter challenges when attempting to identify an investment strategy and to accurately forecast the cost and schedule performance of selected projects. Fast moving and complex environments require managers to quickly analyze and diagnose the value of returns on investment versus allocated resources. Our Project Assessment Framework through Design (PAFTD) tool facilitates decision making for NASA senior leadership to enable more strategic and consistent technology development investment analysis, beginning at implementation and continuing through the project life cycle. The framework takes an integrated approach by leveraging design principles of useability, feasibility, and viability and aligns them with methods employed by NASA's Independent Program Assessment Office for project performance assessment. The need exists to periodically revisit the justification and prioritization of technology development investments as changes occur over project life cycles. The framework informs management rapidly and comprehensively about diagnosed internal and external root causes of project performance.
Dealing with Emergy Algebra in the Life Cycle Assessment Framework
The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...
Framework for Responsible Environmental Decision-Making (FRED) demonstrates how the life-cycle concept can be used to quantify competing products' environmental performance so that this information may be integrated with considerations of total ownership cost and technical perfor...
Conceptualising the effectiveness of impact assessment processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanchitpricha, Chaunjit, E-mail: chaunjit@g.sut.ac.th; Bond, Alan, E-mail: alan.bond@uea.ac.uk; Unit for Environmental Sciences and Management School of Geo and Spatial Sciences, Internal Box 375, North West University
2013-11-15
This paper aims at conceptualising the effectiveness of impact assessment processes through the development of a literature-based framework of criteria to measure impact assessment effectiveness. Four categories of effectiveness were established: procedural, substantive, transactive and normative, each containing a number of criteria; no studies have previously brought together all four of these categories into such a comprehensive, criteria-based framework and undertaken systematic evaluation of practice. The criteria can be mapped within a cycle/or cycles of evaluation, based on the ‘logic model’, at the stages of input, process, output and outcome to enable the identification of connections between the criteria acrossmore » the categories of effectiveness. This framework is considered to have potential application in measuring the effectiveness of many impact assessment processes, including strategic environmental assessment (SEA), environmental impact assessment (EIA), social impact assessment (SIA) and health impact assessment (HIA). -- Highlights: • Conceptualising effectiveness of impact assessment processes. • Identification of factors influencing effectiveness of impact assessment processes. • Development of criteria within a framework for evaluating IA effectiveness. • Applying the logic model to examine connections between effectiveness criteria.« less
Abiotic raw-materials in life cycle impact assessments: An emerging consensus across disciplines
Drielsma, Johannes; Allington, Ruth; Brady, Thomas; Guinée, Jeroen; Hammarstrom, Jane M.; Hummen, Torsten; Russell-Vaccari, Andrea; Schneider, Laura; Sonnemann, Guido; Weihed, Pär
2016-01-01
This paper captures some of the emerging consensus points that came out of the workshop “Mineral Resources in Life Cycle Impact Assessment: Mapping the path forward”, held at the Natural History Museum London on 14 October 2015: that current practices rely in many instances on obsolete data, often confuse resource depletion with impacts on resource availability, which can therefore provide inconsistent decision support and lead to misguided claims about environmental performance. Participants agreed it would be helpful to clarify which models estimate depletion and which estimate availability, so that results can be correctly reported in the most appropriate framework. Most participants suggested that resource availability will be more meaningfully addressed within a comprehensive Life Cycle Sustainability Assessment framework rather than limited to an environmental Life Cycle Assessment or Footprint. Presentations from each of the authors are available for download.
Effect of soil in nutrient cycle assessment at dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne
2016-04-01
Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.
Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C
2016-11-01
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.
Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G
2015-09-15
Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.
ERIC Educational Resources Information Center
Kern, Margaret L.; Hampson, Sarah E.; Goldberg, Lewis R.; Friedman, Howard S.
2014-01-01
The present study used a collaborative framework to integrate 2 long-term prospective studies: the Terman Life Cycle Study and the Hawaii Personality and Health Longitudinal Study. Within a 5-factor personality-trait framework, teacher assessments of child personality were rationally and empirically aligned to establish similar factor structures…
Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles
Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...
Life Cycle Impact Assessment (videotape)
Originally developed for the US EPA Regions, this presentation is available to the general public via the internet. The presentation focuses on the basics of Life Cycle Impact Assessment (LCIA) including the ISO 14040 series framework and a quick overview of each of the steps wi...
Waste-to-energy: A review of life cycle assessment and its extension methods.
Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons
2018-01-01
This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.
Sustainability assessment framework for scenarios – SAFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arushanyan, Yevgeniya, E-mail: yevgeniya.arushanyan@abe.kth.se; KTH Royal Institute of Technology, Centre for Sustainable Communications; Ekener, Elisabeth
To address current challenges regarding sustainable development and support planning for this form of development, new learning about different possible futures and their potential sustainability implications is needed. One way of facilitating this learning is by combining the futures studies and sustainability assessment (SA) research fields. This paper presents the sustainability assessment framework for scenarios (SAFS), a method developed for assessing the environmental and social risks and opportunities of future scenarios, provides guidelines for its application and demonstrates how the framework can be applied. SAFS suggests assessing environmental and social aspects using a consumption perspective and a life cycle approach,more » and provides qualitative results. SAFS does not suggest any modelling using precise data, but instead offers guidelines on how to carry out a qualitative assessment, where both the process of assessing and the outcome of the assessment are valuable and can be used as a basis for discussion. The benefits, drawbacks and potential challenges of applying SAFS are also discussed in the paper. SAFS uses systems thinking looking at future societies as a whole, considering both environmental and social consequences. This encourages researchers and decision-makers to consider the whole picture, and not just individual elements, when considering different futures. - Highlights: • The paper presents a new methodological framework for qualitative sustainability assessment of future scenarios with transformative changes. • The framework suggests qualitative assessment with consumption perspective and a life cycle approach. • The paper presents the framework and provides guidelines for its application. • The paper demonstrates on an example how the framework can be applied. • The benefits, drawbacks and challenges of the framework application and the need for further development are discussed.« less
Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been ...
Jacobs, Molly M.; Malloy, Timothy F.; Tickner, Joel A.; Edwards, Sally
2015-01-01
Background Given increasing pressures for hazardous chemical replacement, there is growing interest in alternatives assessment to avoid substituting a toxic chemical with another of equal or greater concern. Alternatives assessment is a process for identifying, comparing, and selecting safer alternatives to chemicals of concern (including those used in materials, processes, or technologies) on the basis of their hazards, performance, and economic viability. Objectives The purposes of this substantive review of alternatives assessment frameworks are to identify consistencies and differences in methods and to outline needs for research and collaboration to advance science policy practice. Methods This review compares methods used in six core components of these frameworks: hazard assessment, exposure characterization, life-cycle impacts, technical feasibility evaluation, economic feasibility assessment, and decision making. Alternatives assessment frameworks published from 1990 to 2014 were included. Results Twenty frameworks were reviewed. The frameworks were consistent in terms of general process steps, but some differences were identified in the end points addressed. Methodological gaps were identified in the exposure characterization, life-cycle assessment, and decision–analysis components. Methods for addressing data gaps remain an issue. Discussion Greater consistency in methods and evaluation metrics is needed but with sufficient flexibility to allow the process to be adapted to different decision contexts. Conclusion Although alternatives assessment is becoming an important science policy field, there is a need for increased cross-disciplinary collaboration to refine methodologies in support of the informed substitution and design of safer chemicals, materials, and products. Case studies can provide concrete lessons to improve alternatives assessment. Citation Jacobs MM, Malloy TF, Tickner JA, Edwards S. 2016. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ Health Perspect 124:265–280; http://dx.doi.org/10.1289/ehp.1409581 PMID:26339778
LIFE CYCLE IMPACT ASSESSMENT FOR THE BUILDING DESIGN AND CONSTRUCTION INDUSTRY
The most effective way to achieve long-term environmental results is through the use of a consistent set of metrics within a decision-making framework. This paper describes the role of Life Cycle Impact Assessment (LCIA) and details its use within two tools available to this indu...
ERIC Educational Resources Information Center
Kerr, Deirdre; Chung, Gregory K. W. K.
2012-01-01
The assessment cycle of "evidence-centered design" (ECD) provides a framework for treating an educational video game or simulation as an assessment. One of the main steps in the assessment cycle of ECD is the identification of the key features of student performance. While this process is relatively simple for multiple choice tests, when…
A modular Human Exposure Model (HEM) framework to ...
Life Cycle Impact Analysis (LCIA) has proven to be a valuable tool for systematically comparing processes and products, and has been proposed for use in Chemical Alternatives Analysis (CAA). The exposure assessment portion of the human health impact scores of LCIA has historically focused on far-field sources (environmentally mediated exposures) while research has shown that use related exposures, (near-field exposures) typically dominate population exposure. Characterizing the human health impacts of chemicals in consumer products over the life cycle of these products requires an evaluation of both near-field as well far-field sources. Assessing the impacts of the near-field exposures requires bridging the scientific and technical gaps that currently prevent the harmonious use of the best available methods and tools from the fields of LCIA and human health exposure and risk assessment. The U.S. EPA’s Chemical Safety and Sustainability LC-HEM project is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur to various populations over the life cycle of a commercial product. The HEM will be a publically available, web-based, modular system which will allow for the evaluation of chemical/product impacts in a LCIA framework to support CAA. We present here an overview of the framework for the modular HEM system. The framework includes a data flow diagram of in-progress and future planned modules, the definition of each mod
DOT National Transportation Integrated Search
2015-05-01
The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...
ERIC Educational Resources Information Center
Erduran, Sibel; Dagher, Zoubeida R.
2014-01-01
The Irish national discourse on curriculum and assessment reform at the Junior Cycle level has been fraught with controversy in the past two years. The introduction of the new curriculum and assessment framework in 2012 by the then Minister of Education, Ruairi Quinn has led to significant media coverage and teacher union response. In this paper,…
Life cycle assessment framework of traffic systems based on microscopic simulation.
DOT National Transportation Integrated Search
2014-03-01
Transportation is an important infrastructure process needed in many steps of the supply chain of any product. Transportation-associated global impacts are therefore important factor influencing the sustainability of any product cycle. Moreover, traf...
Taebi, Behnam; Kadak, Andrew C
2010-09-01
Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies. © 2010 Society for Risk Analysis.
Development and application of basis database for materials life cycle assessment in china
NASA Astrophysics Data System (ADS)
Li, Xiaoqing; Gong, Xianzheng; Liu, Yu
2017-03-01
As the data intensive method, high quality environmental burden data is an important premise of carrying out materials life cycle assessment (MLCA), and the reliability of data directly influences the reliability of the assessment results and its application performance. Therefore, building Chinese MLCA database is the basic data needs and technical supports for carrying out and improving LCA practice. Firstly, some new progress on database which related to materials life cycle assessment research and development are introduced. Secondly, according to requirement of ISO 14040 series standards, the database framework and main datasets of the materials life cycle assessment are studied. Thirdly, MLCA data platform based on big data is developed. Finally, the future research works were proposed and discussed.
Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M
2013-01-01
The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Chris, E-mail: cyuan@uwm.edu; Wang, Endong; Zhai, Qiang
Temporal homogeneity of inventory data is one of the major problems in life cycle assessment (LCA). Addressing temporal homogeneity of life cycle inventory data is important in reducing the uncertainties and improving the reliability of LCA results. This paper attempts to present a critical review and discussion on the fundamental issues of temporal homogeneity in conventional LCA and propose a theoretical framework for temporal discounting in LCA. Theoretical perspectives for temporal discounting in life cycle inventory analysis are discussed first based on the key elements of a scientific mechanism for temporal discounting. Then generic procedures for performing temporal discounting inmore » LCA is derived and proposed based on the nature of the LCA method and the identified key elements of a scientific temporal discounting method. A five-step framework is proposed and reported in details based on the technical methods and procedures needed to perform a temporal discounting in life cycle inventory analysis. Challenges and possible solutions are also identified and discussed for the technical procedure and scientific accomplishment of each step within the framework. - Highlights: • A critical review for temporal homogeneity problem of life cycle inventory data • A theoretical framework for performing temporal discounting on inventory data • Methods provided to accomplish each step of the temporal discounting framework.« less
Coupled near-field and far-field exposure assessment framework for chemicals in consumer products.
Fantke, Peter; Ernstoff, Alexi S; Huang, Lei; Csiszar, Susan A; Jolliet, Olivier
2016-09-01
Humans can be exposed to chemicals in consumer products through product use and environmental emissions over the product life cycle. Exposure pathways are often complex, where chemicals can transfer directly from products to humans during use or exchange between various indoor and outdoor compartments until sub-fractions reach humans. To consistently evaluate exposure pathways along product life cycles, a flexible mass balance-based assessment framework is presented structuring multimedia chemical transfers in a matrix of direct inter-compartmental transfer fractions. By matrix inversion, we quantify cumulative multimedia transfer fractions and exposure pathway-specific product intake fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. Combining product intake fractions with chemical mass in the product yields intake estimates for use in life cycle impact assessment and chemical alternatives assessment, or daily intake doses for use in risk-based assessment and high-throughput screening. Two illustrative examples of chemicals used in personal care products and flooring materials demonstrate how this matrix-based framework offers a consistent and efficient way to rapidly compare exposure pathways for adult and child users and for the general population. This framework constitutes a user-friendly approach to develop, compare and interpret multiple human exposure scenarios in a coupled system of near-field ('user' environment), far-field and human intake compartments, and helps understand the contribution of individual pathways to overall human exposure in various product application contexts to inform decisions in different science-policy fields for which exposure quantification is relevant. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Managing the Life Cycle Risks of Nanomaterials
2009-07-01
ISO International Organization for Standardization ISN Institute for Soldier Nanotechnologies LCA Life Cycle Assessment LCCA Life Cycle Cost Analysis...similar to their smaller Existing ISO /TS 27687:2008 Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and...Nanotechnology Under Development ISO /CD TR 80004-1 Nanotechnologies - Terminology and definitions – Framework ISO /AWI TS 80004-2 Nanotechnologies
Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne
2018-09-15
Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All rights reserved.
Comprehensive Environmental Assessment and U.S. EPA Nanomaterial Case Studies
These case studies are not completed risk assessments but are structured around an approach known as comprehensive environmental assessment (CEA), which combines a product life cycle framework with the risk assessment paradigm (Davis, J.M., J. Nanosci. Nanotech. 7:402-9, 2007). ...
System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Adam David; Mohagheghi, Amir H.; Cohn, Brian
In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) andmore » system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.« less
van Zelm, Rosalie; Larrey-Lassalle, Pyrène; Roux, Philippe
2014-04-01
In Life Cycle Assessment (LCA), the Life Cycle Inventory (LCI) provides emission data to the various environmental compartments and Life Cycle Impact Assessment (LCIA) determines the final distribution, fate and effects. Due to the overlap between the Technosphere (anthropogenic system) and Ecosphere (environment) in agricultural case studies, it is, however, complicated to establish what LCI needs to capture and where LCIA takes over. This paper aims to provide guidance and improvements of LCI/LCIA boundary definitions, in the dimensions of space and time. For this, a literature review was conducted to provide a clear overview of available methods and models for both LCI and LCIA regarding toxicological assessments of pesticides used in crop production. Guidelines are provided to overcome the gaps between LCI and LCIA modeling, and prevent the overlaps in their respective operational spheres. The proposed framework provides a starting point for LCA practitioners to gather the right data and use the proper models to include all relevant emission and exposure routes where possible. It is also able to predict a clear distinction between efficient and inefficient management practices (e.g. using different application rates, washing and rinsing management, etc.). By applying this framework for toxicological assessments of pesticides, LCI and LCIA can be directly linked, removing any overlaps or gaps in between the two distinct LCA steps. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoogmartens, Rob, E-mail: rob.hoogmartens@uhasselt.be; Van Passel, Steven, E-mail: steven.vanpassel@uhasselt.be; Van Acker, Karel, E-mail: karel.vanacker@lrd.kuleuven.be
Increasing interest in sustainability has led to the development of sustainability assessment tools such as Life Cycle Analysis (LCA), Life Cycle Costing (LCC) and Cost–Benefit Analysis (CBA). Due to methodological disparity of these three tools, conflicting assessment results generate confusion for many policy and business decisions. In order to interpret and integrate assessment results, the paper provides a framework that clarifies the connections and coherence between the included assessment methodologies. Building on this framework, the paper further focuses on key aspects to adapt any of the methodologies to full sustainability assessments. Aspects dealt with in the review are for examplemore » the reported metrics, the scope, data requirements, discounting, product- or project-related and approaches with respect to scarcity and labor requirements. In addition to these key aspects, the review shows that important connections exist: (i) the three tools can cope with social inequality, (ii) processes such as valuation techniques for LCC and CBA are common, (iii) Environmental Impact Assessment (EIA) is used as input in both LCA and CBA and (iv) LCA can be used in parallel with LCC. Furthermore, the most integrated sustainability approach combines elements of LCA and LCC to achieve the Life Cycle Sustainability Assessment (LCSA). The key aspects and the connections referred to in the review are illustrated with a case study on the treatment of end-of-life automotive glass. - Highlights: • Proliferation of assessment tools creates ambiguity and confusion. • The developed assessment framework clarifies connections between assessment tools. • Broadening LCA, key aspects are metric and data requirements. • Broadening LCC, key aspects are scope, time frame and discounting. • Broadening CBA, focus point, timespan, references, labor and scarcity are key.« less
A framework for energy use indicators and their reporting in life cycle assessment.
Arvidsson, Rickard; Svanström, Magdalena
2016-07-01
Energy use is a common impact category in life cycle assessment (LCA). Many different energy use indicators are used in LCA studies, accounting for energy use in different ways. Often, however, the choice behind which energy use indicator is applied is poorly described and motivated. To contribute to a more purposeful selection of energy use indicators and to ensure consistent and transparent reporting of energy use in LCA, a general framework for energy use indicator construction and reporting in LCA studies will be presented in this article. The framework differentiates between 1) renewable and nonrenewable energies, 2) primary and secondary energies, and 3) energy intended for energy purposes versus energy intended for material purposes. This framework is described both graphically and mathematically. Furthermore, the framework is illustrated through application to a number of energy use indicators that are frequently used in LCA studies: cumulative energy demand (CED), nonrenewable cumulative energy demand (NRCED), fossil energy use (FEU), primary fossil energy use (PFEU), and secondary energy use (SEU). To illustrate how the application of different energy use indicators may lead to different results, cradle-to-gate energy use of the bionanomaterial cellulose nanofibrils (CNF) is assessed using 5 different indicators and showing a factor of 3 differences between the highest and lowest results. The relevance of different energy use indicators to different actors and contexts will be discussed, and further developments of the framework are then suggested. Integr Environ Assess Manag 2016;12:429-436. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.
FRAMEWORK FOR RESPONSIBLE DECISION-MAKING (FRED): A TOOL FOR ENVIRONMENTALLY PREFERABLE PRODUCTS
In support of the Environmentally Preferable Purchasing Program of the USEPA, a decision-making tool based on life cycle assessment has been developed. This tool, the Framework for Responsible Environmental Decision-making or FRED, streamlines LCA by choosing a minimum list of im...
FRAMEWORK FOR ENVIRONMENTAL DECISION-MAKING, FRED: A TOOL FOR ENVIRONMENTALLY-PREFERABLE PURCHASING
In support of the Environmentally Preferable Purchasing Program of the US EPA, the Systems Analysis Branch has developed a decision-making tool based on life cycle assessment. This tool, the Framework for Responsible Environmental Decision-making or FRED streamlines LCA by choosi...
A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design
NASA Astrophysics Data System (ADS)
Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.
2017-12-01
Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.
A fuel cycle assessment guide for utility and state energy planners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated andmore » that meet the user`s planning requirements.« less
ORD Human Health Risk Assessment (HHRA) Research Program Mid-Cycle Progress Report and Review - 2010
The principal charge to the BOSC reviewers was to evaluate ORD’s HHRA Program from a program assessment framework relative to program relevance, structure, performance, quality, leadership, communication, and outcomes.
Taylor, Michael J; McNicholas, Chris; Nicolay, Chris; Darzi, Ara; Bell, Derek; Reed, Julie E
2014-01-01
Background Plan–do–study–act (PDSA) cycles provide a structure for iterative testing of changes to improve quality of systems. The method is widely accepted in healthcare improvement; however there is little overarching evaluation of how the method is applied. This paper proposes a theoretical framework for assessing the quality of application of PDSA cycles and explores the consistency with which the method has been applied in peer-reviewed literature against this framework. Methods NHS Evidence and Cochrane databases were searched by three independent reviewers. Empirical studies were included that reported application of the PDSA method in healthcare. Application of PDSA cycles was assessed against key features of the method, including documentation characteristics, use of iterative cycles, prediction-based testing of change, initial small-scale testing and use of data over time. Results 73 of 409 individual articles identified met the inclusion criteria. Of the 73 articles, 47 documented PDSA cycles in sufficient detail for full analysis against the whole framework. Many of these studies reported application of the PDSA method that failed to accord with primary features of the method. Less than 20% (14/73) fully documented the application of a sequence of iterative cycles. Furthermore, a lack of adherence to the notion of small-scale change is apparent and only 15% (7/47) reported the use of quantitative data at monthly or more frequent data intervals to inform progression of cycles. Discussion To progress the development of the science of improvement, a greater understanding of the use of improvement methods, including PDSA, is essential to draw reliable conclusions about their effectiveness. This would be supported by the development of systematic and rigorous standards for the application and reporting of PDSAs. PMID:24025320
Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo
2013-01-01
Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.
Developing an SSAC Self-Assessment Tool for Operators and Regulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazar, Sarah L.; Innes-Jones, Gemma; Hamilton, Ian
Enabling an SSAC to understand why it is performing inefficiently can help it allocate resources more effectively to better support IAEA safeguards implementation. In collaboration with international consulting firm, Environmental Resources Management (ERM) and a U.S. based nuclear fuel cycle facility, the Pacific Northwest National Laboratory (PNNL) has been developing a framework for a future self-assessment tool for nuclear operators and regulators. This paper will describe the effort to date, with particular emphasis on the steps the team took to align the framework with relevant IAEA self-assessment tools.
Developing a framework for assessment of the environmental determinants of walking and cycling.
Pikora, Terri; Giles-Corti, Billie; Bull, Fiona; Jamrozik, Konrad; Donovan, Rob
2003-04-01
The focus for interventions and research on physical activity has moved away from vigorous activity to moderate-intensity activities, such as walking. In addition, a social ecological approach to physical activity research and practice is recommended. This approach considers the influence of the environment and policies on physical activity. Although there is limited empirical published evidence related to the features of the physical environment that influence physical activity, urban planning and transport agencies have developed policies and strategies that have the potential to influence whether people walk or cycle in their neighbourhood. This paper presents the development of a framework of the potential environmental influences on walking and cycling based on published evidence and policy literature, interviews with experts and a Delphi study. The framework includes four features: functional, safety, aesthetic and destination; as well as the hypothesised factors that contribute to each of these features of the environment. In addition, the Delphi experts determined the perceived relative importance of these factors. Based on these factors, a data collection tool will be developed and the frameworks will be tested through the collection of environmental information on neighbourhoods, where data on the walking and cycling patterns have been collected previously. Identifying the environmental factors that influence walking and cycling will allow the inclusion of a public health perspective as well as those of urban planning and transport in the design of built environments.
NASA Astrophysics Data System (ADS)
Kumar, Indraneel
In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include that, Indiana has adequate suitable land area available to locate wind farms with installed capacity between 11 and 51 GW if 100 meters high turbines are used. For a 1.5 MW standard wind turbine, financial feasibility analysis shows that production tax credits and property tax abatements are helpful for financial success in Indiana. Also, the wind energy is not entirely emission free if life cycle events of wind turbine manufacturing, production, installation, construction and decommissioning are considered. The research developed a replicable and integrated framework for statewide life cycle analysis of wind energy production accounting for uncertainty into the analyses. Considering the complexity of life cycle analysis and lack of state specific data on performance of wind turbines and wind farms, this study should be considered an intermediate step.
Kobak, Roger; Zajac, Kristyn; Herres, Joanna; Krauthamer Ewing, E Stephanie
2015-01-01
The emergence of attachment-based treatments (ABTs) for adolescents highlights the need to more clearly define and evaluate these treatments in the context of other attachment based treatments for young children and adults. We propose a general framework for defining and evaluating ABTs that describes the cyclical processes that are required to maintain a secure attachment bond. This secure cycle incorporates three components: (1) the child or adult's IWM of the caregiver; (2) emotionally attuned communication; and (3) the caregiver's IWM of the child or adult. We briefly review Bowlby, Ainsworth, and Main's contributions to defining the components of the secure cycle and discuss how this framework can be adapted for understanding the process of change in ABTs. For clinicians working with adolescents, our model can be used to identify how deviations from the secure cycle (attachment injuries, empathic failures and mistuned communication) contribute to family distress and psychopathology. The secure cycle also provides a way of describing the ABT elements that have been used to revise IWMs or improve emotionally attuned communication. For researchers, our model provides a guide for conceptualizing and measuring change in attachment constructs and how change in one component of the interpersonal cycle should generalize to other components.
Kobak, Roger; Zajac, Kristyn; Herres, Joanna; KrauthamerEwing, E. Stephanie
2016-01-01
The emergence of ABTs for adolescents highlights the need to more clearly define and evaluate these treatments in the context of other attachment based treatments for young children and adults. We propose a general framework for defining and evaluating ABTs that describes the cyclical processes that are required to maintain a secure attachment bond. This secure cycle incorporates three components: 1) the child or adult’s IWM of the caregiver; 2) emotionally attuned communication; and 3) the caregiver’s IWM of the child or adult. We briefly review Bowlby, Ainsworth, and Main’s contributions to defining the components of the secure cycle and discuss how this framework can be adapted for understanding the process of change in ABTs. For clinicians working with adolescents, our model can be used to identify how deviations from the secure cycle (attachment injuries, empathic failures and mistuned communication) contribute to family distress and psychopathology. The secure cycle also provides a way of describing the ABT elements that have been used to revise IWMs or improve emotionally attuned communication. For researchers, our model provides a guide for conceptualizing and measuring change in attachment constructs and how change in one component of the interpersonal cycle should generalize to other components. PMID:25744572
Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies.
Wender, Ben A; Foley, Rider W; Prado-Lopez, Valentina; Ravikumar, Dwarakanath; Eisenberg, Daniel A; Hottle, Troy A; Sadowski, Jathan; Flanagan, William P; Fisher, Angela; Laurin, Lise; Bates, Matthew E; Linkov, Igor; Seager, Thomas P; Fraser, Matthew P; Guston, David H
2014-09-16
Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.
Concepts associated with a unified life cycle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.
There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other,more » the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.« less
Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future unc...
Future year emissions depend highly on economic, technological, societal and regulatory drivers. A scenario framework was adopted to analyze technology development pathways and changes in consumer preferences, and evaluate resulting emissions growth patterns while considering fut...
ERIC Educational Resources Information Center
Bess, Gary; Allen, James; Deters, Pamela B.
2004-01-01
A life cycle metaphor characterizes the evolving relationship between the evaluator and program staff. This framework suggests that common developmental dynamics occur in roughly the same order across groups and settings. There are stage-specific dynamics that begin with Pre-History, which characterize the relationship between the grantees and…
Although early Life Cycle Assessment (LCA) methodology researchers focused on the modeling of impacts from chemical emissions, it has become obvious that resource depletion categories such as land use, water use, and fossil fuel depletion require additional attention to appropria...
NASA Astrophysics Data System (ADS)
Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Zabeo, Alex; Malsch, Ineke; McAlea, Eamonn; Murphy, Finbarr; Mullins, Martin; van Harmelen, Toon; Ligthart, Tom; Linkov, Igor; Marcomini, Antonio
2016-04-01
The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit-risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.
NASA Astrophysics Data System (ADS)
Rovinelli, Andrea; Guilhem, Yoann; Proudhon, Henry; Lebensohn, Ricardo A.; Ludwig, Wolfgang; Sangid, Michael D.
2017-06-01
Microstructurally small cracks exhibit large variability in their fatigue crack growth rate. It is accepted that the inherent variability in microstructural features is related to the uncertainty in the growth rate. However, due to (i) the lack of cycle-by-cycle experimental data, (ii) the complexity of the short crack growth phenomenon, and (iii) the incomplete physics of constitutive relationships, only empirical damage metrics have been postulated to describe the short crack driving force metric (SCDFM) at the mesoscale level. The identification of the SCDFM of polycrystalline engineering alloys is a critical need, in order to achieve more reliable fatigue life prediction and improve material design. In this work, the first steps in the development of a general probabilistic framework are presented, which uses experimental result as an input, retrieves missing experimental data through crystal plasticity (CP) simulations, and extracts correlations utilizing machine learning and Bayesian networks (BNs). More precisely, experimental results representing cycle-by-cycle data of a short crack growing through a beta-metastable titanium alloy, VST-55531, have been acquired via phase and diffraction contrast tomography. These results serve as an input for FFT-based CP simulations, which provide the micromechanical fields influenced by the presence of the crack, complementing the information available from the experiment. In order to assess the correlation between postulated SCDFM and experimental observations, the data is mined and analyzed utilizing BNs. Results show the ability of the framework to autonomously capture relevant correlations and the equivalence in the prediction capability of different postulated SCDFMs for the high cycle fatigue regime.
Benchmarking wastewater treatment plants under an eco-efficiency perspective.
Lorenzo-Toja, Yago; Vázquez-Rowe, Ian; Amores, María José; Termes-Rifé, Montserrat; Marín-Navarro, Desirée; Moreira, María Teresa; Feijoo, Gumersindo
2016-10-01
The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework. Copyright © 2016 Elsevier B.V. All rights reserved.
Metzger, Lia; Ahalt, Cyrus; Kushel, Margot; Riker, Alissa; Williams, Brie
2017-09-11
Purpose The rapidly increasing number of older adults cycling through local criminal justice systems (jails, probation, and parole) suggests a need for greater collaboration among a diverse group of local stakeholders including professionals from healthcare delivery, public health, and criminal justice and directly affected individuals, their families, and advocates. The purpose of this paper is to develop a framework that local communities can use to understand and begin to address the needs of criminal justice-involved older adults. Design/methodology/approach The framework included solicit input from community stakeholders to identify pressing challenges facing criminal justice-involved older adults, conduct needs assessments of criminal justice-involved older adults and professionals working with them; implement quick-response interventions based on needs assessments; share findings with community stakeholders and generate public feedback; engage interdisciplinary group to develop an action plan to optimize services. Findings A five-step framework for creating an interdisciplinary community response is an effective approach to action planning and broad stakeholder engagement on behalf of older adults cycling through the criminal justice system. Originality/value This study proposes the Criminal Justice Involved Older Adults in Need of Treatment Initiative Framework for establishing an interdisciplinary community response to the growing population of medically and socially vulnerable criminal justice-involved older adults.
Integrated Technology Assessment Center (ITAC) Update
NASA Technical Reports Server (NTRS)
Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)
2002-01-01
The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.
Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique
2016-01-01
The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of monitoring and inspections in the life-cycle of wind turbines
NASA Astrophysics Data System (ADS)
Hanish Nithin, Anu; Omenzetter, Piotr
2016-04-01
The past decade has witnessed a surge in the offshore wind farm developments across the world. Although this form of cleaner and greener energy is beneficial and eco-friendly, the production of wind energy entails high life-cycle costs. The costs associated with inspections, monitoring and repairs of wind turbines are primary contributors to the high costs of electricity produced in this way and are disadvantageous in today's competitive economic environment. There is limited research being done in the probabilistic optimization of life-cycle costs of offshore wind turbines structures and their components. This paper proposes a framework for assessing the life cycle cost of wind turbine structures subject to damage and deterioration. The objective of the paper is to develop a mathematical probabilistic cost assessment framework which considers deterioration, inspection, monitoring, repair and maintenance models and their uncertainties. The uncertainties are etched in the accuracy and precision of the monitoring and inspection methods and can be considered through the probability of damage detection of each method. Schedules for inspection, monitoring and repair actions are demonstrated using a decision tree. Examples of a generalised deterioration process integrated with the cost analysis using a decision tree are shown for a wind turbine foundation structure.
ERIC Educational Resources Information Center
Birenbaum, Menucha; Kimron, Helena; Shilton, Hany; Shahaf-Barzilay, Rinat
2009-01-01
The paper reports results of three studies that used a formative assessment (FA) framework to compare schools that vary in their level of functioning as professional learning communities with respect to three processes: classroom assessment (study 1), development and implementation of school-based curriculum (study 2), and pedagogical…
Scovil, Carol Y; Flett, Heather M; McMillan, Lan T; Delparte, Jude J; Leber, Diane J; Brown, Jacquie; Burns, Anthony S
2014-09-01
To implement pressure ulcer (PU) prevention best practices in spinal cord injury (SCI) rehabilitation using implementation science frameworks. Quality improvement. SCI Rehabilitation Center. Inpatients admitted January 2012 to July 2013. Implementation of two PU best practices were targeted: (1) completing a comprehensive PU risk assessment and individualized interprofessional PU prevention plan (PUPP); and (2) providing patient education for PU prevention; as part of the pan-Canadian SCI Knowledge Mobilization Network. At our center, the SCI Pressure Ulcer Scale replaced the Braden risk assessment scale and an interprofessional PUPP form was implemented. Comprehensive educational programing existed, so efforts focused on improving documentation. Implementation science frameworks provided structure for a systematic approach to best practice implementation (BPI): (1) site implementation team, (2) implementation drivers, (3) stages of implementation, and (4) improvement cycles. Strategies were developed to address key implementation drivers (staff competency, organizational supports, and leadership) through the four stages of implementation: exploration, installation, initial implementation, and full implementation. Improvement cycles were used to address BPI challenges. Implementation processes (e.g. staff training) and BPI outcomes (completion rates). Following BPI, risk assessment completion rates improved from 29 to 82%. The PUPP completion rate was 89%. PU education was documented for 45% of patients (vs. 21% pre-implementation). Implementation science provided a framework and effective tools for successful pressure ulcer BPI in SCI rehabilitation. Ongoing improvement cycles will target timeliness of tool completion and documentation of patient education.
Heller, Martin C; Keoleian, Gregory A; Willett, Walter C
2013-11-19
Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.
Using Iterative Plan-Do-Study-Act Cycles to Improve Teaching Pedagogy.
Murray, Elizabeth J
2018-01-15
Most students entering nursing programs today are members of Generation Y or the Millennial generation, and they learn differently than previous generations. Nurse educators must consider implementing innovative teaching strategies that appeal to the newest generation of learners. The Plan-Do-Study-Act cycle is a framework that can be helpful when planning, assessing, and continually improving teaching pedagogy. This article describes the use of iterative Plan-Do-Study-Act cycles to implement a change in teaching pedagogy.
NASA Astrophysics Data System (ADS)
Flaounas, Emmanouil; Drobinski, Philippe; Borga, Marco; Calvet, Jean-Christophe; Delrieu, Guy; Morin, Efrat; Tartari, Gianni; Toffolon, Roberta
2012-06-01
This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA&D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean region.
Zhang, Q H; Wang, X C; Xiong, J Q; Chen, R; Cao, B
2010-03-01
In order to illuminate the benefit of a wastewater treatment and reuse project, a life cycle assessment (LCA) model was proposed by combining the process-based LCA and the input-output based LCA in one framework and using energy consumption as the sole parameter for quantitative evaluation of the project. The life cycle consumption was evaluated mainly by life cycle inventory (LCI) analysis taking into account the construction phase, operation phase and demolishment phase of the project. For evaluating the life cycle benefit of treated water reuse, attention was paid to the decrease of secondary effluent discharge and water saving. As a result of comprehensive LCA analysis of a case project in Xi'an, China, it was understood that the life cycle benefit gained from treated wastewater reuse much surpassed the life cycle energy consumption. The advantage of wastewater treatment and reuse was well shown by LCA analysis using the proposed model. 2009 Elsevier Ltd. All rights reserved.
Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine
2010-05-01
Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.
Rebitzer, G; Ekvall, T; Frischknecht, R; Hunkeler, D; Norris, G; Rydberg, T; Schmidt, W-P; Suh, S; Weidema, B P; Pennington, D W
2004-07-01
Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for the provision of goods and services (both of which are summarized under the term "products"). Environmental impacts include those from emissions into the environment and through the consumption of resources, as well as other interventions (e.g., land use) associated with providing products that occur when extracting resources, producing materials, manufacturing the products, during consumption/use, and at the products' end-of-life (collection/sorting, reuse, recycling, waste disposal). These emissions and consumptions contribute to a wide range of impacts, such as climate change, stratospheric ozone depletion, tropospheric ozone (smog) creation, eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources, water use, land use, and noise-among others. A clear need, therefore, exists to be proactive and to provide complimentary insights, apart from current regulatory practices, to help reduce such impacts. Practitioners and researchers from many domains come together in life cycle assessment (LCA) to calculate indicators of the aforementioned potential environmental impacts that are linked to products-supporting the identification of opportunities for pollution prevention and reductions in resource consumption while taking the entire product life cycle into consideration. This paper, part 1 in a series of two, introduces the LCA framework and procedure, outlines how to define and model a product's life cycle, and provides an overview of available methods and tools for tabulating and compiling associated emissions and resource consumption data in a life cycle inventory (LCI). It also discusses the application of LCA in industry and policy making. The second paper, by Pennington et al. (Environ. Int. 2003, in press), highlights the key features, summarises available approaches, and outlines the key challenges of assessing the aforementioned inventory data in terms of contributions to environmental impacts (life cycle impact assessment, LCIA).
Scovil, Carol Y.; Flett, Heather M.; McMillan, Lan T.; Delparte, Jude J.; Leber, Diane J.; Brown, Jacquie; Burns, Anthony S.
2014-01-01
Objectives To implement pressure ulcer (PU) prevention best practices in spinal cord injury (SCI) rehabilitation using implementation science frameworks. Design Quality improvement. Setting SCI Rehabilitation Center. Participants Inpatients admitted January 2012 to July 2013. Interventions Implementation of two PU best practices were targeted: (1) completing a comprehensive PU risk assessment and individualized interprofessional PU prevention plan (PUPP); and (2) providing patient education for PU prevention; as part of the pan-Canadian SCI Knowledge Mobilization Network. At our center, the SCI Pressure Ulcer Scale replaced the Braden risk assessment scale and an interprofessional PUPP form was implemented. Comprehensive educational programing existed, so efforts focused on improving documentation. Implementation science frameworks provided structure for a systematic approach to best practice implementation (BPI): (1) site implementation team, (2) implementation drivers, (3) stages of implementation, and (4) improvement cycles. Strategies were developed to address key implementation drivers (staff competency, organizational supports, and leadership) through the four stages of implementation: exploration, installation, initial implementation, and full implementation. Improvement cycles were used to address BPI challenges. Outcome Measures Implementation processes (e.g. staff training) and BPI outcomes (completion rates). Results Following BPI, risk assessment completion rates improved from 29 to 82%. The PUPP completion rate was 89%. PU education was documented for 45% of patients (vs. 21% pre-implementation). Conclusion Implementation science provided a framework and effective tools for successful pressure ulcer BPI in SCI rehabilitation. Ongoing improvement cycles will target timeliness of tool completion and documentation of patient education. PMID:25029674
Nanotechnology for environmentally sustainable electromobility
NASA Astrophysics Data System (ADS)
Ellingsen, Linda Ager-Wick; Hung, Christine Roxanne; Majeau-Bettez, Guillaume; Singh, Bhawna; Chen, Zhongwei; Whittingham, M. Stanley; Strømman, Anders Hammer
2016-12-01
Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.
Ho, Martin; Saha, Anindita; McCleary, K Kimberly; Levitan, Bennett; Christopher, Stephanie; Zandlo, Kristen; Braithwaite, R Scott; Hauber, A Brett
In response to 2012 guidance in which the US Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) stated the importance of patient-centric measures in regulatory benefit-risk assessments, the Medical Device Innovation Consortium (MDIC) initiated a project. The project was used to develop a framework to help the Food and Drug Administration (FDA) and industry sponsors understand how patient preferences regarding benefit and risk might be integrated into the review of innovative medical devices. A public-private partnership of experts from medical device industry, government, academia and non-profits collaborated on development of the MDIC patient centered benefit-risk framework. The MDIC Framework examines what patient preference information is and the potential use and value of patient preference information in the regulatory process and across the product development life cycle. The MDIC Framework also includes a catalog of patient preference assessment methods and an agenda for future research to advance the field. This article discusses key concepts in patient preference assessment of particular importance for regulators and researchers that are addressed in the MDIC Framework for patient centered benefit-risk assessment as well as the unique public-private collaboration that led its development. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
Sturla, Francesco; Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto
2017-04-01
Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow's disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves. Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment.
Marine and Hydrokinetic Technology Development Risk Management Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowberg, David; Weber, Jochem
2015-09-01
Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over themore » development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.« less
An intertemporal decision framework for electrochemical energy storage management
NASA Astrophysics Data System (ADS)
He, Guannan; Chen, Qixin; Moutis, Panayiotis; Kar, Soummya; Whitacre, Jay F.
2018-05-01
Dispatchable energy storage is necessary to enable renewable-based power systems that have zero or very low carbon emissions. The inherent degradation behaviour of electrochemical energy storage (EES) is a major concern for both EES operational decisions and EES economic assessments. Here, we propose a decision framework that addresses the intertemporal trade-offs in terms of EES degradation by deriving, implementing and optimizing two metrics: the marginal benefit of usage and the average benefit of usage. These metrics are independent of the capital cost of the EES system, and, as such, separate the value of EES use from the initial cost, which provides a different perspective on storage valuation and operation. Our framework is proved to produce the optimal solution for EES life-cycle profit maximization. We show that the proposed framework offers effective ways to assess the economic values of EES, to make investment decisions for various applications and to inform related subsidy policies.
A framework for assessing global change risks to forest carbon stocks in the United States
Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe
2013-01-01
Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and...
Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.
Ryberg, Morten Walbech; Rosenbaum, Ralph K; Mosqueron, Luc; Fantke, Peter
2018-04-01
Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation. A comparison with measured data in a case study on pesticides applied to potato fields shows that our model gives good predictions of pesticide air concentrations. We compared our bystander exposure estimates with pathways currently included in LCA, namely aggregated inhalation and ingestion exposure mediated via the environment for the general population, and general population exposure via ingestion of pesticide residues in consumed food crops. The results show that exposure of bystanders is limited relative to total population exposure from ingestion of pesticide residues in crops, but that the exposure magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural pesticides. This inclusion aids decision-making based on LCA as previously restricted knowledge about exposure of bystanders can now be taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael
2014-01-01
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992
Life cycle thinking in impact assessment—Current practice and LCA gains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidstrup, Morten, E-mail: Bidstrup@plan.aau.dk
It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysedmore » for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.« less
The challenges Concentrated Animal Feeding Operations (CAFOs) directly pose to sustainability include their impact on human health, receiving water bodies, groundwater, and air quality. These challenges result from the large quantities of macronutrients (carbon, nitrogen, and pho...
Regulatory aspects of total product life cycle.
Hausman, Ethan D; Altaie, Sousan S
2004-12-01
Total Product Life Cycle (TPLC) is a conceptual framework for assessing any product or service (medical or otherwise). This article will address how the Center for Devices and Radiological Health of the U.S. Food and Drug Administration utilizes TPLC in a regulatory paradigm. TPLC will help guide the regulation of market-driven evolution of medical devices and radiation-emitting products from conception, through pre-market development, to widespread market use, and finally to obsolescence and replacement by subsequent generations of products.
NASA Astrophysics Data System (ADS)
Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos
2016-12-01
A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.
Bolorinos, Jose; Ajami, Newsha K; Muñoz Meléndez, Gabriela; Jackson, Robert B
2018-05-01
This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO 2 -equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO 2 -equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO 2 emissions, but not upstream CO 2 -eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.
Developing mathematical practices through reflection cycles
NASA Astrophysics Data System (ADS)
Reinholz, Daniel L.
2016-09-01
This paper focuses on reflection in learning mathematical practices. While there is a long history of research on reflection in mathematics, it has focused primarily on the development of conceptual understanding. Building on notion of learning as participation in social practices, this paper broadens the theory of reflection in mathematics learning. To do so, it introduces the concept of reflection cycles. Each cycle begins with prospective reflection, which guides one's actions during an experience, and ends with retrospective reflection, which consolidates the experience and informs the next reflection cycle. Using reflection cycles as an organizing framework, this paper synthesizes the literature on reflective practices at a variety of levels: (1) metacognition, (2) self-assessment, (3) noticing, and (4) lifelong learning. These practices represent a spectrum of reflection, ranging from the micro level (1) to macro level (4).
LIFE CYCLE IMPACT ASSESSMENT - MIDPOINTS VS. ENDPOINTS
The question of whether to use midpoints or endpoints or both in an LCIA framework is often dependent upon the goal and scope and the decision that is being supported by the LCIA. LCIAs for Enlightenment may not require an aggregation of impact categories and may be most useful ...
Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J
2014-05-06
One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.
Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció
2013-01-01
This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration.
A framework to analyze emissions implications of ...
Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future uncertainty in regulations and evaluate resulting emissions growth patterns. The framework integrates EPA’s energy systems model with an economic Input-Output (I/O) Life Cycle Assessment model. The EPAUS9r MARKAL database is assembled from a set of technologies to represent the U.S. energy system within MARKAL bottom-up technology rich energy modeling framework. The general state of the economy and consequent demands for goods and services from these sectors are taken exogenously in MARKAL. It is important to characterize exogenous inputs about the economy to appropriately represent the industrial sector outlook for each of the scenarios and case studies evaluated. An economic input-output (I/O) model of the US economy is constructed to link up with MARKAL. The I/O model enables user to change input requirements (e.g. energy intensity) for different sectors or the share of consumer income expended on a given good. This gives end-users a mechanism for modeling change in the two dimensions of technological progress and consumer preferences that define the future scenarios. The framework will then be extended to include environmental I/O framework to track life cycle emissions associated
Bohnes, Florence A; Gregg, Jay S; Laurent, Alexis
2017-12-05
To move toward environmentally sustainable transport systems, electric vehicles (EVs) are increasingly seen as viable alternatives to internal combustion vehicles (ICVs). To ensure effectiveness of such deployment, holistic assessments of environmental impacts can help decision-makers determine optimized urban strategies in a long-term perspective. However, explicit guidance and conduct of such assessments are currently missing. Here, we therefore propose a framework using life cycle assessment that enables the quantification of environmental impacts of a transport system at full urban scale from a fleet-based, foresight perspective. The analysis of the passenger car fleet development in the city of Copenhagen for the years 2016-2030 is used as a proof-of-concept. We modeled and compared five powertrain technologies, and we assessed four fleet-based scenarios for the entire city. Our results showed relative environmental benefits from range-extended and fuel-cell EVs over ICVs and standard EVs. These results were found to be sensitive to local settings, like electricity grid mix, which could alter the relative environmental performances across EV technologies. The comprehensive framework developed here can be applied to other geographic areas and contexts to assess the environmental sustainability of transport systems.
Framework for Assessing Biogenic CO2 Emissions from ...
This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide emissions from stationary sources. EPA developed the revised report, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, to present a methodological framework for assessing the extent to which the production, processing, and use of biogenic material at stationary sources for energy production results in a net atmospheric contribution of biogenic CO2 emissions. Biogenic carbon dioxide emissions are defined as CO2 emissions related to the natural carbon cycle, as well as those resulting from the production, harvest, combustion, digestion, decomposition, and processing of biologically-based materials. The EPA is continuing to refine its technical assessment of biogenic CO2 emissions through another round of targeted peer review of the revised study with the EPA Science Advisory Board (SAB). This study was submitted to the SAB's Biogenic Carbon Emissions Panel in February 2015. http://yosemite.epa.gov/sab/sabproduct.nsf/0/3235dac747c16fe985257da90053f252!OpenDocument&TableRow=2.2#2 The revised report will inform efforts by policymakers, academics, and other stakeholders to evaluate the technical aspects related to assessments of biogenic feedstocks used for energy at s
Thabrew, Lanka; Ries, Robert
2009-07-01
Development planning and implementation is a multifaceted and multiscale task mainly because of the involvement of multiple stakeholders across sectors and disciplines. Even though top-down sectoral planning is commonly practiced, bottom-up cross-sectoral planning involving all relevant stakeholders in a transdisciplinary learning environment has been recognized as a better option, especially if the goal is to drive development projects toward sustainable implementation (Rowe and Fudge 2003; Müller et al. 2005; Global Development Research Center 2008). Even though many planning approaches have this goal, there are limited decision frameworks that are suitable for achieving consensus among stakeholders from multiple disciplines with sectoral objectives and priorities. In most instances, the upstream and downstream effects of development decisions are not thoroughly investigated or communicated with the relevant stakeholders, strongly affecting cross-sectoral integration in the real world (Wiek, Brundiers, et al. 2006). This article presents methodological aspects of developing a stakeholder based life cycle assessment framework (SBLCA) for upstream-downstream decision analysis in a multistakeholder development planning context. The applicability of the framework is demonstrated using simple examples extracted from a pilot case study conducted in Sri Lanka for sustainable posttsunami reconstruction at a village scale. The applicability of SBLCA in specific planning stages, how it promotes transdisciplinary learning and cross-sectoral stakeholder integration in phases of project cycles, and how local stakeholders can practice life cycle thinking in their village development planning and implementation are discussed.
Life Cycle Impact Analysis (LCIA) has proven to be a valuable tool for systematically comparing processes and products, and has been proposed for use in Chemical Alternatives Analysis (CAA). The exposure assessment portion of the human health impact scores of LCIA has historicall...
An attributional life cycle assessment for an Italian residential multifamily building.
Vitale, Pierluca; Arena, Umberto
2017-09-06
The study describes an attributional life cycle assessment carried out according to the ISO standards and focused on an Italian multifamily residential building. The aim was developing an exhaustive and reliable inventory of high-quality primary data, comparing the environmental impacts along the three stages of the building life cycle. The pre-use phase takes into account the production of all the construction materials, transportation, and on-site assembling. The use phase quantifies the resource consumptions for 50 years of the building utilization and ordinary maintenance. The end-of-life phase includes the building demolition and the management of generated wastes. The results quantify how the design criteria affect the environmental performances of the residential building along its life cycle. The role of the pre-use phase appears remarkable for global warming potential (GWP), due to the huge impacts of steel and concrete production processes. The use phase gives the largest contributions, which reach 77% and 84% of the total, for the categories of global warming and non-renewable energy. The end-of-life phase provides limited avoided impacts. A comparative analysis quantifies the improvements achievable with an alternative type of partitions and external walls. Acronyms: AC: air conditioning; C&DW: construction and demolition waste; CFL: compact fluorescent lamp; DHW: domestic hot water; EC: European Commission; EU: European Union; GDP: gross domestic product; GHG: greenhouse gases; GWP: global warming potential; LCA: life cycle assessment; LCI: life cycle inventory; LCIA: life cycle impact assessment; MFA: material flow analysis; NREP: non-renewable energy potential; RINP: respiratory inorganics potential; WFD: Waste Framework Directive.
Kern, Jordan D; Hise, Adam M; Characklis, Greg W; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D
2017-02-01
This study investigates the use of "real options analysis" (ROA) to quantify the value of greater product flexibility at algal biofuel production facilities. A deterministic optimization framework is integrated with a combined life cycle assessment/techno-economic analysis model and subjected to an ensemble of 30-year commodity price trajectories. Profits are maximized for two competing plant configurations: 1) one that sells lipid-extracted algae as animal feed only; and 2) one that can sell lipid-extracted algae as feed or use it to recover nutrients and energy, due to an up-front investment in anaerobic digestion/combined heat and power. Results show that added investment in plant flexibility does not result in an improvement in net present value, because current feed meal prices discourage use of lipid-extracted algae for nutrient and energy recovery. However, this study demonstrates that ROA provides many useful insights regarding plant design that cannot be captured via traditional techno-economic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A.; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto
2017-01-01
Background Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. Methods We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow’s disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. Results On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves. Conclusions Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment. PMID:28540065
On the efficiency of FES cycling: a framework and systematic review.
Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M
2012-01-01
Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.
Bess, Gary; Allen, James; Deters, Pamela B
2004-08-12
A life cycle metaphor characterizes the evolving relationship between the evaluator and program staff. This framework suggests that common developmental dynamics occur in roughly the same order across groups and settings. There are stage-specific dynamics that begin with Pre-History, which characterize the relationship between the grantees and evaluator. The stages are: (a) Pre-History, (b) Process, (c) Development, (d) Action, (e) Findings-Compilation, and (f) Transition. The common dynamics, expectations, and activities for each stage are discussed.
Towards a more holistic sustainability assessment framework for agro-bioenergy systems — A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arodudu, Oludunsin, E-mail: Oludunsin.Arodudu@zalf.de; Potsdam University, Institute of Earth and Environmental Sciences, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Golm; Helming, Katharina
The use of life cycle assessment (LCA) as a sustainability assessment tool for agro-bioenergy system usually has an industrial agriculture bias. Furthermore, LCA generally has often been criticized for being a decision maker tool which may not consider decision takers perceptions. They are lacking in spatial and temporal depth, and unable to assess sufficiently some environmental impact categories such as biodiversity, land use etc. and most economic and social impact categories, e.g. food security, water security, energy security. This study explored tools, methodologies and frameworks that can be deployed individually, as well as in combination with each other for bridgingmore » these methodological gaps in application to agro-bioenergy systems. Integrating agronomic options, e.g. alternative farm power, tillage, seed sowing options, fertilizer, pesticide, irrigation into the boundaries of LCAs for agro-bioenergy systems will not only provide an alternative agro-ecological perspective to previous LCAs, but will also lead to the derivation of indicators for assessment of some social and economic impact categories. Deploying life cycle thinking approaches such as energy return on energy invested-EROEI, human appropriation of net primary production-HANPP, net greenhouse gas or carbon balance-NCB, water footprint individually and in combination with each other will also lead to further derivation of indicators suitable for assessing relevant environmental, social and economic impact categories. Also, applying spatio-temporal simulation models has a potential for improving the spatial and temporal depths of LCA analysis.« less
The Role of Applied Epidemiology Methods in the Disaster Management Cycle
Heumann, Michael; Perrotta, Dennis; Wolkin, Amy F.; Schnall, Amy H.; Podgornik, Michelle N.; Cruz, Miguel A.; Horney, Jennifer A.; Zane, David; Roisman, Rachel; Greenspan, Joel R.; Thoroughman, Doug; Anderson, Henry A.; Wells, Eden V.; Simms, Erin F.
2014-01-01
Disaster epidemiology (i.e., applied epidemiology in disaster settings) presents a source of reliable and actionable information for decision-makers and stakeholders in the disaster management cycle. However, epidemiological methods have yet to be routinely integrated into disaster response and fully communicated to response leaders. We present a framework consisting of rapid needs assessments, health surveillance, tracking and registries, and epidemiological investigations, including risk factor and health outcome studies and evaluation of interventions, which can be practiced throughout the cycle. Applying each method can result in actionable information for planners and decision-makers responsible for preparedness, response, and recovery. Disaster epidemiology, once integrated into the disaster management cycle, can provide the evidence base to inform and enhance response capability within the public health infrastructure. PMID:25211748
An Integrated Approach to Life Cycle Analysis
NASA Technical Reports Server (NTRS)
Chytka, T. M.; Brown, R. W.; Shih, A. T.; Reeves, J. D.; Dempsey, J. A.
2006-01-01
Life Cycle Analysis (LCA) is the evaluation of the impacts that design decisions have on a system and provides a framework for identifying and evaluating design benefits and burdens associated with the life cycles of space transportation systems from a "cradle-to-grave" approach. Sometimes called life cycle assessment, life cycle approach, or "cradle to grave analysis", it represents a rapidly emerging family of tools and techniques designed to be a decision support methodology and aid in the development of sustainable systems. The implementation of a Life Cycle Analysis can vary and may take many forms; from global system-level uncertainty-centered analysis to the assessment of individualized discriminatory metrics. This paper will focus on a proven LCA methodology developed by the Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center to quantify and assess key LCA discriminatory metrics, in particular affordability, reliability, maintainability, and operability. This paper will address issues inherent in Life Cycle Analysis including direct impacts, such as system development cost and crew safety, as well as indirect impacts, which often take the form of coupled metrics (i.e., the cost of system unreliability). Since LCA deals with the analysis of space vehicle system conceptual designs, it is imperative to stress that the goal of LCA is not to arrive at the answer but, rather, to provide important inputs to a broader strategic planning process, allowing the managers to make risk-informed decisions, and increase the likelihood of meeting mission success criteria.
Bovea, M D; Powell, J C
2016-04-01
This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hanafiah, Marlia M; Leuven, Rob S E W; Sommerwerk, Nike; Tockner, Klement; Huijbregts, Mark A J
2013-12-17
While the ecological impact of anthropogenically introduced exotic species is considered a major threat for biodiversity and ecosystems functioning, it is generally not accounted for in the environmental life cycle assessment (LCA) of products. In this article, we propose a framework that includes exotic species introduction in an LCA context. We derived characterization factors for exotic fish species introduction related to the transport of goods across the Rhine-Main-Danube canal. These characterization factors are expressed as the potentially disappeared fraction (PDF) of native freshwater fish species in the rivers Rhine and Danube integrated over space and time per amount of goods transported (PDF·m(3)·yr·kg(-1)). Furthermore, we quantified the relative importance of exotic fish species introduction compared to other anthropogenic stressors in the freshwater environment (i.e., eutrophication, ecotoxicity, greenhouse gases, and water consumption) for transport of goods through the Rhine-Main-Danube waterway. We found that the introduction of exotic fish species contributed to 70-85% of the total freshwater ecosystem impact, depending on the distance that goods were transported. Our analysis showed that it is relevant and feasible to include the introduction of exotic species in an LCA framework. The proposed framework can be further extended by including the impacts of other exotic species groups, types of water bodies and pathways for introduction.
Rethinking the area of protection "natural resources" in life cycle assessment.
Dewulf, Jo; Benini, Lorenzo; Mancini, Lucia; Sala, Serenella; Blengini, Gian Andrea; Ardente, Fulvio; Recchioni, Marco; Maes, Joachim; Pant, Rana; Pennington, David
2015-05-05
Life cycle impact assessment (LCIA) in classical life cycle assessment (LCA) aims at analyzing potential impacts of products and services typically on three so-called areas of protection (AoPs): Natural Environment, Human Health, and Natural Resources. This paper proposes an elaboration of the AoP Natural Resources. It starts with analyzing different perspectives on Natural Resources as they are somehow sandwiched in between the Natural Environment (their cradle) and the human-industrial environment (their application). Reflecting different viewpoints, five perspectives are developed with the suggestion to select three in function of classical LCA. They result in three safeguard subjects: the Asset of Natural Resources, their Provisioning Capacity, and their role in Global Functions. Whereas the Provisioning Capacity is fully in function of humans, the global functions go beyond provisioning as they include nonprovisioning functions for humans and regulating and maintenance services for the globe as a whole, following the ecosystem services framework. A fourth and fifth safeguard subject has been identified: recognizing the role Natural Resources for human welfare, either specifically as building block in supply chains of products and services as such, either with or without their functions beyond provisioning. But as these are far broader as they in principle should include characterization of mechanisms within the human industrial society, they are considered as subjects for an integrated sustainability assessment (LCSA: life cycle sustainability assessment), that is, incorporating social, economic and environmental issues.
Biodiversity impact assessment (BIA+) - methodological framework for screening biodiversity.
Winter, Lisa; Pflugmacher, Stephan; Berger, Markus; Finkbeiner, Matthias
2018-03-01
For the past 20 years, the life cycle assessment (LCA) community has sought to integrate impacts on biodiversity into the LCA framework. However, existing impact assessment methods still fail to do so comprehensively because they quantify only a few impacts related to specific species and regions. This paper proposes a methodological framework that will allow LCA practitioners to assess currently missing impacts on biodiversity on a global scale. Building on existing models that seek to quantify the impacts of human activities on biodiversity, the herein proposed methodological framework consists of 2 components: a habitat factor for 14 major habitat types and the impact on the biodiversity status in those major habitat types. The habitat factor is calculated by means of indicators that characterize each habitat. The biodiversity status depends on parameters from impact categories. The impact functions, relating these different parameters to a given response in the biodiversity status, rely on expert judgments. To ensure the applicability for LCA practitioners, the components of the framework can be regionalized on a country scale for which LCA inventory data is more readily available. The weighting factors for the 14 major habitat types range from 0.63 to 1.82. By means of area weighting of the major habitat types in a country, country-specific weighting factors are calculated. In order to demonstrate the main part of the framework, examples of impact functions are given for the categories "freshwater eutrophication" and "freshwater ecotoxicity" in 1 major habitat type. The results confirm suitability of the methodological framework. The major advantages are the framework's user-friendliness, given that data can be used from LCA databases directly, and the complete inclusion of all levels of biodiversity (genetic, species, and ecosystem). It is applicable for the whole world and a wide range of impact categories. Integr Environ Assess Manag 2018;14:282-297. © 2017 SETAC. © 2017 SETAC.
ERIC Educational Resources Information Center
Hartley, Laurel M.; Wilke, Brook J.; Schramm, Jonathon W.; D'Avanzo, Charlene; Anderson, Charles W.
2011-01-01
Processes that transform carbon (e.g., photosynthesis) play a prominent role in college biology courses. Our goals were to learn about student reasoning related to these processes and provide faculty with tools for instruction and assessment. We created a framework illustrating how carbon-transforming processes can be related to one another during…
Formative Assessment Probes: Labeling versus Explaining
ERIC Educational Resources Information Center
Keeley, Page
2013-01-01
In the elementary grades, the butterfly is a commonly used curricular context for children to learn about growth and development of organisms as they progress through their life cycle. "A Framework for K-12 Science Education's" life science core idea LS1.B, Growth and Development of Organisms, states that by the end of grade 5,…
Tecco, Nadia; Baudino, Claudio; Girgenti, Vincenzo; Peano, Cristiana
2016-10-15
In the challenging world of territorial transformations within the agriculture, there is an increasing need for an integrated methodological framework of assessment that is able to reconcile the demand for solutions that are both economically sustainable and contribute to environmental and social improvement. This study aims to assess the introduction of innovation into agro-food systems by combining an environmental life cycle (LCA) assessment and a social life cycle assessment (s-LCA) to support the decision making process of a fruit growers co-op for the adoption of mulching and covering in raspberry farming. LCA and s-LCA have been applied independently under specific consistency requirements, selecting two scenarios to compare the impact with (1) and without (2) the innovation and then combined within a cause-effect chain. The interactions between the environment and socioeconomic components were considered within a nested frameset of business and territorial features. The total emissions from raspberry production in Scenario 1, according to the Global Warming Potential (GWP) Impact Category amounted to 2.2840kg of CO2 eq. In Scenario 2, the impact of production was associated with a GWP of 0.1682kg of CO2 eq. Social repercussions analysis from Scenario 1 compared to Scenario 2 indicate more satisfaction for working conditions and the management of climate risks. The mulching and covering, implemented within a given framework of farm activity, created conditions for the preservation of a model in which raspberry production contributes to landscape protection, the business sustainability of farms and the creation of employment. The combined use of the two methods contributes to the development of a strategy planning due to its ability to deliver, as well as specific analysis at a functional level, a wider framework for assessing the consistency of the impacts related to innovation in raspberry production. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghimire, Santosh R; Johnston, John M
2017-09-01
We propose a modified eco-efficiency (EE) framework and novel sustainability analysis methodology for green infrastructure (GI) practices used in water resource management. Green infrastructure practices such as rainwater harvesting (RWH), rain gardens, porous pavements, and green roofs are emerging as viable strategies for climate change adaptation. The modified framework includes 4 economic, 11 environmental, and 3 social indicators. Using 6 indicators from the framework, at least 1 from each dimension of sustainability, we demonstrate the methodology to analyze RWH designs. We use life cycle assessment and life cycle cost assessment to calculate the sustainability indicators of 20 design configurations as Decision Management Objectives (DMOs). Five DMOs emerged as relatively more sustainable along the EE analysis Tradeoff Line, and we used Data Envelopment Analysis (DEA), a widely applied statistical approach, to quantify the modified EE measures as DMO sustainability scores. We also addressed the subjectivity and sensitivity analysis requirements of sustainability analysis, and we evaluated the performance of 10 weighting schemes that included classical DEA, equal weights, National Institute of Standards and Technology's stakeholder panel, Eco-Indicator 99, Sustainable Society Foundation's Sustainable Society Index, and 5 derived schemes. We improved upon classical DEA by applying the weighting schemes to identify sustainability scores that ranged from 0.18 to 1.0, avoiding the nonuniqueness problem and revealing the least to most sustainable DMOs. Our methodology provides a more comprehensive view of water resource management and is generally applicable to GI and industrial, environmental, and engineered systems to explore the sustainability space of alternative design configurations. Integr Environ Assess Manag 2017;13:821-831. Published 2017. This article is a US Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Published 2017. This article is a US Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Parameterization models for pesticide exposure via crop consumption.
Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier
2012-12-04
An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.
Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems
NASA Astrophysics Data System (ADS)
Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya
2017-02-01
Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.
Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma
2018-05-01
A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
2007-06-01
2.2.4 A QUALITATIVE VIEW OF OC CYCLING 44 2.2.5 COUPLED ISOTOPE MASS BALANCE CALCULATIONS 47 2.3 CONCLUSIONS 56 ACKNOWLEDGEMENTS 57 REFERENCES 58...METHODS 71 3.2 RESULTS & DISCUSSION 73 3.2.1 CHRONOLOGY DEVELOPMENT 73 3.2.2 ELEMENTAL AND ISOTOPIC PROFILES 77 3.2.3 MASS BALANCE CALCULATIONS 80 3.3...2005). Within this framework, isotopic mass balance calculations used to assess the fractional abundance of modem and ancient OC (Blair et al., 2003
NASA Astrophysics Data System (ADS)
Schneider, Udo; Ziese, Markus; Meyer-Christoffer, Anja; Finger, Peter; Rustemeier, Elke; Becker, Andreas
2016-10-01
Precipitation plays an important role in the global energy and water cycle. Accurate knowledge of precipitation amounts reaching the land surface is of special importance for fresh water assessment and management related to land use, agriculture and hydrology, incl. risk reduction of flood and drought. High interest in long-term precipitation analyses arises from the needs to assess climate change and its impacts on all spatial scales. In this framework, the Global Precipitation Climatology Centre (GPCC) has been established in 1989 on request of the World Meteorological Organization (WMO). It is operated by Deutscher Wetterdienst (DWD, National Meteorological Service of Germany) as a German contribution to the World Climate Research Programme (WCRP). This paper provides information on the most recent update of GPCC's gridded data product portfolio including example use cases.
Approach to proliferation risk assessment based on multiple objective analysis framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianov, A.; Kuptsov, I.; Studgorodok 1, Obninsk, Kaluga region, 249030
2013-07-01
The approach to the assessment of proliferation risk using the methods of multi-criteria decision making and multi-objective optimization is presented. The approach allows the taking into account of the specifics features of the national nuclear infrastructure, and possible proliferation strategies (motivations, intentions, and capabilities). 3 examples of applying the approach are shown. First, the approach has been used to evaluate the attractiveness of HEU (high enriched uranium)production scenarios at a clandestine enrichment facility using centrifuge enrichment technology. Secondly, the approach has been applied to assess the attractiveness of scenarios for undeclared production of plutonium or HEU by theft of materialsmore » circulating in nuclear fuel cycle facilities and thermal reactors. Thirdly, the approach has been used to perform a comparative analysis of the structures of developing nuclear power systems based on different types of nuclear fuel cycles, the analysis being based on indicators of proliferation risk.« less
A hybrid model of cell cycle in mammals.
Behaegel, Jonathan; Comet, Jean-Paul; Bernot, Gilles; Cornillon, Emilien; Delaunay, Franck
2016-02-01
Time plays an essential role in many biological systems, especially in cell cycle. Many models of biological systems rely on differential equations, but parameter identification is an obstacle to use differential frameworks. In this paper, we present a new hybrid modeling framework that extends René Thomas' discrete modeling. The core idea is to associate with each qualitative state "celerities" allowing us to compute the time spent in each state. This hybrid framework is illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are determined by applying formal methods on the underlying discrete model and by constraining parameters using timing observations on the cell cycle. This first hybrid model presents the most important known behaviors of the cell cycle, including quiescent phase and endoreplication.
The remarkable environmental rebound effect of electric cars: a microeconomic approach.
Font Vivanco, David; Freire-González, Jaume; Kemp, René; van der Voet, Ester
2014-10-21
This article presents a stepwise, refined, and practical analytical framework to model the microeconomic environmental rebound effect (ERE) stemming from cost differences of electric cars in terms of changes in multiple life cycle environmental indicators. The analytical framework is based on marginal consumption analysis and hybrid life cycle assessment (LCA). The article makes a novel contribution through a reinterpretation of the traditional rebound effect and methodological refinements. It also provides novel empirical results about the ERE for plug-in hybrid electric (PHE), full-battery electric (FBE), and hydrogen fuel cell (HFC) cars for Europe. The ERE is found to have a remarkable impact on product-level environmental scores. For the PHE car, the ERE causes a marginal increase in demand and environmental pressures due to a small decrease in the cost of using this technology. For FBE and HFC cars, the high capital costs cause a noteworthy decrease in environmental pressures for some indicators (negative rebound effect). The results corroborate the concern over the high influence of cost differences for environmental assessment, and they prompt sustainable consumption policies to consider markets and prices as tools rather than as an immutable background.
Analysing an Audit Cycle: A Critical Realist Account
ERIC Educational Resources Information Center
Boughey, Chrissie; McKenna, Sioux
2017-01-01
This paper reports on the use of a framework developed from Bhaskar's critical realism and Archer's social realism to analyse teaching- and learning-related data produced as a result of the first cycle of institutional audits in the South African higher education system. The use of the framework allows us to see what this cycle of audits did…
Framework and tools for agricultural landscape assessment relating to water quality protection.
Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine
2009-05-01
While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.
Knowledge translation is the use of knowledge in health care decision making.
Straus, Sharon E; Tetroe, Jacqueline M; Graham, Ian D
2011-01-01
To provide an overview of the science and practice of knowledge translation. Narrative review outlining what knowledge translation is and a framework for its use. Knowledge translation is defined as the use of knowledge in practice and decision making by the public, patients, health care professionals, managers, and policy makers. Failures to use research evidence to inform decision making are apparent across all these key decision maker groups. There are several proposed theories and frameworks for achieving knowledge translation. A conceptual framework developed by Graham et al., termed the knowledge-to-action cycle, provides an approach that builds on the commonalities found in an assessment of planned action theories. Review of the evidence base for the science and practice of knowledge translation has identified several gaps including the need to develop valid strategies for assessing the determinants of knowledge use and for evaluating sustainability of knowledge translation interventions. Copyright © 2011 Elsevier Inc. All rights reserved.
Cycle time reduction using lean six sigma in make-to-order (MTO) environment: Conceptual framework
NASA Astrophysics Data System (ADS)
Man, Siti Mariam; Zain, Zakiyah; Nawawi, Mohd Kamal Mohd
2015-12-01
This paper outlines the framework for application of lean six sigma (LSS) methodology to improve semiconductor assembly cycle time in a make-to-order (MTO) business environment. The cycle time reduction is the prime objective in the context of an overall productivity improvement particularly in the MTO environment. The interaction of the production rate and cycle time is described, while the emphasis is on Define-Measure-Analyze-Improve-Control (DMAIC) and Plan-Do-Check-Act (PDCA) activities. A framework for the conceptual understanding is provided along with practical implementation issues. A relevant measure for the degree of flexibility (DOF) in the context of quick setup is also discussed.
A Comparative Analysis of Life-Cycle Assessment Tools for ...
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c
Area of Concern: a new paradigm in life cycle assessment for ...
Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications.MethodsThe task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44.Res
Pini, Martina; Bondioli, Federica; Montecchi, Rita; Neri, Paolo; Ferrari, Anna Maria
2017-01-15
Recently, there has been a rise in the interest in nanotechnology due to its enormous potential for the development of new products and applications with higher performance and new functionalities. However, while nanotechnology might revolutionize a number of industrial and consumer sectors, there are uncertainties and knowledge gaps regarding toxicological effects of this emerging science. The goal of this research concerns the implementation into Life Cycle Assessment (LCA) of preliminary frameworks developed to evaluate human toxicity and exposure factors related to the potential nanoparticle releases that could occur during the life cycle steps of a functionalized building material. The present LCA case study examines the ecodesign of nanoTiO 2 functionalized porcelain stoneware tile production. The aim of this investigation is to manufacture new eco-friendly products in order to protect human health and ecosystem quality and to offer the market, materials with higher technological properties obtained by the addition of specific nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Drachsler, H.; Kalz, M.
2016-01-01
The article deals with the interplay between learning analytics and massive open online courses (MOOCs) and provides a conceptual framework to situate ongoing research in the MOOC and learning analytics innovation cycle (MOLAC framework). The MOLAC framework is organized on three levels: On the micro-level, the data collection and analytics…
Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia
NASA Astrophysics Data System (ADS)
Nayono, S.; Lehmann, A.; Kopfmüller, J.; Lehn, H.
2016-09-01
To support the implementation of the IWRM-Indonesia process in a water scarce and sanitation poor region of Central Java (Indonesia), sustainability assessments of several technology options of water supply and sanitation were carried out based on the conceptual framework of the integrative sustainability concept of the German Helmholtz association. In the case of water supply, the assessment was based on the life-cycle analysis and life-cycle-costing approach. In the sanitation sector, the focus was set on developing an analytical tool to improve planning procedures in the area of investigation, which can be applied in general to developing and newly emerging countries. Because sanitation systems in particular can be regarded as socio-technical systems, their permanent operability is closely related to cultural or religious preferences which influence acceptability. Therefore, the design of the tool and the assessment of sanitation technologies took into account the views of relevant stakeholders. The key results of the analyses are presented in this article.
Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart
2018-01-01
Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V.; Lettieri, Paola
2016-01-01
Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016 PMID:27390260
Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J
2016-09-01
Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
The development and evaluation of written medicines information for type 2 diabetes.
Lee, D Y L; Armour, C; Krass, I
2007-12-01
Written Medicines Information (WMI) is regarded as a key component in diabetes consumer education. In Australia, there is a paucity of WMI that specifically tailors to the extensive array of medicines used for the lifelong management of Type 2 diabetes. This research project aimed to employ a novel framework, the 'Consumer Involvement Cycle', to investigate consumer perspectives and needs of medicines information for Type 2 diabetes and develop appropriate WMI for the Type 2 diabetes population. The Consumer Involvement Cycle involved people with Type 2 diabetes and health professionals (HPs) working in partnership to design a series of WMI, incorporating a range of consumer-conceived ideas and concepts with professional evaluation from an expert panel of reviewing HPs. A total of 12 leaflets were developed. The Flesch-Kincaid Grade Level Score for the leaflets was approximately 8.0, which is considered to be 'fairly easy', in other words easily understood by a large proportion of the general public. The Consumer Involvement Cycle was validated as a useful framework in developing and evaluating appropriate consumer information. Consumer perspectives should be sought and well incorporated throughout the process of designing and assessing educational materials intended for consumer use.
Leong, James; McAuslane, Neil; Walker, Stuart; Salek, Sam
2013-09-01
To explore the current status and need for a universal benefit-risk framework for medicines in regulatory agencies and pharmaceutical companies. A questionnaire was developed and sent to 14 mature regulatory agencies and 24 major companies. The data were analysed using descriptive statistics, for a minority of questions preceded by manual grouping of the responses. Overall response rate was 82%, and study participants included key decision makers from agencies and companies. None used a fully quantitative system, most companies preferring a qualitative method. The major reasons for this group not using semi-quantitative or quantitative systems were lack of a universal and scientifically validated framework. The main advantages of a benefit-risk framework were that it provided a systematic standardised approach to decision-making and that it acted as a tool to enhance quality of communication. It was also reported that a framework should be of value to both agencies and companies throughout the life cycle of a product. They believed that it is possible to develop an overarching benefit-risk framework that should involve relevant stakeholders in the development, validation and application of a universal framework. The entire cohort indicated common barriers to implementing a framework were resource limitations, a lack of knowledge and a scientifically validated and acceptable framework. Stakeholders prefer a semi-quantitative, overarching framework that incorporates a toolbox of different methodologies. A coordinating committee of relevant stakeholders should be formed to guide its development and implementation. Through engaging the stakeholders, these outcomes confirm sentiments and need for developing a universal benefit-risk assessment framework. Copyright © 2013 John Wiley & Sons, Ltd.
Arar, Nedal; Knight, Sara J; Modell, Stephen M; Issa, Amalia M
2011-03-01
The main mission of the Genomic Applications in Practice and Prevention Network™ is to advance collaborative efforts involving partners from across the public health sector to realize the promise of genomics in healthcare and disease prevention. We introduce a new framework that supports the Genomic Applications in Practice and Prevention Network mission and leverages the characteristics of the complex adaptive systems approach. We call this framework the Genome-based Knowledge Management in Cycles model (G-KNOMIC). G-KNOMIC proposes that the collaborative work of multidisciplinary teams utilizing genome-based applications will enhance translating evidence-based genomic findings by creating ongoing knowledge management cycles. Each cycle consists of knowledge synthesis, knowledge evaluation, knowledge implementation and knowledge utilization. Our framework acknowledges that all the elements in the knowledge translation process are interconnected and continuously changing. It also recognizes the importance of feedback loops, and the ability of teams to self-organize within a dynamic system. We demonstrate how this framework can be used to improve the adoption of genomic technologies into practice using two case studies of genomic uptake.
Course Development Cycle Time: A Framework for Continuous Process Improvement.
ERIC Educational Resources Information Center
Lake, Erinn
2003-01-01
Details Edinboro University's efforts to reduce the extended cycle time required to develop new courses and programs. Describes a collaborative process improvement framework, illustrated data findings, the team's recommendations for improvement, and the outcomes of those recommendations. (EV)
Methodology for Software Reliability Prediction. Volume 1.
1987-11-01
SPACECRAFT 0 MANNED SPACECRAFT B ATCH SYSTEM AIRBORNE AVIONICS 0 UNMANNED EVENT C014TROL a REAL TIME CLOSED 0 UNMANNED SPACECRAFT LOOP OPERATINS SPACECRAFT...software reliability. A Software Reliability Measurement Framework was established which spans the life cycle of a software system and includes the...specification, prediction, estimation, and assessment of software reliability. Data from 59 systems , representing over 5 million lines of code, were
NASA Astrophysics Data System (ADS)
Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Carlson, B.; Parker, G.
2016-12-01
The autogenic "life cycle" of a lowland fluvial channel building a deltaic lobe typically follows a temporal sequence that includes: channel initiation, progradation and aggradation, and abandonment via avulsion. In terms of modeling these processes, it is possible to use a one-dimensional (1D) morphodynamic scheme to capture the magnitude of the prograding and aggrading processes. These models can include algorithms to predict the timing and location of avulsions for a channel lobe. However, this framework falls short in its ability to evaluate the deltaic system beyond the time scale of a single channel, and assess sedimentation processes occurring on the floodplain, which is important for lobe building. Herein, we adapt a 1D model to explicitly account for multiple avulsions and therefore replicate a deltaic system that includes many lobe cycles. Following an avulsion, sediment on the floodplain and beyond the radially-averaged shoreline is redistributed across the delta topset and along the shoreline, respectively, simultaneously prograding and aggrading the delta. Over time this framework produces net shoreline progradation and forward-stepping of subsequent avulsions. Testing this model using modern systems is inherently difficult due to a lack of data: most modern delta lobes are active for timescales of centuries to millennia, and so observing multiple iterations of the channel-lobe cycle is impossible. However, the Yellow River delta (China) is unique because the lobe cycles here occur within years to decades. Therefore it is possible to measure shoreline evolution through multiple lobe cycles, based on satellite imagery and historical records. These data are used to validate the model outcomes. Our findings confirm that the explicit accounting of avulsion processes in a quasi-2D model framework is capable of capturing shoreline development patterns that otherwise are not resolvable based on previously published delta building models.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
Automation life-cycle cost model
NASA Technical Reports Server (NTRS)
Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne
1992-01-01
The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.
Kern, Margaret L.; Hampson, Sarah E.; Goldberg, Lewis R.; Friedman, Howard S.
2013-01-01
The present study used a collaborative framework to integrate two long-term prospective studies: the Terman Life Cycle Study and the Hawaii Personality and Health Longitudinal Study. Using a five-factor personality-trait framework, teacher assessments of child personality were rationally and empirically aligned to establish similar factor structures across samples. Comparable items related to adult self-rated health, education, and alcohol use were harmonized, and data were pooled on harmonized items. A structural model was estimated, allowing paths to differ by sample. Harmonized child personality factors were then used to examine markers of physiological dysfunction in the Hawaii sample and mortality risk in the Terman sample. Harmonized conscientiousness predicted less physiological dysfunction in the Hawaii sample and lower mortality risk in the Terman sample. These results illustrate how collaborative, integrative work with multiple samples offers the exciting possibility that samples from different cohorts and ages can be linked together to directly test lifespan theories of personality and health. PMID:23231689
Giacomini, Mita
2005-01-01
Health plans often deliberate covering technologies with challenging purposes, effects, or costs. They must integrate quantitative evidence (e.g., how well a technology works) with qualitative, normative assessments (e.g., whether it works well enough for a worthwhile purpose). Arguments from analogy and precedent help integrate these criteria and establish standards for their policy application. Examples of arguments are described for three technologies (ICSI, genetic tests, and Viagra). Drawing lessons from law, ethics, philosophy, and the social sciences, a framework is developed for case-based evaluation of new technologies. The decision-making cycle includes (1) taking stock of past decisions and formulating precedents, (2) deciding new cases, and (3) assimilating decisions into the case history and evaluation framework. Each stage requires distinctive decision maker roles, information, and methods. PMID:15960769
Exploring the life cycle management of industrial solid waste in the case of copper slag.
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo
2013-06-01
Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.
State of the Carbon Cycle of North America: Overarching Findings
NASA Astrophysics Data System (ADS)
Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.; Birdsey, R.
2016-12-01
This presentation will provide an overarching summary of the second "State of the Carbon Cycle of North America Report" (SOCCR2) from the perspective of the five editorial lead authors. The chapters of SOCCR2 represent a major update and much new material since the original report published a decade ago. The new report includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems and anthropogenic drivers, and implications for carbon management. The chapters focus on advances since the 2007 report, but also include new focus areas such as soil carbon, tribal lands, as well as greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane and the role of nitrogen will be considered to a greater extent than before. Each chapter also contains a section focusing on national and regional accounting to complement the overarching North American framework. In conclusion, SOCCR2 is expected to provide an updated assessment and a unique perspective on the carbon cycle, which will contribute to the next U.S. National Climate Assessment.
Gholami, Behnood; Phan, Timothy S; Haddad, Wassim M; Cason, Andrew; Mullis, Jerry; Price, Levi; Bailey, James M
2018-06-01
- Acute respiratory failure is one of the most common problems encountered in intensive care units (ICU) and mechanical ventilation is the mainstay of supportive therapy for such patients. A mismatch between ventilator delivery and patient demand is referred to as patient-ventilator asynchrony (PVA). An important hurdle in addressing PVA is the lack of a reliable framework for continuously and automatically monitoring the patient and detecting various types of PVA. - The problem of replicating human expertise of waveform analysis for detecting cycling asynchrony (i.e., delayed termination, premature termination, or none) was investigated in a pilot study involving 11 patients in the ICU under invasive mechanical ventilation. A machine learning framework is used to detect cycling asynchrony based on waveform analysis. - A panel of five experts with experience in PVA evaluated a total of 1377 breath cycles from 11 mechanically ventilated critical care patients. The majority vote was used to label each breath cycle according to cycling asynchrony type. The proposed framework accurately detected the presence or absence of cycling asynchrony with sensitivity (specificity) of 89% (99%), 94% (98%), and 97% (93%) for delayed termination, premature termination, and no cycling asynchrony, respectively. The system showed strong agreement with human experts as reflected by the kappa coefficients of 0.90, 0.91, and 0.90 for delayed termination, premature termination, and no cycling asynchrony, respectively. - The pilot study establishes the feasibility of using a machine learning framework to provide waveform analysis equivalent to an expert human. Copyright © 2018 Elsevier Ltd. All rights reserved.
Towards the integration of orbital space use in Life Cycle Impact Assessment.
Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido
2017-10-01
A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.
A Seamless Framework for Global Water Cycle Monitoring and Prediction
NASA Astrophysics Data System (ADS)
Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.
2013-12-01
The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.
NASA Astrophysics Data System (ADS)
Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.
2015-12-01
The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained National Climate Assessment process.
Gossip, Kate; Gouda, Hebe; Lee, Yong Yi; Firth, Sonja; Bermejo, Raoul; Zeck, Willibald; Jimenez Soto, Eliana
2017-06-29
Local health departments are often at the forefront of a disaster response, attending to the immediate trauma inflicted by the disaster and also the long term health consequences. As the frequency and severity of disasters are projected to rise, monitoring and evaluation (M&E) efforts are critical to help local health departments consolidate past experiences and improve future response efforts. Local health departments often conduct M&E work post disaster, however, many of these efforts fail to improve response procedures. We undertook a rapid realist review (RRR) to examine why M&E efforts undertaken by local health departments do not always result in improved disaster response efforts. We aimed to complement existing frameworks by focusing on the most basic and pragmatic steps of a M&E cycle targeted towards continuous system improvements. For these purposes, we developed a theoretical framework that draws on the quality improvement literature to 'frame' the steps in the M&E cycle. This framework encompassed a M&E cycle involving three stages (i.e., document and assess, disseminate and implement) that must be sequentially completed to learn from past experiences and improve future disaster response efforts. We used this framework to guide our examination of the literature and to identify any context-mechanism-outcome (CMO) configurations which describe how M&E may be constrained or enabled at each stage of the M&E cycle. This RRR found a number of explanatory CMO configurations that provide valuable insights into some of the considerations that should be made when using M&E to improve future disaster response efforts. Firstly, to support the accurate documentation and assessment of a disaster response, local health departments should consider how they can: establish a culture of learning within health departments; use embedded training methods; or facilitate external partnerships. Secondly, to enhance the widespread dissemination of lessons learned and facilitate inter-agency learning, evaluation reports should use standardised formats and terminology. Lastly, to increase commitment to improvement processes, local health department leaders should possess positive leadership attributes and encourage shared decision making. This study is among the first to conduct a synthesis of the CMO configurations which facilitate or hinder M&E efforts aimed at improving future disaster responses. It makes a significant contribution to the disaster literature and provides an evidence base that can be used to provide pragmatic guidance for improving M&E efforts of local health departments. PROSPERO 2015: CRD42015023526 .
Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.
Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M
2017-05-01
In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.
2011-05-01
fuel oxygenate MBTE Adapted from Davis, 2007 4 ( 1 ) A multimedia environmental perspective built on a product life cycle framework is essential. (2...Picatinney Arsenal Nanotechnology Research Center: Radiofrequency (RF) Induction Plasma reactor (Tekna Plasma Systems) pilot plant Synthesis Challenges: ( 1 ...Genotoxicity in vivo and in vitro, secondary to ROS (?)23 BUILDING STRONG® CEA: Lessons Learned with fuel oxygenate MBTE Adapted from Davis, 2007 24 ( 1
Venous thromboembolism capture on electronic systems in obstetrics patients at St Thomas' Hospital
Ahmad, Aminah Noor; Byrne, Megan Leyla; Imambaccus, Nazia; Hubert, Dawid; Gateley, Anna; Abdullahi Idle, Salwa; Lloyd, Jilly
2016-01-01
Venous thromboembolism (VTE) is one of the leading causes of maternal mortality in the UK. Therefore, timely VTE risk assessment is essential in all obstetrics patients. The Commissioning for Quality and Innovation (CQUIN) payment framework set a target for trusts to complete a VTE risk assessment within 24 hours of admission for 95% of patients. A combination of factors, including lack of integration between multiple IT systems, means that this CQUIN target is currently not being met for obstetric patients in the Hospital Birth Centre at Guys and St Thomas' NHS Trust. This project aims to increase staff awareness of this issue and educate them regarding the correct procedure for VTE assessment. Trialled methods included reminders at staff handovers, use of magnets on the patient whiteboard, posters and stickers displayed around the unit and a loyalty card scheme as incentive to complete assessments. Initial average completion rate was 20.7%, which increased to 67.5% after the first plan, do, study, act (PDSA) cycle with a slight drop to 65.7% after the second cycle. Completion rates increased to 92.3% on the last day of the third PDSA cycle. Although we did not reach the 95% target, we have raised awareness of the importance of recording VTE assessment on electronic systems, and hope we have created sustainable change. PMID:27933149
Life cycle assessment of a national policy proposal - the case of a Swedish waste incineration tax.
Björklund, Anna E; Finnveden, Göran
2007-01-01
At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste.
Robust and Heterogeneous Hydrological Changes under Global Warming
NASA Astrophysics Data System (ADS)
Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.
2015-12-01
The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.
Adapting the balanced scorecard for mental health and addictions: an inpatient example.
Lin, Elizabeth; Durbin, Janet
2008-05-01
The Balanced Scorecard (BSC) is a performance-monitoring framework that originated in the business sector but has more recently been applied to health services. The province of Ontario is using the BSC approach to monitor quality of inpatient care in five service areas. Feasibility of the scorecard framework for each area has been assessed using a standard approach. This paper reports results of the feasibility study for the mental health sector, focusing on three issues: framework relevance, underlying strategic goals and indicator selection. Based on a literature review and extensive stakeholder input, the BSC quadrant structure was recommended with some modifications, and indicators were selected that aligned with provincial mental health reform policy goals. The mental health report has completed two cycles of reporting, and has received good support from the field. Copyright © 2008 Longwoods Publishing.
NASA Astrophysics Data System (ADS)
Sidek, ‘A. A.; Suffian, S. A.; Al-Hazza, M. H. F.; Yusof, H. M.
2018-01-01
The demand of poultry product in Malaysia market shows an escalation throughout the year and expected to increase in the future. The expansion of poultry production has led to environmental concern in relation to their operational impact to environmentAt present, assessment of waste management of poultry production in Malaysia is lacking. A case study research was conducted in a commercial broiler farm to identify and assess the system boundaries in the lifecycle supply chain of broiler chicken production using ISO 14040/44 guidelines. ISO 14040/44 standard includes Life Cycle Assessment (LCA) framework guidelines to evaluate environmental influence associated with a product/process throughout its life span. All attributes associated with broiler operation is defined and the system boundaries is determined to identify possible inputs and outputs in the case study. This paper discuss the initial stage in the LCA process, which set the context of the research and prepare for the stage of Life Cycle Inventory.
NASA Astrophysics Data System (ADS)
Kaminski, Thomas; Rayner, Peter Julian
2017-10-01
Various observational data streams have been shown to provide valuable constraints on the state and evolution of the global carbon cycle. These observations have the potential to reduce uncertainties in past, current, and predicted natural and anthropogenic surface fluxes. In particular such observations provide independent information for verification of actions as requested by the Paris Agreement. It is, however, difficult to decide which variables to sample, and how, where, and when to sample them, in order to achieve an optimal use of the observational capabilities. Quantitative network design (QND) assesses the impact of a given set of existing or hypothetical observations in a modelling framework. QND has been used to optimise in situ networks and assess the benefit to be expected from planned space missions. This paper describes recent progress and highlights aspects that are not yet sufficiently addressed. It demonstrates the advantage of an integrated QND system that can simultaneously evaluate a multitude of observational data streams and assess their complementarity and redundancy.
Quantifying the Adaptive Cycle | Science Inventory | US EPA
The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and
Life cycle study of different constructive solutions for building enclosures.
Garcia-Ceballos, Luz; de Andres-Díaz, Jose Ramon; Contreras-Lopez, Miguel A
2018-06-01
The construction sector must advance in a more sustainable way and to achieve this goal, the application of global methodologies is needed. These methodologies should take into account all life stages of a building: planning, design, construction, use and demolition. The quantity and variety of the materials used in building construction condition the buildings' environmental and energy impacts. Life Cycle Assessment offers a standardized framework to evaluate the environmental loads of a product, process or activity. This work aims to demonstrate the feasibility of using Life Cycle Assessment (LCA) to select facilities in the construction sector, which minimize environmental and energy impacts. To facilitate the understanding of the proposed methodology, a comparative LCA is performed, to determine the type of thermal insulating material in a double sheet ceramic façade and its thickness, which allows reducing the environmental impacts associated to the enclosure. The three most used enclosure types used in the city of Malaga (Spain) have been selected for this study. The results show the adequacy of the procedure used. Copyright © 2018 Elsevier B.V. All rights reserved.
A consistent conceptual framework for applying climate metrics in technology life cycle assessment
NASA Astrophysics Data System (ADS)
Mallapragada, Dharik; Mignone, Bryan K.
2017-07-01
Comparing the potential climate impacts of different technologies is challenging for several reasons, including the fact that any given technology may be associated with emissions of multiple greenhouse gases when evaluated on a life cycle basis. In general, analysts must decide how to aggregate the climatic effects of different technologies, taking into account differences in the properties of the gases (differences in atmospheric lifetimes and instantaneous radiative efficiencies) as well as different technology characteristics (differences in emission factors and technology lifetimes). Available metrics proposed in the literature have incorporated these features in different ways and have arrived at different conclusions. In this paper, we develop a general framework for classifying metrics based on whether they measure: (a) cumulative or end point impacts, (b) impacts over a fixed time horizon or up to a fixed end year, and (c) impacts from a single emissions pulse or from a stream of pulses over multiple years. We then use the comparison between compressed natural gas and gasoline-fueled vehicles to illustrate how the choice of metric can affect conclusions about technologies. Finally, we consider tradeoffs involved in selecting a metric, show how the choice of metric depends on the framework that is assumed for climate change mitigation, and suggest which subset of metrics are likely to be most analytically self-consistent.
Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.
Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E
2011-02-01
In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.
Exploring the implication of climate process uncertainties within the Earth System Framework
NASA Astrophysics Data System (ADS)
Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.
2011-12-01
Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).
Broadening GHG accounting with LCA: application to a waste management business unit.
Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle
2009-11-01
In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.
Raw materials in the manufacture of biotechnology products: regulatory considerations.
Cordoba-Rodriguez, Ruth
2010-01-01
The Food and Drug Administration's Pharmaceutical cGMPs for the 21st Century initiative emphasizes science and risk-based approaches in the manufacture of drugs. These approaches are reflected in the International Conference on Harmonization (ICH) guidances ICH Q8, Q9, and Q10 and encourage a comprehensive assessment of the manufacture of a biologic, including all aspects of manufacture that have the potential to affect the finished drug product. Appropriate assessment and management of raw materials are an important part of this initiative. Ideally, a raw materials program should strive to assess and minimize the risk to product quality. With this in mind, risk-assessment concepts and control strategies will be discussed and illustrated by examples, with an emphasis on the impact of raw materials on cell substrates. Finally, the life cycle of the raw material will be considered, including its potential to affect the drug product life cycle. In this framework, the supply chain and the vendor-manufacturer relationship will be explored as important parts of an adequate raw materials control strategy.
Chuen, Onn Chiu; Yusoff, Sumiani
2012-03-01
This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
Hossain, Khandoker A; Khan, Faisal I; Hawboldt, Kelly
2008-01-15
Pollution prevention (P2) strategy is receiving significant attention in industries all over the world, over end-of-pipe pollution control and management strategy. This paper is a review of the existing pollution prevention frameworks. The reviewed frameworks contributed significantly to bring the P2 approach into practice and gradually improved it towards a sustainable solution; nevertheless, some objectives are yet to be achieved. In this context, the paper has proposed a P2 framework 'IP2M' addressing the limitations for systematic implementation of the P2 program in industries at design as well as retrofit stages. The main features of the proposed framework are that, firstly, it has integrated cradle-to-gate life cycle assessment (LCA) tool with other adequate P2 opportunity analysis tools in P2 opportunity analysis phase and secondly, it has re-used the risk-based cradle-to-gate LCA during the environmental evaluation of different P2 options. Furthermore, in multi-objective optimization phase, it simultaneously considers the P2 options with available end-of-pipe control options in order to select the sustainable environmental management option.
Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains
Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P.; Edwards, Robert; Liska, Adam J.; Malpas, Rick
2012-01-01
The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided. PMID:22467143
Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.
Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P; Edwards, Robert; Liska, Adam J; Malpas, Rick
2012-06-07
The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid 'combined model' of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause-effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.
Methods and Strategies: What's the Story?
ERIC Educational Resources Information Center
Lipsitz, Kelsey; Cisterna, Dante; Hanuscin, Deborah
2017-01-01
This column provides ideas and techniques to enhance your science teaching. This month's issue discusses using the 5E learning cycle to create coherent storylines. The 5E learning cycle provides an important framework to help teachers organize activities. To realize the full potential of the 5E framework for student learning, lessons must also…
Low-carbon building assessment and multi-scale input-output analysis
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.
2011-01-01
Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.
NASA Astrophysics Data System (ADS)
Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone
2016-10-01
Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.
Naturalistic drive cycle synthesis for pickup trucks.
Liu, Zifan; Ivanco, Andrej; Filipi, Zoran
2015-09-01
Future pick-up trucks are meeting much stricter fuel economy and exhaust emission standards. Design tradeoffs will have to be carefully evaluated to satisfy consumer expectations within the regulatory and cost constraints. Boundary conditions will obviously be critical for decision making: thus, the understanding of how customers are driving in naturalistic settings is indispensable. Federal driving schedules, while critical for certification, do not capture the richness of naturalistic cycles, particularly the aggressive maneuvers that often shape consumer perception of performance. While there are databases with large number of drive cycles, applying all of them directly in the design process is impractical. Therefore, representative drive cycles that capture the essence of the naturalistic driving should be synthesized from naturalistic driving data. Naturalistic drive cycles are firstly categorized by investigating their micro-trip components, defined as driving activities between successive stops. Micro-trips are expected to characterize underlying local traffic conditions, and separate different driving patterns. Next, the transitions from one vehicle state to another vehicle state in each cycle category are captured with Transition Probability Matrix (TPM). Candidate drive cycles can subsequently be synthesized using Markov Chain based on TPMs for each category. Finally, representative synthetic drive cycles are selected through assessment of significant cycle metrics to identify the ones with smallest errors. This paper provides a framework for synthesis of representative drive cycles from naturalistic driving data, which can subsequently be used for efficient optimization of design or control of pick-up truck powertrains. Manufacturers will benefit from representative drive cycles in several aspects, including quick assessments of vehicle performance and energy consumption in simulations, component sizing and design, optimization of control strategies, and vehicle testing under real-world conditions. This is in contrast to using federal certification test cycles, which were never intended to capture pickup truck segment. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Representativeness of environmental impact assessment methods regarding Life Cycle Inventories.
Esnouf, Antoine; Latrille, Éric; Steyer, Jean-Philippe; Helias, Arnaud
2018-04-15
Life Cycle Assessment (LCA) characterises all the exchanges between human driven activities and the environment, thus representing a powerful approach for tackling the environmental impact of a production system. However, LCA practitioners must still choose the appropriate Life Cycle Impact Assessment (LCIA) method to use and are expected to justify this choice: impacts should be relevant facing the concerns of the study and misrepresentations should be avoided. This work aids practitioners in evaluating the adequacy between the assessed environmental issues and studied production system. Based on a geometrical standpoint of LCA framework, Life Cycle Inventories (LCIs) and LCIA methods were localized in the vector space spanned by elementary flows. A proximity measurement, the Representativeness Index (RI), is proposed to explore the relationship between those datasets (LCIs and LCIA methods) through an angular distance. RIs highlight LCIA methods that measure issues for which the LCI can be particularly harmful. A high RI indicates a close proximity between a LCI and a LCIA method, and highlights a better representation of the elementary flows by the LCIA method. To illustrate the benefits of the proposed approach, representativeness of LCIA methods regarding four electricity mix production LCIs from the ecoinvent database are presented. RIs for 18 LCIA methods (accounting for a total of 232 impact categories) were calculated on these LCIs and the relevance of the methods are discussed. RIs prove to be a criterion for distinguishing the different LCIA methods and could thus be employed by practitioners for deeper interpretations of LCIA results. Copyright © 2017 Elsevier B.V. All rights reserved.
Yazdanbakhsh, Ardavan
2018-04-27
Several pioneering life cycle assessment (LCA) studies have been conducted in the past to assess the environmental impact of specific methods for managing mineral construction and demolition waste (MCDW), such as recycling the waste for use in concrete. Those studies focus on comparing the use of recycled MCDW and that of virgin components to produce materials or systems that serve specified functions. Often, the approaches adopted by the studies do not account for the potential environmental consequence of avoiding the existing or alternative waste management practices. The present work focuses on how product systems need to be defined in recycling LCA studies and what processes need to be within the system boundaries. A bi-level LCA framework is presented for modelling alternative waste management approaches in which the impacts are measured and compared at two scales of strategy and decision-making. Different functional units are defined for each level, all of which correspond to the same flow of MCDW in a cascade of product systems. For the sole purpose of demonstrating how the framework is implemented an illustrative example is presented, based on real data and a number of simplifying assumptions, which compares the impacts of a number of potential MCDW management strategies in New York City. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André
2015-07-07
The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.
Kern, Margaret L; Hampson, Sarah E; Goldberg, Lewis R; Friedman, Howard S
2014-05-01
The present study used a collaborative framework to integrate 2 long-term prospective studies: the Terman Life Cycle Study and the Hawaii Personality and Health Longitudinal Study. Within a 5-factor personality-trait framework, teacher assessments of child personality were rationally and empirically aligned to establish similar factor structures across samples. Comparable items related to adult self-rated health, education, and alcohol use were harmonized, and data were pooled on harmonized items. A structural model was estimated as a multigroup analysis. Harmonized child personality factors were then used to examine markers of physiological dysfunction in the Hawaii sample and mortality risk in the Terman sample. Harmonized conscientiousness predicted less physiological dysfunction in the Hawaii sample and lower mortality risk in the Terman sample. These results illustrate how collaborative, integrative work with multiple samples offers the exciting possibility that samples from different cohorts and ages can be linked together to directly test life span theories of personality and health. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata
NASA Astrophysics Data System (ADS)
Meyers, Stephen R.
2016-04-01
A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization, Paleoceanography, 30, doi:10.1002/ 2015PA002850.
Homaeinezhad, M R; Sabetian, P; Feizollahi, A; Ghaffari, A; Rahmani, R
2012-02-01
The major focus of this study is to present a performance accuracy assessment framework based on mathematical modelling of cardiac system multiple measurement signals. Three mathematical algebraic subroutines with simple structural functions for synthetic generation of the synchronously triggered electrocardiogram (ECG), phonocardiogram (PCG) and arterial blood pressure (ABP) signals are described. In the case of ECG signals, normal and abnormal PQRST cycles in complicated conditions such as fascicular ventricular tachycardia, rate dependent conduction block and acute Q-wave infarctions of inferior and anterolateral walls can be simulated. Also, continuous ABP waveform with corresponding individual events such as systolic, diastolic and dicrotic pressures with normal or abnormal morphologies can be generated by another part of the model. In addition, the mathematical synthetic PCG framework is able to generate the S4-S1-S2-S3 cycles in normal and in cardiac disorder conditions such as stenosis, insufficiency, regurgitation and gallop. In the PCG model, the amplitude and frequency content (5-700 Hz) of each sound and variation patterns can be specified. The three proposed models were implemented to generate artificial signals with varies abnormality types and signal-to-noise ratios (SNR), for quantitative detection-delineation performance assessment of several ECG, PCG and ABP individual event detectors designed based on the Hilbert transform, discrete wavelet transform, geometric features such as area curve length (ACLM), the multiple higher order moments (MHOM) metric, and the principal components analysed geometric index (PCAGI). For each method the detection-delineation operating characteristics were obtained automatically in terms of sensitivity, positive predictivity and delineation (segmentation) error rms and checked by the cardiologist. The Matlab m-file script of the synthetic ECG, ABP and PCG signal generators are available in the Appendix.
NASA Astrophysics Data System (ADS)
Wood, Eric F.
2014-05-01
The Global Earth Observation System of Systems (GEOSS) Water Strategy ("From Observations to Decisions") recognizes that "water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity", and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the developments at Princeton University towards a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. At every step there are scientific challenges whose solutions are only partially being solved. In addition there are challenges in delivering such systems as "climate services", especially to societies with low technical capacity such as rural agriculturalists in sub-Saharan Africa, but whose needs for such information are great. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.
NASA Astrophysics Data System (ADS)
Rodríguez-Serrano, Irene; Caldés, Natalia; Oltra, Christian; Sala, Roser
2017-06-01
The aim of this paper is to conduct a comprehensive sustainability assessment of the electricity generation with two alternative electricity generation technologies by estimating its economic, environmental and social impacts through the "Framework for Integrated Sustainability Assessment" (FISA). Based on a Multiregional Input Output (MRIO) model linked to a social risk database (Social Hotspot Database), the framework accounts for up to fifteen impacts across the three sustainability pillars along the supply chain of the electricity production from Solar Thermal Electricity (STE) and Natural Gas Combined Cycle (NGCC) technologies in Mexico. Except for value creation, results show larger negative impacts for NGCC, particularly in the environmental pillar. Next, these impacts are transformed into "Aggregated Sustainability Endpoints" (ASE points) as a way to support the decision making in selecting the best sustainable project. ASE points obtained are later compared to the resulting points weighted by the reported priorities of Mexican decision makers in the energy sector obtained from a questionnaire survey. The comparison shows that NGCC achieves a 1.94 times worse negative score than STE, but after incorporating decision makerś priorities, the ratio increases to 2.06 due to the relevance given to environmental impacts such as photochemical oxidants formation and climate change potential, as well as social risks like human rights risks.
Processes Asunder: Acquisition & Planning Misfits
2009-03-26
Establishing six Business Enterprise Priorities ( BEPs ) to focus the Department’s business transformation efforts, which now guide DoD investment decisions...three phases which look very much like Milestone A, B, and C of the previously existing Life Cycle Management Framework . With this obvious redundancy...February 2002). 30 6 Defense Acquisition University, “Integrated Defense Acquisition, Technology, & Logistics Life Cycle Management Framework , version 5.2
From Instructional Systems Design to Managing the Life Cycle of Knowledge in Organizations
ERIC Educational Resources Information Center
Salisbury, Mark
2008-01-01
This article describes a framework for managing the life cycle of knowledge in organizations. The framework emerges from years of work with the laboratories and facilities that are under the direction of the U.S. Department of Energy (DOE). The article begins by describing the instructional systems design (ISD) process and how it is used to…
ERIC Educational Resources Information Center
Lamb, Janeen; Kawakami, Takashi; Saeki, Akihiko; Matsuzaki, Akio
2014-01-01
The aim of this study was to investigate the use of the "dual mathematical modelling cycle framework" as one way to meet the espoused goals of the Australian Curriculum Mathematics. This study involved 23 Year 6 students from one Australian primary school who engaged in an "Oil Tank Task" that required them to develop two…
LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS PROFILES OF AT&T AND ALLIED SIGNAL
Life cycle design seeks to minimize the environmental burden associated with a product life cycle from raw materials acquisition through manufacturing, use, and end-of-life management. ife cycle design emphasizes integrating environmental requirements into the earliest phases of ...
High rate, long cycle life battery electrode materials with an open framework structure
Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro
2015-02-10
A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.
On the rationality of cycling in the Theory of Moves framework
NASA Astrophysics Data System (ADS)
Olsen, Jolie; Sen, Sandip
2014-04-01
Theory of Moves (TOM) is a novel approach to game theory for determining rational strategies during the play of dynamic games [Brams, S J. (1994). Theory of moves. Cambridge, UK: Cambridge University Press]. While alternate models such as normal form games exist, players of these games are limited to single shot interactions with each other, but within TOM, sequences of moves and counter moves are allowed. As a consequence of this framework potential cyclic behaviour may arise. Unfortunately, standard TOM framework suggests that players do not move from the initial state if the possibility of cyclic behaviour is detected. However, in a plethora of real life scenarios, cycling can benefit a player over time. We first extend the TOM framework by allowing players to choose how much time to stay in each state while specifying time limits for moves. This generalisation allows for cycling behaviour in addition to normal, acyclic TOM play. We present additional rationality rules to handle the choice of move time and cyclic play and identify conditions for the existence of solutions that involve cycles. Moreover, if solutions do exist, equilibrium are determined so a player can predict the rational outcome upon engaging a cycle. A variety of time constraints on move times are investigated and the effects of these contrasts on the solution space and equilibrium are analysed.
Lesage, Pascal; Deschênes, Louise; Samson, Réjean
2007-08-01
Brownfields are abandoned, idled, or underused sites whose reuse necessitates some sort of intervention. These sites are largely urban and are frequently contaminated. Brownfield management options can be associated with three types of environmental consequences: those resulting from changes in the site's environmental quality (primary impacts); those resulting from the actual intervention stage (secondary impacts); and, if the vocation of the site changes, those resulting from effects on regional land use (tertiary impacts). Different stakeholders and decision-making contexts will place a different importance on each of these types of impacts. This article proposes a framework for comparing brownfield management options in regard to these three types of environmental impacts and for interpreting these results from different perspectives. The assessment framework is based on consequential life cycle assessment (LCA), which is shown to provide environmental information on the three types of impacts. The results for a case study are presented, where a "rehabilitation" option allowing residential redevelopment is compared to an "exposure minimization" option not resulting in the site being reused. Calculated primary and tertiary impacts are favorable to the rehabilitation option, whereas secondary impacts are favorable to the exposure minimization option. A ternary diagram presents the favorable option for different stereotypical perspectives. Tertiary impacts are much greater than secondary impacts, and consequently all perspectives that consider tertiary impacts favor rehabilitation. The perspective that considers primary and secondary impacts receives conflicting information. The ternary diagram, showing results for all perspectives, could possibly be useful for consensus-building among stakeholders.
NASA Astrophysics Data System (ADS)
Lesage, Pascal; Deschênes, Louise; Samson, Réjean
2007-08-01
Brownfields are abandoned, idled, or underused sites whose reuse necessitates some sort of intervention. These sites are largely urban and are frequently contaminated. Brownfield management options can be associated with three types of environmental consequences: those resulting from changes in the site’s environmental quality (primary impacts); those resulting from the actual intervention stage (secondary impacts); and, if the vocation of the site changes, those resulting from effects on regional land use (tertiary impacts). Different stakeholders and decision-making contexts will place a different importance on each of these types of impacts. This article proposes a framework for comparing brownfield management options in regard to these three types of environmental impacts and for interpreting these results from different perspectives. The assessment framework is based on consequential life cycle assessment (LCA), which is shown to provide environmental information on the three types of impacts. The results for a case study are presented, where a “rehabilitation” option allowing residential redevelopment is compared to an “exposure minimization” option not resulting in the site being reused. Calculated primary and tertiary impacts are favorable to the rehabilitation option, whereas secondary impacts are favorable to the exposure minimization option. A ternary diagram presents the favorable option for different stereotypical perspectives. Tertiary impacts are much greater than secondary impacts, and consequently all perspectives that consider tertiary impacts favor rehabilitation. The perspective that considers primary and secondary impacts receives conflicting information. The ternary diagram, showing results for all perspectives, could possibly be useful for consensus-building among stakeholders.
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
NASA Astrophysics Data System (ADS)
Motew, M.; Booth, E.; Carpenter, S. R.; Kucharik, C. J.
2014-12-01
Surface water quality is a major concern in the Yahara watershed (YW) of southern Wisconsin, home to a thriving dairy industry, the city of Madison, and five highly valued lakes that are eutrophic. Despite management interventions to mitigate runoff, there has been no significant trend in P loading to the lakes since 1975. Increases in manure production and heavy rainfall events over this time period may have offset any effects of management. We developed a comprehensive, integrated modeling framework that can simulate the effects of multiple drivers on ecosystem services, including surface water quality. The framework includes process-based representation of terrestrial ecosystems (Agro-IBIS) and groundwater flow (MODFLOW), hydrologic routing of water and nutrients across the landscape (THMB), and assessment of lake water quality (YWQM). Biogeochemical cycling and hydrologic transport of P have been added to the framework to enable detailed simulation of P dynamics within the watershed, including interactions with climate and management. The P module features in-soil cycling of organic, inorganic, and labile forms of P; manure application, decomposition, and subsequent loss of dissolved P in runoff; loss of particulate-bound P with erosion; and transport of dissolved and particulate P within waterways. Model results will compare the effects of increased heavy rainfall events, increased manure production, and implementation of best management practices on P loads to the Yahara lakes.
A decision-making framework for total ownership cost management of complex systems: A Delphi study
NASA Astrophysics Data System (ADS)
King, Russel J.
This qualitative study, using a modified Delphi method, was conducted to develop a decision-making framework for the total ownership cost management of complex systems in the aerospace industry. The primary focus of total ownership cost is to look beyond the purchase price when evaluating complex system life cycle alternatives. A thorough literature review and the opinions of a group of qualified experts resulted in a compilation of total ownership cost best practices, cost drivers, key performance factors, applicable assessment methods, practitioner credentials and potential barriers to effective implementation. The expert panel provided responses to the study questions using a 5-point Likert-type scale. Data were analyzed and provided to the panel members for review and discussion with the intent to achieve group consensus. As a result of the study, the experts agreed that a total ownership cost analysis should (a) be as simple as possible using historical data; (b) establish cost targets, metrics, and penalties early in the program; (c) monitor the targets throughout the product lifecycle and revise them as applicable historical data becomes available; and (d) directly link total ownership cost elements with other success factors during program development. The resultant study framework provides the business leader with incentives and methods to develop and implement strategies for controlling and reducing total ownership cost over the entire product life cycle when balancing cost, schedule, and performance decisions.
NASA Astrophysics Data System (ADS)
Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric
2010-05-01
Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.
Rodríguez-Ruiz, Amaia; Dondero, Francesco; Viarengo, Aldo; Marigómez, Ionan
2016-06-01
A suite of organisms from different taxonomical and ecological positions is needed to assess environmentally relevant soil toxicity. A new bioassay based on Dictyostelium is presented that is aimed at integrating slime molds into such a testing framework. Toxicity tests on elutriates and the solid phase developmental cycle assay were successfully applied to a soil spiked with a mixture of Zn, Cd, and diesel fuel freshly prepared (recently contaminated) and after 2 yr of aging. The elutriates of both soils provoked toxic effects, but toxicity was markedly lower in the aged soil. In the D. discoideum developmental cycle assay, both soils affected amoeba viability and aggregation, with fewer multicellular units, smaller fruiting bodies and, overall, inhibition of fruiting body formation. This assay is quick and requires small amounts of test soil, which might facilitate its incorporation into a multispecies multiple-endpoint toxicity bioassay battery suitable for environmental risk assessment in soils. Environ Toxicol Chem 2016;35:1413-1421. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Ingwersen, Wesley W.
Life cycle assessment (LCA) is an internationally standardized framework for assessing the environmental impacts of products that is rapidly evolving to improve understanding and quantification of how complex product systems depend upon and affect the environment. This dissertation contributes to that evolution through the development of new methods for measuring impacts, estimating the uncertainty of impacts, and measuring ranges of environmental performance, with a focus on product systems in non-OECD countries that have not been well characterized. The integration of a measure of total energy use, emergy, is demonstrated in an LCA of gold from the Yanacocha mine in Peru in the second chapter. A model for estimating the accuracy of emergy results is proposed in the following chapter. The fourth chapter presents a template for LCA-based quantification of the range of environmental performance for tropical agricultural products using the example of fresh pineapple production for export in Costa Rica that can be used to create product labels with environmental information. The final chapter synthesizes how each methodological contribution will together improve the science of measuring product environmental performance.
Blos, Mauricio F; Wee, Hui-Ming; Yang, Joshua
2010-11-01
Innovation challenges for handling supply chain risks have become one of the most important drivers in business competitiveness and differentiation. This study analyses competitiveness at the external supply chain level as a driver of risks and provides a framework for mitigating these risks. The mitigation framework, also called the supply chain continuity framework, provides insight into six stages of the business continuity planning (BCP) process life cycle (risk mitigation management, business impact analysis, supply continuity strategy development, supply continuity plan development, supply continuity plan testing and supply continuity plan maintenance), together with the operational constructs: customer service, inventory management, flexibility, time to market, ordering cycle time and quality. The purpose of the BCP process life cycle and operational constructs working together is to emphasise the way in which a supply chain can deal with disruption risks and, consequently, bring competitive advantage. Future research will consider the new risk scenarios and analyse the consequences to promote the improvement of supply chain resilience.
Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems.
Byrne, Diana M; Grabowski, Marta K; Benitez, Amy C B; Schmidt, Arthur R; Guest, Jeremy S
2017-08-15
Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.
Laso, Jara; Margallo, María; Serrano, María; Vázquez-Rowe, Ian; Avadí, Angel; Fullana, Pere; Bala, Alba; Gazulla, Cristina; Irabien, Ángel; Aldaco, Rubén
2018-04-15
In a global framework of growing concern for food security and environmental protection, the selection of food products with higher protein content and lower environmental impact is a challenge. To assess the reliability of different strategies along the food supply chain, a measure of food cost through the environmental impact-protein content binomial is necessary. This study proposes a standardized method to calculate the Green Protein Footprint (GPF) index, a method that assesses both the environmental impact of a food product and its protein content provided to consumers. Life Cycle Assessment (LCA) was used to calculate the environmental impact of the selected food products, and a Life Cycle Protein Assessment (LCPA) was performed by accounting for the protein content along the supply chain. Although the GPF can be applied to all food chain products, this paper is focused on European anchovy-based products for indirect human consumption (fishmeal) and for direct human consumption (fresh, salted and canned anchovies). Moreover, the circular economy concept was applied considering the valorization of the anchovy residues generated during the canning process. These residues were used to produce fishmeal, which was employed in bass aquaculture. Hence, humans are finally consuming fish protein from the residues, closing the loop of the original product life cycle. More elaborated, multi-ingredient food products (salted and canned anchovy products), presented higher GPF values due to higher environmental impacts. Furthermore, the increase of food loss throughout their life cycle caused a decrease in the protein content. Regarding salted and canned products, the packaging was the main hotspot. The influence of the packaging was evaluated using the GPF, reaffirming that plastic was the best alternative. These results highlighted the importance of improving packaging materials in food products. Copyright © 2017. Published by Elsevier B.V.
A framework of teaching competencies across the medical education continuum.
Molenaar, W M; Zanting, A; van Beukelen, P; de Grave, W; Baane, J A; Bustraan, J A; Engbers, R; Fick, Th E; Jacobs, J C G; Vervoorn, J M
2009-05-01
The quality of teachers in higher education is subject of increasing attention, as exemplified by the development and implementation of guidelines for teacher qualifications at Universities in The Netherlands. Because medical education takes a special position in higher education the Council of Deans of Medical Schools in The Netherlands installed a national task force to explore a method to weigh criteria for teacher qualifications of medical teachers. A framework was developed covering competencies of teachers throughout the medical education continuum and including medicine, dentistry and veterinary medicine. The framework distinguishes 3 dimensions: (a) six domains of teaching (development - organization - execution - coaching - assessment - evaluation); (b) three levels in the organization at which teachers perform (micro, meso and macro level) and (c) competencies as integration of knowledge, skills and attitude and described as behaviour in specific context. The current framework is the result of several cycles of descriptions, feedback from the field and adaptations. It is meant as a guideline, leaving room for local detailing. The framework provides a common language that may be used not only by teachers and teacher trainers, but also by quality assurance committees, human resource managers and institutional boards.
Addictions Neuroclinical Assessment: A Neuroscience-Based Framework for Addictive Disorders.
Kwako, Laura E; Momenan, Reza; Litten, Raye Z; Koob, George F; Goldman, David
2016-08-01
This article proposes a heuristic framework for the Addictions Neuroclinical Assessment that incorporates key functional domains derived from the neurocircuitry of addiction. We review how addictive disorders (ADs) are presently diagnosed and the need for new neuroclinical measures to differentiate patients who meet clinical criteria for addiction to the same agent while differing in etiology, prognosis, and treatment response. The need for a better understanding of the mechanisms provoking and maintaining addiction, as evidenced by the limitations of current treatments and within-diagnosis clinical heterogeneity, is articulated. In addition, recent changes in the nosology of ADs, challenges to current classification systems, and prior attempts to subtype individuals with ADs are described. Complementary initiatives, including the Research Domain Criteria project, that have established frameworks for the neuroscience of psychiatric disorders are discussed. Three domains-executive function, incentive salience, and negative emotionality-tied to different phases in the cycle of addiction form the core functional elements of ADs. Measurement of these domains in epidemiologic, genetic, clinical, and treatment studies will provide the underpinnings for an understanding of cross-population and temporal variation in addictions, shared mechanisms in addictive disorders, impact of changing environmental influences, and gene identification. Finally, we show that it is practical to implement such a deep neuroclinical assessment using a combination of neuroimaging and performance measures. Neuroclinical assessment is key to reconceptualizing the nosology of ADs on the basis of process and etiology, an advance that can lead to improved prevention and treatment. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llopis, C.; Mendizabal, R.; Perez, J.
An assessment of RELAP5/MOD2 cycle 36.04 against a load rejection from 100% to 50% power in Vandals II NPP (Spain) is presented. The work is inscribed in the framework of the Spanish contribution to ICAP Project. The model used in the simulation consists of a single loop, a steam generator and a steam line up to the steam header all of them enlarged on a scale of 3:1, and full-scaled reactor vessel and pressurizer. The results of the calculations have been in reasonable agreement with plant measurements.
ERIC Educational Resources Information Center
Lehmann, Timothy
Empire State College (ESC) is an alternative college that uses an individualized degree plan, assessment of prior learning, and a learning contract arrangement. Data were collected from 4,543 entering students at ESC between fall 1974 and January 1977 on a Student Biographical Inventory (SBI). The SBI included items on the students' background,…
NASA Astrophysics Data System (ADS)
Hultine, K. R.; Bush, S.; Nagler, P. L.; Morino, K.; Burtch, K.; Dennison, P. E.; Glenn, E. P.; Ehleringer, J.
2010-12-01
Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of introduced plant species in riparian areas along streams, canals and rivers in geographically arid regions. The question of whether these invasive species have had or will have impacts on water resources is currently under intense debate. We identify a framework for assessing when and where introduced riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semi-arid river systems. We focus on three introduced plant systems that currently dominate southwestern U.S. riparian forests: tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). Our framework focuses on two main criteria: 1) the ecophysiological traits that promote establishment of invasive species across environmental gradients, and 2) an assessment of how hydrologic fluxes are altered by the establishment of introduced species at varying scales. The framework identifies when and where introduced species should have the highest potential impact on the water cycle. This framework will assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given limited economic resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott F
Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less
Das, Narendra; Stampoulis, Dimitrios; Ines, Amor; Fisher, Joshua B.; Granger, Stephanie; Kawata, Jessie; Han, Eunjin; Behrangi, Ali
2017-01-01
The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software framework for hydrologic modeling and data assimilation that automates the deployment of water resources nowcasting and forecasting applications. A spatially-enabled database is a key component of the software that can ingest a suite of satellite and model datasets while facilitating the interfacing with Geographic Information System (GIS) applications. The datasets ingested are obtained from numerous space-borne sensors and represent multiple components of the water cycle. The object-oriented design of the software allows for modularity and extensibility, showcased here with the coupling of the core hydrologic model with a crop growth model. RHEAS can exploit multi-threading to scale with increasing number of processors, while the database allows delivery of data products and associated uncertainty through a variety of GIS platforms. A set of three example implementations of RHEAS in the United States and Kenya are described to demonstrate the different features of the system in real-world applications. PMID:28545077
Andreadis, Konstantinos M; Das, Narendra; Stampoulis, Dimitrios; Ines, Amor; Fisher, Joshua B; Granger, Stephanie; Kawata, Jessie; Han, Eunjin; Behrangi, Ali
2017-01-01
The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software framework for hydrologic modeling and data assimilation that automates the deployment of water resources nowcasting and forecasting applications. A spatially-enabled database is a key component of the software that can ingest a suite of satellite and model datasets while facilitating the interfacing with Geographic Information System (GIS) applications. The datasets ingested are obtained from numerous space-borne sensors and represent multiple components of the water cycle. The object-oriented design of the software allows for modularity and extensibility, showcased here with the coupling of the core hydrologic model with a crop growth model. RHEAS can exploit multi-threading to scale with increasing number of processors, while the database allows delivery of data products and associated uncertainty through a variety of GIS platforms. A set of three example implementations of RHEAS in the United States and Kenya are described to demonstrate the different features of the system in real-world applications.
Evidence-based decision-making 7: Knowledge translation.
Manns, Braden J
2015-01-01
There is a significant gap between what is known and what is implemented by key stakeholders in practice (the evidence to practice gap). The primary purpose of knowledge translation is to address this gap, bridging evidence to clinical practice. The knowledge to action cycle is one framework for knowledge translation that integrates policy-makers throughout the research cycle. The knowledge to action cycle begins with the identification of a problem (usually a gap in care provision). After identification of the problem, knowledge creation is undertaken, depicted at the center of the cycle as a funnel. Knowledge inquiry is at the wide end of the funnel, and moving down the funnel, the primary data is synthesized into knowledge products in the form of educational materials, guidelines, decision aids, or clinical pathways. The remaining components of the knowledge to action cycle refer to the action of applying the knowledge that has been created. This includes adapting knowledge to local context, assessing barriers to knowledge use, selecting, tailoring implementing interventions, monitoring knowledge use, evaluating outcomes, and sustaining knowledge use. Each of these steps is connected by bidirectional arrows and ideally involves healthcare decision-makers and key stakeholders at each transition.
Bayer, C; Follmann, M; Melin, T; Wintgens, T; Larsson, K; Almemark, M
2010-01-01
Many phenolic compounds show high boiling points, low molecular weights, moderate polarities or high toxicities. Therefore, conventional wastewater treatment is limited or expensive. Recycling of the separated compounds is often not possible. But, if liquid-liquid reactive extraction is linked to a non-porous membrane, some or all of the above mentioned limitations may be overcome. The key element is a composite membrane with a dense, hydrophobic top layer which avoids the mixing of the two aqueous fluid streams. The dilute phenol stream is one of them, the other is caustic soda as stripping solvent. Since the basics of this technology have been discussed before, the scope of this study is to facilitate process implementation and integration. To this end, a life cycle assessment framework is used to identify the optimal equipment size for the treatment of wastewater that may, for example, originate from the production of polycarbonate. Limiting for this application is not the environmental performance though, but most likely process economics.
Quantifying Anthropogenic Dust Emissions
NASA Astrophysics Data System (ADS)
Webb, Nicholas P.; Pierre, Caroline
2018-02-01
Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.
Xue, Xiaobo; Schoen, Mary E; Ma, Xin Cissy; Hawkins, Troy R; Ashbolt, Nicholas J; Cashdollar, Jennifer; Garland, Jay
2015-06-15
Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been applied to elements of these water services (i.e. water resources, drinking water, stormwater or wastewater treatment alone), we argue for the importance of developing and combining the system-based tools and metrics in order to holistically evaluate the complete water service system based on the concept of integrated resource management. We analyzed the strengths and weaknesses of key system-based tools and metrics, and discuss future directions to identify more sustainable municipal water services. Such efforts may include the need for novel metrics that address system adaptability to future changes and infrastructure robustness. Caution is also necessary when coupling fundamentally different tools so to avoid misunderstanding and consequently misleading decision-making. Published by Elsevier Ltd.
Hu, Fangyuan; Wang, Jinyan; Hu, Shui; Li, Linfei; Wang, Gang; Qiu, Jieshan; Jian, Xigao
2016-09-15
N,O-Containing micropore-dominated materials have been developed successfully via temperature-dependent cross-linking of 4,4'-(dioxo-diphenyl-2,3,6,7-tetraazaanthracenediyl)dibenzonitrile (DPDN) monomers. By employing a molecular engineering strategy, we have designed and synthesized a series of porous heteroatom-containing carbon frameworks (PHCFs), in which nitrogen and oxygen heteroatoms are distributed homogeneously throughout the whole framework at the atomic level, which can ensure the stability of its electrical properties. The as-made PHCFs@550 exhibits a high specific capacitance of 378 F g -1 , with an excellent long cycling life, including excellent cycling stability (capacitance retention of ca. 120% over 20 000 cycles). Moreover, the successful preparation of PHCFs provides new insights for the fabrication of nitrogen and oxygen-containing electrode materials from readily available components via a facile route.
Enterprise and system of systems capability development life-cycle processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, David Franklin
2014-08-01
This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While themore » approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.« less
Integrating legal liabilities in nanomanufacturing risk management.
Mohan, Mayank; Trump, Benjamin D; Bates, Matthew E; Monica, John C; Linkov, Igor
2012-08-07
Among other things, the wide-scale development and use of nanomaterials is expected to produce costly regulatory and civil liabilities for nanomanufacturers due to lingering uncertainties, unanticipated effects, and potential toxicity. The life-cycle environmental, health, and safety (EHS) risks of nanomaterials are currently being studied, but the corresponding legal risks have not been systematically addressed. With the aid of a systematic approach that holistically evaluates and accounts for uncertainties about the inherent properties of nanomaterials, it is possible to provide an order of magnitude estimate of liability risks from regulatory and litigious sources based on current knowledge. In this work, we present a conceptual framework for integrating estimated legal liabilities with EHS risks across nanomaterial life-cycle stages using empirical knowledge in the field, scientific and legal judgment, probabilistic risk assessment, and multicriteria decision analysis. Such estimates will provide investors and operators with a basis to compare different technologies and practices and will also inform regulatory and legislative bodies in determining standards that balance risks with technical advancement. We illustrate the framework through the hypothetical case of a manufacturer of nanoscale titanium dioxide and use the resulting expected legal costs to evaluate alternative risk-management actions.
Heslop, Carl William; Burns, Sharyn; Lobo, Roanna; McConigley, Ruth
2017-01-01
Introduction There is limited research examining community-based or multilevel interventions that address the sexual health of young people in the rural Australian context. This paper describes the Participatory Action Research (PAR) project that will develop and validate a framework that is effective for planning, implementing and evaluating multilevel community-based sexual health interventions for young people aged 16–24 years in the Australian rural setting. Methods and analysis To develop a framework for sexual health interventions with stakeholders, PAR will be used. Three PAR cycles will be conducted, using semistructured one-on-one interviews, focus groups, community mapping and photovoice to inform the development of a draft framework. Cycle 2 and Cycle 3 will use targeted Delphi studies to gather evaluation and feedback on the developed draft framework. All data collected will be reviewed and analysed in detail and coded as concepts become apparent at each stage of the process. Ethics and dissemination This protocol describes a supervised doctoral research project. This project seeks to contribute to the literature regarding PAR in the rural setting and the use of the Delphi technique within PAR projects. The developed framework as a result of the project will provide a foundation for further research testing the application of the framework in other settings and health areas. This research has received ethics approval from the Curtin University Human Research and Ethics Committee (HR96/2015). PMID:28559453
Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).
Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G
2016-01-01
Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.
LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS - PROFILES OF AT&T AND ALLIED SIGNAL
This document offers guidance and practical experience for integrating environmental considerations into product system development. Life cycle design seeks to minimize the environmental burden associated with a product's life cycle from raw materials acquisition through manufact...
Removing Preconceptions with a "Learning Cycle."
ERIC Educational Resources Information Center
Gang, Su
1995-01-01
Describes a teaching experiment that uses the Learning Cycle to achieve the reorientation of physics' students conceptual frameworks away from commonsense perspectives toward scientifically rigorous outlooks. Uses Archimedes' principle as the content topic while using the Learning Cycle to remove students' nonscientific preconceptions. (JRH)
Biofuels: balancing risks and rewards.
Thornley, Patricia; Gilbert, Paul
2013-02-06
This paper describes a framework that can be used to evaluate the environmental risks and benefits associated with biofuel production. It uses the example of biodiesel produced from Argentinean soy to show how such a framework can be used to conceptualize trade-offs between different environmental, social and economic impacts of biofuel production. Results showing the greenhouse-gas savings and overall life-cycle impact of different 'soy-biodiesel' production methods are presented. These impacts and the significance of uncertainty in overall assessments of key parameters, such as greenhouse-gas savings, are discussed. It is shown that, even where sufficient knowledge exists to be able to quantify these impacts, the sustainability of supply of a particular biofuel is inextricably linked to values and ethical judgements. However, tailoring certification efforts to the issues that are most likely to make a significant difference to the overall sustainability could improve the effectiveness of certification efforts. The potential for a framework to guide and focus certification efforts is discussed and future research and policy priorities suggested.
Modern Estimates of Global Water Cycle Fluxes
NASA Astrophysics Data System (ADS)
Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.
2014-12-01
The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.
Munce, Sarah; Kastner, Monika; Cramm, Heidi; Lal, Shalini; Deschêne, Sarah-Maude; Auais, Mohammad; Stacey, Dawn; Brouwers, Melissa
2013-09-01
Integrated knowledge translation (IKT) interventions may be one solution to improving the uptake of clinical guidelines. IKT research initiatives are particularly relevant for breast cancer research and initiatives targeting the implementation of clinical guidelines and guideline implementation initiatives, where collaboration with an interdisciplinary team of practitioners, patients, caregivers, and policy makers is needed for producing optimum patient outcomes. The objective of this paper was to describe the process of developing an IKT strategy that could be used by guideline developers to improve the uptake of their new clinical practice guidelines on breast cancer screening. An interprofessional group of students as well as two faculty members met six times over three days at the KT Canada Summer Institute in 2011. The team used all of the phases of the action cycle in the Knowledge to Action Framework as an organizing framework. While the entire framework was used, the step involving assessing barriers to knowledge use was judged to be particularly relevant in anticipating implementation problems and being able to inform the specific KT interventions that would be appropriate to mitigate these challenges and to accomplish goals and outcomes. This activity also underscored the importance of group process and teamwork in IKT. We propose that an a priori assessment of barriers to knowledge use (i.e., level and corresponding barriers), along with the other phases of the Knowledge to Action Framework, is a strategic approach for KT strategy development, implementation, and evaluation planning and could be used in the future planning of KT strategies.
NASA Astrophysics Data System (ADS)
Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao
2017-08-01
Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.
Technology development life cycle processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, David Franklin
2013-05-01
This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less
Full open-framework batteries for stationary energy storage
NASA Astrophysics Data System (ADS)
Pasta, Mauro; Wessells, Colin D.; Liu, Nian; Nelson, Johanna; McDowell, Matthew T.; Huggins, Robert A.; Toney, Michael F.; Cui, Yi
2014-01-01
New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.
Full open-framework batteries for stationary energy storage.
Pasta, Mauro; Wessells, Colin D; Liu, Nian; Nelson, Johanna; McDowell, Matthew T; Huggins, Robert A; Toney, Michael F; Cui, Yi
2014-01-01
New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.
NASA Astrophysics Data System (ADS)
Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang
2014-01-01
A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.
2012-10-01
Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.
Ecosystem services of boreal forests - Carbon budget mapping at high resolution.
Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari
2016-10-01
The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes. Copyright © 2016 Elsevier Ltd. All rights reserved.
A DRDC Management Accountability Framework: Results of Cycle 2
2009-09-01
Survey Instrument Design ...................................................................................................... 97 6.1 Cycle 2 Survey... Design ................................................................................................ 97 6.1.1 Pilot Survey 2 Design ...98 6.1.2 Pilot Survey 3 Design
The Early Years: "Life" Science
ERIC Educational Resources Information Center
Ashbrook, Peggy
2013-01-01
Talking about death as part of a life cycle is often ignored or spoken about in hushed tones in early childhood. Books with "life cycle" in the title often do not include the death of the living organism in the information about the cycle. The concept of a complete life cycle does not appear in "A Framework for K-12 Science…
NASA Astrophysics Data System (ADS)
Yang, Y.; Chui, T. F. M.
2016-12-01
Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.
NASA Astrophysics Data System (ADS)
Ogle, S. M.; DelGrosso, S.; Parton, W. J.
2017-12-01
Soil nitrous oxide emissions from agricultural management are a key source of greenhouse gas emissions in many countries due to the widespread use of nitrogen fertilizers, manure amendments from livestock production, planting legumes and other practices that affect N dynamics in soils. In the United States, soil nitrous oxide emissions have ranged from 250 to 280 Tg CO2 equivalent from 1990 to 2015, with uncertainties around 20-30 percent. A Tier 3 method has been used to estimate the emissions with the DayCent ecosystem model. While the Tier 3 approach is considerably more accurate than IPCC Tier 1 methods, there is still the possibility of biases in emission estimates if there are processes and drivers that are not represented in the modeling framework. Furthermore, a key principle of IPCC guidance is that inventory compilers estimate emissions as accurately as possible. Freeze-thaw cycles and associated hot moments of nitrous oxide emissions are one of key drivers influencing emissions in colder climates, such as the cold temperate climates of the upper Midwest and New England regions of the United States. Freeze-thaw activity interacts with management practices that are increasing N availability in the plant-soil system, leading to greater nitrous oxide emissions during transition periods from winter to spring. Given the importance of this driver, the DayCent model has been revised to incorproate freeze-thaw cycles, and the results suggests that including this driver can significantly modify the emissions estimates in cold temperate climate regions. Consequently, future methodological development to improve estimation of nitrous oxide emissions from soils would benefit from incorporating freeze-thaw cycles into the modeling framework for national territories with a cold climate.
The Data-to-Action Framework: A Rapid Program Improvement Process.
Zakocs, Ronda; Hill, Jessica A; Brown, Pamela; Wheaton, Jocelyn; Freire, Kimberley E
2015-08-01
Although health education programs may benefit from quality improvement methods, scant resources exist to help practitioners apply these methods for program improvement. The purpose of this article is to describe the Data-to-Action framework, a process that guides practitioners through rapid-feedback cycles in order to generate actionable data to improve implementation of ongoing programs. The framework was designed while implementing DELTA PREP, a 3-year project aimed at building the primary prevention capacities of statewide domestic violence coalitions. The authors describe the framework's main steps and provide a case example of a rapid-feedback cycle and several examples of rapid-feedback memos produced during the project period. The authors also discuss implications for health education evaluation and practice. © 2015 Society for Public Health Education.
A critical review on sustainability assessment of recycled water schemes.
Chen, Zhuo; Ngo, Huu Hao; Guo, Wenshan
2012-06-01
Recycled water provides a viable opportunity to supplement water supplies as well as alleviate environmental loads. To further expand current schemes and explore new recycled water end uses, this study reviews several environmental assessment tools, including Life Cycle Assessment (LCA), Material Flow Analysis (MFA) and Environmental Risk Assessment (ERA) in terms of their types, characteristics and weaknesses in evaluating the sustainability of recycled water schemes. Due to the limitations in individual models, the integrated approaches are recommended in most cases, of which the outputs could be further combined with additional economic and social assessments in multi-criteria decision making framework. The study also proposes several management strategies in improving the environmental scores. The discussion and suggestions could help decision makers in making a sound judgement as well as recognising the challenges and tasks in the future. Copyright © 2012 Elsevier B.V. All rights reserved.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
A successful approach to minimizing attrition in racial/ethnic minority, low-income populations.
Flores, Glenn; Portillo, Alberto; Lin, Hua; Walker, Candy; Fierro, Marco; Henry, Monica; Massey, Kenneth
2017-03-01
Recruiting and retaining minority participants in clinical trials continue to be major challenges. Although multiple studies document lower minority trial enrollment, much less is known about effective minority retention strategies. Our objectives were to evaluate an innovative approach to high RCT retention of minority children, and identify child/caregiver characteristics predicting attrition. The Kids' HELP trial examined the effects of Parent Mentors on insuring uninsured minority children. We tested a retention strategic framework consisting of: 1) optimizing cultural/linguistic competency; 2) staff training on participant relationships and trust; 3) comprehensive participant contact information; 4) an electronic tracking database; 5) reminders for upcoming outcomes-assessment appointments; 6) frequent, sustained contact attempts for non-respondents; 7) financial incentives; 8) individualized rapid-cycle quality-improvement approaches to non-respondents; 9) reinforcing study importance; and 10) home assessment visits. We compared attrition in Kids' HELP vs. two previous RCTs in similar populations, and conducted bivariate and multivariable analyses of factors associated with Kids' HELP attrition. Attrition in Kids' HELP was lower than in two similar RCTs, at 10.9% vs. 37% and 40% ( P <0.001). After multivariable adjustment, missing the first outcomes follow-up assessment was the only factor significantly associated with attrition (relative risk=1.5; 95% confidence interval, 1.1-2.0). A retention strategic framework was successful in minimizing attrition in minority, low-income children. Participants missing first assessment appointments were at highest risk of subsequent attrition. These findings suggest that deploying this framework may help RCT retention of low-income minority children, particularly those at the highest risk of subsequent attrition.
2012-01-01
To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input–output LCA method with a global link input–output model that defines a global system boundary grounded in a simplified multiregional input–output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input–output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains. PMID:22881452
Hou, Hongshuai; Banks, Craig E; Jing, Mingjun; Zhang, Yan; Ji, Xiaobo
2015-12-16
A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Gallavara, G.; Hreinsson, E.; Kajaste, M.; Lindesjoo, E.; Solvhjelm, C.; Sorskar, A. K.; Zadeh, M. Sedigh
2008-01-01
The adoption of the Bologna process has influenced the development of quality assurance across many countries in Europe. In particular, the implementation of the Framework for Qualifications in the European Higher Education Area has stimulated discussion about the three cycle model, which uses generic descriptors for each cycle based on learning…
Towards an evaluation framework for Laboratory Information Systems.
Yusof, Maryati M; Arifin, Azila
Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
De Luca, Anna Irene; Iofrida, Nathalie; Leskinen, Pekka; Stillitano, Teodora; Falcone, Giacomo; Strano, Alfio; Gulisano, Giovanni
2017-10-01
Life cycle (LC) methodologies have attracted a great interest in agricultural sustainability assessments, even if, at the same time, they have sometimes been criticized for making unrealistic assumptions and subjective choices. To cope with these weaknesses, Multi-Criteria Decision Analysis (MCDA) and/or participatory methods can be used to balance and integrate different sustainability dimensions. The purpose of this study is to highlight how life cycle approaches were combined with MCDA and participatory methods to address agricultural sustainability in the published scientific literature. A systematic and critical review was developed, highlighting the following features: which multi-criterial and/or participatory methods have been associated with LC tools; how they have been integrated or complemented (methodological relationships); the intensity of the involvement of stakeholders (degree of participation); and which synergies have been achieved by combining the methods. The main typology of integration was represented by multi-criterial frameworks integrating LC evaluations. LC tools can provide MCDA studies with local and global information on how to reduce negative impacts and avoid burden shifts, while MCDA methods can help LC practitioners deal with subjective assumptions in an objective way, to take into consideration actors' values and to overcome trade-offs among the different dimensions of sustainability. Considerations concerning the further development of Life Cycle Sustainability Assessment (LCSA) have been identified as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterisation factors for life cycle impact assessment of sound emissions.
Cucurachi, S; Heijungs, R
2014-01-15
Noise is a serious stressor affecting the health of millions of citizens. It has been suggested that disturbance by noise is responsible for a substantial part of the damage to human health. However, no recommended approach to address noise impacts was proposed by the handbook for life cycle assessment (LCA) of the European Commission, nor are characterisation factors (CFs) and appropriate inventory data available in commonly used databases. This contribution provides CFs to allow for the quantification of noise impacts on human health in the LCA framework. Noise propagation standards and international reports on acoustics and noise impacts were used to define the model parameters. Spatial data was used to calculate spatially-defined CFs in the form of 10-by-10-km maps. The results of this analysis were combined with data from the literature to select input data for representative archetypal situations of emission (e.g. urban day with a frequency of 63 Hz, rural night at 8000 Hz, etc.). A total of 32 spatial and 216 archetypal CFs were produced to evaluate noise impacts at a European level (i.e. EU27). The possibility of a user-defined characterisation factor was added to support the possibility of portraying the situation of full availability of information, as well as a highly-localised impact analysis. A Monte Carlo-based quantitative global sensitivity analysis method was applied to evaluate the importance of the input factors in determining the variance of the output. The factors produced are ready to be implemented in the available LCA databases and software. The spatial approach and archetypal approach may be combined and selected according to the amount of information available and the life cycle under study. The framework proposed and used for calculations is flexible enough to be expanded to account for impacts on target subjects other than humans and to continents other than Europe. © 2013 Elsevier B.V. All rights reserved.
Yu, Esther Yee Tak; Wan, Eric Yuk Fai; Chan, Karina Hiu Yen; Wong, Carlos King Ho; Kwok, Ruby Lai Ping; Fong, Daniel Yee Tak; Lam, Cindy Lo Kuen
2015-06-19
There is some evidence to support a risk-stratified, multi-disciplinary approach to manage patients with hypertension in primary care. The aim of this study is to evaluate the quality of care (QOC) of a multi-disciplinary Risk Assessment and Management Programme for Hypertension (RAMP-HT) for hypertensive patients in busy government-funded primary care clinics in Hong Kong. The objectives are to develop an evidence-based, structured and comprehensive evaluation framework on quality of care, to enhance the QOC of the RAMP-HT through an audit spiral of two evaluation cycles and to determine the effectiveness of the programme in reducing cardiovascular disease (CVD) risk. A longitudinal study is conducted using the Action Learning and Audit Spiral methodologies to measure whether pre-set target standards of care intended by the RAMP-HT are achieved. A structured evaluation framework on the quality of structure, process and outcomes of care has been developed based on the programme objectives and literature review in collaboration with the programme workgroup and health service providers. Each participating clinic is invited to complete a structure of care evaluation questionnaire in each evaluation cycle. The data of all patients who have enrolled into the RAMP-HT in the pre-defined evaluation periods are used for the evaluation of the process and outcomes of care in each evaluation cycle. For evaluation of the effectiveness of RAMP-HT, the primary outcomes including blood pressure (both systolic and diastolic), low-density lipoprotein cholesterol and estimated 10-year CVD risk of RAMP-HT participants are compared to those of hypertensive patients in usual care without RAMP-HT. The QOC and effectiveness of the RAMP-HT in improving clinical and patient-reported outcomes for patients with hypertension in normal primary care will be determined. Possible areas for quality enhancement and standards of good practice will be established to inform service planning and policy decision making.
Butt, T E; Javadi, A A; Nunns, M A; Beal, C D
2016-11-01
Landfills can be regarded as a particular type of contaminated land that has a potential to directly and indirectly pollute all of the four main spheres of the environment which are the lithosphere, atmosphere, hydrosphere and eventually adversely impact the biosphere. Therefore, environmental risk assessment of a landfill has to be more integrated and holistic by virtue of its nature of being a multidimensional pollutant source. Despite this, although various risk assessment approaches have been adopted for landfill waste disposal sites, there are still wide-ranging knowledge gaps and limitations which need to be addressed. One important knowledge gap and limitation of current risk assessment approaches is the inability to fully identify, categorise and aggregate all individual risks from all combinations of hazards, pathways and targets/receptors (e.g. water, air, soil and biota) in connection to a certain landfill leachate and yet at any stage of the landfill cycle. So such an approach is required that could not only integrate all possible characteristics of varying scenarios but also contain the ability to establish an overall risk picture, irrespective of the lifecycle stage of the landfill (e.g. planning stage/pre-operation, in-operation or post-operation/closed). One such approach to address the wide-breadth of landfill impact risks is by developing a more holistic risk assessment methodology, whose conceptual framework is presented in this paper for landfill leachate in a whole-system format. This conceptual framework does not only draw together various constituting factors and sub-factors of risk assessment in a logical sequence and categorical order, but also indicates the "what, why, when and how" outputs of and inputs to these factors and sub-factors can be useful. The framework is designed to identify and quantify a range of risks associated with all stages of the landfill lifecycle, and yet in a more streamlined, logical, categorical and integrated format, offering a more standardised and unified whole-system approach. Copyright © 2016. Published by Elsevier B.V.
Lindheimer, Jacob B; OʼConnor, Patrick J; McCully, Kevin K; Dishman, Rod K
Prior attempts to measure psychological responses to exercise are potentially limited by a failure to account for participants' expectations, the absence of a valid exercise placebo, and demand characteristics. The purpose of this study was to explore the main and interactive effects of a manipulation designed to increase expectations about the psychological benefits of an acute bout of active, light-intensity (treatment), and passive (placebo) cycling on mood and cognition. Demand characteristics were attenuated during recruitment, informed consent, and interactions with test administrators by communicating to participants that the study purpose was to assess the effects of active and passive cycling on respiration, heart rate, and muscle activation. A repeated-measures, randomized, placebo-controlled design (n = 60) was used with cycling (active, passive) and information (informed, not informed) as between-subjects factors. State anxiety, feelings of energy, and working memory (percent accuracy and reaction time for correct responses) were measured at baseline (time 1), immediately after cycling (time 2) and 20 minutes after cycling (time 3). Most participants did not guess the purpose of the study (~92%) or expect a reduction in state anxiety (85%) or an increase in energy (80%) or cognitive performance (~93%). Mood and cognitive performance were not improved by active or passive cycling (all p values ≥ .12). The methods used here to disguise the experimental hypotheses provide a potential framework for reducing demand characteristics and placebo responses in future investigations of psychological responses to exercise.
Quantifying the adaptive cycle
Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika
2015-01-01
The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.
Quantifying the Adaptive Cycle.
Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika
2015-01-01
The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.
The Second State of the Carbon Cycle Report: A Scientific Basis for Policy and Management Decisions
NASA Astrophysics Data System (ADS)
Birdsey, R.; Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.
2017-12-01
The second "State of the Carbon Cycle of North America Report" (SOCCR-2) includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems (including coastal ocean waters), information about anthropogenic drivers, and implications for policy and carbon management. SOCCR-2 includes new focus areas such as soil carbon, arctic and boreal ecosystems, tribal lands, and greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane is considered to a greater extent than before. SOCCR-2 will contribute to the next U.S. National Climate Assessment, as well as providing information to support science-based management decisions and policies that include climate change mitigation and adaptation in Canada, the United States, and Mexico. Although the Report is still in the review process, preliminary findings indicate that North America is a net emitter of carbon dioxide and methane to the atmosphere, and that natural sinks offset about 25% of emitted carbon dioxide. Combustion of fossil fuels represents the largest source of emissions, but show a decreasing trend over the last decade and a lower share (20%) of the global total compared with the previous decade. Forests, soils, grasslands, and coastal oceans comprise the largest carbon sinks, while emissions from inland waters are a significant source of carbon dioxide. The Report also documents the lateral transfers of carbon among terrestrial ecosystems and from terrestrial to near-coastal ecosystems, to complete the carbon cycle accounting. Further, the Report explores the consequences of rising atmospheric carbon dioxide on terrestrial and oceanic systems, and the capacity of these systems to continue to act as carbon sinks based on the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. SOCCR-2 highlights key data gaps in carbon accounting frameworks, uncertainties in modeling and estimation approaches, and integrated frameworks for improving our understanding of the North American carbon cycle.
Developing an Analytical Framework for Argumentation on Energy Consumption Issues
ERIC Educational Resources Information Center
Jin, Hui; Mehl, Cathy E.; Lan, Deborah H.
2015-01-01
In this study, we aimed to develop a framework for analyzing the argumentation practice of high school students and high school graduates. We developed the framework in a specific context--how energy consumption activities such as changing diet, converting forests into farmlands, and choosing transportation modes affect the carbon cycle. The…
Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.
2014-01-01
Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.
NASA Astrophysics Data System (ADS)
Möller, M.; Diesner, M.; Manhart, A.; Küppers, P.; Spieth-Achtnich, A.; Pistner, C.
2014-08-01
In the study presented here qualitative and quantitative life-cycle considerations were employed to assess the potential material and energy savings that might be achieved through nanoenabled applications. Ten nanotechnology application fields with broad market coverage and immediate impact to either the generation of renewable energies or the use of critical resources were analyzed. Organic photovoltaic modules (solar cells that essentially consist of organic materials) and electronically dimmable windows (electrochromic laminated glass, which can be adjusted to conform to the ambient light conditions) as two very promising nano-enabled applications were quantitatively analyzed. Eight further products including neodymium magnets were evaluated on a qualitative basis. All assessments contain classical indicators such as energy efficiency, product carbon footprint, and resource consumption. In addition, pollutant aspects (exposure and toxicology) as well as other sustainability aspects (such as user benefits) were taken into account in the framework of a so-called "hot spot analysis". Furthermore, drivers behind the innovation as well as associated rebound effects were identified. The results highlight the importance of product specific analyses based on a life-cycle thinking approach.
Competitive Strategies of States: A Life-Cycle Perspective. EQW Working Papers.
ERIC Educational Resources Information Center
Flynn, Patricia M.
This paper demonstrates that production life-cycle models provide a conceptual framework to analyze systematically the interrelationships between industrial and technological change and human resources. Section II presents the life-cycle model, focusing on its implications for the types and level of employment and skill requirements in an area.…
A user-centered model for designing consumer mobile health (mHealth) applications (apps).
Schnall, Rebecca; Rojas, Marlene; Bakken, Suzanne; Brown, William; Carballo-Dieguez, Alex; Carry, Monique; Gelaude, Deborah; Mosley, Jocelyn Patterson; Travers, Jasmine
2016-04-01
Mobile technologies are a useful platform for the delivery of health behavior interventions. Yet little work has been done to create a rigorous and standardized process for the design of mobile health (mHealth) apps. This project sought to explore the use of the Information Systems Research (ISR) framework as guide for the design of mHealth apps. Our work was guided by the ISR framework which is comprised of 3 cycles: Relevance, Rigor and Design. In the Relevance cycle, we conducted 5 focus groups with 33 targeted end-users. In the Rigor cycle, we performed a review to identify technology-based interventions for meeting the health prevention needs of our target population. In the Design Cycle, we employed usability evaluation methods to iteratively develop and refine mock-ups for a mHealth app. Through an iterative process, we identified barriers and facilitators to the use of mHealth technology for HIV prevention for high-risk MSM, developed 'use cases' and identified relevant functional content and features for inclusion in a design document to guide future app development. Findings from our work support the use of the ISR framework as a guide for designing future mHealth apps. Results from this work provide detailed descriptions of the user-centered design and system development and have heuristic value for those venturing into the area of technology-based intervention work. Findings from this study support the use of the ISR framework as a guide for future mHealth app development. Use of the ISR framework is a potentially useful approach for the design of a mobile app that incorporates end-users' design preferences. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of different aging methods on the mechanical behavior of multi-layered ceramic structures.
Borba, Márcia; de Araújo, Maico D; Fukushima, Karen A; Yoshimura, Humberto N; Griggs, Jason A; Della Bona, Álvaro; Cesar, Paulo F
2016-12-01
To evaluate the effect of two aging methods (mechanical cycling and autoclave) on the mechanical behavior of veneer and framework ceramic specimens with different configurations (monolithic, two and three-layers). Three ceramics used as framework for fixed dental prostheses (YZ-Vita In-Ceram YZ; IZ-Vita In-Ceram Zirconia; AL-Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs: monolithic, two layers (porcelain-framework) and three layers (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. Three different experimental conditions were evaluated (n=10): control; mechanical cycling (2Hz, 37°C artificial saliva); and autoclave aging (134°C, 2 bars, 5h). Bi-layered specimens were tested in both conditions: with porcelain or framework ceramic under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy. Results were statistically analyzed using Kruskal-Wallis and Student-Newman-Keuls tests. Only for AL group, mechanical cycling and autoclave aging significantly decreased the flexural strength values in comparison to the control (p<0.01). YZ, AL, VM7 and VM9 monolithic groups showed no strength degradation. For multi-layered specimens, when the porcelain layer was tested in tension (bi and tri-layers), the aging methods evaluated also had no effect on strength (p≥0.05). Total and partial failure modes were identified. Mechanical cycling and autoclave aging protocols had no effect on the flexural strength values and failure behavior of YZ and IZ ceramic structures. Yet, AL monolithic structures showed a significant decrease in flexural strength with any of the aging methods. Copyright © 2016. Published by Elsevier Ltd.
De Luca, Anna Irene; Iofrida, Nathalie; Strano, Alfio; Falcone, Giacomo; Gulisano, Giovanni
2015-07-01
Recently, Social Life Cycle Assessment (S-LCA) has been developed under the methodological framework of Life Cycle Thinking (LCT) to evaluate the social impacts that emerge during the overall life cycle of a product or service. There is not yet a standardized methodology for S-LCA as there is for environmental LCA (eLCA), due to the nature of social impacts that do not depend only on the processes themselves, but also on the behavior and context of actors (manufactures, consumers, local community members, etc.). One of the most critical steps in the application of S-LCA concerns the choice of criteria for selecting affected actors, impact categories, subcategories, and the taxonomic relation among them. Moreover, the importance (in terms of weight) of these impacts may be felt differently by affected actors, confirming the importance of the context within which impacts arise. In this sense, the integration of participatory tools can be useful in making the S-LCA more locally relevant. The aim of the present study is twofold. First, we will outline a methodology that combines S-LCA with two research tools. The first is the focus group, adopted from qualitative research. The second is the Analytic Hierarchy Process (AHP), adopted from operational research, which belongs to the framework of Multicriteria Decision Analysis (MCDA). These have been used to make the S-LCA more locally relevant and to legitimate the criteria used. Second, we will test this methodology by applying it to a specific field, i.e., 3 production areas and 3 different crop systems of citrus growing in the Calabria region in Southern Italy. Citrus growing is one of the most important agricultural sectors at regional level, and it is also well known for issues of social concern, particularly in relation to immigrant workers. The results show a number of differences between cases and could offer useful insights to both local decision makers, such as agricultural entrepreneurs, and to those public decision makers that design and implement territorial planning strategies. Results have allowed the authors to rank the social performance of each case and to reflect on the most critical steps in conducting an S-LCA. The integration of qualitative techniques and a multicriteria in sLCA allows catching local specificities by involving local experts and stakeholders Results highlighted that impact categories mostly contributed to performance differences Public deciders can be supported in deciding which farming practices should be encouraged, which social domains must be paid more attention, and where social problems mostly occur The methodological application allowed the authors also to foresee the feasibility of the integration of LCA and LCC results as inputs in sLCA to conduct a Life Cycle Sustainability Assessment (LCSA). © 2015 SETAC.
Integrated urban water cycle management: the UrbanCycle model.
Hardy, M J; Kuczera, G; Coombes, P J
2005-01-01
Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.
Oh, Hong-Choon; Toh, Hong-Guan; Giap Cheong, Eddy Seng
2011-11-01
Using the classical process improvement framework of Plan-Do-Study-Act (PDSA), the diagnostic radiology department of a tertiary hospital identified several patient cycle time reduction strategies. Experimentation of these strategies (which included procurement of new machines, hiring of new staff, redesign of queue system, etc.) through pilot scale implementation was impractical because it might incur substantial expenditure or be operationally disruptive. With this in mind, simulation modeling was used to test these strategies via performance of "what if" analyses. Using the output generated by the simulation model, the team was able to identify a cost-free cycle time reduction strategy, which subsequently led to a reduction of patient cycle time and achievement of a management-defined performance target. As healthcare professionals work continually to improve healthcare operational efficiency in response to rising healthcare costs and patient expectation, simulation modeling offers an effective scientific framework that can complement established process improvement framework like PDSA to realize healthcare process enhancement. © 2011 National Association for Healthcare Quality.
An Analytical Framework for the Steady State Impact of Carbonate Compensation on Atmospheric CO2
NASA Astrophysics Data System (ADS)
Omta, Anne Willem; Ferrari, Raffaele; McGee, David
2018-04-01
The deep-ocean carbonate ion concentration impacts the fraction of the marine calcium carbonate production that is buried in sediments. This gives rise to the carbonate compensation feedback, which is thought to restore the deep-ocean carbonate ion concentration on multimillennial timescales. We formulate an analytical framework to investigate the impact of carbonate compensation under various changes in the carbon cycle relevant for anthropogenic change and glacial cycles. Using this framework, we show that carbonate compensation amplifies by 15-20% changes in atmospheric CO2 resulting from a redistribution of carbon between the atmosphere and ocean (e.g., due to changes in temperature, salinity, or nutrient utilization). A counterintuitive result emerges when the impact of organic matter burial in the ocean is examined. The organic matter burial first leads to a slight decrease in atmospheric CO2 and an increase in the deep-ocean carbonate ion concentration. Subsequently, enhanced calcium carbonate burial leads to outgassing of carbon from the ocean to the atmosphere, which is quantified by our framework. Results from simulations with a multibox model including the minor acids and bases important for the ocean-atmosphere exchange of carbon are consistent with our analytical predictions. We discuss the potential role of carbonate compensation in glacial-interglacial cycles as an example of how our theoretical framework may be applied.
Wessells, Colin D; McDowell, Matthew T; Peddada, Sandeep V; Pasta, Mauro; Huggins, Robert A; Cui, Yi
2012-02-28
The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.
Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.
2006-01-01
Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three ideal high-frequency cycles as: (1) upward-shallowing subtidal cycles, (2) upward-shallowing paralic cycles, and (3) aggradational subtidal cycles. Digital optical borehole images, tracers, and flow meters indicate that there is a predictable vertical pattern of porosity and permeability within the three ideal cycles, because the distribution of porosity and permeability is related to lithofacies. Stratiform zones of high permeability commonly occur just above flooding surfaces in the lower part of upward-shallowing subtidal and paralic cycles, forming preferential groundwater flow zones. Aggradational subtidal cycles are either mostly high-permeability zones or leaky, low-permeability units. In the study area, groundwater flow within stratiform high-permeability zones is through a secondary pore system of touching-vug porosity principally related to molds of burrows and pelecypods and to interburrow vugs. Movement of a dye-tracer pulse observed using a borehole fluid-temperature tool during a conservative tracer test indicates heterogeneous permeability. Advective movement of the tracer appears to be most concentrated within a thin stratiform flow zone contained within the lower part of a high-frequency cycle, indicating a distinctly high relative permeability for this zone. Borehole flow-meter measurements corroborate the relatively high permeability of the flow zone. Identification and mapping of such high-permeability flow zones is crucial to conceptualization of karst groundwater flow within a cyclostratigraphic framework. Many karst aquifers are included in cyclic platform carbonates. Clearly, a cyclostratigraphic approach that translates carbonate aquifer heterogeneity into a consistent framework of correlative units will improve simulation of karst groundwater flow. ?? 2006 Geological Society of America.
Wan, Hao; Xiong, Hao; Liu, Xiaohe; Chen, Gen; Zhang, Ning; Wang, Haidong; Ma, Renzhi; Qiu, Guanzhou
2018-05-23
On account of its high theoretical capacity, silicon (Si) has been regarded as a promising anode material for Li-ion batteries. Extracting Si content from earth-abundant and low-cost aluminosilicate minerals, rather than from artificial silica (SiO2) precursors, is a more favorable and practical method for the large-scale application of Si anodes. In this work, three-dimensionally interconnected (3D-interconnected) Si frameworks with a branch diameter of ∼15 nm are prepared by the reduction of amorphous SiO2 nanotubes derived from natural halloysite clay. Benefiting from their nanostructure, the as-prepared 3D-interconnected Si frameworks yield high reversible capacities of 2.54 A h g-1 at 0.1 A g-1 after 50 cycles, 1.87 A h g-1 at 0.5 A g-1 after 200 cycles, and 0.97 A h g-1 at 2 A g-1 after a long-term charge-discharge process of 500 cycles, remarkably outperforming the commercial Si material. Further, when the as-prepared Si frameworks and commercial LiCoO2 cathodes are paired in full cells, a high anode capacity of 0.98 A h g-1 is achieved after 100 cycles of rapid charge/discharge at 2 A g-1. This work provides a new strategy for the synthesis of high-capacity Si anodes derived from natural aluminosilicate clay.
Review of Literature on Environmentally Conscious Design.
1995-12-01
framework for a demonstration project for a business phone (Keoleian, et al.). Pitney Bowes has developed a framework for implementing a Design for... developed for the U. S. EPA by the principle author and the University of Michigan, was used as a framework for this demonstration project for an...AT&T business phone. The purpose of the project was to explore the feasibility and applicability of the life cycle design framework
Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth
Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf
2017-01-01
Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699
NASA Astrophysics Data System (ADS)
Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.
2017-07-01
Lithium plating is considered one of the most detrimental phenomenon in lithium ion batteries (LIBs), as it increases cell degradation and might lead to safety issues. Plating induced LIB failure presents a major concern for emerging applications in transportation and electrical energy storage. Hence, the necessity to operando monitor, detect and analyze lithium plating becomes critical for safe and reliable usage of LIB systems. Here, we report in situ lithium plating analyses for a commercial graphite||LiFePO4 cell cycled under dynamic stress test (DST) driving schedule. We designed a framework based on incremental capacity (IC) analysis and mechanistic model simulations to quantify degradation modes, relate their effects to lithium plating occurrence and assess cell degradation. The results show that lithium plating was induced by large loss of active material on the negative electrode that eventually led the electrode to over-lithiate. Moreover, when lithium plating emerged, we quantified that the loss of lithium inventory pace was increased by a factor of four. This study illustrates the benefits of the proposed framework to improve lithium plating analysis. It also discloses the symptoms of lithium plating formation, which prove valuable for novel, online strategies on early lithium plating detection.
Colin M. Beier; Amy Lauren Lovecraft; F. Stuart Chapin
2009-01-01
Large-scale government efforts to develop resources for societal benefit have often experienced cycles of growth and decline that leave behind difficult social and ecological legacies. To understand the origins and outcomes of these failures of resource governance, scholars have applied the framework of the adaptive cycle. In this study, we used the adaptive cycle as a...
NASA Astrophysics Data System (ADS)
Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.
2013-12-01
The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.
Bull, Fiona; Powell, Jane; Cooper, Ashley R.; Brand, Christian; Mutrie, Nanette; Preston, John; Rutter, Harry
2011-01-01
Improving infrastructure for walking and cycling is increasingly recommended as a means to promote physical activity, prevent obesity, and reduce traffic congestion and carbon emissions. However, limited evidence from intervention studies exists to support this approach. Drawing on classic epidemiological methods, psychological and ecological models of behavior change, and the principles of realistic evaluation, we have developed an applied ecological framework by which current theories about the behavioral effects of environmental change may be tested in heterogeneous and complex intervention settings. Our framework guides study design and analysis by specifying the most important data to be collected and relations to be tested to confirm or refute specific hypotheses and thereby refine the underlying theories. PMID:21233429
NASA Astrophysics Data System (ADS)
Lyu, H.; Ni, G.; Sun, T.
2016-12-01
Urban stormwater management contributes to recover water cycle to a nearly natural situation. It is a challenge for analyzing the hydrologic performance in a watershed scale, since the measures are various of sorts and scales and work in different processes. A three processes framework is developed to simplify the urban hydrologic process on the surface and evaluate the urban stormwater management. The three processes include source utilization, transfer regulation and terminal detention, by which the stormwater is controlled in order or discharged. Methods for analyzing performance are based on the water controlled proportions by each process, which are calculated using USEPA Stormwater Management Model. A case study form Beijing is used to illustrate how the performance varies under a set of designed events of different return periods. This framework provides a method to assess urban stormwater management as a whole system considering the interaction between measures, and to examine if there is any weak process of an urban watershed to be improved. The results help to make better solutions of urban water crisis.
ERIC Educational Resources Information Center
Kirsch, Magda
2010-01-01
After an overview of the history of short-cycle education within the Bologna process, this article details the development of short-cycle higher education policy in Flanders, the largest of the three communities in the Federal Kingdom of Belgium. By developing a Flemish national qualification framework in agreement with the European qualification…
Lifelong Learning: The Whole DAMN Cycle--A Singapore Perspective.
ERIC Educational Resources Information Center
Pan, Daphne Yuen
The Desire, Ability, Means, and Need (DAMN) Cycle is a useful paradigm for understanding the lifelong learning framework in Singapore. The cycle suggests that, for learning to occur, students must have a desire and an ability to learn, including inquiring minds and higher order process skills; the means must be provided through a well-defined…
NASA Astrophysics Data System (ADS)
Williams, E. K.; Plante, A. F.
2017-12-01
The stability and cycling of natural organic matter depends on the input of energy needed to decompose it and the net energy gained from its decomposition. In soils, this relationship is complicated by microbial enzymatic activity which decreases the activation energies associated with soil organic matter (SOM) decomposition and by chemical and physical protection mechanisms which decreases the concentrations of the available organic matter substrate and also require additional energies to overcome for decomposition. In this study, we utilize differential scanning calorimetry and evolved CO2 gas analysis to characterize differences in the energetics (activation energy and energy density) in soils that have undergone degradation in natural (bare fallow), field (changes in land-use), chemical (acid hydrolysis), and laboratory (high temperature incubation) experimental conditions. We will present this data in a novel conceptual framework relating these energy dynamics to organic matter inputs, decomposition, and molecular complexity.
Neuroprosthetics and the science of patient input
Civillico, Eugene F.
2017-01-01
Safe and effective neuroprosthetic systems are of great interest to both DARPA and CDRH, due to their innovative nature and their potential to aid severely disabled populations. By expanding what is possible in human-device interaction, these devices introduce new potential benefits and risks. Therefore patient input, which is increasingly important in weighing benefits and risks, is particularly relevant for this class of devices. FDA has been a significant contributor to an ongoing stakeholder conversation about the inclusion of the patient voice, working collaboratively to create a new framework for a patient-centered approach to medical device development. This framework is evolving through open dialogue with researcher and patient communities, investment in the science of patient input, and policymaking that is responsive to patient-centered data throughout the total product life cycle. In this commentary, we will discuss recent developments in patient-centered benefit-risk assessment and their relevance to the development of neural prosthetic systems. PMID:27456271
Neuroprosthetics and the science of patient input.
Benz, Heather L; Civillico, Eugene F
2017-01-01
Safe and effective neuroprosthetic systems are of great interest to both DARPA and CDRH, due to their innovative nature and their potential to aid severely disabled populations. By expanding what is possible in human-device interaction, these devices introduce new potential benefits and risks. Therefore patient input, which is increasingly important in weighing benefits and risks, is particularly relevant for this class of devices. FDA has been a significant contributor to an ongoing stakeholder conversation about the inclusion of the patient voice, working collaboratively to create a new framework for a patient-centered approach to medical device development. This framework is evolving through open dialogue with researcher and patient communities, investment in the science of patient input, and policymaking that is responsive to patient-centered data throughout the total product life cycle. In this commentary, we will discuss recent developments in patient-centered benefit-risk assessment and their relevance to the development of neural prosthetic systems. Published by Elsevier Inc.
Development of Hydro-Informatic Modelling System and its Application
NASA Astrophysics Data System (ADS)
Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.
2009-12-01
The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.
NASA Technical Reports Server (NTRS)
Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John
2015-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.
NASA Astrophysics Data System (ADS)
Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.
2015-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.
Bioextraction potential of seaweed in Denmark - An instrument for circular nutrient management.
Seghetta, Michele; Tørring, Ditte; Bruhn, Annette; Thomsen, Marianne
2016-09-01
The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150Mg/km(2) in Danish waters in 2014 was applied to a cultivation scenario of 208km(2). The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29kgNeq. and 16.58kgPO4(3-)eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and >100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and >100% of the target). Copyright © 2016 Elsevier B.V. All rights reserved.
Radawski, Christine; Morrato, Elaine; Hornbuckle, Kenneth; Bahri, Priya; Smith, Meredith; Juhaeri, Juhaeri; Mol, Peter; Levitan, Bennett; Huang, Han-Yao; Coplan, Paul; Li, Hu
2015-12-01
Optimizing a therapeutic product's benefit-risk profile is an on-going process throughout the product's life cycle. Different, yet related, benefit-risk assessment strategies and frameworks are being developed by various regulatory agencies, industry groups, and stakeholders. This paper summarizes current best practices and discusses the role of the pharmacoepidemiologist in these activities, taking a life-cycle approach to integrated Benefit-Risk Assessment, Communication, and Evaluation (BRACE). A review of the medical and regulatory literature was performed for the following steps involved in therapeutic benefit-risk optimization: benefit-risk evidence generation; data integration and analysis; decision making; regulatory and policy decision making; benefit-risk communication and risk minimization; and evaluation. Feedback from International Society for Pharmacoepidemiology members was solicited on the role of the pharmacoepidemiologist. The case example of natalizumab is provided to illustrate the cyclic nature of the benefit-risk optimization process. No single, globally adopted benefit-risk assessment process exists. The BRACE heuristic offers a way to clarify research needs and to promote best practices in a cyclic and integrated manner and highlight the critical importance of cross-disciplinary input. Its approach focuses on the integration of BRACE activities for risk minimization and optimization of the benefit-risk profile. The activities defined in the BRACE heuristic contribute to the optimization of the benefit-risk profile of therapeutic products in the clinical world at both the patient and population health level. With interdisciplinary collaboration, pharmacoepidemiologists are well suited for bringing in methodology expertise, relevant research, and public health perspectives into the BRACE process. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
English, J. M.; Smith, J. L.; Lifson, M. W.
1978-01-01
Decision making in early transportation planning must be responsive to complex value systems representing various policies and objectives. The assessment of alternative transportation concepts during the early initial phases of the system life cycle, when supportive research and technology development activities are defined, requires estimates of transportation, environmental, and socio-economic impacts throughout the system life cycle, which is a period of some 40 or 50 years. A unified methodological framework for comparing intercity passenger and freight transportation systems is described and is extended to include the comparison of long term transportation trends arising from implementation of the various R & D programs. The attributes of existing and future transportation systems are reviewed in order to establish measures for comparison, define value functions, and attribute weightings needed for comparing alternative policy actions for furthering transportation goals. Comparison criteria definitions and an illustrative example are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Analytis, G.T.
1995-09-01
A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less
SurF: an innovative framework in biosecurity and animal health surveillance evaluation.
Muellner, Petra; Watts, Jonathan; Bingham, Paul; Bullians, Mark; Gould, Brendan; Pande, Anjali; Riding, Tim; Stevens, Paul; Vink, Daan; Stärk, Katharina Dc
2018-05-16
Surveillance for biosecurity hazards is being conducted by the New Zealand Competent Authority, the Ministry for Primary Industries (MPI) to support New Zealand's biosecurity system. Surveillance evaluation should be an integral part of the surveillance life cycle, as it provides a means to identify and correct problems and to sustain and enhance the existing strengths of a surveillance system. The surveillance evaluation Framework (SurF) presented here was developed to provide a generic framework within which the MPI biosecurity surveillance portfolio, and all of its components, can be consistently assessed. SurF is an innovative, cross-sectoral effort that aims to provide a common umbrella for surveillance evaluation in the animal, plant, environment and aquatic sectors. It supports the conduct of the following four distinct components of an evaluation project: (i) motivation for the evaluation, (ii) scope of the evaluation, (iii) evaluation design and implementation and (iv) reporting and communication of evaluation outputs. Case studies, prepared by MPI subject matter experts, are included in the framework to guide users in their assessment. Three case studies were used in the development of SurF in order to assure practical utility and to confirm usability of SurF across all included sectors. It is anticipated that the structured approach and information provided by SurF will not only be of benefit to MPI but also to other New Zealand stakeholders. Although SurF was developed for internal use by MPI, it could be applied to any surveillance system in New Zealand or elsewhere. © 2018 2018 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.
Dotson, G Scott; Hudson, Naomi L; Maier, Andrew
2015-01-01
Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.
Dotson, G. Scott; Hudson, Naomi L.; Maier, Andrew
2016-01-01
Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management. PMID:26312660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian
A bimetallic metal–organic framework (MOF) with the formula [Zn{sub 3}btc{sub 2}(Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH))]·(DMF){sub 15.5}(H{sub 2}O){sub 8} (H{sub 3}btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic){sub 2}(btc){sub 2}] tetrahedral and the consecutive monolayers are pillared by trigonal–prismatic clusters of [Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH)]through the remaining binding sites of the Zn{sup 2+} ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the rangemore » of 173–363 K and 1–10{sup 7} Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host–guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs–based dielectric materials. - Graphical abstract: The bimetallic MOF [Zn{sub 3}btc{sub 2}(Cr{sub 3}O(isonic){sub 6}(H{sub 2}O){sub 2}(OH))]·(DMF){sub 15.5}(H{sub 2}O){sub 8}1, shows a pillar-layered open-framework structure. The dielectric spectra of 1 are almost identical in the last two thermal cycles, whereas significantly different from that observed in the first thermal cycle. The novel dielectric anomaly associated with a stacked structure transformation of the disordered guests. - Highlights: • A bimetallic metal-organic framework shows a pillar-layered structure. • The MOF displays novel dielectric anomaly and relaxation behaviors. • The dielectric anomaly arises from the stacking structure transformation of guests. • The dielectric relaxation is related to the dipole dynamics of guests.« less
[Modeling of carbon cycling in terrestrial ecosystem: a review].
Mao, Liuxi; Sun, Yanling; Yan, Xiaodong
2006-11-01
Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.
Gonzales, Ralph; Handley, Margaret A.; Ackerman, Sara; O’Sullivan, Patricia S.
2012-01-01
The authors describe a conceptual framework for implementation and dissemination science (IDS) and propose competencies for IDS training. Their framework is designed to facilitate the application of theories and methods from the distinct domains of clinical disciplines (e.g., medicine, public health), population sciences (e.g., biostatistics, epidemiology) and translational disciplines (e.g., social and behavioral sciences, business administration education). They explore three principles that guided the development of their conceptual framework: Behavior change among organizations and/or individuals (providers, patients) is inherent in the translation process; engagement of stakeholder organizations, health care delivery systems, and individuals is imperative to achieve effective translation and sustained improvements; and IDS research is iterative, benefiting from cycles and collaborative, bidirectional relationships. The authors propose seven domains for IDS training--team science, context identification, literature identification and assessment, community engagement, intervention design and research implementation, evaluation of effect of translational activity, behavioral change communication strategies--and define twelve IDS training competencies within these domains. As a model, they describe specific courses introduced at the University of California, San Francisco, which they designed to develop these competencies. The authors encourage other training programs and institutions to use (or adapt) the design principles, conceptual framework, And proposed competencies to evaluate their current IDS training needs and to support new program development. PMID:22373617
Decision support models for solid waste management: Review and game-theoretic approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos
Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less
NASA Astrophysics Data System (ADS)
Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S.
2009-04-01
Life Cycle Assessment (LCA) represents a methodological framework for analyzing the total environmental impact of any product or service of our daily life. After tracking all associated emissions and the consumption of resources, this impact is expressed with respect to a few common impact categories. These are supposed to reflect major societal and environmental priorities. However, despite their central role in environmental processes, to date hydrological as well as hydrogeological aspects are only rarely considered in LCA. Compared with standard impact categories within LCA, water is special. In contrast to other abiotic resources such as crude oil, it can be replenished. Total freshwater resources are immense, but not evenly distributed and often scarce in regions of high demand. Consequently, threads to natural water bodies have immense spatial dependency. Setting up functional relationships in order to derive a generally valid and practicable evaluation is tedious due to the complex, insufficiently understood, and uncertain natural processes involved. LCA that includes the environmental effects of water consumption means global indirect water resource management. It supports goal-directed consumer behaviour that aims to reduce pressure on natural water systems. By developing a hydrologically-based assessment of potential impacts from human interaction with natural water bodies, "greener" products can be prioritised. More sustainable and environmentally friendly water management is the result. The proposed contribution presents an operational assessment method of global surface water consumption for impacts on human health and ecosystem quality within a LCA framework. A major focus is the issue of how such global assessment helps to quantify potential impacts from water-intensive production in developing countries, where the means for proper water management are often limited. We depict a compensation scheme for impacts related to water consumption that allows agriculture-dependent regions to produce and export crops while customers can compensate the related environmental impacts and/or improving the integrated water resource management by paying a premium. This allows for efficient international food production, strengthening sustainability regarding social, environmental and economic issues related to water and trade.
Reid, Kaydian S; Sekhobo, Jackson P; Gantner, Leigh A; Holbrook, MaryEllen K; Allsopp, Marie; Whalen, Linda B; Koren-Roth, Amy
2018-04-01
This study used a mixed-method, comparative case study approach to assess the level of capacity built for childhood obesity prevention among seven New York State Eat Well Play Hard-Community Projects (EWPH-CP). Data were collected through a self-reported survey in 2007, semi-structured interviews in 2009, and EWPH-CP program documentation throughout the 2006-2010 funding cycle. Quantitative and qualitative analyses were used along with an integrative framework for assessing local capacity building to characterize the capacity built by the study coalitions. Four coalitions rated membership characteristics as a challenge at the beginning of the funding cycle. Towards the end of the funding cycle, all seven coalitions reported activities that were initially focused on building their membership (i.e., member capacity) or positive working relationships (i.e. relational capacity), before eventually pursuing support and resources (i.e., organizational capacity) for implementing their chosen community-oriented programmatic goals (i.e., programmatic capacity). Five coalitions reported environmental changes aimed at increasing physical activity or fruit and vegetable intake. Technical assistance provided to coalitions was credited with contributing to the achievement of programmatic goals. These results suggest that the coalitions succeeded in building local capacity for increasing age-appropriate physical activity or fruit and vegetables intake in the target communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manfredi, Simone; Cristobal, Jorge
2016-09-01
Trying to respond to the latest policy needs, the work presented in this article aims at developing a life-cycle based framework methodology to quantitatively evaluate the environmental and economic sustainability of European food waste management options. The methodology is structured into six steps aimed at defining boundaries and scope of the evaluation, evaluating environmental and economic impacts and identifying best performing options. The methodology is able to accommodate additional assessment criteria, for example the social dimension of sustainability, thus moving towards a comprehensive sustainability assessment framework. A numerical case study is also developed to provide an example of application of the proposed methodology to an average European context. Different options for food waste treatment are compared, including landfilling, composting, anaerobic digestion and incineration. The environmental dimension is evaluated with the software EASETECH, while the economic assessment is conducted based on different indicators expressing the costs associated with food waste management. Results show that the proposed methodology allows for a straightforward identification of the most sustainable options for food waste, thus can provide factual support to decision/policy making. However, it was also observed that results markedly depend on a number of user-defined assumptions, for example on the choice of the indicators to express the environmental and economic performance. © The Author(s) 2016.
Life Cycle Assessment and Carbon Footprint in the Wine Supply-Chain
NASA Astrophysics Data System (ADS)
Pattara, Claudio; Raggi, Andrea; Cichelli, Angelo
2012-06-01
Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies.
Life cycle assessment and carbon footprint in the wine supply-chain.
Pattara, Claudio; Raggi, Andrea; Cichelli, Angelo
2012-06-01
Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies.
Ryberg, Morten W; Owsianiak, Mikołaj; Clavreul, Julie; Mueller, Carina; Sim, Sarah; King, Henry; Hauschild, Michael Z
2018-09-01
The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice of sharing principle had the greatest influence on the outcome. We therefore highlight the need for more research on the development and choice of sharing principles. Although further work is required to operationalize Planetary Boundaries in LCA, this study shows the potential to relate impacts of human activities to environmental boundaries using LCA, offering company and policy decision-makers information needed to promote environmental sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
Qi, Kai; Hou, Ruizuo; Zaman, Shahid; Qiu, Yubing; Xia, Bao Yu; Duan, Hongwei
2018-05-30
Metal-organic frameworks (MOFs) hold promising potential in energy storage but are limited by poor conductivity. In this work, a metal-organic framework/polypyrrole hybrid is constructed by a facile one-pot electrodeposition method in the presence of dopamine. An all-solid-state fabric supercapacitor based on this hybrid demonstrates excellent electrochemical energy-storage performance, which achieves a specific capacitance of 10 mF cm -1 (206 mF cm -2 ), a power density of 132 μW cm -1 (2102 μW cm -2 ), and an energy density of 0.8 μWh cm -1 (12.8 μWh cm -2 ). The stable cycling life and excellent mechanical flexibility over a wide range of working temperature are also achieved, which maintains a capacitance retention of 89% over 10 000 charging/discharging cycles, a capacitance decrease of only 4% after 1000 frizzy (360° bending) cycles, and no obvious capacitance loss under 100 repeated heating (100 °C)/cooling (-15 °C) cycles. This fibrous supercapacitor displays promising potential in wearable textile electronics as it can be easily woven into common cotton cloth. Our strategy may shed some valuable light on the construction of MOF-based hybrids for flexible energy-storage electronics.
ERIC Educational Resources Information Center
Carter, Merilyn; Cooper, Tom; Anderson, Robyn
2016-01-01
This paper describes the pedagogical framework used by YuMi Deadly Maths, a school change process used to improve mathematics teaching and thus enhance employment and life chances for socially disadvantaged students. The framework, called the RAMR cycle, is capable of being used by mathematics teachers for planning and delivering lessons and units…
A MODELLING FRAMEWORK FOR MERCURY CYCLING IN LAKE MICHIGAN
A time-dependent mercury model was developed to describe mercury cycling in Lake Michigan. The model addresses dynamic relationships between net mercury loadings and the resulting concentrations of mercury species in the water and sediment. The simplified predictive modeling fram...
A conceptual framework for road safety and mobility applied to cycling safety.
Schepers, Paul; Hagenzieker, Marjan; Methorst, Rob; van Wee, Bert; Wegman, Fred
2014-01-01
Scientific literature lacks a model which combines exposure to risk, risk, and the relationship between them. This paper presents a conceptual road safety framework comprising mutually interacting factors for exposure to risk resulting from travel behaviour (volumes, modal split, and distribution of traffic over time and space) and for risk (crash and injury risk). The framework's three determinants for travel behaviour are locations of activities; resistances (generalized transport costs); needs, opportunities, and abilities. Crash and injury risks are modelled by the three 'safety pillars': infrastructure, road users and the vehicles they use. Creating a link in the framework between risk and exposure is important because of the 'non-linear relationship' between them, i.e. risk tends to decrease as exposure increases. Furthermore, 'perceived' risk (a type of travel resistance) plays a role in mode choice, i.e. the perception that a certain type of vehicle is unsafe can be a deterrent to its use. This paper uses theories to explain how the elements in the model interact. Cycling is an area where governments typically have goals for both mobility and safety. To exemplify application of the model, the paper uses the framework to link research on cycling (safety) to land use and infrastructure. The model's value lies in its ability to identify potential consequences of measures and policies for both exposure and risk. This is important from a scientific perspective and for policy makers who often have objectives for both mobility and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.
Supporting new graduate professional development: a clinical learning framework.
Fitzgerald, Cate; Moores, Alis; Coleman, Allison; Fleming, Jennifer
2015-02-01
New graduate occupational therapists are required to competently deliver health-care practices within complex care environments. An occupational therapy clinical education programme within a large public sector health service sought to investigate methods to support new graduates in their clinical learning and professional development. Three cycles of an insider action research approach each using the steps of planning, action, critical observation and reflection were undertaken to investigate new graduate learning strategies, develop a learning framework and pilot its utility. Qualitative research methods were used to analyse data gathered during the action research cycles. Action research identified variations in current practices to support new graduate learning and to the development of the Occupational Therapy Clinical Learning Framework (OTCLF). Investigation into the utility of the OTCLF revealed two themes associated with its implementation namely (i) contribution to learning goal development and (ii) compatibility with existing learning supports. The action research cycles aimed to review current practices to support new graduate learning. The learning framework developed encourages reflection to identify learning needs and the review, discussion of, and engagement in, goal setting and learning strategies. Preliminary evidence indicates that the OTCLF has potential as an approach to guide new graduate goal development supported by supervision. Future opportunity to implement a similar learning framework in other allied health professions was identified, enabling a continuation of the cyclical nature of enquiry, integral to this research approach within the workplace. © 2014 Occupational Therapy Australia.
NASA Astrophysics Data System (ADS)
Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian; Luo, Hong-Bin; Zou, Yang; Li, Li; Ren, Xiao-Ming
2017-06-01
A bimetallic metal-organic framework (MOF) with the formula [Zn3btc2{Cr3O(isonic)6(H2O)2(OH)}]·(DMF)15.5(H2O)8 (H3btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic)2(btc)2] tetrahedral and the consecutive monolayers are pillared by trigonal-prismatic clusters of [Cr3O(isonic)6(H2O)2(OH)]through the remaining binding sites of the Zn2+ ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the range of 173-363 K and 1-107 Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host-guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs-based dielectric materials.
Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation
Klatt, Judith M.; Polerecky, Lubos
2015-01-01
Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches. PMID:26052315
NASA Astrophysics Data System (ADS)
Delgato, Margaret H.
The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by comparing the mainstream content to indigenous knowledge perspectives portrayed in the student and teacher editions of 34 textbooks adopted in Florida within the last four adoption cycles occurring from 1990 to 2006. The investigation involved a content analysis framed from a mixed methods approach. Emphasis was placed, in consideration of the research questions and practicality of interpreting text with the potential for multiple meanings, within qualitative methods. The investigation incorporated five strategies to assess the extent of multicultural content: (1) calculation of frequency of indigenous representations through the use of a tally; (2) assessment of content in the teacher editions by coding the degree of incorporation of multicultural content; (3) development of an archaeology of statements to determine the ways in which indigenous representations were incorporated into the content; (4) use of the Evaluation Coefficient Analysis (ECO) to determine extent of multicultural terminologies within content; and (5) analysis of visuals and illustrations to gauge percentages of depictions of minority groups. Results indicated no solid trend in an increase of inclusion of multicultural content over the last four adoption cycles. Efforts at most reduced the inclusion of indigenous representations and other multicultural content to the level of the teacher edition distributed among the teacher-interleafed pages or as annotations in the margins. Degree of support of multicultural content to the specific goals and objectives remained limited across all four of the adoption cycles represented in the study. Emphasis on standardized testing appeared in the six textbooks representing the most recent adoption cycle. Recommendations included increased efforts to identify quality of content by including input from scholars in the field of multicultural education as well as indigenous peoples in the creation of textbook content. Recommendations also included further clarification of the definition of science within multicultural science education frameworks, indigenous knowledge as compared to Western science and pseudoscienc e, and scientific literacy as a central focus to a multicultural science education meant to address the needs of an increasingly diverse student population and prime-age workforce.
Validating a new methodology for strain estimation from cardiac cine MRI
NASA Astrophysics Data System (ADS)
Elnakib, Ahmed; Beache, Garth M.; Gimel'farb, Georgy; Inanc, Tamer; El-Baz, Ayman
2013-10-01
This paper focuses on validating a novel framework for estimating the functional strain from cine cardiac magnetic resonance imaging (CMRI). The framework consists of three processing steps. First, the left ventricle (LV) wall borders are segmented using a level-set based deformable model. Second, the points on the wall borders are tracked during the cardiac cycle based on solving the Laplace equation between the LV edges. Finally, the circumferential and radial strains are estimated at the inner, mid-wall, and outer borders of the LV wall. The proposed framework is validated using synthetic phantoms of the material strains that account for the physiological features and the LV response during the cardiac cycle. Experimental results on simulated phantom images confirm the accuracy and robustness of our method.
Binders and Hosts for High-Capacity Lithium-ion Battery Anodes
NASA Astrophysics Data System (ADS)
Dufficy, Martin Kyle
Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies enable us to suggest a Li-insertion mechanism, where Li travels through large channels created by defects in the crystal structure. The ensuing manganese vanadate structure produces a stable framework that results in stable cycling of hundreds of cycles.
Investigating Disciplinary Literacy: A Framework for Collaborative Professional Learning
ERIC Educational Resources Information Center
Dobbs, Christina L.; Ippolito, Jacy; Charner-Laird, Megin
2017-01-01
"Investigating Disciplinary Literacy" provides practical, research-based guidance for teachers seeking to strengthen students' reading, writing, and communication skills in subjects from the humanities to the sciences. The authors present a framework for conducting professional development cycles based on disciplinary literacy-related…
Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas
2015-08-18
A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Met...
ERIC Educational Resources Information Center
Lottero-Perdue, Pamela; Bolotin, Sonja; Benyameen, Ruth; Brock, Erin; Metzger, Ellen
2015-01-01
Many preservice and practicing elementary teachers are familiar with the 5E learning cycle. This cycle provides a relatively simple, alliteratively memorable framework for teaching science in which lessons (or even entire units of instruction) consist of five distinct phases: Engagement, Exploration, Explanation, Elaboration/Extension (hereafter,…
MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...
Economic assessment of climate adaptation options for urban drainage design in Odense, Denmark.
Zhou, Q; Halsnæs, K; Arnbjerg-Nielsen, K
2012-01-01
Climate change is likely to influence the water cycle by changing the precipitation patterns, in some cases leading to increased occurrences of precipitation extremes. Urban landscapes are vulnerable to such changes due to the concentrated population and socio-economic values in cities. Feasible adaptation requires better flood risk quantification and assessment of appropriate adaptation actions in term of costs and benefits. This paper presents an economic assessment of three prevailing climate adaptation options for urban drainage design in a Danish case study, Odense. A risk-based evaluation framework is used to give detailed insights of the physical and economic feasibilities of each option. Estimation of marginal benefits of adaptation options are carried out through a step-by-step cost-benefit analysis. The results are aimed at providing important information for decision making on how best to adapt to urban pluvial flooding due to climate impacts in cities.
Martin, Todd M
2017-05-01
The goal of alternatives assessment (AA) is to facilitate a comparison of alternatives to a chemical of concern, resulting in the identification of safer alternatives. A two stage methodology for comparing chemical alternatives was developed. In the first stage, alternatives are compared using a variety of human health effects, ecotoxicity, and physicochemical properties. Hazard profiles are completed using a variety of online sources and quantitative structure activity relationship models. In the second stage, alternatives are evaluated utilizing an exposure/risk assessment over the entire life cycle. Exposure values are calculated using screening-level near-field and far-field exposure models. The second stage allows one to more accurately compare potential exposure to each alternative and consider additional factors that may not be obvious from separate binned persistence, bioaccumulation, and toxicity scores. The methodology was utilized to compare phosphate-based alternatives for decabromodiphenyl ether (decaBDE) in electronics applications.
Pardo, Guillermo; Moral, Raúl; Del Prado, Agustín
2017-01-01
On-farm anaerobic digestion (AD) has been promoted due to its improved environmental performance, which is based on a number of life cycle assessments (LCA). However, the influence of site-specific conditions and practices on AD performance is rarely captured in LCA studies and the effects on C and N cycles are often overlooked. In this paper, a new model for AD (SIMS WASTE-AD ) is described in full and tested against a selection of available measured data. Good agreement between modelled and measured values was obtained, reflecting the model capability to predict biogas production (r 2 =0.84) and N mineralization (r 2 =0.85) under a range of substrate mixtures and operational conditions. SIMS WASTE-AD was also used to simulate C and N flows and GHG emissions for a set of scenarios exploring different AD technology levels, feedstock mixtures and climate conditions. The importance of post-digestion emissions and its relationship with the AD performance have been stressed as crucial factors to reduce the net GHG emissions (-75%) but also to enhance digestate fertilizer potential (15%). Gas tight digestate storage with residual biogas collection is highly recommended (especially in temperate to warm climates), as well as those operational conditions that can improve the process efficiency on degrading VS (e.g. thermophilic range, longer hydraulic retention time). Beyond the effects on the manure management stage, SIMS WASTE-AD also aims to help account for potential effects of AD on other stages by providing the C and nutrient flows. While primarily designed to be applied within the SIMS DAIRY modelling framework, it can also interact with other models implemented in integrated approaches. Such system scope assessments are essential for stakeholders and policy makers in order to develop effective strategies for reducing GHG emissions and environmental issues in the agriculture sector. Copyright © 2016 Elsevier B.V. All rights reserved.
Bromberg, Lev; Hatton, T Alan
2011-12-01
Porous materials based on chromium(III) terephthalate metal organic frameworks (MIL-101) and their composites with phosphotungstic acid (PTA) were studied as heterogeneous acid catalysts in aldehyde-alcohol reactions exemplified by acetaldehyde-phenol (A-P) condensation and dimethylacetal formation from benzaldehyde and methanol (B-M reaction). The MIL-101 was synthesized solvothermically in water, and the MIL101/PTA composite materials were obtained by either impregnation of the already prepared MIL-101 porous matrix with phosphotungstic acid solution or by solvothermic treatment of aqueous mixtures of Cr(NO(3))(3), and terephthalic and phosphotungstic acids. The MIL101/PTA materials appeared to be effective catalysts for both A-P and B-M reactions occurring at room temperature, with half-lives ranging from 0.5 h (A-P) to 1.5-2 h (B-M) and turnover numbers over 600 for A-P and over 2900 for the B-M reaction, respectively. A synergistic effect of the strong acidic moieties (PTA) addition to mildly acidic Brønsted and Lewis acid cites of the MIL-101 was observed with the MIL101/PTA composites. The ability of the PTA and MIL101/PTA materials to strongly absorb and condense acetaldehyde vapors was discovered, with the MIL101/PTA absorbing over 10-fold its dry weight of acetaldehyde condensate at room temperature. The acetaldehyde was converted rapidly to crotonaldehyde and higher-molecular-weight compounds while in contact with MIL-101 and MIL101/PTA materials. The stability of the MIL-101 and MIL101/PTA catalysts was assessed within four cycles of the 1-day alcohol-aldehyde reactions in terms of the overall catalyst recovery, PTA or Cr content, and reaction rate constants in each cycle. The loss of the catalyst over 4 cycles was approximately 10 wt % for all tested catalysts due to the incomplete recovery and minute dissolution of the components. The reaction rates in all cycles remained unchanged and the catalyst losses stopped after the third cycle. The developed MIL101/PTA composites appear to be feasible for industrial catalytic applications. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Osman, Ayat E.
Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.
Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...
2015-07-01
In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.
2017-12-01
Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning
The Euratom Seventh Framework Programme FP7 (2007-2011)
NASA Astrophysics Data System (ADS)
Garbil, R.
2010-10-01
The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.
NASA Astrophysics Data System (ADS)
Walter, Ryan K.; Armenta, Kevin J.; Shearer, Brandon; Robbins, Ian; Steinbeck, John
2018-02-01
While the seasonality of wind-driven coastal upwelling in eastern boundary upwelling systems has long been established, many studies describe two distinct seasons (upwelling and non-upwelling), a generalized framework that does not capture details relevant to marine ecosystems. In this contribution, we present a more detailed description of the annual cycle and upwelling seasonality for an understudied location along the central California coast. Using both the mean monthly upwelling favorable wind stress and the monthly standard deviation, we define the following seasons (contiguous months) and a transitional period (non-contiguous months): "Winter Storms" season (Dec-Jan-Feb), "Upwelling Transition" period (Mar and Jun), "Peak Upwelling" season (Apr-May), "Upwelling Relaxation" season (Jul-Aug-Sep), and "Winter Transition" season (Oct-Nov). In order to describe the oceanic response to this upwelling wind seasonality, we take advantage of nearly a decade of full water-column measurements of temperature and chlorophyll made using an automated profiling system at the end of the California Polytechnic State University Pier in San Luis Obispo Bay, a small ( 2 km wide near study site) and shallow ( 10 m average bay depth) coastal embayment. Variability and average-year patterns are described inside the bay during the various upwelling seasons. Moreover, the role of the local coastline orientation and topography on bay dynamics is also assessed using long-term measurements collected outside of the bay. The formation of a seasonally variable upwelling shadow system and potential nearshore retention zone is discussed. The observations presented provide a framework on which to study interannual changes to the average-year seasonal cycle, assess the contribution of higher-frequency features to nearshore variability, and better predict dynamically and ecologically important events.
Life cycle based risk assessment of recycled materials in roadway construction.
Carpenter, A C; Gardner, K H; Fopiano, J; Benson, C H; Edil, T B
2007-01-01
This paper uses a life-cycle assessment (LCA) framework to characterize comparative environmental impacts from the use of virgin aggregate and recycled materials in roadway construction. To evaluate site-specific human toxicity potential (HTP) in a more robust manner, metals release data from a demonstration site were combined with an unsaturated contaminant transport model to predict long-term impacts to groundwater. The LCA determined that there were reduced energy and water consumption, air emissions, Pb, Hg and hazardous waste generation and non-cancer HTP when bottom ash was used in lieu of virgin crushed rock. Conversely, using bottom ash instead of virgin crushed rock increased the cancer HTP risk due to potential leachate generation by the bottom ash. At this scale of analysis, the trade-offs are clearly between the cancer HTP (higher for bottom ash) and all of the other impacts listed above (lower for bottom ash). The site-specific analysis predicted that the contaminants (Cd, Cr, Se and Ag for this study) transported from the bottom ash to the groundwater resulted in very low unsaturated zone contaminant concentrations over a 200 year period due to retardation in the vadose zone. The level of contaminants predicted to reach the groundwater after 200 years was significantly less than groundwater maximum contaminant levels (MCL) set by the US Environmental Protection Agency for drinking water. Results of the site-specific contaminant release estimates vary depending on numerous site and material specific factors. However, the combination of the LCA and the site specific analysis can provide an appropriate context for decision making. Trade-offs are inherent in making decisions about recycled versus virgin material use, and regulatory frameworks should recognize and explicitly acknowledge these trade-offs in decision processes.
Monogamy relation in no-disturbance theories
NASA Astrophysics Data System (ADS)
Jia, Zhih-Ahn; Wu, Yu-Chun; Guo, Guang-Can
2016-07-01
Monogamy is a fundamental property of Bell nonlocality and contextuality. In this article, we study the n -cycle noncontextual inequalities and generalized Clauser-Horne-Shimony-Holt (CHSH) inequalities in detail and find sufficient conditions for those inequalities to hold. According to those conditions, we provide several kinds of tradeoff relations: monogamy of generalized Bell inequalities in a nonsignaling framework, monogamy of cycle-type noncontextual inequalities, and monogamy between Bell inequalities and noncontextual inequalities in a general no-disturbance framework. Finally, some generic tradeoff relations of generalized CHSH inequalities for n -party physical systems, which are beyond the one-to-many scenario, are discussed.
NASA Astrophysics Data System (ADS)
Bolton, Richard W.; Dewey, Allen; Horstmann, Paul W.; Laurentiev, John
1997-01-01
This paper examines the role virtual enterprises will have in supporting future business engagements and resulting technology requirements. Two representative end-user scenarios are proposed that define the requirements for 'plug-and-play' information infrastructure frameworks and architectures necessary to enable 'virtual enterprises' in US manufacturing industries. The scenarios provide a high- level 'needs analysis' for identifying key technologies, defining a reference architecture, and developing compliant reference implementations. Virtual enterprises are short- term consortia or alliances of companies formed to address fast-changing opportunities. Members of a virtual enterprise carry out their tasks as if they all worked for a single organization under 'one roof', using 'plug-and-play' information infrastructure frameworks and architectures to access and manage all information needed to support the product cycle. 'Plug-and-play' information infrastructure frameworks and architectures are required to enhance collaboration between companies corking together on different aspects of a manufacturing process. This new form of collaborative computing will decrease cycle-time and increase responsiveness to change.
Breaking the Conflict Cycle: Incorporating Stability Operations into a Cycle Framework
2008-06-13
conflict cycle – early warning, conflict prevention, conflict management , and post-conflict reconstruction retain all the basic principles of FM 3-0...accepted in the field of international relations and is instrumental for understanding how conflict prevention, conflict management , and post-conflict...Conflict Prevention and Conflict Management in Northeast Asia. Retrieved 25 February 2009 from www.silkroadstudies.org/new/docs/beijing
LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM
The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...
Ecological stoichiometry provides a framework to investigate an organism's relationship to nutrient cycles. An organism's stoichiometry is thought to constrain its contribution to nutrient cycles (recycling or storage), and to limit its growth and reproduction. Factors that influ...
Brack, Werner; Altenburger, Rolf; Schüürmann, Gerrit; Krauss, Martin; López Herráez, David; van Gils, Jos; Slobodnik, Jaroslav; Munthe, John; Gawlik, Bernd Manfred; van Wezel, Annemarie; Schriks, Merijn; Hollender, Juliane; Tollefsen, Knut Erik; Mekenyan, Ovanes; Dimitrov, Saby; Bunke, Dirk; Cousins, Ian; Posthuma, Leo; van den Brink, Paul J; López de Alda, Miren; Barceló, Damià; Faust, Michael; Kortenkamp, Andreas; Scrimshaw, Mark; Ignatova, Svetlana; Engelen, Guy; Massmann, Gudrun; Lemkine, Gregory; Teodorovic, Ivana; Walz, Karl-Heinz; Dulio, Valeria; Jonker, Michiel T O; Jäger, Felix; Chipman, Kevin; Falciani, Francesco; Liska, Igor; Rooke, David; Zhang, Xiaowei; Hollert, Henner; Vrana, Branislav; Hilscherova, Klara; Kramer, Kees; Neumann, Steffen; Hammerbacher, Ruth; Backhaus, Thomas; Mack, Juliane; Segner, Helmut; Escher, Beate; de Aragão Umbuzeiro, Gisela
2015-01-15
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options. Copyright © 2014 Elsevier B.V. All rights reserved.
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability
NASA Technical Reports Server (NTRS)
Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.
2017-01-01
The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.
Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K
2017-07-24
The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-15
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airbornemore » emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.« less
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-01
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.
Conducting an agricultural life cycle assessment: challenges and perspectives.
Caffrey, Kevin R; Veal, Matthew W
2013-12-10
Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture.
Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives
Caffrey, Kevin R.; Veal, Matthew W.
2013-01-01
Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. PMID:24391463
Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji
2010-06-01
In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frischknecht, Rolf; Heath, Garvin; Raugei, Marco
Life Cycle Assessment (LCA) is a structured, comprehensive method of quantifying material- and energy-flows and their associated emissions caused in the life cycle of goods and services. The ISO 14040 and 14044 standards provide the framework for LCA. However, this framework leaves the individual practitioner with a range of choices that can affect the results and thus the conclusions of an LCA study. The current IEA guidelines were developed to provide guidance on assuring consistency, balance, and quality to enhance the credibility and reliability of the results from LCAs on photovoltaic (PV) electricity generation systems. The guidelines represent a consensusmore » among the authors - PV LCA experts in North America, Europe, and Asia - for assumptions made on PV performance, decisions on process input and emissions allocation, methods of analysis, and reporting of the results. Guidance is given on PV-specific parameters used as inputs in LCA and on choices and assumptions in life cycle inventory (LCI) data analysis and on implementation of modeling approaches. A consistent approach towards system modeling, the functional unit, the system boundaries, water use modeling and the allocation aspects enhances the credibility of PV electricity LCA studies and enables balanced LCA-based comparisons of different electricity producing technologies. The document discusses metrics like greenhouse gas emissions (GHG), cumulative energy demand (CED), acidification potential (AP), ozone depletion potential (ODP), human toxicity, ecotoxicity and ionizing radiation. Guidance is given for the definition of the energy payback time (EPBT), the nonrenewable energy payback time (NREPBT), and the impact mitigation potentials (IMP). The indicator energy return on investment (EROI) is described in a separate International Energy Agency (IEA) PV Power Systems (PVPS) Task 12 report (Raugei et al. 2015). The guidelines on the reporting and communication of the results serve the need for producing clear, comprehensive and transparent reports.« less
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Ayuga, F; Briassoulis, D; Aguado, P; Farkas, I; Griepentrog, H; Lorencowicz, E
2010-01-01
The main objectives of European Thematic Network entitled 'Education and Research in Agricultural for Biosystems Engineering in Europe (ERABEE-TN)' is to initiate and contribute to the structural development and the assurance of the quality assessment of the emerging discipline of Biosystems Engineering in Europe. ERABEE is co-financed by the European Community in the framework of the LLP Programme. The partnership consists of 35 participants from 27 Erasmus countries, out of which 33 are Higher Education Area Institutions (EDU) and 2 are Student Associations (ASS). 13 Erasmus participants (e.g. Thematic Networks, Professional Associations, and Institutions from Brazil, Croatia, Russia and Serbia) are also involved in the Thematic Network through synergies. To date, very few Biosystems Engineering programs exist in Europe and those that are initiated are at a very primitive stage of development. The innovative and novel goal of the Thematic Network is to promote this critical transition, which requires major restructuring in Europe, exploiting along this direction the outcomes accomplished by its predecessor; the USAEE-TN (University Studies in Agricultural Engineering in Europe). It also aims at enhancing the compatibility among the new programmes of Biosystems Engineering, aiding their recognition and accreditation at European and International level and facilitating greater mobility of skilled personnel, researchers and students. One of the technical objectives of ERABEE is dealing with mapping and promoting the third cycle studies (including European PhDs) and supporting the integration of research at the 1st and 2nd cycle regarding European Biosystems Engineering university studies. During the winter 2008 - spring 2009 period, members of ERABEE conducted a survey on the contemporary status of doctoral studies in Europe, and on a possible scheme for promotion of cooperation and synergies in the framework of the third cycle of studies and the European Doctorate in Biosystems Engineering in Europe. This paper presents the results of the survey. The legal regulations and their extent on the different countries concerning the third cycle are presented, along with the current structure of third cycle studies. The evolution and adaptation to the new EHEA in each country is also considered. Information was also gathered on the emerging topics of the Biosystems Engineering field and how these topics could be addressed by the new doctoral programmes at the European level.
Förstner, Ulrich; Hollert, Henner; Brinkmann, Markus; Eichbaum, Kathrin; Weber, Roland; Salomons, Wim
2016-01-01
A critical review of the last 25 years of dioxin policy in the Elbe river catchment is presented along seven main theses of the River Basin Community (RBC)-Elbe background document "Pollutants" for the Management Plan 2016-2021. In this period, polychlorinated dibenzodioxins/-furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) will play a major role: (i) as new priority substances for which environmental quality standards (EQSs) need to be derived (Directive 2013/39/EC); (ii) in the search for innovative solutions in sediment remediation (i.e., respecting the influence of mechanical processes; Flood Risk Directive 2007/60/EC); and (iii) as indicators at the land-sea interface (Marine Strategy Framework Directive 2008/56/EC). In the Elbe river catchment, aspects of policy and science are closely connected, which became particularly obvious in a classic example of dioxin hot spot contamination, the case of the Spittelwasser creek. Here, the "source-first principle" of the first cycle of the European Water Framework Directive (WFD) had to be confirmed in a controversy on the dioxin hot spots with Saxony-Anhalt's Agency for Contaminated Sites (LAF). At the Spittelwasser site, the move from "inside the creek" to "along the river banks" goes parallel to a general paradigm shift in retrospective risk assessment frameworks and remediation techniques for organic chemicals (Ortega-Calvo et al. 2015). With respect to dioxin, large-scale stabilization applying activated carbon additions is particularly promising. Another important aspect is the assessment of the ecotoxicology of dioxins and dl- PCBs in context of sediment mobility and flood risk assessment, which has been studied in the project framework FloodSearch. Currently, the quality goals of the WFD to reach a "good chemical status" are not met in many catchment areas because substances such as mercury do and others probably will (PCDD/Fs and dl-PCB) exceed biota-EQS values catchment area-wide. So far, relating biota-EQS values to sediment-EQSs is not possible. To overcome these limitations, the DioRAMA project was initiated, which has led to improved approaches for the assessment of dioxin-contaminated sediment using in vitro bioassays and to a robust dataset on the interrelation between dioxins and dioxin-like compounds in sediments and biota.
Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses
NASA Astrophysics Data System (ADS)
Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.
2017-12-01
Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of geomorphic and hydrologic characteristics, which can be incorporated into post-fire mitigation, management, and recovery-based measures to protect and rehabilitate areas subject to influence from wildfires.
Wada, Keisuke; Sakaushi, Ken; Sasaki, Sono; Nishihara, Hiroshi
2018-04-19
The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal-organic framework (MOF) analogues consisting of two-dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF-based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density-functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A global database of nitrogen and phosphorus excretion rates of aquatic animals
USDA-ARS?s Scientific Manuscript database
Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Eco...
Human exposure modeling in a life cycle framework for chemicals and products
A chemical enters into commerce to serve a specific function in a product or process. This decision triggers both the manufacture of the chemical and its potential release over the life cycle of the product. Efficiently evaluating chemical safety and sustainability requires combi...
Precision control of soil N cycling via soil functional zone management
USDA-ARS?s Scientific Manuscript database
Managing the soil nitrogen (N) cycle is a major component of agricultural sustainability. Soil functional zone management (SFZM), a novel framework of agroecosystem management, may improve soil N management compared with conventional and no-tillage approaches by focusing on the timing and location (...
Sala, Serenella; Goralczyk, Malgorzata
2013-10-01
The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In this article, we present a case study at the macroscale for the European Union, in which the chemical footprint according to step 1 is calculated for the year 2005. A proposal for extending this approach toward step 2 is presented and discussed, complemented by a discussion on the challenges and the use of appropriate methodologies for assessing chemical footprints to stimulate further research and discussion on the topic. © 2013 SETAC.
Wiederholt, Ruscena; Mattsson, Brady J.; Thogmartin, Wayne E.; Runge, Michael C.; Diffendorfer, Jay E.; Erickson, Richard A.; Federico, Paula; Lopez-Hoffman, Laura; Fryxell, John; Norris, D. Ryan; Sample, Christine
2018-01-01
Every year, migratory species undertake seasonal movements along different pathways between discrete regions and habitats. The ability to assess the relative demographic contributions of these different habitats and pathways to the species’ overall population dynamics is critical for understanding the ecology of migratory species, and also has practical applications for management and conservation. Metrics for assessing habitat contributions have been well-developed for metapopulations, but an equivalent metric is not currently available for migratory populations. Here, we develop a framework for estimating the demographic contributions of the discrete habitats and pathways used by migratory species throughout the annual cycle by estimating the per capita contribution of cohorts using these locations. Our framework accounts for seasonal movements between multiple breeding and non-breeding habitats and for both resident and migratory cohorts. We illustrate our framework using a hypothetical migratory network of four habitats, which allows us to better understand how variations in habitat quality affect per capita contributions. Results indicate that per capita contributions for any habitat or pathway are dependent on habitat-specific survival probabilities in all other areas used as part of the migratory circuit, and that contribution metrics are spatially linked (e.g. reduced survival in one habitat also decreases the contribution metric for other habitats). Our framework expands existing theory on the dynamics of spatiotemporally structured populations by developing a generalized approach to estimate the habitat- and pathway-specific contributions of species migrating between multiple breeding and multiple non-breeding habitats for a range of life histories or migratory strategies. Most importantly, it provides a means of prioritizing conservation efforts towards those migratory pathways and habitats that are most critical for the population viability of migratory species.
Market-Based and System-Wide Fuel Cycle Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew
This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.
Performance Based Logistics... What’s Stopping Us
2016-03-01
performance-based life cycle product support, where outcomes are acquired through performance-based arrangements that deliver Warfighter requirements and...correlates to the acquisition life cycle framework: spend the time and effort to identify and lock in the PBL requirements; conduct an analysis to...PDASD[L&MR]) on PBL strategies. The study, Project Proof Point: A Study to Determine the Impact of Performance Based Logistics (PBL) on Life Cycle
A conceptual framework to assess effectiveness in wheelchair provision.
Kamaraj, Deepan C; Bray, Nathan; Rispin, Karen; Kankipati, Padmaja; Pearlman, Jonathan; Borg, Johan
2017-01-01
Currently, inadequate wheelchair provision has forced many people with disabilities to be trapped in a cycle of poverty and deprivation, limiting their ability to access education, work and social facilities. This issue is in part because of the lack of collaboration among various stakeholders who need to work together to design, manufacture and deliver such assistive mobility devices. This in turn has led to inadequate evidence about intervention effectiveness, disability prevalence and subsequent costeffectiveness that would help facilitate appropriate provision and support for people with disabilities. In this paper, we describe a novel conceptual framework that can be tested across the globe to study and evaluate the effectiveness of wheelchair provision. The Comparative Effectiveness Research Subcommittee (CER-SC), consisting of the authors of this article, housed within the Evidence-Based Practice Working Group (EBP-WG) of the International Society of Wheelchair Professionals (ISWP), conducted a scoping review of scientific literature and standard practices used during wheelchair service provision. The literature review was followed by a series of discussion groups. The three iterations of the conceptual framework are described in this manuscript. We believe that adoption of this conceptual framework could have broad applications in wheelchair provision globally to develop evidence-based practices. Such a perspective will help in the comparison of different strategies employed in wheelchair provision and further improve clinical guidelines. Further work is being conducted to test the efficacy of this conceptual framework to evaluate effectiveness of wheelchair service provision in various settings across the globe.
Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku
2016-01-01
Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405
Kang, Wenpei; Zhang, Yu; Fan, Lili; Zhang, Liangliang; Dai, Fangna; Wang, Rongming; Sun, Daofeng
2017-03-29
Metal-organic frameworks (MOFs) derived transition metal oxides exhibit enhanced performance in energy conversion and storage. In this work, porous hollow Co 3 O 4 with N-doped carbon coating (Co 3 O 4 /N-C) polyhedrons have been prepared using cobalt-based MOFs as a sacrificial template. Assembled from tiny nanoparticles and N-doped carbon coating, Co 3 O 4 /N-C composite shortens the diffusion length of Li + /Na + ions and possesses an enhanced conductivity. And the porous and hollow structure is also beneficial for tolerating volume changes in the galvanostatic discharge/charge cycles as lithium/sodium battery anode materials. As a result, it can exhibit impressive cycling and rating performance. At 1000 mA g -1 , the specific capacities maintaine stable values of ∼620 mAh g -1 within 2000 cycles as anodes in lithium ion battery, while the specific capacity keeps at 229 mAh g -1 within 150 cycles as sodium ion battery anode. Our work shows comparable cycling performance in lithium ion battery but even better high-rate cycling stability as sodium ion battery anode. Herein, we provide a facile method to construct high electrochemical performance oxide/N-C composite electrode using new MOFs as sacrificial template.
Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...
This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.
Risk and Returns to Education. NBER Working Paper No. 18300
ERIC Educational Resources Information Center
Brown, Jeffrey; Fang, Chichun; Gomes, Francisco
2012-01-01
We analyze the returns to education in a life-cycle framework that incorporates risk preferences, earnings volatility (including unemployment), and a progressive income tax and social insurance system. We show that such a framework significantly reduces the measured gains from education relative to simple present-value calculations, although the…
Treating People in Families: An Integrative Framework.
ERIC Educational Resources Information Center
Nichols, William C.
Directed at practitioners and students of family therapy, this book presents a treatment framework that is compatible with a wide variety of therapeutic techniques. Focusing on the development over time of the family life cycles--from marriages in formation to the "postparental couple"--this book explores the unique challenges and opportunities…
Making sense of past climate changes
NASA Astrophysics Data System (ADS)
Masson-Delmotte, Valérie; Schulz, Michael
2014-05-01
This presentation will summarize the paleoclimate perspective in IPCC AR5, which combines information from natural archives, paleoclimate simulations using both the CMIP5 framework and other simulations, model-data comparisons for model evaluation at hemispheric to regional scales, detection - attribution, and process studies throughout timescales such as polar amplification, carbon cycle or sea level change. It will highlight new findings and coordinated efforts which, within the scientific community, have allowed new information to emerge on time for AR5. It will also stress the aspects which could not be covered or assessed as well as suggestions for further inclusion of paleoclimate information to inform projections.
The role of manufacturing in affecting the social dimension of sustainability
Sutherland, John W.; Richter, Justin S.; Hutchins, Margot J.; ...
2016-08-03
Manufacturing affects all three dimensions of sustainability: economy, environment, and society. This paper addresses the last of these dimensions. It explores social impacts identified by national level social indicators, frameworks, and principles. The effects of manufacturing on social performance are framed for different stakeholder groups with associated social needs. Methodology development as well as various challenges for social life cycle assessment (S-LCA) are further examined. Efforts to integrate social and another dimension of sustainability are considered, with attention to globalization challenges, including offshoring and reshoring. The study concludes with a summary of key takeaways and promising directions for future work.
The role of manufacturing in affecting the social dimension of sustainability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, John W.; Richter, Justin S.; Hutchins, Margot J.
Manufacturing affects all three dimensions of sustainability: economy, environment, and society. This paper addresses the last of these dimensions. It explores social impacts identified by national level social indicators, frameworks, and principles. The effects of manufacturing on social performance are framed for different stakeholder groups with associated social needs. Methodology development as well as various challenges for social life cycle assessment (S-LCA) are further examined. Efforts to integrate social and another dimension of sustainability are considered, with attention to globalization challenges, including offshoring and reshoring. The study concludes with a summary of key takeaways and promising directions for future work.
Evaluating the Impact of Modern Copper Mining on Ecosystem Services in Southern Arizona
NASA Astrophysics Data System (ADS)
Virgone, K.; Brusseau, M. L.; Ramirez-Andreotta, M.; Coeurdray, M.; Poupeau, F.
2014-12-01
Historic mining practices were conducted with little environmental forethought, and hence generated a legacy of environmental and human-health impacts. However, an awareness and understanding of the impacts of mining on ecosystem services has developed over the past few decades. Ecosystem services are defined as benefits that humans obtain from ecosystems, and upon which they are fundamentally dependent for their survival. Ecosystem services are divided into four categories including provisioning services (i.e., food, water, timber, and fiber); regulating services (i.e., climate, floods, disease, wastes, and water quality); supporting services (i.e., soil formation, photosynthesis, and nutrient cycling) and cultural services (i.e., recreational, aesthetic, and spiritual benefits) (Millennium Ecosystem Assessment, 2005). Sustainable mining practices have been and are being developed in an effort to protect and preserve ecosystem services. This and related efforts constitute a new generation of "modern" mines, which are defined as those that are designed and permitted under contemporary environmental legislation. The objective of this study is to develop a framework to monitor and assess the impact of modern mining practices and sustainable mineral development on ecosystem services. Using the sustainability performance indicators from the Global Reporting Initiative (GRI) as a starting point, we develop a framework that is reflective of and adaptive to specific local conditions. Impacts on surface and groundwater water quality and quantity are anticipated to be of most importance to the southern Arizona region, which is struggling to meet urban and environmental water demands due to population growth and climate change. We seek to build a more comprehensive and effective assessment framework by incorporating socio-economic aspects via community engaged research, including economic valuations, community-initiated environmental monitoring, and environmental human-health education programs.
Pets, Attachment, and Well-Being across the Life Cycle.
ERIC Educational Resources Information Center
Sable, Pat
1995-01-01
Using an ethological framework, explores the ways in which family pets, in particular dogs and cats, provide certain components of attachment that contribute to emotional and social well-being throughout the life cycle. Implications are identified for social policies that will protect and maintain this bond for particular populations. (RJM)
The Organizational Learning Cycle. How We Can Learn Collectively.
ERIC Educational Resources Information Center
Dixon, Nancy
This book, which is designed for individuals interested in changing and developing their organizations, examines the organizational learning cycle and ways of learning collectively. Among the topics discussed in the book's nine chapters are the following: (1) changing nature of work and organizational learning; (2) theoretical framework of…
Brouwer, Derk H; Spaan, Suzanne; Roff, Martin; Sleeuwenhoek, Anne; Tuinman, Ilse; Goede, Henk; van Duuren-Stuurman, Birgit; Filon, Francesca Larese; Bello, Dhimiter; Cherrie, John W
2016-08-01
Over the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al., 2016), we focused our attention on identifying conditions or situations, i.e. a combination of nanoparticle physico-chemical properties, skin barrier integrity, and occupations with high prevalence of skin disease, which deserve further investigation. This second paper focuses on the broad question of dermal exposure assessment to nanoparticles and attempts to give an overview of the mechanisms of occupational dermal exposure to nanoparticles and nano-enabled products and explores feasibility and adequacy of various methods of quantifying dermal exposure to NOAA. We provide here a conceptual framework for screening, prioritization, and assessment of dermal exposure to NOAA in occupational settings, and integrate it into a proposed framework for risk assessment. Copyright © 2016 Elsevier GmbH. All rights reserved.
One physical educator's career cycle: strong start, great run, approaching finish.
Woods, Amelia Mays; Lynn, Susan K
2014-03-01
This article is nested within a longitudinal project examining 6 teachers' journeys along their career cycles (Lynn & Woods, 2010; Woods & Earls, 1995; Woods & Lynn, 2001). Two participants from the initial 6 continue to teach K-12 physical education; 1 of these participants, Everett, is examined in the current study. This veteran teacher's career-cycle movement and the environmental factors that both enhanced and constrained his career development are examined through the lens of Fessler and Christensen's career cycle model (1992). Data sources included: 8 formal interviews with Everett; formal interviews with his university teacher educators, student-teacher supervisor, principal, and spouse; informal interviews; field notes; and systematic teaching observations. An interpretative framework was used to assess the perceptions and meanings Everett gave to experiences as a physical educator and coach. Several factors acutely influenced Everett's career progression, including: (a) his individual disposition, (b) the impact and continued influence of a professional preparation program, and (c) his school and community support. He entered the profession with great promise and spent most of his career in the enthusiastic and growing, and the career stability, stages before shifting into the career frustration stage where he currently remains. Everett was able to negotiate personal and organizational environmental factors that have been identified as barriers for some physical educators. Therefore, viewing his professional life through the lens of the career cycle provides insights into the areas of change necessary to motivate and retain high-quality physical educators such as Everett.
NASA Astrophysics Data System (ADS)
Medlyn, B.; Jiang, M.; Zaehle, S.
2017-12-01
There is now ample experimental evidence that the response of terrestrial vegetation to rising atmospheric CO2 concentration is modified by soil nutrient availability. How to represent nutrient cycling processes is thus a key consideration for vegetation models. We have previously used model intercomparison to demonstrate that models incorporating different assumptions predict very different responses at Free-Air CO2 Enrichment experiments. Careful examination of model outputs has provided some insight into the reasons for the different model outcomes, but it is difficult to attribute outcomes to specific assumptions. Here we investigate the impact of individual assumptions in a generic plant carbon-nutrient cycling model. The G'DAY (Generic Decomposition And Yield) model is modified to incorporate alternative hypotheses for nutrient cycling. We analyse the impact of these assumptions in the model using a simple analytical approach known as "two-timing". This analysis identifies the quasi-equilibrium behaviour of the model at the time scales of the component pools. The analysis provides a useful mathematical framework for probing model behaviour and identifying the most critical assumptions for experimental study.
Analysis of in vitro fertilization data with multiple outcomes using discrete time-to-event analysis
Maity, Arnab; Williams, Paige; Ryan, Louise; Missmer, Stacey; Coull, Brent; Hauser, Russ
2014-01-01
In vitro fertilization (IVF) is an increasingly common method of assisted reproductive technology. Because of the careful observation and followup required as part of the procedure, IVF studies provide an ideal opportunity to identify and assess clinical and demographic factors along with environmental exposures that may impact successful reproduction. A major challenge in analyzing data from IVF studies is handling the complexity and multiplicity of outcome, resulting from both multiple opportunities for pregnancy loss within a single IVF cycle in addition to multiple IVF cycles. To date, most evaluations of IVF studies do not make use of full data due to its complex structure. In this paper, we develop statistical methodology for analysis of IVF data with multiple cycles and possibly multiple failure types observed for each individual. We develop a general analysis framework based on a generalized linear modeling formulation that allows implementation of various types of models including shared frailty models, failure specific frailty models, and transitional models, using standard software. We apply our methodology to data from an IVF study conducted at the Brigham and Women’s Hospital, Massachusetts. We also summarize the performance of our proposed methods based on a simulation study. PMID:24317880
Life cycle water use of energy production and its environmental impacts in China.
Zhang, Chao; Anadon, Laura Diaz
2013-12-17
The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.
Livelihood Cycle and Vulnerability of Rural Households to Climate Change and Hazards in Bangladesh.
Alam, G M Monirul
2017-05-01
Rural riverine households in Bangladesh are confronted with many climate-driven hazards, including riverbank erosion, which results in loss of productive land and other natural resources of the riverine households, and thus threatens their livelihoods and food security. This study assesses the main drivers of vulnerability and livelihood cycle of vulnerable riparian households in Bangladesh. The study utilises the IPCC framework of vulnerability and develops a weighted approach by employing the livelihood vulnerability index and the climate vulnerability index. The results reveal that the livelihood vulnerability index and the climate vulnerability index differ across locations, however, a high index value for both measures indicates the households' high livelihood vulnerability to climate change and hazards. The main drivers that influence the vulnerability dimensions are livelihood strategies and access to food, water and health facilities. These hazard-prone households are also vulnerable due to their existing low livelihood status that leads to a vicious cycle of poverty. The findings of this study are crucial for policymakers to formulate and implement effective strategies and programs to minimise vulnerability and to enhance the local adaptation processes in order to improve such households' livelihood across Bangladesh.
Livelihood Cycle and Vulnerability of Rural Households to Climate Change and Hazards in Bangladesh
NASA Astrophysics Data System (ADS)
Alam, G. M. Monirul
2017-05-01
Rural riverine households in Bangladesh are confronted with many climate-driven hazards, including riverbank erosion, which results in loss of productive land and other natural resources of the riverine households, and thus threatens their livelihoods and food security. This study assesses the main drivers of vulnerability and livelihood cycle of vulnerable riparian households in Bangladesh. The study utilises the IPCC framework of vulnerability and develops a weighted approach by employing the livelihood vulnerability index and the climate vulnerability index. The results reveal that the livelihood vulnerability index and the climate vulnerability index differ across locations, however, a high index value for both measures indicates the households' high livelihood vulnerability to climate change and hazards. The main drivers that influence the vulnerability dimensions are livelihood strategies and access to food, water and health facilities. These hazard-prone households are also vulnerable due to their existing low livelihood status that leads to a vicious cycle of poverty. The findings of this study are crucial for policymakers to formulate and implement effective strategies and programs to minimise vulnerability and to enhance the local adaptation processes in order to improve such households' livelihood across Bangladesh.
Crenna, Eleonora; Sozzo, Sara; Sala, Serenella
2018-01-20
Natural resources, biotic and abiotic, are fundamental from both the ecological and socio-economic point of view, being at the basis of life-support. However, since the demand for finite resources continues to increase, the sustainability of current production and consumption patterns is questioned both in developed and developing countries. A transition towards an economy based on biotic renewable resources (bio-economy) is considered necessary in order to support a steady provision of resources, representing an alternative to an economy based on fossil and abiotic resources. However, to ensure a sustainable use of biotic resources, there is the need of properly accounting for their use along supply chains as well as defining a robust and comprehensive impact assessment model. Since so far naturally occurring biotic resources have gained little attention in impact assessment methods, such as life cycle assessment, the aim of this study is to enable the inclusion of biotic resources in the assessment of products and supply chains. This paper puts forward a framework for biotic resources assessment, including: i) the definition of system boundaries between ecosphere and technosphere, namely between naturally occurring and man-made biotic resources; ii) a list of naturally occurring biotic resources which have a commercial value, as basis for building life cycle inventories (NOBR, e.g. wild animals, plants etc); iii) an impact pathway to identify potential impacts on both resource provision and ecosystem quality; iv) a renewability-based indicator (NOBRri) for the impact assessment of naturally occurring biotic resources, including a list of associated characterization factors. The study, building on a solid review of literature and of available statistical data, highlights and discusses the critical aspects and paradoxes related to biotic resource inclusion in LCA: from the system boundaries definition up to the resource characterization.
A Bayesian estimation of a stochastic predator-prey model of economic fluctuations
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.
2007-06-01
In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.
NASA Astrophysics Data System (ADS)
Chen, Xiaobin; Du, Ke; Lai, Yanqing; Shang, Guozhi; Li, Huangxu; Xiao, Zhiwei; Chen, Yuxiang; Li, Junming; Zhang, Zhian
2017-07-01
Na2FeP2O7, which is considered as a promising cathode for sodium ion batteries (SIBs) on account of its economical efficiency and outstanding thermal stability, has been widely studied for the purpose of enhancing its electronic conductivity and interface ion transportation. In this paper, a double-carbon synergistically modified strategy was firstly introduced to facilitate the electrochemical performance of Na2FeP2O7. Na2FeP2O7 particles are enwrapped in situ by a carbon layer and further anchored in reduced graphene oxide (RGO) framework through a facile urea-nitrate combustion method. Consequently, the excellent rate performance and durable cycle stability of this compound are identified, which exhibits a reversible sodium storage capacity of 65 mAh g-1 at a current density of 10 C and no obvious decay in capacity after circling for 300 cycles at 1 C. What's more, no drastic degradation in capacity is observed when the cycling current density is brought back to high rates after cycling for more than 360 cycles at various rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Lopez, Paula; Gschwind, Benoit; Blanc, Philippe
Solar photovoltaics (PV) is the second largest source of new capacity among renewable energies. The worldwide capacity encompassed 135 GW in 2013 and is estimated to increase to 1721 GW in 2030 and 4674 GW in 2050, according to a prospective high-renewable scenario. To achieve this production level while minimizing environmental impacts, decision makers must have access to environmental performance data that reflect their high spatial variability accurately. We propose ENVI-PV (http://viewer.webservice-energy.org/project_iea), a new interactive tool that provides maps and screening level data, based on weighted average supply chains, for the environmental performance of common PV technologies. Environmental impacts ofmore » PV systems are evaluated according to a life cycle assessment approach. ENVI-PV was developed using a state-of-the-art interoperable and open standard Web Service framework from the Open Geospatial Consortium (OGC). It combines the latest life cycle inventories, published in 2015 by the International Energy Agency (IEA) under the Photovoltaic Power Systems Program (PVPS) Task 12, and some inventories previously published from Ecoinvent v2.2 database with solar irradiation estimates computed from the worldwide NASA SSE database. ENVI-PV is the first tool to propose a worldwide coverage of environmental performance of PV systems using a multi-criteria assessment. The user can compare the PV environmental performance to the environmental footprint of country electricity mixes. ENVI-PV is designed as an environmental interactive tool to generate PV technological options and evaluate their performance in different spatial and techno-economic contexts. Its potential applications are illustrated in this paper with several examples.« less
NASA Astrophysics Data System (ADS)
Naldesi, Luciano; Buttol, Patrizia; Masoni, Paolo; Misceo, Monica; Sára, Balázs
2004-12-01
"eLCA" is a European Commission financed project aimed at realising "On line green tools and services for Small and Medium-sized Enterprises (SMEs)". Knowledge and use of Life Cycle Assessment (LCA) by SMEs are strategic to introduce the Integrated Product Policy (IPP) in Europe, but methodology simplification is needed. LCA requires a large amount of validated general and sector specific data. Since their availability and cost can be insuperable barriers for SMEs, pre-elaborated data/meta-data, use of standards and low cost solutions are required. Within the framework of the eLCA project an LCA software - eVerdEE - based on a simplified methodology and specialised for SMEs has been developed. eVerdEE is a web-based tool with some innovative features. Its main feature is the adaptation of ISO 14040 requirements to offer easy-to-handle functions with solid scientific bases. Complex methodological problems, such as the system boundaries definition, the data quality estimation and documentation, the choice of impact categories, are simplified according to the SMEs" needs. Predefined "Goal and Scope definition" and "Inventory" forms, a user-friendly and well structured procedure are time and cost-effective. The tool is supported by a database containing pre-elaborated environmental indicators of substances and processes for different impact categories. The impact assessment is calculated automatically by using the user"s input and the database values. The results have different levels of interpretation in order to identify the life cycle critical points and the improvement options. The use of a target plot allows the direct comparison of different design alternatives.
A software tool for ecosystem services assessments
NASA Astrophysics Data System (ADS)
Riegels, Niels; Klinting, Anders; Butts, Michael; Middelboe, Anne Lise; Mark, Ole
2017-04-01
The EU FP7 DESSIN project is developing methods and tools for assessment of ecosystem services (ESS) and associated economic values, with a focus on freshwater ESS in urban settings. Although the ESS approach has gained considerable visibility over the past ten years, operationalizing the approach remains a challenge. Therefore, DESSSIN is also supporting development of a free software tool to support users implementing the DESSIN ESS evaluation framework. The DESSIN ESS evaluation framework is a structured approach to measuring changes in ecosystem services. The main purpose of the framework is to facilitate the application of the ESS approach in the appraisal of projects that have impacts on freshwater ecosystems and their services. The DESSIN framework helps users evaluate changes in ESS by linking biophysical, economic, and sustainability assessments sequentially. It was developed using the Common International Classification of Ecosystem Services (CICES) and the DPSIR (Drivers, Pressures, States, Impacts, Responses) adaptive management cycle. The former is a standardized system for the classification of ESS developed by the European Union to enhance the consistency and comparability of ESS assessments. The latter is a well-known concept to disentangle the biophysical and social aspects of a system under study. As part of its analytical component, the DESSIN framework also integrates elements of the Final Ecosystem Goods and Services-Classification System (FEGS-CS) of the US Environmental Protection Agency (USEPA). As implemented in the software tool, the DESSIN framework consists of five parts: • In part I of the evaluation, the ecosystem is defined and described and the local stakeholders are identified. In addition, administrative details and objectives of the assessment are defined. • In part II, drivers and pressures are identified. Once these first two elements of the DPSIR scheme have been characterized, the claimed/expected capabilities of a proposed project can be estimated to determine whether the project affects drivers, pressures, states or a combination of these. • In part III, information about impacts on drivers, pressures, and states is used to identify ESS impacted by a proposed project. Potential beneficiaries of impacted ESS are also identified. • In part IV, changes in ESS are estimated. These estimates include changes in the provision of ESS, the use of ESS, and the value of ESS. • A sustainability assessment in Part V estimates the broader impact of a proposed project according to social, environmental, governance and other criteria. The ESS evaluation software tool is designed to assist an evaluation or study leader carrying out an ESS assessment. The tool helps users move through the logic of the ESS evaluation and make sense of relationships between elements of the DPSIR framework, the CICES classification scheme, and the FEGS approach. The tool also provides links to useful indicators and assessment methods in order to help users quantify changes in ESS and ESS values. The software tool is developed in collaboration with the DESSIN user group, who will use the software to estimate changes in ESS resulting from the implementation of green technologies addressing water quality and water scarcity issues. Although the software is targeted to this user group, it will be made available for free to the public after the conclusion of the project.
Translating evidence-based guidelines to improve feedback practices: the interACT case study.
Barton, Karen L; Schofield, Susie J; McAleer, Sean; Ajjawi, Rola
2016-02-09
There has been a substantial body of research examining feedback practices, yet the assessment and feedback landscape in higher education is described as 'stubbornly resistant to change'. The aim of this paper is to present a case study demonstrating how an entire programme's assessment and feedback practices were re-engineered and evaluated in line with evidence from the literature in the interACT (Interaction and Collaboration via Technology) project. Informed by action research the project conducted two cycles of planning, action, evaluation and reflection. Four key pedagogical principles informed the re-design of the assessment and feedback practices. Evaluation activities included document analysis, interviews with staff (n = 10) and students (n = 7), and student questionnaires (n = 54). Descriptive statistics were used to analyse the questionnaire data. Framework thematic analysis was used to develop themes across the interview data. InterACT was reported by students and staff to promote self-evaluation, engagement with feedback and feedback dialogue. Streamlining the process after the first cycle of action research was crucial for improving engagement of students and staff. The interACT process of promoting self-evaluation, reflection on feedback, feedback dialogue and longitudinal perspectives of feedback has clear benefits and should be transferable to other contexts. InterACT has involved comprehensive re-engineering of the assessment and feedback processes using educational principles to guide the design taking into account stakeholder perspectives. These principles and the strategies to enact them should be transferable to other contexts.
Nanomaterial Case Study: A Comparison of Multiwalled ...
The draft document is intended to be used as part of a process to identify what is known and, more importantly, what is not yet known that could be of value in assessing the broad implications of specific nanomaterials. Like previous case studies (see History/ Chronology below), this draft case study on multiwalled carbon nanotubes (MWCNTs) is based on the comprehensive environmental assessment (CEA) approach, which consists of both a framework and a process. Unlike previous case studies this case study incorporates information about a traditional (i.e., “non-nano-enabled”) product, against which the MWCNT flame-retardant coating applied to upholstery textiles (i.e., the “nano-enabled” product) can be compared. The comparative element serves dual-purposes: 1) to provide a more robust database that facilitates identification of data gaps related to the nano-enabled product and 2) to provide a context for identifying key factors and data gaps for future efforts to evaluate risk-related trade-offs between a nano-enabled and non-nano-enabled product. This draft case study does not represent a completed or even a preliminary assessment of MWCNTs; rather, it uses the CEA framework to structure information from available literature and other resources (e.g., government reports) on the product life cycle, fate and transport processes in various environmental media, exposure-dose characterization, and impacts in human, ecological, and environmental receptors.
Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo
2016-09-07
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.
Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries
Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo
2016-01-01
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications. PMID:27600885
[Integrated evaluation of circular agriculture system: a life cycle perspective].
Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng
2010-11-01
For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.
Life cycle models of conventional and alternative-fueled automobiles
NASA Astrophysics Data System (ADS)
Maclean, Heather Louise
This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)
Guthold, Regina; Cowan, Melanie; Savin, Stefan; Bhatti, Lubna; Armstrong, Timothy; Bonita, Ruth
2016-01-01
Objectives. We sought to outline the framework and methods used by the World Health Organization (WHO) STEPwise approach to noncommunicable disease (NCD) surveillance (STEPS), describe the development and current status, and discuss strengths, limitations, and future directions of STEPS surveillance. Methods. STEPS is a WHO-developed, standardized but flexible framework for countries to monitor the main NCD risk factors through questionnaire assessment and physical and biochemical measurements. It is coordinated by national authorities of the implementing country. The STEPS surveys are generally household-based and interviewer-administered, with scientifically selected samples of around 5000 participants. Results. To date, 122 countries across all 6 WHO regions have completed data collection for STEPS or STEPS-aligned surveys. Conclusions. STEPS data are being used to inform NCD policies and track risk-factor trends. Future priorities include strengthening these linkages from data to action on NCDs at the country level, and continuing to develop STEPS’ capacities to enable a regular and continuous cycle of risk-factor surveillance worldwide. PMID:26696288
Riley, Leanne; Guthold, Regina; Cowan, Melanie; Savin, Stefan; Bhatti, Lubna; Armstrong, Timothy; Bonita, Ruth
2016-01-01
We sought to outline the framework and methods used by the World Health Organization (WHO) STEPwise approach to noncommunicable disease (NCD) surveillance (STEPS), describe the development and current status, and discuss strengths, limitations, and future directions of STEPS surveillance. STEPS is a WHO-developed, standardized but flexible framework for countries to monitor the main NCD risk factors through questionnaire assessment and physical and biochemical measurements. It is coordinated by national authorities of the implementing country. The STEPS surveys are generally household-based and interviewer-administered, with scientifically selected samples of around 5000 participants. To date, 122 countries across all 6 WHO regions have completed data collection for STEPS or STEPS-aligned surveys. STEPS data are being used to inform NCD policies and track risk-factor trends. Future priorities include strengthening these linkages from data to action on NCDs at the country level, and continuing to develop STEPS' capacities to enable a regular and continuous cycle of risk-factor surveillance worldwide.
A Methodology for the Evaluation of Water Policies in European Countries
NASA Astrophysics Data System (ADS)
de Stefano, Lucia; de Pedraza Gilsanz, Javier; Villarroya Gil, Fermín
2010-06-01
Periodic assessment of progress toward established policy goals is crucial to understanding whether the applied efforts are effective. In Europe, the Water Framework Directive (WFD) adopted in year 2000 set ambitious environmental objectives to be achieved by the end of 2015 through the implementation of Integrated Water Resources Management (IWRM) principles. While at this stage it is premature to measure the impact of this Directive in terms of environmental outcomes, it is nonetheless important to develop indicators in order to monitor whether water management practices throughout Europe are aligning towards IWRM. This article presents the methodological development of the Water and Wetland Index, a comparative water policy assessment by environmental NGOs that was carried out in 2002-2003, and highlights the interest of repeating it in 2015, when the first WFD planning cycle will be completed.
Radin Umar, Radin Zaid; Sommerich, Carolyn M; Lavender, Steve A; Sanders, Elizabeth; Evans, Kevin D
2018-05-14
Sound workplace ergonomics and safety-related interventions may be resisted by employees, and this may be detrimental to multiple stakeholders. Understanding fundamental aspects of decision making, behavioral change, and learning cycles may provide insights into pathways influencing employees' acceptance of interventions. This manuscript reviews published literature on thinking processes and other topics relevant to decision making and incorporates the findings into two new conceptual frameworks of the workplace change adoption process. Such frameworks are useful for thinking about adoption in different ways and testing changes to traditional intervention implementation processes. Moving forward, it is recommended that future research focuses on systematic exploration of implementation process activities that integrate principles from the research literature on sensemaking, decision making, and learning processes. Such exploration may provide the groundwork for development of specific implementation strategies that are theoretically grounded and provide a revised understanding of how successful intervention adoption processes work.
When Playing Meets Learning: Methodological Framework for Designing Educational Games
NASA Astrophysics Data System (ADS)
Linek, Stephanie B.; Schwarz, Daniel; Bopp, Matthias; Albert, Dietrich
Game-based learning builds upon the idea of using the motivational potential of video games in the educational context. Thus, the design of educational games has to address optimizing enjoyment as well as optimizing learning. Within the EC-project ELEKTRA a methodological framework for the conceptual design of educational games was developed. Thereby state-of-the-art psycho-pedagogical approaches were combined with insights of media-psychology as well as with best-practice game design. This science-based interdisciplinary approach was enriched by enclosed empirical research to answer open questions on educational game-design. Additionally, several evaluation-cycles were implemented to achieve further improvements. The psycho-pedagogical core of the methodology can be summarized by the ELEKTRA's 4Ms: Macroadaptivity, Microadaptivity, Metacognition, and Motivation. The conceptual framework is structured in eight phases which have several interconnections and feedback-cycles that enable a close interdisciplinary collaboration between game design, pedagogy, cognitive science and media psychology.
Framework for adaptive interoperability of manufacturing enterprises (FAIME): a case study
NASA Astrophysics Data System (ADS)
Sims, John E.; Chu, Bei Tseng B.; Long, Junshen; Matthews, Mike; Barnes, Johnny G.; Jones, Chris H.; Anderson, Rayne A.; Lambert, Russ; Drake, Doug C.; Hamilton, Mark A.; Connard, Mark
1997-01-01
In todays global economy, manufacturing industries require to connect disparate applications seamlessly. They require not only to exchange data and transactions, but present a single business process image to their employees in the office, headquarters, and on the plant floor. Also, it is imperative that small and medium size manufacturing companies deploy manufacturing execution systems applications in conjunction with modern enterprise resource programs for cycle time reduction and better quality. This paper presents the experiences and reflections on a project that created a tool set to assist the above be accomplished not only in a shorter cycle time, with a better predictable quality, and with an object oriented framework, but also a tool set that allows the manufacturer to still use legacy applications. This framework has the capability of plug-and- play so that future migrations and re-engineering of processes are more productive.
Left Ventricular Endocardium Tracking by Fusion of Biomechanical and Deformable Models
Gu, Jason
2014-01-01
This paper presents a framework for tracking left ventricular (LV) endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM) model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing themto a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle. PMID:24587814
A hydroeconomic modeling framework for optimal integrated management of forest and water
NASA Astrophysics Data System (ADS)
Garcia-Prats, Alberto; del Campo, Antonio D.; Pulido-Velazquez, Manuel
2016-10-01
Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a "payment for environmental services" scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.
NASA Technical Reports Server (NTRS)
Lee, Taesik; Jeziorek, Peter
2004-01-01
Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.
A U.S. Carbon Cycle Science Plan
NASA Astrophysics Data System (ADS)
Michalak, Anna M.; Jackson, Rob; Marland, Gregg; Sabine, Christopher
2009-03-01
First Meeting of the Carbon Cycle Science Working Group; Washington, D. C., 17-18 November 2008; The report “A U.S. carbon cycle science plan” (J. L. Sarmiento and S. C. Wofsy, U.S. Global Change Res. Program, Washington, D. C., 1999) outlined research priorities and promoted coordinated carbon cycle research across federal agencies for nearly a decade. Building on this framework and subsequent reports (available at http://www.carboncyclescience.gov/docs.php), the Carbon Cycle Science Working Group (CCSWG) was formed in 2008 to develop an updated strategy for the next decade. The recommendations of the CCSWG will go to agency managers who have collective responsibility for setting national carbon cycle science priorities and for sponsoring much of the carbon cycle research in the United States.
NASA Astrophysics Data System (ADS)
Fan, Peng; Chen, Hualing; Li, Bo; Wang, Yongquan
2017-11-01
In this letter, a theoretical framework describing an energy harvesting cycle including the loss of tension (LT) process is proposed to investigate the energy harvesting performance of a dielectric elastomer generator (DEG) with a triangular energy harvesting scheme by considering material viscosity and leakage current. As the external force that is applied to the membrane decreases, the membrane is relaxed. When the external force decreases to zero, the condition is known as LT. Then the membrane undergoing LT can further relax, which is referred to as the LT process. The LT process is usually ignored in theoretical analysis but observed from energy harvesting experiments of DEGs. It is also studied how shrinking time and transfer capacitor affect the energy conversion of a DEG. The results indicate that energy density and conversion efficiency can be simultaneously improved by choosing appropriate shrinking time and transfer capacitor to optimize the energy harvesting cycle. The results and methods are expected to provide guidelines for the optimal design and assessment of DEGs.
Schneeweiss, S; Eichler, H-G; Garcia-Altes, A; Chinn, C; Eggimann, A-V; Garner, S; Goettsch, W; Lim, R; Löbker, W; Martin, D; Müller, T; Park, B J; Platt, R; Priddy, S; Ruhl, M; Spooner, A; Vannieuwenhuyse, B; Willke, R J
2016-12-01
Analyses of healthcare databases (claims, electronic health records [EHRs]) are useful supplements to clinical trials for generating evidence on the effectiveness, harm, use, and value of medical products in routine care. A constant stream of data from the routine operation of modern healthcare systems, which can be analyzed in rapid cycles, enables incremental evidence development to support accelerated and appropriate access to innovative medicines. Evidentiary needs by regulators, Health Technology Assessment, payers, clinicians, and patients after marketing authorization comprise (1) monitoring of medication performance in routine care, including the materialized effectiveness, harm, and value; (2) identifying new patient strata with added value or unacceptable harms; and (3) monitoring targeted utilization. Adaptive biomedical innovation (ABI) with rapid cycle database analytics is successfully enabled if evidence is meaningful, valid, expedited, and transparent. These principles will bring rigor and credibility to current efforts to increase research efficiency while upholding evidentiary standards required for effective decision-making in healthcare. © 2016 American Society for Clinical Pharmacology and Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, R.A.
2001-01-12
This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains,more » e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.« less
Short-Cycle Post-Secondary Education: Challenges and Opportunities. INFORM, Issue 12
ERIC Educational Resources Information Center
Van Meel, Rosita
2012-01-01
This policy paper argues that short-term tertiary education is important to achieve policy goals as equity and increased access to tertiary eduction. The paper outlines the 3 major reference frameworks in use ISCED [International Standard Classification of Education], NQF [national qualifications frameworks] and the EHEA [European Higher Education…
USDA-ARS?s Scientific Manuscript database
Active commuting to school (ACS), i.e. walking or cycling to school, has been proposed as a method to increase physical activity. Few studies have examined children's ACS using the framework of behavior change theory. This study used social cognitive theory as the framework. The objective of this st...
Parent, psycho-social, and household factors associated with children's active commuting to school
USDA-ARS?s Scientific Manuscript database
Active commuting to school (ACS), i.e. walking or cycling to school, has been associated with higher levels of physical activity. Few studies have examined children's ACS using the framework of behavior change theory. This study used social cognitive theory as the framework. To examine the relations...
The Data-to-Action Framework: A Rapid Program Improvement Process
ERIC Educational Resources Information Center
Zakocs, Ronda; Hill, Jessica A.; Brown, Pamela; Wheaton, Jocelyn; Freire, Kimberley E.
2015-01-01
Although health education programs may benefit from quality improvement methods, scant resources exist to help practitioners apply these methods for program improvement. The purpose of this article is to describe the Data-to-Action framework, a process that guides practitioners through rapid-feedback cycles in order to generate actionable data to…
The Effects of Practice-Based Training on Graduate Teaching Assistants' Classroom Practices
ERIC Educational Resources Information Center
Becker, Erin A.; Easlon, Erin J.; Potter, Sarah C.; Guzman-Alvarez, Alberto; Spear, Jensen M.; Facciotti, Marc T.; Igo, Michele M.; Singer, Mitchell; Pagliarulo, Christopher
2017-01-01
Evidence-based teaching is a highly complex skill, requiring repeated cycles of deliberate practice and feedback to master. Despite existing well-characterized frameworks for practice-based training in K-12 teacher education, the major principles of these frameworks have not yet been transferred to instructor development in higher educational…
Allocation methodology for creating life cycle inventories is frequently addressed, discussed and debated, yet the methodology continues to be in a state of flux. ISO 14041 puts perspective on the issues but its one-size fits all framework is being challenged. It is clear that ...
The Adult Life Cycle: Exploration and Implications.
ERIC Educational Resources Information Center
Baile, Susan
Most of the frameworks that have been constructed to mark off the changes in the cycle of adulthood are characterized by a particular focus such as developmental ages, the role of age and timing, or ego development. The theory of Erik Erikson, based upon his clinical observations, represents these crucial turning points in human development: ages…
"Bildung", the Bologna Process and Kierkegaard's Concept of Subjective Thinking
ERIC Educational Resources Information Center
Reindal, Solveig M.
2013-01-01
The Bologna Framework for higher education has agreed on three "cycle descriptors"--knowledge, skill and general competence--which are to constitute the learning outcomes and credit ranges for the three cycles of higher education: The Bachelor, the Master and the PhD. In connection with the implementations of the national qualification…
ERIC Educational Resources Information Center
Price, Geoffrey P.; Wright, Vivian H.
2012-01-01
Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the... nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast... Accounting;'' and a Nuclear Energy Institute white [[Page 34009
Teaching and Learning International Survey TALIS 2013: Conceptual Framework. Final
ERIC Educational Resources Information Center
Rutkowski, David; Rutkowski, Leslie; Bélanger, Julie; Knoll, Steffen; Weatherby, Kristen; Prusinski, Ellen
2013-01-01
In 2008, the initial cycle of the OECD's Teaching and Learning International Survey (TALIS 2008) established, for the first time, an international, large-scale survey of the teaching workforce, the conditions of teaching, and the learning environments of schools in participating countries. The second cycle of TALIS (TALIS 2013) aims to continue…
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
Landscape functionality of plant communities in the Impala Platinum mining area, Rustenburg.
van der Walt, L; Cilliers, S S; Kellner, K; Tongway, D; van Rensburg, L
2012-12-30
The tremendous growth of the platinum mining industry in South Africa has affected the natural environment adversely. The waste produced by platinum mineral processing is alkaline, biologically sterile and has a low water-holding capacity. These properties in the environment may constitute dysfunctional areas that will create 'leaky' and dysfunctional landscapes, limiting biological development. Landscape Function Analysis (LFA) is a monitoring procedure that assesses the degradation of landscapes, as brought about by human, animal and natural activities, through rapidly assessing certain soil surface indicators which indicate the biophysical functionality of the system. The "Trigger-Transfer-Reserve-Pulse" (TTRP) conceptual framework forms the foundation for assessing landscape function when using LFA. The two main aspects of this framework are the loss of resources from the system and the utilisation of resources by the system. After a survey of landscape heterogeneity to reflect the spatial organisation of the landscape, soil surface indicators are assessed within different patch types (identifiable units that retains resources that pass through the system) and interpatches (units between patches where vital resources are not retained, but lost) to assess the capacity of patches with various physical properties in regulating the effectiveness of resource control in the landscape. Indices describing landscape organisation are computed by a spreadsheet analysis, as well as soil surface quality indices. When assembled in different combinations, three indices emerge that reflect soil productive potential, namely: the (1) surface stability, (2) infiltration capacity, and (3) the nutrient cycling potential of the landscape. In this study we compared the landscape functionality of natural thornveld areas, rehabilitated opencast mines and rehabilitated slopes of tailings dams in the area leased for mining in the Rustenburg area. Our results show that the rehabilitated areas had a higher total SSA functionality due to higher infiltration and nutrient cycling indices than the natural thornveld landscapes. The length of interpatches and the width of patches greatly influenced the landscape function of the studied areas. The natural thornveld areas had a marginally higher total patch area than the rehabilitated areas. Vegetated patches (grass-, sparse grass-, grassy forb-, and grassy shrub-patches) generally scored the highest functionality indices, whilst bare soil interpatches contributed to the landscape functionality of the various plant communities the least. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio
2017-09-20
Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiyi, Li; Tengyuan, Chen; Beibei, Sun
Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfermore » and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles)« less
Yoon, Taeseung; Bok, Taesoo; Kim, Chulhyun; Na, Younghoon; Park, Soojin; Kim, Kwang S
2017-05-23
Controlling the morphology of nanostructured silicon is critical to improving the structural stability and electrochemical performance in lithium-ion batteries. The use of removable or sacrificial templates is an effective and easy route to synthesize hollow materials. Herein, we demonstrate the synthesis of mesoporous silicon hollow nanocubes (m-Si HCs) derived from a metal-organic framework (MOF) as an anode material with outstanding electrochemical properties. The m-Si HC architecture with the mesoporous external shell (∼15 nm) and internal void (∼60 nm) can effectively accommodate volume variations and relieve diffusion-induced stress/strain during repeated cycling. In addition, this cube architecture provides a high electrolyte contact area because of the exposed active site, which can promote the transportation of Li ions. The well-designed m-Si HC with carbon coating delivers a high reversible capacity of 1728 mAhg -1 with an initial Coulombic efficiency of 80.1% after the first cycle and an excellent rate capability of >1050 mAhg -1 even at a 15 C-rate. In particular, the m-Si HC anode effectively suppresses electrode swelling to ∼47% after 100 cycles and exhibits outstanding cycle stability of 850 mAhg -1 after 800 cycles at a 1 C-rate. Moreover, a full cell (2.9 mAhcm -2 ) comprising a m-Si HC-graphite anode and LiCoO 2 cathode exhibits remarkable cycle retention of 72% after 100 cycles at a 0.2 C-rate.
Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie
2014-10-01
In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of Life Cycle Assessment on Electronic Waste Management: A Review.
Xue, Mianqiang; Xu, Zhenming
2017-04-01
Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.
Application of Life Cycle Assessment on Electronic Waste Management: A Review
NASA Astrophysics Data System (ADS)
Xue, Mianqiang; Xu, Zhenming
2017-04-01
Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.
Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.
DOT National Transportation Integrated Search
2015-03-12
The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
2010-12-01
Life Cycle Cost Process Model (Austin, TX: The Consortium for Advanced Management International) 6 November 2009. 8 The framework begins with...Hendricks, James R. Involving the Extended Value Chain in a Target Costing/ Life Cycle Cost Process Model. Austin, TX: The Consortium for Advanced ...can have on reducing ownership costs in hundreds of other DOD programs. The early life -cycle phases (requirements/concept development) are often the
Pandey, Parul; Lee, Eun Kyung; Pompili, Dario
2016-11-01
Stress is one of the key factor that impacts the quality of our daily life: From the productivity and efficiency in the production processes to the ability of (civilian and military) individuals in making rational decisions. Also, stress can propagate from one individual to other working in a close proximity or toward a common goal, e.g., in a military operation or workforce. Real-time assessment of the stress of individuals alone is, however, not sufficient, as understanding its source and direction in which it propagates in a group of people is equally-if not more-important. A continuous near real-time in situ personal stress monitoring system to quantify level of stress of individuals and its direction of propagation in a team is envisioned. However, stress monitoring of an individual via his/her mobile device may not always be possible for extended periods of time due to limited battery capacity of these devices. To overcome this challenge a novel distributed mobile computing framework is proposed to organize the resources in the vicinity and form a mobile device cloud that enables offloading of computation tasks in stress detection algorithm from resource constrained devices (low residual battery, limited CPU cycles) to resource rich devices. Our framework also supports computing parallelization and workflows, defining how the data and tasks divided/assigned among the entities of the framework are designed. The direction of propagation and magnitude of influence of stress in a group of individuals are studied by applying real-time, in situ analysis of Granger Causality. Tangible benefits (in terms of energy expenditure and execution time) of the proposed framework in comparison to a centralized framework are presented via thorough simulations and real experiments.
NASA Astrophysics Data System (ADS)
Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.
2018-03-01
Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.
Reuse and recycle--considering the soil below constructions.
Suer, Pascal; Wik, Ola; Erlandsson, Martin
2014-07-01
The European Construction Products Regulation provides a life cycle based framework for the environmental assessment of construction products. Harmonised European standards for the assessment of the release of dangerous substances and for declaration of environmental performance are in progress. Risk based limit values for the protection of soil and groundwater below construction works will still bet set nationally. In this paper we review the possibilities to expand the ongoing harmonisation to include risk assessment and life cycle assessment (LCA). Based on reviews of national European limit value models (LMVs) for assessment of release to soil and groundwater, two areas for harmonisation emerge: 1- The toxicological criteria. Toxicological endpoints to protect human health and environment are similar, and data from the same toxicological data sets are used to establish acceptance criteria. 2- The emission part of LMVs. We extracted six generic construction works for granular materials. These encompass the most common choices and span the different release scenarios applied. Harmonised emission models would also facilitate LCA and environmental product declaration (EPD). The immission or transport part of the LVMs is less promising for harmonisation. Locating the acceptance criteria point of compliance close to the construction works is advantageous from many aspects and would facilitate harmonisation of assessments. We have identified two different strategies to include recycling in the assessments: 1- Tiered procedure where assessment and declaration of performance are made for the intended primary use of the product only and renewed assessments are made whenever the construction works are demolished and the product is recovered. 2- Scenario based procedure where future recycling scenarios, into new products and construction works, are forecasted. In this case the initial assessment and declaration of environmental performance of a construction product is performed both for the intended primary use of the product and for the recycling scenarios. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.
2017-12-01
In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability
Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; ...
2017-07-24
The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less
Comparison of PIV with 4D-Flow in a physiological accurate flow phantom
NASA Astrophysics Data System (ADS)
Sansom, Kurt; Balu, Niranjan; Liu, Haining; Aliseda, Alberto; Yuan, Chun; Canton, Maria De Gador
2016-11-01
Validation of 4D MRI flow sequences with planar particle image velocimetry (PIV) is performed in a physiologically-accurate flow phantom. A patient-specific phantom of a carotid artery is connected to a pulsatile flow loop to simulate the 3D unsteady flow in the cardiovascular anatomy. Cardiac-cycle synchronized MRI provides time-resolved 3D blood velocity measurements in clinical tool that is promising but lacks a robust validation framework. PIV at three different Reynolds numbers (540, 680, and 815, chosen based on +/- 20 % of the average velocity from the patient-specific CCA waveform) and four different Womersley numbers (3.30, 3.68, 4.03, and 4.35, chosen to reflect a physiological range of heart rates) are compared to 4D-MRI measurements. An accuracy assessment of raw velocity measurements and a comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, and Lagrangian particle residence time, will be presented, with justification for their biomechanics relevance to the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new 4D-Flow MRI sequence and post processing techniques to provide a quantitative assessment with the benchmarked data. Department of Education GAANN Fellowship.
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid
The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less
Fire Effects Planning Framework: A user's guide
A. Black; T. Opperman
2005-01-01
Each decision to suppress fire reinforces a feedback cycle in which fuels continue to accumulate, risk escalates, and the tendency to suppress fires grows (Miller and others, 2003). Existing decision-support tools focus primarily on the negative consequences of fire. This guide outlines a framework managers can use to (1) identify key areas of fire risk and (2)...
A conceptual framework to assess effectiveness in wheelchair provision
Kankipati, Padmaja
2017-01-01
Background Currently, inadequate wheelchair provision has forced many people with disabilities to be trapped in a cycle of poverty and deprivation, limiting their ability to access education, work and social facilities. This issue is in part because of the lack of collaboration among various stakeholders who need to work together to design, manufacture and deliver such assistive mobility devices. This in turn has led to inadequate evidence about intervention effectiveness, disability prevalence and subsequent costeffectiveness that would help facilitate appropriate provision and support for people with disabilities. Objectives In this paper, we describe a novel conceptual framework that can be tested across the globe to study and evaluate the effectiveness of wheelchair provision. Method The Comparative Effectiveness Research Subcommittee (CER-SC), consisting of the authors of this article, housed within the Evidence-Based Practice Working Group (EBP-WG) of the International Society of Wheelchair Professionals (ISWP), conducted a scoping review of scientific literature and standard practices used during wheelchair service provision. The literature review was followed by a series of discussion groups. Results The three iterations of the conceptual framework are described in this manuscript. Conclusion We believe that adoption of this conceptual framework could have broad applications in wheelchair provision globally to develop evidence-based practices. Such a perspective will help in the comparison of different strategies employed in wheelchair provision and further improve clinical guidelines. Further work is being conducted to test the efficacy of this conceptual framework to evaluate effectiveness of wheelchair service provision in various settings across the globe. PMID:28936421
Managing the life cycle of electronic clinical documents.
Payne, Thomas H; Graham, Gail
2006-01-01
To develop a model of the life cycle of clinical documents from inception to use in a person's medical record, including workflow requirements from clinical practice, local policy, and regulation. We propose a model for the life cycle of clinical documents as a framework for research on documentation within electronic medical record (EMR) systems. Our proposed model includes three axes: the stages of the document, the roles of those involved with the document, and the actions those involved may take on the document at each stage. The model includes the rules to describe who (in what role) can perform what actions on the document, and at what stages they can perform them. Rules are derived from needs of clinicians, and requirements of hospital bylaws and regulators. Our model encompasses current practices for paper medical records and workflow in some EMR systems. Commercial EMR systems include methods for implementing document workflow rules. Workflow rules that are part of this model mirror functionality in the Department of Veterans Affairs (VA) EMR system where the Authorization/ Subscription Utility permits document life cycle rules to be written in English-like fashion. Creating a model of the life cycle of clinical documents serves as a framework for discussion of document workflow, how rules governing workflow can be implemented in EMR systems, and future research of electronic documentation.
Project risk management in the construction of high-rise buildings
NASA Astrophysics Data System (ADS)
Titarenko, Boris; Hasnaoui, Amir; Titarenko, Roman; Buzuk, Liliya
2018-03-01
This paper shows the project risk management methods, which allow to better identify risks in the construction of high-rise buildings and to manage them throughout the life cycle of the project. One of the project risk management processes is a quantitative analysis of risks. The quantitative analysis usually includes the assessment of the potential impact of project risks and their probabilities. This paper shows the most popular methods of risk probability assessment and tries to indicate the advantages of the robust approach over the traditional methods. Within the framework of the project risk management model a robust approach of P. Huber is applied and expanded for the tasks of regression analysis of project data. The suggested algorithms used to assess the parameters in statistical models allow to obtain reliable estimates. A review of the theoretical problems of the development of robust models built on the methodology of the minimax estimates was done and the algorithm for the situation of asymmetric "contamination" was developed.
Martin, Todd M.
2017-01-01
The goal of alternatives assessment (AA) is to facilitate a comparison of alternatives to a chemical of concern, resulting in the identification of safer alternatives. A two stage methodology for comparing chemical alternatives was developed. In the first stage, alternatives are compared using a variety of human health effects, ecotoxicity, and physicochemical properties. Hazard profiles are completed using a variety of online sources and quantitative structure activity relationship models. In the second stage, alternatives are evaluated utilizing an exposure/risk assessment over the entire life cycle. Exposure values are calculated using screening-level near-field and far-field exposure models. The second stage allows one to more accurately compare potential exposure to each alternative and consider additional factors that may not be obvious from separate binned persistence, bioaccumulation, and toxicity scores. The methodology was utilized to compare phosphate-based alternatives for decabromodiphenyl ether (decaBDE) in electronics applications. PMID:29333139
Nanomaterial Case Study: Nanoscale Silver in Disinfectant ...
This draft document presents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant sprays. This case study is organized around a comprehensive environmental assessment (CEA) framework, which combines a product life-cycle perspective with the risk assessment paradigm. The document does not draw conclusions about potential risks. Instead, it is intended to be used as part of a process to identify what is known and unknown about nano-Ag in a selected application and can be used as a starting point to identify and prioritize possible research directions to support future assessments of nanomaterials. The information presented in the case study and the questions raised in this document are a foundation for a process to determine priorities among various research topics and directions. After that process has been completed, a final chapter will be added to this document to summarize highlights from preceding chapters and the major research issues that have emerged.
Kavvada, Olga; Horvath, Arpad; Stokes-Draut, Jennifer R; Hendrickson, Thomas P; Eisenstein, William A; Nelson, Kara L
2016-12-20
Nonpotable water reuse (NPR) is one option for conserving valuable freshwater resources. Decentralization can improve distribution system efficiency by locating treatment closer to the consumer; however, small treatment systems may have higher unit energy and greenhouse-gas (GHG) emissions. This research explored the trade-off between residential NPR systems using a life-cycle approach to analyze the energy use and GHG emissions. Decentralized and centralized NPR options are compared to identify where decentralized systems achieve environmental advantages over centralized reuse alternatives, and vice versa, over a range of scales and spatial and demographic conditions. For high-elevation areas far from the centralized treatment plant, decentralized NPR could lower energy use by 29% and GHG emissions by 28%, but in low-elevation areas close to the centralized treatment plant, decentralized reuse could be higher by up to 85% (energy) and 49% (GHG emissions) for the scales assessed (20-2000 m 3 /day). Direct GHG emissions from the treatment processes were found to be highly uncertain and variable and were not included in the analysis. The framework presented can be used as a planning support tool to reveal the environmental impacts of integrating decentralized NPR with existing centralized wastewater infrastructure and can be adapted to evaluate different treatment technology scales for reuse.
ERIC Educational Resources Information Center
MacPhail, Ann
2015-01-01
This paper prompts us to consider "representation" with respect to a committee structure "managing" the development of the Irish senior cycle physical education framework. The paper is timely due to the national interest in the senior cycle subject development in Ireland and complements work undertaken on the development of…
Creating Classrooms for Authors and Inquirers. Second Edition.
ERIC Educational Resources Information Center
Short, Kathy G.; And Others
Offering more practical ideas and a rich description of how their curriculum moved from writing and reading to include inquiry, the first half of this book focuses on the authoring cycle and the ways in which educators have used the cycle as a curricular framework. The second half of the book provides detailed descriptions of "curricular…
Food and Drug Administration Regulation of in Vitro Diagnostic Devices
Mansfield, Elizabeth; O’Leary, Timothy J.; Gutman, Steven I.
2005-01-01
The Food and Drug Administration regulates the sale and distribution of laboratory devices under a statutory and regulatory framework that is unfamiliar to most clinical laboratory scientists. In this article we briefly describe the criteria that are used to classify and review in vitro diagnostic devices. We discuss the similarities and differences between devices that are not subject to premarket review, and those that are required to undergo either a premarket application or premarket notification [510(k)] pathway. We then discuss the methods that the Food and Drug Administration uses to assess the performance of in vitro diagnostic devices in the marketplace as a component of the total life cycle approach to medical device regulation. PMID:15681468
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... External Review Draft of Framework for Human Health Risk Assessment To Inform Decision Making AGENCY: U.S... external review draft of ``A Framework for Human Health Risk Assessment to Inform Decision Making.'' This... a framework for conducting human health risk assessments that are responsive to the needs of...
NASA Astrophysics Data System (ADS)
Quinteiro, Paula; Van de Broek, Marijn; Cláudia Dias, Ana; Ridoutt, Bradley; Arroja, Luís
2016-04-01
High concentrations of suspended solids (SS), particularly in the clay and silt size fractions, reaching lotic environments and remaining in suspension can be a significant stressors to the biodiversity of these aquatic systems, degrading the water quality and directly affecting the aquatic biota, namely macroinvertebrates, algae and macrophytes. This damage is presently not considered in Life Cycle Assessment studies. This study is devoted to the effects of SS into freshwater systems due to topsoil erosion by water (environmental mechanism), translated into damage to aquatic ecosystem diversity (endpoint impact category), namely to macroinvertebrates, algae and macrophytes. For this, we have developed a framework to conduct an erosion inventory using the WaTEM/SEDEM model and linked this with, a method to derive regional characterisation for endpoint damage on aquatic ecosystem diversity. A case study was performed for Eucalyptus globulus stands in Portugal, with a functional unit of one hectare of land under production forestry management. To demonstrate how this newly SS ecosystem method can help to improve the environmental assessment in forestry, results were compared with the earlier commonly used impact categories from ReCiPe method. The relevance of the impact from SS delivery to freshwater streams is shown, providing a more comprehensive assessment of the SS impact from land use systems on aquatic environments. The SS impacts ranged from 15.5 to 1234.9 PDF.m3.yr.ha-1.revolution-1 for macroinvertebrates, and from 5.2 to 411.9 PDF.m3.yr.ha-1.revolution-1 for algae and macrophytes. For some stands, SS potential impacts on macroinvertebrates have the same order of magnitude than freshwater eutrophication, freshwater ecotoxicity, terrestrial ecotoxicity and terrestrial acidification impacts. For algae and macrophytes, most of the stands present SS impacts of the same order of magnitude as terrestrial ecotoxicity, one order of magnitude higher than freshwater eutrophication, and two orders of magnitude lower than freshwater ecotoxicity and terrestrial acidification. The SS impact results allow to conclude that the increase of SS in the water column can cause biodiversity damage and that the calculated impacts can have a similar or even higher contribution to the total environmental impact than the commonly established endpoint impact categories of the ReCiPe method (such as freshwater eutrophication, freshwater ecotoxicity, terrestrial ecotoxicity and terrestrial acidification). The present study proves that SS impacts on aquatic organisms can vary substantially when using a detailed regionalisation level such as the local resolution scale. A wide application of the framework and method developed at a local scale enable the establishment of a regionalised SS inventory database and a deep characterisation of the potential environmental impacts of SS on local aquatic environments. Keywords: Eucalyptus globulus, land use, life cycle assessment, suspended solids, topsoil erosion
Shcherbina, Anna; Mattsson, C. Mikael; Waggott, Daryl; Salisbury, Heidi; Christle, Jeffrey W.; Hastie, Trevor; Wheeler, Matthew T.; Ashley, Euan A.
2017-01-01
The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/). PMID:28538708
Shcherbina, Anna; Mattsson, C Mikael; Waggott, Daryl; Salisbury, Heidi; Christle, Jeffrey W; Hastie, Trevor; Wheeler, Matthew T; Ashley, Euan A
2017-05-24
The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).
NASA Astrophysics Data System (ADS)
Trammell, T. L.
2017-12-01
The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of concept. Foliar and soil 15N can be extremely useful when N sources are isotopically distinct, patterns are detectable, or multiple tools are used simultaneously to understand N cycling. N cycles tightly in most ecosystems, thus δ15N in plants and soils can provide information about N source and availability to ecosystems.
Aerosol Modeling for the Global Model Initiative
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.
2001-01-01
The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.
NASA Astrophysics Data System (ADS)
Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva
2013-11-01
In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic
Keairns, D L; Darton, R C; Irabien, A
2016-06-07
As the global population grows in size and increasingly lives in cities, and with lifestyles based on greater material consumption, more attention is being given to the integrated system that supplies our energy, water, and food, the Nexus. There is also mounting concern about effects on the Nexus of climate change and damage to the natural environment that provides essential ecosystem services. Nexus analysis applies existing techniques, such as computational modelling and Life Cycle Assessment, but new frameworks and tools are needed, including those that will integrate societal and technical dimensions. Case studies show the vital role played by stakeholder involvement in clarifying issues, priorities, and values. They also demonstrate the importance of an integrated systems view of the complex interrelationships of the Nexus when planning effective remedies. Assessments conclude that transformative social and political change is needed to create new structures, markets, and governance to deal with the Nexus if we are to meet agreed-upon sustainable development goals.
NASA Astrophysics Data System (ADS)
Shrestha, G.; Cavallaro, N.; Ste-Marie, C.
2016-12-01
Carbon cycle science has been a research priority in the U.S. for decades. Interagency coordination interests and research needs in U.S. carbon cycle science led to the establishment of the U.S. Carbon Cycle Science Program, the North American Carbon Program (NACP), the Ocean Carbon and Biogeochemistry Program (OCB) and other intergovernmental collaboration platforms such as CarboNA, involving the U.S., Mexico and Canada. This presentation highlights some of these activities, and the historical context, the institutional frameworks and the operational mechanisms that have helped to facilitate and advance large scale collaborative research in carbon cycle in the U.S. and North America.
Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand
NASA Astrophysics Data System (ADS)
Kittipongvises, Suthirat
2017-11-01
Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, `resources' and `climate change' categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.
A Decision Support Framework for Evaluation of Engineered ...
Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in
ECTA/DaSy Framework Self-Assessment Comparison Tool
ERIC Educational Resources Information Center
Center for IDEA Early Childhood Data Systems (DaSy), 2016
2016-01-01
The Self-Assessment Comparison (SAC) Tool is for state Part C and Section 619/Preschool programs to use to assess changes in the implementation of one or more components of the ECTA System Framework and/or subcomponenets of the DaSy Data System Framework. It is a companion to the ECTA/DaSy Framework Self-Assessment. Key features of the SAC are…
Using the Knowledge to Action Framework in practice: a citation analysis and systematic review.
Field, Becky; Booth, Andrew; Ilott, Irene; Gerrish, Kate
2014-11-23
Conceptual frameworks are recommended as a way of applying theory to enhance implementation efforts. The Knowledge to Action (KTA) Framework was developed in Canada by Graham and colleagues in the 2000s, following a review of 31 planned action theories. The framework has two components: Knowledge Creation and an Action Cycle, each of which comprises multiple phases. This review sought to answer two questions: 'Is the KTA Framework used in practice? And if so, how?' This study is a citation analysis and systematic review. The index citation for the original paper was identified on three databases-Web of Science, Scopus and Google Scholar-with the facility for citation searching. Limitations of English language and year of publication 2006-June 2013 were set. A taxonomy categorising the continuum of usage was developed. Only studies applying the framework to implementation projects were included. Data were extracted and mapped against each phase of the framework for studies where it was integral to the implementation project. The citation search yielded 1,787 records. A total of 1,057 titles and abstracts were screened. One hundred and forty-six studies described usage to varying degrees, ranging from referenced to integrated. In ten studies, the KTA Framework was integral to the design, delivery and evaluation of the implementation activities. All ten described using the Action Cycle and seven referred to Knowledge Creation. The KTA Framework was enacted in different health care and academic settings with projects targeted at patients, the public, and nursing and allied health professionals. The KTA Framework is being used in practice with varying degrees of completeness. It is frequently cited, with usage ranging from simple attribution via a reference, through informing planning, to making an intellectual contribution. When the framework was integral to knowledge translation, it guided action in idiosyncratic ways and there was theory fidelity. Prevailing wisdom encourages the use of theories, models and conceptual frameworks, yet their application is less evident in practice. This may be an artefact of reporting, indicating that prospective, primary research is needed to explore the real value of the KTA Framework and similar tools.
Comparative life cycle assessments: The case of paper and digital media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Justin G., E-mail: jgbull@gmail.com; Kozak, Robert A., E-mail: rob.kozak@ubc.ca
The consumption of the written word is changing, as media transitions from paper products to digital alternatives. We reviewed the life cycle assessment (LCA) research literature that compared the environmental footprint of digital and paper media. To validate the role of context in influencing LCA results, we assessed LCAs that did not compare paper and print, but focused on a product or component that is part of the Information and Communication Technology (ICT) sector. Using a framework that identifies problems in LCA conduct, we assessed whether the comparative LCAs were accurate expressions of the environmental footprints of paper and print.more » We hypothesized that the differences between the product systems that produce paper and digital media weaken LCA's ability to compare environmental footprints. We also hypothesized that the characteristics of ICT as an industrial sector weaken LCA as an environmental assessment methodology. We found that existing comparative LCAs offered problematic comparisons of paper and digital media for two reasons — the stark material differences between ICT products and paper products, and the unique characteristics of the ICT sector. We suggested that the context of the ICT sector, best captured by the concept of “Moore's Law”, will continuously impede the ability of the LCA methodology to measure ICT products. -- Highlights: • We review the LCA research that compares paper and digital media. • We contrast the comparative LCAs with LCAs that examine only digital products. • Stark differences between paper and digital media weakens LCA findings. • Digital products in general challenge the LCA method's reliability. • Continuous innovation and global nature of digital products impedes LCA methodology.« less
Life cycle of soil sggregates: from root residue to microbial and physical hotspots
NASA Astrophysics Data System (ADS)
Ghezzehei, T. A.; Or, D.
2017-12-01
Soil aggregation is a physical state of soil in which clumps of primary soil particles are held together by biological and/or chemical cementing agents. Aggregations plays important role in storage and movement of water and essential gases, nutrient cycling, and ultimately supporting microbial and plant life. It is also one of the most dynamic and sensitive soil qualities, which readily responds to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against erosion.
Deformations, moduli stabilisation and gauge couplings at one-loop
NASA Astrophysics Data System (ADS)
Honecker, Gabriele; Koltermann, Isabel; Staessens, Wieland
2017-04-01
We investigate deformations of Z_2 orbifold singularities on the toroidal orbifold {T}^6/(Z_2× Z_6) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold {T}^6/(Z_2× Z_6) with discrete torsion and adapt it to the (Z_2× Z_6× Ω R) point group by modding out the remaining Z_3 subsymmetry and the orientifold projection Ω R. We first study the local behaviour of the Z_3× Ω R invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2 N) or SO(2 N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U( N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in [1, 2], for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings.
Real options and asset valuation in competitive energy markets
NASA Astrophysics Data System (ADS)
Oduntan, Adekunle Richard
The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.
Vulnerability Assessment and Adaptation Framework, Third Edition
DOT National Transportation Integrated Search
2017-11-01
The Federal Highway Administrations (FHWAs) Vulnerability Assessment and Adaptation Framework (the Framework), third edition, is a manual to help transportation agencies and their partners assess the vulnerability of transportation infrastructu...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... and YY: Application of the Revised Capital Framework to the Capital Plan and Stress Test Rules AGENCY... stress test rules to require a bank holding company with total consolidated assets of $50 billion or more... advanced approaches for a given capital plan and stress test cycle and makes minor, technical changes to...
Metal-organic framework catalysts for selective cleavage of aryl-ether bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Stavila, Vitalie
The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.
NASA Astrophysics Data System (ADS)
Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.
2013-12-01
Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.
The role of data fusion in predictive maintenance using digital twin
NASA Astrophysics Data System (ADS)
Liu, Zheng; Meyendorf, Norbert; Mrad, Nezih
2018-04-01
Modern aerospace industry is migrating from reactive to proactive and predictive maintenance to increase platform operational availability and efficiency, extend its useful life cycle and reduce its life cycle cost. Multiphysics modeling together with data-driven analytics generate a new paradigm called "Digital Twin." The digital twin is actually a living model of the physical asset or system, which continually adapts to operational changes based on the collected online data and information, and can forecast the future of the corresponding physical counterpart. This paper reviews the overall framework to develop a digital twin coupled with the industrial Internet of Things technology to advance aerospace platforms autonomy. Data fusion techniques particularly play a significant role in the digital twin framework. The flow of information from raw data to high-level decision making is propelled by sensor-to-sensor, sensor-to-model, and model-to-model fusion. This paper further discusses and identifies the role of data fusion in the digital twin framework for aircraft predictive maintenance.
Information system modeling for biomedical imaging applications
NASA Astrophysics Data System (ADS)
Hoo, Kent S., Jr.; Wong, Stephen T. C.
1999-07-01
Information system modeling has historically been relegated to a low priority among the designers of information systems. Often times, there is a rush to design and implement hardware and software solutions after only the briefest assessments of the domain requirements. Although this process results in a rapid development cycle, the system usually does not satisfy the needs of the users and the developers are forced to re-program certain aspects of the system. It would be much better to create an accurate model of the system based on the domain needs so that the implementation of the solution satisfies the needs of the users immediately. It would also be advantageous to build extensibility into the model so that updates to the system could be carried out in an organized fashion. The significance of this research is the development of a new formal framework for the construction of a multimedia medical information system. This formal framework is constructed using visual modeling which provides a way of thinking about problems using models organized around real- world ideas. These models provide an abstract way to view complex problems, making them easier for one to understand. The formal framework is the result of an object-oriented analysis and design process that translates the systems requirements and functionality into software models. The usefulness of this information framework is demonstrated with two different applications in epilepsy research and care, i.e., surgical planning of epilepsy and decision threshold determination.
Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel
2018-05-01
Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
Metal-organic framework-based separator for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen
2016-07-01
Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.
Averill, Colin
2014-10-01
Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... Stress Tests at Banking Organizations With Total Consolidated Assets of More Than $10 Billion But Less... Stress Test Cycle AGENCY: Board of Governors of the Federal Reserve System (Board). ACTION: Interim final... framework) in their stress tests for the stress test cycle that begins October 1, 2013. For this stress test...
David V. D' Amore; Rick T. Edwards; Paul A. Herendeen; Eran Hood; Jason B. Fellman
2015-01-01
Dissolved organic C (DOC) transfer from the landscape to coastal margins is a key component of regional C cycles. Hydropedology provides a conceptual and observational framework for linking soil hydrologic function to landscape C cycling. We used hydropedology to quantify the export of DOC from the terrestrial landscape and understand how soil temperature and water...
Chen, Bailian; Reynolds, Albert C.
2018-03-11
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Liu; Manthiram, Arumugam
A high-loading electrode is essential for establishing high-energy-density lithium-sulfur (Li-S) batteries, but it is confronted with critical challenges. Here in this paper, we present a freestanding poached-egg-shaped architecture through a facile template supported vacuum-filtration strategy and employ it as an efficient sulfur host for Li-S batteries. This unique architecture guarantees an effective encapsulation of the “sulfur yolk” inside the fully vacuum sealed framework, effectively limiting the active material loss and polysulfide diffusion. Also, the conductive and porous framework serves as an interlinked electron pathway and electrolyte channel, greatly facilitating fast electric/ionic transport along with active material reactivation and reutilization duringmore » cycling. A high peak discharge capacity (1200 mA h g -1), a low capacity-fade rate (0.09% cycle-1) for 500 cycles, and excellent rate capability (C/5-1C rates) are accomplished. Moreover, with such an advantageous architecture, the sulfur loading is successfully increased to 32 mg cm -2 to achieve an areal capacity of up to 16 mA h cm -2. This work provides guidelines for realizing optimized highloading Li-S batteries.« less
Luo, Liu; Manthiram, Arumugam
2017-08-31
A high-loading electrode is essential for establishing high-energy-density lithium-sulfur (Li-S) batteries, but it is confronted with critical challenges. Here in this paper, we present a freestanding poached-egg-shaped architecture through a facile template supported vacuum-filtration strategy and employ it as an efficient sulfur host for Li-S batteries. This unique architecture guarantees an effective encapsulation of the “sulfur yolk” inside the fully vacuum sealed framework, effectively limiting the active material loss and polysulfide diffusion. Also, the conductive and porous framework serves as an interlinked electron pathway and electrolyte channel, greatly facilitating fast electric/ionic transport along with active material reactivation and reutilization duringmore » cycling. A high peak discharge capacity (1200 mA h g -1), a low capacity-fade rate (0.09% cycle-1) for 500 cycles, and excellent rate capability (C/5-1C rates) are accomplished. Moreover, with such an advantageous architecture, the sulfur loading is successfully increased to 32 mg cm -2 to achieve an areal capacity of up to 16 mA h cm -2. This work provides guidelines for realizing optimized highloading Li-S batteries.« less
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bailian; Reynolds, Albert C.
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
NASA Astrophysics Data System (ADS)
Lindquist, Eric; Pierce, Jen; Wuerzer, Thomas; Glenn, Nancy; Dialani, Jijay; Gibble, Katie; Frazier, Tim; Strand, Eva
2015-04-01
The stages of planning for and responding to natural hazards, such as wildfires and related events, are often conducted as discrete (and often not connected) efforts. Disaster response often takes precedence, exhausting agency and stakeholder resources, and the planning stages are conducted by different agencies or entities with different and often competing agendas and jurisdictions. The result is that evaluation after a disaster can be minimal or even non-existent as resources are expended and interest moves on to the next event. Natural disasters and hazards, however, have a tendency to cascade and multiply: wildfires impact the vulnerability of hillslopes, for example, which may result in landslides, flooding and debris flows long after the initial event has occurred. Connecting decisions across multiple events and time scales is ignored, yet these connections could lead to better policy making at all stages of disaster risk reduction. Considering this situation, we present an adapted life cycle analysis (LCA) approach to examine fire-related hazards at the Wildland-Urban Interface in the American West. The LCHA focuses on the temporal integration of : 1) the 'pre-fire' set of physical conditions (e.g. fuel loads) and human conditions (e.g. hazard awareness), 2) the 'fire event', focusing on computational analysis of the communication patterns and responsibility for response to the event, and 3) the 'post-event' analysis of the landscape susceptibility to fire-related debris flows. The approach of the LCHA follows other models used by governmental agencies to prepare for disasters through 1) preparation and prevention, 2) response and 3) recovery. As an overlay are the diverse agencies and policies associated with these stages and their respective resource and management decisions over time. LCAs have evolved from a business-centric consideration of the environmental impact of a specific product over the products life. This approach takes several phases to end up with an assessment of the impact of the product on the environment over time and is being considered beyond the business and logistics communities in such areas as biodiversity and ecosystem impacts. From our perspective, we consider wildfire as the "product" and want to understand how it impacts the environment (spatially, temporally, across the bio-physical and social domains). Through development of this LCHA we adapt the LCA approach with a focus on the inputs (from fire and pre-fire efforts) outputs (from post fire conditions) and how they evolve and are responded to by the responsible agencies and stakeholders responsible. A Life Cycle Hazard Assessment (LCHA) approach extends and integrates the understanding of hazards over much longer periods of time than previously considered. The LCHA also provides an integrated platform for the necessary interdisciplinary approach to understanding decision and environmental change across the life cycle of the fire event. This presentation will discuss our theoretical and empirical framework for developing a longitudinal LCHA and contribute to the overall goals of the NH7.1 session.
Bridging the Gap Between Policy and Research Infrastructure: Risk and Vulnerability Case Study
NASA Astrophysics Data System (ADS)
Hugo, Wim; Rogers, Annabelle
2017-04-01
Linking sound scientific data and conclusions to decision and policy support is not a trivial task, and the difficulty in achieving this has been highlighted more than a decade ago (Reid, 2004). There are several reasons why this is the case, inter alia: 1. The language, (vocabularies, framework, and heuristics) adopted by the research community in a specific discipline may not translate into meaningful implementation language (Preston et al., 2015); 2. The researchers may not be in a position of influence (which includes aspects such as writing policy briefs, undertaking personal initiatives, and building up public or industry concern and interest) (Fox and Sitkin, 2015); 3. The frequency, timing, and/or certainty associated with research output is at odds with decision and policy-making cycles. Research typically progresses until there is a defensible level of certainty in statistical assessment of a result, while policy decisions are often made within a regular cycle; 4. Scientists are not trained for, or measured by, the typical work required for decision and policy support: synthesis of scenarios and cost-benefits of such scenarios given sometimes significant uncertainty in the input data, and cross-disciplinary concerns that need to be balanced. There is a significant expectation that research output, being increasingly open, standardised, and managed in formal research data infrastructure, will be useful to policy and decision makers without much additional intervention and modification. We believe that this is unlikely to be feasible in the majority of cases. For most instances, it will be necessary to provide a framework for the translation of scientific output into decision and policy support metrics or indicators at a frequency, with spatial and temporal resolution, and thematic coverage that suits the decision to be made. Such frameworks exist, since the need has been identified - sometimes formally - such as the very detailed framework developed by IPCC for translating climate science into policy - (IPCC, 2007), or less formally - such as the move to develop Essential Biodiversity Variables, loosely designed to support Aichi Targets (Pereira et al., 2013) or the UN Sustainable Development Goals (UN, 2016). In the paper, we examine a number of these frameworks, map them onto a generic framework for the translation of research output into policy and decision support, and discuss an example from the South African Risk and Vulnerability Atlas in detail. References Craig R. Fox & Sim B. Sitkin (2015). Bridging the divide between behavioral science & policy, Behavioral Science & Policy, Spring 2015, https://behavioralpolicy.org/wp-content/uploads/2016/1-1/Bridging-the-divide-between-behavioral-science-and-policy.pdf IPCC (2007). Conceptual framework for the identification and assessment of key vulnerabilities, https://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch19s19-1-2.html Pereira et al. (2013). Essential Biodiversity Variables, Science 18 Jan 2013: Vol. 339, Issue 6117, pp. 277-278 DOI: 10.1126/science.1229931 Preston, B.L., Mustelin, J. & Maloney, M.C. Mitig Adapt Strateg Glob Change (2015) 20: 467. doi:10.1007/s11027-013-9503-x Reid WV (2004) Bridging the Science-Policy Divide. PLoS Biol 2(2): e27. doi:10.1371/journal.pbio.0020027 UN (2016). Sustainable Development Goals, http://www.un.org/sustainabledevelopment/sustainable-development-goals/
NASA Astrophysics Data System (ADS)
Anku, Sitsofe E.
1997-09-01
Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.
Jerrom, Richard; Roper, Tayeba; Murthy, Narasimha
2017-01-01
Introduction Practical Assessment of Clinical Examination Skills (PACES) constitutes the final part of the mandatory Royal College of Physicians exam series for progression to higher specialty training. Pass rates were lower for core medical trainees (CMTs) in Coventry and Warwickshire in comparison to other regions within the West Midlands and nationally. Objectives Our aim was to improve pass rates in the region through the introduction of a stimulating and supportive teaching framework, designed to enhance the quality and frequency of PACES teaching. Methods To identify key areas for change a baseline questionnaire, including Likert Scale and free text questions related to PACES teaching, was distributed to all CMTs in the region. Many trainees highlighted concern over lack of PACES-orientated teaching and support, with particular emphasis on: lack of bedside-teaching with feedback; infrequent opportunities for practising communication skills; and difficulty identifying suitable patients in an efficient manner. To address these concerns the following interventions were implemented over two Plan, Do, Study, Act (PDSA) cycles which were analysed at 6 months and 12months: a digital forum to highlight relevant inpatients for examination practice; a peer-to-peer mentoring scheme; a consultant-led bedside-teaching rota; and classroom-based communication skills sessions. Results Pass rates at Annual Review of Competence Progression improved from baseline to the end of the first year of implementation, 56.3% to 77.3%, respectively. Furthermore, following analysis of questionnaires at each PDSA cycle, we demonstrated a progressive improvement in trainee satisfaction in exposure, quality and relevance of teaching. Conclusion Our innovative, cost-effective teaching framework for PACES preparation has improved exam outcomes and facilitated swift junior doctor career progression, while raising the profile of the trust. Furthermore, this innovation provides a template for potential adoption in other National Health Service institutions. PMID:28959777
NASA Astrophysics Data System (ADS)
Weldu, Yemane W.
The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal fuel. Bioenergy alternatives have higher economic cost than the prevailing scenario of coal-fired generation system. Although coal fuel is the most cost effective way of electricity generation, its combustion results in the loss of 123.5 billion USD per year for Alberta due to societal life cycle cost. This research demonstrated that bioenergy can support the transformation of a fossil-based energy system to a more sustainable power production system; however, respiratory effects is a concern.
Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.
Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier
2010-07-01
We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.
Götschi, Thomas; de Nazelle, Audrey; Brand, Christian; Gerike, Regine
2017-09-01
This paper reviews the use of conceptual frameworks in research on active travel, such as walking and cycling. Generic framework features and a wide range of contents are identified and synthesized into a comprehensive framework of active travel behavior, as part of the Physical Activity through Sustainable Transport Approaches project (PASTA). PASTA is a European multinational, interdisciplinary research project on active travel and health. Along with an exponential growth in active travel research, a growing number of conceptual frameworks has been published since the early 2000s. Earlier frameworks are simpler and emphasize the distinction of environmental vs. individual factors, while more recently several studies have integrated travel behavior theories more thoroughly. Based on the reviewed frameworks and various behavioral theories, we propose the comprehensive PASTA conceptual framework of active travel behavior. We discuss how it can guide future research, such as data collection, data analysis, and modeling of active travel behavior, and present some examples from the PASTA project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng
Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less
Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng; ...
2017-02-07
Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less
Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D
2017-02-28
Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.
NASA Astrophysics Data System (ADS)
Hanish Nithin, Anu; Omenzetter, Piotr
2017-04-01
Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.
A Framework for Assessing High School Students' Statistical Reasoning.
Chan, Shiau Wei; Ismail, Zaleha; Sumintono, Bambang
2016-01-01
Based on a synthesis of literature, earlier studies, analyses and observations on high school students, this study developed an initial framework for assessing students' statistical reasoning about descriptive statistics. Framework descriptors were established across five levels of statistical reasoning and four key constructs. The former consisted of idiosyncratic reasoning, verbal reasoning, transitional reasoning, procedural reasoning, and integrated process reasoning. The latter include describing data, organizing and reducing data, representing data, and analyzing and interpreting data. In contrast to earlier studies, this initial framework formulated a complete and coherent statistical reasoning framework. A statistical reasoning assessment tool was then constructed from this initial framework. The tool was administered to 10 tenth-grade students in a task-based interview. The initial framework was refined, and the statistical reasoning assessment tool was revised. The ten students then participated in the second task-based interview, and the data obtained were used to validate the framework. The findings showed that the students' statistical reasoning levels were consistent across the four constructs, and this result confirmed the framework's cohesion. Developed to contribute to statistics education, this newly developed statistical reasoning framework provides a guide for planning learning goals and designing instruction and assessments.
A Decision Analytic Approach to Exposure-Based Chemical Prioritization
Mitchell, Jade; Pabon, Nicolas; Collier, Zachary A.; Egeghy, Peter P.; Cohen-Hubal, Elaine; Linkov, Igor; Vallero, Daniel A.
2013-01-01
The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies. PMID:23940664
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
NASA Technical Reports Server (NTRS)
Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.
2012-01-01
The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The results will be discussed in the context of interannual variability of observed atmospheric CO2 distributions.
Depth of Teachers' Knowledge: Frameworks for Teachers' Knowledge of Mathematics
ERIC Educational Resources Information Center
Holmes, Vicki-Lynn
2012-01-01
This article describes seven teacher knowledge frameworks and relates these frameworks to the teaching and assessment of elementary teacher's mathematics knowledge. The frameworks classify teachers' knowledge and provide a vocabulary and common language through which knowledge can be discussed and assessed. These frameworks are categorized into…
Vallejo-Torres, Laura; Steuten, Lotte M G; Buxton, Martin J; Girling, Alan J; Lilford, Richard J; Young, Terry
2008-01-01
Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies. In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices. Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.
Estimating the Technology of Cognitive and Noncognitive Skill Formation*
Cunha, Flavio; Heckman, James; Schennach, Susanne
2009-01-01
This paper formulates and estimates multistage production functions for child cognitive and noncognitive skills. Output is determined by parental environments and investments at different stages of childhood. We estimate the elasticity of substitution between investments in one period and stocks of skills in that period to assess the benefits of early investment in children compared to later remediation. We establish nonparametric identification of a general class of nonlinear factor models. A by-product of our approach is a framework for evaluating childhood interventions that does not rely on arbitrarily scaled test scores as outputs and recognizes the differential effects of skills in different tasks. Using the estimated technology, we determine optimal targeting of interventions to children with different parental and personal birth endowments. Substitutability decreases in later stages of the life cycle for the production of cognitive skills. It increases in later stages of the life cycle for the production of noncognitive skills. This finding has important implications for the design of policies that target the disadvantaged. For some configurations of disadvantage and outcomes, it is optimal to invest relatively more in the later stages of childhood. PMID:20563300
Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution
NASA Astrophysics Data System (ADS)
Plekhov, O. A.; Kostina, A. A.
2017-05-01
The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.
Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R
2011-07-01
Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.
NASA Astrophysics Data System (ADS)
Cucchiella, Federica; D'Adamo, Idiano; Gastaldi, Massimo; Lenny Koh, S. C.
2014-06-01
Green supply chain management (GSCM) has emerged as a key approach for enterprises seeking to become environmentally sustainable. This paper aims to evaluate and describe the advantages of a GSCM approach by analysing practices and performance consequences in the battery recycling sector. It seeks to integrate works in supply chain management (SCM), environmental management, performance management and real option (RO) theory into one framework. In particular, life cycle assessment (LCA) is applied to evaluate the environmental impact of a battery recycling plant project, and life cycle costing (LCC) is applied to evaluate its economic impact. Firms, also understanding the relevance of GSCM, have often avoided applying the green principles because of the elevated costs that such management involved. Such costs could also seem superior to the potential advantages since standard performance measurement systems are internally and business focused; for these reasons, we consider all the possible value deriving also by uncertainty associated to a green project using the RO theory. This work is one of the few and pioneering efforts to investigate GSCM practices in the battery recycling sector.
Carbon footprint hotspots of prefabricated sandwich panels for hostel construction in Perlis
NASA Astrophysics Data System (ADS)
Razali, Norashikin; Ayob, Afizah; Chandra, Muhammad Erwan Shah; Zaki, Mohd Faiz Mohammad; Ahmad, Abdul Ghapar
2017-10-01
Sustainable design and construction have gained increasing research interest, and reduction of carbon from building construction has become the main focus of environmental strategies in Malaysia. This study uses life cycle assessment and life cycle inventory analysis frameworks to estimate the amount of carbon footprint expressed in carbon dioxide equivalent tons (CO2e) produced by manufacturing prefabricated Industrialized Building System sandwich panels and its installation for a five-story hostel in Perlis, Malaysia. Results show that the carbon footprint hotspots were centered on boiler machine operation and cement with 4.52 and 369.04 tons CO2e, respectively. This finding is due to the extensive energy used for steam heating and high engine rating for the boiler. However, for cement, the carbon footprint hotspots are caused by the large quantity of cement applied in shotcrete mixture and its high extraction and production CO2 emission values. The overall onsite materials generated 96.36% of the total carbon footprint. These carbon footprint hotspot results constitute a necessary base for the Malaysian government in accomplishing an adequate dimensioning of carbon emissions in the building sector.
Semantic and Syntactic Bases of Text Comprehension.
1985-07-25
processing . Psychological Review, 82, 407-428. Craik , F. & Lockhart , R. (1972). Levels of processing : A framework for memory research. Journal of...development, 55, 2083-2093. 56 BBN Laboratories Incorporated Perfetti. C. (1979). Levels of language and levels of processing . In L. Cermak & F. Craik ... processing cycle. Thus, the activation level of those representations that are used in ongoing cycles of integration (e.g. those related to the central
ERIC Educational Resources Information Center
Gavin, K. G.
2010-01-01
This paper describes the design of the curriculum for a Master of Engineering programme in civil engineering at University College Dublin. The revised programme was established to meet the requirements of the Bologna process and this paper specifically considers the design of a new, second-cycle master's component of the programme. In addition to…
NASA Technical Reports Server (NTRS)
Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.
2006-01-01
Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.
Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi
2018-03-01
The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Normalization is an optional step within Life Cycle Impact Assessment (LCIA) that may be used to assist in the interpretation of life cycle inventory data as well as, life cycle impact assessment results. Normalization transforms the magnitude of LCI and LCIA results into relati...
Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale
We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH) systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S.) using life cycle assessment (LCA) and life cycle cost assessment. Life cycle impact assessment (LCIA) categori...
Hunt, S
1997-01-01
The Enuresis Resource and Information Centre in the UK has recently launched a second edition of Guidelines on Minimum Standards of Practice in the Treatment of Enuresis. The purpose of the Guidelines is to provide a blueprint for service delivery in the UK, leading to enuresis services that offer effective, accessible and dependable treatment. In particular, these Guidelines propose minimum and target standards that enuresis services should aim to achieve, relating to referral, assessment and treatment, as well as catchment area appointments, research and referral. In addition, the Guidelines may be used to provide a framework within which enuresis services can be audited and evaluated. Successive cycles of observation, appraisal and action should encourage a continual improvement process in each clinic, resulting in a progressive development of the service offered.
Investigation of compression behavior of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
2017-10-01
The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.
Why are Formal Methods Not Used More Widely?
NASA Technical Reports Server (NTRS)
Knight, John C.; DeJong, Colleen L.; Gibble, Matthew S.; Nakano, Luis G.
1997-01-01
Despite extensive development over many years and significant demonstrated benefits, formal methods remain poorly accepted by industrial practitioners. Many reasons have been suggested for this situation such as a claim that they extent the development cycle, that they require difficult mathematics, that inadequate tools exist, and that they are incompatible with other software packages. There is little empirical evidence that any of these reasons is valid. The research presented here addresses the question of why formal methods are not used more widely. The approach used was to develop a formal specification for a safety-critical application using several specification notations and assess the results in a comprehensive evaluation framework. The results of the experiment suggests that there remain many impediments to the routine use of formal methods.
Logical Modeling and Dynamical Analysis of Cellular Networks
Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T.; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine
2016-01-01
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle. PMID:27303434
Numerical-experimental investigation of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.
Simon, Bálint; Bachtin, Krystyna; Kiliç, Ali; Amor, Ben; Weil, Marcel
2016-07-01
Environmental assessments are crucial for the management of the environmental impacts of a product in a rapidly developing world. The design phase creates opportunities for acting on the environmental issues of products using life cycle assessment (LCA). However, the LCA is hampered by a lack of information originating from distinct scales along the product or technology value chain. Many studies have been undertaken to handle similar problems, but these studies are case-specific and do not analyze the development options in the initial design phase. Thus, systematic studies are needed to determine the possible scaling. Knowledge from such screening studies would open the door for developing new methods that can tackle a given scaling problem. The present article proposes a scale-up procedure that aims to generate a new life cycle inventory (LCI) on a theoretical industrial scale, based on information from laboratory experiments. Three techniques are described to obtain the new LCI. Investigation of a laboratory-scale procedure is discussed to find similar industrial processes as a benchmark for describing a theoretical large-scale production process. Furthermore, LCA was performed on a model system of nanofiber electrospinning for Li-ion battery cathode applications. The LCA results support material developers in identifying promising development pathways. For example, the present study pointed out the significant impacts of dimethylformamide on suspension preparation and the power requirements of distinct electrospinning subprocesses. Nanofiber-containing battery cells had greater environmental impacts than did the reference cell, although they had better electrochemical performance, such as better wettability of the electrode, improving the electrode's electrosorption capacity, and longer expected lifetime. Furthermore, material and energy recovery throughout the production chain could decrease the environmental impacts by 40% to 70%, making the nanofiber a promising battery cathode. Integr Environ Assess Manag 2016;12:465-477. © 2016 SETAC. © 2016 SETAC.
A case study by life cycle assessment
NASA Astrophysics Data System (ADS)
Li, Shuyun
2017-05-01
This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.